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Abstract. We show a special feature for the cover time of trees that is not satisfied by those
of other graphs. By using this property, we show the relationship between the cover times of a
tree and its subdivision, and we compute exactly the distribution of the last vertex visited by a
random walk, the expectation and the Laplace transform of cover times of spider graphs as integral
representations. We also discuss some comparison results for spider graphs.
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1. Introduction

Let G = (V,E) be a finite connected graph possibly with
self-loops. Throughout this paper, we consider a discrete-
time, irreducible random walk ({Xt}t∈Z≥0 , {Px}x∈V ) on G
with transition matrix P = (p(x, y))x,y∈V where Z≥0 =
Z ∩ [0,∞). We suppose that P is compatible with the
graph structure in the sense that p(x, y), p(y, x) > 0 if and
only if xy ∈ E. The cover time C = CG is the number of
steps needed for a random walk to visit all the vertices of
G. In other words,

(1.1) C = max
x∈V

σx

with σx being the first hitting time to a vertex x ∈ V . The
basic results for cover times can be found, for instance, in
[1, 3] and references therein. In [4, 5], we obtained the
Möbius inversion formula for the cover time in terms of the
first exit times.
Theorem 1.1 ([4, 5]). Let C(V ) be the totality of vertex
sets of connected subgraphs of G, and set

Dx = {A ∈ C(V ); N(A) = V,A ̸= V,A ∋ x},

where N(A) is the 1-neighborhood of a set A, i.e.,

N(A) = A ∪
∪

x∈A

Nx

and Nx is the neighborhood of x ∈ V . Then, for x, y ∈ V
and t ∈ Z≥0, we have

Px(C = t,XC = y)

=
∑

B∈Dx

(−1)N−|B|+1Px(τB = t,XτB = y),

where τB = inf{t ∈ Z≥0; Xt ̸∈ B} is the first exit time
from a subset B. Moreover, the set Dx in the formula can
be replaced by Dx \ Dy.

From this theorem, once we characterize the sets Dx and
Dy, we can write down the joint distribution of the cover
time and the last visited point as an alternating sum.

The situation becomes simpler for random walks on trees.
In what follows, we only consider the case where G is a tree.
We say that a vertex l of a tree is a leaf if its degree is one;
the set of all leaves is denoted by L. In the case of trees,
we can rephrase Theorem 1.1 as follows:
Theorem 1.2. Let G be a finite tree and L the set of its
leaves. Then, for x, y ∈ V and t ∈ Z≥0, we have

Px(C = t,XC = y) =
∑
Λ⊂L
Λ ̸=∅

(−1)|Λ|+1Px(σΛ = t,XσΛ = y).

In particular, for any function f : R → R,

(1.2) Ex[f(C)] =
∑
Λ⊂L
Λ ̸=∅

(−1)|Λ|+1Ex[f(σΛ)]

where σΛ = inf{t ∈ Z≥0;Xt ∈ Λ} is the first hitting time
to a (non-empty) subset Λ ⊂ L. Similarly,

(1.3) Px(XC = y) =
∑
Λ⊂L
Λ∋y

(−1)|Λ|+1Px(XσΛ = y).

Remark 1.3. From (1.3) we see that Px(XC = y) = 0
unless y ∈ L, that is, the maximum of first hitting times
is attained at a certain leaf, which implies that when G
is a tree, (1.1) can be written as C = maxl∈L σl. On the
other hand, σΛ = minl∈Λ σl for Λ ⊂ L. Therefore, the
formula above can be understood as the ordinary inclusion-
exclusion principle when G is a tree.

In Section 2, we remark that the cover times of trees
have similar property to what is enjoyed by the first hitting
times (Lemmas 2.1 and 2.2). We also derive the formula
clarifying the relationship between the cover times of a tree
and its subdivisions (Theorem 2.5).
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In Section 3, by using Theorem 1.2, we will give integral
representations for the Laplace transform of cover times
of spider graphs, the distribution of the last vertex visited
by a random walk and the expectation (Theorems 3.1, 3.7,
and 3.10). As a corollary, we remark some comparison
results for the cover time of spider graphs (Corollary 3.8
and Remarks 3.11).

