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                                   Abstract
      Representative questions of interest include the existence and number of fixed points of transition

   functions of finite cellular automata. In this paper we shall show some results about the above
   questions for finite cellular automata GS (m) with dynamics of Gauss-Seidel type, that is, (a) The length

   of maximum cycle of state diagram of a finite cellular automaton GS (m) is a linear function of the
   number m of sites, and (b) The forms of fixed points of transition function vary with boundary

   conditions of the automata.

  1. Introduction

   In general cellular automata can be defined as a spatial lattice of sites whose values at

each time step are determined as a mapping of the values of the neighboring states at the
previous time step. In [1] Huzino has recently explored the behaviour of cellular
automata with Gauss-Seidel processing, in which he illustrated that their behaviour are
different from those of usual cellular automata (with synchronous processing) , if dynamics

of cellular sutomata are Gauss-Seidel type. The essence of this system is as follows: a
state of the cellular automaton is processed in a definite order. After that, it makes
immediate use of the processed result for the next processing. This paper will explore an

analysis of finite cellular automata with iterative dynamics of Gauss-Seidel type.
Representative questions of interest in this context include the existence of fixed points, the

number of fixed points, and length of maximum cycle. The site values are restricted to a
finite set of integers, namely the variables at each site may take values O or 1, and
specification of the mapping provides the rule governing dynamical behaviour of the
automata. These cellular automata evolve in time according to the following rule: The
value of a site at a particular time step is simply the sum modulo 2 of the values of its two

adjacent sites on the previous time step and its left site on the current time step. The time

evolution of the complete cellular automata is obtained by sequential applications of this rule

at each site for each time step from left to right.

  2. Cellular Automata of Gauss-Seidel Type

    First of all we define a finite cellular automaton with dynamics of Gauss-Seidel type,
denoted by GS (mp), as follows:
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Definition 2.1 Let m be aPositive integer and B a set lO, 1l. Afinite cellular automaton GS
(m) with dLynamics of Gauss-Seidel tp?Pe is an iterative Processing sLptstem <BM, T >, tohere BM is an

m-th cartesianProduct ofB and T : BM -> BM is a maPPingfrom BM into BM defcned bJv

                (T (b))i=(T (b))iri+ bi + bi+i mod 2

for each b= (bi, b2,"', b.) EBM and i= 1, 2,"', m, where (T (b))o=O,and b.+i == O. The
addition+means modulo 2 addition. The cellular automaton GS (m) has m sites (cells) and states of

the sites var2 withOor 1. We call the maPPing T the global d2namics of GS (m).

Definition 2.2 Let Z2. beaset lO, 1,"', 2m-1l. Defcneamapping Sb:BM.Z2. bLJ,

                sb (b) == 2M-ibi + 2M-2b2+ "' +2b.-i+b.

for each b= (bi, b2,"', b.) EBM. The maPPing Åë is bi'ectivefrom BM onto Z2.. Let us deLfine a

junctionfb2f= qoToq-i. A slstem D=<Z2.,f> is a d2namical s2stem associated zuith the
original system <BM, T >. Thefollozving diagram commutes:

                            T
                  BM----.-.----.. BM

iY!2 ip-1 ip

                           f
                 Z2rrL-......--..----.-... Z2m

                           Fig. 2.1.

   We get the following results.

Proposition 2.3 The global dLynamics T: BM-BM of GS (m) is bi'ective.

PROOF. It is sufficient to show that dynamics T is injective, since the set BM is a finite
set. Assume that T (a) = T (b) for a == (ai, a2,'", a.) and b= (bi, b2,"', b.) EBM, that is,

(T (a))i=(T (b))i(i=1, 2,'", m). For i=m, we have by definition

                  (T (a)). == (T (a)).-i+ a. mod 2

and

                  (T (b)).=(r (b)).-i+ b. mod 2.

Hence, by the assumption, we get a. = b.. And similarly discussing, we have for i= m-1,
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        (T (a)).-i=(T (a)).-2 + a.-i + a. mod 2

and

        (T (b))m-1 == (T (b))m'2 + bmml + bm MOd 2•

Thus we get a.-i= b.-i. By sucessively doing those, we have ai= bi for all i= 1, 2,•••,

m, that is, a== b. Hence the mapping T is injective, and surjective. Therefore, this
completes the proof. D

Proposition 2.4 The dLJ,namics T: BM.BM of GS (m) is additive.

