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Abstract. Rotating flows with elliptically strained streamlines suffer from a

parametric resonance instability between a pair of Kelvin waves whose azimuthal

wavenumbers are separated by two. We address the weakly nonlinear evolution of

amplitude of three-dimensional Kelvin waves, in resonance, on a flow confined in a

cylinder of elliptical cross-section. In a traditional Eulerian approach, derivation of

the mean-flow induced by nonlinear interaction of Kelvin waves stands as an obstacle.

We show how topological idea, or the Lagrangian approach, facilitates calculation of the

wave-induced mean flow. A steady incompressible Euler flow is characterized as a state

of the maximum of the total kinetic energy with respect to perturbations constrained

to an isovortical sheet, and the isovortical perturbation is handled only in terms of the

Lagrangian variables. The criticality in energy of a steady flow allows us to work out the

wave-induced mean flow only from the linear Lagrangian displacement. With the mean

flow at hand, the Lagrangian approach provides us with a bypass to enter into weakly

nonlinear regime of amplitude evolution of three-dimensional disturbances. Unlike the

Eulerian approach, the amplitude equations are available directly in the Hamiltonian

normal form.
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1. Introduction

It is well known that a vortex tube embedded in a strain flow suffers from three-

dimensional (3D) instability, being referred to as the Moore-Saffman-Tsai-Widnall

(MSTW) instability [17, 20, 3, 5]. The MSTW instability is typically a parametric

resonance, driven by the imposed shear, between left- and right-handed helical waves.

The waves on a circular cylindrical vortex tube are called the Kelvin waves or the

inertial waves. In general, a vortex tube with elliptic core goes through a parametric

resonance when two Kelvin waves, with difference in azimuthal wave numbers m being

2, are simultaneously excited. Fukumoto [5] showed on the ground of the Hamiltonian

spectral theory that all the intersection points of dispersion curves of the Kelvin waves

with m and m+2 result in instability. The (m,m+2) = (1, 3) and (0, 2) resonances were

detected in a confined geometry [4, 12]. Malkus [14] created a rotating flow with strained

streamlines in a water-filled flexible cylinder pressed by two stationary rollers (see also

[4]). His experiment showed that the MSTW modes grow, followed by excitation of a

number of waves and then by eventual disruption. A knowledge of nonlinear growth of

linearly unstable modes is indispensable for describing a route to the collapse.

Nonlinear effect comes into play at a matured stage of exponential growth of

disturbance amplitude and modifies evolution of the MSTW instability. Waleffe [22]

and Sipp [19] showed that the weakly nonlinear effect acts to saturate the amplitude of

the Kelvin waves. Mason and Kerswell [15] proceeded to the secondary instability of

the MSTW instability. We shall show that their procedure is incomplete in the sense

that they did not determine, to the full detail, the mean flow induced by nonlinear

interactions of the Kelvin waves. Rodrigues and Luca [18] dealt with the case where

mean flow is absent, and found chaotic orbits.

The Lagrangian displacement field is instrumental in handling interaction of waves

[2, 9, 10]. Fukumoto and Hirota [7] developed the Lagrangian approach to derive the

wave-induced mean flow. The Lagrangian approach allows us to give the mean flow

solely in terms of the Lagrangian displacement of first order in amplitude. We rest

on this approach to deduce weakly nonlinear amplitude equations. The purpose of

this paper is to amend the previous Eulerian treatment and thereby to manipulate the

amplitude equations for weakly nonlinear evolution of the MSTW instability. We limit

ourselves to the stationary resonance of left- and right-handed helical waves.

