The Golden Quadratic Equations

Iwamoto, Seiichi
Faculty of Economics, Kyushu University : Department of Economic Engineering

https://doi.org/10.15017/17082
The Golden Quadratic Equations

Seiichi Iwamoto

Abstract
This paper considers a sequence of quadratic equations (QEs), which are called Golden quadratic equations. The first Golden QE is a well known Fibonacci QE. We introduce a general form of Golden QE — the \(n \)-th Golden quadratic equation — by solving an eigenvalue problem of \(2 \times 2 \) integer symmetric matrices. We translate the eigenvalue problem into an equivalent optimization problem.

1 Introduction
The Fibonacci sequence is defined by a difference equation, which is one of the most famous second-order linear difference equations [3, 4, 12]. The difference equation has a quadratic equation (QE) as its characteristic equation. Sometimes the QE is called Fibonacci quadratic equation.

In this paper we propose a sequence of Golden QEs, which gives a general form of the single Fibonacci QE.

2 The Fibonacci Quadratic Equation
The Fibonacci sequence \(\{F_n\} \) is defined by the difference equation
\[
F_{n+2} - F_{n+1} - F_n = 0 \quad (F_0 = 0, \ F_1 = 1).
\]
(1)
The equation has the characteristic equation
\[
x^2 - x - 1 = 0.
\]
(2)
Sometimes (2) is called Fibonacci quadratic equation [3, 4, 12]. The Fibonacci quadratic equation has two real solutions: \(\phi \) and its conjugate \(1 - \phi \), where
\[
\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61803
\]
is the Golden number [3, 4, 8–10, 12]. We note that
\[
\phi + (1 - \phi) = 1, \quad \phi(1 - \phi) = -1.
\]

Lemma 2.1 It holds that for any real values \(a, b \)
\[
(a + b\phi)(a + b - b\phi) = a^2 + ab - b^2.
\]
Thus the two numbers \(a + b\phi \) and \(a + b(1-\phi) \) are called each other’s conjugate number.

Definition 2.1 We define for any pair of real values \((a, b) \)
\[
\overline{a+b\phi} := a+b(1-\phi).
\]

Thus we have
\[
\overline{\overline{a+b\phi}} = a+b - b\phi, \quad \overline{\phi} = -\phi^{-1}.
\]

The conjugation is the transformation on \(\mathbb{R}^2 \):
\[
(a, b) \longrightarrow (a+b, -b).
\]

Let \(x, y, z, \ldots \) be real values represented in form \(a+b\phi \) where \((a, b) \) is a pair of real values. Then we have the following relations.

Lemma 2.2

(i) \(\overline{x} = x \)
(ii) \(\overline{x+y} = \overline{x} + \overline{y} \)
(iii) \(\overline{cx} = c\overline{x} \quad c \in \mathbb{R}^1 \)
(iv) \(\overline{xy} = \overline{x}\overline{y} \)
(v) \(\overline{\left(\frac{1}{x}\right)} = \frac{1}{\overline{x}} \)

Definition 2.2 We define for \(x = a + b\phi \), where \(a, b \in \mathbb{R}^1 \)
\[
\|x\| := x\overline{x}.
\]

Lemma 2.3 It holds that for any \(x = a+b\phi \), where \(a, b \in \mathbb{R}^1 \)
\[
\|x\| = a^2 + ab - b^2.
\]

We note that \(\|x\| = 0 \) implies \(\frac{b}{a} = \phi \) or \(\frac{b}{a} = \overline{\phi} \), provided that \(a \neq 0 \).

We have for any nontrivial pair of real values \((a, b) \)
\[
\frac{1}{a+b\phi} = \frac{a+b}{a^2 + ab - b^2} - \frac{b}{a^2 + ab - b^2}\phi.
\]

