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Abstract. In this paper, we discuss an abstract collision system (ACS) on a G-set which is an
extension of a normal ACS [5, 6]. An ACS is a type of unconventional computing framework that
includes collision-based computing, cellular automata (CA), and chemical reaction systems. For
a given group G and its subset, we create a set of collisions and a local transition function of an
ACS by using the action of G. We first refine definitions of the components of an ACS, and then
extend them to the concepts on a G-set. Finally, we define and investigate the operations “union”,
“division” and “composition” of the ACS on a G-set.

Keywords. collision-based computing, cellular automata.

1. INTRODUCTION

Recently, many investigations have been carried out on
unconventional computing methods based on the concept
of the collision-based computing [1], including cellular au-
tomata (CA) and reaction-diffusion systems. It is one of
major important subjects to construct an appropriate com-
putational model for investigating the unconventional com-
puting methods.

Conway introduced 'The Game of Life’ which is a two-
dimensional cellular automaton [2]. In this game, there
are some special patterns called “gliders” and he showed
that any logical circuit can be simulated by the collision of
gliders. Wolfram and Cook [11, 3] found glider patterns in
the one dimensional elementary cellular automaton CA110.
Cook introduced a cyclic tag system (CTS) as a Turing
universal system, and showed that a CTS can be simulated
by CA110 by using collisions of gliders in CA110. Recently,
Martinez et. al. investigated glider phenomena from the
viewpoint of regular language [7]. Morita [8] introduced a
reversible one dimensional CA which simulated CTS.

We previously introduced the notion of an abstract colli-
sion system (ACS) as a tool for investigating collision phe-
nomena including glider collisions in "The Game of Life’
and ’CA110’, and we proved that it is universal for compu-
tation [5]. Moreover, we investigated the simulation of ACS
by CA, and determined conditions that make this possible
[6].

The notion of automata on groups was first treated as a
special case of automata on graphs (Cayley graphs) which
represent groups [10, 9, 12]. Fujio [4] introduced the com-
position of CA on groups in order to reduce a complex
behaved dynamics into simpler ones. As an example, he
showed that rule 90 (3 neighborhood) CA can be factor-
ized into the composition of double XORs, which are rule
6 (2 neighborhood) CA.

o7

In this paper, we introduce an ACS on a G-set, and we
investigate the properties of this extended system. Gen-
erally, the set of collisions, which is a domain of the local
transition function, is very large. However, in the notion of
an ACS on a G-set, we use a small set V and a function [
named the “base function”. We induce the set of collisions
C and the local transition function f; from V and .

Next, we consider ACS operations such as “union”, “di-
vision” and “composition”, and introduce a sufficient con-
dition that allows an ACS on a group to be dividable. Fur-
thermore, we proved that the operation “composition” is
right-distributive over “union”, but the operation “com-
position” is not left-distributive. We provide a counter-
example concerning this left-distributive law. In addition,
we reformalize CA on groups by using an ACS on a G-set.

This paper consists of the following sections. In Section
2, we introduce the concept of an ACS. First, we define a set
of collisions C on a non-empty set S. The set C specifies all
combinations of elements in S which cause collisions. Next,
we define an ACS using S, C and f, where f:C — 2% is a
local transition function.

In Section 3, we define an ACS on a G-set. Let G be a
group which acts on S. When V C G and a map from 2V
to 29 are given, we construct a set of collisions C on S and
extend the map to a local transition function f : C — 2°
by using the action of G. Moreover, we investigate the be-
havior of the global transition function from the viewpoint
of this extension.

In Section 4, we define the operations “union” and “divi-
sion” of the ACS. Moreover, we give a sufficient condition
allowing an ACS on a group to be dividable.

In Section 5, we discuss the composition of ACSs on G-
sets. We define this composition as an operation of base
functions of two ACSs and we prove that this definition
induces the composition of local (resp. global) transition
functions.
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In Section 6, we prove that composition is right-distributive Therefore we have

over union, but is not left-distributive. We also provide a
counter-example.

2.  ABSTRACT COLLISION SYSTEMS

In this section, we define an abstract collision system. Let
S be a non-empty set. First, we define a set of collisions
on S.

Proposition 1. Let C C 2°. The following two conditions
(a) and (b) are equivalent.

(a) The set C satisfies:

(SC1) {s} €C forallse S.

(SC2) For all X CC, (UX) €C if (NX) # ¢,
(b) The set C satisfies:

(SC1) {s} €C forallse S.

(SC’2) For all X1 and X2 € C, X3 U Xy € C if
X1NXs 7&(;5

(SC’3) [pl¢ €C for all Ac 2% and p € A,

where
X =({X1|Xea},
LJX:LJ{X|X€X}7 and

(1) plé = J{X|XeCpe X X CA}.

Proof. We prove (SC2) < ((SC’2) A (SC’3)).

(SC2) = (SC’2) First, we prove (SC’2) from (SC2). Sup-
pose that X1, Xs € C, X1NXs # ¢. Let X = {X1, Xo} CC.
Since (NX) = X1 N X2 # ¢, we have X; U Xy = (UX) €C
by (SC2). Therefore we have proved (SC’2).

(SC2) = (SC’3) Next, we show (SC’3) from (SC2). Let

X={X|XeCpeX XCA}.

Since p € (NX), we have (NX) # ¢. Therefore [p|7 =
(UX) € C by (SC2).

(SC’2) A (SC’3) = (SC2) Finally, we prove (SC2) from
(SC’2) and (SC’3). For all X C C, we assume that (NX) #
¢. Let zg € (NX) and

(2) A=[]Jx.
Since zg € A, we have
(3) [z]¢ € C

from (SC’3). We see that [v0]Z C A from the definition of
[z0]&. On the other hand, for all X € X, since X € X CC,
we have X € C. Moreover, since zp € (NX) and A = (UX),
we have g € X and X C A. Hence we have

Xc| XX eCuoe X, X CA} =[xl

(4)

Hence we have

(UX) = A=[z]¢ €C,

by (2), (3) and (4). Therefore we have proved (SC2). O

Definition 1 (Set of collisions). A set C C 29 is called a
set of collisions on S iff it satisfies conditions of Propo-
sition 1.

Proposition 2. Let € be a family of sets of collisions on

S. Then a set
Ne=[\c¢
cee

is a set of collisions on S.

Proof. We check conditions (SC1) and (SC2).

(SC1) First, we prove (SC1). We have {s} € C for all
s € § and C € €. Therefore we have {s} € (N€).

(SC2) Next, we prove (SC2). Forall X C (N€), and C € €,
we assume that (NX’) # ¢. The set C satisfies the assump-
tion of (SC2), i.e.,

X c(ne) cc,

(NX) £ 6.
Therefore we have (UX) € C from (SC2). Hence we have
(UX) € (Ne). O

Definition 2. For a subset C of 25 we define
(5) €(C)= m {C | C is a set of collisions on 9,C C C} .

By Proposition 2, this set is a set of collisions on S, and it
includes the set C. Moreover, this set is a smallest set in
all of sets of collisions on S which includes C.

Proposition 3. Let C be a set of collisions on S. For all
A€ 2% and p,q € A, we have the followings:

(1) [Pl # ¢
(2) If pl¢ N [gld # ¢, then [p)2 = [q]¢-

Proof. First, we prove (1). Since {p} € C, p € {p} and

{p} C A, we have {p} C [p|&. Hence [p|¢ # ¢.
Next, we prove (2). Since [p]& € C, [¢]& € C and [p]d N
[q]& # ¢, we see that

[plé Ul €C.