In §2 and 3, we develop the Lagrangian approach to calculate the energy of and the

mean flow induced by waves on a steady flow. We recollect the Kelvin waves in §4 and

inquire into the mean flow induced by nonlinear interactions of Kelvin waves in §5. We

recollect the MSTW instability in §6 and 7, and enter into the weakly nonlinear regime

in §8. We close with conclusions (§9).
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2. Lagrangian approach

The signature of the energy of the waves is a key ingredient for the Hamiltonian

bifurcation theory. In the presence of a basic flow, the calculation of energy of waves

is unattainable in the framework of the traditional approach of using the Eulerian

variables. A way out is to use the derivative of the dispersion relation with respect

to the frequency [5], but without justification. A steady state of the Euler flows is

characterized as an extremal of the kinetic energy with respect to isovortical disturbance

[2]. The use of criticality facilitates the calculation of the excess energy by which the

kinetic energy increases in the presence of an induced wave. The isovortical disturbance,

for which the disturbance vorticity is frozen into the flow, is expressible faithfully in

terms of the Lagrangian variables. Mathematical construction of the energy, along with

the verification of its relation with the derivative of the dispersion relation, was carried

through in our previous papers [9, 10]. The disturbance velocity of second-order in

amplitude suggests the existence of a mean flow [7]. This section presents a brief sketch

of a geometric approach to this [8].

Recent studies in the field of weakly nonlinear analyses, sometimes, associated with

the wave-mean flow interaction, revealed that the Lagrangian approach of incorporating

the topological nature of a fluid is more effective than the traditional Eulerian approach

[2, 11]. Our method [9, 10, 7], given below, has the same spirits as those studies, though

with some novelty in mathematical formulation.

The motion of an inviscid incompressible fluid is regarded as an orbit on SDiff(D),

the group of the volume-preserving diffeomorphisms on the domain D ⊂ R
3. Its Lie

algebra g is the velocity field of the fluid. Let g∗ be the dual space of g with respect

to natural pair < u, v > between u ∈ g and v ∈ g∗. In the context of fluid flows, an

element of g∗ is a vector field, and < , > is simply the scalar product between vector

fields. The Lie bracket [ , ] of g is the adjoint representation, which operates on the

vector field as

ad(u1)u2 = [u1, u2] = (u2 · ∇)u1 − (u1 · ∇)u2 for u1, u2 ∈ g, (1)

where the bold symbol is used for clarification of it being a vector field.

Define the Lie-Poisson bracket for functions F1 and F2 on g∗ by

{F1, F2} =

〈[
δF1

δv
,
δF2

δv

]
, v

〉
. (2)

The Euler equations for an inviscid incompressible is written in the form of the Poisson

equation ∂F/∂t = {F,H} . By an introduction of the dual operator ad∗ of ad by

〈u, ad(ξ)∗v〉 = 〈ad(ξ)u, v〉 with ξ ∈ g, the Poisson equation provides us with an evolution

equation for v ∈ g∗ [1]:

∂v

∂t
= −ad∗

(
δH

δv

)
v. (3)

If δH/δv is replaced by an arbitrary u(t) ∈ g, (3) is called the Euler-Poincaré equation
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[11]. The operation of ad∗ reads in component wise, for the Euler equations,

[ad∗(ξ)v]i = [−ξ × (∇× v) +∇f ]i , (4)

where f is a function on D and ξ is a vector field on D. We may identify v ∈ g∗

as a solenoidal vector field on D which is tangent to the boundary D by a suitable

adjustment of f . The solution of (3) is a coadjoint orbit v(t) = Ad∗ (ϕ−1
t

)
v(0). Here

ϕt is a one-parameter subgroup of SDiff(D) generated by δH/δv. The collection of the

coadjoint orbit {Ad∗(ϕ)v(0) ∈ g∗|ϕ ∈ SDiff(D)} is alternatively called the isovortical

sheet. The velocity field is written by

u(t0) =
∂

∂t

∣∣∣∣
t0

(
ϕt ◦ ϕ−1

t0

)
=

δH

δv
. (5)

Given ϕt, an orbit on SDiff(D), of a basic flow and v(t) as the basic solution in

g∗, suppose that v(0) is disturbed to vα(0) = Ad∗ (ϕ−1
α,0

)
v(0) with ϕα,0 ∈ SDiff(D).

