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Abstract. We address weakly nonlinear stability of a uniformly rotating flow confined in a cylinder
of elliptic cross-section to three-dimensional disturbances. A Lagrangian approach is developed to
derive unambiguously the drift current induced by nonlinear interaction of isovortical disturbances.
This approach rescues the insufficiency inherent in the Eulerian approach and provides a direct path
to reach the amplitude equations in the Hamiltonian normal form. The nonlinear effect saturates
the stationary instability mode, and asymptotic form of its saturation amplitude is gained, in a tidy
form, in the short-wavelength regime.
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1. Introduction

It is well known that flows with elliptic streamlines suffer
from three-dimensional (3D) instability called the ellipti-
cal instability [2, 24, 11]. This is the short-wave limit of
the Moore-Saffman-Tsai-Widnall (MSTW) instability[18,
21, 4, 5]. It is often instability rather than stability of vor-
tices and rotating flows that is useful in engineering designs
as listed by trailing vortices of an aircraft wing and mixing
in gasoline engines. Imposing straining field holds a key to
the flow control by breaking up otherwise robust vortices.

The MSTW instability is typically a parametric reso-
nance, driven by the imposed shear, between left- and right-
handed helical waves. The waves on a circular cylindri-
cal vortex tube are called the Kelvin waves or the inertial
waves. In general, a vortex tube with elliptic core goes
through a parametric resonance when two Kelvin waves
with difference in azimuthal wave numbers m being 2, hav-
ing common axial wavenumber and frequency (k, ω), are
simultaneously excited. The (m,m+ 2) = (1, 3) and (0, 2)
resonances were detected in a confined geometry [3, 11].
The stability of a uniformly rotating flow is solvable in the
sense that the eigen-values and functions are written out
in full in terms of the Bessel functions [5, 6]. The short-
wave stability analysis spotlights local character, and hence
its formulation and result carry over to bounded flows.
Malkus[14] created a rotating flow with strained stream-
lines in a water-filled flexible cylinder pressed by two sta-
tionary rollers (see also [3]). His experiment showed that
the MSTW modes grow, followed by excitation of a num-
ber of waves possibly via secondary and tertiary instabilites
and then by eventual disruption. A knowledge of nonlinear
growth of linearly unstable modes is indispensable for de-

scribing a possible route to the collapse of a rotating flow.

An account for the linear instability was given for a gen-
eral columnar vortex embedded in a strain field by Moore
and Saffman[18], for two stationary Kelvin waves of the
same axial wavenumber k and azimuthal wavenumber m =
1 and −1, and a detailed analysis was made for the Rank-
ine vortex [21, 4, 5]. Fukumoto[5] showed on the ground
of the Hamiltonian spectral theory that all the intersection
points of dispersion curves of the Kelvin waves with m and
n+ 2 result in instability.

Nonlinear effect comes into play at a matured stage of
exponential growth of disturbance amplitude and modi-
fies evolution of the MSTW instability. Waleffe[23] and
Sipp[20] showed that the weakly nonlinear effect acts to
saturate the amplitude of the Kelvin waves. Mason and
Kerswell[15] calculated the secondary instability of the MSTW
instability, but they also disregarded the mean flow. We
shall show that their procedure is incomplete in the sense
that they did not determine, to the full detail, the mean
flow induced by nonlinear interactions of the Kelvin waves.
Rodrigues and Luca [19] dealt with the case where mean
flow is absent, and found chaotic orbits.

The Euler equations admit arbitrary azimuthal veloc-
ity profile of a circular vortex, and in conjunction this,
are not capable of uniquely determining the wave-induced
mean flow by themselves. The Lagrangian displacement
field is instrumental in handling interaction of waves [1, 12,
8, 9]. Fukumoto and Hirota[7] developed the Lagrangian
approach to derive the mean flow.

The purpose of this paper is to amend the previous Eu-
lerian treatment and thereby to manipulate the amplitude
equations for weakly nonlinear evolution of the MSTW in-
stability. We limit ourselves to the stationary resonance of
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left- and right-handed helical waves.
In §2, we give the basic flow and the formulation of the

problems. We recollect the Kelvin waves in §3, and the
MSTW instability, or the (m,m+2) parametric resonance,
in §4. In §5, we inquire into the mean flow induced by
nonlinear interactions of Kelvin waves. The Lagrangian
approach[8, 9, 7] allows us to give the mean flow solely in
terms of the Lagrangian displacement of first order in am-
plitude. We rest on this approach to deduce weakly non-
linear amplitude equations in §6. In Appendix C, a com-
parison is made between the Eulerian and the Lagrangian
approaches.

2. stability problem of rotating flow
in elliptic cylinder

Malkus[14] found collapse of rotating flow in an elliptic
cylinder. We write elliptic cross-section as

(1)
x2

1 + ϵ
+

y2

1− ϵ
= 1,

where the parameter ϵ means the elliptic distortion. Let
us introduce cylindrical coordinates (r, θ, z) with the z-axis
along the centerline. Let the r and θ components of 2D ba-
sic velocity field be U and V , and the pressure P . Assum-
ing that the fluid is inviscid and incompressible, a planar
perturbation solution of the Euler equations are written as

(2)
U = ϵU1(r, θ), V = V0(r) + ϵV1(r, θ),
P = P0(r) + ϵP1(r, θ).

