
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Parallel Reduction in Type Free Lambda-mu-
Calculus

Baba, Kensuke
Graduate School of Information Science and Electrical Engineering, Kyushu University

Hirokawa, Sachio
Computing and Communications Center, Kyushu University

Fujita, Ken-etsu
Shimane University

https://hdl.handle.net/2324/17106

出版情報：Electronic Notes in Theoretical Computer Science. 42, pp.52-66, 2001-01. Elsevier
Science
バージョン：
権利関係：

Parallel Reduction in Type Free λµ-calculus∗

Kensuke Baba† Sachio Hirokawa Ken-etsu Fujita

Abstract

The typed λµ-calculus is known to be strongly normal-
izing and weakly Church-Rosser, and hence becomes
confluent. In fact, Parigot formulated a parallel re-
duction to prove confluence of the typed λµ-calculus
by “Tait-and-Martin-Löf” method. However, the dia-
mond property does not hold for his parallel reduction.
The confluence for type-free λµ-calculus cannot be de-
rived from that of the typed λµ-calculus and is not
confirmed yet as far as we know. We analyze granu-
larity of the reduction rules, and then introduce a new
parallel reduction such that both renaming reduction
and consecutive structural reductions are considered
as one step parallel reduction. It is shown that the
new formulation of parallel reduction has the diamond
property, which yields a correct proof of the conflu-
ence for type free λµ-calculus. The diamond property
of the new parallel reduction is also applicable to a
call-by-value version of the λµ-calculus containing the
symmetric structural reduction rule.

1 Introduction

Parigot’s λµ-calculus [14] is an extension of the typed
λ-calculus with two new term constructors [α]M and
µα.M . The term [α]M indexes α to the type of M
and the term µα.M has the type indexed by α in M .
These constructors provide classical proofs and can
at the same time be considered as control operators
for functional programming language. Approximately,
we can think of [α]M and µα.M as (throw a M) and
(catch a M) in terms of Common Lisp.

The λµ-terms M are defined as follows:

M ::= x | λx.M |MM | µα.M | [α]M.

The calculus has the following basic reduction rules:
β-reduction:

(λx.M)N →M [N/x],

Structural reduction:

(µα.M)N → µα.M [[α](wN)/[α]w],
∗An edited version of this report was published in: Electronic

Notes in Theoretical Computer Science, vol.42, pp.52–66, El-
sevier Science, Jan, 2001.
†Research and Development Division, Kyushu University Li-

brary, baba@lib.kyushu-u.ac.jp

Renaming:
[β](µα.M)→M [β/α].

We assume some familiarity to λ-calculus [2, 11, 10].
In the structural reduction, the substitution is defined
as follows.

1. x[[α](wN)/[α]w] = x

2. (λx.M)[[α](wN)/[α]w] = λx.M [[α](wN)/[α]w]

3. (MM)[[α](wN)/[α]w]
= M [[α](wN)/[α]w]M [[α](wN)/[α]w]

4. (µβ.M)[[α](wN)/[α]w] = µβ.M [[α](wN)/[α]w]

5-1. ([β]M)[[α](wN)/[α]w]
= [β](M [[α](wN)/[α]w]N) if α = β

5-2. ([β]M)[[α](wN)/[α]w] = [β]M [[α](wN)/[α]w] if
α 6= β

In [14], Parigot outlined the proof for confluence of
the λµ-calculus. He formulated the parallel reduction
and claimed the diamond property for the parallel re-
duction:

If M ⇒ N then N ⇒M∗.

Here M∗ is a term obtained by reducing all the re-
dexes in M . M∗ is usually referred as the “complete
development [2]” ofM . The formulation of the parallel
reduction is based on “Tait-and-Martin-Löf” method,
which is explained clearly in [17]. The method is appli-
cable to prove confluence of many reduction systems.
However, the direct application of the method does
not work for the λµ-calculus. In fact, the diamond
property does not hold for the formulation of parallel
reduction in [14], see also observations in [7]. It is not
so trivial to prove the confluence as it seems to be.

