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Abstract. In this paper, we discuss an abstract collision system (ACS) on a G-set which is an
extension of a normal ACS [5, 6]. An ACS is a type of unconventional computing framework that
includes collision-based computing, cellular automata (CA), and chemical reaction systems. For
a given group G and its subset, we create a set of collisions and a local transition function of an
ACS by using the action of G. We first refine definitions of the components of an ACS, and then
extend them to the concepts on a G-set. Finally, we define and investigate the operations “union”,
“division” and “composition” of the ACS on a G-set.

Keywords. collision-based computing, cellular automata.

1. Introduction

Recently, many investigations have been carried out on
unconventional computing methods based on the concept
of the collision-based computing [1], including cellular au-
tomata (CA) and reaction-diffusion systems. It is one of
major important subjects to construct an appropriate com-
putational model for investigating the unconventional com-
puting methods.

Conway introduced ’The Game of Life’ which is a two-
dimensional cellular automaton [2]. In this game, there
are some special patterns called “gliders” and he showed
that any logical circuit can be simulated by the collision of
gliders. Wolfram and Cook [11, 3] found glider patterns in
the one dimensional elementary cellular automaton CA110.
Cook introduced a cyclic tag system (CTS) as a Turing
universal system, and showed that a CTS can be simulated
by CA110 by using collisions of gliders in CA110. Recently,
Mart́ınez et. al. investigated glider phenomena from the
viewpoint of regular language [7]. Morita [8] introduced a
reversible one dimensional CA which simulated CTS.

We previously introduced the notion of an abstract colli-
sion system (ACS) as a tool for investigating collision phe-
nomena including glider collisions in ’The Game of Life’
and ’CA110’, and we proved that it is universal for compu-
tation [5]. Moreover, we investigated the simulation of ACS
by CA, and determined conditions that make this possible
[6].

The notion of automata on groups was first treated as a
special case of automata on graphs (Cayley graphs) which
represent groups [10, 9, 12]. Fujio [4] introduced the com-
position of CA on groups in order to reduce a complex
behaved dynamics into simpler ones. As an example, he
showed that rule 90 (3 neighborhood) CA can be factor-
ized into the composition of double XORs, which are rule
6 (2 neighborhood) CA.

In this paper, we introduce an ACS on a G-set, and we
investigate the properties of this extended system. Gen-
erally, the set of collisions, which is a domain of the local
transition function, is very large. However, in the notion of
an ACS on a G-set, we use a small set V and a function l
named the “base function”. We induce the set of collisions
C and the local transition function fl from V and l.

Next, we consider ACS operations such as “union”, “di-
vision” and “composition”, and introduce a sufficient con-
dition that allows an ACS on a group to be dividable. Fur-
thermore, we proved that the operation “composition” is
right-distributive over “union”, but the operation “com-
position” is not left-distributive. We provide a counter-
example concerning this left-distributive law. In addition,
we reformalize CA on groups by using an ACS on a G-set.

This paper consists of the following sections. In Section
2, we introduce the concept of an ACS. First, we define a set
of collisions C on a non-empty set S. The set C specifies all
combinations of elements in S which cause collisions. Next,
we define an ACS using S, C and f , where f : C → 2S is a
local transition function.

In Section 3, we define an ACS on a G-set. Let G be a
group which acts on S. When V ⊆ G and a map from 2V

to 2S are given, we construct a set of collisions C on S and
extend the map to a local transition function f : C → 2S

by using the action of G. Moreover, we investigate the be-
havior of the global transition function from the viewpoint
of this extension.

In Section 4, we define the operations “union” and “divi-
sion” of the ACS. Moreover, we give a sufficient condition
allowing an ACS on a group to be dividable.

In Section 5, we discuss the composition of ACSs on G-
sets. We define this composition as an operation of base
functions of two ACSs and we prove that this definition
induces the composition of local (resp. global) transition
functions.
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In Section 6, we prove that composition is right-distributive
over union, but is not left-distributive. We also provide a
counter-example.

2. Abstract collision systems

In this section, we define an abstract collision system. Let
S be a non-empty set. First, we define a set of collisions
on S.
Proposition 1. Let C ⊆ 2S. The following two conditions
(a) and (b) are equivalent.

(a) The set C satisfies:

(SC1) {s} ∈ C for all s ∈ S.

(SC2) For all X ⊆ C, (∪X ) ∈ C if (∩X ) ̸= ϕ,

(b) The set C satisfies:

(SC1) {s} ∈ C for all s ∈ S.

(SC’2) For all X1 and X2 ∈ C, X1 ∪ X2 ∈ C if
X1 ∩ X2 ̸= ϕ.

(SC’3) [p]AC ∈ C for all A ∈ 2S and p ∈ A,

where ∩
X =

∩
{X | X ∈ X},∪

X =
∪

{X | X ∈ X}, and

[p]AC =
∪

{X | X ∈ C, p ∈ X,X ⊆ A} .(1)

Proof. We prove (SC2) ⇔ ((SC’2) ∧ (SC’3)).
(SC2) ⇒ (SC’2) First, we prove (SC’2) from (SC2). Sup-
pose that X1, X2 ∈ C, X1∩X2 ̸= ϕ. Let X = {X1, X2} ⊆ C.
Since (∩X ) = X1 ∩ X2 ̸= ϕ, we have X1 ∪ X2 = (∪X ) ∈ C
by (SC2). Therefore we have proved (SC’2).
(SC2) ⇒ (SC’3) Next, we show (SC’3) from (SC2). Let

X = {X | X ∈ C, p ∈ X,X ⊆ A} .

Since p ∈ (∩X ), we have (∩X ) ̸= ϕ. Therefore [p]AC =
(∪X ) ∈ C by (SC2).
(SC’2) ∧ (SC’3) ⇒ (SC2) Finally, we prove (SC2) from
(SC’2) and (SC’3). For all X ⊆ C, we assume that (∩X ) ̸=
ϕ. Let x0 ∈ (∩X ) and

(2) A =
∪

X .

Since x0 ∈ A, we have

(3) [x0]AC ∈ C

from (SC’3). We see that [x0]AC ⊆ A from the definition of
[x0]AC . On the other hand, for all X ∈ X , since X ∈ X ⊆ C,
we have X ∈ C. Moreover, since x0 ∈ (∩X ) and A = (∪X ),
we have x0 ∈ X and X ⊆ A. Hence we have

X ⊆
∪

{X | X ∈ C, x0 ∈ X,X ⊆ A} = [x0]AC .

Therefore we have

(4) A = [x0]AC .

Hence we have (∪
X

)
= A = [x0]AC ∈ C,

by (2), (3) and (4). Therefore we have proved (SC2).

Definition 1 (Set of collisions). A set C ⊆ 2S is called a
set of collisions on S iff it satisfies conditions of Propo-
sition 1.
Proposition 2. Let C be a family of sets of collisions on
S. Then a set ∩

C =
∩
C∈C

C

is a set of collisions on S.

Proof. We check conditions (SC1) and (SC2).
(SC1) First, we prove (SC1). We have {s} ∈ C for all
s ∈ S and C ∈ C. Therefore we have {s} ∈ (∩C).
(SC2) Next, we prove (SC2). For all X ⊆ (∩C), and C ∈ C,
we assume that (∩X ) ̸= ϕ. The set C satisfies the assump-
tion of (SC2), i.e.,

X ⊆ (∩C) ⊆ C,

(∩X ) ̸= ϕ.

Therefore we have (∪X ) ∈ C from (SC2). Hence we have
(∪X ) ∈ (∩C).

Definition 2. For a subset C̃ of 2S , we define

(5) C(C̃) =
∩ {

C | C is a set of collisions on S, C̃ ⊆ C
}

.

By Proposition 2, this set is a set of collisions on S, and it
includes the set C̃. Moreover, this set is a smallest set in
all of sets of collisions on S which includes C̃.
Proposition 3. Let C be a set of collisions on S. For all
A ∈ 2S and p, q ∈ A, we have the followings:

(1) [p]AC ̸= ϕ.

(2) If [p]AC ∩ [q]AC ̸= ϕ, then [p]AC = [q]AC .

Proof. First, we prove (1). Since {p} ∈ C, p ∈ {p} and
{p} ⊆ A, we have {p} ⊆ [p]AC . Hence [p]AC ̸= ϕ.

Next, we prove (2). Since [p]AC ∈ C, [q]AC ∈ C and [p]AC ∩
[q]AC ̸= ϕ, we see that

[p]AC ∪ [q]AC ∈ C.

Moreover since p ∈ [p]AC ∪ [q]AC and [p]AC ∪ [q]AC ⊆ A, we have
[p]AC ∪ [q]AC ⊆ [p]AC . Hence we have

[p]AC ∪ [q]AC = [p]AC .

Similarly, we have [p]AC ∪[q]AC = [q]AC . Hence [p]AC = [q]AC .

Next, we define abstract collision systems.
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Definition 3 (An abstract collision system). Let S be a
non-empty set, C a set of collisions on S and f a function
f : C → 2S . We define an abstract collision system
M by M = (S, C, f). We call the function f and the set
2S a local transition function and a configuration of
M , respectively. We define a global transition function
FM : 2S → 2S of M by

FM (A) =
∪
p∈A

(
f([p]AC )

)
Lemma 1. Let FM be the global transition function of an
abstract collision system M = (S, C, f). If A ∈ C, we have

FM (A) = f (A) .