For instance we have a list of linear expressions for fractional forms of two linear forms in \(\phi \) as follows:

\[
\frac{1}{\phi} = -1 + \phi = \frac{-1 + \sqrt{5}}{2} \approx 0.61803
\]
\[
\frac{1}{1+\phi} = 2 - \phi = \frac{3 - \sqrt{5}}{2} \approx 0.38197
\]
\[
\frac{1}{2+\phi} = \frac{1}{5} (3 - \phi) = \frac{5 - \sqrt{5}}{10} \approx 0.27639
\]

and
\[
\frac{-7 + 4\phi}{4 - 3\phi} = \frac{-4 + 3\phi}{3 - \phi} = \frac{-1 + 2\phi}{2 + \phi} = -1 + \phi \approx 0.61803
\]
The Golden Quadratic Equations

\[
\frac{3-\phi}{2+\phi} = \frac{2+\phi}{3+4\phi} = 2-\phi \approx 0.38197
\]

\[
\frac{1+3\phi}{2+\phi} = \frac{3+4\phi}{1+3\phi} = \phi \approx 1.61803
\]

\[
\frac{2+\phi}{3-\phi} = \frac{3+4\phi}{2+\phi} = 1+\phi = \frac{3+\sqrt{5}}{2} \approx 2.61803
\]

Let us now consider some variants of Fibonacci quadratic equation.

Lemma 2.4 Eq. (2) has equivalent forms as follows (see Fig. 1-8 in Appendix):

(i) \(x = -1+x^2 \)

(ii) \(x = \pm \sqrt{1+x} \)

(iii) \(x = 1+\frac{1}{x} \)

(iv) \(x = \frac{1}{x-1} \)

(v) \(x = 2-\frac{1}{x+1} \)

(vi) \(x = -1+\frac{1}{2-x} \)

\(x = 1+\frac{1}{1+\frac{1}{x}} \) \(= \frac{2x+1}{x+1} \)

\(x = \frac{1}{-1+\frac{1}{1+\frac{1}{-1+x}}} \) \(= \frac{-1+x}{2-x} \)

\(\frac{1}{x-1} = 1+\frac{1}{x} \).

Hence each equation has solutions \(\phi \) and \(1-\phi \).

The two solutions \(\phi \) and \(1-\phi \) are called *Golden*. We call each of (i)-(ix) *Golden equation*. Because it has the Golden solutions.

3 The Fibonacci Sequence

A Fibonacci sequence \(\{F_n\} \) is defined by second-order linear difference equation

\[F_{n+2} = F_{n+1} - F_n = 0. \]

Then we have a famous relation.

Lemma 3.1

\[\phi^n = F_n\phi + F_{n-1}, \quad n = \ldots, -1, 0, 1, \ldots \]

\[(\phi - 1)^n = F_{-n}\phi + F_{-n-1} \]

where \(\{F_n\} \) is the Fibonacci sequence with \(F_0 = 0, \; F_1 = 1. \)
Lemma 3.2 (Three Identities) The Fibonacci sequence satisfies

(Cassini’s) \[F_{n-1}F_{n+1} - F_n^2 = (-1)^n \]

(Catalan’s) \[F_n^2 - F_{n-r}F_{n+r} = (-1)^{n-r}F_r^2 \]

(d’Ocagne’s) \[F_nF_{n+1} - F_nF_{m+1} = (-1)^nF_{m-n} \]

where \(n = \cdots, -1, 0, 1, \cdots \).

The Fibonacci sequence is tabulated in Table 1:

| \(n \) | \(-13\) | \(-12\) | \(-11\) | \(-10\) | \(-9\) | \(-8\) | \(-7\) | \(-6\) | \(-5\) | \(-4\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(F_n \) | 233 | -144 | 89 | -55 | 34 | -21 | 13 | -8 | 5 | -3 | 2 | -1 | 1 | 0 | 1 |

| \(n \) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| \(F_n \) | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | 377 | 610 | 987 | 1597 |

Table 1 Fibonacci sequence \(\{ F_n \} \)

On the other hand, the Fibonacci sequence has the analytic form

Lemma 3.3

\[
F_n = \frac{1}{\sqrt{5}} \left[\phi^n - (1 - \phi)^n \right] \quad n = \cdots, -1, 0, 1, \cdots
\]

Then we have

\[F_n = (-1)^{n+1}F_{-n} \quad n = 0, 1, 2, \cdots \]

