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      Convergence of Approximate Potential Functions for

           Vector Field in Electromagnetic Waveguides

                 Hiroshi Kubo" and Kiyotoshi Yasumoto"

                            (February 28, 1994)

   The convergence of an approximate electric and an approximte magnetic potential function
representing vector field in electromagnetic waveguides is discussed. The two potential functions are
expressed in the form of integral of Green's functions and the boundary values of the vector field.
Based on these expressions, it is proved that two approximate potential functions converge uniformly to

their true potential functions, respectively, when the approximate field satisfies the boundary conditions

in vector field in the sense of mean square. Then, the inequalities about convergence of the
approximate potential functions on a boundary are deduced. Using the inequalities, it is also shown
that the boundary conditions in vector field can be satisfied when the approximate potential functions are

expressed by the finite series of modal functions.

    1. Introduction

    Various numerical methods have been applied to the analysis of dielectric waveguides,
which support vector field modes, in order to calculate the propagation characteristics
precisely i''2'. It should be noted, however, that the solutions obtained by these methods do

not necessarily converge to the true values. For the precise analysis of wave fields,
Yasuura has developed a numerical method, i.e., the mode-matching method3'. This method

has been applied successfylly not only to scalar field problems, in which the field can be

expressed by one wave function, but also to vector field problems, in which the field can be

expressed by two wave functions`" 5'. Its algorithm is straightforward. The approximate

field is expressed by one or two truncated series of the modal functions and the expansion

coeffcients are determined by matching the approximate field to the boundary conditions in

the sense of mean squares. The uniform convergence of the solutions for scalar field
problems is ensured theoretically by Yasuura's theorem3'. It may be expected, on the
analogy of this theorem, that the solutions for vector field problems also converge to the

true fields. However, it is important to clarify the theoretical basis for application of the

mode-matching method to vector field problems.
    In this paper, on the basis of Yasuura's theorem for scalar field, we shall derive the

expressions for convergence of two approximate potential functions representing vector
field. In section 2, we deduce the integral representations of an electric and a magnetic
potential function in terms of the boundary values of the vector field. We introduce the
approximate electric and the approximate magnetic potential function which satisfy the same

equations as the true potential functions. Based on their integral representations, it is

 * Department of Electrical and Electronics Engineering, Yamaguchi University
 * *Department of Information Systems
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proved the two approximate potential functions converge uniformly to the true potential
functions when the approximate vector field satisfies the boundary conditions in the sense of

mean square. In section 3, we show that the approximate vector field satisfies the
boundary conditions iri the sense of mean square when the approximate potential functions

are expressed by the finite series of modal functions. Using these results, Yasuura's
theorem rewritten for vector field is deduced. The time factor is assumed to be of the
form exp ( -- iwt) .

  2. Uniform Convergence of Approximate Potential Functions

  2.1 Integral representation of potential function
    The geometry considered here is the dielectric waveguide as shown in Fig. 1, which is
composed of the core region Si and the clad region S2, and is uniform in the z direction.

                                             m

So

S2
                        Fig. 1 Geometry of dielectric vVaveguide.

The refractive indices of two regions Si and S2 are ni and n2 (ni -> n2), respectively. The

boundary of the cross section is denoted by C, and s and n are the unit vectors in the
tangential direction and the normal direcion pointing to outer region of C, respectively. s,

n, and the unit vector z in the c direction satisfy the relation

The elecric and magnetic potential functions nS• and IIY-, which vary in the form exp (iPc),

satisfy the Helmholtz equations
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    (V2Å}+ aOg22 +k2n2j') II9' == O• '' P'= e•M• J[ == 1•2• (2)

where the subscript j' indicates the two regions Si and S2, VÅ} is the transverse part of the

vector operator A, and k is the wavenqmber in free space. Using these two potential'
functions, the electromagnetic fields varying in the form exp (iBc) can be represented as

                                                         tt
    Eti =z(n3• k2 + aac2,) IIS. + aOc vÅ} IIS• -iw pt,•zÅ~ vÅ} n,M•,

    E,•=z(n3 k2 + aOz2, ) IZ[Y.Z+ aaÅí vÅ} ll,M• -icu E,•zÅ~ vÅ} llS•, (3)