PROOF. It will be proved by mathematical induction on i = 1, 2,'", m as follows:

        (T (a+b))i=(T (a))i+(T (b))i mod 2.

Basic step (i = 1):

        (T (a+b))i = (a+b)i+ (a+b)2 mod 2

                  = ai+bi+a2+b2 mod 2
                  = T (a) i+ T (b)i mod 2

Induction step: Assuming that it holds ati-1, it is enough to show that it holds at i. By

definition

        (T (a+b))i=(T (a+b))i-i+ (a+b))i+ (a+b))i+i mod 2
                  =(T (a))i-i+(T (b))i-i+ai+bi+ai+i+bi+i mod 2
                  =(T (a))i+(T (b))i mod 2.

Hence it holds f6r alli= 1, 2,"', m, and the proof is completed. O

    Thus"the functionfof the associated system D =<Z2.,f> is bijective from Z2. onto
Z2.. So, by observing the functionf we can analyze the behaviour of the automaton GS (m).

Theorem 2.5 Thefunctionfof the slstem D is asfollows:

       f (p) - ( Z".+i(-' 7,,O.' ii)2(i ;'.2,M.--'i72i-)-i+i,..., 2--i).

PROOF. For eachpEZ2. there exists uniquely an element b= (bi, b2,"', b.) satisfying

q (b) ==p. Then we get

       f (p) =q (T (q -i (p)))
            = sb (T (bi, b2,"', bm))

            == Åë ((bi+b2 mod 2, 'bi+b3 mod 2,"', bi+b. mod 2, bi))
            = 2MM' (bi+b2 mod 2) +2M-2 (bi+b3 mod 2) + "' +2 (bi+b. mod 2) +bi
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Forp=

Forp =

O, 1,•••, 2M-i-1 we get sb M' (p) =b == (O, b2, b3,"', b.)•

f(p)-Åë(T (b))
     = 2m-ib2+2m-2b3+ ••• 2b.
    =2(2m-i • o+2m-2b2+ ••• +b.)

    =2p

2m-i, 2m-i+1,•••, 2M-1 we get bi =1. Hence

f (p) - 2m-iE + 2m-2E + ••• +2of +1
    = 2m-i (1-b2) +2m-2 (1-b3) + ••• +2 (1-b.) +1
    = 2m+2m-i+ ••• +2+1- (2M+2M-ib2+ ••• +2b.)
    = 2m'i- (2Lp+1)

Hence

Hence the proof is completed.

   The following table 2.1.

D
shows the values of the functionf

p
f(p)

o 1 2 ••• 2M- -1 2md 2m- +1 --- 2M -2 2M -1
o 24 -• 2M -- 2 2M --• 1 2M -- 3 --i 3 1

                                  Table 2.1

From the above table,we get

                  1 -4. 2 -C 22 4 23 4 ... .! 2m-i 4 2m - 1-t(Ll,

that is,fM+i(1) = 1. This shows that the state diagram of the automaton GS

transition cycles of length m+1. See Figure 2.2:

                          ,.;.f.3M.;f-i""i jL"Nf:'ss ll.f>. ,,

2M- 2/lj f

/
x

Figure 2.2

>Nx23

   'Å~

      24
   d•
    25

/

(m) contains
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Example 2.6 Let us consider the case GS (2) == <B2, T > when m== 2.

functionffrom Z22 onto Z22 takes thefollowing values:

Then the associated

p 0123
f(p? 0231

1

                  00y 2 3
                                Table 2.2

So, we can observe that the state diagram of GS (2) has a c2cle oflenght 3 and afixedPoint.

Example 2.7 Let us consider the case GS (3)= <B3, T > when m= 3.

Then thefunctionftakes thefollowing values:

p 01234567
f(p? 02467531

3 1.----- 7

0 5

                        -"

                                 , 6 2-------.4
                                Table 2.3

    The state diagram of GS (3) has a aycle of length 4, a clcle of length 2 and two fixed Points.

Example 2.8 Let us consider the case GS (4) =<B4, T > when m == 4. Then the associated

functionffrom Z24, onto Z24 takes thefollowing values:
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p
f(p?