Proof. Since A ∈ C, we see that [p]AC = A for any p ∈ A.
Therefore we have

FM (A) =
∪
p∈A

(
f([p]AC )

)
=

∪
p∈A

(f(A)) = f(A)

Example 1. We describe a one dimensional billiard ball
system as an example of ACS.

A ball has a velocity, a label and a position. We consider
discrete time transitions. A ball moves to left or right ac-
cording its velocity within an unit time. Let (2, A, 1) be a
ball with the velocity 2, the label ’A’ and the position 1.
At the next step, the ball becomes (2, A, 3) if it does not
crash with any other balls (cf. Figure 1).

0 1 2 3 0 1 2 3

Figure 1: Moving

On the other hand, some balls may crash in some unit
time. In this example, we do not describe a crash using
positions and velocities. We define a set of balls which
cause collisions and assign the result of the collisions.

We describe this example more concretely. Let

V = {−1, 2},
S = {(u,A, x) | x ∈ Z, u ∈ V }
∪ {(v,B, y) | y ∈ Z, v ∈ V }.

C = {{(2, A, 1), (−1, B, 2)}}
∪ {{(u,A, x)} | u ∈ V, x ∈ Z}
∪ {{(v,B, y)} | v ∈ V, y ∈ Z}

We define f by Table. 1. For example,

f ({(2, A, 1), (−1, B, 2)}) = {(2, B, 3), (−1, A, 1)}

is shown in Figure 2.

0 1 2 3 4 0 1 2 3 4

Figure 2: Collision

Table 1: Collision and its result
c f(c)

{(2, A, 1), (−1, B, 2)} {(2, B, 3), (−1, A, 1)}
{(u,A, x)} {(u,A, x + u)}
{(v,B, y)} {(v,B, y + v)}

0 1 2 3 4 5 6 7

Figure 3: Transition

Let M = (S, C, f). Then an example of transition is

FM ({(2, A, 1), (−1, B, 2), (2, A, 4), (−1, B, 6)})
= {(−1, A, 1), (2, B, 3), (−1, B, 5), (2, A, 6)} ,

and it is shown in Figure 3.
We note that the set of two balls {(4, A, 2), (−1, B, 6)}

does not cause collisions, because it is not an element of C.

Definition 4. Let M1 = (S, C1, f1) and M2 = (S, C2, f2)
be abstract collision systems. We say that M1 and M2 are
equivalent if they satisfy

FM1 (A) = FM2 (A)

for all A ∈ 2S . When M1 and M2 are equivalent, we write
M1 ≡ M2.

Lemma 2. Let M1 = (S, C, f1) and M2 = (S, C, f2) be
abstract collision systems. If f1 = f2 then M1 ≡ M2.

Proof. Let FM1 and FM2 be global transition functions of
M1 and M2, respectively. Suppose that A ∈ 2S . Then we
see that

FM1 (A)

=
∪
p∈A

f1

(
[p]AC

)
=

∪
p∈A

f2

(
[p]AC

)
= FM2 (A) .

Therefore we have M1 ≡ M2.
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3. Abstract collision systems on G-set

In this section, we consider an action of a group. Let G be
a group, and S a non-empty set.
Definition 5. A map from G × S to G,

(6) G × S → S ((g, s) 7→ gs)

is called an action of G on S, iff it satisfies:

(1) (gh)s = g(hs) (g, h ∈ G, s ∈ S)

(2) es = s (e is an identity element of G).

Then we say that the group G acts on the set S. Moreover,
the set S is called G-set.

When a group G acts on a set S, we define an action of
G on 2S by

(7) gX = {gx | x ∈ X} (g ∈ G,X ∈ 2S).

We have the following proposition about this action.
Proposition 4. For all g ∈ G and X,Y ⊆ S, we have:

If X ⊆ Y, then (gX) ⊆ (gY ).(8)
g(X ∪ Y ) = (gX) ∪ (gY )(9)
g(X ∩ Y ) = (gX) ∩ (gY )(10)

Proof. (8) is clear.
Next prove (9). Since X,Y ⊆ X ∪ Y , we have gX ⊆

g(X ∪ Y ) and gY ⊆ g(X ∪ Y ). Therefore we have

(gX) ∪ (gY ) ⊆ g(X ∪ Y ).

On the other hand, for all z ∈ g(X ∪ Y ), there exists w ∈
X∪Y such that z = gw. Then w satisfies w ∈ X or w ∈ Y .
If w ∈ X (resp. w ∈ Y ), we have z ∈ gX (resp. z ∈ gY ).
Therefore z ∈ (gX) ∪ (gY ). Hence we have

g(X ∪ Y ) ⊆ (gX) ∪ (gY ).

Finally, we prove (10). Since X ∩ Y ⊆ X,Y , we have
g(X ∩ Y ) ⊆ (gX) and g(X ∩ Y ) ⊆ (gY ). Therefore we
have

g(X ∩ Y ) ⊆ (gX) ∩ (gY ).

On the other hand, for all z ∈ (gX) ∩ (gY ), there exists
x ∈ X and y ∈ Y such that z = gx and z = gy. Since
g−1z = x = y, we have x = y ∈ X ∩ Y , which implies

z = gx = gy ∈ g(X ∩ Y ).

Hence we have

(gX) ∩ (gY ) ⊆ g(X ∩ Y ).

All claims of Proposition 4 are proved.

Definition 6. Let G be a group, S a non-empty G-set,
V a non-empty subset of S and l a function l : 2V → 2S .
Then let

(11) C̃V =
{
gX | g ∈ G,X ∈ 2V

}

and C be a set of collisions on S which includes C̃V . Then
we define a local transition function fl : C → 2S by

(12) fl(X) =
∪
g∈G

gl((g−1X) ∩ V ).

We call an abstract collision system M = (S, C, fl) an ab-
stract collision system on a G-set made by V and l.
Moreover, we call the function l a base function of M . In
addition, we call fl an induced local transition func-
tion by V and l on G, and denoted by fl = Ind(G,V, l).
Definition 7. Let V ′ ⊆ V . We call a set V ′ essential
domain of l iff it satisfies

l(X) = l(X ∩ V ′)

for all X ∈ 2V .
We investigate the behavior of the global transition func-

tion of an abstract collision system on a G-set. We prepare
the following lemmas.
Lemma 3. Let A ∈ 2S and g ∈ G. If

g−1[p]AC ∩ V = ϕ

for all p ∈ A, then we have

g−1A ∩ V = ϕ.

Proof. We assume that g−1A ∩ V ̸= ϕ. Then there exists
x ∈ g−1A ∩ V . Let p = gx. Since p = gx ∈ A and x ∈ V ,
we have

x = g−1p ∈ g−1[p]AC ∩ V.

Hence we have g−1[p]AC ∩ V ̸= ϕ, this contradicts the as-
sumption of the lemma.

Lemma 4. Let A ∈ 2S, p ∈ A and g ∈ G. If

g−1[p]AC ∩ V ̸= ϕ,

then we have

g−1[p]AC ∩ V = g−1A ∩ V.

Proof. From the definition of [p]AC , it is clear that [p]AC ⊆ A
Hence we have

g−1[p]AC ∩ V ⊆ g−1A ∩ V.

Let x ∈ g−1A ∩ V and q ∈ [p]AC ∩ gV . We show

x ∈ g−1[p]AC ∩ V.

Since q ∈ [p]AC ∩ [q]AC ̸= ϕ, we have [p]AC = [q]AC by Proposi-
tion 3. Let

X1 = [q]AC ,

X2 = ([q]AC ∩ gV ) ∪ {gx}.(13)

Then it is clear that X1 ∈ C by (SC’3). Since

[q]AC ∩ gV ⊆ gV, gx ∈ A ∩ gV ⊆ gV,
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we have X2 ⊆ gV . Hence we have

X1, X2 ∈ C̃V ⊆ C.

Since q ∈ [q]AC and q ∈ gV , we have q ∈ X1 and q ∈ X2.
Hence X1 ∩ X2 ̸= ϕ. Therefore we have X1 ∪ X2 ∈ C by
(SC2). Moreover, since x ∈ g−1A ∩ V , we have gx ∈ A,
i.e., {gx} ⊆ A. Since

X1 ∪ X2 ∈ C, q ∈ X1 ∪ X2, X1 ∪ X2 ⊆ A,

we have [q]AC ⊇ X1 ∪ X2 by (1). Hence gx ∈ [q]AC , which
implies x ∈ g−1[q]AC . Moreover, since x ∈ g−1A ∩ V , it is
clear that x ∈ V . Therefore we have

x ∈ g−1[q]AC ∩ V = g−1[p]AC ∩ V.

Lemma 5. For all g ∈ G, A ∈ 2S, p, q ∈ A, we assume
that

(g−1[p]AC ∩ V ) ̸= ϕ, (g−1[q]AC ∩ V ) ̸= ϕ.

Then we have
[p]AC = [q]AC .

Proof. By Lemma 4, we see that

(g−1[p]AC ∩ V ) = (g−1[q]AC ∩ V ) = (g−1A ∩ V ).

Hence for all x ∈ (g−1[p]AC ∩ V ), since gx ∈ [p]AC , [q]AC , we
have [p]AC ∩ [q]AC ̸= ϕ. Therefore we have [p]AC = [q]AC by
Proposition 3.