Here α ∈ R is a small parameter measuring the amplitude of the disturbance field. The

disturbed initial condition vα(0) is maintained on the same isovortical sheet as v(t),

and so is the subsequent orbit vα(t). It follows that, at each instant t, there exists a

diffeomorphism ϕα,t ∈ SDiff(D) such that v(t) is disturbed to

vα(t) = Ad∗ (ϕ−1
α,t

)
v(t) = Ad∗ ((ϕα,t ◦ ϕt)

−1) v(0) (6)

For small values of α, ϕα,t is a near-identity map, and there exists a generator ξα(t) ∈ g

for it, namely, ϕα,t = exp ξα(t). We expand ξα in a power series in α, to O(α2), as

ξα = αξ1 + α2ξ2/2 + · · · .
Using Ad∗ (ϕ−1

α,t

)
=

∑∞
n=0 [−ad∗(ξα)]

n /n!, (6) is expanded as vα = v+αv1+α2v2/2+

· · · ;
v1 = −ad∗(ξ1)v, v2 = −ad∗(ξ2)v + ad∗(ξ1)ad

∗(ξ1)v. (7)

In the language of vector calculus, this is translated into

v1 = P [ξ1 × ω] , v2 = P [ξ1 × (∇× (ξ1 × ω)) + ξ2 × ω] , (8)

where ω = ∇ × v, with identification of v = v ∈ g∗, and P is an operator projecting

to solenoidal vector field. Likewise, the velocity field of the disturbed orbit ϕα,t ◦ ϕt is

expanded as

uα(t0) =
∂

∂t

∣∣∣∣
t0

(
ϕα,t ◦ ϕt ◦ ϕ−1

t0 ◦ ϕ−1
α,t0

)

= u(t0) +
∞∑
n=0

1

(n+ 1)!
[ad(ξα)]

n

(
∂ξα
∂t

− ad(v)ξα

)
. (9)

The first few terms of uα = u+ αu1 + α2u2/2 + · · · are

u1 =
∂ξ1
∂t

− ad(u)ξ1,

u2 =
∂ξ2
∂t

− ad(u)ξ2 + ad(ξ1)

(
∂ξ1
∂t

− ad(u)ξ1

)
. (10)



Lagrangian approach to weakly nonlinear stability of an elliptical flow 5

A vector field uα ∈ g and its dual vα ∈ g∗ is made identifiable as the vector field

generated by the Hamiltonian H ,

uα(t) =
δH

δv

∣∣∣∣
α

(t) = vα(t), (11)

in view of H =
∫
D v2α/2dV with the density of fluid taken as unity.

With this identification, (8) and (10) are combined to yield

∂ξ1
∂t

+ (U · ∇)ξ1 − (ξ1 · ∇)U = v1, (12)

∂ξ2
∂t

+ (U · ∇)ξ2 − (ξ2 · ∇)U + (u1 · ∇)ξ1 − (ξ1 · ∇)u1 = v2, (13)

with v1 and v2 provided by (8). The symbol U = v designates the velocity field of the

basic flow, and ω = ∇×U is its vorticity. The first-order equation (12) has been well

known, but the second-order equation (13) was first derived in our previous paper [7].

As compared with ref [7], this symbolic derivation furnishes a short-cut to reach (13).

3. Energy and drift current of disturbance field

The restriction to isovortical disturbances also facilitates the calculation of increased

energy, originating from the superposition of disturbance, H (vα) = H(v) + αH1 +

α2H2/2 + · · · , in a power series in α. For a steady flow ∂v/∂t = 0, the first-order term

is shown, by use of (7), to vanish

H1 =

〈
δH

δv
, v1

〉
=

〈
δH

δv
,−ad∗(ξ1)v

〉
= −

〈
ξ1,

∂v

∂t

〉
= 0, (14)

consistently with the fact that a steady Euler flow is an extremal of the kinetic energy

with respect to disturbances constrained on an isovortical sheet [1, 2]. Then the excess

energy is dominated by the second-order term

H2 = −
〈
ξ1,

∂v1
∂t

〉
=

∫
ω ·

(
∂ξ1
∂t

× ξ1

)
dV. (15)

The advantage of the reduced form (15) of the wave energy cannot be overemphasized;

(15) dispenses with the solution ξ2(x, t) of (13). The same form as (15) was derived for

the wave energy [2], but the second field ξ2 had previously gone unnoticed.

Along the same line with the derivation of the energy, we are able to deduce the drift

current driven at O(α2) by nonlinear interaction of waves [8]. For a given η ∈ g, consider

the momentum J =< η, v > in this direction. By the Hamiltonian Noether theorem,

if the Hamiltonian is invariant with respect to the transformation exp η, J is constant.