Moreover since p € [p|& U[q]¢ and [p]Z U[g]4 C A, we have
[p]& U [g)é C [p]é. Hence we have

[ple Ulalé = [ple-
Similarly, we have [p]#U[g]4 = [¢]¢. Hence [p|g = [¢7. O

Next, we define abstract collision systems.
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Definition 3 (An abstract collision system). Let S be a
non-empty set, C a set of collisions on S and f a function
f :C — 25 We define an abstract collision system
M by M = (S,C, f). We call the function f and the set
2% a local transition function and a configuration of
M, respectively. We define a global transition function
Fu 25 — 25 of M by

pEA

Lemma 1. Let F); be the global transition function of an
abstract collision system M = (S,C, f). If A € C, we have

Proof. Since A € C, we see that [p]§ = A for any p € A.
Therefore we have

Fy(A) =
pEA

Example 1. We describe a one dimensional billiard ball
system as an example of ACS.

A ball has a velocity, a label and a position. We consider
discrete time transitions. A ball moves to left or right ac-
cording its velocity within an unit time. Let (2, A,1) be a
ball with the velocity 2, the label A’ and the position 1.
At the next step, the ball becomes (2, A, 3) if it does not
crash with any other balls (cf. Figure 1).

0 2 3 0 1 2

3
—

1
—

Figure 1: Moving

On the other hand, some balls may crash in some unit
time. In this example, we do not describe a crash using
positions and velocities. We define a set of balls which
cause collisions and assign the result of the collisions.

We describe this example more concretely. Let

VvV ={-1,2},

S={(u,A,z) |z € ZueV}
U{(v,B,y) |y € ZveV}

C={{(2,4,1),(-1,B,2)}}
U{{(u,A,2)} |ueV,xeZ}
U{{(v,B,y)} lveVyeZ}

We define f by Table. 1. For example,
f ({(2a A7 1)a (_17 B7 2)}) = {(2a Ba 3)) (_L A7 1)}

is shown in Figure 2.

0 1 2 3 4 0 1 2 3 4
—
— — — —

Figure 2: Collision

Table 1: Collision and its result

| c | f(c) |
{(2,4,1),(-1,B,2)} | {(2,B,3),(-1,4,1)}
{(u, A 2)} {(u, A,z 4 u)}
{(v,B,y)} {(v, B,y +v)}
0 2 3 4 5 7
— —

—

—

& 16 -

Figure 3: Transition

Let M = (S,C, f). Then an example of transition is

FM ({(27 Av 1)7 (_LBv 2)7 (27 Av4)7 (_17 Bv6)})
={(-1,4,1),(2,B,3),(-1,B,5),(2,A4,6)},

and it is shown in Figure 3.
We note that the set of two balls {(4, 4,2), (-1, B,6)}
does not cause collisions, because it is not an element of C.

Definition 4. Let M; = (S,Cy, f1) and My = (S,Ca, f2)
be abstract collision systems. We say that M; and M, are
equivalent if they satisfy

for all A € 2°. When M, and M, are equivalent, we write

M1 = Mg.

Lemma 2. Let My = (S,C, f1) and My = (S,C, f2) be
abstract collision systems. If f1 = fo then My = M>.

Proof. Let Fyy, and Fyy, be global transition functions of
M, and M, respectively. Suppose that A € 2°. Then we
see that

FM1 (A)

U A (pé)

peEA

U f2 ([p]?)

pEA
= Fu, (A).

Therefore we have M7 = M. O
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3. ABSTRACT COLLISION SYSTEMS ON (G-SET

In this section, we consider an action of a group. Let G be
a group, and S a non-empty set.

Definition 5. A map from G x S to G,

(6)
is called an action of G on S, iff it satisfies:
(1) (gh)s = g(hs) (g,h € G,s€S)

(2) es=s

GxS—S8 ((g:5) — gs)

(e is an identity element of G).
Then we say that the group G acts on the set S. Moreover,
the set S is called G-set.

When a group G acts on a set .S, we define an action of
G on 2° by

(7)

We have the following proposition about this action.
Proposition 4. For all g € G and X,Y C S, we have:

(®)
9)
(10)

gX ={gz |z e X} (geG,Xec2%).

If X CY, then (¢X) C (g9Y).
9(XUY) = (¢X) U (gY)
9(XNY) = (¢9X) N (gY)
Proof. (8) is clear.

Next prove (9). Since X, Y C X UY, we have g¢X C
g(XUY) and gY C g(X UY). Therefore we have

(gX)U(gY) Cg(XUY).

On the other hand, for all z € g(X UY'), there exists w €
X UY such that z = gw. Then w satisfiesw € X orw € Y.
If we X (resp. w €Y), we have z € gX (resp. z € gY).
Therefore z € (9X) U (¢Y). Hence we have

g(XUY) C (gX)U(g9Y).

Finally, we prove (10). Since X NY C X,Y, we have
g(XNY) C (¢9X) and g(X NY) C (gY). Therefore we
have

9(XNY) < (9X)N(gY).

On the other hand, for all z € (¢X) N (gY), there exists

z € X and y € Y such that z = gxr and z = gy. Since

g 'z =x =1y, we have x = y € X NY, which implies

z=gr=gy €g(XNY).
Hence we have
(gX)N(gY) Cg(XNY).
All claims of Proposition 4 are proved. O

Definition 6. Let G be a group, S a non-empty G-set,
V' a non-empty subset of S and [ a function [ : 2V — 25,
Then let

(11) Cv={9X|geG Xe2"}
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and C be a set of collisions on S which includes CNV. Then
we define a local transition function f; : C — 2° by

[(X) = gllg™' X)n V).

geG

(12)

We call an abstract collision system M = (S,C, f;) an ab-
stract collision system on a G-set made by V and .
Moreover, we call the function [ a base function of M. In

addition, we call f; an induced local transition func-
tion by V and [ on G, and denoted by f; = Ind(G, V,1).

Definition 7. Let V/ C V. We call a set V' essential
domain of [ iff it satisfies

(X)) =UX NV

for all X € 2V.

We investigate the behavior of the global transition func-
tion of an abstract collision system on a G-set. We prepare
the following lemmas.

Lemma 3. Let Ac2® and g € G. If
g PNV =29
for all p € A, then we have
g ANV = ¢.

Proof. We assume that g 'A NV # ¢. Then there exists
r€g'ANV. Let p=gx. Sincep=gr € Aand z € V,
we have

z=g 'peg pl¢NV.

Hence we have g~ 1[p]d NV # ¢, this contradicts the as-
sumption of the lemma. O

Lemma 4. Let Ac 2%, pc Aand gcG. If
g lple NV #9,
then we have
g I plE NV =¢gtANV.

Proof. From the definition of [p]Z, it is clear that [p]d C A
Hence we have

g ple NV CgtANY.
Let 7 € g7*ANV and ¢ € [p]d NgV. We show
zegplenV.

Since g € [p]Z N [q]& # ¢, we have [p|Z = [¢]& by Proposi-
tion 3. Let

X1 =g,
Xo = ([q)¢ NgV)U{gz}.

Then it is clear that X; € C by (SC’3). Since

(13)

(g6 NgV CgV, greAngV CgV,
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we have X5 C gV'. Hence we have
X1, X5 € 5\/ CC.

