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      Quasi-2D periodic vortex streets, driven by the Lorentz force due to the interaction of a localized
   magnetic field with an electrolytic current, have been investigated experimentally using a shallow water

   tank with a movable bottom floor. The vortex street formation has also been investigated numerically
   and some simulated flow patterns are presented.

                                1. Introduction

   When a cylindrical body moves in fluid a boundary layer forms on the surface of the

body. It is well-known that at moderately high Reynolds numbers the boundary layer
separates to form Karman's periodic vortex street behind the body. Such a vortex street
formation, however, is not necessarily connected with boundary layer separation. Honjii)

and Honji & Haraguchi2' investigated the formation of quasi-2D vortex wakes behind a local-

ized magnetic field, which interacts with an electrolytic direct current to produce the
Lorentz force acting on an aqueous electrolyte solution as a working fluid. In their ex-
perimental setup no rigid bodies which give rise to flow separation are present in the fluid.

    The purpose of this work is to extend the preceding investigations and shed some new
light on the mechanism of vortex street formation. In section 2, a belt-driven water tank
developed specifically for the present investigation is described. In section 3, a numerical

model for quasi-2D flows induced by the Lorentz force is outlined together with the method

of numerical calculation. Section 4 is devoted to results and discussion.

                     2. Experimental apparatus and methods

    A schematic diagram of the newly developed water tank used for visual observations of
flow is illustrated in Fig. 1. The tank is equipped with a 25cm-wide endless rubber belt,

which is moved in a fluid at a constant speed with a motor, thereby producing a nearly uni-
form stream above the belt. The fluid is a5.0% NaHC03 aqueous solution. The tank is
also equipped with a pump which serves to circulate the fluid. The thickness of a thin
layer of the fluid above the belt surface was 1.0 cm, which defined the depth of the uniform

stream.
    Vortex wakes were generated by electromagnetically disturbing an upstream localized
region of the above uniform stream. A flat circular-cylindrical permanent magnet with the
magnetic flux density B (O.2T) was placed under the belt as shown in Fig. 1. The fluid

was electrolyzed by applying a d.c. voltage between an anode and a cathode placed on both

ends of the fluid layer, thereby giving rise to an electrolytic current. The Lorentz
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                             rubber belt tensioner motor
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                   Fig. 1 Schematic diagram of experimental apparatus

force was selected always to direct upstream, i.e. opposite to the direction of the belt motion.

The fluid acted on by the Lorentz force was thus moved upstream. As shown in a preced-
ing paper2)""*), the balance between the uniform downstream and induced upstream flows
governs the three types of flows, open-streamline, vortex pair, and periodic ones, depending

on Reynolds number and reduced Lorentz force. The magnitude of the Lorentz force was
controlled by varying the electric current from a d.c. power suppiy. For visualizing the

surface flows polystyrene beads were scattered on the surface of the fluid and illuminated

with a slide projector. Flow patterns were photographed from above with a 35 mm or
video camera.

                       3. Numerical model and methods

  A quasi-2D flow of a thin layer of fluid driven by the Lorentz force acting only horizontal-

ly is considered ; the vertical fluid motion motion may be neglected to be small as compared
wi' th the horizontal one. Approximating the vertical profile of a horizontal flow velocity
with a quadratic function, we have the incompressible flow equations3)

  0oUtS+(us•Vh) us=v7h2us-rc 2hV, us+'2)' (Jx B) (1)

and

  Vh ' US=O (2)

**' ) In Ref.2 the following corrections should be made. On 9th line from top on p.2275 (left) for,t'...is Bo

    O.48T..." readtt...is O.48 T...". Be is O.29 T at z =7mm. On 8th line from bottom on p.2277 (left),
    tt...downstream," read t'...upstream,".

for
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where us (u, v) is the surface velocity vector, p the fluid density, h the depth, Jthe electric

current density, and B the magnetic flux density. The term JÅ~ B describes the Lorentz
force. The uniform flow is in the x direction to which the horizontal y direction is perpen-

dicular ; u and v are the x-and y-components of us, respectively. Letting i and J' be the
unit vectors in the x and u directions respectively, we have 7h= (0/0x) i+ (0/0u)i

   Equation (1) does not includes the pressure term for only the surface flows are consi-
dered. The second term' (2rcv/h2) us on r.h.s. of the equation describes the viscous effect

at the bottom floor, where rc is an adjustable parameter depending on the deviatibn of the

velocity profile form the quadratic form. We write

J- -1of'

and

  B=B,exp[-(-!(2Z=-gZ-:!iiX )2+(, (b/2))2]]k, (3)

where lo is the applied current density, Bo the maximum value of IBI on the axis of a mag-

net, a the stream-wise distance between the upstream edge of a computational domain and
the magnet axis, b the u-directional width of the region, d the magnet diameter, and k the

unit vector in the z-direction. The Lorentz force fis

  f=JxB=-JoBoexp[-(up( )2+(, (b/2))2]]i. (4)