By these lemmas, we see the following, immediately.

Lemma 6. For all g ∈ G and A ∈ 2S, suppose that A /∈ C.
Then we have

(14)
∪
p∈A

gl
(
g−1[p]AC ∩ V

)
= g

(
l
(
g−1A ∩ V

)
∪ l (ϕ)

)
Proof. Suppose that g−1[p]AC ∩ V = ϕ for all p ∈ A. Then
we have g−1A ∩ V = ϕ by Lemma 3. Hence the left hand
side of (14) equals to∪
p∈A

gl(ϕ) = gl(ϕ) = g(l(ϕ)∪ l(ϕ)) = g(l(g−1A∩ V )∪ l(ϕ)).

This equals to the right hand side.
Next, we assume that there exists p1 ∈ A such that

g−1[p1]AC ∩ V ̸= ϕ. Let

A′ =
{
p ∈ A | g−1[p]AC ∩ V ̸= ϕ.

}
,

A′′ =
{
p ∈ A | g−1[p]AC ∩ V = ϕ.

}
.

Then we have p1 ∈ A′, which implies A′ ̸= ϕ. Since A /∈ C,
there exists q1 ∈ A such that [p1]AC ̸= [q1]AC . Hence we have

q1 ∈ A′′ by Lemma 5. This implies A′′ ̸= ϕ. Therefore the
left hand side of (14) equals∪

p∈A

gl
(
g−1[p]AC ∩ V

)
=

∪
p∈A′

gl
(
g−1[p]AC ∩ V

)
∪

∪
p∈A′′

gl
(
g−1[p]AC ∩ V

)
=

∪
p∈A′

gl
(
g−1A ∩ V

)
∪

∪
p∈A′

gl (ϕ) (by Lemma 4)

=gl
(
g−1A ∩ V

)
∪ gl (ϕ) .

This equals the right hand side of (14).

This lemma induces the following theorem.
Theorem 1. Let M = (S, C, fl) be an abstract collision
system on a G-set. made by V and l. Let FM be the global
transition function of M . If A ∈ C, then FM satisfies

(15) FM (A) =
∪
g∈G

gl
(
g−1A ∩ V

)
.

If A /∈ C, then

(16) FM (A) =
∪
g∈G

g
(
l
(
g−1A ∩ V

)
∪ l(ϕ)

)
.

Proof. First, suppose that A ∈ C. (15) is clear by Lemma
1 and (12). Next, suppose that A /∈ C. By Lemma 6, we
see that

FM (A) =
∪
p∈A

(
fl([p]AC )

)
=

∪
p∈A

∪
g∈G

(
gl

(
g−1[p]AC ∩ V

))
=

∪
g∈G

∪
p∈A

(
gl

(
g−1[p]AC ∩ V

))
=

∪
g∈G

g
(
l
(
g−1A ∩ V

)
∪ l(ϕ)

)
.

Hence the theorem follows.

Corollary 1. Especially, if l(ϕ) = ϕ, then we have

FM (A) =
∪
g∈G

gl
(
g−1A ∩ V

)
for all A ∈ 2S.
Corollary 2. We assume that l(ϕ) = ϕ. Let C1 and C2 be
sets of collisions on S. Suppose that C̃V ⊆ C1 and C̃V ⊆ C2.
We make abstract collision systems M1 = (S, C1, fl) and
M2 = (S, C2, fl). Then we have

M1 ≡ M2.

Proof. Let FM1 and FM2 be global transition functions of
M1 and M2, respectively. By Corollary 1,

FM1(A) = FM2(A) =
∪
g∈G

gl
(
g−1A ∩ V

)
for all A ∈ 2S . Hence the corollary follows.
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In the following of this paper, we suppose that l(ϕ) = ϕ.
Let M = (S, C, fl) be an abstract collision system on a G-
set made by V and l. By Theorem 1, the abstract collision
system M is determined by only G, S, V and l, i.e., M does
not depend on the set of collisions C. Therefore we denote
the abstract collision system M by M = GACS(G, S, V, l)

Then by Corollary 2, we have the following proposition.
Proposition 5. We have

GACS(G,S, V1, l1) ≡ GACS(G,S, V2, l2)

if V1 = V2 and l1 = l2.
By Definition 7 and Theorem 1, we show the following

proposition.
Proposition 6. Let V ′ be an essential domain of l. Sup-
pose that l(ϕ) = ϕ. Then we have

GACS(G, S, V, l) ≡ GACS(G,S, V ′, l′),

where l′ is restriction of l onto 2V ′
.

Proof. Let M and M ′ be abstract collision systems on a
G-set,

M = GACS(G,S, V, l), M ′ = GACS(G,S, V, l′),

respectively. Let FM and FM ′ be global transition func-
tions of M and M ′, respectively. By Definition 7 and The-
orem 1, we see that

FM (A) =
∪
g∈G

gl
(
g−1A ∩ V

)
=

∪
g∈G

gl
(
(g−1A ∩ V ) ∩ V ′)

=
∪
g∈G

gl
(
g−1A ∩ V ′) ,

FM ′ (A) =
∪
g∈G

gl′
(
g−1A ∩ V ′)

for all A ∈ 2S .

In the followings of this section, we will investigate about
cellular automata using the notion of ACS on a G-set.
Definition 8. Let G be a group, V a subset of G and l a
function from 2V to 2G. We assume that

l(X) ⊆ 2{e} (for all X ∈ 2V ),
l(ϕ) = ϕ

Then we call GACS(G,G, V, l) a cellular automaton on
the group G.

We consider the following one-to-one mapping:

(x0, . . . , xn) ↔ {i ∈ V | xi = 1} .

We denote a map l by

l ({i ∈ V | xi = 1}) = l (x0, . . . , xn) ,

for example l({0, 1, 3}) = l(1, 1, 0, 1, 0, . . . , 0). Moreover,
we denote ϕ by 0 and {0} by 1, i.e,

(17)

{
l (x0, . . . , xn) = 0 l ({i ∈ V | xi = 1}) = ϕ

l (x0, . . . , xn) = 1 l ({i ∈ V | xi = 1}) = {0}

Let n be a positive integer, G = Z, V = {0, 1, . . . , n− 1}
and l a function l : 2V → 2G. Then the rule number of l,
which is also known as the Wolfram number, is defined by
the number whose binary expression with the length 2n

l (1, . . . , 1, 1) l (1, . . . , 1, 0) · · · l (0, . . . , 0, 1) l (0, . . . , 0, 0) ,

i.e., ∑
x0,...xn−1∈{0,1}n

l (x0, . . . , xn−1) · 2
Pn−1

k=0 xk2n−1−k

.

Moreover, we denote the function l with rule number r

by l
(n)
r . For example, let n = 2 and V = {0, 1}. Then a

function l
(2)
4 , whose rule number is 4, is

l
(2)
4 (1, 1) = 0,

l
(2)
4 (1, 0) = 1,

l
(2)
4 (0, 1) = 0,

l
(2)
4 (0, 0) = 0.

We note that the binary expression of 4 is 0100. More-
over, we call the cellular automata on group MnCA−r =
GACS(Z, Z, {0, . . . , n− 1}, l(n)

r ) (1 dimensional 2 states) n
neighborhood cellular automata with rule number
r.
Example 2. Let G = Z, V = {0, 1}. We define l by

l({0, 1}) = ϕ, l({0}) = {0},
l({1}) = {0}, l(ϕ) = ϕ.

By using notation of (17), we denote this function by

l(1, 1) = 0, l(1, 0) = 1,
l(0, 1) = 1, l(0, 0) = 0,

i.e., l(x0, x1) = x0 ⊕ x1. We note that the rule number of l

is 6 and denote l by l
(2)
6 Then an abstract collision system

M2CA−6 = GACS(Z, Z, {0, 1}, l(2)6 ) is a 1 dimensional, 2
state, 2 neighborhood cellular automaton with rule number
6.
Example 3. Similarly, we can construct other 1 dimen-
sional, 2 states, n neighborhood cellular automata. Let
Q = {0, 1} and fn CA−r : Qn → Q. Suppose that

fn CA−r(0, . . . , 0) = 0.

Let G = Z and V = {0, 1, . . . , n − 1}.
We define l

(n)
r : 2V → 2Z by

l(n)
r (x0, . . . , xn−1) =

{
ϕ fn CA−r (x0, . . . , xn−1) = 0
{0} fn CA−r (x0, . . . , xn−1) = 1
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for all (x0, . . . , xn−1) ∈ Qn.
By using notation of (17), we denote l

(n)
k by

l
(n)
k (x0, . . . , xn−1) =

{
0 fn CA−r (x0, . . . , xn−1) = 0
1 fn CA−k (x0, . . . , xn−1) = 1

= fn CA−r(x0, . . . , xn−1).

Then an abstract collision system a G-set

Mn CA−r = GACS(Z, Z, V, l(n)
r )

is a 1 dimensional 2 states n neighborhood cellular automa-
ton with rule number r.

In the above definition and example, we can construct
only 2-state cellular automata. We describe how to make
other general cellular automata.
Example 4. Let Q be a non-empty set, G = Z and S =
Z × Q. We define

z1(z2, q) = (z1 + z2, q)

for all z1 ∈ G and (z2, q) ∈ S. We choose a subset H ⊆ Z.
and define V = H × Q. Suppose that

l (X) ⊆ {0} × Q

for all X ∈ 2V and l(ϕ) = ϕ. Then an abstract collision
system

M = GACS(Z, Z × Q,H × Q, l)

is a 1 dimensional, Q state, H neighborhood cellular au-
tomaton.