Since ¢ € [¢]& and ¢ € gV, we have ¢ € X; and ¢ € Xo.
Hence X7 N Xy # ¢. Therefore we have X; U Xo € C by
(SC2). Moreover, since * € g-* ANV, we have gz € A,
ie, {gx} C A. Since

X1UXo€l, qe€Xi1UXs, X1UX2gA,

we have [¢]4 2 X1 U Xz by (1). Hence gz € [¢]#, which

implies x € g~*[q]&. Moreover, since z € g7 ANV, it is
clear that x € V. Therefore we have

zeg e NV =gpld V.

O

Lemma 5. For all g € G, A € 2%, p,q € A, we assume
that

(G'PIENV) £, (g dd N V) # ¢

Then we have

Proof. By Lemma 4, we see that
(' PN V)= (g gd nV) = (g7t ANV).
Hence for all = € (g~ [plg N'V), since gz € [plZ, [al¢, we

have [p]& N [q]& # ¢. Therefore we have [p]d = [¢]& by
Proposition 3.

O

By these lemmas, we see the following, immediately.

Lemma 6. Forall g € G and A € 2°, suppose that A ¢ C.
Then we have

14 Ul plenV)=g( (st AnV)UL(9)

pEA

Proof. Suppose that g }[p]4 NV = ¢ for all p € A. Then
we have g 'ANV = ¢ by Lemma 3. Hence the left hand
side of (14) equals to

U 9i(¢) = gl(¢) = g(l(6) UI($)) = g(I(g~ " AN V) UI(9)).

peEA

This equals to the right hand side.
Next, we assume that there exists p; € A such that

g7 pile NV # ¢. Let

A ={peA|lg'hlenV #¢.},
A'={peAlgpldnv=0}.

Then we have p; € A, which implies A’ # ¢. Since A ¢ C,
there exists g1 € A such that [p1]4 # [¢1]2. Hence we have
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g1 € A” by Lemma 5. This implies A” # ¢. Therefore the
left hand side of (14) equals

Usdl (g ' e nv)
peEA

=g 'wenv)u | glg e nV)

peEA’ peEA"
= U gl(g7"AnV)U U gl (¢) (by Lemma 4)
peA’ peA’
=gl (g"ANV) Ugl(e).
This equals the right hand side of (14). O

This lemma induces the following theorem.

Theorem 1. Let M = (S,C, f;) be an abstract collision
system on a G-set. made by V andl. Let Fy; be the global
transition function of M. If A € C, then Fy; satisfies

(15) Fy(A)=Jgl(g7'ANV).
geG

If A¢C, then

(16) Fy(A) = J g (g AnV)Ul(9)).

geaG

Proof. First, suppose that A € C. (15) is clear by Lemma
1 and (12). Next, suppose that A ¢ C. By Lemma 6, we
see that

Fuy(A) = U (A1)

pEA

=J U @' pénv))

peEA geG

=J U (@' ménv))

geG peA

=Jogl(g AnV)ui(9)).

geG

Hence the theorem follows. O

Corollary 1. Especially, if [(¢) = ¢, then we have

U gl (gflA N V)

geG

Fy(A) =

for all A € 25.

Corollary 2. We assume that l(¢) = ¢. Let C; and Co be
sets of collisions on S. Suppose that Cyy C C; and Cy C C,.

We make abstract collision systems My = (S,Cq, fi) and
My = (S,Ca, f1). Then we have

M1 = Mg.

Proof. Let Fyy, and Fiy, be global transition functions of
My and Ms, respectively. By Corollary 1,

Far,(A) = Fa,(A) = (J gl (97" AN V)
geG

for all A € 2°. Hence the corollary follows. O
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In the following of this paper, we suppose that (¢) = ¢.
Let M = (S,C, fi) be an abstract collision system on a G-
set made by V and [. By Theorem 1, the abstract collision
system M is determined by only G, S, V and [, i.e., M does
not depend on the set of collisions C. Therefore we denote
the abstract collision system M by M = GACS(G, S,V,1)

Then by Corollary 2, we have the following proposition.

Proposition 5. We have
GACS(G,S,V1,l1) = GACS(G, S, Vs, ls)

ZfV1 = V2 and l1 = l2.

By Definition 7 and Theorem 1, we show the following
proposition.

Proposition 6. Let V' be an essential domain of 1. Sup-
pose that I(¢) = ¢. Then we have

GACS(G,S,V,l) = GACS(G, S, V', I'),
where I’ is restriction of | onto 2V’

Proof. Let M and M’ be abstract collision systems on a
G-set,

M = GACS(G,S,V,l), M =GACS(G,S,V,l'),

respectively. Let F); and Fj; be global transition func-
tions of M and M, respectively. By Definition 7 and The-
orem 1, we see that

Fy(A)=Jgl(g'AnV)
geG

=Jgl (g7 AnV)n V)
geaqG

= U gl (g_lA N V’) ,
geG

Fayr (A) = J gl (' AN V)
geG

for all A € 25. O

In the followings of this section, we will investigate about
cellular automata using the notion of ACS on a G-set.

Definition 8. Let G be a group, V' a subset of G and [ a
function from 2V to 2¢. We assume that

(for all X € 2"),

¢
Then we call GACS(G, G, V,1) a cellular automaton on
the group G.

We consider the following one-to-one mapping:
(gy...yap) = {ieV |x,=1}.
We denote a map [ by

l{ieV |z, =1}) =1(zo,...,2n),
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for example 1({0,1,3}) = (1,1,0,1,0,...,0).
we denote ¢ by 0 and {0} by 1, i.e,

Z(LC()7...

Moreover,

7xn) =0
7$n) =1

l{ieV ]|z, =1})=¢

[{ieV ]z, =1}) ={0}
Let n be a positive integer, G =7,V = {0,1,...,n—1}

and [ a function [ : 2" — 2¢. Then the rule number of [,

which is also known as the Wolfram number, is defined by
the number whose binary expression with the length 2"

,...,1,1)I1(@1,...,1,0)---1(0,...,0,1)1(0,...,0,0),
ie.,

Z ) - 222;01 mkzn—pk,.

0,...Tn—1€{0,1}7

l(l‘o,...,l‘n_l

Moreover, we denote the function [ with rule number r
by 1. For example, let n = 2 and V = {0,1}. Then a
function lf), whose rule number is 4, is

I (1,1) =0,
19 (1,0) = 1,
17 (0,1) =0,
182 (0,0) = 0.

We note that the binary expression of 4 is 0100. More-
over, we call the cellular automata on group Myca_, =
GACS(Z,7,{0,...,n—1}, lﬁ”)) (1 dimensional 2 states) n
neighborhood cellular automata with rule number
.

Example 2. Let G =7,V = {0,1}. We define ! by

1({0,1}) = ¢, 1({0}) = {0},
1{1}) = {0}, U¢) = ¢

By using notation of (17), we denote this function by

1(1,1) = 0

1,1)=0, 1(1,0)=1,
10,1) =1,

1(0,0) =0,

ie., l(zg, 1) = ©o ®x1. We note that the rule number of
is 6 and denote [ by l((f) Then an abstract collision system
Msca_¢ = GACS(Z,Z, {0,1},lé2)) is a 1 dimensional, 2
state, 2 neighborhood cellular automaton with rule number
6.

Example 3. Similarly, we can construct other 1 dimen-

sional, 2 states, n neighborhood cellular automata. Let
Q ={0,1} and f, ca—r: Q™ — Q. Suppose that
frn ca—r(0,...,0) =0.
Let G=Z and V ={0,1,...,n— 1}.
We define I{™ : 2V — 2% by
n —r ey dip— = 0
10 (29, m 1) = 4@ Snca—r (@0 i)
{0} fn CA-r (.’L'(),...,"Enfl):].
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for all (zg,...,zn_1) € Q™.

