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Abstract

We prove the local asymptotic normality for the full parameters of the normal inverse Gaussian
Lévy process X, when we observe high-frequency data X∆n , X2∆n , . . . , Xn∆n with sampling mesh
∆n → 0 and the terminal sampling time n∆n → ∞. The rate of convergence turns out to
be (

√
n∆n,

√
n∆n,

√
n,

√
n) for the dominating parameter (α, β, δ, µ), where α stands for the

heaviness of the tails, β the degree of skewness, δ the scale, and µ the location. The essential
feature in our study is that the suitably normalized increments of X in small time is approximately
Cauchy-distributed, which specifically comes out in the form of the asymptotic Fisher information
matrix.

Keywords. High-frequency sampling, local asymptotic normality, normal inverse Gaussian Lévy pro-

cess.

2010 Mathematics Subject Classification. 60G51, 62E20.

1 Introduction

Lévy processes have been recognized as building blocks for analyzing realistic data structure, which

most often loses touch with the conventional Gaussianity especially when dealing with high-frequency

data, such as intraday stock returns. For a stochastic-process model based on high-frequency data, one

of the most fundamental, yet in no way obvious, issues is estimation of the dominating parameters in-

volved in a Lévy process X = (Xt)t∈R+ where we observe discrete-time sample X∆n , X2∆n , . . . , Xn∆n ,

where ∆n → 0 denotes a diminishing sampling mesh. This often lead to a better understanding of

estimation performance than in case of targeting the classical independent and identically distributed

data with ∆n ≡ ∆ > 0, a fixed constant. Nevertheless, due to a wide variety of the class of Lévy

processes, it is a rather difficult matter to formulate a parametric estimation for the whole class of

Lévy processes. In this respect, specific studies become considerably important.

Among others, the normal inverse Gaussian (NIG) Lévy process exhibits attractive natures: the

tractability and the availability of a simple simulation method at arbitrary sampling frequencies (i.e.,

for any ∆n > 0). The NIG distribution is a four-parameter family, derived as a special case of

the five-parameter generalized hyperbolic (GH) distribution introduced by Barndorff-Nielsen [4] for

investigating a distribution of size of wind-blown particles of sand. The GH distribution is known to

be infinitely divisible (more strongly, selfdecomposable), hence we can associate the GH Lévy process

such that its marginal distribution at time 1 is a GH distribution. However, the GH Lévy processes

has a drawback for practical use; its marginal distribution at non-unit time may no longer belong to
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the GH family. Within the GH family, NIG and normal gamma (NG) distributions are known to have

the reproducing property, which entails that, if the distribution at unit time for a Lévy process is

NIG or NG, then its marginal distribution at any time belongs to the same distribution family. Under

discrete sampling, the reproducing property combined with the Markov property helps to simplify the

expression of the likelihood function, and its further asymptotic analysis as well.

Besides, toward optimal inference and testing hypothesis concerning θ, a fundamental step is

to investigate asymptotic behavior of the likelihood-ratio random fields based on an available data

X∆n , X2∆n , . . . , Xn∆n . In this article, we investigate Local Asymptotic Normality (LAN) for NIG

Lévy process observed at discrete time points under large-term and high-frequency sampling design,

where ∆n → 0 and n∆n → ∞. The concept of LAN was introduced by Lucien Le Cam (1924–2000)

in [11] in order to study approximations (simplifications) of statistical tests for large sample, and

nowadays has become a vital concept to establish asymptotic optimalities of estimation and test in

large-sample framework. For a systematic account concerning the LAN theory, we refer to, among

others, Le Cam and Yang [12], Strasser [18] and van der Vaart [19]. Also, Jacod [8] presents a nice

concise review in this direction, with a particular focus on the case of diffusion processes. An earlier

attempt at systematic study of the LAN for discretely observed Lévy processes was made by Woerner

[20], where various LAN results were individually provided for each specific parameter, such as drift,

diffusion, scale, and skeweness. However, no systematic account for a full-parameter LAN even for

NIG Lévy process in case of the high-frequency asymptotics was given. This is the objective of this

article.

The rest of this paper is organized as follows. Section 2 is devoted to a brief review of basic facts

on the normal inverse Gaussian Levy process and the LAN under high-frequency sampling. Section 3

states our main result, which provides the rate of convergence and the Fisher information matrix in

closed form concerning the LAN for NIG Lévy processes discretely observed at high frequency. Also, we

partly compare our result with the case of continuous observation, and clarify big differences between

them. To maintain the flow of the paper, we collect proofs in Section 4. Our result requires rather

lengthy proofs of somewhat routine nature. To avoid overloading the paper, we omit nonessential

details in some instances.

2 Preliminaries

2.1 Basic notation

Throughout this article, the following basic notation is used:

• I(A) denotes the indicator function of any event A;

• L(X) denotes the distribution of a random element X;

• φa denotes the characteristic function of a, which indicates a distribution or a random variable;

• ∂x := ( ∂
∂x1

, . . . , ∂
∂xk

)⊤ and ∂2x := ∂x∂
⊤
x for a vector x = (xj)j≤k with ⊤ denoting transpose, and

also we sometimes use the notation f ′ for the derivative of a function f , when no confusion may

occur for the differentiating variable;

• M⊗2 :=MM⊤ for any matrix M ;

• C denotes a generic positive constant which may vary at each appearance;

• an . bn and an ∼ bn indicate that an ≤ Cbn for every n large enough and that an/bn → 1 as

n→ ∞, respectively.
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2.2 Normal inverse Gaussian Lévy process

A univariate Lévy process X = (Xt)t∈R+ with finite mean has the Lévy-Khintchine representation

φXt(u) = exp

{
t

(
iµ0u− 1

2
σ2u2 +

∫
(eiuz − 1− iuz)ν(dz)

)}
, (1)

where µ ∈ R. σ2 ≥ 0, and ν(dz) is a Lévy measure, i.e., a σ-finite measure on R such that ν({0}) = 0

and
∫
(1∧|x|2)ν(dz) <∞. When the generating triplet (µ0, σ

2, ν(dz)) depends on a finite-dimensional

parameter θ ∈ Θ ⊂ Rp, we denote by Pθ the distribution of X on the Skorohod space. We refer the

reader to Sato [17] for a detailed account of Lévy processes.