The subscript designates order in elliptic parameter ϵ. The
leading-order term of the basic rotating flow U0 is a rigidly
rotating flow.

(3) V0 = r, P0 =
r2

2
− 1.

The first order perturbation is a quadrupole field, as given
by

(4) U1 = −r sin 2θ, V1 = −r cos 2θ, P1 = 0,

representing the elliptic strain. This velocity field is corre-
sponding to the field consisting of strain field whose stretch-
ing direction lies along θ = −π/4 and whose direction of
contraction is along θ = π/4. We add disturbed flow ũ to
2D basic flow.
The disturbance field ũ satisfies the Euler equations,

(5)
∂ũ

∂t
+ (U · ∇) ũ+ (ũ · ∇)U +∇p̃ = 0,

where p̃ is the disturbance pressure field and the distur-
bance filling the elliptic cylinder is incompressible,

(6) ∇ · ũ = 0.

Following Sipp[20], we consider asymptotic expansions
of the velocity field in two small parameters ϵ and α as

(7)
u = U + ũ
= U0 + ϵU1 + αu01 + α2u02 + α3u03

+ϵαu11 + ϵα2u12 + . . . ,

where α signifies the measure of the amplitude of the lin-
earized disturbance. This expansion as well as that for the
pressure field p are inserted into the incompressible Eu-
ler equations (5). Here, the velocity field umn occurs at
O(ϵmαn).
The side wall (1) of the cylinder is r = 1 + ϵ cos 2θ/2 +

O(ϵ2) when the elliptic strain ϵ is small. The boundary
condition is to be imposed at the rigid side wall is

(8) u · n = 0, at r = 1 + ϵ cos 2θ/2,

where n is the outward normal vector to the side wall
boundary.
At every order, O(α), O(ϵα), O(α2), . . . , by integrating

inhomogeneous linear differential equations whose forcing
terms consist of the quantities of lower orders and the
boundary condition (8), we obtain uij and pij .

3. Kelvin wave

We briefly recall the Kelvin waves, linearized disturbances
of O(ϵ0α) on a circular core of a vortex. A Kelvin wave
with azimuthal wavenumber m and axial wavenumber k is
a normal mode of the form

(9) u
(m)
01 = Am(t)u

(m)
01 (r)eimθeikz. Am(t) ∝ e−iω0t,

where Am is a complex function of time t, u
(m)
01 is a radial

structure function and ω0 is frequency. The radial function
obeys

(10) Lm,ku
(m)
01 +∇p(m)

01 = 0, ∇ · u(m)
01 = 0,

where
(11)

Lm,k =

−i(ω0 −m) −2 0
2 −i(ω0 −m) 0
0 0 −i(ω0 −m)

 .

The boundary condition reads

(12) u01 · n = 0 on r = 1.

Introducing (9) into (10), we obtain a solution of the
linearized equation as

(13)

p
(m)
01 = Jm(ηmr),

u
(m)
01 =

i

ω0 −m+ 2

{
−m
r
Jm(ηmr)

+
ω0 −m

ω0 −m− 2
ηmJm+1(ηmr)

}
,

v
(m)
01 =

1

ω0 −m+ 2

{m
r
Jm(ηmr)

+
2ηm

ω0 −m− 2
Jm+1(ηmr)

}
,

w
(m)
01 =

k

ω0 −m
Jm(ηmr),
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Figure 1: dispersion relation of Kelvin waves, of m =
−1(red solid lines) and of m = +1(blue dashed lines), in
an elliptic cylinder.

where ηm is the radial wavenumber

(14) η2m =

[
4

(ω0 −m)2
− 1

]
k2,

and Jm is the m-th Bessel function of the first kind. The
boundary condition (12) requires the dispersion relation

(15) Jm+1(ηm) =
(ω0 −m− 2)m

(ω0 −m)ηm
Jm(ηm).

Figure 1 displays the dispersion relation of bending waves
m = ±1. Curves for m = −1 are drawn with solid red
lines, while those for m = +1 are drawn with dashed blue
lines. Its eigenfunction has a simple radial structure. In-
finitely many branches emanate from (k, ω0) = (0, 1) for
m = 1 and from (k, ω0) = (0,−1) for m = −1, among
which twenty branches for each, ten upward and ten down-
ward, are displayed. Note that the dispersion relation we
consider Figure 1 has no isolated mode, unlike the case of
the Rankine vortex [5, 21].

4. Moore-Saffman-Tsai-Widnall
instability

We explore the effect of elliptic strain (4) at O(ϵ) [17, 21, 5].
If the given disturbance flow, in the absence of elliptic
strain, has Kelvin waves with eimθ and ei(m+2)θ, at O(ϵα),
interaction of these waves with the strain (4), through the
convective terms of the Euler equations (5) excite again
Kelvin waves with eimθ and ei(m+2)θ [21]. This coincidence
indicates occurrence of parametric instability. Fukumoto[5]
made a thorough analysis of the 3D instability of the Rank-
ine vortex embedded in a plane shear field and showed that
the parameter resonance at O(α) instability occurs at all

intersection points (k, ω) of dispersion curves of a combi-
nation of Kelvin waves m and m+ 2. In the following, we
show that this is the case with the rotating flow confined
in an elliptic cylinder.