We define Jα =< η, vα > for the disturbed field vα, and calculate the increment of Jα

relative to J by expanding in powers of α as Jα =< η, v > +αJ1 + α2J2/2 + · · · ;
J1 = 〈η, v1〉 = 〈η,−ad∗(ξ1)v〉 = 〈ξ1, ad∗(η)v〉 ,
J2 = 〈η, v2〉 = 〈ξ2, ad∗(η)v〉+ 〈ξ1, ad∗(η)v1〉 , (16)

where use has been made of (7).
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If the basic flow v(t) has a symmetry such that ad∗(η)v = 0, then J1 = 0 and J2

becomes

J2 = 〈ad(η)ξ1,−ad∗(ξ1)v〉 =
∫

ω · (ξ1 × Lηξ1) dV. (17)

Here Lηξ1 = −ad(η)ξ1 is the Lie derivative of ξ1 with respect to η. Notably, the excess

momentum J2 is expressible solely in terms of the first-order quantity ξ1.

4. Kelvin wave

We briefly recall the Kelvin waves, linearized disturbances of O(α) on the Rankine vortex

in a confined geometry. At the outset, we take, as the basic flow, the rigid-body rotation

of an inviscid incompressible fluid confined in a cylinder of circular cross-section of unit

radius, though later allowance is made for elliptic deformation.

Let us introduce cylindrical coordinates (r, θ, z) with the z-axis along the centerline.

Let the r and θ components of 2D basic velocity field U0 be U0 and V0, and the pressure

P0. The suffix 0 signifies that these quantities pertain to the case of circular cross-section.

The basic flow is confined to r ≤ 1, with the velocity field given by

U0 = 0, V0 = r, P0 = r2/2− 1. (18)

Take, as the disturbance field, ũ = αu01. We focus our attention on a normal mode

u
(m)
01 = Am(t)u

(m)
01 (r)eimθeikz, Am(t) ∝ e−iω0t, (19)

where Am is a complex function of time t and ω0 is frequency. This velocity field

represents a Kelvin wave with azimuthal wavenumber m and axial wavenumber k. The

linearized Euler equations supplies equations for the radial function u
(m)
01 as

Lm,ku
(m)
01 +∇p

(m)
01 = 0, ∇ · u(m)

01 = 0, (20)

where

Lm,k =

⎛
⎜⎝

−i(ω0 −m) −2 0

2 −i(ω0 −m) 0

0 0 −i(ω0 −m)

⎞
⎟⎠ . (21)

The solution is found with ease and the radial component is

u
(m)
01 =

i

ω0 −m+ 2

{
−m

r
Jm(ηmr) +

ω0 −m

ω0 −m− 2
ηmJm+1(ηmr)

}
, (22)

where ηm is the radial wavenumber, η2m = [4/(ω0 −m)2 − 1] k2, and Jm is the m-th

Bessel function of the first kind. The boundary condition u
(m)
01 = 0 at r = 1 gives rise

to the dispersion relation [21, 16]

Jm+1(ηm) =
(ω0 −m− 2)m

(ω0 −m)ηm
Jm(ηm). (23)

Figure 1 displays the dispersion relation of helical wavesm = ±1. Curves form = −1 are

drawn with solid lines, while those for m = +1 are drawn with dashed lines. Infinitely

many branches emanate from (k, ω0) = (0, 1) for m = 1 and from (k, ω0) = (0,−1)

for m = −1. Notice the absence of isolated modes, as opposed to the unbounded case

[5, 20].
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Figure 1. dispersion relation of Kelvin waves, of m = −1(solid lines) and of

m = +1(dashed lines), in an elliptic cylinder.

5. Drift current

The second-order term α2u02 of the disturbance field ũ includes a mean flow induced

by nonlinear interaction of Kelvin waves αu01. In keeping with the fact that the basic

flow, with circular cylindrical symmetry, admits arbitrary radial profiles of azimuthal

and axial velocity. By introducing the elliptical strain of strength ε, the functional

form of its azimuthal component is somehow manipulated by the solvability condition

at O(εα2), though limited to intersection points of the dispersion curves [19]. Moreover

its coefficient includes an arbitrary parameter, of integration-constant origin, yet to be

determined [16].