By using notation of (17), we denote l,gn) by

n 0 n —r ooy Tp—1) =0
1) (29, . wm_g) = 40 Jnca (0, #n-1)
L focak(xo,. ., op_1)=1
:fn CA—T(:E07"'7:E’IL—1)'

Then an abstract collision system a G-set
M, ca_, = GACS(Z,Z,V,IM)

is a 1 dimensional 2 states n neighborhood cellular automa-
ton with rule number r.

In the above definition and example, we can construct
only 2-state cellular automata. We describe how to make
other general cellular automata.

Example 4. Let @ be a non-empty set, G = Z and S =
Z x . We define

z1(22,q) = (21 + 22,q)

for all z; € G and (z2,q) € S. We choose a subset H C Z.
and define V = H x (). Suppose that

LX) {0} x@Q

for all X € 2V and I(¢) = ¢. Then an abstract collision
system
M = GACS(Z,7 x Q,H x Q,1)

is a 1 dimensional, @ state, H neighborhood cellular au-
tomaton.

Since I(¢) = ¢, we note that we can construct any cellu-
lar automata which has the rule fc4(0,0,...,0) = 1.

If [(¢) # ¢, we can not construct cellular automata on
groups. By Theorem 1, the behavior of the global transi-
tion function depends on configurations.

First of all, we describe a theorem with respect to the set
€(Cy). From this theorem, we can evaluate the set €(Cy ).

For all subsets X,Y C G, we define

XY '={ay 'lzeX yeY}.
We define a set Cy by

for all Y7 and Y5 C X,
V1oV HnY,eV=1l) £
1fY1 7£¢,Y27£¢and Y1UY2:X.

(18) Cy =4 X

Then, we can show the following two lemmas.

Lemma 7. Cy is a set of collisions on G.

Proof. We check the condition (SC1). For all s € S, let
X = {s}. For all Y7,Y5 C X, we assume that Y7 # ¢,
Y2 # ¢, and Y1 UY; = X. Then, since Y7 =Y, = {s} = X,
we have

VeV HnY,eV H=XeV !+

Hence {s} € Cy.
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We check the condition (SC2). Let X C Cy and (NX) #
¢. We assume that (UX) ¢ Cy, that is, there exist Y7 and
Yz C (UX) such that Y1 # ¢, Yo # ¢, Y1 U Y, = (UX),

VeV HnY,oV ! =0

Then, since (NX) # ¢, there exists so € (NX). We can
assume that so € Y7 without loss of generality.
Since (UX) =Y, UY; and Ys # ¢, we have

(Ux)nre=miuv)ny, =% # 0.

Hence there exists X € X such that Yo N X # ¢.
Since X € X C Cy, we have

(19) X ely.

Since sp € (NX) C X, s¢ € Y1, we have

(20) S0 €EYINX # ¢

Let Y/ =Y1NX, Yy =Y,NX. Then we have Y1 N X # ¢,
Y5 N X # ¢. Moreover, we see that

YUY,
=YhuYe)nX
=(UX)NX = X,

Y/ eV Hny,eV)
CVieV hHnYevh
—.

Hence X ¢ Cy, this contradicts (19). Therefore we have
(UX) € Cy, O

Lemma 8. The set Cy includes the set C~V, i.e.,
Cy CCy

Proof. For all g € G and X € 2V, we show that gX € Cy.
If X = ¢ or #X = 1, then we can see easily. We assume
that #X > 2. Let Y7 and Y3 be subsets of gX. Suppose
that

YI#¢7 Y27é¢7

For all y; € Y7, we have

Vi UYs = gX.

y1 €Y1 CgX CgV.

Therefore there exists hy € V such that y; = gh;. Hence
we have
g=yhi eIV L

Similarly, we have g € Yo ® V1. Therefore we have
ViV Hn YooV £¢.
Hence gX € Cy. Therefore we have 5‘/ CCy. O

We can prove the following proposition easily, from these
two lemmas,
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Proposition 7. We have
¢(Cy) C Cy.

Let V = {0,1,2}, l(¢) # ¢ and M be an abstract col-
lision system M = (S,¢(Cy), f;) made by V and I. Let
Fyr be the global transition function of M. For example, a
configuration ¢; = {0} is an element of €(Cy ). Therefore
by Theorem 1, we see that

Fun(er) = fi(er).

However, we consider another configuration co = {0, 3}.
By Proposition 7, we can see ca ¢ €(Cy). Therefore by
Theorem 1, we see that

FM (Cg) = U g{O} = 7.

gEZ

4. UNION AND DIVISION OF ABSTRACT
COLLISION SYSTEMS

In this section, we discuss about union and division of ab-
stract collision systems.

Definition 9 (Union). Let M; and My be abstract colli-
sion systems M7 = (S1,C1, f1) and My = (S2,Co, f2). We
define f; U f5 by

(iU f2) (X) = Fa, (X N2%1) U Fay, (X N2%)

where Fyy, and Fyy, are global transition functions of M;
and M, respectively. We define union of M; and Ms,
which is denoted by M; U Ms, by

(21) M; UMy = (Sl U SQ,Q:(Cl UCQ),fl U fQ)

Definition 10 (Division). Let M be an abstract collision
system M = (S,C, f). We say that M is dividable iff
there exists two abstract collision systems M; # M and
Mg 7& M such that M = M1 U Mg.

Proposition 8.

GACS(G,S,V,1;) UGACS(G, S,V,15)
EGACS(G, S, ‘/, ll U 12),

where
(hUl)(X) =

for all X € 2V,

L (X)Ulx (X)

Proof. We choose arbitrary set of collisions C; and C; in-
cludes Cy. Let

fi, =Ind(G, V. 11),
fi, =Ind(G, V. 12),
froot, = Id(G, V, 1, Uly).

Journal of Mathematics for Industry, Vol.2(2010A-6)

Let My = (S,Cy, f1,) and My = (S,Co, f1,). Forall X € 2V,
we see that

fl1Ul2 (X)
=Jgtuk)(g'xnV)
geG
=lJg{h(g'XxnV)Ul(¢'XnV)}
geG
=g (' xnV)uJgh(g'XNV)
geG geG

=F,(XNS)UF,(XNS)
:(fh Ufl2) (X) .

Therefore we have

M; U M,
=(S,&(C1 UCa), fi, U f1,)
=(S5,€(C1 UC2), fiyutn)-

Moreover, since C~V C (C1,Co, we have 5&/ C €(Cy UCy).
Hence we have

(S, Q:(Cl U 62)5 fllUlz)
=GACS(G, S, V11 Uly)

Therefore we have

Ml U M2 = GACS(G, S, ‘/,ll U lg)

Corollary 3. Let
M, = GACS(G,S,V,l1), My;=GACS(G,S,V,ls).

Let Fyr,, Far, and Far,un, be global transition functions
of My, My and My U Ms, respectively. Then we have

Fanon, (A) = Fury (A) U Fi, (A)
for all A € 25
Proof. Let A € 2. From Proposition 8, we have
My UMy = GACS(G,S,V, 11 Uly).
Therefore we see that

FM1UM2 (A)
= U g(liuly) (g7 ANYV)

geqG

= U gly (g_lAﬂ V) U U glo (g_lAﬂ V)
geG geq

:FMl (A) U FM2 (A)

by Theorem 1. O
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Corollary 4. Let

M, = GACS(G, S, V) 1y),

My = GACS(G, S, V,ls),

Mz =GACS(G, S, V,l3).
We have

M1 @] M3 = MQ @] M3

Zf M1 = MQ.
Proof. Let Py, o, FJ\/[3 FMluMS and FMluM3 be global
transition functions of M;, Ma, M3, Firunm, and Fa,uns,

respectively. Then we have Fpy, = Fy,. For all A € 25,
we see that

Fur o, (A)
=Fu, (A) U Fay, (A)
:FM2 (A) U FM,; (A)
=Fr,om, (A)

from Corollary 3. Hence we have My UMz = My UM;. O

Next, we consider to divide the set C into some partitions.