The λµ-calculus is known to be strongly normaliz-
ing [15, 16] and weak Church-Rosser. For notions of
deduction, these two properties yield the confluence [2]
for the typed terms [8]. However type free λµ-calculus
is not strongly normalizing. For instance, the term
(λx.xx)(λx.xx) does not have a normal form. It is
quite embarrassing that a correct proof of the conflu-
ence for type free λµ-calculus has never been published
as far as we know.

We think that the reason why the diamond prop-
erty does not hold for the parallel reduction comes

1

Baba Lab. Technical Report 2

(µα.[α](µβ.[α]x))y

�
�
�	
r @

@
@R
s

(µα.[α]x)y µα.[α]((µβ.[α](xy))y)

@
@
@R

s ��	s
��	r

µα.[α](xy)

Figure 1: A counter example of the diamond property
of the reduction rules in λµ-calculus, where arrows
with s and r mean structural reduction and renaming,
respectively.

from the sequential nature of the structural reduc-
tion rule. Consider a term M = (µα.[α](µβ.[α]x))y
which has a renaming redex and a structural redex.
We have the terms N1 = (µα.[α]x)y and N2 =
µα.[α]((µβ.[α](xy))y) by a renaming and a structural
reductions, respectively. Then we have M ⇒ N1 and
M ⇒ N2. If the diamond property would hold, then
N1 and N2 were reducible to the same term M∗ in
one step reduction. However, this is impossible here.
After the structural reduction, the “residual” of re-
naming redex in M is no longer a renaming redex in
N2. To make the residual back to a renaming redex,
we need another step of structural reduction (Fig. 1).
We consider such a successive sequence of structural
reductions as a one step parallel reduction. With such
a formulation, we can prove the strong diamond prop-
erty for the parallel reduction.

We consider the λµ-calculus as a programming
language and reduction as computation. The re-
duction rules of the λµ-calculus capture the mecha-
nism of functional programming languages with con-
trol [6, 9, 4]. However we can not apply an arbi-
trary reduction for implementation of programming
language. Usually we fix a reduction strategy. The
call-by-value λµ-calculus λµv was first considered by
Ong and Stewart [13]. The λµ-calculus contains an-
other reduction rule called “symmetric structural re-
duction” such that:

N(µα.M)→ µα.M [[α](Nw)/[α]w].

Note that a subsystem is not always confluent even if
the whole system is confluent. Therefore, the conflu-
ence of λµv does not yield the confluence of λµ, even
if we ignore the symmetric structural reduction rule.
We shall also formulate an appropriate parallel reduc-
tion for a call-by-value version of the λµ-calculus and
prove the strong diamond property. In this paper, we
deal with type free λµ-calculi, and the definition of the

λµ-terms is distinct from that of the original ones. For
example, the well formed term ([α]M)N is not a term
in the original λµ-calculus, since [α]M is not an un-
named but a named term. Does the confluence proof
for type free λµ-calculus still work for that of the orig-
inal one? The parallel reduction relation we define in
the following sections is included in the transitive and
reflexive closure of reduction rules, and therefore the
complete development of an original term is also an
original term. Hence our proof method is still and all
sound for the case of the original λµ-calculus.

2 Parallel Reduction in λµ-
Calculus

We define the parallel reduction in the following.
The rules from 1 to 8 are obtained by a straight-
forward application of Tait-and-Martin-Löf method to
β-reduction, structural reduction, and renaming. The
last inference rule 9 is introduced in the present paper.
It combines a renaming and a consecutive sequence of
structural reductions. It is easy to see that the tran-
sitive and reflexive closure of “→” is identical to the
transitive closure of “⇒”.