Lemma 3.4

\[
1 = 1 + 0\phi = (\phi - 1)\phi = 1 = \phi^0 = 1 + 0\phi = 1
\]

\[
0.61803 \approx -1 + 1\phi = (\phi - 1)^2 \quad \phi^2 = 1 + 1\phi \approx 2.61803
\]

\[
0.381966 \approx -3 + 2\phi = (\phi - 1)^3 \quad \phi^3 = 1 + 2\phi \approx 4.23607
\]

\[
0.14598 = 5 - 3\phi = (\phi - 1)^4 \quad \phi^4 = 2 + 3\phi \approx 6.85410
\]

\[
0.090170 \approx -8 + 5\phi = (\phi - 1)^5 \quad \phi^5 = 3 + 5\phi \approx 11.0902
\]

\[
0.055728 \approx 13 - 8\phi = (\phi - 1)^6 \quad \phi^6 = 5 + 8\phi \approx 17.9443
\]

\[
0.034442 \approx -21 + 13\phi = (\phi - 1)^7 \quad \phi^7 = 8 + 13\phi \approx 29.0344
\]

\[
0.021286 \approx 34 - 21\phi = (\phi - 1)^8 \quad \phi^8 = 13 + 21\phi \approx 46.9787
\]

Lemma 3.5

\[
0.013156 \approx -55 + 34\phi = (\phi - 1)^9 \quad \phi^9 = 21 + 34\phi \approx 76.0132
\]

\[
0.008131 \approx 89 - 55\phi = (\phi - 1)^{10} \quad \phi^{10} = 34 + 55\phi \approx 122.992
\]

(i) \[
\frac{\phi}{1} = \frac{1 + \phi}{\phi} = \frac{1 + 2\phi}{1 + \phi} = \frac{2 + 3\phi}{2 + 2\phi} = \frac{3 + 5\phi}{2 + 3\phi} = \cdots = \frac{F_n + F_{n+1}\phi}{F_n + F_{n+1}\phi} \approx 1.61803
\]

(ii) \[
\frac{F_n + F_{n+1}\phi}{F_n + F_{n+1}\phi} = \cdots = \frac{2\phi - 3}{5 - 3\phi} = \frac{2 - \phi}{2\phi - 3} = \frac{\phi - 1}{2 - \phi} = \frac{1}{\phi - 1} = \phi
\]
The Golden Quadratic Equations

\[
\begin{align*}
(iii) \quad & \frac{0.236}{0.146} \approx \frac{0.382}{0.236} \approx \frac{0.618}{0.382} \approx \frac{1}{0.618} \approx \frac{1.618}{1} \approx \frac{2.618}{1.618} \approx \frac{4.236}{2.618} \approx \ldots \approx 1.618
\end{align*}
\]

where \(\{F_n\} \) is the Fibonacci sequence.

4 The Golden Quadratic Equations

In this section we introduce the sequence of Golden quadratic equations [3-7, 11, 12].

Definition 4.1 The \(n \)-th Golden quadratic equation is defined as

\[
x^2 - (F_{n-1} + F_{n+1})x + (-1)^n = 0
\] (5)

where \(\{F_n\} \) is the Fibonacci sequence with \(F_0 = 0, \ F_1 = 1 \).

For instance we have the following Golden quadratic equations (see Fig's.9, 10 in Appendix):

\[
\begin{align*}
(\text{-6}) \text{-th} & \quad x^2 - 18x + 1 = 0 \\
(\text{-5}) \text{-th} & \quad x^2 + 11x - 1 = 0 \\
(\text{-4}) \text{-th} & \quad x^2 - 7x + 1 = 0 \\
(\text{-3}) \text{-rd} & \quad x^2 + 4x - 1 = 0 \\
(\text{-2}) \text{-nd} & \quad x^2 - 3x + 1 = 0 \\
(\text{-1}) \text{-st} & \quad x^2 + x - 1 = 0 \\
0 \text{-th} & \quad x^2 - 2x + 1 = 0
\end{align*}
\] (6)

first \(x^2 - x - 1 = 0 \)

second \(x^2 - 3x + 1 = 0 \)

third \(x^2 - 4x - 1 = 0 \)

fourth \(x^2 - 7x + 1 = 0 \)

fifth \(x^2 - 11x - 1 = 0 \)

sixth \(x^2 - 18x + 1 = 0 \)

\[\ldots \]

We remark that for even \(n \) both \(n \)-th and \((-n) \)-th Golden quadratic equations are identical, as the above underlines show:

\[
x^2 - (F_{n-1} + F_{n+1})x + 1 = 0.
\] (7)

For odd \(n \) we have the \(n \)-th Golden quadratic equation:

\[
x^2 - (F_{n-1} + F_{n+1})x - 1 = 0
\] (8)
where
\[
\begin{align*}
F_{n-1} + F_{n+1} &> 0 \quad \text{for} \quad n > 0 \\
F_{n-1} + F_{n+1} &< 0 \quad \text{for} \quad n < 0
\end{align*}
\]
and
\[F_{n-1} + F_{n+1} = F_{-(n-1)} + F_{-(n+1)}.
\]

Theorem 4.1 The n-th Golden quadratic equation (5) has two solutions
\[\phi^n \quad \text{and} \quad (1-\phi)^n\] (9)
where ϕ is the Golden number.