The univariate normal inverse Gaussian (NIG) distribution, denoted by NIG(α, β, δ, µ), is the

selfdecomposable (hence infinitely divisible) distribution admitting a density

y 7→ αδ

π
exp{δ

√
α2 − β2 + β(y − µ)}

K1(α
√
δ2 + (y − µ)2)√

δ2 + (y − µ)2
, (2)

where Kw(y), w ∈ R, y > 0, denotes the modified Bessel function of the third kind with index w:

Kw(y) =
1

2

∫ ∞

0

xw−1 exp

{
− y

2

(
x+

1

x

)}
dx. (3)

We write

θ = (α, β, δ, µ) ∈ Θ ⊂ R4,

where the parameter space Θ is a bounded convex domain such that

Θ− ⊂ {(α, β, δ, µ)|α > 0, α > |β| ≥ 0, δ > 0, µ ∈ R}. (4)

(Throughout, we rule out the case where α = |β| ≥ 0.) The distribution NIG(α, β, δ, µ) exhibits semi-

heavy tails in the sense that the density behaves as a constant multiple of |y|−3/2 exp(−α|y| + βy)

for |y| → ∞, so that moments of any order are finite. The mean and variance of NIG(α, β, δ, µ) are

respectively given by

µ+
βδ√
α2 − β2

and
α2δ

(α2 − β2)3/2
,

and the characteristic function by

u 7→ exp
{
iuµ+ δ(

√
α2 − β2 −

√
α2 − (iu+ β)2)

}
. (5)

Now, the univariate NIG Lévy process is defined to be a Lévy process X starting from the origin

such that L(X1) = NIG(α, β, δ, µ). It is clear from (5) that for any ∆n > 0 and a ̸= 0

L(a(X∆n − µ∆n)) = NIG

(
α

|a|
,
β

a
, δ|a|∆n, 0

)
. (6)

The generating triplet of X is given by µ0 = µ+ βδ/
√
α2 − β2, σ2 = 0, and ν(dz; θ) = g(z;α, β, δ)dz

with

g(z;α, β, δ) =
αδ

π|z|
eβzK1(α|z|), z ̸= 0. (7)

One can consult Barndorff-Nielsen [5, 6] for more analytical facts concerning the NIG distribution

and the NIG Lévy process.
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2.3 LAN under high-frequency sampling

Fix a θ ∈ Θ, and let X be a Lévy process observed at tj = tnj , j ≤ n, with tn0 < tn1 < · · · < tnn for each

n. We denote by xj = xnj the successive increments:

xj = xnj := Xtj −Xtj−1 . (8)

Because of the independent-increments property of X, the sequence (xj)j≤n for each n forms an

independent array. For simplicity, we set tj = j∆n for some ∆n > 0, so that L(xj) = L(X∆n) under

Pθ for every j ≤ n. Then, we denote by Pn
θ the distribution of (Xtj )j≤n under Pθ.

Suppose that under Pθ, X admits an everywhere positive transition density with respect to the

Lebesgue measure on R, which is of the class C2(Θ) as a function of θ. According to the stationarity

and independence of increments of X, the log-likelihood function takes the form

ℓn(θ) =
n∑

j=1

log p∆n(xj ; θ),

where p∆n(x; θ) denotes the density of X∆n under Pθ.

Let (rn) be a nonrandom positive definite diagonal matrices tending to 0 in norm, and I(θ) a

nonnegative definite symmetric Rp ⊗ Rp matrix. Pick any h ∈ Rp. We may suppose that θn :=

θ + rnh ∈ Θ. We say that LAN holds true at θ with rate rn and Fisher information matrix I(θ), if
the stochastic expansion

log
dPn

θn

dPn
θ

= ℓn(θn)− ℓn(θ) = h⊤Sn(θ)−
1

2
I(θ)[h] + oPθ

(1) (9)

holds true, where Sn(θ) :=
∑n

j=1 rn∂θℓn(θ) → Np(0, I(θ)) weakly under Pθ, where Np(0, I(θ)) stands
for the p-variate normal distribution with mean 0 and covariance I(θ). Let us note that, in order to

apply the general asymptotic optimality theory based on the LAN, the matrix I(θ) has to be positive

definite; if not, the LAN is not of much help to clarify asymptotic optimality criteria.

If we have the LAN, then it is known that general criteria for asymptotic optimalities of estimation

and testing hypotheses follows from the LAN. Here, let us briefly mention the following (see the

references cited in Section 1 for more details): if one has asymptotically normally distributed estimator

θ̂n of θ, say c−1
n (θ̂n−θ) → Np(0,V(θ)) weakly under Pθ where c−1

n → ∞ and V(θ) ∈ Rp⊗Rp is positive

definite, then the maximal rate of convergence and the minimal asymptotic covariance matrix are given

by r−1
n and I(θ)−1, respectively. Namely, the optimal quantities are explicitly provided by the form

of the LAN obtained. In our main result (Theorem 3.1 below), the rate and the Fisher information

matrix are specified by (12) and (11), respectively, where the latter turns out to be positive definite

for each θ ∈ Θ.

3 Main result

Let X be a Lévy process such that L(X1) = NIG(α, β, δ, µ) (recall (6) and suppose that available

data is (Xj∆n)j≤n with

∆n → 0 and n∆n → ∞. (10)

Define the matrix I(θ) = [Ikl(θ)]4k,l=1 for θ = (α, β, δ, µ) ∈ Θ as follows:

I(θ) =


I11(θ) I12(θ) 0 0

I22(θ) 0 0
I33(θ) 0

sym. I44(θ)

 , (11)
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where

I11(θ) :=
δ

απ

∫ ∞

0

(e(β/α)y + e−(β/α)y)y
{K0(y)}2

K1(y)
dy,

I12(θ) := − 2αδ

π(α2 − β2)

{
1 +

β√
α2 − β2

arctan

(
β√

α2 − β2

)}
,

I22(θ) :=
α2δ

(α2 − β2)3/2
,

I33(θ) :=
1

2δ2
,

I44(θ) :=
1

2δ2
.

(The integral in I11(θ) is indeed finite; see Lemma 4.8.) Let

rn = diag(r1n, r2n, r3n, r4n) := diag

(
1√
n∆n

,
1√
n∆n

,
1√
n
,

1√
n

)
. (12)

Our main result is the following, which clarifies a crucial contrast between discrete and continuous

observations (see Corollary 3.4 for the latter case).

Theorem 3.1. Let X be as above and suppose (4) and (10). Then LAN holds true at each θ ∈ Θ

with rate rn and the Fisher information matrix I(θ). In particular, I(θ) is positive definite for each

θ ∈ Θ.

Thus we have seen that the rate
√
n for (δ, µ) is faster than

√
n∆n for (α, β). Such a phenomenon

is known to arise in some specific cases of Lévy processes under high-frequency sampling. A prime

example is the scaled Wiener process with drift, say Xt = µt+
√
σwt, where w denotes the standard

Wiener process; in this case we have the LAN for each (µ, σ) at rate (
√
n∆n,

√
n). The rate

√
n∆n is

the discrete-sampling analogue to
√
T in the case of continuous observation (Xt)t≤T as T → ∞; see,

e.g., Akritas and Johnson [3] for details. See also Masuda [13] for the cases of the gamma and the

inverse Gaussian subordinators.