2. Cover time of the n-subdivision of a
tree

Let W = {w : Z≥0 → V } be the set of discrete-time
random walk paths on a set V . Let Ft be the filtration
generated by the coordinate maps {Xs(w) = w(s), s =
0, 1, 2, . . . , t}. An {Ft}-stopping time τ : W → {0, 1, 2, . . . }∪
{∞} is called a terminal time under Px if it satisfies

τ(w) = k + τ(θkw), Px-a.s. on {τ ≥ k},

for all k ∈ Z≥0, where (θkw)(n) = w(n + k), n ∈ Z≥0

is the shifted path by time k ∈ Z≥0 (cf. [2]). The first
hitting time σA to a set A is a terminal time under Px

for x ∈ V while the cover time is not since the cover time
needs memory of which vertices are visited. Nevertheless
the following lemma holds.
Lemma 2.1. The cover time on a tree satisfies

C(w) = k + C(θkw), Px-a.s. on {σL ≥ k},

for x ∈ V and k ∈ Z≥0. In particular,

(2.1) C(w) = 1 + C(θ1w)

under Px for x ∈ V \ L.

Proof. From Remark 1.3, we see that

C(w) = max
l∈L

σl(w) = max
l∈L

(k + σl(θkw)) = k + C(θkw),

Px-a.s. on {σL ≥ k} for every x ∈ V . Here we used the fact
that σl is a terminal time and σL ≥ k means that σl ≥ k
for all l ∈ L.

This is a remarkable feature for the cover times of trees
and it often makes the situation simpler.

When G is a tree, the cover times inherit some prop-
erties such as harmonicity from the first hitting times by
Lemma 2.1.
Lemma 2.2. Let G be a tree and l ∈ L be a leaf.
(1) The function ψ0(x) = Px(XC = l) is P -harmonic in
V \ L, i.e.,

(2.2) ψ0(x) = (Pψ0)(x)

for x ∈ V \ L, where (Pf)(x) =
∑

y∈V p(x, y)f(y). In
particular, ψ0(x) is determined as the unique harmonic ex-
tension if the boundary values {ψ0(l), l ∈ L} are known.
(2) The function ψ1(x) = Ex[C] satisfies

(2.3) ψ1(x) = 1 + (Pψ1)(x)

for x ∈ V \ L.

Proof. Both assertions follow immediately from (2.1). They
also follow from Theorem 1.2 since ϕΛ,0(x) = Px(XσΛ = l)
and ϕΛ,1(x) = Ex[σΛ] satisfy the same equations (2.2) and
(2.3), respectively.

Remark 2.3. The cover times for general graphs with cy-
cles do not satisfy (2.2) and (2.3).

Now we introduce the notion of the n-subdivision of a
graph.
Definition 2.4. For a graph G = (V,E), the n-subdivision
Gn = (Vn, En) of G is defined by replacing each edge in E
with a path of length n + 1. The vertex set V is naturally
regarded as a subset of Vn, and we write V ⊂ Vn.

It is worthwhile to notice a trivial fact that the set of
leaves of a tree T leaves unchanged by the operation of
taking n-subdivision. So we can identify the set of leaves
in V with that in Vn in an obvious manner.