Since l(ϕ) = ϕ, we note that we can construct any cellu-
lar automata which has the rule fCA(0, 0, . . . , 0) = 1.

If l(ϕ) ̸= ϕ, we can not construct cellular automata on
groups. By Theorem 1, the behavior of the global transi-
tion function depends on configurations.

First of all, we describe a theorem with respect to the set
C(C̃V ). From this theorem, we can evaluate the set C(C̃V ).

For all subsets X,Y ⊆ G, we define

X ⊗ Y −1 =
{
xy−1 | x ∈ X, y ∈ Y

}
.

We define a set CV by

(18) CV =

X

∣∣∣∣∣∣
for all Y1 and Y2 ⊆ X,

(Y1 ⊗ V −1) ∩ (Y2 ⊗ V −1) ̸= ϕ
if Y1 ̸= ϕ, Y2 ̸= ϕ and Y1 ∪ Y2 = X.

 .

Then, we can show the following two lemmas.
Lemma 7. CV is a set of collisions on G.

Proof. We check the condition (SC1). For all s ∈ S, let
X = {s}. For all Y1, Y2 ⊆ X, we assume that Y1 ̸= ϕ,
Y2 ̸= ϕ, and Y1 ∪Y2 = X. Then, since Y1 = Y2 = {s} = X,
we have

(Y1 ⊗ V −1) ∩ (Y2 ⊗ V −1) = X ⊗ V −1 ̸= ϕ.

Hence {s} ∈ CV .

We check the condition (SC2). Let X ⊆ CV and (∩X ) ̸=
ϕ. We assume that (∪X ) /∈ CV , that is, there exist Y1 and
Y2 ⊆ (∪X ) such that Y1 ̸= ϕ, Y2 ̸= ϕ, Y1 ∪ Y2 = (∪X ),

(Y1 ⊗ V −1) ∩ (Y2 ⊗ V −1) = ϕ.

Then, since (∩X ) ̸= ϕ, there exists s0 ∈ (∩X ). We can
assume that s0 ∈ Y1 without loss of generality.

Since (∪X ) = Y1 ∪ Y2 and Y2 ̸= ϕ, we have(∪
X

)
∩ Y2 = (Y1 ∪ Y2) ∩ Y2 = Y2 ̸= ϕ.

Hence there exists X ∈ X such that Y2 ∩ X ̸= ϕ.
Since X ∈ X ⊆ CV , we have

(19) X ∈ CV .

Since s0 ∈ (∩X ) ⊆ X, s0 ∈ Y1, we have

(20) s0 ∈ Y1 ∩ X ̸= ϕ.

Let Y ′
1 = Y1 ∩X, Y ′

2 = Y2 ∩X. Then we have Y1 ∩X ̸= ϕ,
Y2 ∩ X ̸= ϕ. Moreover, we see that

Y ′
1 ∪ Y ′

2

=(Y1 ∪ Y2) ∩ X

=(∪X ) ∩ X = X,

(Y ′
1 ⊗ V −1) ∩ (Y ′

2 ⊗ V )

⊆(Y1 ⊗ V −1) ∩ (Y2 ⊗ V −1)
=ϕ.

Hence X /∈ CV , this contradicts (19). Therefore we have
(∪X ) ∈ CV ,

Lemma 8. The set CV includes the set C̃V , i.e.,

C̃V ⊆ CV

Proof. For all g ∈ G and X ∈ 2V , we show that gX ∈ CV .
If X = ϕ or #X = 1, then we can see easily. We assume
that #X ≥ 2. Let Y1 and Y2 be subsets of gX. Suppose
that

Y1 ̸= ϕ, Y2 ̸= ϕ, Y1 ∪ Y2 = gX.

For all y1 ∈ Y1, we have

y1 ∈ Y1 ⊆ gX ⊆ gV.

Therefore there exists h1 ∈ V such that y1 = gh1. Hence
we have

g = y1h1
−1 ∈ Y1 ⊗ V −1.

Similarly, we have g ∈ Y2 ⊗ V −1. Therefore we have

(Y1 ⊗ V −1) ∩ (Y2 ⊗ V −1) ̸= ϕ.

Hence gX ∈ CV . Therefore we have C̃V ⊆ CV .

We can prove the following proposition easily, from these
two lemmas,



64 Journal of Mathematics for Industry, Vol.2(2010A-6)

Proposition 7. We have

C(C̃V ) ⊆ CV .

Let V = {0, 1, 2}, l(ϕ) ̸= ϕ and M be an abstract col-
lision system M = (S, C(C̃V ), fl) made by V and l. Let
FM be the global transition function of M . For example, a
configuration c1 = {0} is an element of C(C̃V ). Therefore
by Theorem 1, we see that

FM (c1) = fl(c1).

However, we consider another configuration c2 = {0, 3}.
By Proposition 7, we can see c2 /∈ C(C̃V ). Therefore by
Theorem 1, we see that

FM (c2) =
∪
g∈Z

g{0} = Z.

4. Union and division of abstract
collision systems

In this section, we discuss about union and division of ab-
stract collision systems.

Definition 9 (Union). Let M1 and M2 be abstract colli-
sion systems M1 = (S1, C1, f1) and M2 = (S2, C2, f2). We
define f1 ∪ f2 by

(f1 ∪ f2) (X) = FM1

(
X ∩ 2S1

)
∪ FM2

(
X ∩ 2S2

)
,

where FM1 and FM2 are global transition functions of M1

and M2, respectively. We define union of M1 and M2,
which is denoted by M1 ∪ M2, by

(21) M1 ∪ M2 = (S1 ∪ S2, C(C1 ∪ C2), f1 ∪ f2).

Definition 10 (Division). Let M be an abstract collision
system M = (S, C, f). We say that M is dividable iff
there exists two abstract collision systems M1 ̸= M and
M2 ̸= M such that M ≡ M1 ∪ M2.

Proposition 8.

GACS(G,S, V, l1) ∪ GACS(G, S, V, l2)
≡GACS(G,S, V, l1 ∪ l2),

where
(l1 ∪ l2) (X) = l1 (X) ∪ l2 (X)

for all X ∈ 2V .

Proof. We choose arbitrary set of collisions C1 and C2 in-
cludes C̃V . Let

fl1 = Ind(G,V, l1),
fl2 = Ind(G,V, l2),

fl1∪l2 = Ind(G,V, l1 ∪ l2).

Let M1 = (S, C1, fl1) and M2 = (S, C2, fl2). For all X ∈ 2V ,
we see that

fl1∪l2 (X)

=
∪
g∈G

g (l1 ∪ l2)
(
g−1X ∩ V

)
=

∪
g∈G

g
{
l1

(
g−1X ∩ V

)
∪ l2

(
g−1X ∩ V

)}
=

∪
g∈G

gl1
(
g−1X ∩ V

)
∪

∪
g∈G

gl2
(
g−1X ∩ V

)
=Fl1 (X ∩ S) ∪ Fl2 (X ∩ S)
= (fl1 ∪ fl2) (X) .

Therefore we have

M1 ∪ M2

=(S, C(C1 ∪ C2), fl1 ∪ fl2)
≡(S, C(C1 ∪ C2), fl1∪l2).

Moreover, since C̃V ⊆ C1, C2, we have C̃V ⊆ C(C1 ∪ C2).
Hence we have

(S, C(C1 ∪ C2), fl1∪l2)
≡GACS(G,S, V, l1 ∪ l2)

Therefore we have

M1 ∪ M2 ≡ GACS(G,S, V, l1 ∪ l2).

Corollary 3. Let

M1 ≡ GACS(G,S, V, l1), M2 ≡ GACS(G,S, V, l2).

Let FM1 , FM2 and FM1∪M2 be global transition functions
of M1, M2 and M1 ∪ M2, respectively. Then we have

FM1∪M2 (A) = FM1 (A) ∪ FM2 (A)

for all A ∈ 2S

Proof. Let A ∈ 2S . From Proposition 8, we have

M1 ∪ M2 ≡ GACS(G,S, V, l1 ∪ l2).

Therefore we see that

FM1∪M2 (A)

=
∪
g∈G

g (l1 ∪ l2)
(
g−1A ∩ V

)
=

∪
g∈G

gl1
(
g−1A ∩ V

)
∪

∪
g∈G

gl2
(
g−1A ∩ V

)
=FM1 (A) ∪ FM2 (A)

by Theorem 1.
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Corollary 4. Let

M1 = GACS(G,S, V, l1),
M2 = GACS(G,S, V, l2),
M3 = GACS(G,S, V, l3).

We have
M1 ∪ M3 ≡ M2 ∪ M3

if M1 ≡ M2.

Proof. Let FM1 , FM2 , FM3 FM1∪M3 and FM1∪M3 be global
transition functions of M1, M2, M3, FM1∪M3 and FM2∪M3

respectively. Then we have FM1 = FM2 . For all A ∈ 2S ,
we see that

FM1∪M3 (A)
=FM1 (A) ∪ FM3 (A)
=FM2 (A) ∪ FM3 (A)
=FM2∪M3 (A)

from Corollary 3. Hence we have M1∪M3 = M2∪M3.