For non-Gaussian stable Lévy processes with drift and symmetric Lévy density, it turns out that

the Fisher information matrix is singular at “every” θ whenever both the stability index and scale

parameters are included in theta (see Aı̈t-Sahalia and Jacod [2] and Masuda [14] for details). In the

present NIG case, normalized small time increment (X∆n − µ∆n)/(δ∆n) is approximately Cauchy

distributed (see Lemma 4.6 below). If X is the Cauchy Lévy process such that L(X1) admits the

Lebesgue density x 7→ (δ/π){δ2 + (x− µ)2}−1, then, by a direct application of Masuda [14, Theorem

2.1], we see that the LAN holds true at each (δ, µ) with rate
√
n and Fisher information matrix

diag{1/(2δ2), 1/(2δ2)}; we here do not suffer from the singularity of Fisher information, since the

stability index is fixed at 1 and is not the parameter to be estimated. Returning to the present NIG

case, we note that the last expression is exactly the same as the lower right 2× 2 submatrix of I(θ) in
Theorem 3.1. Although we have additionally α and β, Theorem 3.1 implies that we can derive the LAN

jointly for the full parameter θ as soon as n∆n → ∞. Moreover, in view of the block diagonal form of

I(θ), we may expect various possibilities of approximate conditional inference, simplified estimation

procedure, and so on (see, e.g., Cox and Reid [7] and Jørgensen and Knudsen [9]).

Remark 3.2. Woerner [20, 21] previously derived the LAN for β, which she termed “skewness pa-

rameter”, within a general framework of discretely observed Lévy processes. She supposed that all the

other parameters (here α, δ, and µ) are known. In contrast, our Theorem 3.1 provides the information

of asymptotically optimal “full-parameter” estimation. Also, let us observe that δ and µ here express

general location and scale parameters in the sense of Woerner [20], while the parameter α has no

5



generic meaning in the entire class of Lévy processes. Recall (7), where α is also involved inside the

Bessel function K1. The LAN for α cannot be derived as any direct corollary of the general results

presented in Woerner [20].

It is interesting to compare Theorem 3.1 with the case of continuous observation. In order to

state the continuous-observation LAN result for the NIG Lévy processes, let us first recall a general

characterization of the absolute continuity. Let X be a Lévy process admitting the Lévy-Khintchine

representation (1) with (µ0, σ
2, ν(dz)) = (µ0(θ), σ

2(θ), ν(dz; θ)) for θ ∈ Θ ⊂ Rp, and suppose that we

observe (Xt)t∈[0,T ]. Let P
(T )
θ denote the restriction of Pθ to FT , the natural filtration generated by

the continuous-time record (Xt)t≤T . The local equivalence of Pθ and Pθ′ for θ ̸= θ′ is characterized

by the following proposition borrowed from Raible [16, Proposition 2.19].

Proposition 3.3. Fix any T > 0 and θ, θ′ ∈ Θ. Then P
(T )
θ and P

(T )
θ′ are equivalent iff the following

conditions are fulfilled.

(a) ν(dz; θ′) = γ(z; θ, θ′)ν(dz, θ) for some Borel function γ(·; θ, θ′) : R → (0,∞).

(b) µ(θ′) = µ(θ) +
∫
R z(γ(z; θ, θ

′)− 1)ν(dz; θ) + σ2(θ)b for some b ∈ R.

(c)
∫
R(1−

√
γ(z; θ, θ′))2ν(dz; θ) <∞.

(d) σ2(θ′) = σ2(θ).

As a corollary to Raible [16, Proposition 2.20] based on Proposition 3.3, we have

Corollary 3.4. Let Pθk , k = 1, 2, denote the distribution of the NIG Lévy process with parameters

θk = (αk, βk, δk, µk) ∈ Θ, and fix any T > 0. Then P
(T )
θ1

and P
(T )
θ2

are equivalent iff δ1 = δ2 and

µ1 = µ2.

Corollary 3.4 clears up an essential difference between the cases of continuous and high-frequency

sampling for the NIG Lévy processes. Indeed, Corollary 3.4 enables us to study the LAN for the

continuous-observation case, where the asymptotics are taken as T → ∞; we do not touch the details

in order not to digress from the main topic, but only refer to Akritas and Johnson [3] for possible

LAN for (α, β) at rate
√
T . On the contrary, as specified in Theorem 3.1, the likelihood function does

exist when we deal with the high-frequency (discrete-time) sample, so that the maximum-likelihood

estimation of (δ, µ) becomes meaningful. Finally, let us mention that, as the rate of convergence of

(δ, µ) is
√
n free of ∆n, it may not be necessary to impose that n∆n → ∞ for estimating (δ, µ),

with regarding (α, β) as a nuisance parameter; of course, this is the case for estimation of σ in the

aforementioned Wiener case.

4 Proof

We proceed as follows. First, in Section 4.1 we provide a useful general tool (Proposition 4.3) for

proving Theorem 3.1. Next, we prepare some preliminary lemmas in Section 4.2 for investigating the

likelihood function in question, whose expression together with its derivatives up to the second order

are specified in Section 4.3. Finally, Sections 4.4 to 4.7 are devoted to verifications of the conditions

of Proposition 4.3.

4.1 A tool for proving LAN under high-frequency sampling

In this section, as a continuation of Section 2.3, we prepare a useful tool for proving our main result.

Our setup here covers general Lévy processes discretely observed at high frequency.

6



Write gnj(θ) = ∂θ log p∆n(xj ; θ). The random fields log(dPn
θn
/dPn

θ ) on Θ admits the asymptotically

quadratic structure

log
dPn

θn

dPn
θ

=
n∑

j=1

rn{gnj(θ)− Eθ[gnj(θ)]} −
1

2

n∑
j=1

Eθ[{rngnj(θ)}⊗2] + oPθ
(1) (13)

if it holds that

lim sup
n→∞

n∑
j=1

Eθ[|rngnj(θ)|2] <∞, (14)

n∑
j=1

Eθ

[
|rngnj(θ)|2I(|rngnj(θ)| ≥ ϵ)

]
→ 0 for every ϵ > 0, (15)

n∑
j=1

Eθ

{√p∆n(xj ; θn)

p∆n(xj ; θ)
− 1− 1

2
h⊤rngnj(θ)

}2
→ 0. (16)

See, e.g., Strasser [18, Theorem 74.2 and Corollary 74.4] for details. Now we impose that

n∑
j=1

Eθ[{rngnj(θ)}⊗2] → I(θ), (17)

n∑
j=1

|rnEθ[gnj(θ)]|2 → 0. (18)

Note that (17) implies (14).

To treat the first term in the right-hand side of (13), we prepare the following.

Lemma 4.1. Suppose the conditions (15), (17), and (18). Then the first term in the right-hand side

of (13) weakly under Pθ tends to Np(0, I(θ)).