We note that
\[
\begin{align*}
\phi^n &= F_{n-1} + F_n \phi \\
(1-\phi)^n &= F_{n+1} - F_n \phi.
\end{align*}
\]

5 Golden Matrices

Let us take four integer symmetric 2×2 matrices as follows:
\[
A = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad G = \begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix}.
\]

We consider eigenvalue problems associated with these matrices [8]. Then we have the following result.

Theorem 5.1 The four matrices have a common characteristic equation which is the first Golden quadratic equation. Conversely, an integer symmetric 2×2 matrix whose characteristic equation reduces the first Golden quadratic equation is restricted to these matrices.

5.1 Matrix A

Let us consider the integer symmetric matrix
\[
A = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}.
\] (10)

The matrix A is called Golden. Two reasons will be clarified as follows.

First we see that the characteristic equation of A is
\[
\lambda^2 - \lambda - 1 = 0,
\] (11)
which is the first Golden quadratic equation in (6). This gives one reason why A is Golden. The Eq.(11) has the eigenvalues
\[
\lambda_1 = \phi, \quad \lambda_2 = 1 - \phi
\] (12)
with the corresponding eigenvectors
\[
x_1 = c \begin{pmatrix} 1 \\ 1-\phi \end{pmatrix}, \quad x_2 = d \begin{pmatrix} 1 \\ \phi \end{pmatrix}
\] (13)
The Golden Quadratic Equations

where \(-\infty < c, \ d < \infty\). For the normality, in what follows, we take

\[
c = \frac{1}{\sqrt{3} - \phi}, \quad d = \frac{1}{\sqrt{2} + \phi}.
\]

Then the eigenvectors \(x_1, \ x_2\) are orthonormal.

Therefore we have the two-dimensional variational characterization of \(\lambda_1, \ \lambda_2\) through the Rayleigh quotient \((x, Ax)/(x, x)\) ([1, p.72], [2]):

Lemma 5.1 It holds that

\[
\phi = \max_x \frac{(x, Ax)}{(x, x)} \quad \bar{\phi} = \min_x \frac{(x, Ax)}{(x, x)}.
\]

(14)

In the case, \(x^* = \left(\begin{array}{c} \phi \\ -1 \end{array} \right)\) is a maximizer and \(\bar{x} = \left(\begin{array}{c} 1 \\ \phi \end{array} \right)\) is a minimizer.

Thus we have represented two pairs of eigenvalue and eigenvector in terms of a single term, the Golden ratio, \(\phi\). This is the other reason.

Furthermore, we consider the maximization and minimization of the quadratic form \((x, Ax) = x^2 - 2xy\) under the unit constraint \(x^2 + y^2 = 1\):

Maximize and minimize \(x^2 - 2xy\)

\[\text{OA}_1 \quad \text{subject to} \quad \begin{align*}
(i) & \quad x^2 + y^2 = 1 \\
(ii) & \quad -\infty < x, \ y < \infty.
\end{align*}\]

Then OA\(_1\) has the maximum value \(M = \phi\) at the points \((x^*, \ y^*) = \pm \frac{1}{\sqrt{2} + \phi} (\phi, \ -1)\) and the minimum value \(m = \bar{\phi}\) at the points \((\bar{x}, \ \bar{y}) = \pm \frac{1}{\sqrt{2} + \phi} (1, \ \phi)\). Both the maximum points and minimum points constitute the Golden ratio, whereupon the maximum value and the minimum value are the Golden number and its conjugate, respectively. In this sense both solutions - pairs of optimum value and optimum point - are also Golden.