Next, we consider to divide the set C into some partitions.
Proposition 9. Let C be a set of collisions on S. The
following three conditions are equivalent.

(a) There exists two sets of collisions C1 and C2 on S which
satisfies:

C = C1 ∪ C2,(22)
for all X1 ∈ C1, X2 ∈ C2,(23)
if #X1 ≥ 2 and #X2 ≥ 2,

then X1 ∩ X2 = ϕ,

where #Xi is the number of elements in Xi.

(b) There exists subsets C̃1 and C̃2 of 2S which satisfy

C = C̃1 ∪ C̃2,(24)

X1 ∈ C̃1, X2 ∈ C̃2 ⇒ X1 ∩ X2 = ϕ.(25)

(c) There exists S1 and S2 which satisfy

S1 ∪ S2 = S,(26)
S1 ∩ S2 = ϕ,(27)

(C ∩ 2S1) ∪ (C ∩ 2S2) = C.(28)

Proof. We prove (c) ⇔ (a) and (c) ⇔ (b).
(c) ⇒ (b) Let

C̃i = C ∩ 2Si .

Then we have

C̃1 ∪ C̃2 = (C ∩ 2S1) ∪ (C2 ∩ 2S2) = C,

by (28). Hence we have (24).

Moreover, for all X1 ∈ C̃1, X2 ∈ C̃2, since

X1 ∈ 2S1 , X2 ∈ 2S2

and (27) of (c), we have

X1 ∩ X2 ⊆ S1 ∩ S2 = ϕ.

Hence we have (25).
(b) ⇒ (c) Let

Si =
∪

C̃i.

We prove (26), i.e., S1 ∪ S2 = S. It is clear that S1 ∩ S2 ⊆
S. On the other hand, for all s ∈ S, we have {s} ∈ C.
Therefore we have

s ∈ (∪C̃1) ∪ (∪C̃2) = S1 ∪ S2,

by (24). This implies S ⊆ S1∪S2. Therefore we have (26).
Next, we prove (27), i.e., S1 ∩ S2 = ϕ. We suppose that

S1 ∩ S2 ̸= ϕ. Then, there exists s ∈ S1 ∩ S2. Therefore,
there exists X1 ∈ C̃1 and X2 ∈ C̃2 such that s ∈ X1, s ∈ X2.
This implies s ∈ X1∩X2 ̸= ϕ. This contradicts (25). Hence
we have (27). Finally, we prove (28). It is clear that

(C ∩ 2S1) ∪ (C ∩ 2S2) ⊆ C.

On the other hand, since S1 = (∪C̃1), we have X ⊆ (∪C̃1) =
S1 for all X ∈ C̃1. This implies X ∈ 2S1 . Therefore C̃1 ⊆
2S1 . Hence we have

C̃1 ⊆ C ∩ 2S1 .

Similarly, we have C̃2 ⊆ C ∩ 2S2 . Therefore we have

C = C̃1 ∪ C̃2 ⊆ (C ∩ 2S1) ∪ (C ∩ 2S2).

Hence we have (28).
(c) ⇒ (a) Let

(29) Ci = (C ∩ 2Si) ∪ {{s} | s ∈ S3−i} , (i = 1, 2).

For all X1 ∈ C1 and X2 ∈ C2, suppose that #X1 ≥ 2 and
#X2 ≥ 2. Since

Xi /∈ {{s} | s ∈ S3−i} ,

we have Xi ∈ (C ∩2Si). By (27), we have (23) as following:

X1 ∩ X2 ⊆ S1 ∩ S2 = ϕ.

Moreover, we have (22) as following:

C1 ∪ C2 = (C ∩ 2S1) ∪ (C ∩ 2S2) ∪ {{s} | s ∈ S}
= C ∪ {{s} | s ∈ S}
= C.

Finally, we show that C1 and C2 are sets of collisions on
S. By (29), it is easy to show that Ci satisfies the condition
(SC1). We check the condition (SC2). We assume X ⊆ C1

without loss of generality. Suppose that (∩X ) ̸= ϕ.
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We suppose that #X = 1. Then there exists X ∈ C1

such that X = {X}. Therefore (∪X ) = X ∈ C1.
We suppose that #X ≥ 2. We assume that there exists

X ∈ X such that X /∈ C ∩ 2S1 . Then there exists s2 ∈ S2

such that X = {s2}. Therefore (∩X ) ⊇ {s2}. However, by
(29), we have

X ∈ C1, X ̸= {s2} ⇒ s2 /∈ X.

Therefore, (∩X ) = ϕ. This contradicts (∩X ) ̸= ϕ. Hence
we have X ∈ C ∩ 2S1 for all X ∈ X . This implies X ⊆
C∩2S1 . Since C is a set of collisions on S, we have (∪X ) ∈ C
from X ⊆ C and (∩X ) ̸= ϕ. Moreover, we have (∪X ) ∈ 2S1

from X ⊆ 2S1 . Therefore, (∪X ) ∈ C ∩ 2S1 . Hence the set
C1 satisfies the condition (SC2).
(a) ⇒ (c) We assume there exists s ∈ S such that

X ∈ C, s ∈ X ⇒ X = {s}.

Then we can easily prove (c), by putting S1 = {s} and
S2 = S \ S1. In fact, it is clear that S1 ∪ S2 = S and
S1 ∩ S2 = ϕ. Let X ∈ C. If s ∈ X then X = {s} ⊆ S1.
If s /∈ X then X ⊆ S2. This implies that X ∈ 2S1 ∪ 2S2 .
Therefore we have

X ∈ C ∩ (2S1 ∪ 2S2) = (C ∩ 2S1) ∪ (C ∩ 2S2).

Hence we have (C ∩ 2S1) ∩ (C ∩ 2S2) = C.
In the following, suppose that for all s ∈ S, there exists

X ∈ C such that

(30) s ∈ X, #X ≥ 2.

Let

(31) Si =
∪

{X | X ∈ Ci, #X ≥ 2} , (i = 1, 2).

First, it is clear that Si ̸= ϕ and S1 ∪ S2 ⊆ S. We show
that S1 ∪ S2 ⊇ S. For all s ∈ S, there exists X ∈ C
such that s ∈ X, #X ≥ 2. Since C = C1 ∪ C2, we have
X ∈ C1 or X ∈ C2. If X ∈ C1 (resp. C2), we have X ⊆ S1

(resp. X ⊆ S2) by #X ≥ 2. Therefore we can conclude
that s ∈ X ⊆ S1 ∪ S2. Next, we prove (27). We assume
that S1 ∩ S2 ̸= ϕ. There exist X1 ∈ C1(#X1 ≥ 2) and
X2 ∈ C2(#X2 ≥ 2) such that s ∈ X1, s ∈ X2. This implies
X1∩X2 ̸= ϕ. This contradicts (23). Finally, we prove (28).
Let X ∈ C. Suppose that #X = 1. Since S = S1 ∪ S2, we
have X ⊆ S1 or X ⊆ S2. Therefore X ∈ 2S1 ∪ 2S2 . We
suppose that #X ≥ 2. Then we have X ⊆ S1 or X ⊆ S2

by (31). This implies X ∈ 2S1 ∪ 2S2 . Therefore we have

X ∈ C ∩ (2S1 ∪ 2S2) = (C ∩ 2S1) ∪ (C ∩ 2S2).

Hence we see that

C ⊆ (C ∩ 2S1) ∪ (C ∩ 2S2).

On the other hand, it is clear that

(C ∩ 2S1) ∪ (C ∩ 2S2) ⊆ C.

Hence we have (28).

Definition 11. Let C be a set of collisions on S. We call
the set C is dividable iff it satisfies conditions of Proposi-
tion 9.
Proposition 10. Let M = (S, C, f) be an abstract colli-
sion system. If the set C is dividable, then M is dividable.

Proof. Since the set C is dividable, it satisfies the condition
(c). Therefore, there exists S1 and S2 such that

(32) S1∪S2 = S, S1∩S2 = ϕ, (C∩2S1)∪(C∩2S2) = C.

Let

(33) M1 = (S1, C ∩ 2S1 , f1), M2 = (S2, C ∩ 2S2 , f2),

where f1 and f2 is restriction of f onto C ∩2S1 and C ∩2S2 ,
respectively. Since C is a set of collision on S, we have

C(C1 ∪ C2) = C(C) = C.

Therefore for all X ∈ C, we have X ∈ (C ∩ 2S1) or X ∈
(C ∩ 2S2). We suppose that X ∈ (C ∩ 2S1). Since X ⊆ S1,
we have X ∩ S2 = ϕ. Hence we have

(34) (f1 ∪ f2)(X) = f1(X) ∪ ϕ = f1(X) = f(X).

We can also prove (34) in the same way for X ∈ (C ∩ 2S2).
Hence we have

M1 ∪ M2 = (S1 ∪ S2, C(C1 ∪ C2), f1 ∪ f2) = (S, C, f1 ∪ f2).

Therefore we have M1∪M2 ≡ M by Lemma 2 and (34).

The converse of Proposition 10 does not hold. We show
that there exists an abstract collision system M = (S, C, f)
such that C is not dividable but M is dividable.
Proposition 11. Let G be a cyclic group and its generator
be an element a, i.e.,

G =< a >= {an | n ∈ Z}.

We assume that V ⊇ {a0, a1}. Then any set of collisions
C which includes C̃V is not dividable.