Proof. Introduce the centered variables χnj = χnj(θ) := rn{gnj(θ) − Eθ[gnj(θ)]}. By means of the

central limit theorem for rowwise independent triangular arrays (e.g. Kallenberg [10, Theorem 5.12]

combined with the Cramér-Wald device), the claim follows from the convergence of the cumulative

variance and the Lindeberg condition, that is,
∑n

j=1Eθ[χ
⊗2
nj ] → I(θ) and

∑n
j=1Eθ[|χnj |2I(|χnj | ≥

ϵ′)] → 0 for every ϵ′ > 0, respectively. The former is obtained by noting that

n∑
j=1

Eθ[χ
⊗2
nj ] =

n∑
j=1

Eθ[{rngnj(θ)}⊗2]−
n∑

j=1

{rnEθ[gnj(θ)]}⊗2

and then applying (17) and (18). Now fix any ϵ′ > 0. Since (18) entails that |
√
nrnEθ[gn1(θ)]| → 0,

we can find ϵ > 0 such that ϵ′ − |rnEθ[gn1(θ)]| ≥ ϵ for every n large enough. Accordingly,

n∑
j=1

Eθ[|χnj |2I(|χnj | ≥ ϵ′)]

.
n∑

j=1

Eθ[|rngnj(θ)|2I(|rngnj(θ)|+ |rnEθ[gnj(θ)]| ≥ ϵ′)] +

n∑
j=1

|rnEθ[gnj(θ)]|2

.
n∑

j=1

Eθ[|rngnj(θ)|2I(|rngnj(θ)| ≥ ϵ)] + |
√
nrnEθ[gn1(θ)]|2 → 0

by virtue of (15). The proof is complete.

Thus we have seen that the desired property (9) can be derived under (15), (16), (17), and (18).

Nevertheless, it is convenient to replace (16) by an alternative, which is easier to verify. We prepare

the following lemma.
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Lemma 4.2. The condition (16) holds true if

n∑
j=1

sup
{ρ∈Θ:|r−1

n (ρ−θ)|≤a}
Eρ

[
|rn∂θgnj(ρ)⊤rn|2 + |rngnj(ρ)|4

]
→ 0. (19)

for any a > 0.

Proof. Write
∑n

j=1 enj(θ) for the left-hand side of (16), and letHn(x; θ) := {p∆n(x; θn)
1/2−p∆n(x; θ)

1/2−
(θn − θ)⊤∂θ[p∆n(x; θ)

1/2]}2. Then

enj(θ) = Eθ

[
p∆n(xj ; θ)

−1Hn(xj ; θ)
]
=

∫
R
Hn(x; θ)dx. (20)

On the other hand, noting that∣∣r∂2θ [f(θ)1/2]r∣∣2 . f(θ)
{
|r[∂2θ log f(θ)]r|2 + |r∂θ log f(θ)|4

}
for any nonnegative C2(Θ) function f and diagonal p× p matrix r, we get for each x

Hn(x; θ) .
∫ 1

0

∣∣rn∂2θ[p∆n(x; θ + srnh)
1/2
]
rn
∣∣2ds

.
∫ 1

0

{∣∣rn∂2θ log p∆n(x; ρ
′
n)rn

∣∣2 + ∣∣rn∂θ log p∆n(x; ρ
′
n)
∣∣4} p∆n(x; ρ

′
n)ds, (21)

where we wrote ρ′n = θ + srnh, which belongs to Θ for every n large enough. Now, by substituting

(21) in (20) and then applying Fubini’s theorem for interchanging the ds and dx integrals, we have

n∑
j=1

enj(θ) .
n∑

j=1

∫ 1

0

∫
R

{∣∣rn∂2θ log p∆n(x; ρ
′
n)rn

∣∣2 + ∣∣rn∂θ log p∆n(x; ρ
′
n)
∣∣4}p∆n(x; ρ

′
n)dxds

≤
n∑

j=1

sup
{ρ∈Θ:|r−1

n (ρ−θ)|≤|h|}

∫
R

{∣∣rn∂2θ log p∆n
(x; ρ′n)rn

∣∣2
+
∣∣rn∂θ log p∆n(x; ρ

′
n)
∣∣4}p∆n(x; ρ

′
n)dx→ 0

by means of (19); recall that h ∈ Rp here is fixed arbitrarily. This completes the proof.

To sum up we have derived the following proposition, which serves as our basic tool for proving

LAN.

Proposition 4.3. Suppose that (15), (17), (18), and (19) hold true. Then we have (9), that is, LAN

holds true at each θ with rate rn and the Fisher information matrix I(θ).

Remark 4.4. Of course, the concept LAN is defined for much more general situations than ours,

such as a discrete-time sample from an ergodic process. Let {rn(θ)} be a nonrandom positive definite

diagonal matrices tending to 0 in norm for each θ ∈ Θ ⊂ Rp, and I(θ) a positive symmetric Rp ⊗Rp

matrix as before. Fix an h ∈ Rp and put θn = θ+ rn(θ)h. Let ℓn(θ) denote the log-likelihood function

associated with any array of random vectors. Then, in a similar way, we say that LAN holds true

at θ with rate rn(θ) and the Fisher information matrix I(θ), if the stochastic expansion of the form

(9) holds true with Sn(θ) :=
∑n

j=1 rn∂θℓn(θ) → Np(0, I(θ)) weakly under Pθ. Also in this case, as a

useful tool for proving the LAN, we can provide an analogous set of conditions to Proposition 4.3.
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4.2 Preliminary lemmas

For later use, we prepare some lemmas. We consistently use the notation (8). For j ≤ n, we introduce

ϵnj = ϵnj(δ, µ) :=
xj − µ∆n

δ∆n
.

Clearly we have L(ϵnj) = L(ϵn1) for each n ∈ N and j ≤ n.

Lemma 4.5. It holds that for each n ∈ N, L(ϵn1) = NIG(αδ∆n, βδ∆n, 1, 0).

Proof. Obvious from (6) with taking a = (δ∆n)
−1.

An important point in our study is that the normalized increments of X in small time can be

approximated by the Cauchy distribution having the Blumenthal-Getoor index 1. In what follows, let

ϕ1(y) :=
1

π(1 + y2)
,

the standard symmetric Cauchy density corresponding to the characteristic function u 7→ exp(−|u|).

Lemma 4.6. Denote by f∆n : R → (0,∞) the smooth density of L(ϵn1). For any nonnegative integer

k, we have

lim
∆n→0

sup
y∈R

∣∣∂kyf∆n(y)− ∂kyϕ1(y)
∣∣ = 0.

Proof. In view of (5), we have φϵn1(u) = exp{δ∆n
√
m −

√
(αδ∆n)2 − (iu+ βδ∆n)2}. Here and in

what follows, we write

m = α2 − β2 > 0.

