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Convergence of Approximate Potential Functions for

Vector Field in Electromagnetic Waveguides

Hiroshi Kubo* and Kiyotoshi Yasumoto**
(February 28, 1994)

The convergence of an approximate electric and an approximte magnetic potential function
representing vector field in electromagnetic waveguides is discussed. = The two potential functions are
expressed in the form of integral of Green's functions and the boundary values of the vector field.
Based on these expressions, it is proved that two approximate potential functions converge uniformly to
their true potential functions, respectively, when the approximate field satisfies the boundary conditions
in vector field in the sense of mean square. Then, the inequalities about convergence of the
approximate potential functions on a boundary are deduced. Using the inequalities, it is also shown
that the boundary conditions in vector field can be satisfied when the approximate potential functions are
expressed by the finite series of modal functions.

1. Introduction

Various numerical methods have been applied to the analysis of dielectric waveguides,
which support vector field modes, in order to calculate the propagation characteristics
precisely ”*?. It should be noted, however, that the solutions obtained by these methods do
not necessarily converge to the true values. For the precise analysis of wave fields,
Yasuura has developed a numerical method, i.e., the mode-matching method®.  This method
has been applied successfylly not only to scalar field problems, in which the field can be
expressed by one wave function, but also to vector field problems, in which the field can be
expressed by two wave functions”” ¥.  Its algorithm is straightforward.  The approximate
field is expressed by one or two truncated series of the modal functions and the expansion
coeffcients are determined by matching the approximate field to the boundary conditions in
the sense of mean squares. The uniform convergence of the solutions for scalar field
problems is ensured theoretically by Yasuura’s theorem®. It may be expected, on the
analogy of this theorem, that the solutions for vector field problems also converge to the
true fields. However, it is important to clarify the theoretical basis for application of the
mode-matching method to vector field problems.

In this paper, on the basis of Yasuura’s theorem for scalar field, we shall derive the
expressions for convergence of two approximate potential functions representing vector
field. In section 2, we deduce the integral representations of an electric and a magnetic
potential function in terms of the boundary values of the vector field. @ We introduce the
approximate electric and the approximate magnetic potential function which satisfy the same
equations as the true potential functions. Based on their integral representations, it is
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proved the two approximate potential functions converge uniformly to the true potential
functions when the approximate vector field satisfies the boundary conditions in the sense of
mean square. In section 3, we show that the approximate vector field satisfies the
boundary conditions in the sense of mean square when the approximate potential functions
are expressed by the finite series of modal functions. Using these results, Yasuura’s
theorem rewritten for vector field is deduced. The time factor is assumed to be of the
form exp (—iwt).

2. Uniform Convergence of Approximate Potential Functions

2.1 Integral representation of potential function
The geometry considered here is the dielectric waveguide as shown in Fig. 1, which is
composed of the core region § and the clad region S, and is uniform in the z direction.

N
$
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S,

Fig. 1  Geometry of dielectric waveguide.

The refractive indices of two regions & and S: are m and 7z (m >m), respectively.  The
boundary of the cross section is denoted by C, and s and n are the unit vectors in the
tangential direction and the normal direcion pointing to outer region of C, respectively. s,
n, and the unit vector z in the z direction satisfy the relation

s X n=z 1

The elecric and magnetic potential functions II; and II7, which vary in the form exp (i 82),
satisfy the Helmholtz equations '



ik 6 4 AMRERZEREGETZHANBE £15%5 $45 — 35 —

2

(v'i + + kznﬁ) ;=0 p=em =12 (2)

97° :
where the subscript j indicates the two regions §; and Sz, V. is the transverse part of the
vector operator A, and k£ is the wavenumber in free space. Using these two potential
functions, the electromagnetic fields varying in the form exp (iBz) can be represented as
follows:

2? 3
Ej=z(n§~k2 +‘_—‘) H;'f‘—VJ_H;—iw/‘fizX V. H;n,

a7 9z
2,2 ? m 0 m . e
j:z(nj/c + azz)nf+a—zvlnj—lw€szVLHj' (3)

where #; and €; are the permeability and the permittivity of the medium in the region A\

The electric and magnetic potential functions flj and fl;” which vary in the form exp
(—iBz), also satisfy the Helmholtz equations (2).  Substituting ﬁ; and ﬁj"' into Egs. (3),
the electromagnetic fields EJ. and HJ. can be expressed by these potential functions. The
tilde on potential functions and fields means that the indicated physical quantity varies in
the form exp(—iBz). Using these equations for E ; Hj, Ej. and I:IJ., we obtain the following

equation in region §i:

/(Elxﬁl—ﬁlel)'ndS
C

e a T ¢ T € a e
=-iw€1r21/C(H13n—H1—Hl S &
iomed mr2—far—an-2 nry 4 | (4)
c 1 an 1 1 an 1 ’
with
ti=nf i — BZ, ' (5)

where s denotes arclength on C measured from a fixed point 5,,  Applying Green's theorem
to [14 and ¥ (p = e, m), we have

o = _ 0
i P __ ? »
1 an Hl Hl a"

/ (H’;vifl{’—ﬁ{’vinﬁ)dszf (11
M C

where dS is the areal element of region §;.  Using Eqgs. (6), Eq. (4) can be rewritten into
the following equation which expresses the relation between the electromagnetic fields on C
and the potential functions in Sy :

—iw elr%/ (M{VAI{— O{vil{)ds
S1 |

+ iw/‘;lle/ (Iv20r — OTVEINT)dS
S$1 !

2/ (E1XI:11—E1XH1)°nds. . (7)
N C
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In a similar way, we can obtain the following equation in region S;:
—iwﬁgfzg/s (MSV2I; — MEVAIl)ds
2
+ iw#zfzz/s (My g2l — Oy vidy)ds
2
=/C(E2XI:12"E2XH2)‘7M'S. (8)
With
th =3k — B2, 9)
Let us now consider four Green's functions which satisfy the following equations :

wave equations

(V?LQI + 75)Gif (P, Q)= —8 (PQ1) P, Q1ES1, (10)
(Vig, + t1)GiH(PLQ)= 0 PLQES, (11)
(Vig, + 73)Gi5(PLQ)= 0 PIES, QES, (12)
(Vig,+ 73)G%¥ (P, Q)= 0 PES, QES (13)

boundary conditions on C

X Ef1,c =nX [2731G4{ —iB V.G —iwMz X V.G1]]

=nX [273G% — iB V.G —iwtz X V.G9%]

12

nXHy ¢=nX 273G —iBV.GCT+iwez X V.G
=nX [273G% —iB V.G B+ iwez X V.iGis]
=n X ﬁiZ.Gv (15)

where E is the distance from the source point P; to the field point Q;, & (ﬁ) denotes
a delta function, and VJ_Q is the differential operator with respect to the coordmate of O,
and Elj G and Hlj ¢ denote the electric and magnetic fields deduced by Gi and G97. G/
and G497 7 are considered to be electric and magnetic potentials in §; excited from the unit
source of TM type located in region $;.  Using the potential functions G i{ and G497 as II{
and M7 in Eq. (7) and applying Eqgs. (10) and (11) to Eq. (7), we have
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iwe T3 (Py) =/ (Ey X Hi1,¢ — Ef1,¢XH)) * nds. (16)
c

Using the potential functions G $5and G i3 as I and I in Eq. (8) and applying Eqgs.
(12) and (13) to Eq. (8), we have

0 =f (Es X Hiz.c — Ef2.¢XH,) * nds. 17)
C

Subtracting Eq. (17) from Eq. (16) and taking account of the boundary condition (14) and
(15), we obtain

iwe 505 (Py) =f [nX (E; — Ez)] - Hf; ¢ds
¢
+ [ [nX (i~ He)] - Efi ods. (18)
c

Using the tangential components of electromagnetic fields on C and the Green's functions, we
obtain the similar integral representations for II{", II;, and Il to Eq. (18). Let us assume
that the electrimagnetic fields satisfy the following relations on C':

nX (E,—E;) =f(), nX H —H) =g(s) (19)

where f (s) and g (s) are the vectors related to the arbitrary incident wave of the problem.
2.2 Uniform convergence of approximate potential functions

Referring to the mode-matching method for scalar field, we introduce the complete set of
wavefunctions {$ ;,(P;)! in S, which satisfy the radiation condition and the Helmholtz
equations®

(VE+ 72 ¢,,(P) =0, [=0, £1, £2,--, (20)

and approximate the electric and magnetic potential functions IT5 (P;) and I} (P;) in terms
of finite series of wavefunctions as follows:

N

0, () =Y 42,W)8;,(B), p=em (21)