The next theorem shows that the simple relationship be-
tween cover times on a tree and its subdivision.
Theorem 2.5. Let T = (V,E) be a tree and Tn−1 =
(Vn−1, En−1) its (n − 1)-subdivision for n ≥ 2. We denote
by ({Xt}t∈Z≥0 , {Px}x∈V ) and ({X̃t}t∈Z≥0 , {P̃x}x∈Vn−1) the
simple random walks on T and Tn−1, respectively. Then,
when y ∈ Vn−1 is a vertex between a and b for an edge
ab ∈ E, for l ∈ L,

P̃y(X̃CTn−1
= l)(2.4)

= (1 − k

n
)Pa(XCT = l) +

k

n
Pb(XCT = l)

and

Ẽy[CTn−1 ](2.5)

= k(n − k) + n2

{
(1 − k

n
)Ea[CT ] +

k

n
Eb[CT ]

}
,

where k = d(a, y) is the (shortest path) distance between a
and y in Tn−1. In particular, if a ∈ V ⊂ Vn−1,

P̃a(X̃CTn−1
= l) = Pa(XCT

= l),(2.6)

Ẽa[CTn−1 ] = n2Ea[CT ].(2.7)

Proof. Let us consider an edge ab ∈ E and the correspond-
ing path Pab of length n in Tn−1 with end-points a and b.
Since the function ψ0(y) = P̃y(X̃CTn−1

= l) for a leaf l ∈ L

is harmonic outside L from Lemma 2.2(1), the values ψ0(y)
on the path Pab is determined as a linear function with
boundary conditions ψ0(a) and ψ0(b) at a and b, respec-
tively. Similarly, the function ψ1(y) = Ẽx[CTn−1 ] satisfies
(2.3). Hence, it is easy to see that

(2.8) ψ1(y) = k(n − k) + (1 − k

n
)ψ1(a) +

k

n
ψ1(b).

Therefore, (2.4) and (2.5) follow from (2.6) and (2.7), re-
spectively.

For (2.6) and (2.7), it suffices to show that the same
equations hold for the first hitting time σΛ to each non-
empty subset Λ ⊂ L because of (1.2) and (1.3), which
follow from Lemma 2.6.
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Lemma 2.6. Let Tn−1 be the (n− 1)-subdivision of a tree
T . Let Λ be a non-empty subset of L and l ∈ L. Then,

P̃a(XσΛ = l) = Pa(XσΛ = l),(2.9)

Ẽa[σΛ] = n2Ea[σΛ].(2.10)

for a ∈ V ⊂ Vn−1.

Proof. We only show (2.10). The equality (2.9) can be
shown in the same manner. Let ϕ̃1,Λ(x) = Ẽx[σΛ] for x ∈
Vn−1. It holds that

(2.11) ϕ̃1,Λ(a) = 1 +
1

|Na(Tn−1)|
∑

y∈Na(Tn−1)

ϕ̃1,Λ(y),

for a ∈ V ⊂ Vn−1, where Na(Tn−1) is the neighborhood of
the vertex a in Tn−1. By the same argument as before, we
see that

(2.12) ϕ̃1,Λ(y) = n − 1 + (1 − 1
n

)ϕ̃1,Λ(a) +
1
n

ϕ̃1,Λ(b)

when y ∈ Na(Tn−1) is between a and b for ab ∈ E. By
substituting (2.12) into (2.11), we have

ϕ̃1,Λ(a)
n2

= 1 +
1

|Na(T )|
∑

y∈Na(T )

ϕ̃1,Λ(y)
n2

.

where Na(T ) is the neighborhood of a vertex a ∈ V in
T , and |Na(Tn−1)| = |Na(T )|. Hence, { ϕ̃1,Λ(a)

n2 , a ∈ V ⊂
Vn} satisfies the same equation as {ϕ1,Λ(x) := Ex[σΛ], x ∈
V } should satisfy. In the same manner, ϕ̃1,Λ(l)

n2 for l ∈ L
satisfies the same boundary condition as that for ϕ1,Λ(l).
Consequently, we can conclude that ϕ̃1,Λ(a) = n2ϕ1,Λ(a)
for any a ∈ V ⊂ Vn−1.