Clearly, we have φϵn1(u) → exp(−|u|) for each u ∈ R. Also, simple manipulation of complex numbers

gives the estimate

|φϵn1(u)| . exp

{
− 1√

2

(
(δ∆n)

2m+ u2 +
√
((δ∆n)2m+ u2)2 + (2βδ∆nu)2

)1/2}
. e−C|u|. (22)

On the other hand, by means of the Fourier inversion formula we have

sup
y∈R

∣∣∂kyf∆n(y)− ∂kyϕ1(y)
∣∣ . ∫ |u|k

∣∣∣φϵn1(u)− e−|u|
∣∣∣ du. (23)

Under (22), we can apply the dominated convergence theorem to the upper bound of (23). This

completes the proof.

In particular, note that the limit of L(ϵn1) in total variation is symmetric even if β ̸= 0. As a matter

of fact, since the Lévy density g of NIG(α, β, δ, µ) admits the expansion z2g(z) = (1/π)+(δβ/π)|z|+
o(|z|) as |z| → 0 (see (7) together with (25) below, or, more generally, Raible [16, Proposition 2.18]),

Lemma 4.6 can also be deduced from the behavior of the Lévy density of L(ϵn1) around the origin;

note that the standard Cauchy Lévy density equals z 7→ (1/π)|z|−2.

We introduce the following functions defined on [0,∞):

η(y) := ϕ′1(y)/ϕ1(y),

ζ(y) := K ′
1(y)/K1(y),

H(y) := y−1{1 + yζ(y)} = −K0(y)/K1(y), (24)

where we used the identity K ′
w(y) = −Kw−1(y)− (w/y)Kw(y) for (24) .
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Lemma 4.7. (a) The functions y 7→ η(y), yη(y), and y2η′′(y) are bounded in R.

(b) y 7→ H(y) is bounded and continuous in [0,∞). Moreover, H(y) ∼ −y log(1/y) as y → 0 and

H(y) = −1 + 1/(2y) + 3/(8y2) +O(y−3) as y → ∞.

(c) H ′(y) ∼ − log(1/y) as y → 0 and y2H ′(y) = −1/2 + O(y−1) as y → ∞. In particular,

y 7→ yH ′(y) is bounded and continuous in [0,∞).

Proof. The claim (a) readily follows from the well known fact

sup
y∈R

|y|k|∂kyϕ1(y)|
ϕ1(y)

<∞

for each k ∈ Z+; this is valid too for ϕ1 replaced by the a general symmetric non-Gaussian β-stable

density.

As for (b), the continuity of H is clear. We first note the asymptotic behaviors:

Kw(y) ∼
{

log(1/y) + log 2− C if w = 0,
Γ(|w|)2|w|−1y−|w| if w ̸= 0,

as y → 0, (25)

Kw(y) =

√
π

2y
e−y

{
1 +

κ− 1

8y
+

(κ− 1)(κ− 9)

(8y)22!
+O(y−3)

}
as y → ∞, (26)

where C ≈ 0.5772 is the Euler-Mascheroni constant and κ := 4w2. The desired behavior of H(y)

as y → 0 is trivial from (25). Next, by applying (26) for ν = 0, 1 and then expanding the fraction

−K0(y)/K1(y) as a power series of y−1, straightforward computations lead to the desired behavior of

H(y) as y → ∞. Now the boundedness of H is trivial.

Using the known identity Kw(y) = K−w(y) valid for each w, y > 0, we get

H ′(y) = 1 +H(y)/y − {H(y)}2,

and so y2H ′(y) = y2+yH(y)−y2{H(y)}2. These expressions combined with (b) lead to the claims.

Now we define

qnj = qnj(α, δ, µ) := αδ∆n(1 + ϵ2nj)
1/2

and

Ak(θ) := (−1)k
αδ

π

∫ ∞

0

(e(β/α)y + e−(β/α)y)yk−1K1(y)

{
K0(y)

K1(y)

}k

dy,

A′(θ) := − 1

π

∫ ∞

0

(e(β/α)y + e−(β/α)y)yK0(y)dy.

We need the following lemmas to specify the Fisher information matrix I(θ), and to estimate the

remainder term in the stochastic expansion of the likelihood ratio random fields (see (31) below).

Lemma 4.8. For any k ∈ N we have

lim
n→∞

1

∆n
Eθ

[
{qn1H(qn1)}k

]
= Ak(θ),

with Ak(θ) being finite. In particular, lim supn→∞ ∆−1
n Eθ[|qn1H(qn1)|] <∞.

Proof. Reminding Lemma 4.5 and (24), we have

1

∆n
Eθ

[
{qn1H(qn1)}k

]
=

1

∆n

∫
R

{
αδ∆n

√
1 + x2H

(
αδ∆n

√
1 + x2

)}k αδ∆n

π
eδ∆n

√
m+βδ∆nx

K1

(
αδ∆n

√
1 + x2

)
√
1 + x2

dx

= (−1)k
αδ

π
eδ∆n

√
m

[
αδ∆n

∫
R
eβδ∆nx

(
αδ∆n

√
1 + x2

)k−1
{
K0(αδ∆n

√
1 + x2)

K1(αδ∆n

√
1 + x2)

}k

K1(αδ∆n

√
1 + x2)dx

]
=: (−1)k

αδ

π
eδ∆n

√
mB

(k)
∆n

∼ (−1)k
αδ

π
B

(k)
∆n
. (27)
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Write B
(k)
∆n

=
∫∞
0

+
∫ 0

−∞ =: B
(k)+
∆n

+B
(k)−
∆n

.

First let us look at B
(k)+
∆n

. The change of variables y = αδ∆n(
√
1 + x2 − 1) leads to B

(k)+
∆n

=∫∞
0
b
(k)+
∆n

(y)dy, where

b
(k)+
∆n

(y) = e(β/α)
√
y
√
y+2αδ∆n

(y + αδ∆n)
k

√
y
√
y + 2αδ∆n

{
K0(y + αδ∆n)

K1(y + αδ∆n)

}k

K1(y + αδ∆n).

Obviously, for each y ∈ (0,∞)

b
(k)+
∆n

(y) → e(β/α)yyk−1K1(y)

{
K0(y)

K1(y)

}k

=: b
(k)+
0 (y). (28)

In order to apply the dominated convergence theorem, we have to look at the behaviors of b
(k)+
∆n

(y) as

y → 0 and y → ∞ uniformly in small ∆n, say ∆n ∈ (0, 1]. First, by means of Lemma 4.7(b) we can

derive as y → ∞

sup
∆n≤1

|b(k)+∆n
(y)| . e(β/α)yy−1/2(y + αδ∆n)

k−1/2K1(y + αδ∆n)

. e−(1−β/α)yyk−3/2, (29)

the upper bound being Lebesgue integrable at infinity; here the assumption |β| < α comes into effect.