                                                    '
where ptj• and eJ• are the permeability and the permittivity of the medium in the region SJ"

    The electric and magnetic potential functions nS• and lljM• which vary in the form exp
(-iBz),also satisfy the H.elmholtz.. equations (2). Substituting rt,e• and rt,M. into Eqs. (3),

the electromagnetic fields EJ• and HJ• can be expressed by these potential functions. The
tilde on potential functions and fields means that the indicated physical quantity varies in
the form exp(-iBc). Using these equations for E7•, H,•, EJ-, and fiJ, we obtain the following

equation in region Sl: .
   f. (Ei Å~ fii - Ei Å~ Hi) ' nds

        = -- i(v eiT2i f. (n ,e aO. fi ,e - rt ,e aa. II f) ds

          +i`'V ltiT 2i f. (ll iM aa. fi iM - fiT aO. ll iM) dS , i' (4)

                                             '                                                                     '                                                                        'with

                                           '                                           '        T2i -- n2i k2b i6?2, (5)
where s denotes arclength on C measured from a fixed point s.. Applying Green's theorem

to nPi and fif (P == e, m), we have •
    f,, (ll'iV2Å}fl-f- fieV2Å}n'i)ds=f.(n'i aO. fif- fif oa, n'i)ds, (6)

where dS is the areal element of region S,•. Using Eqs. (6),Eq. (4) can be rewritten into

the following equation which expresses the relation between the electromagnetic fields on C
and the potential functions in Si:

         - iCV eiT 2i f,, (nfV 2. IIf: IIfv 2. Hf) ds

         + itu pti T 2i f,, (n iMV2Å} fi T - rt Tv 2. il ,m )ds

        =f. (EiXHi'EiXHi)'nds. . (7)
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In a similar way, we can obtain the following equation in region S2 :

        - iCt) e2T 22f,, (",eV2. ll ,e -- ll ,ev2.n,e)ds

        + itu pt2T 22f,, (ll ,Mv2. ll- l - fi ,Mv2. ll,m. )ds

      =f. (E2Å~fi2 -- E2Å~.H2)'nds. (s)
With

       T22 '-'-= n22 k2 '- P2, (9)
   Let us now consider four Green's functions which satisfy the following equations :

   wave equatlons

                                                   '
       (V 2. 2, + T2, )d e, ,e (P,, <Z, )= -S(P, 2i) Pi, Q, ES,, (10)

       (V 2. 2, +T2, )G e, ,e (P,, 2, )= O P,, s2J ES,, (1 1)

       (v 2. Q, + T2, )d e, ,e (P,, Q2)= O P, GS,, <22 ES2, (1 2)

       (v2.2,+r2,)Ce,,e (P,, th)= O PiES,, Q2cS,, (13)

                                      '   boundary conditions onC -
   n Å~ Eeii,G = n Å~ [z T 2i G'- gie - iiG) v.G "ne - ia, ,aiz Å~ v.C eiT]

                                               '
           == n Å~ [z T 22G" S2e --- i/(? v.d ei2e -- icc) ,a2z Å~ v.C eiT]

            =nÅ~ E- e12,G, (14)
   n Å~ ]fiil,G =n Å~ [z T 2i G" eff -il(9 v.Geilf + icu Eiz Å~ v.Ciie]

           =n Å~ [z T 22G- ei2e - i/SP v.C es + i(v e2z Å~ vLaii]

           =nX HS2,G, (15)
where PiQt is the distance from the source point Pi to the field point <Zi, 6 (PiQi) denotes
a delta function, and V2Å}Qi is the differential operator with respect to the coordinate of Qi,

and EfJ•,G and Hi"j•,G denote the electric and magnetic fields deduced by Gei,•e and GeiY• . Gei,e

and GeiY• are considered to be electric and magnetic potentials in Sy excited from the unit
source of TM type located in region Si. Using the potential functions Geiie and GeiiM as ll ie

and fiTin Eq, (7) and applying Eqs. (10) and (11) to Eq. (7),we have
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    i(v eiT 2i ll i" (Pi) =f. (Ei Å~ Hfi,G-Efi,GXHi) • nds. (16)

Using the potential functions ae!2e and deiM2 as fi2e and rt2M in Eq. (8) and applying Eqs.