3. Cover times of spider graphs

Let Gm1,m2,...,mK
be a spider graph which is obtained from

K paths such that each length is mi, i ∈ [K] := {1, 2, . . . ,K}
by identifying each one of the end-points. We call the iden-
tified point the origin and denote it by 0. More precisely,
the vertex set and the edge set are written as

V = {0} ∪
K∪

i=1

{(i, x), x = 1, 2, . . . ,mi},

E =
K∪

i=1

{(i, x − 1)(i, x), x = 1, 2, . . . ,mi},

where (i, 0) is understood as the origin 0. We denote the
leaf (i,mi) by li for i ∈ [K]. Throughout this section,
for simplicity, we consider simple random walks on spider
graphs.

We will compute the Laplace transform of the cover time
of a spider graph.

Theorem 3.1. The Laplace transform of the cover time of
a spider graph Gm1,...,mK by a simple random walk is given
by

E0[e−λC ] =
K∑

k=1

1
bk(λ)

∫ ∞

0

e−a−1
k t

K∏
j=1
j ̸=k

(e−ajt − e−a−1
j t)dt

where ak(λ) = tanh(mkκ(λ)) and bk(λ) = sinh(mkκ(λ))
with κ(λ) = log(eλ +

√
e2λ − 1).

Remark 3.2. Given mi > 0, i ∈ [K], let Cn be the cover
time of Gnm1,...,nmK

. Since nκ(λ/n2) →
√

2λ as n → ∞,
it is easy to verify that

lim
n→∞

E0[e−λCn/n2
]

=
K∑

k=1

1
Bk(λ)

∫ ∞

0

e−A−1
k t

K∏
j=1
j ̸=k

(e−Ajt − e−A−1
j t)dt,

where Ak(λ) = tanh(mk

√
2λ) and Bk(λ) = sinh(mk

√
2λ).

It should be the Laplace transform of a constant multiple
of the cover time of K-rays by Walsh’s Brownian motion
starting at the origin (the common vertex). Similar expres-
sions can be found in Section 17.2.3, [7]. So far we do not
know the inverse Laplace transform.

Before computing the Laplace transform, we compute
Px(wC = lj) and Ex[C]. First we show three lemmas. In
what follows, we set

αj = m−1
j , j ∈ [K]

and use the following notation

[Λ] = {k ∈ [K]; lk ∈ Λ}

for Λ ⊂ L.

Lemma 3.3. For a given j ∈ [K], let Λ ⊂ L with Λ ∋ lj.
Then,

P0(XσΛ = lj) =
αj∑

k∈[Λ] αk
(3.1)

Plk(XσΛ = lj) =

{
δk,j , k ∈ [Λ],
P0(XσΛ = lj), k ̸∈ [Λ].

(3.2)

Proof. Set ϕΛ(k, x) = P(k,x)(XσΛ = lj) for x ∈ [mk] and
ϕΛ(0) = P0(XσΛ = lj). Since ϕΛ satisfies (2.2), we may
assume that

ϕΛ(k, x) = βΛ(k)x + γΛ, k ∈ [K],

where γΛ = ϕΛ(0). They satisfy the following boundary
conditions:

ϕΛ(k,mk) = δk,j , k ∈ [Λ],
ϕΛ(k,mk) = ϕΛ(k,mk − 1), k ∈ [K] \ [Λ],
ϕΛ(0) = 1

K

∑
k∈[K] ϕΛ(k, 1).
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A simple computation yields
βΛ(k) = αk(δk,j − γΛ), k ∈ [Λ]
βΛ(k) = 0, k ∈ [K] \ [Λ],∑

k∈[K] βΛ(k) = 0.

Hence, we obtain

γΛ =
αj∑

k∈[Λ] αk
.

Therefore, we obtain (3.1) and (3.2).

Lemma 3.4. Let Λ ⊂ L with Λ ̸= ∅. Then,

(3.3) E0[σΛ] =
2

∑
k∈[K] mk −

∑
k∈[Λ] mk∑

k∈[Λ] αk
.