4.1. Parametric resonance in elliptic cylinder

Envisaging the parametric resonance of a Hamiltonian sys-
tem, we start, to O(ϵ0α), with a superposition of the m
and the m+ 2 waves:

(16)
u01 = Am(t)u

(m)
01 (r)eimθeikz

+Am+2(t)u
(m+2)
01 (r)ei(m+2)θeikz + c.c.,

in which c.c. designates the complex conjugate.
We then consider the behavior at O(ϵα), the influence of

the elliptic strain ϵ. Excited at O(ϵα) by interaction of the
straining field of the basic flow is
(17)

u11 = Bmu
(m−2)
11 ei(m−2)θeikz +Bm+2u

(m)
11 eimθeikz

+Bmu
(m+2)
11 ei(m+2)θeikz +Bm+2u

(m+4)
11 ei(m+4)θeikz + c.c.,

and similarly for p11, the pressure at O(ϵα). The radial

functions u
(m)
11 (r) and u

(m+2)
11 (r) are determined by inho-

mogeneous linear ordinary differential equations, derived
from the Euler equations supplemented by the continuity
equations,

(18)

Lm,ku
(m)
11 +∇p(m)

11

= 1
2

 ir
∂u

(m+2)
01

∂r + i(m+ 3)u
(m+2)
01

2u
(m+2)
01 + ir

∂v
(m+2)
01

∂r + i(m+ 1)v
(m+2)
01

ir
∂w

(m+2)
01

∂r + i(m+ 2)w
(m+2)
01


− 1

Am+2

∂Am

∂t10
u
(m)
01 ,

∇ · u(m)
01 = 0,

and similarly for the m+ 2 wave, where t10 = ϵt.
The solution of these inhomogeneous linear equations

is represented explicitly. The boundary condition (8) at
O(ϵα),

(19) u11 − u01 cos 2θ/2 + v01 sin 2θ = 0

provides equations governing Bm and Bm+2. Imposition
of the solvability condition on these equations gives rise to
the growth rate of the (m,m+ 2) resonance.

4.2. Parametric resonance of helical waves

We focus our attention on the case (m,m+2) = (−1,+1).
There are intersection points on the k− axis (ω0 = 0) at
certain values of k. For left and right-handed helical wave
resonance, the stationary mode ω0 = 0 have far greater
growth rate than non-stationary modes (ω0 ̸= 0)[21, 4, 5].
We confine ourselves to the stationary mode.
Under the restriction of ω0 = 0, the radial wavenumber

(14) reads η =
√
3k. Then, we represent the disturbance

velocity u01 as

(20) u01 = A−u−e
−iθeikz +A+u+e

iθeikz + c.c.
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Here we use the notation A± in place of A±1. The bound-
ary condition (19) provide algebraic equations for B−1 and
B+1 and the solvability condition gives rise to, with the
help of the dispersion relation (15),

(21)
1

A+

∂A−

∂t10
=

−1

A−

∂A+

∂t10
= i

3(3k2 + 1)

8(2k2 + 1)
,

where k is the solution of dispersion relation J1(η) = −ηJ0(η).
Note that k = 0 is excluded as is read off from Figure 1.
In the case of an elliptic vortex in an unbounded flow field,
Kelvin waves of m = +1 and −1 have an intersection point
at (k0, ω0) = (0, 0), and its growth rate is 0.5 [5]. By con-
trast, in the case of a rotating flow confined in an elliptic
cylinder, Kelvin waves of m = +1 and −1 do not have the
intersection point at (k, ω) = (0, 0).

The degenerate modes with ω0 = 0 necessarily result in
parametric resonance whose growth rate is given by

(22)
3(3k2 + 1)

8(2k2 + 1)
.

Vladimirov et al. [22], where the ratio of the amplitude is

(23) A−/A+ = i.

Numerical values of the growth rate for a first few inter-
section points with ω0 = 0 are listed as follows: (k, σ) =
(1.578, 0.5311), (3.286, 0.5542), (5.061, 0.5589), · · · .
When wavenumber k is very large, the growth rate σ of

stationary mode is close to 9/16 [5]. The reason for the
predominance of the stationary resonance is that the dis-
turbance vorticity is liable to be original with the stretching
direction of the external straining field.

At O(α3), the modes eimθeikz and ei(m+2)θeikz again
arise, which invites the compatibility conditions. The func-

tion u
(m)
03 and u

(m+2)
03 are governed by

(24) Lm,k

(
u
(m)
03

p
(m)
03

)
= N − ∂

∂t02

(
u
(m)
01

0

)
,

where t02 = α2t and N is the inhomogeneous. Since the
matrix Lm,k is singular, (∂/∂t02)u01 is adjusted for the
forcing terms to satisfy the solvability condition. The oc-
currence of parametric resonance implies the existence of
negative-energy waves. This is indeed the case [5].

The energy of Kelvin waves has been efficiently calcu-
lated with use of the Lagrangian displacement [8, 9]. As
a by-product, the mean flow of O(α2) induced by self-
interaction of a Kelvin wave is manipulated in a systematic
manner [7]. Our procedure does not need elliptic strain
for solving the mean flow. On the contrary, the Eulerian
treatment necessitates the elliptic strain, and its coefficient
is not completely determined [20]. In the following section,
we demonstrate the advantage of the Lagrangian approach.