(12) and (13) to Eq. (8),we have

               O ==f. (E2 Å~ fif2,G-E{2,GXH2) 'nds. (17)

Subtracting Eq. (17) from Eq. (16) and taking account of the boundary condition (14) and
(15), we obtain

    i(v eiT 2i ll ,e (Pi) =f.[n Å~ (Ei - E2 )] • Hfi,Gds

         '                  +f.[nÅ~ (HimH2 )] 'Efi,G ds. (ls)

Using the tangential components of electromagnetic fields on C and the Green's functions, we
obtain the similar integral representations for ll iM, IIS, and ll 2M to Eq. (18). Let us assume

that the electrimagnetic fields satisfy the following relations on C:

   nÅ~ (Ei-E2)=f (s ), nÅ~ (Hi-H2) =g (s) (19)
where f (s) and g (s) are the vectors related to the arbitrary incident wave of the problem.

  2.2 Uniform convergence of approximate potential functions

  Referring to the mode-matching method for scalar field, we introduce the complete set of
wavefunctions IÅëj•,i(P,•)l in S,•, which satisfy the radiation condition and the Helmholtz

equations6)

    (V 2-,+ T,2.) s6,,,(P,.)=O, l= O, Å}1, Å}2,•••, (20)

and approximate the electric and magnetic potential functions llS• (P,-) and IIY• (Pj•) in terms

of finite series of wavefunctions as follows :

               N    ll e• ,N (Pj•) =Z A9,i(N) Åë,,t (P, ), p= e,m (21)
              l= -N-
where AjP•,i (N) are the expansion coefficients, and Nis a truncated number. Since ll:,N (Pi)

satisfies the same Helmholtz equation as IIi (Pi), based on the discussion in sec. 2.1, we

obtain the following equation:

   icv eiT 2i llf,. (Pi) == f.[n Å~ (Ei,N- E2,N)] ' fi{i,Gds

                   +f.[nÅ~ (Hi,N-H2,N)] 'E{i,G ds , (22)
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where Ej•,N and H,•,N are the approximate fields given by Eqs. (3) and (21). Subtracting

Eq. (22) from Eq. (18) and using Eqs. (19), we have

             i6v e, T 2i I llS (Pi) - ll{,N (Pi)l

           =f.[f(s) -n Å~ (Ei,N- E2,N)] ' fifi,Gds

           +f.[g(s)-nÅ~ (Hi,N -- H2,N)] •Efi,Gds. (23)
                          '                                                                   '
On the condition that Pi is not on C, E{i,g and E{i,g are square integrable over the integral

path of Eq. (23). Applying the Schwarz inequality to Eq. (23), we obtain

    liif(Pi) - llZ,N (Pi)l<- IA. ill{l)2, 1 I1f(s )'-nÅ~ (Ei,N- E2,N)11

                A (ffi)
            + lto ,,. 2,l ll g (s) -nÅ~ (Hi,N ---, H2,.) ll , (24)

                                                                       '
where A (Eie) and A (H{) are positive constants independent of Pi and li ll denotes the

norm of function defined by

    ll Ei,NmE2,Nll= (f.IEi,N-E2,Nl2ds)"IIi- (2s)

Through the same process, we obtain the similar inequalities for ll 2e (P2), II ff (Pi), and n 2M

(P2) to Eq. (24). From these inequalities, we have the following lemma:

    Lemma-1 For increasing N, the approximatefipotential functions nje•,N (Pj•) and llY•,N
(PJ-) converge uniformly .to the true potential functions llS (Pj) and IIY. (Pj) in any closed

subset of Sj•, respectively, if the relations

        lim ll f(s) -nÅ~ (Ei,N - E2,N) il = O,
       N-. oo

        lim llg(s)-nÅ~ (Hi,N-.H2,N) ll =:O, (26)
       N- co

hold true. L

  3. Convergence of Approximate Fields to Boundary Values

   In this section we prove that the approximate fields vonverge to the boundary value in
the sense of mean square. The electric and magnetic potential functions nie (Pi) and niM
(Pi) in region Si can be represented as follows '[3]:

                         '    ll Pi (Pi) ==f. VP (s)g (kri) ds, Pi ESi,p= e, m, (27)

with
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             1    g(kri)=i/ Ho(i) (kri), ri=Pi2 2EC, • (28)
where vP(s) are the single-layer source distributions on boundary C, and Ho(i) is the zero

order Hankel function of the first kind. IIg (Pi) can be approximated by the finite series

of modal functions Åëi,i(Pi) as follows:

                N    fi'i,. (Pi) - El Ag,i (N)Åëi,,(Pi), Pi (! Si, (29)
               t= -N
where Ag,i (N) are expansion cofficients dependent on the value of N. Using single-layer

source distributions lVi(s)l,the modal functions also can be represented by

    Åëi,i (Pi) =f. Vi (s)g (kri) ds, l= O, Å} 1, Å} 2, ••• ' (3o)

The substitution of Eqs. (30) into Eqs. (29) yields

                N    H'i ,N (Pi) =,;-. A'i,i (N)f. vi(s)g(kri) ds. (31)

The subtraction of Eqs. (27) from Eqs. (31) yields

    ll'i,. (Pi) -H", (Pi) -f.6MP. (S)g (kr,) ds, (32)

                                 'with

                Ar
    aMp. (s)= Zl Ae,, (.zv) v,(s)-vp (,). (33)
               l=-Ai
In the limit when the point Pi in region Si approaches the point P on the boundary C, Eqs.
(32) bexomes

    n'i,. (P)-n"i (P) -f.6MP. (s);(kr) ds, PEC, (34)
                                                                   '                                                                    '
where ris the distance from point Pto point Q.. Sinceg (kr) is square integrable over the
integral path of Eqs. (34), the application of Schwarz inequality to these equations yields

    llnP,,. (s)- llP, (s)ll <- A•llsMP. (s)ll, (3s)
                                 '
where A is a positive constant independent of N. The gradient of Eqs. (32) is given by

    Vtp, lllPi,. (Pi) - HP, (Pi)l =f.5MP. (s)VÅ}p,; (kri) ds, P,ES,. (36)

In the limit when Pi approaches P, the inner product of Eqs. (36) and the unit vector s in

the tangential direction at P becomes
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    aO,. ill'i,N (P)- "'i (P)I =f.SMPN (s) oa,. g(kr) ds,PEC. (37)

Eqiations (37) can be derived by using the concept of the principal value of a Cauchy
integra17). Since a ; (kr)/asp is square integrable over the integral path of Eqs. (37),

the application of Schwarz inequality to these equations yields

  ' Il oO,. nP,,. (s)- aa,. ll, (s )P 11 <-- A,•II6MP. (s)ll, (3s)

where A, is a positive constant independent of N. In the limit when Pi approaches P, the
inner product of Eqs. (36) and the unit vector n in the normal direction at P becomes3>

    aa,. fiPi,N (P) - aa.. fi'i (P) = S-aMPN (P) +f.aMPN (s) aa..;(kr)ds,

                                                PEC. (39)

From Eqs. (39), the following inequalities can be derived [8] :

    l)aM'N(s)liSA.'II oO.. fiPi,N(s)- aa.. n"i (s)li, (40)

where A. is a positive constant independent of N.
    For a complete set of wave functions iÅëi,i(Pi)l, la Åëi,i(s)/anl is complete in the
space of L2 function on the boundary C3). Then we have the convergence relations

                                                  '       ki-m. .II aO.. iig,N (s)- aa,. ii2 (s)II =o, (4i)

for proper expansion coefficients IAPi,t (N)l. According to Eqs. (35), (38) and (40),the

convergence relations

       "i-m. .11 aa,. i{g,. (s)- aO,. nP, (s)ll -o, (42)

        lim ll IIg,. (s)-nP, (s) il-O, (43)
       N- co
can be satisfied by the expansion coefficients. Also for the potential functions nP2 (P2) in

region S2, we have the same relations.
    The transformations of f (s ) -'- n Å~ (Ei ,N '- E2,N) and g (s ) - n Å~ (Hi ,N - H2,N)

by using Eqs. (3) and (19) and application of the Schwarz inequality yield

       11 f (s) -nÅ~ (Ei,N- E2,N) Il

                                                                '    f{{ B li aO, ni,N (s ) - aa, IIf (s ) II+ a) pt i II aa. ll T,. (s ) - oa. II ge (s)ll
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    + (n2, k2 - B2) 11nT,. (s ) - HiM (s)ll