6 The Golden Identities

Let \(\{F_n\}\) be the Fibonacci sequence with \(F_0 = 0, \ F_1 = 1:\)

\[
F_{n+2} - F_{n+1} - F_n = 0 \quad n = \ldots, -1, 0, 1, \ldots.
\]

First we consider the integer symmetric matrix

\[
A = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} F_2 & -F_1 \\ -F_1 & F_0 \end{pmatrix}
\]

Then we have
\[A^{-1} = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix}, \]
\[A^2 = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}, \quad A^3 = \begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix}, \quad A^4 = \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix}, \quad \ldots \]

and
\[A^{-2} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad A^{-3} = \begin{pmatrix} -1 & -2 \\ -2 & -3 \end{pmatrix}, \quad A^{-4} = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}, \quad \ldots \]

where \(A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).

Lemma 6.1

\[A^n = \begin{pmatrix} F_{n+1} & -F_n \\ -F_n & F_{n-1} \end{pmatrix}, \quad A^{-n} = (-1)^n \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix} \]

where \(n = 0, 1, \ldots \)

We can easily find two pairs of eigenvalue and eigenvector for matrix \(A^n \). The two pairs yield both the maximum solution and minimum solution for the corresponding optimization problem:

Maximize and minimize \(F_{n+1}x^2 - 2F_nxy + F_{n-1}y^2 \)

subject to

(i) \(x^2 + y^2 = 1 \)

(ii) \(-\infty < x, y < \infty \).

Then \(\text{OA}_n \) has the maximum value \(M = \phi^n \) at the points \((x^*, y^*) = \pm \frac{1}{\sqrt{2} + \phi} (-1, \phi) \) and the minimum value \(m = \bar{\phi}^n \) at the points \((x, y) = \pm \frac{1}{\sqrt{2} + \phi} (1, \phi) \). Thus we have the sequence of identities as follows:

Theorem 6.1 (The Sequence of Golden Identities A) It holds that

(i) \((F_{n+1} - F_n)x^2 + F_n\phi(y - \phi x)^2 = F_{n+1}x^2 - 2F_nxy + F_{n-1}y^2 \)

and

(ii) \(F_{n+1}x^2 - 2F_nxy + F_{n-1}y^2 + F_n(\phi - 1)(x + \phi y)^2 = (F_{n+1} + F_n\phi)(x^2 + y^2) \)

for \(n = \ldots, -1, 0, 1, \ldots \).

Second we consider the integer symmetric matrix

\[G = \begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} F_0 & -F_1 \\ -F_1 & F_2 \end{pmatrix}. \]

Through the analysis of eigenvalue problem for matrix \(G \), we have

Corollary 6.1 (The Sequence of Golden Identities G) It holds that

(i) \((F_{n+1} - F_n)x^2 + F_n\phi(y - \phi x)^2 = F_{n+1}x^2 - 2F_nxy + F_{n-1}y^2 \)

and

(ii) \(F_{n+1}x^2 - 2F_nxy + F_{n-1}y^2 + F_n(\phi - 1)(y + \phi x)^2 = (F_{n+1} + F_n\phi)(x^2 + y^2) \)
for \(n = \ldots, -1, 0, 1, \ldots \).

This result is obtained through the transformation \((x, y) \longrightarrow (y, x)\) on Theorem 6.1.

Third we consider the integer symmetric matrix

\[
B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix}.
\]

Then we have the following sequence of Golden identities.

Corollary 6.2 (The Sequence of Golden Identities B) It holds that

(i) \((F_{n+1} - F_n \phi)(x^2 + y^2) + F_n(\phi - 1)(y + \phi x)^2 = F_{n+1} x^2 + 2F_n xy + F_{n-1} y^2\)

and

(ii) \(F_{n+1} x^2 + 2F_{n-1} y^2 + F_n(\phi - 1)(\phi x - y)^2 = (F_{n+1} + F_n \phi)(x^2 + y^2)\)

for \(n = \ldots, -1, 0, 1, \ldots \).

This result is obtained through the transformation \((x, y) \longrightarrow (-x, y)\) on Theorem 6.1.