Proposition 9. Let C be a set of collisions on S. The
following three conditions are equivalent.

(a) There exists two sets of collisions C1 and Ca on S which

satisfies:
(22) C=C1UCy,
(23) f07’ all X1 € C1, X5 € Co,

if #X1 22 and #X5 > 2,
then X1 N X2 = ¢,

where #X; is the number of elements in X;.

(b) There exists subsets C1 and Cs of 25 which satisfy

6:51 U@7
X, Egl,XQ ngéXl ﬂX2:¢.

(24)
(25)

(c) There exists S1 and Sa which satisfy

(26) S1USy =38,
(27) 51N Sy = ¢,
(28) (Ccn29)u(Cn2%) =cC.

Proof. We prove (¢) < (a) and (c) < (b).
(c) = (b) Let

Ci=Cn2%.
Then we have

CLUC, = (CNn2°)U(Cn2%) =c,

by (28). Hence we have (24).
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Moreover, for all X; € C~1, X5 € C~2, since
X, €25 X, € 25
and (27) of (c), we have
XiNX; €S NSy =¢.

Hence we have (25).

(b) = (c) Let

Si={Jc:.
We prove (26), i.e., S1 U Sy = S. It is clear that S; NSy C

S. On the other hand, for all s € S, we have {s} € C.
Therefore we have

s € (UC) U (UCy) =51 U Sy,

by (24). This implies S C S US3. Therefore we have (26).

Next, we prove (27), i.e., S1 N S2 = ¢. We suppose that
S1 M Sy # ¢. Then, there exists s € S; N Se. Therefore,
there exists X; € C; and X5 € Cy such that s € Xy, s € Xo.
This implies s € X1NX5 # ¢. This contradicts (25). Hence
we have (27). Finally, we prove (28). It is clear that

(Ccn29)u(Ccn2%) Cc.

On the other hand, since S = (UC; ), we have X C (UCy) =
S; for all X € C;. This implies X € 2%1. Therefore C; C
251, Hence we have

G, cecn2s.
Similarly, we have 52 C €N 252, Therefore we have
C=CUC C(CN2%)U(Cn2%).

Hence we have (28).
(c) = (a) Let

(29)  Ci=(CN25)U{{s}|seSs_}, (i=1,2).

For all X; € C; and X5 € Cs, suppose that #X; > 2 and
#X5 > 2. Since

Xi ¢ {{s} s €53},

we have X; € (CN2%). By (27), we have (23) as following:
XiNX; CS NSy =¢.

Moreover, we have (22) as following:

ClUC, = (CNn29)u(Cn2)u{{s}|secS}
=CU{{s}|se S}
=C.

Finally, we show that C; and Cy are sets of collisions on
S. By (29), it is easy to show that C; satisfies the condition
(SC1). We check the condition (SC2). We assume X C C;
without loss of generality. Suppose that (NX) # ¢.
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We suppose that #X = 1. Then there exists X € C;
such that X = {X}. Therefore (UX) = X € C;.

We suppose that #X > 2. We assume that there exists
X € X such that X ¢ C N 2% . Then there exists so € Sy
such that X = {sa}. Therefore (NX) D {s2}. However, by
(29), we have

XECl,X#{SQ}:>SQ¢X.

Therefore, (NX) = ¢. This contradicts (NX) # ¢. Hence
we have X € CN 25 for all X € X. This implies X C
CN2°. Since C is a set of collisions on S, we have (UX) € C
from X C C and (NX) # ¢. Moreover, we have (UX) € 251
from X C 291, Therefore, (UX) € C N 25'. Hence the set
C, satisfies the condition (SC2).

(a) = (c) We assume there exists s € S such that

XelseX=X={s}

Then we can easily prove (c), by putting S; = {s} and
Sy = S\ S;. In fact, it is clear that S; U Sy = S and
S1NSy =¢. Let X € C. IfseXthenX:{s}QSl.
If s ¢ X then X C Sy. This implies that X € 251 U 252,
Therefore we have

X ecn (25 uU2%) = (Cn2%)u(Cn2%).

Hence we have (C N 251) N (CN2%) =C.
In the following, suppose that for all s € S, there exists
X € C such that

(30) seX, #X>2
Let
(B1)  Si=J{X|xec,#x>2}, (i=12),

First, it is clear that S; # ¢ and S; U .S; C S. We show
that S1 U Sy, D S. For all s € S, there exists X € C
such that s € X, #X > 2. Since C = C; Uy, we have
XelorX el If X €C (resp. C2), we have X C 5
(resp. X C S3) by #X > 2. Therefore we can conclude
that s € X C S; US,. Next, we prove (27). We assume
that S1 N Sy # ¢. There exist X; € C1(#X; > 2) and
Xo € Co(#X2 > 2) such that s € X3, s € X3. This implies
X1NXs # ¢. This contradicts (23). Finally, we prove (28).
Let X € C. Suppose that #X = 1. Since S = 57 U Ss, we
have X C S; or X C S5. Therefore X € 251 U252, We
suppose that #X > 2. Then we have X C S; or X C S,
by (31). This implies X € 251 U252, Therefore we have

Xecn (2% u2%) = (Cn2%)u(Cn2).
Hence we see that
CC(n29)u(Ccn2%),
On the other hand, it is clear that
(Ccn29)u(Ccn2%) cec.

Hence we have (28). O
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Definition 11. Let C be a set of collisions on S. We call
the set C is dividable iff it satisfies conditions of Proposi-
tion 9.

Proposition 10. Let M = (S,C, f) be an abstract colli-
sion system. If the set C is dividable, then M is dividable.

Proof. Since the set C is dividable, it satisfies the condition
(c). Therefore, there exists S; and S3 such that

(32) S1US, =S, S1NSy=¢, (CN2°1)U(CN2%) =C.
Let
(33)

M12(517cm2513f1)7 MQZ(SQ,szsQ,fQ),

where f; and f; is restriction of f onto CN2% and CN2%2,
respectively. Since C is a set of collision on S, we have

€(C1UCy) = €(C) =C.

Therefore for all X € C, we have X € (CN2%) or X €
(C N2%2). We suppose that X € (CN251). Since X C Sy,
we have X N Sy = ¢. Hence we have

(iU f)(X) = fi(X)U¢ = fi(X) = f(X).

We can also prove (34) in the same way for X € (CN2%).
Hence we have

(34)

My UMy = (S1US2,€(CrUC2), f1U f2) = (S,C, f1 U fa).
Therefore we have M1UMy = M by Lemma 2 and (34). O

The converse of Proposition 10 does not hold. We show
that there exists an abstract collision system M = (5,C, f)
such that C is not dividable but M is dividable.

Proposition 11. Let G be a cyclic group and its generator
be an element a, i.e.,

G=<a>={a"|ne€li}

We assume that V 2 {a®,a'}. Then any set of collisions
C which includes Cy is not dividable.