On the other hand, on account of (25) and Lemma 4.7(b), it holds that yk−1/2{K0(y)/K1(y)}kK1(y) ∼
Cy2k−3/2{log(1/y)}k → 0 as y → 0. This leads to supy∈(0,1] y

k−1/2{K0(y)/K1(y)}kK1(y) < ∞, so

that, as y → 0

sup
∆n≤1

|b(k)+∆n
(y)| . y−1/2 sup

∆n≤1

[
(y + αδ∆n)

k−1/2

{
K0(y + αδ∆n)

K1(y + αδ∆n)

}k

K1(y + αδ∆n)

]
. y−1/2, (30)

the upper bound being Lebesgue integrable near the origin. Having (28), (29) and (30) in hand, the

dominated convergence theorem yields that B
(k)+
∆n

→
∫∞
0
b
(k)+
0 (y)dy <∞.

Let b
(k)−
0 (y) := e−(β/α)yyk−1K1(y){K0(y)/K1(y)}k. In the same manner as before, we can deduce

that B
(k)−
∆n

→
∫∞
0
b
(k)−
0 (y)dy. Thus B

(k)
∆n

→
∫∞
0

{b(k)+0 (y) + b
(k)−
0 (y)}dy, completing the proof of the

first half of the claims. The last half is obvious from (27) and what we have seen above. The proof is

complete.

Lemma 4.9. It holds that

lim
n→∞

Eθ[ϵn1qn1H(qn1)] = A′(θ),

with A′(θ) being finite.

Proof. The lemma can be deduced in an analogous way to the proof of Lemma 4.8, so we omit the

details.

The Lemma 4.10 below provides the fully closed form of A′(θ), which directly leads to the closed

form of I12(θ), as we will see in Section 4.5. We set aside the integral form of A′(θ) for later convenience

in the proof of positive definiteness of I(θ).

Lemma 4.10. It holds that

A′(θ) = −2α2

πm

{
1 +

β√
m

arctan

(
β√
m

)}
.
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Proof. We note that (x+ 1/x)/2 ≥ 1 for any x ≥ 0, and that, for any |b| < 1,

1

2

∫ ∞

0

1

x

{
1

2

(
x+

1

x

)
+ b

}−2

dx =
1

1− b2

[
−(bx+ 1)

x2 + 2bx+ 1
− b√

1− b2
arctan

(
x+ b√
1− b2

)]x=∞

x=0

=
1

1− b2

[
1− b√

1− b2

{
π

2
− arctan

(
b√

1− b2

)}]
.

In view of the definition (3) and Fubini’s theorem, we see that the last quantity equals
∫∞
0
ebyyK0(y)dy.

Using this fact with b = β/α and −β/α, it is straightforward to deduce the claim.

4.3 Likelihood, score, and observed information in question

Now, let us look at the log likelihood function ℓn(θ) associated with a sample (Xtj )j≤n. By (2), the

density of L(xj) under Pθ is

αδ∆n

π
exp{δ∆n

√
m+ β(xj − µ∆n)}

K1

(
α
√

(δ∆n)2 + (xj − µ∆n)2
)

√
(δ∆n)2 + (xj − µ∆n)2

,

based on which we write down ℓn(θ) in terms of (ϵnj)j≤n as

ℓn(θ) =

n∑
j=1

{
logα+ δ∆n(

√
m+ βϵnj) + log ϕ1(ϵnj) +

1

2
log(1 + ϵ2nj) + logK1

(
αδ∆n

√
1 + ϵ2nj

)}
.

(31)

The expression (31) may look unnecessarily lengthy, as the term log ϕ1(ϵnj) + 2−1 log(1 + ϵ2nj) can

be obviously simplified. However, we have meaningly transformed as just described. In fact, the

introduction of the standard Cauchy density ϕ1 above turns out to be convenient in the process of

deriving various limiting values as well as deducing estimates of stochastically small terms, to which

Lemma 4.7 to 4.9 can effectively be applied.

For studying LAN, we need to look at the score θ 7→ ∂θℓn(θ) and the observed information

θ 7→ −∂2θℓn(θ). Note that ∂µϵnj = −δ−1, ∂2µϵnj = 0, ∂δϵnj = −δ−1ϵnj , and ∂2δ ϵnj = 2δ−2ϵnj , and

∂δ∂µϵnj = δ−2. In terms of (31), the first-order partial derivative of θ 7→ ℓn(θ) are explicitly given as

follows:

∂αℓn(θ) =
n∑

j=1

{
αδ∆n√
m

+
1

α
qnjH(qnj)

}
, (32)

∂βℓn(θ) =
n∑

j=1

{
δ∆n

(
ϵnj −

β√
m

)}
, (33)

∂δℓn(θ) =
n∑

j=1

−1

δ
(ϵnjη(ϵnj) + 1) + ∆n

√
m+

α√
1 + ϵ2nj

H(qnj)

 , (34)

∂µℓn(θ) =
n∑

j=1

−1

δ
η(ϵnj)−∆n

β +
αϵnj√
1 + ϵ2nj

H(qnj)

 . (35)
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We also need to look at the Hessian matrix ∂2θℓn(θ): the diagonal elements are

∂2αℓn(θ) =
n∑

j=1

{
−β

2δ∆n

m3/2
+
q2nj
α2

H ′(qnj)

}
, (36)

∂2βℓn(θ) =
n∑

j=1

{
−α

2δ∆n

m3/2

}
= −α

2δn∆n

m3/2
, (37)

∂2δ ℓn(θ) =
n∑

j=1

{
1

δ2
(1 + 2ϵnjη(ϵnj) + ϵ2njη

′(ϵnj)) +
α∆n

δ

(
qnjH

′(qnj)

(1 + ϵ2nj)
3/2

+
ϵ2njH(qnj)

(1 + ϵ2nj)
3/2

)}
, (38)

∂2µℓn(θ) =

n∑
j=1

{
1

δ2
η′(ϵnj) +

α∆n

δ

(
ϵ2njqnjH

′(qnj)

(1 + ϵ2nj)
3/2

+
H(qnj)

(1 + ϵ2nj)
3/2

)}
, (39)

and the off-diagonal ones are

∂α∂βℓn(θ) =
n∑

j=1

αβδ∆n

m3/2
=
αβδn∆n

m3/2
, (40)

∂α∂δℓn(θ) =

n∑
j=1

α∆n√
m

+
∆n√
1 + ϵ2nj

(H(qnj) + qnjH
′(qnj))

 , (41)

∂α∂µℓn(θ) =
n∑

j=1

− ∆nϵnj√
1 + ϵ2nj

(H(qnj) + qnjH
′(qnj))

 , (42)

∂β∂δℓn(θ) =
n∑

j=1

{
−β∆n√

m

}
= −βn∆n√

m
, (43)

∂β∂µℓn(θ) =

n∑
j=1

{−∆n} = −n∆n, (44)

∂δ∂µℓn(θ) =
n∑

j=1

{
1

δ2
(η(ϵnj) + ϵnjη

′(ϵnj))−
α∆n

δ

ϵnj
(1 + ϵ2nj)

3/2
(qnjH

′(qnj)−H(qnj))

}
. (45)

In what follows, we complete the proof of Theorem 3.1 by verifying the conditions (15), (17), (18),

and (19) given in Section 2.3, with taking rn = (rkn)
4
k=1 as in (12).