Proof. First we prove that

Xn =
{
a0, a1, . . . , an

}
is an element of C for all n ∈ N. We prove this by using
mathematical induction. When n = 1, since

X1 =
{
a0, a1

}
∈ 2V ,

we have X1 ∈ C̃V ⊆ C. Let k ≥ 1 and we assume that
Xk ∈ C. Since

{
a0, a1

}
∈ 2V and ak ∈ G, we have

X ′
k+1 =

{
ak, ak+1

}
= ak

{
a0, a1

}
∈ C̃V ⊆ C.

Therefore we have

Xk ∈ C, X ′
k+1 ∈ C, Xk ∩ X ′

k+1 = {ak} ≠ ϕ.
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Hence we have

Xk ∪ X ′
k+1 = Xk+1 ∈ C,

by (SC2). Similarly, we have

{a−m, . . . , a0} ∈ C

for all m ∈ N. Therefore we have

{a−m, . . . , a0, . . . , an} ∈ C

for all m, n ∈ N.
Next, we show that C is not dividable. We assume that

C is dividable. Then there exist two set S1 and S2 such
that they satisfy 3 conditions of (c) in Proposition 9.

We assume a0 ∈ S1 without loss of generality. Since
S2 ̸= ϕ, we can take an element an ∈ S2. Then the set

Yn =
{

a−|n|, . . . , a0, . . . , a|n|
}

is an element of C. Since a0 ∈ Yn, a0 ∈ S1, an ∈ Yn,
an ∈ S2 and S1 ∩ S2 = ϕ, we have

Yn /∈ 2S1 , Yn /∈ 2S2 .

This implies

(C ∩ 2S1) ∪ (C ∩ 2S2) ̸= C.

This contradicts (28). Hence C is not dividable.

Example 5. We consider a 1 dimensional, 2 states, 2
neighborhood cellular automaton rule number 6:

fCA6(x0, x1) = x0 ⊕ x1.

We note that

x0 ⊕ x1 = (x0 ∧ ¬x1) ∨ (¬x0 ∧ x1).

Let G = Z. We define l
(2)
6 by

l
(2)
6 ({0, 1}) = ϕ, l

(2)
6 ({0}) = {0},

l
(2)
6 ({1}) = {0}, l

(2)
6 (ϕ) = ϕ

By using the notation of (17), we denote l
(2)
6 by

l
(2)
6 (1, 1) = 0, l

(2)
6 (1, 0) = 1,

l
(2)
6 (0, 1) = 1, l

(2)
6 (0, 0) = 0,

i.e., l
(2)
6 (x0, x1) = x0 ⊕ x1. Let V = {0, 1}. Then we

see that the set of collisions C(C̃V ) is not dividable from
Proposition 11.

Moreover, we define two functions l
(2)
2 and l

(2)
4 by

l
(2)
2 (1, 1) = 0, l

(2)
2 (1, 0) = 0,

l
(2)
2 (0, 1) = 1, l

(2)
2 (0, 0) = 0,

l
(2)
4 (1, 1) = 0, l

(2)
4 (1, 0) = 1,

l
(2)
4 (0, 1) = 0, l

(2)
4 (0, 0) = 0,

i.e.,

l
(2)
2 (x0, x1) = ¬x0 ∨ x1,

l
(2)
4 (x0, x1) = x0 ∨ ¬x1.

Let
M2CA−6 = GACS(Z, Z, V, l

(2)
6 ),

M2CA−2 = GACS(Z, Z, V, l
(2)
2 ),

M2CA−4 = GACS(Z, Z, V, l
(2)
4 ).

Then have M2CA−6 ≡ M2CA−2 ∪ M2CA−4.
The results of 1 dimensional 2 states 2 neighborhood

cellular automata are listed in Table 2. From this table,
we see that the rule numbers of cellular automata which is
dividable are 6, 10, 12 and 14.
Example 6. We consider 1 dimensional 2 state 3 neigh-
borhood cellular automaton CA 222, i.e.,

V = {0, 1, 2},

l
(3)
222(x0, x1, x2) = (x0 ⊕ x2) ∨ x1,

M3CA−222 = GACS(Z, Z, V, l
(3)
222).

Then we see that C(C̃V ) C is not dividable.
On the other hand, we define two functions

l
(3)
90 (x0, x1, x2) = x0 ⊕ x2,

l
(3)
204(x0, x1, x2) = x1,

and make abstract collision systems

M3CA−90 = GACS(Z, Z, {0, 2}, l(3)90 ),

M3CA−204 = GACS(Z, Z, {1}, l(3)204).

Then we can easily prove that

M3CA−222 ≡ M3CA−90 ∪ M3CA−204.

Table 2: union of two 2 neighborhood CA
l2\l1 0 2 4 6 8 10 12 14

0 0 2 4 6 8 10 12 14
2 2 2 6 6 10 10 14 14
4 4 6 4 6 12 14 12 14
6 6 6 6 6 14 14 14 14
8 8 10 12 14 8 10 12 14
10 10 10 14 14 10 10 14 14
12 12 14 12 14 12 14 12 14
14 14 14 14 14 14 14 14 14

Finally, we show a sufficient condition with which ACS
is dividable.
Theorem 2. Let G be a group. We consider an abstract
collision system on a G-set, GACS(G,G, V, l). We assume
that there exists a normal subgroup H of G and d ∈ G such
that H ̸= G and dV ⊆ H. Then the set C(C̃V ) is dividable.
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Proof. Without loss of generality, we can assume that d = e
(e is the identity element of G), and the index #(G/H) is
2. In other cases, we can prove similarly. We prove (c) of
Proposition 9. Let h ∈ G \ H, and

S1 = H, S2 = hH.

It is clear that S = S1 ∪ S2 and S1 ∩ S2 = ϕ.
Next, we prove that C(C̃) ⊆ 2H ∪ 2hH . To prove this, we

show that 2H ∪ 2hH is a set of collisions on S and

(35) C̃V =
{
gX | g ∈ G, X ∈ 2V

}
⊆ (2H ∪ 2hH).

It is clear that 2H ∪ 2hH is a set of collisions on S. We
prove (35). Let Y ∈ C̃V . There exists g ∈ G, X ∈ 2V such
that Y = gX. Since V ⊆ H, we have X ∈ 2H , i.e., X ⊆ H.

Hence Y = gX ⊆ gH. Since gH equals to H or hH, 2gH

equals to 2H or 2hH . Therefore we have

Y ∈ 2gH ⊆ 2H ∪ 2hH .

Hence we have Y ∈ (2H ∪2hH) for all Y ∈ C̃V . This implies
(35). Finally, let C1 = C(C̃) ∩ 2H and C2 = C(C̃) ∩ 2hH .
Then we see that

C1 ∪ C2 = (C(C̃) ∩ 2H) ∪ (C(C̃) ∩ 2hH)

= C(C̃) ∩ (2H ∪ 2hH)

= C(C̃).

Hence we have (28).

Example 7. We consider a 1 dimensional 2 state 3 neigh-
borhood cellular automata CA 90. Let l

(3)
90 be

l
(3)
90 (x0, x1, x2) = x0 ⊕ x2.

First,it seems to be able to divide cells into cells which
position are even and odd. We see intuitively that this
division is able if the number of cells is infinite or even.
We describe this facts by using Theorem 2.

First, we suppose that the number of cells is infinite, i.e.,
G = Z. Let V = {0, 2}. Therefore we choose H = 2Z, we
see that {0, 2} ⊆ H. Hence the abstract collision system
GACS(Z, Z, {0, 2}) is dividable.

Next, we suppose that the number of cells is finite and
even i.e., G = Z/(2n)Z. Similarly, we choose H = {2n |
n ∈ G}. Then H is a subgroup of Z and we have H ̸= G
and {0, 2} ⊆ H.

5. Composition of abstract collision
systems on G-sets

In this section, we discuss about compositions of abstract
collision systems.
Definition 12. Let l : 2V → 2S . The range of l, which is
denoted by Range l, is defined by

Range l =
∪ {

l(X) | X ∈ 2V
}
⊆ S.

Let S = G.

Definition 13 (Composition). Let V1 ⊆ G, V2 ⊆ G, l1 :
2V1 → 2S and l2 : 2V2 → 2S . We define a set V2(l1) by

V2(l1) =


{v2 ∈ G | (v2(Range l1)) ∩ V2 ̸= ϕ} ,

if Range l1 ̸= ϕ

V2, if Range l1 = ϕ.

(36)

Moreover, we define a set V2(l1)⊗V1 and a function l2♢l1 :
2V2(l1)⊗V1 → 2S by

V2(l1) ⊗ V1 = {v2v1 | v2 ∈ V2(l1), v1 ∈ V1} ,(37)

l2♢l1 (X) = l2

 ∪
v∈V2(l1)

vl1((v−1X) ∩ V1) ∩ V2

 .(38)

Lemma 9. The two sets in the Definition 13 satisfy

V2(l1) ̸= ϕ, V2(l1) ⊗ V1 ̸= ϕ.

Proof. We prove V2(l1) ̸= ϕ. If Range l1 = ϕ, we have
V (l1) = V2 ̸= ϕ from (36). Suppose that Range l1 ̸= ϕ.
For all x ∈ Range l1 and y ∈ V2, let v2 = yx−1. Then
y = v2x. Since v2x ∈ v2(Range l1) and y ∈ V2, we have

y ∈ (v2(Range l1)) ∩ V2.