5. Drift current

5.1. mean flow of O(α2) by Eulerian approach

For the disturbance velocity u02 of O(α2), we may take a
separable solution of the form
(25)

u02 = A2
mu

(2m,2k)
02 ei2mθei2kz +A2

m+2u
(2m+4,2k)
02 ei(2m+4)θei2kz

+AmAm+2u
(2m+2,2k)
02 ei(2m+2)θei2kz +Am+2Amu

(2,0)
02 ei2θ

+c.c.+ u
(0,0)
02 ,

where u
(0,0)
02 is the mean flow, being independent of θ and

z. In order to obtain u
(0,0)
02 , we have to solve the following

inhomogeneous linear equation,
(26)(

0 −2
2 0

)(
u
(0,0)
02

v
(0,0)
02

)
+

(
∂rp

(0,0)
02

0

)
=

(
f(r)
0

)
,

(27) ∂ru
(0,0)
02 + u

(0,0)
02 /r = 0.

The inhomogeneous term introduced in (26) is defined in
appendix. At the first glance, the radial component of

mean flow is founded to be zero: u
(0,0)
02 = 0. But the az-

imuthal and the axial components, v
(0,0)
02 and w

(0,0)
02 remain

undetermined because p
(0,0)
02 may taken to be arbitrary. En-

tering into a higher order in elliptic strain ϵ, i.e. at O(ϵα2),
Sipp [20] deduced
(28)

L0,0u
(0,0)
12 +∇p(0,0)12 = (
AmAm+2 +AmAm+2

)
fr(r)

i
(
AmAm+2 −AmAm+2

)
fθ(r)

i
(
AmAm+2 −AmAm+2

)
fz(r)

− ∂

∂t10
u
(0,0)
02 .

Enforcement of the compatibility condition on (28) yields

time derivative of the mean flow u
(0,0)
02 , where t10 = ϵt is

to be remembered.
The compatibility conditions of this equation read that

eθ and ez components of forcing terms should be zero, i.e.
(29)

i
(
AmAm+2 −AmAm+2

)( fθ(r)
fz(r)

)
=

∂

∂t10

(
v
(0,0)
02

w
(0,0)
02

)
.

The mean flow is suggested to be u
(0,0)
02 (t, r) = C(t)uC(r),

with uC(r) = (0, fθ(r), fz(r))
T and obtained time deriva-

tive of its amplitude as

(30)
dC

dt
= ϵi

(
AmAm+2 −AmAm+2

)
,

[20]. If the amplitude C(t) of the mean flow can be in-
tegrated, subject to the initial condition C(0), the mean
flow is determined. But the initial value of mean flow C(0)

cannot be given freely, because the mean flow u
(0,0)
02 (t, r)

is induced by nonlinear interaction of Kelvin waves, u01.
Since the linear operator of Euler equation (26) is degen-
erate, information of dependence on u01 is vanished.
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The Lagrangian approach enables us to obtain the mean
flow of O(α2), without having to proceed to higher order,
O(ϵα2) [7]. Subsequently, We give a sketch of this La-
grangian approach.

5.2. Lagrangian approach

Arnold [1] showed that a steady state of the Euler flow
is characterized as an extremal of the energy functional
with respect to isovortical disturbances. By virtue of this
structure, the second variation of energy and the mean flow
induced by nonlinear interaction of Kelvin waves is express-
ible solely in terms of the first order Lagrangian displace-
ment field [8, 7].
First, we give a concise description of the Lagrangian

representation of the first and second-order the velocity
disturbance. Next, we calculate the energy and the mean
flow to second order in disturbance amplitude.

5.3. Disturbance velocity field

Let SDiff(D) be the group of the volume-preserving diffeo-
morphisms of the fluid contained in a domain D. Motion
of fluid particles inside D is expressed by a one-parameter
family of the fluid flow map, elements of SDiff(D) [1]. We
assume that disturbance deforms basic the particle position
by following map.

(31) ψ(x, α) = x+ αξ +
α2

2
[(ξ · ∇) ξ + η] +O(α3).

Here ξ and η are the Lagrangian displacement of O(α) and
O(α2), respectively. Writing down the disturbance velocity
to second order explicitly,

(32)
u01 = P [ξ × ω0] ,
u02 = P [ξ × (∇× (ξ × ω0)) + η × ω0] /2,

where P is the projection operator keeping the velocity
field divergence-free [7]. The previous treatment, for ex-
ample [12], forgot the second-order disturbance η, and is
incomplete.
The advantage of the Lagrangian approach is manifested

in evaluation of wave energy. The kinetic energy H is

(33) H =
1

2

∫
||u||2d3x,

We can expand the kinetic energy (33) as follows,

(34) H = H0 + αδH +
α2

2
δ2H +O(α3).

H0 is constant because of steady flow u0. The first varia-
tion of the kinetic energy vanishes identically: δH = 0 [1].
The second variation of kinetic energy is reducible to

(35)
δ2H =

∫ (
||u01||2 + 2u0 · u02

)
d3x

=
∫
P [ξ × ω0] · ∂tξd3x.

Fortunately, the second-order Lagrangian displacement η
is excluded from (35). The advantage of the Lagrangian
approach cannot be overemphasized. This disperses with
the second-order Lagrangian displacement, implying that
we can obtain the second variation of kinetic energy if we
solve linear equation to O(α).
The second of (32) reveals that the mean flow δ2u satis-

fies the following equation

(36) δ2u = P [ξ × δω] = P [ξ × (∇× (ξ × ω0))].

In next subsection, we calculate the Lagrangian displace-
ment ξ, and thereby deduce the mean flow.