4.4 Lindeberg condition

First we look at (15). As is well known, (15) is implied by the Lyapunov condition: there exists a

constant ϵ′ > 0 such that
∑n

j=1Eθ[|rngnj(θ)|2+ϵ′ ] → 0. Here, we set ϵ′ = 2 and prove

4∑
k=1

n∑
j=1

Eθ[|rkngk,nj(θ)|4] → 0, (46)

where gk,nj(θ) denotes the kth component of gnj(θ). Using Lemma 4.8, we get

n∑
j=1

Eθ[|r1ng1,nj(θ)|4] .
1

n∆n
· 1
n

n∑
j=1

1

∆n
{∆4

n + Eθ[{qnjH(qnj)}4]} . 1

n∆n
→ 0.

Next, noting that r2ng2,nj(θ) = (n∆n)
−1/2(xj −µ∆n−βδ∆n/

√
m) and that Eθ[|xj |q] . ∆n for every

q ≥ 2, we have

n∑
j=1

Eθ[|r2ng2,nj(θ)|4] .
1

n∆n
· 1
n

n∑
j=1

{∆−1
n Eθ[|xj |4] + ∆3

n} . 1

n∆n
→ 0.
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In view of Lemma 4.7(a) and 4.7(b), it is clear that
∑n

j=1Eθ[|r3ng3,nj(θ)|4]+
∑n

j=1Eθ[|r4ng4,nj(θ)|4] .
1/n→ 0. Thus (46), hence (15), has been obtained.

For later use, we note the stronger convergence

n∑
j=1

sup
θ∈Θ

Eθ[|rngnj(θ)|4] → 0, (47)

which directly follows from (46) and the boundedness of Θ.

4.5 Fisher information matrix

Next we look at (17) and the positive definiteness of the Fisher information matrix I(θ).

First we prove (17), which amounts to proving that

Ikl(θ) = lim
n→∞

n∑
j=1

Eθ[rkngk,nj(θ)rlngl,nj(θ)], 1 ≤ k ≤ l ≤ 4.

Prior to computing the limits, let us recall the expressions (32) to (35), and the notation Ak(θ) in

Lemma 4.8.

We begin with the diagonal elements. First, we observe that

n∑
j=1

Eθ[{r1ng1,nj(θ)}2] = O(∆n) +
2δ√
m

1

n

n∑
j=1

Eθ[qnjH(qnj)] +
1

α2

1

n

n∑
j=1

1

∆n
Eθ[{qnjH(qnj)}2]

= O(∆n) +
2δ∆n√
m

1

∆n
Eθ[qn1H(qn1)] +

1

α2

1

∆n
Eθ[{qn1H(qn1)}2]

→ 1

α2
A2(θ) = I11(θ).

Noting that L(ϵnj) = NIG(αδ∆n, βδ∆n, 1, 0) and Eθ[(ϵnj − β/
√
m)2] = (δ∆n)

−1α2/m3/2, we get

n∑
j=1

Eθ[{r2ng2,nj(θ)}2] = δα2/m3/2 = I22(θ).

We have known from Lemma 4.7(b) that the random variables H(qnj)/
√
1 + ϵ2nj in (34) are essentially

bounded. Therefore, the bounded convergence theorem yields that

n∑
j=1

Eθ[{r3ng3,nj(θ)}2] =
1

δ2n

n∑
j=1

Eθ[{ϵnjη(ϵnj) + 1}2] +O(∆n) =
1

δ2
Eθ[{ϵn1η(ϵn1) + 1}2] +O(∆n).

Building on Lemma 4.6 and Lemma 4.7(a), we can apply the bounded convergence theorem to the

last expectation, so that

n∑
j=1

Eθ[{r3ng3,nj(θ)}2] →
1

δ2

∫
R

(
yϕ′1(y)

ϕ1(y)
+ 1

)2

ϕ1(y)dy

=
1

2πδ2

[
y − y3

(1 + y2)2
+ arctan y

]y=∞

y=−∞
=

1

2δ2
= I33(θ).

In a similar manner, based on the expression (35) we can deduce

n∑
j=1

Eθ[{r4ng4,nj(θ)}2] →
1

δ2

∫
R

(
ϕ′1(y)

ϕ1(y)

)2

ϕ1(y)dy

=
1

2πδ2

[
y3 − y

(1 + y2)2
+ arctan y

]y=∞

y=−∞
=

1

2δ2
= I44(θ).
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Now we turn to the off-diagonal elements. First, by means of Lemmas 4.8, 4.9, 4.10, we get

n∑
j=1

Eθ[r1ng1,nj(θ)r2ng2,nj(θ)] = δ
1

n

n∑
j=1

Eθ

[(
ϵnj −

β√
m

)(
αδ∆n√
m

+
1

α
qnjH(qnj)

)]

=
δ

α

1

n

n∑
j=1

Eθ

[(
ϵnj −

β√
m

)
qnjH(qnj)

]

=
δ

α

1

n

n∑
j=1

Eθ [ϵnjqnjH(qnj)] +O(∆n) →
δ

α
A′(θ) = I12(θ).

Next, it follows from Lemma 4.7 that

Eθ[|r2ng2,nj(θ)r3ng3,nj(θ)|] ≤
1

n

{∣∣∣∣Eθ

[√
∆n

(
ϵn1 −

β√
m

)
(1 + ϵn1η(ϵn1))

] ∣∣∣∣
+ δ∆n

∣∣∣∣Eθ

[√
∆n

(
ϵn1 −

β√
m

)(√
m+

α√
1 + ϵ2n1

H(qn1)

)]∣∣∣∣}
. 1

n
Eθ

[∣∣∣∣√∆n

(
ϵn1 −

β√
m

) ∣∣∣∣] =:
1

n
Eθ[ξn].

Since ξn = oPθ
(1) and supnEθ[|ξn|2] = α2/(δm3/2) < ∞ (cf. Lemmas 4.5 and 4.6), we deduce that

Eθ[ξn] → 0. Thus ∣∣∣∣ n∑
j=1

Eθ[r2ng2,nj(θ)r3ng3,nj(θ)]

∣∣∣∣ . Eθ[ξn] → 0 = I23(θ).

Now let us note that
∫
R ϕ

′
1(y)dy = 0, and that

∫
R y{ϕ

′
1(y)/ϕ1(y)}2ϕ1(y)dy = 0 since the integrand is

odd and behaves like y−3 up to multiplicative constant at infinity. Hence

n∑
j=1

Eθ[r3ng3,nj(θ)r4ng4,nj(θ)] →
1

δ2

∫
R

ϕ′1(y)

ϕ1(y)

{
1 + y

ϕ′1(y)

ϕ1(y)

}
ϕ1(y)dy = 0 = I34(θ).