Definition 1 1. x⇒ x

2.
M ⇒M ′

λx.M ⇒ λx.M ′

3.
M ⇒M ′ N ⇒ N ′

MN ⇒M ′N ′

4.
M ⇒M ′

µα.M ⇒ µα.M ′

5.
M ⇒M ′

[α]M ⇒ [α]M ′

6.
M ⇒M ′ N ⇒ N ′

(λx.M)N ⇒M ′[N ′/x]

7.
M ⇒M ′ N ⇒ N ′

(µα.M)N ⇒ µα.M ′[[α](wN ′)/[α]w]

8.
M ⇒M ′

[β](µα.M)⇒M ′[β/α]

9.
M ⇒M ′ N1 ⇒ N ′1 · · · Nk ⇒ N ′k

[β]((µα.M)N1 · · ·Nk)⇒M ′[[β](wN1 · · ·Nk)/[α]w].

We define the complete development M∗ of a term
M as follows:

Definition 2 1. M = x. Then M∗ = x.

2. M = λx.M1. Then M∗ = λx.M∗1 .

3. M = M1M2.

Baba Lab. Technical Report 3

3-1. M1 = λx.M3. Then M∗ = M∗3 [M∗2 /x].

3-2. M1 = µα.M3.
Then M∗ = µα.M∗3 [[α](wM∗2)/[α]w].

3-3. M∗ = M∗1M
∗
2 o.w.

4. M = µα.M1. Then M∗ = µα.M∗1 .

5. M = [α]M1.

5-1. M1 = µβ.M2. Then M∗ = M∗2 [α/β].

5-2. M1 = (µβ.M2)N1 · · ·Nk.
Then M∗ = M∗2 [[α](wN∗1 · · ·N∗k)/[β]w].

5-3. M∗ = [α]M∗1 o.w.

3 Diamond Property of Parallel
Reduction

A gap in the proof of confluence in [14] can be supplied
by (2) of the following lemma. Without the rule 9 in
Definition 1, (2) does not hold true.

Lemma 1 (1) If M ⇒ M ′ and N ⇒ N ′, then
M [N/x]⇒M ′[N ′/x].
(2) If M ⇒ M ′ and N ⇒ N ′, then
M [[α](wN)/[α]w]⇒M ′[[α](wN ′)/[α]w].
(3) If M ⇒M ′, then M [α/β]⇒M ′[α/β].

Proof. (1) can be easily shown by induction on the
structure of M ⇒ (M ′. 3) is trivial. (2) can also be
proved by induction on (the structure of M ⇒ M ′.
Most cases are routine. (Non-trivial cases are when
the last inference of M ⇒M ′ is (either 8 or 9 in Def-
inition 1. To save the space of the (paper, we explain
only the case of 8.

By the definition of M ⇒ M ′, M and M ′ have the
form M = [β](µγ.M1) and M ′ = M ′1[β/γ], and then
M ⇒M ′ has the following form:

M1 ⇒M ′1
[β](µγ.M1)⇒M ′1[β/γ]

8

Since γ is a bound variable, we can assume γ 6= α.
If α = β, then we have

M [[α](wN)/[α]w]
= ([α](µγ.M1))[[α](wN)/[α]w]
= [α]((µγ.M1[[α](wN)/[α]w])N)

and

M ′[[α](wN ′)/[α]w]
= M ′1[α/γ][[α](wN ′)/[α]w]
= M ′1[[α](wN ′)/[α]w][[γ](wN ′)/[γ]w][α/γ].

By induction hypothesis for M1 ⇒ M ′1, we
have M1[[α](wN)/[α]w] ⇒ M ′1[[α](wN ′)/[α]w].
Thus, we have [α]((µγ.M1[[α](wN)/[α]w])N) ⇒
M ′1[[α](wN ′)/[α]w][[α](wN ′)/[γ]w][α/γ] by the rule 9.
Hence Lemma holds.