5.4. Lagrangian displacement

It is well known that equation describing the evolution of
the Lagrangian displacement ξ is

(37) u01 =
∂ξ

∂t
+ (u0 · ∇) ξ − (ξ · ∇)u0.

For a circular cylindrical vortex, we seek the normal
mode solution of the form,

(38) ξ = ξ̂ei(−ω0t+mθ+kz), ξ̂ = (ξ̂r, ξ̂θ, ξ̂z).

When the basic flow u0 is rigidly rotating flow, u0 = reθ,
the RHS of (37) is reduced to −i(ω0 −m)ξ.
When we chose disturbance flow δu as linear coupling of

Kelvin waves, δu =
∑
Amu

(m)
01 ei(mθ+kz), the Lagrangian

displacement ξ is given by

(39) ξ =
∑ iAm(t)

ω0 −m
u
(m)
01 (r)eimθeikz,

with the incompressibility constraint

(40) ∇ · ξ = 0.

5.5. Mean flow of O(α2)

In the case u0 = reθ, the mean flow is specialized to

(41)

δ2u = P [ξ × (∇× (ξ × (∇× u0)))]/2

= ξ × ∂ξ

∂z

=
∑ 2ik

(ω0 −m)2
|Am|2

(
u
(m)
01

)∗
× u

(m)
01 .

Substitution from the Lagrangian displacement ξ yields

(42)
(
u
(m)
01

)∗
× u

(m)
01 = 2

 0

u
(m)
01 w

(m)
01

−u(m)
01 v

(m)
01

 ,

where ∗ denotes complex conjugate. In the same manner
as for the second-order energy variation δ2H the mean-flow
δ2u of O(α2) is determined by the first-order Lagrangian
displacement ξ only. The direct construction of the wave
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induced mean flow provides us with a by-path to reach the
Hamiltonian normal form of amplitude equations. In next
section, we derive weakly nonlinear amplitude equations.
It is worthwhile to compare the Lagrangian approach

with the Eulerian one. Whereas, we have to introduce
a new parameter C in the Eulerian approach, with only
dC/dt being available, we can represent the mean flow di-
rectly through A+ and A− in the Lagrangian approach.
Unlike the Eulerian approach, the Lagrangian approach is
capable of calculating the mean flow at any points satisfied
by the dispersion relation (k, ω0).
This exhibits a marked difference in the amplitude equa-

tions. In the Eulerian approach, they do not take the final
form, or the Hamiltonian normal form. They suffer from
redundancy.

6. Amplitude equation

The boundary condition (8) atO(ϵα) and atO(α3) presents
the terms in the amplitude equations stemming from ellip-
ticity and weakly nonlinearity. The Lagrangian approach
does not deal with elliptic deformation of streamlines to
reach the Hamiltonian normal form of amplitude equations
[10].

6.1. Amplitude equations of stationary resonance

The mean flow induced by nonlinear interactions of sta-
tionary helical Kelvin waves is

(43) 4ik

 0(
|A−|2 + |A+|2

)
u
(+)
01 w

(+)
01(

|A−|2 − |A+|2
)
u
(+)
01 v

(+)
01

 .

For general (m,m+2) parametric resonance, only the radial
component of mean flow is zero because of (42). But, in the
case of stationary helical-wave parametric resonance, the
axial components of mean flow is zero, since |A−| = |A+|
is necessary condition of parametric resonance occurring
elliptical instability, [20]. The boundary condition (8) gives
Hamiltonian normal form of amplitude equations

(44)
dA±

dt
= ∓i

[
ϵaA∓ + α2A±

(
b|A±|2 + c|A∓|2

)]
,

where

(45)

a = 3(3k2+1)
8(2k2+1) ,

b = −2k4

3(2k2+1)

[
4

J0(η)2

∫ 1

0
rJ0(ηr)

2J1(ηr)
2dr

−(11k4 + 13k2 + 5)J0(η)
2
]
,

c = k2

12(2k2+1)

[
64k2

J0(η)2

∫ 1

0
rJ0(ηr)

2J1(ηr)
2dr

+(20k6 + 97k4 + 14k2 − 27)J0(η)
2
]
.

As nonlinear terms |A±|2A±, |A∓|2A± comprehend the ef-
fect of mean flow (41), the Lagrangian approach leads us
directly to the Hamiltonian normal form. We need not any
more introduce a new constant associated with the mean

flow. By virtue of compact form available, the coefficients
of these equations are calculated with ease and are listed
in Table 1 for k0 = 1.5788, 3.2859, . . . which satisfy the
dispersion relation with ω0 = 0.
It follows from (35) that the energy of the stationary

mode is zero to O(α2); E02 = 0. Comparison of the coeffi-
cients of (44) with that of (C.3), with the value in Table 1
substituted, shows that

(46) b ̸= b′ − d′/(2a), c ̸= c′ − d′/(2a).

It appears that (C.3) is not consistent with (44). But this
is not the case because parametric resonance condition,
|A−|2 = |A+|2 for the stationary resonance, where

(47)

b+ c =
(
b′ − d′

2a

)
+
(
c′ − d′

2a

)
= −k2

4(2k2+1)

[
(4k2 + 3)(9k4 + 10k2 − 3)J0(η)

2

+ 32k2

3J0(η)2

∫ 1

0
rJ0(ηr)

2J1(ηr)
2dr
]
.