I==N

where A2, (N) are the expansion coefficients, and N is a truncated number.  Since Hi' N (Py)
satisfies the same Helmholtz equation as II] (P;), based on the discussion in sec. 2.1, we
obtain the following equation:

iwe, T35 (Py) =/ [nX (E;,y— Ezx)] - Hi1 ¢ds
c

+/ [n X (Hyiy—Hyn)] - Ef1cds, (22)
C
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where E ; y and H ; y are the approximate fields given by Egs. (3) and (21). Subtracting
Eq. (22) from Eq. (18) and using Egs. (19), we have

jwe T2 (I (P) —1¢  (P)]
_—../C[f(s) —n X (ELN_EZ,N)] 'I:Hl.GdS
+/ [gh) —nX (Hiy—Hz n)] *Ef1 gds . (23)
c

On the condition that P; is not on C, Efl,g and E{l,g are square integrable over the integral
path of Eq. (23).  Applying the Schwarz inequality to Eq. (23), we obtain

, A (HE) .
|mi(P) — 15,y (P ——5=1f () —n X (B xv— Ez 0l
=) |we 77|
A (Ey
Twe, 2] |1806) —axX Hiy—Hy I, (24)
where A (Ef) and A (H{) are positive constants independent of P and || || denotes the
norm of function defined by :
|| Es v —Ezw |l = (/ lEl,N—Ez,NI%) (25)
C

Through the same process, we obtain the similar inequalities for I, (Pz), II{"(Py), and 11}
(P2) to Eq. (24). From these inequalities, we have the following lemma:

Lemma-1 For increasing &, the approximate.potential functions II;'N (PJ) and II';N
(P;) converge uniformly to the true potential functions I’ (P;) and nr (P;) in any closed
subset of §j, respectively, if the relations

lim || £(s) —n X (Ey v — Ez») || =0,
N— o
lim || g(s) —n X (Hi y—Hzn) || =0, (26)
N—+ 00
hold true.

3. Convergence of Approximate Fields to Boundary Values

In this section we prove that the approximate fields vonverge to the boundary value in
the sense of mean square. The electric and magnetic potential functions II{ (P1) and IIT
(P1) in region S; can be represented as follows [3] :

% (p) = /Cvf(ﬁ ¢ (kr)ds, PLES,p=em, (27)

with
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1 S

§ ) == H” (), n=P0Q  Q€C (28)
where v?(s) are the single-layer source distributions on boundary C, and H, (1) is the zero
order Hankel function of the first kind. 1'[” (P1) can be approximated by the finite series
of modal functions $ ,(P1) as follows:

N

o, () = E AL, (N) ¢1.,(Py), P8, : ‘ (29)

(=—nN

where A4, (N) are expansion cofficients dependent on the value of N.  Using single-layer
source distributions {¥,(s)}, the modal functions also can be represented by

$1.,(P) =/C»1<s) ¢ (kr)ds, 1=0, £1, £2,- " (30)
The su'bstitution of Egs. (30) into Egs. (29) yields

I v (P) Z,ZN;N Ali,z(N)/Cvl(s) ¢ (kr1) ds. (31)
The subtraction of Egs. (27) from Egs. (31) yields

4, (P) — T4 (Py) / O M (8) € (k) ds (32)
with

SMAG) =Y AL, W) vis) — vt () | (33)

I=—=N

In the limit when the point P; in region S; approaches the point P on the boundary C, Eqgs.
(32) bexomes

%, (P) — I (P _/ SM ()t (k) ds, PEC (34)

where r is the distance from point P to point Q.  Since { (kr) is square integrable over the
integral path of Eqgs. (34), the application of Schwarz inequality to these equations yields

104y ) — 4 ()l <a-loMiy I, (35)
where A is a positive constant independent of N.  The gradient of Eqs. (32) is given by
Vip [y (P) = W4 (PO =/ 0 M% () Vup € (kn) ds, PLES (36)
c

In the limit when P; approaches P, the inner product of Eqs. (36) and the unit vector s in
the tangential direction at P becomes
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o
osp

o
iy (P) = 5 () =[ oMb () = L ks PeC (37)
c P
Eqiations (37) can be derived by using the concept of the principal value of a Cauchy
integral”.  Since 8 ¢ (kr)/ & sp is square integrable over the integral path of Egs. (37),
the application of Schwarz inequality to these equations yields

o o
' H—a—s;ﬂﬁw(s)—a—n)ﬂl(s)’HSAy'HaM’}v(sﬂ , (38)

where A, is a positive constant independent of N. In the limit when P; approaches P, the
inner product of Egs. (36) and the unit vector m in the normal direction at P becomes®