If α = β, then we have

M [[α](wN)/[α]w] = ([β](µγ.M1))[[α](wN)/[α]w]
= [β](µγ.M1[[α](wN)/[α]w])

and

M ′[[α](wN ′)/[α]w] = M ′1[β/γ][[α](wN ′)/[α]w]
= M ′1[[α](wN ′)/[α]w][β/γ].

By induction hypothesis for M1,
we have M1[[α](wN)/[α]w] ⇒ M ′1[[α](wN ′)/[α]w].
Therefore we have [β](µγ.M1[[α](wN)/[α]w]) ⇒
M ′1[[α](wN ′)/[α]w][β/γ] by the rule 8. Thus, Lemma
holds. 2

Theorem 1 For any λµ-term M and M ′, if M ⇒M ′

then M ′ ⇒M∗.

The proof is by induction on the structure of M ⇒
M ′.

Put M3 = M∗, then the following theorem holds by
the previous theorem.

Theorem 2 If M ⇒ M1 and M ⇒ M2, then there
exists some M3 such that M1 ⇒M3 and M2 ⇒M3.

Since the transitive and reflexive closure of “→” is
identical to the transitive closure of “⇒”, we have the
confluence of the type free λµ-calculus.

Theorem 3 The type free λµ-calculus is confluent.

4 Parallel Computation in Call-
by-Value λµ-Calculus

A call-by-value version of the λµ-calculus was first pro-
vided by Ong and Stewart [13]. As compared with the
call-by-name system [14, 15, 16], one can adopt some
reduction rule more in the call-by-value system; so-
called symmetric structural reduction [13] such that
N(µ/alpha.M) → µα.M [[α](Nw)/[α]w]. It is known
that adding such a reduction rule breaks down the
confluence unless the above term N is in the form of
a value. In this section, the notion of values as an
extended form is introduced based on observations in
[7, 8].

V ::= x | λx.M | [α]M

This notion is closed under both value-substitutions
and substitutions induced by structural reduction or
symmetric structural reduction defined below.

Baba Lab. Technical Report 4

A context E [] with a hole [] is defined as usual,
such that

E ::= [] | EM | V E .
Let n ≥ 0 and M be a term. We will write
En[En−1[· · · E1[N] · · ·]] for E [N], where each Ei 6= []
is either in the form of V [] or []M . For simplicity,
such Ei also denotes the value V or the term M .

The call-by-value λµ-calculus consists of the follow-
ing reduction rules:
βv-reduction:

(λx.M)V →v M [V/x]

Structural reduction:

(µα.M1)M2→v µα.M1[[α](wM2)/[α]w]

Symmetric structural reduction:

V (µα.M)→v µα.M [[α](V w)/[α]w]

Renaming reduction:

[β](µα.V)→v V [β/α]

This renaming rule is different from that in [13].
The distinction is essential under the extended form
of values, and this form of renaming would also be
natural from the viewpoint of CPS-translation such
as in [7, 8].

We will show that the new parallel reduction can
also be applicable to proving confluence for the call-
by-value system of the λµ-calculus, contrary to the
straightforward use of parallel reduction in [13]. To
prove this, we define parallel reduction � as follows:

Definition 3 1. x� x

2.
M �M ′

λx.M � λx.M ′

3.
M �M ′ N � N ′

MN �M ′N ′

4.
M �M ′

µα.M � µα.M ′

5.
M �M ′

[α]M � [α]M ′

6.
M �M ′ V � N ′

(λx.M)V �M ′[N ′/x]

7.
M �M ′ N � N ′

(µα.M)N � µα.M ′[[α](wN ′)/[α]w]

8.
M �M ′ V � N ′

V (µα.M)� µα.M ′[[α](N ′w)/[α]w]

9.
V �M ′ E1 � E ′1 · · · En � E ′n
[α](E [µβ.V])�M ′[[α](E ′[w])/[β]w], where E [] =
En[· · · E1[] · · ·] and E ′[] = E ′n[· · · E ′1[] · · ·].

