九州大学学術情報リポジトリ Kyushu University Institutional Repository

二成分混合気の平板上での層流強制対流膜状凝縮の 場合の気液界面における気相の濃度勾配の新しい式 の提案 一続報一

新里, 寛英 九州大学大学院総合理工学研究科熱エネルギーシステム工学専攻

藤井, 哲 九州大学大学院総合理工学研究科熱エネルギーシステム工学専攻

https://doi.org/10.15017/17239

出版情報:九州大学大学院総合理工学報告. 13 (3), pp.297-303, 1991-12-01. 九州大学大学院総合理工 学研究科 バージョン:

権利関係:

二成分混合気の平板上での層流強制対流膜状凝縮の場合の 気液界面における気相の濃度勾配の新しい式の提案

一続 報一

新 里 寛 英*・藤 井 哲* (平成3年8月26日 受理)

A proposal of a new equation for the mass concentration gradient at the vapor-liquid interface in the case of forced-convection laminar film condensation of a binary vapor mixture on a flat surface —the second report—

Kan'ei SHINZATO and Tetsu FUJII

A simple and accurate correlation equation for the mass concentration gradient in the vapor at the vaporliquid interface in the case of forced-convection laminar film condensation of a binary vapor mixture on a flat surface is proposed as:

$$\frac{-\Phi'_{Fi}}{C_F(S_c)} = (b+1) W_R^m - b$$

$$b = 0.3 (1+S_c^{-0.5})$$

$$m = 0.5 \{ 1-0.096 S_c^{-1.35} + S_c R^{-0.3(S_c+2)} \}$$

in the range of $1 \le W_R < 50$, $0.2 \le Sc \le 1$, and $10 \le R \le 500$. The error of the values of the right-hand side to the similarity solution of the left-hand side is smaller than two percent.

1. はじめに

前報¹⁾において、二成分混合蒸気の強制対流層流膜 状凝縮の際の気液界面における気相の濃度勾配につい て、新しい一つの式を提案した.それは基本的には 1977年の最初に提案されたもの²⁾の修正である.この 種の式は複雑な微分方程式の数値解の境界値を簡単な 式で表そうとする試みであるから、形式にはある程度 の任意性があり、また骨組みとなる W_Rの関数の選 択によって精度の向上およひ適用範囲に限界がある. 前報の式は W_Rの関係の積の形であったのに対し、 本報では Rose³ の式と同様に W_R の関数の和で表さ れる式の形成を試みる.数値解には文献4)の数値解 および追加計算した附表の値を用いた.主な記号は前 報と同じであるので省略する.

2. 新しい式の導出

Fig. 1 (a), (b) は,数値解 $-\Phi'_{Fi}/C_F(Sc) \geq W_R$ の 関係をそれぞれ Sc=0.2, 1 について R をパラメータ として示す. (), Δ , [], マおよび●で示される点は, それぞれ R=10, 20, 50, 100, 500の場合の値である. それらを結ぶ曲線は後に述べる本報の式によるもので ある. 各 R に関するデータは W_R が大きくなるとと もにそれぞれの傾き m を持った直線に漸近する傾向 がある. またその直線を $W_R=1$ まで延長すると縦軸 のある一定値を通る傾向がある. 例えば図中の①およ び①(それぞれ R=10, 500の場合)で示すように,傾 き mの直線群は $W_R=1$ で縦軸の(b+1)を通る.

^{*}熱エネルギーシステム工学専攻

Fig. 1 $-\Phi'_{Fi}/C_F(Sc)$ calculated from similarity solution versus the concentration ratio W_R . Symbols \oplus and \oplus denote the values of $-\Phi'_{Fi}/C_F(S_c) + b$.

したがって次式を仮定する.

$$\frac{-\Phi'_{Fi}}{C_F(S\epsilon)} = (b+1) W_R^m - b \tag{1}$$

ここに, m は R および Sc の関数, b は Sc の関数で ある.

Fig. 1 のような図を種々の Sc の場合について作成

Fig. 2 The values of b in Eq. (1) in the case of W_R =1 versus the Schmidt number Sc.

Fig. 3 The values of *m* calculated from Eqs. (1) and (2) versus the concentration ratio W_{R} .

し, その図から b を求めると, Fig. 2 が得られる. 図 中のデータは実線で示される次式で表すことができる.

$$b = 0.3 (1 + Sc^{-0.5}) \tag{2}$$

 $Sc \geq W_R$ の種々の組合せについての数値解と式(1), (2)より m を算出し, m と W_R との関係を R をパラ メータとして Fig. 3 (a)~(e) に示す. 図(a)~(e) はそ れぞれ Sc=0.2, 0.3, 0.5, 0.7, 1の場合である. m は $W_R \leq 2$ のデータを除けば ($W_R \leq 2$ では m の Φ'_{Fi} に

Fig. 4 The values of *m* calculated from Eqs. (1) and (2) versus the $\rho\mu$ ratio *R*.