Proof. First we prove that
X, = {ao,al,...,a"}

is an element of C for all n € N. We prove this by using
mathematical induction. When n = 1, since

X, = {ao,al} e 2",

we have X; € 5V C C. Let £ > 1 and we assume that
X € C. Since {ao,al} €2V and d* € G, we have

Xpoy = {a", a1} =aF {a®a'} e Cy CC.
Therefore we have

X, €C, Xpyy €C, XN Xpyy = {d"} # ¢
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Hence we have
X UXpp = Xpy1 €C,
by (SC2). Similarly, we have
{a=™,...,a"} eC
for all m € N. Therefore we have
{a™™, ...

,a’ ...} ecC

for all m,n € N.

Next, we show that C is not dividable. We assume that
C is dividable. Then there exist two set S; and Sy such
that they satisfy 3 conditions of (¢) in Proposition 9.

We assume a® € S; without loss of generality. Since
So # ¢, we can take an element a™ € Sy. Then the set

_ —|n 0 n
Ynf{a | I,...,a ,...,al |}

is an element of C. Since a’ € Y, a® € S1, a” € Y,
a™ € Sy and S; NSy = ¢, we have
Y, ¢ 2%, Y, ¢ 25,
This implies
(CNn29)u(Cn2%) £C.
This contradicts (28). Hence C is not dividable. O

Example 5. We consider a 1 dimensional, 2 states, 2
neighborhood cellular automaton rule number 6:

foas(xo, x1) = 20 B 21.
We note that
zo @ x1 = (o A1) V (mmo A 21).

Let G = Z. We define léz) by

12({0,1}) = ¢, 18 ({0}) = {0},
P =10}, 1) =¢

By using the notation of (17), we denote léz) by

ie., léz)(xo,xl) = xo ® z1. Let V = {0,1}. Then we
see that the set of collisions €(Cy) is not dividable from
Proposition 11.

Moreover, we define two functions léz) and lf) by

21,1 =0, 12(1,0)=0,
120,1)=1, 1£2(0,0)=0,
2,1 =0, 191,0=1,
1200,1) =0, 1£2(0,0) =0,
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ie.,
léz) (w0, 21) = ~wo V 21,
lf) (l‘o,l‘l) = X0 V —Z7.
Let
Macas = GACS(Z,Z,V,i{),
Maca—s = GACS(Z,Z,V,1§?),
Moca_y = GACS(Z,7,V,1{?).

Then have MQCA,G = MQCA,Q @] MQCA,4.

The results of 1 dimensional 2 states 2 neighborhood
cellular automata are listed in Table 2. From this table,
we see that the rule numbers of cellular automata which is
dividable are 6, 10, 12 and 14.

Example 6. We consider 1 dimensional 2 state 3 neigh-
borhood cellular automaton CA 222, i.e.,

V = {03 17 2}7

lg)z(%afl,xz) = (xo B x2) V 21,

Msca_220 = GACS(Z,Z,V,15).

Then we see that €(Cy) C is not dividable.
On the other hand, we define two functions

lé%)(xoﬁlﬂz) =z D 2,
lé?))zl(x07xl7x2) =1,

and make abstract collision systems

Msca—90 = GACS(Z,7,{0,2},15),
Msca—o0a = GACS(Z,Z,{1}, lé%b-

Then we can easily prove that

M3zca—222 = M3zca—go U M3ca—204-

Table 2: union of two 2 neighborhood CA

([0 ] 2468 [10][12]14]
0 0 2 4 6 8§ [ 10| 12 | 14
2 2 2 6 6 |10 10| 14| 14
4 4 6 4 6 | 12|14 |12 | 14
6 6 | 6 |6 |6 |14|14]14]| 14
8 8§ |10 1214 | 8 |10 | 12| 14
10 1010 (14| 14|10 |10 | 14| 14
12 12 |14 |12 | 14|12 | 14 | 12 | 14
14 14|14 (1414|1414 |14 | 14

Finally, we show a sufficient condition with which ACS
is dividable.
Theorem 2. Let G be a group. We consider an abstract
collision system on a G-set, GACS(G,G,V,l). We assume
that there exists a normal subgroup H of G and d € G such
that H # G and dV C H. Then the set €(Cy ) is dividable.
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Proof. Without loss of generality, we can assume that d = e
(e is the identity element of G), and the index #(G/H) is
2. In other cases, we can prove similarly. We prove (c) of
Proposition 9. Let h € G\ H, and

S, =H, S,=hH.

It is clear that S = S; U Sy and S1 NSy = ¢.
Next, we prove that €(C) C 2 U2". To prove this, we
show that 2H U 2MH ig a set of collisions on S and

(35) Cv={9X|geG Xe2V}C @yt

It is clear that 2% U 2"# is a set of collisions on S. We
prove (35). Let Y € Cy. There exists g € G, X € 2V such
that Y = gX. Since V C H, we have X € 27 ie., X C H.

Hence Y = ¢X C gH. Since ¢gH equals to H or hH, 291
equals to 27 or 2. Therefore we have

Y e 298 C of yohHl,

Hence we have Y € (2 U2"H) for all Y € Cy. This implies

(35). Finally, let C; = €(C) N 2" and Cy = ¢(C) N 2MH,
Then we see that

C1UC, = (¢(C) N 27y u (e(C) n2MT)

Hence we have (28). O

Example 7. We consider a 1 dimensional 2 state 3 neigh-
borhood cellular automata CA 90. Let lé?)) be

lé%)(xmxl,xg) =20 P Ts.

First,it seems to be able to divide cells into cells which
position are even and odd. We see intuitively that this
division is able if the number of cells is infinite or even.
We describe this facts by using Theorem 2.

First, we suppose that the number of cells is infinite, i.e.,
G =Z. Let V ={0,2}. Therefore we choose H = 27Z, we
see that {0,2} C H. Hence the abstract collision system
GACS(Z,Z,{0,2}) is dividable.

Next, we suppose that the number of cells is finite and
even i.e., G = Z/(2n)Z. Similarly, we choose H = {2n |
n € G}. Then H is a subgroup of Z and we have H # G
and {0,2} C H.

5. COMPOSITION OF ABSTRACT COLLISION
SYSTEMS ON (G-SETS

In this section, we discuss about compositions of abstract
collision systems.

Definition 12. Let [ : 2V — 25. The range of I, which is
denoted by Range [, is defined by

Range [ = J{l(X) | X €2} C S
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Let S =G.

Definition 13 (Composition). Let V3 C G, Vo C G, 11 :
2Vi — 25 and [y : 2¥2 — 29, We define a set V5(l1) by

{v2 € G | (va(Range 11)) N Va2 # ¢},
if Range l; # ¢
if Range I; = ¢.

(36) Va(lh) =

Va,

Moreover, we define a set Vo(l1) ® V4 and a function 150 :
9Va(l)®V1 _, 98 by

(37) Va(lh) ®@ Vi = {vavy | v2 € Va(lh),v1 € Vi},

(38) LOL(X)=lL| |J vh(w'X)nW)nV

veVa(l1)

Lemma 9. The two sets in the Definition 13 satisfy

‘/2(11) 7é ¢7

Proof. We prove V5(l1) # ¢. If Range l; = ¢, we have
V(ly) = Vo # ¢ from (36). Suppose that Range l; # ¢.
For all z € Range l; and y € Vs, let vo = yz~!. Then
y = vox. Since vax € vo(Range ;) and y € Vs, we have

Va(ly) @ Vi # ¢.

y € (v2(Range 1)) N Va.