Substituting eq. (4) into eq. (1), taking rot of the resulting equation, and non-dimensionaliz-

ing it with Jo and Bo, we have a nonlinear evolution equation

  Ooto,'+{Oll:;-,t0o.toI-SO,,t0oWyl

  = Viili2,`O'- R`Oh' -2Q(y'--Sli)exp[-((xi--[})2+(yt--Sli)2]], (s)

where the primes indicate non-dimensional quantities including the vorticity co' is the 2-com-

ponents of VÅ~ us', and the streamfunction op' defining u,t as u,'= (0ip'/0yL -OÅët/Ox')

with

  Re== <ild, Rh= 21i32d, and Q= J;Buo,d (6)

This stream function op' can be evaluated using

The convection terms in eq. (5) are approximated using a first order upwind scheme and
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Fig. 3 Open-streamline
Rh-20.8)

flow (Q-1. 54, Re= 375,

Fig. 4 Vortex pair flow
20.8)

(Q=:2.46, Re=375, Rh=

Fig. 5 Periodic flow (Q=7.29, Re=375, Rh=
       20.8)

figure corresponds to the flow shown in Fig
Both corresponding flow patterns look quite

ical model seems to work well for the quasi-2D
evolutions of streamlines and vorticity lines

   other terms by means of a central differ-
   ence scheme. This evolution equation has
   been numerically integrated under the
   boundary conditions as depicted in Fig. 2
   with rc the coefficient of Rh being kept as

   unlty.

         4. Results and discussion

     Three different types of visualized flow
   patterns are shown in Figs. 3 to 5 at Re==

   375 and Rh == 20.8. Figure 3 shows a
   flow having no closed streamlines at a re-
   latively small value of Q==1.54. It will
   be seen that the induced flow is blown off

   in the flow direction. When Q is in-
   creased to be 2.64, a steady vortex pair is

   formed as shown in Fig. 4. With the
   further increase of Q, the vortex pair be-

   comes unstable and oscillatory. Figure 5
   shows an oscillatory flow at a large value
   of Q==7.29. A streakline pattern of the
   downstream wake is displayed in Fig. 6 at
   the same value of (?. The formation of a

   periodic unsteady far wake will be seen
   clearly. The wake looks similar to Kar-
   man's vortex street, although this wake
   formation is free from any boundary layer
   separation from rigid bodies. According
   to Honji and Haraguchi2', the Strouhal num-

   ber for this type of periodic wake formation

   is about half the value of O.2 for the com-

   mon vortex streets behind circular-cylin-
   drical rigid bodies. When Q and Re are
   increased further, the vortex streets become

   irregular and turbulent.

       Some numerical results will follow here

   the above experimental results. Figures
   7 and 8 show an open-streamline flow and

   a vortex pair, respectively. The former
.3 and the latter to the one shown in Fig. 4.

similar to each other, and the developed numer-

    steady flows. Figure 9 shows the time
for an oscillatory unsteady wake. The vortex
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Fig. 6 Streakline pattern of periodic flow(Q=7.29, Re=375, Rh=20.8)

Fig. 7 Streamline pattern
line flow (Q=1.0,
6.5, b/d=13)

of computed open-stream-
Re=150, Rh-2.1, a/d=

o
O

     perimental value. be noted here,
     however, that the outer boundary of the
     computational region is reached fully by the

     oscillatory vortex pair ; a much larger com-

     putational domain should be used in further
     studies.

         The computed formation regions for
     the three types of flows are compared with

     the experimental results of Honji and
     HaraguchiL" in Fig. 10, where the computed
5• flow types are shown with the symbols O,

     A, and Å~. The agreement with the ex-
     perimental result is satisfactory.

  formation regions have been investigated ex-
       model so far developed has proved to be
    Prof. Y. Nakamura for pointing out the pas-
The authors thank Dr. N. Matsunaga for helpful

pair will be seen to oscillate up and down,

thereby each vortex being subject to
alternative expansion and reduction in its

size. A periodic release of vorticity
occurs behind the oscillatory vortex pair to

form a periodic vortex street. A resulting

similarity of the flow patterns between
those in Figs. 5 & 6 and 9 seems to sup-
port the validity of the present numerical

model, The calculated value of the
Strouhal number is about O.1, which agrees

well with the previously referred ex-
                 It should

Fig. 8 Streamline pattern of computed vortex pair
       flow (Q=125, Re-30, Rh ==O.42, a/d=6.
       b/d-13)

    In conclusion, the flow patterns and
perimentally and numerically, and the numerical
promising. One of the authors (HH) thanks
sages that needed correction in Ref. 2.

discussions.
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Time evolution of computed periodic flQw
(Q==60, Re=600, Rh==8.4, a/d=15, b/d=13)
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