Fig. 5 The values of C_1 in Eq. (3) versus the Schmidt number Sc.

Fig. 6 The values of C_2 in Eq. (3) versus the Schmidt number Sc.

Fig. 7 The values of -p in Eq. (3) versus the Schmidt number Sc.

- 300 -

Fig. 8 Comparisons among the relative erros ε of the values calculated from the present Eq. (1), Eq. (12) in the first report¹⁾ and the previous equation⁵⁾ to the similarity solutions, which are shown by symbols \bullet and \bigoplus , respectively. For the case of R=10.

Fig. 9 Comparisons among the relative errors € of the values calculated from the present Eq. (1), Eq. (12) in the first report¹⁾ and the previous equation⁵⁾ to the similarity solutions, which are shown by symbols ●, ○ and ④, respectively. For the case of R=20.

Fig. 11 Comparisons among the relative errors ϵ of the values calculated from the present Eq. (1), Eq. (12) in the first report¹⁾ and the previous equation⁵⁾ to the similarity solutions, which are shown by symbols \bullet , \bigcirc and \bullet , respectively. For the case of R=100.

平成3年

Fig. 12 Comparisons among the relative errors ε of the values calculated from the present Eq. (1), Eq. (12) in the first report¹⁾ and the previous equation⁵⁾ to the similarity solutions, which are shown by symbols \bigcirc , \bigcirc and \bigcirc , respectively. For the case of R=500.

対する影響は小さい) W_R に関してほぼ一定になる.

Fig. 3から読み取った mの値を Sc をパラメータと して R との関係で **Fig. 4** に示す (図中の実線は最終 的に得られた式 (3)の値である). m は R に関して単 調に減少し, その傾向は Sc に関して異なる. そこで 各曲線が次式でまとめられると仮定する.

 $m = C_1 + C_2 R^{\rho} \tag{3}$

まず,各曲線について $(m-C_1)$ と R の関係が両対数 グラフ上で直線になるように C_1 を定めると, C_2 と pの値が定まる.得られた C_1, C_2 および -p の値をそ れぞれ S_c に関してプロットすると Fig. 5, Fig. 6 お よび Fig. 7 のようになる.それらは図中の実線で示 すように次式で近似することができる.

 $C_1 = 0.5 (1 - 0.096 Sc^{-1.35}) \tag{4}$

- $C_2 = 0.5Sc$ (5)
- $p = -0.3(S_c + 2) \tag{6}$

要するに、以上をまとめると次式が得られる.

$$\frac{-\Phi'_{Fi}}{C_F(Sc)} = (b+1) W_R^{\ m} - b \tag{1}$$

ここに,

$$b = 0.3 (1 + Sc^{-0.5}) \tag{2}$$

 $m = 0.5 \{1 - 0.096Sc^{-1.35} + Sc R^{-03(Sc+2)}\}$

この式の適用範囲は 0.2≤Sc≤1, 10≤R≤500 および 1≤Wz≤50 であり、前報の式のそれより広い.

式の精度の比較のために、数値解に対する相対誤差 ε を、本報で得られた式(1)、前報¹⁾の式(12)および 文献 5)の式について算出し、それぞれ●、〇、①印 で、 W_R に関し、R=10, 20, 50, 100, 500 について、 **Fig. 8~12** に示す. 図の(a)~(e)はそれぞれ Sc=0.2, 0.3, 0.5, 0.7, 1 の場合である. ①印のデータは、R=10, Sc=0.2, 0.3, 0.5, 0.7, 1 および R=20, Sc=0.5, 0.7, 1 の場合に誤差が大きくなるが、他の場合の誤差 は±3%以内である. 〇印のデータは、その式の適用 範囲内で誤差は±3%以内である. 本報の式を示す● 印のデータは、Sc=1 の場合、誤差が+3%に近いも のもあるが、他は±2%以下であり、最も精度が高く、 かつ適用範囲が広い.

3. まとめ

気液界面における気相の濃度勾配に関して,従来の 式に比して精度が高くかつ適用範囲が広い式を提案した.