This implies
(v2(Range [1)) N'V2 # ¢.
Hence vy € Va(l1). Therefore we have Va(l1) # ¢. O
Lemma 10. For all vy € V5(l1), we have
Vi C oy~ (Va(lh) @ V).
Especially, we have
(39) (02 *(Va(l) @ V1)) NV = V4.

Proof. Let vy € Vi. We have v; = vy~ !(vav;). Since vg €
Va(lh), we have

(vou1) € Va(lh) ® V4.
Therefore we have
v1 = (v2) " Hwavy) € v H(Va(ly) ® V2).
Hence we have
Vi Cop”H(Va(lh) @ 1)
O

Lemma 11. Let h € G. For all g € G\ h(Va(l1)) and
X C Vi, we have

(40) (h gl (X)) NVz = ¢.



Takahiro Ito

Proof. Suppose that Range {1 = ¢. Since [1(X) = ¢ for all
X C Vi, our claim is clear. Suppose that Range l; # ¢.
We assume that

(41) (h gl (X)) N V2 # ¢.

Since 11 (X) C Range l;, we have

(h~tg(Range 1;)) N Va.

(R gl (X)) N Vs C

Therefore we have

(h"'g(Range 1)) NV, # ¢

from (41). Hence we can conclude that h=1g € V5(l). This
implies g € hV5(l1). This contradicts g € G\ (hV2(l1)). O

Theorem 3. Let fi,, fi, and fi,01, be induced local tran-
sition functions by Vi and 1y, Va and lz, Va(l1) ® Vi and
12011, respectively, i.e.,

fl1 = Ind(Ga V17 ll)a
fl2 = Il’ld(G, V27 l2)7
Jizor, = Ind(G, Va(l1) ® V1, 12001).

Then we have

(42) fl2<>l1 = flz © fll'

Proof. First, we assume that Range l; # ¢. For all X €
2V2()®V1 e compute fi,¢;, and fi, o fi, .

fl2<>l1(X)
= U g2 (12011) (92

g2€G
- U 9212< U v
veVa(ly)

g2€G

XN (Va(l) ® W)

L (v e ' XN (Ve(l)®Vi)NnVi)n v2>

= U 9212< U v
g2€G veVa(l)
I ((ggv)ilX N ’Ufl(VQ(ll) ® Vl) N Vl) N VQ)

=ngl2< U o

926G veVa(ly)

9271

(43) I ((g20) 7' X N W) mV2>,
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and
fl2 ofll (X)
= | g2l2 (927" i (X) N 1R)
g2€G
= U g2l2 (92_1
g2€G
(U oih (0 x 1)) mv2>
g1€G
) = ek | U (2ol (n 7' X 0 V1)) N VR

g2€G g1€G

To show that they are equal we prove that
U o @0k ((ev) "X 0 Vi) NV

veVa(l1)
= U g2 tgil (7' X N W)
g1€G
= U (92 g1l (' X N VA)) N Ve
g1€92Va(l1)
(45) U U (927"l (' X N VA)) N Vo
91€G\g2V2(l1)

for all go € G. Since we have

U (927

91€G\g2Va(l1)

Lol (' X nW)) NV = ¢

by Lemma 11, we show

U92

veVa(ly)
4 = U
91€92V2(l1)
instead of (45).
However, v € Va(l;) and g1 € g2(Va(l2)) is one-to-one
with g1 = gov. Hence we have (46).
Next, we assume that Range I, = ¢. For all X € 2281,
(38) becomes
(47) 1200(X) = l2(0).
On the other hand, f;, satisfies fi, (Y) =
Therefore we have
Jiz 0 fi, (Y) = fi (¢)
Hence for all Y € 2"2@V1 | we have

Y) = |J gl20l((g7'Y) N

geqG

= U g9l2(¢)

geG

= U gl2((g7 ') N Va)

geG
= fi,(¢)
= flz Ofll (Y) .

921} l1 ((ggv)’lX N Vl) N V2

(27l (0" X N WA)) NV

¢ for all Y € 2°.

fiz01, ( (V2@ W)
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That’s our claim. O
Definition 14. Let

M; = GACS(G, G, Vi, 1),
My = GACS(G, G, Va, I).

We define an abstract collision system Ms(QM; by
MyOM, = GACS(G, G, Va(lh) ® V1,1:00).
Theorem 4. Let

M, = GACS(G,G, Vi, 11),
M, = GACS(G, G, Va, ).

Let Fur,, Fy, and Fa,on, be global transition functions
of My, My and MyOM;, respectively. Then we have

FM2<>M1 (A) = FM2 0 FMl (A)
for all A € 2.
Proof. We see that

FM2<>M1 (A)
= U g2 (I12011) (927114 N(Va(lh) ® Vl)) )

g2€G
FM2 o FM1 (A)

= U g2l2 (921
g2€G
( U gl (171X N V1)) N V2>

g1€G

from Theorem 1. The right hand sides of these formulae
are appeared in (43) and (44) in the proof of Theorem 3,
and we proved they are equal. Hence we have

Far,on, (A) = Far, 0 Figy (A).

Corollary 5. Let

M, = GACS(G,G,V,11),
M, = GACS(G,G,V,l2),
M; = GACS(G,G, V' 13).

Then we have

M3OMy = M3O Mo,
MiOMs = MyOMs

ZfMl = MQ.
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Proof. Let F,, Fa,, Fary Fagonm, and Faronm, be global
transition functions of My, My, Mz, M3OM; and MO Mo,
respectively. Then we have Fy;, = F),. Therefore for all
A € 2%, we have

Frgon, (A)
=Fu, o Fu, (A)
=Fp, 0 Fa, (A)
=Fumy0m, (A)

from Theorem 4. Hence we have M3QM; = M3OMs. Sim-
ilarly, we have MO M3 = MyOMs. O

Example 8. Let Maca—i, Maca—; and Mzca—y be cellu-
lar automata on groups

Maca_i = GACS(Z,7,{0,1}, 1),
Msca—; = GACS(2,7,{0,1},19),
Msoa—i = GACS(Z,7,{0,1,2},1%).

)
)

Then we have
V(I eV =1{0,1,2},
122)<>l§'2)($07$17$2) =1 (ZJ('Q)(xO’xl)’l;Q) (:c1,332)) ’

by Theorem 3. This means that we can construct a 3 neigh-
borhood cellular automaton by composing two 2 neighbor-
hood cellular automata.

The result of compositions of 2 neighborhood cellular
automata are listed in Table 3. For example,

Msca—60Moca—s = Mzca—go,
Moca—gOMaca—a = Mzca—o.

Since
1§ (w0, 21) = w0 © 1,
le(;?(’)) (20, 21, 22) = 0 S T2,
the first example shows
(o ® 1) ® (21 ® 2)
=18 (18 (w0, 20), 17 (w1,2))

Zlg(;%) (o, 1, x2)

=g P x2.
Similarly, the second example shows
(o A —x1) A (21 A g)
=1 (1 (w0, 21), 1P (1, 22)

:l(()g) (x(), X1, :1:2)
=0.
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Table 3: The composition of 2 neighborhood CA, ;.

(NG o[ 2] 4] 6 [ 8 [10]12] 14|
0 JoJoJoJoJoJoJoTJ]o
2 Jo[34]68 [ 66 [ 8 |34 ] 12] 2
4 Jof[12] 48 [ 2464 ] 68| 48] 16
6 [o]46 ] 116 90 | 72 [102] 60 | 18
8 o] o] 0 [36|128]136]192 | 236
10 [[0[34] 68 | 102 [ 136 | 170 | 204 | 238
12 o[ 12] 48 [ 60 | 192 | 204 [ 240 [ 252
14 [0 ]46 [ 116 | 126 | 200 | 238 [ 252 | 254

We assumed that S = G in order to simplify the discus-
sion. The following of this section, we extend the definition
of composition in the case of S # G.