The proofs for Ikl(θ) = 0 for the remaining (k, l)s are easier, and we omit them.

Summarizing the above now yields (17).

We now turn to prove the positive definiteness of I(θ) for each θ ∈ Θ. In view of the form (11),

I(θ) is positive definite as soon as so is the second principal submatrix, say Iα,β(θ). Obviously,

det [Iα,β(θ)] is symmetric as a function of β. Hence, it suffices to prove that, given any α > 0, the

function β 7→ det [Iα,β(θ)] = I11(θ)I22(θ) − {I12(θ)}2 is positive for β ∈ [0, α). Fix α, δ > 0 in the

sequel. It is convenient to introduce the notation:

C(β) =

∫ ∞

0

(e(β/α)y + e−(β/α)y)yK1(y)dy,

Ξ(y;β) = C(β)−1(e(β/α)y + e−(β/α)y)yK1(y), y > 0.

Then y 7→ Ξ(y;β) for each β ∈ [0, α) acts as a probability density function on (0,∞).

As in the proof of Lemma 4.10, we can derive

C(β) =
1

2

∫ ∞

0

∫ ∞

0

y
(
e−{(x+1/x)/2−β/α}y + e−{(x+1/x)/2+β/α}y

)
dydx

=
1

2

[∫ ∞

0

{
1

2

(
x+

1

x

)
− β

α

}−2

dx+

∫ ∞

0

{
1

2

(
x+

1

x

)
+
β

α

}−2

dx

]

=
α3π

m3/2
,

15



where we used the identity valid for any |b| < 1:∫ ∞

0

{
1

2

(
x+

1

x

)
+ b

}−2

dx =
2

1− b2

[
1√

1− b2
arctan

(
x+ b√
1− b2

)
− x− 2b2x− b

x2 + 2bx+ 1

]x=∞

x=0

=
2

1− b2

[
1√

1− b2

{
π

2
− arctan

(
b√

1− b2

)}
− b

]
.

In particular, we have C(0) = π. Then, some elementary manipulations and Cauchy-Schwarz’s in-

equality lead to

det [Iα,β(θ)] = α−2A2(θ) · α2δm−3/2 − α−2δ2{A′(θ)}2

=
α4δ2

m3

{∫ ∞

0

Ξ(y;β)

(
K0(y)

K1(y)

)2

dy ·
∫ ∞

0

Ξ(y;β)dy −
(∫ ∞

0

Ξ(y;β)
K0(y)

K1(y)
dy

)2}
> 0,

where the last strict inequality does hold true since y 7→ K0(y)/K1(y) is not a constant on (0,∞).

This completes the proof of the positive definiteness of I(θ) for each θ ∈ Θ.

4.6 Negligibility of the centering

Turning to verification of (18), it suffices to see that rknEθ[gk,n1(θ)] = o(1/
√
n) for each k.

Thanks to Lemma 4.8, we have r1nEθ[g1,n1(θ)] = n−1/2{O(∆n)+Eθ[qn1H(qn1)]} = O(∆n/
√
n) =

o(1/
√
n), and it is obvious that r2nEθ[g2,nj(θ)] = 0. It follows from Lemmas 4.6 and 4.7(a) that

Eθ[ϵn1η(ϵn1)] →
∫
R yϕ

′
1(y)dy = −1 and Eθ[η(ϵn1)] →

∫
R ϕ

′
1(y)dy = 0. Therefore r3nEθ[g3,n1(θ)] =

n−2/1{o(1) +O(∆n)} = o(1/
√
n) and similarly, r3nEθ[g3,n1(θ)] = o(1/

√
n). Thus we get (18).

4.7 Mean-square differentiability

Finally we verify (19). For this it only remains to show that
∑n

j=1 supθ Eθ[|rn∂⊤θ gnj(θ)rn|2] → 0 since

we already have (47). To do this, we recall (12), and also the summands of the expressions (36) to

(45) for ∂⊤θ gnj(θ) = ∂2θ logψnj(θ). It suffices to estimate

Bkl,n(θ) := Eθ

[
|rknrln∂θk∂θl logψn1(θ)|2

]
for k, l ∈ {1, 2, 3, 4} individually, where we wrote θ = (α, β, δ, µ) =: (θ1, θ2, θ3, θ4) for convenience.

Invoking the boundedness of y 7→ yH ′(y) (cf. Lemma 4.7(c)), we get

sup
θ∈Θ

B11,n(θ) .
1

n2
{
1 + Eθ[|qnj/∆n|2]

}
. 1

n2
{1 + Eθ[ϵ

2
nj ]} . 1

n2∆n
= o

(
1

n

)
as soon as n∆n → ∞, so that

∑n
j=1 supθ∈ΘB11,n(θ) → 0 according to the boundedness of Θ. For the

others, reminding Lemma 4.7 it is not difficult to deduce that

sup
θ∈Θ

Bkl,n(θ) .
{
O(1/n) for k = l ̸= 1 and for {k, l} = {1, 2} or {3, 4},
O(∆n/n) for all the rest.

}
= o

(
1

n

)
.

Therefore
∑n

j=1 supθ∈ΘBkl,n(θ) → 0 for each (k, l), completing the proof of (19).

5 Concluding remarks

In this article, we obtained the LAN for the statistical experiments consisting of the NIG Lévy process

discretely observed at high frequency. The rate in the LAN are of two kind:
√
n for (δ, µ), while

√
n∆n

for (α, β). Furthermore, the Fisher information matrix I(θ) turned out to be block-diagonal and
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always positive-definite. Only the element I11(θ) involves the integral, however, given any admissible

parameter values, we can evaluate it numerically in a small amount of time.

One of important future tasks is construction of an estimator θ̂n of θ, which is asymptotically

optimal in the sense that, in view of Theorem 3.1, the normalized estimator r−1
n (θ̂n − θ) is asymptot-

ically distributed as N4(0, I(θ)−1) under the true measure. The maximum likelihood estimator is the

first candidate. Nevertheless, direct simultaneous optimization for the four parameters might entail

numerical difficulties; see Prause [15, Section 1]. It would then be more convenient to provide an

rate-optimal estimator of θ (initial estimator) at first, and then execute the one-step improvement in

order to attain the minimal asymptotic variance I(θ)−1. Those issues will be addressed in subsequent

papers.
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high-frequency sampling


	1 Introduction
	2 Preliminaries
	2.1 Basic notation
	2.2 Normal inverse Gaussian Lévy process
	2.3 LAN under high-frequency sampling

	3 Main result
	4 Proof
	4.1 A tool for proving LAN under high-frequency sampling
	4.2 Preliminary lemmas
	4.3 Likelihood, score, and observed information in question
	4.4 Lindeberg condition
	4.5 Fisher information matrix
	4.6 Negligibility of the centering
	4.7 Mean-square differentiability

	5 Concluding remarks