文 献

- 藤井 哲,新里 寛英,李 鍾鵬,二成分混合気の平板 上での層流強制対流膜状凝縮の場合の気液界面における気 相の濃度勾配の新しい式の提案,九州大学大学院総合理工 学研究科報告,13-3(1991),293-296.
- 2)藤井 哲,上原 春男,三原 一正,加藤 泰生,不凝 縮ガスを含む蒸気の層流強制対流凝縮に関する理論的解析, 九州大学生産科学研究所報告,66 (1977),53-80.
- Rose, J. W., Approximate Equations for Forced-Convection Condensation in the Presence of a Non-Condensing Gas on a Flat Plate and Horizontal Tube, *Int. J. Heat Mass Transfer*, 22 (1980), 539-546.
- 4) Fujii, T., "Theory of Laminar Film Condensation", (1991), Springer-Verlag, New York.
- 5) 藤井 哲,小山 繁,渡部 正治,二成分混合気の平板 上での層流強制対流膜状凝縮,日本機械学会論文集,53-486,B (1987),541-548.

(7)

	Sc		F_{FLw}''		F'_{FVi}		$-\Phi'_{Fi}$	T#7	$-\Theta'_{FLw}$ $-\Theta'_{FLi}$	$-\Phi'_{Fi}$
$\kappa =$	$= Pr_V$	η_{FLi}	10^{-2}	F _{FV}	10^{-2}	0^{-2} F_{FVi}	$=-\Theta'_{FVi}$	VV R	for $Pr_L = 1$	$\overline{C_F(Sc)}$
10	0.2	0.50	3.4744	0.0434	1.7371	0.3473	0.1896	1.0234	2.0002 1.9995	1.0299
10	0.2	2.00	10.6569	2.1165	20.9436	0.9929	0.3702	2.3349	0.5088 0.4741	2.0110
10	0.2	2.40	20.1710	5.6801	45.7908	1.6031	0.6816	6.0018	0.4405 0.3501	3.7025
10	0.2	2.66	25.0972	8.5544	60.9210	1.7066	0.9455	10.5025	0.4120 0.2800	5.1360
10	0.2	3.20	29.9553	14.2567	80.4218	1.4078	1.4880	23.8569	0.3729 0.1696	8.0835
10	0.3	0.50	3.4744	0.0434	1.7371	0.3473	0.2225	1.0302	2.0002 1.9995	1.0374
10	0.3	2.00	10.6569	2.1165	20.9436	0.9929	0.4918	2.8211	$0.5088 \ 0.4741$	2.2930
10	0.3	2.30	17.7711	4.6187	39.1316	1.4865	0.8247	6.2519	0.4541 0.3799	3.8453
10	0.3	2.52	22.6959	7.0005	53.2453	1.6845	1.1552	10.9911	0.4263 0.3163	5.3861
10	0.3	3.20	29.9553	14.2567	80.4218	1.4078	2.2017	34.8566	0.3729 0.1696	10.2654
10	0.5	0.50	3.4744	0.0434	1.7371	0.3473	0.2712	1.0417	$2.0002 \ 1.9995$	1.0486
10	0.5	1.80	7.7237	1.2466	13.7737	0.7440	0.5288	2.4352	0.5608 0.5401	2.0446
10	0.5	2.15	13.9756	3.1935	29.2086	1.2456	0.9612	5.9047	0.4785 0.4265	3.7164
10	0.5	2.40	20.1710	5.6801	45.7908	1.6031	1.5411	12.7299	$0.4405 \ 0.3501$	5.9587
10	0.5	3.00	28.8437	12.2325	74.9307	1.5508	3.1295	43.8127	$0.3851 \ 0.2052$	12.1006