_9 o _ b (p) =L gass p
S W (P) = =T (P) = -6 M% (P) +/CaMN<x> 5§ s,
PccC. (39)
From Egs. (39), the following inequalities can be derived [8] :
18 MO I 4, | =Ty () — =114 (9] (40)
N —= n anP 1,N anP 1 ’

where A, is a positive constant independent of M.
For a complete set of wave functions {$;,(P1)}, {© ¢1.,(s)/@n} is complete in the
space of L? function on the boundary C¥. Then we have the convergence relations

o o
lim || — I, - — 1 =0 41
Nl—rflol} dnp 1,N(~V) Y 1(5)l| , ( )
for proper expansion coefficients {45, (N)}. According to Egs. (35), (38) and (40), the
convergence relations

3 3
lim || —— I} - 184 =0 2
N’TJ' 55, T1v (s) 55, T ()1l , (42)
lim [| I, () — T4 () [[=0, ‘ (43)
N—

can be satisfied by the expansion coefficients.  Also for the potential functions H’; (P2) in
region Sz, we have the same relations.

The transformations of £ (s) —mn X (Ey y—Ez ) and g (s) —n X (H; y— Hz y)
by using Egs. (3) and (19) and application of the Schwarz inequality yield

I1£()—nX (Ery—Eznll

< Bl =T () = 2 T () 1+ wity || -2y 6) = o))
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+ (iR = BE) IO 5 () — O ()|

F Bl () =25 6) [+ 0s || 2 I () — 17 )
+ 3k — B Iy () — TG, (44)
|| g (5) —n X (Hl,N“Hz,N)H

0 _m O m O ..
Sﬂ“‘a—;ﬂlw(ﬂ—*gﬂl ) +weq || HlN(S)——a-nvﬂl(s)H
+ B =B o7, () — I ()|

O m ) O .
+:3HEH2,N(S)—E I +oeg || —— HZN(X)—EHz(S)H
+ @3 =B Iy, () — Iy (), (45)

Taking account of Eqs. (41) - (43) and the equations for I , (P2) in correspondence to
these equations, we obtain the following lemma:

Lemmaw-2 Let I}, (P;) and II 7, (P;) be approximate electric and magnetic
potential functions given by

N

ml (7)) =Y a2,WN)$,,(B), p=em (46)
I==n
where {¢ ;, (P;)} are complete sets of wavefunctions in S  Then there exist infinite
sequences of the approximate potential functions II; (P;) and 144" (P;) which satisfy the
relations

lim||f() —nX (E; y—Ezn)|| =0,

N— o0

lim|lg () —nX (Hi y—Hzn)ll =0, (47)
N— o0

From lemma-1 and lemma-2, we have the Yasuura’s theorem rewritten for the vector field in
dielectric waveguides as follows:
Yassura’s theorem for the vector field in dielectric waveguides :

Let IT;  (P;) and II7 y (P;) be approximate electric and magnetic potential functions
given by

N

HfN(RI)zz A7, (N) b (PJ), p=em (48)

I==N§

where {¢ ;,(P;)! are complete sets of wavefunctions in §;, A%, (N) are the expansion
coefficients, and N is a truncated number.  Then there exist infinite sequences of
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Iy (P):N=1,2,3,--+], {I" , (P) :N=1,2,3,"-"| (49)

J

which satisfy the relations

lim [ £() —nX By vy —Ez )|l =0,

N— )

lim|lg() —nX H y—Hnll =0, (50)
N—

and converge uniformly to the true potential functions in respective region §;. Here E; y
and H; y are the approximate electromagnetic fields derived from II;  and II”; 5.

When IT} (P;) and oz y (P;) vonverge uniformly to II} (P;) and nr (P;), E; v (P;) and
H; v (P;) derived through the differential operation on II ; (P;) and o7y (P;) also
converge uniformly to E; (P;) and H; (P;), respectively.

4. Conclusion

In this paper, we have proved the convergence of approximate electric and magnetic
potential functions representing vector fields in dielectric waveguides, and showed the
Yasuura’s theorem rewritten for vector field.  This theorem shows that there exist infinite
sequences of approximate electric and magnetic potential functions which converge
uniformly to the true potential functions and whose approximate field converges to the
boundary value in the sense of mean square. By this theorem, the uniform convergence of
solutions of the mode-matching method for the vector field problems has been ensured
theoretically.
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