6.2. Four-dimensional dynamical system

As A− and A+ are complex functions of t, the ampli-
tude equations (44) constitute a four-dimensional dynami-
cal system. Following Knobloch et al. [10], we proceed to
analysis of the amplitude equations (44). Define

(48)
N = |A−|2 + |A+|2, w = |A−|2 − |A+|2,
u = 2Re

[
A−A+

]
, v = 2Im

[
A−A+

]
.

By inspection, we find that w and

(49) T = −2au− b+ c

2
N2

are real constant quantities. Then timewise development
of N and v obey

dN

dt
= −2ϵav,(50)

dv

dt
= ϵN

[
b+ c

2a

(
T − 4a2

b+ c

)
+

(b+ c)2

4a
N2

]
.(51)

Since T ≤ 2a2/(b + c) and N ≥ |v|, the equilibrium point
of (v,N) = (0, 0) is unstable, while the stable equilibrium
point of (v,N) is

(52)

(
0,

[
2

b+ c

(
4a2

b+ c
− T

)]1/2)
.

As is observed from Figure 2, N has the upper bound
prescribed by the initial value of the complex amplitudes,
A− and A+. This guarantees the systems (44) to be non-
divergent.
The stationary helical-mode resonance condition requires

|A−| = |A+|. As (44) preserves |A−|2 − |A+|2 = constant,
if we set initially absolute value of complex amplitudes A−
and A+ to be the same value |A−(t)| and |A+(t)| have
the same value, |A(t)| say, at all time. Introducing the
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Table 1: The coefficients of amplitude equation (44)

k 1.5788 3.2859 5.0614 6.8562 8.6587 10.465 12.274 14.084 15.894
a 0.53117 0.55420 0.55891 0.56053 0.56126 0.56165 0.56188 0.56203 0.56213
−b 0.39757 8.2860 40.448 118.36 266.09 509.51 875.92 1393.8 2092.5
c 5.2217 53.388 212.75 562.10 1185.4 2170.3 3607.1 5588.6 8209.5

-2 -1 1 2

2

2.1

2.2

2.3

2.4

v

N

Figure 2: Trajectory in the (v,N) space in the case k =
1.578 and ϵ = 0.1. The thick dot is the initial amplitude
of (A−, A+) = (1, 1). The intersection point of v-axes and
N -axes is an equilibrium point (52)

|A|

φ
0

1.0

1.05

1.10

π/2 3π/2π 2π

Figure 3: The modulus |A| as a function of ϕ = ϕ− − ϕ+
in the case k = 1.578 and ϵ = 0.1, obtained by integrating
equations (53) and then by eliminating t. The thick dot is
the initial amplitude of (A−, A+) = (1, 1).

modulus |A| and the phase ϕ by A− = |A| exp(iϕ−) and
A+ = |A| exp(iϕ+), (44) is reduced to
(53)
d|A|
dt

= ϵa|A| sinϕ, dϕ

dt
= 2ϵa cosϕ+ 2α2 (b+ c) |A|2,

where ϕ = ϕ−−ϕ+. The solution of equations (53) is drawn
in Figure 3. The nonlinear effect promotes decoherence of
phase by supplying unidirectional rotation of ϕ. This, in
turn, acts to weaken the linear stability.

6.3. Restriction to two dimensions

The amplitude equations (44) admits restriction of the phase
space to a two-dimensional subspace with A = A− = −A+,
whereby a detailed analysis becomes feasible. The complex
amplitude equations (44) collapses, by a choice of α2 = ϵ,
to

(54)
dA

dt
= iϵ

(
−aA+ β|A|2A

)
,

where β = b + c is the sum of the coefficient of nonlinear
terms. In this equation, the effect of the mean flow is in-
corporated into the nonlinear terms. If A = |A|eiϕ, the
leading-order term of the three-dimensional disturbance
field is

√
ϵu01, which is written down in component wise

as

(55) u01 = 4|A|

 u sin(θ − ϕ) cos kz
v cos(θ − ϕ) cos kz
w sin(θ − ϕ) sin kz

 ,

where u, v and w are each components of stationary dis-
turbed velocity field with azimuthal wavenumber m = −1,

(56)
u = −1

3

(
ηJ0(ηr) +

1
rJ1(ηr)

)
,

v = −1
3

(
2ηJ0(ηr)− 1

rJ1(ηr)
)
,

w = −kJ1(ηr).

The corresponding components of the vorticity are
(57)

ω01 = 4|A|

 (kv + w/r) cos(θ − ϕ) sin kz
− (ku+ ∂rw) sin(θ − ϕ) sin kz

(−u/r + v/r + ∂rv) cos(θ − ϕ) cos kz

 .

The three-dimensional disturbance creates horizontal com-
ponents of the vorticity. The direction of the horizontal
vorticity is tied with ϕ. In the case of ϕ = −π/4, the above
expression is the same as that of Leweke and Williamson
[13]. Figure 4 illustrates trajectory of fluid particles pro-
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-1

-1

1

10

Figure 4: Trajectories of fluid particles in total flow, U0 +
αu01

1-1

1

-1

0

Figure 5: Disturbance vorticity in horizontal space

jected in horizontal space. This show the central point, or
velocity null, is displaced to the direction of phase θ = ϕ.
Figure 5 illustrates the direction of vorticity disturbance
(57) as the same as that of phase ϕ. We know that the
central point is displaced to the direction of vorticity. The
stagnation point (xc, yc) is

(58) (xc, yc) ≈


2
√
3αk|A| cos kz (cosϕ, sinϕ)

for cos kz > 0

−2
√
3αk|A| cos kz (cosϕ, sinϕ)

for cos kz < 0

,

because v = −
√
3k/2 + O(r2). There are two pressure

minima in (x, y)-space within one wavelength. This is con-
sistent with Eloy et al.’s experiment (FIG.4(b))[3]. The
modulus |A| and the phase ϕ satisfy the following equa-
tions,

(59)
d|A|
dt

= −ϵa|A| sin 2ϕ, dϕ

dt
= −ϵa cos 2ϕ+ ϵβ|A|2.