This implies
(v2(Range l1)) ∩ V2 ̸= ϕ.

Hence v2 ∈ V2(l1). Therefore we have V2(l1) ̸= ϕ.

Lemma 10. For all v2 ∈ V2(l1), we have

V1 ⊂ v2
−1(V2(l1) ⊗ V1).

Especially, we have

(39) (v2
−1(V2(l1) ⊗ V1)) ∩ V1 = V1.

Proof. Let v1 ∈ V1. We have v1 = v2
−1(v2v1). Since v2 ∈

V2(l1), we have

(v2v1) ∈ V2(l1) ⊗ V1.

Therefore we have

v1 = (v2)−1(v2v1) ∈ v2
−1(V2(l1) ⊗ V1).

Hence we have

V1 ⊂ v2
−1(V2(l1) ⊗ V1)

Lemma 11. Let h ∈ G. For all g ∈ G \ h(V2(l1)) and
X ⊂ V1, we have

(40) (h−1gl1(X)) ∩ V2 = ϕ.
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Proof. Suppose that Range l1 = ϕ. Since l1(X) = ϕ for all
X ⊆ V1, our claim is clear. Suppose that Range l1 ̸= ϕ.
We assume that

(41) (h−1gl1(X)) ∩ V2 ̸= ϕ.

Since l1(X) ⊆ Range l1, we have

(h−1gl1(X)) ∩ V2 ⊂ (h−1g(Range l1)) ∩ V2.

Therefore we have

(h−1g(Range l1)) ∩ V2 ̸= ϕ

from (41). Hence we can conclude that h−1g ∈ V2(l1). This
implies g ∈ hV2(l1). This contradicts g ∈ G\(hV2(l1)).

Theorem 3. Let fl1 , fl2 and fl2♢l1 be induced local tran-
sition functions by V1 and l1, V2 and l2, V2(l1) ⊗ V1 and
l2♢l1, respectively, i.e.,

fl1 = Ind(G,V1, l1),
fl2 = Ind(G,V2, l2),

fl2♢l1 = Ind(G,V2(l1) ⊗ V1, l2♢l1).

Then we have

(42) fl2♢l1 = fl2 ◦ fl1 .

Proof. First, we assume that Range l1 ̸= ϕ. For all X ∈
2V2(l1)⊗V1 , we compute fl2♢l1 and fl2 ◦ fl1 .

fl2♢l1(X)

=
∪

g2∈G

g2 (l2♢l1)
(
g2

−1X ∩ (V2(l1) ⊗ V1)
)

=
∪

g2∈G

g2l2

( ∪
v∈V2(l1)

v

l1
(
v−1(g2

−1X ∩ (V2(l1) ⊗ V1)) ∩ V1

)
∩ V2

)

=
∪

g2∈G

g2l2

( ∪
v∈V2(l1)

v

l1
(
(g2v)−1X ∩ v−1(V2(l1) ⊗ V1) ∩ V1

)
∩ V2

)

=
∪

g2∈G

g2l2

( ∪
v∈V2(l1)

g2
−1(g2v)

l1
(
(g2v)−1X ∩ V1

)
∩ V2

)
,(43)

and

fl2 ◦ fl1 (X)

=
∪

g2∈G

g2l2
(
g2

−1fl1(X) ∩ V2

)
=

∪
g2∈G

g2l2

(
g2

−1

( ∪
g1∈G

g1l1
(
g1

−1X ∩ V1

))
∩ V2

)

=
∪

g2∈G

g2l2

 ∪
g1∈G

(
g2

−1g1l1
(
g1

−1X ∩ V1

))
∩ V2

(44)

To show that they are equal, we prove that∪
v∈V2(l1)

g2
−1(g2v)l1

(
(g2v)−1X ∩ V1

)
∩ V2

=
∪

g1∈G

g2
−1g1l1

(
g1

−1X ∩ V1

)
=

∪
g1∈g2V2(l1)

(
g2

−1g1l1
(
g1

−1X ∩ V1

))
∩ V2

∪
∪

g1∈G\g2V2(l1)

(
g2

−1g1l1
(
g1

−1X ∩ V1

))
∩ V2(45)

for all g2 ∈ G. Since we have∪
g1∈G\g2V2(l1)

(
g2

−1g1l1
(
g1

−1X ∩ V1

))
∩ V2 = ϕ

by Lemma 11, we show∪
v∈V2(l1)

g2
−1(g2v)l1

(
(g2v)−1X ∩ V1

)
∩ V2

=
∪

g1∈g2V2(l1)

(
g2

−1g1l1
(
g1

−1X ∩ V1

))
∩ V2(46)

instead of (45).
However, v ∈ V2(l1) and g1 ∈ g2(V2(l2)) is one-to-one

with g1 = g2v. Hence we have (46).
Next, we assume that Range l1 = ϕ. For all X ∈ 2V2⊗V1 ,

(38) becomes

(47) l2♢l1(X) = l2(ϕ).

On the other hand, fl1 satisfies fl1(Y ) = ϕ for all Y ∈ 2S .
Therefore we have

fl2 ◦ fl1 (Y ) = fl2 (ϕ) .

Hence for all Y ∈ 2V2⊗V1 , we have

fl2♢l1(Y ) =
∪
g∈G

gl2♢l1((g−1Y ) ∩ (V2 ⊗ V1))

=
∪
g∈G

gl2(ϕ)

=
∪
g∈G

gl2((g−1ϕ) ∩ V2)

= fl2(ϕ)
= fl2 ◦ fl1 (Y ) .
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That’s our claim.

Definition 14. Let

M1 = GACS(G,G, V1, l1),
M2 = GACS(G,G, V2, l2).

We define an abstract collision system M2♢M1 by

M2♢M1 = GACS(G,G, V2(l1) ⊗ V1, l2♢l1).

Theorem 4. Let

M1 = GACS(G,G, V1, l1),
M2 = GACS(G,G, V2, l2).

Let FM1 , FM2 and FM2♢M1 be global transition functions
of M1, M2 and M2♢M1, respectively. Then we have

FM2♢M1 (A) = FM2 ◦ FM1 (A)

for all A ∈ 2G.

Proof. We see that

FM2♢M1 (A)

=
∪

g2∈G

g2 (l2♢l1)
(
g2

−1A ∩ (V2(l1) ⊗ V1)
)
,

FM2 ◦ FM1 (A)

=
∪

g2∈G

g2l2

(
g2

−1

( ∪
g1∈G

g1l1
(
g1

−1X ∩ V1

))
∩ V2

)

from Theorem 1. The right hand sides of these formulae
are appeared in (43) and (44) in the proof of Theorem 3,
and we proved they are equal. Hence we have

FM2♢M1 (A) = FM2 ◦ FM1 (A) .

Corollary 5. Let

M1 = GACS(G,G, V, l1),
M2 = GACS(G,G, V, l2),
M3 = GACS(G,G, V ′, l3).

Then we have

M3♢M1 ≡ M3♢M2,

M1♢M3 ≡ M2♢M3

if M1 ≡ M2.

Proof. Let FM1 , FM2 , FM3 FM3♢M1 and FM3♢M2 be global
transition functions of M1, M2, M3, M3♢M1 and M3♢M2,
respectively. Then we have FM1 = FM2 . Therefore for all
A ∈ 2S , we have

FM3♢M1 (A)
=FM3 ◦ FM1 (A)
=FM3 ◦ FM2 (A)
=FM3♢M2 (A)

from Theorem 4. Hence we have M3♢M1 ≡ M3♢M2. Sim-
ilarly, we have M1♢M3 ≡ M2♢M3.

Example 8. Let M2CA−i, M2CA−j and M3CA−k be cellu-
lar automata on groups

M2CA−i = GACS(Z, Z, {0, 1}, l(2)i ),

M2CA−j = GACS(Z, Z, {0, 1}, l(2)j ),

M3CA−k = GACS(Z, Z, {0, 1, 2}, l(3)k ).

Then we have

V (l(2)j ) ⊗ V = {0, 1, 2},

l
(2)
i ♢l

(2)
j (x0, x1, x2) = l

(2)
i

(
l
(2)
j (x0, x1), l

(2)
j (x1, x2)

)
,

by Theorem 3. This means that we can construct a 3 neigh-
borhood cellular automaton by composing two 2 neighbor-
hood cellular automata.

The result of compositions of 2 neighborhood cellular
automata are listed in Table 3. For example,

M2CA−6♢M2CA−6 = M3CA−90,

M2CA−8♢M2CA−4 = M3CA−0.

Since

l
(2)
6 (x0, x1) = x0 ⊕ x1,

l
(3)
90 (x0, x1, x2) = x0 ⊕ x2,

the first example shows

(x0 ⊕ x1) ⊕ (x1 ⊕ x2)

=l
(2)
6

(
l
(2)
6 (x0, x1), l

(2)
6 (x1, x2)

)
=l

(3)
90 (x0, x1, x2)

=x0 ⊕ x2.