01 23 4 5 6 7 8 9 10 11 12 13 14 15

o 2 4 68 10 12 14 15 13 11 9 7 5 3' 1

0Or 2

     1
/XXx.15
Å~4---./8

     3
al/Å~i4

Xl2in-./7

       5
iof/Å~i3

ti--+/9

Table 2.4

    Hence the state diagram of GS (4) has three c2cles of length 5 and a.fixed Point. Here we can

convert the boundarLJ, conditions (T (b))o == b.+i=O into the boundarLJ, conditions (T (b))o =O and

b.+i== 1. Then, we can observe the another configuration of the behaviour of automaton GS (m).

Under the converted boundar2 conditions, zoe can orgnige a new s2stem which is associated with the original

sJvstem C == <BM, T >. In some cases, it does'nt have anLJ, .fixed Point, and in other cases, it has one

.fixed Point.

   Let us define a
system associated

commutes:

 function

with the
g by g=
original

qTq-i.
system C==

A system
< BM, T

E=<Z2.,g> is a dynarnical
>. The following diagram

Bm T Bm
vt)L'

z

ip---1

          g

2nL---------.

'uc,

zr2.

Figure 2.3

We get the following result.

Theorem 2.9 Thefunction g of the s2stem E= <Z2., g> is as fo llows :

g(p) -( 2P+1 (,lb =O, 1, 2,•••, 2m-i-1)
2m+i.2 (,p+1) (p .. 2m-i, 2m-i+1".., 2m-i- 1) .
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PROOF. For each p ({ii Z2., there exists uniquely an element b= (bi, b2,"',
satisfying Åë (b)=p. Tthen we get

    g(p) -Åë(T (q-i (p)))
       = sb (T (bi, b2,"', bm))
       == q ((bi+b2 mod 2, bi+b3 mod 2,'", bi+b. mod 2, bi+1 mod 2))

Forp=O, 1, 2,•••, 2M-'-1, sb -i(p)=b == (O, b2, b3,'•'). Hence

    g(p) = 2M-'b2+2M-2b3+ "' 2b.+1
       =2(2m-i • o+2mm2b2+ ••• +b.) +1
       == 2p+1

Forp= 2m-i, 2M-i+1, •••, 2M-1 we get bi == 1. Hence

    g(p) = 2m-iZEi + 2m-2Z6 + ••• + 2Z I+ (1+1 mod 2)
       = 2m-' (1-b2) +2m-2 (1-b3) + ••• +2 (1-b.)
       = 2m+2m-i+ ••• +2+1- (2M+2MMib2+ ••• +2b.+1)
       = 2m'i- (2p+1)

Hence the proof is completed. E]

  The follOwing table 2.2. shows the values of the function g.

bm) (EIilBM

p
g(p)

O12 -• 2M-1 2m--1+1 ••• 2M --- 2 2M `1
1 3 5 ... 2M --2 2M -4 --- 2 o

Table 2.5

From the above table, we get

           o -tll> 1 :IIL. 3 -S 7 -{l, ... -ig> 2mmi -tll> 2m-1 .E.> o,

that is, gm"' (O) = o

Example 2.10 Let us consider the case GS (2) = <B2, T > when m= 2.

function gfrom Z22 onto Z22 takes thefollowing values:

Then the associated
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p 0123g(p? 1320
1

                       2

                                       3O
                                       Table 2.6

    So, we can observe that the state diagram of GS (2) under the boundarJv conditions (T

b.+i =1 has 'a cLJ,cle of lenght3 anda.fixed point. -

Example 2.11 Let us co nsider the case GS (3) = < B3, T > when m = 3. Then

takes thefollowing values:

(b))o= O and

the function g

p 01234567f(p? 13576420

1"-- 0 2pt6

                        3-----7 5--4
                                       Table 2.7

    The state diagram of GS (3) under the boundarJ conditions of (T (b))o == O

only two cJcles of length 4, which is comPared with the state diagram of GS (3)

conditions of (T (b))o == O and b.+i = O, that is, it does'nt have anLJ,.fixedPoint.

               '
Example 2.12 Let us consider the case GS (4) =<B4, T > when m == 4.

takes thefollowing values: -

and b.+i =1 has
under the boundar!