In Definition 13, we would like to reset V;,Vo C G by
Vi,Vo C S. However, since the set S has no operation,
(37) is not well-defined. We would like to define (37) by
using the action of G on S. First, let V C S and H C G,
we define

(48) HV ={hv|he HuveV}.

Next, we take Hq, Hy C G. We replace V4 and V5 in (37)
by H1V and HsV, respectively.

Definition 15. Let VC S, H C G, H, CG, 1y :
2% and Iy : 212V — 29 We define a set Hy(l1) by

2H1V N

{h € G| (h(Range 1)) N HaV # ¢},
if Range I # ¢
if Range I; = ¢

(49) Hz(ll) =
H2a

Moreover, we define a sets Hy(l1)®H; and a function l50l; :
9H2()®HIV _, 98 |y

Hy(lh) ® Hq
(50) Z{h2h1 | hg S Hg(ll),hl S Hl},
1500 (X)
(51) =L | |J ‘(X)) NH V)N HV
heH>(l1)

Theorem 5. Let fi,, fi, and fi,01, be induced local tran-
sition function by H1V andly HV andly, (Ha(l1)@Hp)V
and l50ly, respectively, i.e.,

fll = IIId(G7 Ifll‘/v7 ll),
fl2 = Ind(G7H2‘/7 l2)a
fipo1, = Ind(G, (Hz(l1) ® H1)V,1201).

Then we have
(52) = fi, 0 fi,-

Proof. First of all, by the similar way of the proof of Lemma
10, we can easily get

(53) (ha

fl2<>l1

“HHy(lh) @ H)V)NHV = HiV
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for all he € Hy(l1). Moreover, we can also get

(54) (h gl (X)) N HyV = ¢

forall h € G, g € G\ h(Hz(l1)) and X C H,V, instead of
Lemma 11.

Suppose that Range I # ¢. Let X e 2H2(0)®H1 By the
similar way of the proof of Theorem 3, we can get

f12<>11
= U 9212< U g2 gzh
92€G heH2(l1)

li ((g2h) ' X NHV) N H2V> ,
f12 © fll (X)

Y 9212<

g2€G

IXNHV))N H2V>.

U (92 '1la (o

g1€G

To show they are equal, we prove that

U92

heH;y (1)

U

91€92H2(l1)

v U

g1€G\g2H2(l1)

ggh l1 ((ggh)_lX ﬁH1V) ﬂHQV

(55) = (927 'g1ls (1" X NHV)) N HaV.

(92 'g1ls (g1 ' X NHV)) N HaV

Since we have (54), we show

UQQ

heH> (1)

U

91€92H2(l1)

ggh l1 ((gzh)ilX ﬂH1V) ﬂHQV

(56) = (92 "1l (n "X N HLV)) N HV

instead of (55). However, it is very easy to show (56).
In the case of Range I; = ¢, we can easily prove with the
similar way of the proof of Theorem 3. 0

Example 9. Let H = {0,1} Let M; and M> be 1 dimen-
sional @ state, H neighborhood cellular automata, defined
by Example 4. Then we have

(57) 12011 (z0, 1, T2) = l2 (11 (%0, 21), [1 (21, 72))

by composing M; and Ms.

6. DISTRIBUTIVE LAwW

In this section, we consider that two operations, union and
composition of ACSs on G-sets, and check the distributive
law. We consider the most easy case, cellular automata on
groups.
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Example 10. Let Myca—; and Mzca—; be cellular au-
tomata on groups
Msca—i = GACS(Za Z, {07 1}) 11(2))7
Msca—j = GACS(Z,2,{0,1,2},1$),
respectively. From Table 2 and Table 3, we have Msc 42U
Maca—a = Maca—¢ and Maca—6¢0OMaca—6 = Msca—oo-
Moreover, we have
Mica—60Maca—2 = Msca—as,
Maca—60Maca—4 = Msca—116,
Maca—20Maca—6 = Mszca—ee,
Mica—1OMaca—6 = Mzca—24

from Table 3. Furthermore, we can compute easily

Mzca—a6 U Mzca—116 = Mzca-126,
M3zca—e6 U M3ca—24 = M3ca—og0-

Therefore we see that

Myca—60(Maca—2U Maca—4)
= (Maca—2UMca—4) OMaca—s
=Msca-60Maca—s
=M3ca-90,

(Maca—60OMaca—2) U (Maca—60Maca—s)
=M3ca—46 U M3ca-116
=M3ca-126,

(Maca—20Maca—e) U (Maca—saOMaca—¢)
=M3sca-66 U Mzca—24
=M3cA-90-

Hence we have

Myca—60 (Maca—oU Maca—a)

# (Maca—60Maca—2) U (Maca—¢OMaca—4a),
(Maca—2UMaca—4) OMaca—6

= (Maca—20Maca—6) U (Maca—sOMaca—s) -

Similarly, we can prove that
(Maca—j U Maca—i) OMaca—;
= (Maca—jOMaca—i) U (Maca—rOMaca—;)
for all rule number ¢, j and k. However the equation
Moc a0 (Maca—i UMaca—j)
= (Maca—OMaca—i) U (Maca—OMaca—j)
is not always hold for rule number i, j and k.
Theorem 6. Let
M; = GACS(G,G,V,1y),
My, = GACS(G,G,V,l3),
M3 = GACS(G,G,V',13).
Then we have

(58) (My U M) OM3 = (M OM3) U (MaOMs) .
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Proof. We see that

(M U My) OM;
= GACS(G,G,V,1; UL)OGACS(G, G, V3, Is)
(by Cor. 5 )
GACS(G.G,V(is) @ Vs, (11 Ul2) Ols)  (by Def. 14 ),
(M7 OM3) U (MaOMs)
GACS(G,G,Vs(l3) @ V,110l3)

U GACS(G, G, Va(l) © V, 15013) (by Cor. 4)
(by Prop. 8).

Moreover, we see that
(l1 Uls) Ols (X)

= (hul) | | vs(@'XnW)nVv
veV(l3)

=nL| |J vs@'Xn)NV
veV(l3)

Ul | |J vls(@'XnW)nV
veV (l3)

= 1,013 (X) U103 (X)

for all X € 2V()2Vs, Hence we have (58). O

This theorem says that the operation ¢ is right-distributive
over U, but ¢ is not left-distributive over U.

7. CONCLUSION

We introduced abstract collision systems on G-sets, and in-
vestigated their properties. First, we proved that if [(¢) =
¢, the global function does not depend on the set of colli-
sions C.

Next, we defined operations “union” and “division” of
ACS. We determined a sufficient condition that an ACS on
a G-set is dividable. Finally, by using actions of groups,
we introduced the new concept “composition” of ACS on
a G-set. We proved the global transition function of the
composed ACS is the usual composition of global transition
functions of two ACSs. We proved that “composition” is
right-distributive over “union”, but is not left-distributive.

The union of cellular automata on groups is correspond-
ing the cellular automaton with a local transition rule de-
fined by the “logical or” of given local transition rules. The
composition of cellular automata with ACS is an extension
of the composition of local transition rules of cellular au-
tomata in [4]. We enumerated all 3 neighborhood CAs
defined by the composition of two 2 neighborhood CAs.
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