Similarly, the second example shows

(x0 ∧ ¬x1) ∧ (x1 ∧ ¬x2)

=l
(2)
8

(
l
(2)
4 (x0, x1), l

(2)
4 (x1, x2)

)
=l

(3)
0 (x0, x1, x2)

=0.
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Table 3: The composition of 2 neighborhood CA, li♢lj .
li\lj 0 2 4 6 8 10 12 14

0 0 0 0 0 0 0 0 0
2 0 34 68 66 8 34 12 2
4 0 12 48 24 64 68 48 16
6 0 46 116 90 72 102 60 18
8 0 0 0 36 128 136 192 236
10 0 34 68 102 136 170 204 238
12 0 12 48 60 192 204 240 252
14 0 46 116 126 200 238 252 254

We assumed that S = G in order to simplify the discus-
sion. The following of this section, we extend the definition
of composition in the case of S ̸= G.

In Definition 13, we would like to reset V1, V2 ⊆ G by
V1, V2 ⊆ S. However, since the set S has no operation,
(37) is not well-defined. We would like to define (37) by
using the action of G on S. First, let V ⊆ S and H ⊆ G,
we define

(48) HV = {hv | h ∈ H, v ∈ V } .

Next, we take H1, H2 ⊆ G. We replace V1 and V2 in (37)
by H1V and H2V , respectively.
Definition 15. Let V ⊆ S, H1 ⊆ G, H2 ⊆ G, l1 : 2H1V →
2S and l2 : 2H2V → 2S . We define a set H2(l1) by

H2(l1) =


{h ∈ G | (h(Range l1)) ∩ H2V ̸= ϕ} ,

if Range l1 ̸= ϕ

H2, if Range l1 = ϕ

(49)

Moreover, we define a sets H2(l1)⊗H1 and a function l2♢l1 :
2H2(l1)⊗H1V → 2S by

H2(l1) ⊗ H1

= {h2h1 | h2 ∈ H2(l1), h1 ∈ H1} ,(50)
l2♢l1(X)

=l2

 ∪
h∈H2(l1)

hl1((h−1X) ∩ H1V ) ∩ H2V

(51)

Theorem 5. Let fl1 , fl2 and fl2♢l1 be induced local tran-
sition function by H1V and l1 H2V and l2, (H2(l1)⊗H1)V
and l2♢l1, respectively, i.e.,

fl1 = Ind(G,H1V, l1),
fl2 = Ind(G,H2V, l2),

fl2♢l1 = Ind(G, (H2(l1) ⊗ H1)V, l2♢l1).

Then we have

(52) fl2♢l1 = fl2 ◦ fl1 .

Proof. First of all, by the similar way of the proof of Lemma
10, we can easily get

(53)
(
h2

−1(H2(l1) ⊗ H1)V
)
∩ H1V = H1V

for all h2 ∈ H2(l1). Moreover, we can also get

(54)
(
h−1gl1(X)

)
∩ H2V = ϕ

for all h ∈ G, g ∈ G \ h(H2(l1)) and X ⊂ H1V , instead of
Lemma 11.

Suppose that Range l1 ̸= ϕ. Let X ∈ 2H2(l1)⊗H1 . By the
similar way of the proof of Theorem 3, we can get

fl2♢l1

=
∪

g2∈G

g2l2

( ∪
h∈H2(l1)

g2
−1(g2h)

l1
(
(g2h)−1X ∩ H1V

)
∩ H2V

)
,

fl2 ◦ fl1 (X)

=
∪

g2∈G

g2l2

( ∪
g1∈G

(
g2

−1g1l1
(
g1

−1X ∩ H1V
))

∩ H2V

)
.

To show they are equal, we prove that∪
h∈H2(l1)

g2
−1(g2h)l1

(
(g2h)−1X ∩ H1V

)
∩ H2V

=
∪

g1∈g2H2(l1)

(
g2

−1g1l1
(
g1

−1X ∩ H1V
))

∩ H2V.(55)

∪
∪

g1∈G\g2H2(l1)

(
g2

−1g1l1
(
g1

−1X ∩ H1V
))

∩ H2V

Since we have (54), we show∪
h∈H2(l1)

g2
−1(g2h)l1

(
(g2h)−1X ∩ H1V

)
∩ H2V

=
∪

g1∈g2H2(l1)

(
g2

−1g1l1
(
g1

−1X ∩ H1V
))

∩ H2V(56)

instead of (55). However, it is very easy to show (56).
In the case of Range l1 = ϕ, we can easily prove with the

similar way of the proof of Theorem 3.

Example 9. Let H = {0, 1} Let M1 and M2 be 1 dimen-
sional Q state, H neighborhood cellular automata, defined
by Example 4. Then we have

(57) l2♢l1(x0, x1, x2) = l2 (l1(x0, x1), l1(x1, x2))

by composing M1 and M2.

6. Distributive Law

In this section, we consider that two operations, union and
composition of ACSs on G-sets, and check the distributive
law. We consider the most easy case, cellular automata on
groups.
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Example 10. Let M2CA−i and M3CA−j be cellular au-
tomata on groups

M2CA−i = GACS(Z, Z, {0, 1}, l(2)i ),

M3CA−j = GACS(Z, Z, {0, 1, 2}, l(3)j ),

respectively. From Table 2 and Table 3, we have M2CA−2∪
M2CA−4 = M2CA−6 and M2CA−6♢M2CA−6 = M3CA−90.
Moreover, we have

M2CA−6♢M2CA−2 = M3CA−46,

M2CA−6♢M2CA−4 = M3CA−116,

M2CA−2♢M2CA−6 = M3CA−66,

M2CA−4♢M2CA−6 = M3CA−24

from Table 3. Furthermore, we can compute easily

M3CA−46 ∪ M3CA−116 = M3CA−126,

M3CA−66 ∪ M3CA−24 = M3CA−90.

Therefore we see that

M2CA−6♢(M2CA−2 ∪ M2CA−4)
= (M2CA−2 ∪ M2CA−4) ♢M2CA−6

=M2CA−6♢M2CA−6

=M3CA−90,

(M2CA−6♢M2CA−2) ∪ (M2CA−6♢M2CA−4)
=M3CA−46 ∪ M3CA−116

=M3CA−126,

(M2CA−2♢M2CA−6) ∪ (M2CA−4♢M2CA−6)
=M3CA−66 ∪ M3CA−24

=M3CA−90.

Hence we have

M2CA−6♢ (M2CA−2 ∪ M2CA−4)
̸=(M2CA−6♢M2CA−2) ∪ (M2CA−6♢M2CA−4) ,

(M2CA−2 ∪ M2CA−4)♢M2CA−6

=(M2CA−2♢M2CA−6) ∪ (M2CA−4♢M2CA−6) .

Similarly, we can prove that

(M2CA−j ∪ M2CA−k) ♢M2CA−i

=(M2CA−j♢M2CA−i) ∪ (M2CA−k♢M2CA−i)

for all rule number i, j and k. However the equation

M2CA−k♢ (M2CA−i ∪ M2CA−j)
= (M2CA−k♢M2CA−i) ∪ (M2CA−k♢M2CA−j)

is not always hold for rule number i, j and k.
Theorem 6. Let

M1 = GACS(G,G, V, l1),
M2 = GACS(G,G, V, l2),
M3 = GACS(G,G, V ′, l3).

Then we have

(58) (M1 ∪ M2)♢M3 = (M1♢M3) ∪ (M2♢M3) .

Proof. We see that

(M1 ∪ M2)♢M3

≡ GACS(G,G, V, l1 ∪ l2)♢GACS(G,G, V3, l3)
(by Cor. 5 )

≡ GACS(G,G, V (l3) ⊗ V3, (l1 ∪ l2)♢l3) (by Def. 14 ),
(M1♢M3) ∪ (M2♢M3)

≡ GACS(G,G, V3(l3) ⊗ V, l1♢l3)
∪ GACS(G,G, V3(l3) ⊗ V, l2♢l3) (by Cor. 4)
≡ GACS(G,G, V3(l3) ⊗ V, (l1♢l3) ∪ (l2♢l3))

(by Prop. 8).

Moreover, we see that

(l1 ∪ l2)♢l3 (X)

= (l1 ∪ l2)

 ∪
v∈V (l3)

vl3
(
v−1X ∩ V3

)
∩ V


= l1

 ∪
v∈V (l3)

vl3
(
v−1X ∩ V3

)
∩ V


∪ l2

 ∪
v∈V (l3)

vl3
(
v−1X ∩ V3

)
∩ V


= l1♢l3 (X) ∪ l2♢l3 (X)

for all X ∈ 2V (l3)⊗V3 . Hence we have (58).

This theorem says that the operation ⋄ is right-distributive
over ∪, but ⋄ is not left-distributive over ∪.

7. Conclusion

We introduced abstract collision systems on G-sets, and in-
vestigated their properties. First, we proved that if l(ϕ) =
ϕ, the global function does not depend on the set of colli-
sions C.

Next, we defined operations “union” and “division” of
ACS. We determined a sufficient condition that an ACS on
a G-set is dividable. Finally, by using actions of groups,
we introduced the new concept “composition” of ACS on
a G-set. We proved the global transition function of the
composed ACS is the usual composition of global transition
functions of two ACSs. We proved that “composition” is
right-distributive over “union”, but is not left-distributive.

The union of cellular automata on groups is correspond-
ing the cellular automaton with a local transition rule de-
fined by the “logical or” of given local transition rules. The
composition of cellular automata with ACS is an extension
of the composition of local transition rules of cellular au-
tomata in [4]. We enumerated all 3 neighborhood CAs
defined by the composition of two 2 neighborhood CAs.
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