The Lagrangian approach rescues this difficulty, by producing the mean flow of

O(α2) without having to proceed to a higher order O(εα2) [7]. Subsequently, we give a

sketch of this Lagrangian approach.

In the context of Kelvin waves, (12) reads

u01 =
∂ξ1
∂t

+ (U0 · ∇) ξ1 − (ξ1 · ∇)U0. (24)

For our flowU0 = reθ, the RHS of (24) is reduced to−i(ω0−m)ξ1, and upon substitution

from a linear combination of Kelvin waves (19), (24) yields

ξ1 = Re

[∑ iAm(t)

ω0 −m
u

(m)
01 (r)eimθeikz

]
, (25)

supplemented by the incompressibility constraint ∇·ξ1 = 0. Taking the real part should

be born in mind.

For the rigid-body rotation U0 = reθ, it is advantageous to calculate the mean flow

directly from the spatial average of (8) rather than from (17), since simply∇×U0 = 2ez.
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It turns out that the second-order field ξ2 has no contribution when spatially averaged,

leaving

u02 = P [ξ1 × (∇× (ξ1 × ez))] = ξ1 × ∂ξ1/∂z

=
∑ 4ik

(ω0 −m)2
|Am|2(0, u(m)

01 w
(m)
01 ,−u

(m)
01 v

(m)
01 ). (26)

The Lagrangian approach is capable of calculating the mean flow at any points satisfied

by the dispersion relation (k, ω0).

6. Stability of rotating flow in an elliptic cylinder: setting of problem

Rotating flows in an elliptic cylinder go through excitation of a number of growing

waves, resulting in disruption [14, 4]. We express elliptic cross-section as

x2

1 + ε
+

y2

1− ε
= 1. (27)

The parameter ε designates the elliptic distortion. We assume that |ε| is small. In

conjunction with this distortion the basic flow is perturbed as

U = U0 + εU1 + · · · , P = P0 + εP1 + · · · ;
U1 = −r sin 2θ, V1 = −r cos 2θ, P1 = 0. (28)

The subscript designates order in elliptic parameter ε. The augmented term of O(ε)

represents a steady quadrupole field. In other words, U1 corresponds to the field

consisting of strain field whose stretching direction lies along θ = −π/4 and whose

direction of contraction is along θ = π/4.

We add three-dimensional disturbance field ũ to this two-dimensional basic flow.

We consider asymptotic expansions of the velocity field in two small parameters ε and

α as

u = U + ũ = U0 + εU1 + αu01 + εαu11 + α2u02 + α3u03 + · · · , (29)

specifically to O(α3) in amplitude. Here, the velocity field umn occurs at O(εmαn). The

side wall (27) of the cylinder is r = 1 + ε cos 2θ/2 + O(ε2) when the elliptic strain ε is

small. The boundary condition to be imposed at the rigid side wall is

u · n = 0 at r = 1 + ε cos 2θ/2, (30)

where n is the unit outward normal vector to the cylinder boundary.

7. Moore-Saffman-Tsai-Widnall instability

The Kelvin waves described in §4, neutrally stable oscillations, are made unstable, by

breaking the circular symmetry of the cylinder cross-section. We explore the effect of

elliptic strain εU1 upon the Kelvin waves. If the given disturbance flow, in the absence

of elliptic strain, has Kelvin waves with eimθ and ei(m+2)θ , interaction of these waves via

the strain (28), at O(εα), through the convective terms of the Euler equations excite
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again Kelvin waves with eimθ and ei(m+2)θ . This coincidence indicates occurrence of

parametric instability [17, 20, 5]. Fukumoto [5] made a thorough analysis of the 3D

instability of the Rankine vortex embedded in a plane shear field, in an unbounded

space, and showed that the parameter resonance instability occurs, at O(εα), at all

intersection points (k, ω) of dispersion curves of the m and m + 2 waves. The same is

true for the rotating flow confined in an elliptic cylinder [21].