Proof. Set ϕΛ(k, x) = E(k,x)[σΛ] for x ∈ [mk] and ϕΛ(0) =
E0[σΛ]. Since ϕΛ satisfies (2.3), we may assume that

(3.4) ϕΛ(k, x) = −x2 + βΛ(k)x + γΛ,

where γΛ = ϕΛ(0). They satisfy the following boundary
conditions:

ϕΛ(k,mk) = 0, lk ∈ Λ,

ϕΛ(k,mk) = 1 + ϕΛ(k,mk − 1), lk ∈ Λc,

ϕΛ(0) = 1 + 1
K

∑
k∈[K] ϕΛ(k, 1).

A simple computation yields

(3.5)


βΛ(k) = mk − αkγΛ, lk ∈ Λ,

βΛ(k) = 2mk, lk ∈ Λc,∑
k∈[K] βΛ(k) = 0.

Hence,

γΛ =
2

∑
k∈[K] mk −

∑
k∈[Λ] mk∑

k∈[Λ] αk
.

Lemma 3.5. Let S be a finite set, and let µ1 and µ2 be
positive measures and ν a signed measure on S. Suppose
that µ1 has full support. Then, for z ∈ C, we have

∑
Λ⊂S
Λ ̸=∅

z|Λ|

µ1(Λ)
=

∫ ∞

0

∏
y∈S

(1 + ze−µ1(y)t) − 1

 dt

and∑
Λ⊂S
Λ ̸=∅

ν(Λ)
µ1(Λ) + µ2(Λc)

z|Λ|

=
∑
x∈S

ν(x)
∫ ∞

0

ze−µ1(x)t
∏

y∈S\{x}

(ze−µ1(y)t + e−µ2(y)t)dt.

In particular,∑
Λ⊂S
Λ∋x

z|Λ|

µ1(Λ)
=

∫ ∞

0

ze−µ1(x)t
∏

y∈S\{x}

(1 + ze−µ1(y)t)dt

Proof. We only show the second formula.∑
Λ⊂S
Λ ̸=∅

ν(Λ)
µ1(Λ) + µ2(Λc)

z|Λ|

=
∑
Λ⊂S
Λ ̸=∅

∑
x∈Λ

ν(x)z|Λ|
∫ ∞

0

e−{µ1(Λ)+µ2(Λ
c)}tdt

=
∑
x∈S

ν(x)
∑
Λ∋x

z|Λ|
∫ ∞

0

e−µ1(Λ)t−µ2(Λ
c)tdt

=
∑
x∈S

ν(x)
∫ ∞

0

ze−µ1(x)t
∏

y∈S\{x}

(ze−µ1(y)t + e−µ2(y)t)dt.

The first formula is obtained in the same manner.

Remark 3.6. In the same manner as before, we can show
the following. Let S be a finite set with |S| = n and µ a
positive measure with full support. Then, we can see that∑

Λ⊂S
Λ ̸=∅

(−1)|Λ|+1µ(Λ)−1 = E[max
i∈S

Xi]

and ∑
Λ⊂S
Λ∋x

(−1)|Λ|+1µ(Λ | {x})−1 = P(max
i∈S

Xi = Xx),

where {Xi, i ∈ S} are the i.i.d. random variables such that
each Xi is exponential with parameter µ({i}) respectively.

We define

ΦI(t) =
∏

k∈[K]\I

(1 − e−αkt)

for I ⊂ [K]. For example, when I = {1, 2, 3}, we simply
write Φ1,2,3(t). We note that 0 < ΦI(t) < 1 for all t > 0
unless I = [K].
Theorem 3.7. Let C be the cover time of a spider graph
Gm1,m2,...,mK by a simple random walk. Then,

P0(XC = lj) =
∫ ∞

0

αje
−αjtΦj(t)dt

Plk(XC = lj) = (1 − δk,j)
∫ ∞

0

αje
−αjtΦj,k(t)dt

for each leaf lj ∈ L. Moreover,

P(k,x)(XC = lj)
= Plk(XC = lj)αkx + P0(XC = lj)(1 − αkx).