10	0.7	0.50	3.4744	0.0434	1.7371	0.3473	0.3085	1.0518	2.0002 1.9995	1.0573
10	0.7	1.80	7.7237	1.2466	13.7737	0.7440	0.6663	2.8969	0.5608 0.5401	2.2835
10	0.7	2.15	13.9756	3.1935	29.2086	1.2456	1.2823	7.7903	0.4785 0.4265	4.3948
10	0.7	2.30	17.7711	4.6187	39.1316	1.4865	1.7523	12.9083	0.4541 0.3799	6.0053
10	0.7	2.80	26.9607	10.0933	67.4518	1.6687	3.6144	44.2127	$0.3997 \ 0.2469$	12.3870
10	1.0	0.50	3.4744	0.0434	$1.7\overline{371}$	0.3473	0.3535	1.0655	2.0002 1.9995	1.0679
10	1.0	1.80	7.7237	1.2466	13.7737	0.7440	0.8628	3.6022	0.5608 0.5401	2.6068
10	1.0	2.00	10.6569	2.1165	20.9436	0.9929	1.2559	6.3538	0.5088 0.4741	3.7945
10	1.0	2.15	13.9756	3.1935	29.2086	1.2456	1.7596	10.8075	0.4785 0.4265	5.3163
10	1.0	2.66	25.0972	8.5544	60.9210	1.7066	4.3672	48.5286	0.4120 0.2800	13.1948
20	0.2	2.30	16.2486	8.4584	35.9088	2.7598	0.9323	10.7810	0.4525 0.3843	5.0646
20	0.2	2.50	21.6487	13.1690	50.6207	3.2791	1.3801	21.8374	0.4277 0.3239	7.4971
20	0.2	2.90	27.8480	22.2270	71.0927	3.2237	2.2639	54.9005	0.3918 0.2258	12.2984
20	0.3	2.20	12.9332	6.1894	27.6653	2.3077	1.0349	9.7146	0.4675 0.4171	4.8255
20	0.3	2.40	19.1792	10.8132	43.6536	3.0828	1.6950	23.2020	0.4393 0.3531	7.9033
20	0.3	2.64	24.4050	16.4162	59.0432	3.3814	2.5151	47.7184	0.4133 0.2862	11.7271
20	0.5	2.10	9.6231	4.2127	19.8419	1.7874	1.1858	8.9427	0.4850 0.4504	4.5849
20	0.5	2.30	16.2486	8.4584	35.9088	2.7598	2.1994	25.9411	0.4525 0.3843	8.5040
20	0.5	2.50	21.6487	13.1690	50.6207	3.2791	3.3531	55.0805	0.4277 0.3239	12.9651
20	0.7	2.10	9.6231	4.2127	19.8419	1.7874	1.6042	12.3652	0.4850 0.4504	5.4978
20	0.7	2.20	12.9332	6.1894	27.6653	2.3077	2.2677	22.3577	0.4675 0.4171	7.7718
20	0.7	2.40	19.1792	10.8132	43.6536	3.0828	3.8528	56.5396	0.4393 0.3531	13.2040
20	1.0	2.00	7.0069	2.7898	13.8526	1.3376	1.5527	9.8419	0.5058 0.4828	4.6911
20	1.0	2.10	9.6231	4.2127	19.8419	1.7874	2.2298	18.0649	0.4850 0.4504	6.7370
20	1.0	2.30	16.2486	8.4584	35.9088	2.7598	4.3062	55.9410	0.4525 0.3843	13.0104