There are intersection points on the k-axis (ω0 = 0) at certain values of k as is

observed in Figure 1. For left and right-handed helical wave resonance, the stationary

mode ω0 = 0 has far greater growth rate than non-stationary modes (ω0 
= 0)[20, 3, 5].

We limit ourselves to the stationary parametric resonance between left and right-handed

helical waves (m,m+ 2) = (−1,+1) occurring at ω0 = 0.

Under the restriction of ω0 = 0, the radial wavenumber becomes η =
√
3k. Then,

we send the following disturbance velocity u01, a superposition of m = ±1 waves,

u01 = A−u
(−)
01 e−iθeikz + A+u

(+)
01 eiθeikz + c.c. (31)

We use the notation A± in place of A±1. Excited at O(εα) fueled by U1 is

u11 =
{
B−u

(−)
11 e−iθ +B+u

(+)
11 eiθ +B−3u

(−3)
11 e−3iθ +B3u

(3)
11 e

3iθ
}
eikz

+ c.c. (32)

The radial functions u
(m)
11 (r) and u

(m+2)
11 (r) are determined by solving inhomogeneous

linear ordinary differential equations, derived from the Euler equations and by the

continuity equations, subject to the boundary condition (30) at O(εα),

u11 − u01 cos 2θ/2 + v01 sin 2θ = 0. (33)

The boundary condition (33) provides algebraic equations for B± and the solvability

condition gives rise to, with the help of the dispersion relation (23),

1

A+

∂A−
∂t10

=
−1

A−

∂A+

∂t10
= i

3(3k2 + 1)

8(2k2 + 1)
= ia, (34)

where t10 = εt, the slow time scale, and k is the solution of dispersion relation

J1(η) = −ηJ0(η).

The degenerate modes with ω0 = 0 necessarily result in parametric resonance with

growth rate a = 3(3k2+1)/[8(2k2+1)] [21] and with amplitude ratio of the eigen-function

given by A−/A+ = i. Numerical values of the growth rate are, for a first few intersection

points with ω0 = 0, (k, σ) ≈ (1.578, 0.5311), (3.286, 0.5542), · · ·. The occurrence of

parametric resonance implies the existence of negative-energy waves. This is indeed the

case [5]. The energy of Kelvin waves is efficiently calculated from the formula (15) built

in the Lagrangian framework [7].

At O(α3), the modes e±iθeikz again arise, which invites the compatibility conditions.

The function u
(m)
03 with m = ±1 is governed by Lm,ku

(m)
03 = N − ∂u

(m)
01 /∂t02, with

t02 = α2t. Since the matrix Lm,k is singular, (∂/∂t02)u
(m)
01 is adjusted for the forcing

terms to satisfy the solvability condition. The calculation of N requires the precise form

of the mean flow of O(α2).
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8. Amplitude equation

We are now ready to derive the weakly nonlinear amplitude equations to O(α3). The

procedure is described at length in ref [16].

The mean flow induced by nonlinear interactions of helical waves is

4ik
(
0,
(|A−|2 + |A+|2

)
u
(+)
01 w

(+)
01 ,

(|A−|2 − |A+|2
)
u
(+)
01 v

(+)
01

)
. (35)

For general (m,m + 2) parametric resonance, only the radial component of mean flow

is zero as is seen from (26). But, in the case of stationary helical-wave parametric

resonance, the axial components of mean flow is zero, because |A−| = |A+| [5, 19].
Taking account of this, the boundary condition at O(α3) leads us immediately to the

amplitude equations

dA±
dt

= ∓i
[
εaA∓ + α2A±

(
b|A±|2 + c|A∓|2

)]
, (36)

where a is defined by (34) and

b =
−2k4

3(2k2 + 1)

[
4

J0(η)2

∫ 1

0

rJ0(ηr)
2J1(ηr)

2dr − (11k4 + 13k2 + 5)J0(η)
2

]
,

c =
k2

12(2k2 + 1)

[
64k2

J0(η)2

∫ 1

0

rJ0(ηr)
2J1(ηr)

2dr

+ (20k6 + 97k4 + 14k2 − 27)J0(η)
2

]
. (37)

By virtue of availability of compact form, these coefficients are readily calculated at all

the intersection points on the k-axis (ω0 = 0). For the longest two wavelengths, we have

(k; a, b, c) ≈ (1.579; 0.5312,−0.3976, 5.222), (3.286; 0.5542,−8.286, 53.39).