The linear effect is dominant compared with the nonlin-
ear effect for small disturbance amplitude |A|(≪ 1). In
case the equilibrium point A = 0 is unstable, the direc-
tion of disturbance vorticity ϕ is liable to be parallel to the
unstable direction, θ = −π/4. The elliptic strain makes
horizontal vortex lines continuously stretched, if they are
oriented , on average, in the direction of θ = −π/4. This
is the mechanism for the MSTW instability at the linear
stage. When the disturbance grows substantially, |A| ≈ 1
say, the nonlinear effect is called into play. In view of (59),
the nonlinear effect is exclusively rotation of the phase ϕ.
As a consequence, alignment of horizontal vorticity to the
direction ϕ = −π/4 is hindered, which renders the distur-
bance amplitude saturate.

6.4. Short-wavelength limit

Expanding for very large values of k, the coefficients of
amplitude equations (44) tend to

(60) a→ 9

16
, b→ −k

3 log k√
3π

, c→ 2k3 log k√
3π

,

with the aid of
(61)

J0(η)
2 → 2

πη3
,

∫ 1

0

rJ0(ηr)
2J1(ηr)

2dr → 1

2π2

log η

η2
.

the sign of the coefficients a, b, and c, for large wavenumber
k, as

(62) a > 0, b < 0, c > 0.

As verified by Table 1, the sign of the coefficients is main-
tained to small values ofk.
In the subspace dynamics, A− = −A+, amplitude of the

saturated state |A|eq is found to be

(63) |A|eq =
√
a/β → 3

4

( √
3π

k3 log k

)1/2

.
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7. Conclusion

In this article, we have made a weakly nonlinear analysis of
the short-wave instabilities of rotating flow in a cylinder of
elliptic cross-section. We put emphasis on the advantage
of the Lagrangian approach, over the Eulerian one, in the
derivation of the mean flow induced by nonlinear interac-
tions of the Kelvin waves, which is effected for isovortical
disturbances in §5. This approach provides a short-cut to
deduce amplitude equations (§6) for the weakly nonlinear
evolution of the MSTW instability.
The phase of the complex amplitude A− = |A−|eiϕ− and

A+ = |A+|eiϕ+ of the leading-order term of the 3D distur-
bance represents the angle, from the x-axis, of oscillating
vorticity disturbances in the horizontal plane. We have
analyzed the dynamics of the amplitude equations under
the constraint A = A− = −A∗

+. For small amplitude,
the features of the linear short-wave instability is retrieved
that the particular disturbance of ϕ = ϕ− − ϕ+ = −π/4 is
selectively amplified, because the disturbance vorticity is
continuously stretched by the ambient strain [21, 5]. The
non-linear effect suppresses this monotonic growth by turn-
ing the disturbance vorticity out of the stretching direction
(ϕ = −π/4) as soon as the amplitude of A becomes suffi-
ciently large [20]. Owing to this effect of phase shift, the
trajectories are constrained to a bounded domain with no
exception, and thus the linearly growing modes eventually
saturate their amplitude.
However this behavior does not coincide with the vig-

orous amplification of a number of waves and the ulti-
mate disruption of a strained flow observed in experiments
[14, 13, 3]. This indicates that the nonlinear interaction
of a single MSTW mode is far from sufficient in describ-
ing practical flows. The secondary and the tertiary insta-
bility, which may be invited before reaching the stage of
nonlinear saturation, will drastically alter the subsequent
evolution [15, 6]. These and other nonlinear interactions
call for an independent investigation. The Lagrangian ap-
proach would be vital for dealing with these higher-order
bifurcations, because the Eulerian treatment becomes too
involved to carry through.
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A. Definition of functions

This appendix accommodates detailed form of functions
appearing in the text. The right-handed side (RHS) of

(26) for the drift current of O(α2) is
(A.1)
(f(r), 0, 0)T

= |Am|2
({

u
(m,k)
01 ,u

(m,k)
01

}
+
{
u
(m,k)
01 ,u

(m,k)
01

})
+|Am+2|2

({
u
(m+2,k)
01 ,u

(m+2,k)
01

}
+
{
u
(m+2,k)
01 ,u

(m+2,k)
01

})
,

where

{u1,u2} = −(u1 · ∇)u2,(A.2)

= −

 u1∂ru2 + v1/r (imu2 − v2) + ikw1u2
u1∂rv2 + v1/r (imv2 + u2) + ikw1v2
u1∂rw2 + v1/r (imw2) + ikw1w2

 .(A.3)

RHS of (28) for the drift current of O(ϵα2) comes from

(A.4)

AmAm+2

[{
u
(m)
01 ,u

(m)
11

}
+
{
u
(m+2)
01 ,u

(m+2)
11

}
+
{
u
(m)
11 ,u

(m)
01

}
+
{
u
(m+2)
11 ,u

(m+2)
01

}
+N (−2,0)u

(−2,0)
02 /2

]
+ c.c.+

∂

∂t10
u
(0,0)
02 .