Now it can be seen that the transitive and reflexive
closure of →v is equivalent to the transitive closure of
�.

Lemma 2 (1) If V �M , then M is also in the form
of a value.
(2) If M � N and V � N ′, then M [V/x]� N [N ′/x].
(3) If M � M ′ and N � N ′, then
M [[α](wN)/[α]w]�M ′[[α](wN ′)/[α]w].
(4) If M � M ′ and V � N ′, then
M [[α](V w)/[α]w]�M ′[[α](N ′w)/[α]w].
(5) If M �M ′, then M [α/β]�M ′[α/β].
(6) Let n ≥ 0. Let E [] = En[· · · E1[] · · ·] and E ′[] =
E ′n[· · · E ′1[] · · ·]. If M �M ′ and Ei � E ′i for 1 ≤ i ≤ n,
then M [[α](E [w])/[α]w]�M ′[[α](E ′[w])/[α]w].

Proposition 1 For any λµ-term M , there exists M∗

such that for any N , N �M∗ whenever M � N .

Proof. By induction on the derivation of �. Here,
the complete development M∗ can be given induc-
tively as follows:

Definition 4 1. M = x. Then M∗ = x.

2. M = λx.M1. Then M∗ = λx.M∗1 .

3. M = M1M2.

3-1. M1 = λx.M3 and M2 = V2. Then M∗ =
M∗3 [V ∗2 /x].

3-2. M1 = µα.M3.
Then M∗ = µα.M∗3 [[α](wM∗2)/[α]w].

3-3. M1 = V1 and M2 = µα.M4. Then M∗ =
µα.M∗4 [[α](V ∗1 w)/[α]w].

3-4. M∗ = M∗1M
∗
2 o.w.

4. M = µα.M1. Then M∗ = µα.M∗1 .

5. M = [α]M1.

5-1. M1 = E [µβ.V2].
Then M∗ = V ∗2 [[α](E∗[w])/[β]w], where E∗[] is
defined as E∗n[· · · E∗1 [] · · ·] for E [] = En[· · · E1[] · · ·]
and n ≥ 0.

5-2. M∗ = [α]M∗1 o.w.

We show only the case M of [α]M1. The remaining
cases can also be justified following a similar pattern.
1. Case [α]M1 of [α](E [µβ.V]):
1-1. M � N = [α]N1 is derived from E [µβ.V] � N1

by 5:
1-1-1. E [µβ.V] = µβ.V :

In this case, µβ.V � N1 = µβ.N2 is derived from
V � N2 by 4, where N2 is also a value. From the
induction hypothesis, we have N2 � V ∗, and hence
N = [α](µβ.N2)� V ∗[α/β] = M∗ is obtained by 9.

Baba Lab. Technical Report 5

1-1-2. E [µβ.V] = En[· · · E1[µβ.V] · · ·] for n ≥ 1:

Since E1[µβ.V] is not a value, En[· · · E1[µβ.V] · · ·]�
N1 must be derived from E1[µβ.V]� N ′2 and Ej � E ′j
for 2 ≤ j ≤ n by the successive use of 3, where N1 =
E ′n[· · · E ′2[N ′2] · · ·]. Here, we have two cases for E1 and
two derivations for each of those.

1-1-2-1. E1[µβ.V] = V1(µβ.V):

1-1-2-1-1. V1(µβ.V) � N ′2 = N ′3N
′
4 is derived from

µβ.V � N ′4 and V1 � N ′3 by 3:

Since µβ.V � N ′4 = µβ.N ′5 must be derived from
V � N ′5 by 4, we have N ′5 � V ∗ by the induction
hypothesis, where N ′5 is also a value. Let E ′1 be N ′3[],
where N ′3 is a value. Then the induction hypothesis
gives N ′3 � V ∗1 abbreviated as E ′1 � E∗1 . From the
induction hypotheses for Ej for 2 ≤ j ≤ n we also
have E ′j � E∗j , and then [α](E ′n[· · · E ′1[µβ.N ′5] · · ·]) �
V ∗[[α](E∗n[· · · E∗1 [w] · · ·])/[β]w] is obtained by 9.