    +B1l aa,nS,. (s)- oa, llE' (s)11+(v•a211 aa. i['Z,., (s)- aa. ll,M (s)1l

                       '
    +(n22 k2 -P2)ll ll :,. (s)-n2M (s)ll, (44)
       1l g (s) -nÅ~ (Hi,N- H2,N) Il

    s! 3ll aa, iiT,. (s)- aa, lliM (s)ll +a2eill aa. "i,N (s)- aa. lli"(s)ll

    + (n2i k2 -B2)l1 nT,. (s) - ll iM (s)l1

    + f(l? ll aO, "T,N (s ) - aO, ll 2M (s )ll + `v e2 ll aO. "S,N (s ) - oa. llIS (s) ll

    +(n22 k2 -B2)l1 II:,. (s)- IIg (s)ll, (45)
Taking account of Eqs. (41)-(43) and the equations for nP2,N (P2) in correspondence to

these equations, we obtain the following lemma:
    Lemmaw-2 Let lliN(P,•) and ll jM,N(P,•) be approximate electric and magnetic
potential functions given by

               N    IIe•,N (PJ)=Z Aii(N)Åë,•,t (P,), p=e,m (46)
              l= -N
where lÅëj•,i (Pj-)l are complete sets of wavefunctions in Sj•. Then there exist infinite
sequences of the approximate potential functions II;•,N (P,•) and IIr•,N (P,• ) which satisfy the

relations

        lim ll f (s ) -nÅ~ (Ei,N- E2,N) 11 =O •
       N--+ oo

        limllg(s)-nÅ~(Hi,N-H2,N)ll =O, (47)
       N- oo

From lemma-1 and lemma-2, we have the Yasuura's theorem rewritten for the vector field in
dielectric waveguides as follows:

Yassura's theorem for the vector field in dielectric waveguides :
    Let I[f•,N (PJ- ) and II;,N (Pj) be approximate electric and magnetic potential functions

given by

               N    I[e•,N (Pj•) =Z A9,i (N)Åë,•,i (P,), p= e,m (4s)
              t= -N
where lÅëpa (P,•)l are complete sets of wavefunctions in S,•, A5,i (N) are the expansion

coefficients, and N is a truncated number. Then there exist infinite sequences of
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    l",e.,. (P,•) :N= 1,2,

which satisfy the relations

        lim ll f (s) -nÅ~
       N. oo
        lim ll g (s) -nÅ~
       N-. oo

3,•••l , lll Y.,. (Pj):Ai =- l,2,3,•••l

(Ei,. - E2,.) 1l

(Hi,. - H,,.) 1l

:o,

=o,

(49)

(50)

and converge uniformly to the true potential functions in respective region Sj+. Here Ej•,N
and Hj•,N are the approximate electromagnetic fields derived from Hje•,N and llY•,N.

When IIS•,N (P,•) and II;,. (P,•) vonverge uniformly to IIS• (P,•) and fi,M. (P,•), E,•,N (P,•) and

H,•,N (P,•) derived through the differential operation on ll,e•,N (P,•) and II:,N (P,•) also

converge uniformly to E,• (P,• ) and H,• (P,•), respectively.

  4. Conclusion

    In this paper, we have proved the convergence of approxirnate electric and magnetic
potential functions representing vector fields in dielectric waveguides, and showed the
Yasuura's theorem rewritten for vector field. This theorem shows that there exist infinite

sequences of approximate electric and magnetic potential functions which converge
uniformly to the true potential functions and whose approximate field converges to the
boundary value in the sense of mean square. By this theorem, the uniform convergence of
solutions of the rnode-matching method for the vector field problems has been ensured
theoretically.
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