It is remarkable that the resulting equations (36) are exactly Hamiltonian normal

form [13]. The normal form shows up at once with nonlinear terms |A±|2A±, |A∓|2A±
fully incorporating the effect of mean flow (26). On the other hand, in the Eulerian

treatment, the amplitude of the mean flow had to be introduced as an intervening

dependent parameter, and its equation produces an undetermined constant [19].

As A− and A+ are complex functions of t, the amplitude equations (36) constitute

a four-dimensional dynamical system. The sign of coefficients (a, b, c) is unchanged,

regardless of the choice of the intersection points: a > 0, b < 0 and c > 0.

The amplitude equations (36) admits restriction of the phase space to a two-

dimensional subspace with A = A− = −A∗
+, where ∗ stands for the complex conjugate.

The complex amplitude equations (36) collapses, by a choice of α2 = ε, to

dA

dt
= iε

(−aA∗ + β|A|2A) , (38)

where β = b + c. Figure 2 illustrates the trajectory in the phase space (Re[A], Im[A]).

The rigidly rotating state (the origin) is unstable, but the amplitude of the orbit

necessarily saturates within a basin of the unstable equilibrium.
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Figure 2. Trajectories in the phase space (Re[A], Im[A]) for k = 1.579. The dots

designate equilibria (s: stable, u: unstable).

Let us set A = |A|eiφ. The modulus |A| and the phase φ satisfy the following

equations,

d|A|
dt

= −εa|A| sin 2φ, dφ

dt
= −εa cos 2φ+ εβ|A|2. (39)

The linear effect predominates over the nonlinear effect for small disturbance amplitude

|A|(� 1). In case the equilibrium point A = 0 is unstable, the direction of disturbance

vorticity φ is liable to be parallel to the unstable direction φ = −π/4. The elliptic strain

makes horizontal vortex lines continuously stretched, if they are oriented, on average,

in the direction of φ = −π/4. This is the mechanism for the MSTW instability at the

linear stage. When the disturbance grows substantially, |A| ≈ 1 say, the nonlinear effect

is called into play. In view of (39), the nonlinear effect is exclusively rotating the phase

angle φ. As a consequence, alignment of horizontal vorticity to the direction φ = −π/4

is hindered, which renders the disturbance amplitude saturate.

The compact form of the coefficients (37) makes it feasible to manipulate the

short-wavelength asymptotics of equilibrium amplitude [16]. The short-wavelength

asymptotics of (36) is found without difficulty, and amplitude of the saturated state

is found to be |A|eq =
√

a/β → 3/4
(√

3π/(k3 log k)
)1/2

.

9. Conclusion

We have made a weakly nonlinear analysis of the short-wave instabilities of rotating

flow in a cylinder of elliptic cross-section. We put emphasis on the advantage of the

Lagrangian approach, over the Eulerian one, in the derivation of the mean flow induced

by nonlinear interactions of the Kelvin waves (§5).
The phase of the complex amplitude of O(α) of the 3D disturbance represents

the angle, from the x-axis, of oscillating vorticity disturbances in the horizontal plane.

For small amplitude, the features of the linear short-wave instability is retrieved that

selectively amplification of the particular is invited, for which the disturbance vorticity is
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continuously stretched by the ambient strain [20, 5]. The non-linear effect suppresses this

monotonic growth by turning the disturbance vorticity out of the stretching direction

as soon as the amplitude becomes sufficiently large [19].

However this behavior does not coincide with the vigorous amplification of a number

of waves and the ultimate disruption of a strained flow observed in experiments [14, 4].

This indicates that the nonlinear interaction of a single MSTWmode is far from sufficient

in describing practical flows. The secondary and the tertiary instability, which may

be invited before reaching the stage of nonlinear saturation, will drastically alter the

subsequent evolution [15, 6]. The Lagrangian approach would be vital for dealing with

these higher-order bifurcations.
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