1-1-2-1-2. V1(µβ.V) � N ′2 = N ′3[[α](N ′4w)/[α]w] is
derived from V1 � N ′3 and V � N ′4 by 8:

The induction hypotheses give N ′3 � V ∗1 and
N ′4 � V ∗. From the substitution lemma, we have
N ′4[[β](N ′3w)/[β]w] � V ∗[[β](V ∗1 w)/[β]w], where N ′4
is also a value and values are closed under the sub-
stitutions. The induction hypotheses for Ej for 2 ≤
j ≤ n also give E ′j � E∗j . Hence, the use of
9 derives [α](E ′n[· · · E ′2[µβ.N ′4[[β](N ′3w)/[β]w]] · · ·]) �
(V ∗[[β](V ∗1 w)/[β]w])[[α](E∗n[· · · E∗2 [w] · · ·])/[β]w],
whose right-hand side
is equivalent to V ∗[[α](E∗n[· · · E∗1 [w] · · ·])/[β]w], where
E∗1 is V ∗1 [].

1-1-2-2. E1[µβ.V] = (µβ.V)M2:

In this case, we have two derivations for
(µβ.V)M2 � N ′2 by the use of 3 or 7. Each case can
be verified following a similar pattern to the above two
cases.

1-2. M � N = N ′[[β](E ′[w])/[α]w] is derived from
V � N ′ and Ei � E ′i for 1 ≤ i ≤ n, where E [] =
En[· · · E1[] · · ·] and E ′[] = E ′n[· · · E ′1[] · · ·]:

The successive application of the substitution
lemma to the induction hypotheses.

2. Otherwise:

The straightforward use of the induction hypothesis.
2

Finally, the confluence for the call-by-value λµ-
calculus can be confirmed, since � has the diamond
property.

Theorem 4 The type free λµ-calculus of call-by-value
has the confluence property.

5 Related Work and Further
Problems

5.1 Sequentiality of Reduction

Parallel reduction is a very clear and intuitive idea
which means to reduce a number of redexes (existing in
the term) simultaneously. It is often applied to prove
confluence of reduction system. However, a naive for-
mulation of parallel reduction does not always work.
The λµ-calculus is one of such reduction systems. We
have reasoned that the difficulty comes from the se-
quentiality of the structural reductions. Therefore we
proposed that a consecutive sequence of the structural
reductions should be considered as one step of parallel
reduction. As pointed out in Takahashi [17], the idea
does not work for λη−1 either, that is, λ-calculus with
η-expansion: M → λx.Mx. The confluence of λη−1

is proved in [12, 1]. Jay and Ghani [12] proved the
confluence by introducing “parallel expansion” which
includes, roughly speaking, a consecutive application
of η−1 M → λx1.Mx1 → λx1x2.Mx1x2 → · · ·. van
Raamsdonk [18] introduced the notion of “superdevel-
opment” to prove confluence of the orthogonal com-
binatory reduction systems. The superdevelopment is
a reduction sequence in which some redexes that are
created during reduction may be contracted, besides
redexes that descend from the initial term. A key idea
of these works is to overcome some sequentiality of re-
ductions. We cannot show, at the current stage, what
kind of reduction contains such sequentiality in gen-
eral. To find some criteria of such sequentiality is one
of further work.

5.2 Another Reduction Rule

Parigot’s λµ-calculus [14] has one more reduction rule
η∗:

µα.[α]M →M

if α has no free occurrence in M . Consider a term
M = µα.[α]((µβ.[γ]x)yz). Then M has η∗-redex and
the redex with respect to the rule 9 of Definition 1.
The reduction of each redex is represented by “η∗”
and “rs” in Figure 2:

By “rs”, we reach µα.[γ]x with one step parallel re-
duction. If we apply η∗ first, we have (µβ.[γ]x)yz from
which we cannot reach µα.[γ]x with one step parallel
reduction. However, we can overcome this situation
by counting a series of structural reductions as one
step. On the basis of this idea, we have a formulation
of parallel reduction with η∗ as well, although the for-
mal description is skipped here for simplicity.