Then the function g
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p
g(p? 0123 4 5 6 7 8 9 10 11 12 13 14 15

1 3 5 7 9 11 13 15 14 12 10 8 6 4 2 0

         ,/ix, ,//K.,/S
ioOXl,, X. /, h/6

             - ---"                                        -
                              Table 2.8

The state diagram of GS (4) has three clcles of length 5 and a.fixedPoint.

 3. MainTheorems '
   Let e(Z)be a configuration (O,'", O, 1, O,'", O) with only one state 1 at its i-th component

Note that, by the definition of T ,

  ( i ) T (e (i))= ei-i (i = 2, 3,"', m)

  ( ii ) T (e (1)) = Åí l.n= 1 e(i) ,

       T (Zl =, ,e(i)) =e(M).  (iii)

    '
See figure 3.1.:

                     e(1)/ii.lilll=ll'SE(2--) 'El(I NS) sc)e(.-2)

e(2) /

/
x

      /
Figure 3.1.

'N ,(m-3)

  rX

     e(M-4)

v
   e(M-5)

/
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From (i), (i) and (iii), we ger T (M+i) (e(i))==e(i). The following theorem describes

that the maximum length of cycles of transition diagrams of the automaton GS (m) is a

linear funcion of m. .

Theorem 3.1 The maximum length ofc2cles oftransition diagrams ofthe automaton GS (m) is equal

to m+1, i. e.

         T m+i (b) = b

for each bEBM. (This shows that each length of c2cles of transition diagram of GS (m) is afactor

ofm+1.)

PROOF, For eachb= (bi, b2,"', b.) <{S BM, we have

             m        b == Z e(i)bi mod 2.

            i--1

Then, by the linearity of T,

                m         T (b) = 2 T (e (i)) bi

               i=1

and

                   m         Tm+i(b) = 2 Tm+i (e(i))b,

                   i--1

                   m                =: 2 e(i) bi

                   i=1

                 = b.

This completes the proof. O

    We are able to find the fixed points of the dynamics T.

Theorem 3.2 The d2namics T of the automaton GS (m) has .fixed Points, and the number of.fixed

Points are one for even m and two for odd m.

PROOF. Consider the associated dynamical system D == < Z2., f> of the automaton GS
 (m). The number of fixed points of the functionfis equal to those of the dynamics T,
since Åë is bijective. Fixed points of the functionfare

         (i) O for even m

and

         ( ii ) O and (2M"- 1) /3 for odd m.
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Clearly, by the form offO is fixed point off:f (O)=O. Another fixed point, if it exists,
has to satisfy the relationf (p) = p. Hence the number p satisfyingf (p) = 2M'i--- (2p+1) =

P is a candidate of fixed point off When m is an old number, according to an elementary
analysis of the number theory, 2M+i-1 is divisible by 3. Since (2M+i-1)/3>2m'i,

       f((2m+i-1)/3) == 2m+i- [2 (2M+i-1)/3+1]
                      = (2m'i-1) /3 .

Therefore, the point (2M+i-1) /3 is a fixed point of the fdnctionf Hence we have the

conclusion.

Remark.

    q-i(o) - (o,•••, O)

and

sb -'((2m"- 1)/3) == (1, O, 1, O,•••1, O, 1) (for odd m).

These are fixed points of T.

Theorm 3.3 Under the boundary conditions (T (b))o=l O and b.+i =1, the dlnamics T of the

automaton GS (m) has.fixedPoint, and the number offcxedPoint is onefor even m.

PROOF. Consider' the associated dynamical system E :<Z2., g> of the automaton GS
(m). The number of fixed point of the function g is equal to those of the dynamics T.
Since sb is bijective, the fixed point of the function g is 2(2M-1)/3. It has to satisfy g (p) =

p. Hence the numberpsatisfyingg(p) =2M'i-2(p+l) =p is a fixed point of g. When
m is an even number, according to an elementary analysis of number theory, 2M+i-2 is
divisible by 3. Since (2M'i-2)/3>2mmi,

       g( (2m"-2) /3) = 2m'i-2 [ (2m"-2) /3+ 1)
                     =: (2m"-2) /3.

Therefore the point (2M+i-2) /3 is a fixed point of the function g. Hence the proof is

completed. M
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