Appendix: Table. Boundary values for forced-convection condensation of imaginary binary vapor mixtures

- 302 -

									(cont	inued)
	Sc		$F_{FLw}^{\prime\prime}$		F'_{FVi}		$-\Phi'_{Fi}$	117	$\overline{-\Theta'_{FLw}}$ $-\Theta'_{FLi}$	$-\Phi'_{Fi}$
	$= Pr_V$	η_{FLi}	10^{-2}	F_{FVi}	10^{-2}	F _{FVi}	$=-\Theta'_{FV}$	W R	for $Pr_L=1$	$\overline{C_F(Sc)}$
50	0.2	2.10	7.3595	8.0682	15.2393	3.4771	0.8925	10.4176	0.4829 0.4563	4.8483
50	0.2	2.18	10.8921	12.8214	23.2026	4.9594	1.3434	21.9140	0.4694 0.4275	7.2980
50	0.2	2.30	15.6282	20.3506	34.5887	6.6772	2.0769	49.6367	0.4518 0.3861	11.2823
50	0.3	2.05	5.3787	5.6293	10.9211	2.5877	0.9521	8.8415	0.4925 0.4739	4.4391
50	0.3	2.13	8.6812	9.7785	18.1747	4.0485	1.5406	20.8571	0.4777 0.4455	7.1834
50	0.3	2.25	13.7753	17.2121	30.0214	6.0485	2.6285	56.2761	0.4588 0.4029	12.2557
50	0.5	2.00	3.9424	3.9321	7.8335	1.9201	1.1135	8.5338	0.5033 0.4902	4.3055
50	0.5	2.10	7.3595	8.0682	15.2393	3.4771	2.0975	26.0886	0.4829 0.4563	8.1099
50	0.5	2.18	10.8921	12.8214	23.2026	4.9594	3.2609	58.6990	0.4694 0.4275	12.6085
50	0.7	2.00	3.9424	3.9321	7.8335	1.9201	1.5022	11.9288	0.5033 0.4902	5.1481
50	0.7	2.05	5.3787	5.6293	10.9211	2.5877	2.0689	20.9655	0.4925 0.4739	7.0905
50	0.7	2.13	8.6812	9.7785	18.1747	4.0485	3.4870	54.0552	0.4777 0.4455	11.9504
50	1.0	1.90	2.4909	2.2448	4.7159	1.2278	1.2886	7.7532	0.5282 0.5207	3.8933
50	1.0	2.05	5.3787	5.6293	10.9211	2.5877	2.9049	32.1783	0.4925 0.4739	8.7768
50	1.0	2.10	7.3595	8.0682	15.2393	3.4771	4.1024	60.1146	0.4829 0.4563	12.3947
100	0.2	2.06	4.6829	9.9026	9.5655	4.5261	1.0634	14.5454	0.4896 0.4732	5.7765
100	0.2	·2.10	6.6806	14.6556	13.8513	6.3457	1.5193	28.2500	0.4823 0.4581	8.2535
100	0.2	2.14	8.7017	19.7854	18.2979	8.1068	2.0201	48.5550	0.4756 0.4430	10.9740
100	0.3	2.00	2.5267	5.0449	5.0323	2.4845	0.8697	7.6999	0.5021 0.4937	4.0550
100	0.3	2.06	4.6829	9.9026	9.5655	4.5261	1.5567	21.8414	0.4896 0.4732	7.2581
100	0.3	2.10	6.6806	14.6556	13.8513	6.3457	2.2499	43.5898	0.4823 0.4581	10.4906
100	0.5	2.00	2.5267	5.0449	5.0323	2.4845	1.3707	12.5212	0.5021 0.4937	5.2999
100	0.5	2.03	3.4154	7.0205	6.8922	3.3351	1.8416	21.3027	0.4955 0.4839	7.1206
100	0.5	2.08	5.6624	12.1972	11.6543	5.4274	3.1044	56.3259	0.4859 0.4657	12.0034
100	0.7	2.00	2.5267	5.0449	5.0323	2.4845	1.8690	18.0998	0.5021 0.4937	6.4053
100	0.7	2.03	3.4154	7.0205	6.8922	3.3351	2.5374	31.6393	0.4955 0.4839	8.6959
100	0.7	2.06	4.6829	9.9026	9.5655	4.5261	3.5263	58.4204	$0.4896 \ 0.4732$	12.0850
100	1.0	1.90	1.3388	2.4147	2.5389	1.3286	1.3632	8.7460	0.5273 0.5233	4.1188
100	1.0	2.00	2.5267	5.0449	5.0323	2.4845	2.6162	27.9090	0.5021 0.4937	7.9045
100	1.0	2.03	3.4154	7.0205	6.8922	3.3351	3.5820	49.9060	0.4955 0.4839	10.8226
500	0.2	2.00	0.8828	8.8226	1.7630	4.3880	0.9605	12.2765	0.5007 0.4978	5.2177
500	0.2	2.02	1.6448	16.7593	3.3131	8.1315	1.7228	36.7651	0.4964 0.4909	9.3587
500	0.2	2.03	2.2052	22.6837	4.4594	10.8579	2.3041	64.5450	0.4945 0.4870	12.5164
500	0.3	1.98	0.5807	5.6897	1.1488	2.8928	0.9571	9.2320	0.5055 0.5036	4.4627
500	0.3	2.00	0.8828	8.8226	1.7630	4.3880	1.3996	18.3535	0.5007 0.4978	6.5260
500	0.3	2.02	1.6448	16.7593	3.3131	8.1315	2.5582	57.7365	0.4964 0.4909	11.9279
500	0.5	1.94	0.3719	3.4981	0.7210	1.8551	1.0091	7.4979	0.5158 0.5146	3.9017
500	0.5	1.99	0.6968	6.8954	1.3851	3.4681	1.8091	21.2114	0.5031 0.5008	6.9951
500	0.5	2.01	1.1892	12.0013	2.3854	5.8982	3.0538	57.1216	0.4985 0.4945	11.8076
500	0.7	1.94	0.3719	3.4981	0.7210	1.8551	1.3538	10.4579	0.5158 0.5146	4.6396
500	0.7	1.98	0.5807	5.6897	1.1488	2.8928	2.0829	22.7487	0.5055 0.5036	7.1385
500	0.7	2.00	0.8828	8.8226	1.7630	4.3880	3.1514	49.6209	0.5007 0.4978	10.8003
500	1.0	1.90	0.2879	2.5977	0.5468	1.4371	1.4450	9.8906	0.5265 0.5257	4.3658
500	1.0	1.94	0.3719	3.4981	0.7210	1.8551	1.8686	15.6292	0.5158 0.5146	5.6457
500	1.0	1.99	0.6968	6.8954	1.3851	3.4681	3.5169	50.8328	0.5031 0.5008	10.6258