Baba Lab. Technical Report 6

µα.[α]((µβ.[γ]x)yz)

?

rs

@
@@R
η∗

(µβ.[γ]x)yz

��	s
��	s

µα.[γ]x

Figure 2: An example of the reduction rule η∗, where
arrows with s and rs mean structural reduction and
the reduction for the rule 9, respectively.

5.3 Practical Application of Type Free
λµ-Calculi

In order to make the λµ-calculi in practical applica-
tion, we need to realize some machines. In fact, Bier-
man [3] and de Groote [5] proposed such abstract ma-
chines and analyzed their behavior. However, all those
machines are sequential in nature. We expect that
our parallel reduction could yield natural extensions
of those machines.

References

[1] Y. Akama. On mints’s reduction for CCC-
calculus. In Lecture Notes in Computer Science,
volume 664, pages 1–15, 1993.

[2] H. P. Barendregt. The Lambda Calculus, 2nd ed.
North-Holland, 1984.

[3] G. M. Bierman. A computational interpretation
of the λµ-calculus. In University of Cambridge
Computer Laboratory Technical Report, volume
448, 1998.

[4] P. de Groote. On the relation between the λµ-
calculus and the syntactic theory of sequential
control. In Lecture Notes in Artificial Intelligence,
volume 822, pages 31–43, 1994.

[5] P. de Groote. An environment machine for the
λµ-calculus. Mathematical Structure in Computer
Science, 8:637–669, 1998.

[6] M. Felleisen, D. P. Friedman, E. Kohlbecker, and
B. Duba. A syntactic theory of sequential control.
Theoretical Computer Science, 52:205–237, 1987.

[7] K. Fujita. Calculus of classical proofs I. In Lec-
ture Notes in Computer Science, volume 1345,
pages 321–335, 1997.

[8] K. Fujita. Explicitly typed λµ-calculus for poly-
morphism and call-by-value. In Lecture Notes in
Computer Science, volume 1581, pages 162–176,
1999.

[9] T. Griffin. A formulae-as-types notion of con-
trol. In Conference Record of 17th ACM Sym-
posium on Principles of Programmin Language,
pages 47–58, 1990.

[10] J. R. Hindley. Basic Simple Type Theory. Cam-
bridge University Press, 1997.

[11] J. R. Hindley and J. P. Seldin. Introduction to
Combinators and λ-Calculus. Cambridge Univer-
sity Press, 1986.

[12] C. B. Jay and N. Ghani. The virtues of eta-
expansion. In LFCS report, volume 243, 1992.

[13] C.-H. L. Ong and C. A. Stewart. A curry-howard
foundation for functional computation with con-
trol. In Proc. 24th Annual ACM Symposium of
Principles of Programming Language, 1997.

[14] M. Parigot. λµ-calculus: An algorithmic interpre-
tation of classical natural deduction. In Lecture
Notes in Artificial Intelligence, volume 624, pages
190–201, 1992.

[15] M. Parigot. Strong normalization for second order
classical natural deduction. In Proc. 8th Annual
IEEE Symposium on Logic in Computer Science,
pages 39–46, 1993.

[16] M. Parigot. Proofs of strong normalization for
second order classical natural deduction. Journal
of Symbolic Logic, 62(4):1461–1479, 1997.

[17] M. Takahashi. Parallel reduction in λ-
calculus. Information and Computation, 118:120–
127, 1995.

[18] F. van Raamsdonk. Confluence and superdevel-
opment. In Lecture Notes in Computer Science,
volume 690, pages 168–182, 1993.