Proof. From (1.3), (3.1) and Lemma 3.5, we obtain

P0(XC = lj) =
∑
Λ⊂L
Λ∋lj

(−1)|Λ|+1P0(XσΛ = lj)

=
∑
Λ⊂L
Λ∋lj

(−1)|Λ|+1 αj∑
k∈[Λ] αk

=
∫ ∞

0

αje
−αjtΦj(t)dt.
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We also obtain the second formula in the same manner by
noticing that the alternating sum in (1.3) should be taken
over the set {Λ ⊂ L\{lk}; Λ ∋ lj} if k ̸= j because of (3.2).
The last assertion immediately follows from harmonicity.

Corollary 3.8. Suppose mi ≤ mj. Then,

(3.6) P0(XC = li) ≤ P0(XC = lj).

Proof. Suppose mi ≤ mj , or equivalently αi ≥ αj . Then,

P0(XC = lj) − P0(XC = li)

=
∫ ∞

0

{αje
−αjtΦj(t) − αie

−αitΦi(t)}dt

=
∫ ∞

0

{αje
−αjt(1 − e−αit) − αie

−αit(1 − e−αjt)}Φi,j(t)dt

= αiαj

∫ ∞

0

dt

∫ t

0

dse−αjt−αis{1 − e−(αi−αj)(t−s)}Φi,j(t)

≥ 0.

Remark 3.9. It follows from Lemma 3.3 that

P0(XσL
= lj) =

αj∑K
k=1 αk

.

Hence, as expected, the converse inequality to (3.6) holds,
i.e., when mi ≤ mj , then

P0(XσL
= li) ≥ P0(XσL

= lj).

Theorem 3.10. Let C be the cover time of a spider graph
Gm1,m2,...,mK

by a simple random walk. Then,

E0[C] =
∑

k∈[K]

mk

∫ ∞

0

{2 − (2 − e−αkt)Φk(t)}dt

Elj [C] =
∑

k∈[K]

mk

∫ ∞

0

{2 − (2 − e−αkt)ϕ(j)
k (t)}dt

+ 2mj

∫ ∞

0

(1 − Φj(t))dt

for every leaf lj ∈ L, where

ϕ
(j)
k (t) =

{
Φj,k(t), k ̸= j,

1, k = j.

Proof. From (1.2), (3.3) and Lemma 3.5, we obtain

E0[C] =
∑
Λ⊂L
Λ ̸=∅

(−1)|Λ|+1
2

∑
k∈[K] mk −

∑
k∈[Λ] mk∑

k∈[Λ] αk

= 2
( ∑

k∈[K]

mk

) ∫ ∞

0

(1 − Φ∅(t))dt

−
∑

k∈[K]

mk

∫ ∞

0

e−αktΦk(t)dt

=
∑

k∈[K]

mk

∫ ∞

0

{2 − (2 − e−αkt)Φk(t)}dt.

For Elj [C], we notice that

Elj [σΛ] =

{
m2

j + E0[σΛ], if Λ ̸∋ lj ,

0, if Λ ∋ lj ,

from (3.4) and (3.5). Then, we see that

Elj [C] =
∑
Λ⊂L

Λ ̸∋lj ,Λ ̸=∅

(−1)|Λ|+1(m2
j + E0[σΛ])