B. Nonlinear terms of amplitude
equations of O(α3)

We restrict our attention to the stationary mode (20). At
O(ϵ0α3), the equations (5) and (6) we consider is the fol-
lowing equation

(B.1) Lu03 +∇p03 = {u01,u02}+ {u02,u01} −
∂

∂t02
u01,

(B.2) ∇ · u03 = 0,

whence we may pose

(B.3)

u03 = A−e
−iθeikz

(
|A−|2u(−−)

03 + |A+|2u(−+)
03

)
+A+e

iθeikz
(
|A−|2u(+−)

03 + |A+|2u(++)
03

)
+[non-resonant terms] + c.c.

The same linear operator as that for p01 is shared by the
pressure p03 of O(α3).

The solution of equation for p03 is expressible in terms
of the Bessel functions and their integrals, from which we
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obtain

(B.4)

u
(±)
03 = ∓C±

(
k√
3
J0(ηr) +

1
3rJ1(ηr)

)
−∂A±

∂t02

{
7k
3
√
3
J0(ηr) +

(
1
9r − 4

3k
2r
)
J1(ηr)

}
±|A±|2A±

[
− 50

9
√
3
k5J0(ηr)

3

−
(

2k4

9r − 44
27k

6r
)
J0(ηr)

2J1(ηr)

−
(

8k3

9
√
3r2

+ 110k5

27
√
3

)
J0(ηr)J1(ηr)

2

−
(

8k2

81r3 − 2k4

81r − 44
27k

6r
)
J1(ηr)

3

−8πk6

3r

∫ r

0
sJ0(ηs)

2J1(ηs)×
{J1(ηs) (ηY0(ηr) + Y1(ηr)/r)

− Y1(ηs)
(
ηJ0(ηr) +

1
rJ1(ηr)

)}
ds
]

±|A∓|2A±

[
8k6rJ0(η)

2J1(ηr)

+
(

5k3

6
√
3r2

− 35k5

9
√
3

)
J0(ηr)

3

−
(

k2

r3 + k4

6r − 10
27k

6r
)
J0(ηr)

2J1(ηr)

+
(

2k
3
√
3r4

− 25k3

9
√
3r2

− 25k5

27
√
3

)
J0(ηr)J1(ηr)

2

+
(

4
27r5 − 29k2

162r3 − 211k4

162r + 10
27k

6r
)
J1(ηr)

3

+16πk6

3r

∫ r

0
sJ0(ηs)

2J1(ηs)×{
J1(ηs)

(
ηY0(ηr) +

1
rY1(ηr)

)
−Y1(ηs) (ηJ0(ηr) + J1(ηr)/r)}ds

]
,

where η =
√
3k.

The radial velocity u03 has to satisfy the boundary con-
dition (8). The solvability condition arising from this pro-
cedure brings in the cubic nonlinear terms in the amplitude
equations (44).

C. Comparison with Eulerian approach

As emphasized in the text, the Eulerian treatment is un-
able to fully determine the mean flow induced by nonlinear
interactions. Setting the mean flow to be C(t)uC(r), the
boundary condition (8) gives amplitude equations of three
variables A−, A+, and C as
(C.1)
dA±
dt = ±i

[
−ϵa′A∓ + α2A±

(
b′|A±|2 + c′|A∓|2 + d′C

)]
,

dC
dt = iϵ

(
A−A+ −A−A+

)
,

(C.2)

a′ = 3(3k2+1)
8(2k2+1) , b′ ≡ 0,

c′ = k2

4(1+2k2)

[
32k2

3J0(η)2

∫ 1

0
rJ0(ηr)

2J1(ηr)
2dr

−(44k6 + 75k4 + 26k2 − 9)J0(η)
2
]
,

d′ = −k4(3k2+1)
4(2k2+1)2

[
8

J0(η)2

∫ 1

0
rJ0(ηr)

2J1(ηr)
2dr

−3(k2 − k + 1)(k2 + k + 1)J0(η)
2
]
.

Coupled equations (C.1) describe an orbit in a five-dimensional
space because A− and A+ are complex functions, but C is
a real function. Equations (C.1) cannot determine an orbit
unless the initial conditions A−(0), A+(0) and C(0) are all
specified. However C(0) may be taken arbitrary.
In order to restore the Hamiltonian normal form for a

medium having the rotational and translational symmetries

about a common axis obtained by Knobloch et al. [10], we
appeal to the energy conservation law [20] and relate the
amplitude C of the mean flow to the energy constant E02

of O(α2) via |A+|2 + |A−|2 + 2a′C = E02, leaving
(C.3)
dA±

dt
= ±i

[
α2dA± − ϵaA∓ + α2A±

(
b|A±|2 + c|A∓|2

)]
,

where a = a′, b = b′ − d′/2a′, c = c′ − d′/2a′ and d =
E02d

′/2a′. In keeping with the mean-flow amplitude C,
E02 cannot be determined within the Eulerian framework.
As far as the isovortical disturbances are concerned, (35)

shows that the disturbance energy of O(α2) E02 is exactly
zero for waves with ω0 = 0. By substitution of E02 = 0,
(C.3) restores (44).
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