Finally we consider the integer symmetric matrix

\[
C = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} F_0 & F_1 \\ F_1 & F_2 \end{pmatrix}.
\]

Corollary 6.3 (The Sequence of Golden Identities C) It holds that

(i) \((F_{n+1} - F_n \phi)(x^2 + y^2) + F_n(\phi - 1)(x + \phi y)^2 = F_{n-1} x^2 + 2F_n xy + F_{n+1} y^2\)

and

(ii) \(F_{n-1} x^2 + 2F_{n+1} y^2 + F_n(\phi - 1)(\phi x - y)^2 = (F_{n-1} + F_n \phi)(x^2 + y^2)\)

for \(n = \ldots, -1, 0, 1, \ldots \).

This is obtained through the transformation \((x, y) \longrightarrow (x, -y)\) on Corollary 6.1.

Finally we remark as follows.

Lemma 6.2 The four matrices \(A, B, C \) and \(G \) have a common characteristic equation

\[
\lambda^2 - \lambda - 1 = 0.
\]

(15)

This is nothing but the Golden quadratic equation. Thus the four matrices are also called Golden. These Golden matrices have two common eigenvalues

\[
\lambda_1 = \phi, \quad \lambda_2 = 1 - \phi.
\]

(16)

First the matrix \(A = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} \) has the corresponding eigenvectors

\[
x_1 = c \begin{pmatrix} 1 \\ 1 - \phi \end{pmatrix}, \quad x_2 = d \begin{pmatrix} 1 \\ \phi \end{pmatrix}
\]

where \(c \neq 0, \ d \neq 0 \). For the normality, in what follows, we take

\[
c = \frac{1}{\sqrt{3 - \phi}}, \quad d = \frac{1}{\sqrt{2 + \phi}}.
\]

Then the eigenvectors \(x_1, x_2 \) are orthonormal. Sometimes, however, we take a simple form
\[x_1 = \begin{pmatrix} -\phi \\ 1 \end{pmatrix}, \quad x_2 = \begin{pmatrix} 1 \\ \phi \end{pmatrix}. \]

This is called \(\phi \)-expression.

Second the matrix \(G = \begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix} \) has the corresponding eigenvectors

\[x_1 = c \begin{pmatrix} 1 - \phi \\ 1 \end{pmatrix}, \quad x_2 = d \begin{pmatrix} \phi \\ 1 \end{pmatrix} \]

where \(c \neq 0, \quad d \neq 0 \). A simple form is \(\phi \)-expression:

\[x_1 = \begin{pmatrix} 1 \\ -\phi \end{pmatrix}, \quad x_2 = \begin{pmatrix} \phi \\ 1 \end{pmatrix}. \]

Third the matrix \(B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \) has the eigenvectors in \(\phi \)-expression:

\[x_1 = \begin{pmatrix} \phi \\ 1 \end{pmatrix}, \quad x_2 = \begin{pmatrix} 1 \\ -\phi \end{pmatrix}. \]

Finally the matrix \(C = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \) has the following \(\phi \)-expression:

\[x_1 = \begin{pmatrix} 1 \\ \phi \end{pmatrix}, \quad x_2 = \begin{pmatrix} -\phi \\ 1 \end{pmatrix}. \]

Concluding Remarks

Each of four corresponding pairs of eigenvectors (17)-(20) and each of the eight vectors are also called Golden. Thus we call the characteristic equation (15) Golden.

As a result we have introduced the adjective Golden on the basis of the Golden number \(\phi \) for the following terms: (1) matrix, (2) quadratic equation, (3) characteristic equation, (4) eigenvalue, (5) eigenvector, (6) inequality and (7) identity.

References

Seiichi Iwamoto (Professor Emeritus, Kyushu University)
Appendix: Graphic representation

Fig. 1 $y=0, \ y=x^2-x-1$

Fig. 2 $y=x, \ y=-1+x^2$

Fig. 3 $y=x, \ y=\pm\sqrt{1+x}$

Fig. 4 $y=x, \ y=1+\frac{1}{x}$
The Golden Quadratic Equations

Fig. 5 \(y = x, \quad y = -\frac{1}{x-1} \)

Fig. 6 \(y = x, \quad y = 2 - \frac{1}{x+1} \)

Fig. 7 \(y = x, \quad y = -1 + \frac{1}{2-x} \)

Fig. 8 \(y = \frac{1}{x-1}, \quad y = 1 + \frac{1}{x} \)
Fig. 9 Graph of the n-th Golden quadratic equation $n = 0, 1, 2, 3, 4$

Fig. 10 Graph of the n-th Golden quadratic equation $n = 0, -1, -2, -3, -4$