= m2
j +

∑
Λ⊂L

Λ ̸∋lj ,Λ ̸=∅

(−1)|Λ|+1
2

∑
k∈[K] mk −

∑
k∈[Λ] mk∑

k∈[Λ] αk

= m2
j + 2

( ∑
k∈[K]

mk

) ∫ ∞

0

(1 − Φj(t))dt

−
∑

k∈[K]\{j}

mk

∫ ∞

0

e−αktΦj,k(t)dt

= m2
j + 2mj

∫ ∞

0

(1 − Φj(t))dt

+
∑

k∈[K]\{j}

mk

∫ ∞

0

{2 − (2 − e−αkt)Φj,k(t)}dt

Remark 3.11. It is obvious that for any tree Ex[C] attains
the minimum at a certain leaf. When a spider graph with
K = 3, 4, it is not difficult to see that Eli [C] ≤ Elj [C] if
mi ≥ mj . However, when K ≥ 5, it is not necessarily the
case. Indeed, for G1,2,11,13,13, El2 [C] ≥ El1 [C] even though
m2 ≥ m1. Here the spider graph G1,2,11,13,13 is minimal
among such graphs in the lexicographic order when K =
5. We feel that El[C] attains the minimum at the leaf ℓi

corresponding to the largest mi.
Example 3.12. We consider the regular spider Gm1,...,mK

with mi = N/K ∈ N, i = 1, 2, . . . ,K. From Theorem 3.10,
we see that

E0[C] = K
N

K

∫ ∞

0

{2 − (2 − e−Kt/N )(1 − e−Kt/N )K−1}dt

=
N2

K

(
2

K∑
k=1

1
k
− 1

K

)
.

It also follows from Theorem 2.5 since Gm1,...,mK with
mi = N/K is the (N/K − 1)-subdivision of G1,...,1. If
K = Nα(0 < α < 1),

E0[C] ∼ 2αN2−α log N (N → ∞).

Lemma 3.13. Given a non-empty set Λ ⊂ L and γi ∈
R for i ∈ [Λ]. Let ϕΛ be a function on the spider graph
Gm1,...,mK = (V,E) satisfying for λ > 0

ϕΛ(v) = e−λ(PϕΛ)(v), v ∈ V \ L,

ϕΛ(i,mi) = γi, li ∈ Λ,

ϕΛ(i,mi) = e−λϕΛ(i,mi − 1), li ∈ Λc.
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Then, we have

ϕΛ(0) =

 ∑
k∈[Λ]

2γk

µmk
+ − µmk

−


×

( ∑
k∈[Λ]

µmk
+ + µmk

−
µmk

+ − µmk
−

+
∑

k∈[Λ]c

µmk
+ − µmk

−
µmk

+ + µmk
−

)−1

=

 ∑
k∈[Λ]

γk

sinhmkκ


×

( ∑
k∈[Λ]

coth mkκ +
∑

k∈[Λ]c

tanhmkκ
)−1

,

where µ± = µ±(λ) = eλ ±
√

e2λ − 1 and κ = log µ+.

Proof. We may assume that ϕΛ(k, x) = Akµx
+ + Bkµx

− for
some Ak and Bk on each path, and from the boundary
conditions at 0 and leaves, we obtain

Ak + Bk = ϕΛ(0), k ∈ [K]
Akµmk

+ + Bkµmk
− = γk, lk ∈ Λ,

Akµmk
+ = Bkµmk

− , lk ∈ Λc,

For the third conditions, we used the equalities µ+µ− = 1
and 1 − e−λµ± = ∓

√
1 − e−2λ. Also we have

K∑
k=1

Ak =
K∑

k=1

Bk

from ϕΛ(0) = e−λ 1
K

∑
k∈[K] ϕΛ(k, 1). By solving these

equations, we obtain the assertion.

Proof of Theorem 3.1. From (1.2), we see that

E0[e−λC ] =
∑
Λ⊂L
Λ ̸=∅

(−1)|Λ|+1E0[e−λσΛ ].

We set ϕΛ(v) = Ev[e−λσΛ ]. Since ϕΛ satisfies the assump-
tion in Lemma 3.13 with γk = 1, we obtain ϕΛ(0) as in
Lemma 3.13. By setting

ν({k}) = (sinh mkκ)−1,

µ2({k}) = µ1({k})−1 = tanhmkκ,

in the second formula in Lemma 3.5 we obtain the desired
integral representation.
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