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Abstract. This is a survey on convergence theorems for the differential quotient difference with
shifts (dqds) algorithm, which is one of the most efficient methods for computing matrix singular
values. Emphasis is laid on the relationship and comparison between the global convergence theorem
obtained recently by the present authors and Rutishauser’s convergence theorem for the Cholesky
LR method with shifts for the positive-definite eigenvalue problem. Theorems on convergence rate
of the dqds algorithm with different shift strategies are also reviewed.
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1. INTRODUCTION

Matrix singular values play important roles in many appli-
cations such as the method of least squares, and accord-
ingly numerical methods for computing them are of great
practical importance. The singular values of a matrix A
are equal to the square roots of the eigenvalues of ATA
and hence an iterative computation is inevitable. Usually,
in order to reduce the overall computational cost, the given
matrix A is first transformed to a bidiagonal matrix with
suitable orthogonal transformations, and then a certain it-
erative method is applied to the bidiagonal matrix.

Most of the standard methods for bidiagonal matrices
had been based on the QR algorithm [7], until in 1994
Fernando—Parlett discovered a beautiful algorithm, which
is now called the differential quotient difference with shifts
(dgds) algorithm [8]. The dqds algorithm has then drawn
strong interest of researchers due to its high accuracy, speed,
and numerical stability often observed in actual computa-
tions. The algorithm is now available and widely used as
DLASQ routine in LAPACK [12, 14].

In spite of this practical success, it is rather recently that
the theoretical aspects of the dqds algorithm have been re-
vealed in rigorous manners. To the authors’ best knowl-
edge, the global convergence theorem, i.e., a theoretical
guarantee of convergence from arbitrary initial matrices,
due to the present authors [3, 4] is the first result given in
an explicit form.

In this context, however, we may recall two known facts:

(i) the dqds algorithm is mathematically equivalent to
the Cholesky LR method with shifts, applied to tridi-
agonal symmetric matrices, and

(ii) as a classical result in eigenvalue computation we
have the global convergence theorem of the Cholesky
LR method by Rutishauser in 1960 [16].

One may be tempted to conclude that the above two
facts immediately imply the global convergence property
of the dqds algorithm. But this is not the case. The situ-
ation is not simple but very subtle. Rutishauser’s theorem
refers to a kind of regularity condition or assumption that a
pathological phenomenon called “disorder of latent roots”
does not occur. It is one of the major objectives of this pa-
per! to give a detailed explanation to this subtle point in
convergence argument. Furthermore we show that a com-
plete global convergence result for the dqds algorithm can
be obtained from the above two facts if we take in account
another classical result on irreducible tridiagonal matrices.

In these two proofs—one by the present authors [3, 4]
and the other by combining the known classical results—
the former has several desirable features: it is simpler, di-
rect, self-contained, and most importantly, it gives explicit
estimates for all the elements of the matrices in iteration.
This enables us to precisely investigate the asymptotic con-
vergence rates, once a concrete shift strategy is specified.
Taking advantage of this feature, the authors have consid-
ered the case of the Johnson bound [9], which is a Gersh-
gorin type bound, to find the asymptotic convergence rate
of 1.5 [3, 4]. Soon after this, several other authors have con-
sidered a variety of shift strategies [1, 2, 6, 22, 23]. These
results are reviewed in Section 4 of this paper.

I This is an augmented English version of [5] included in a work-
shop proceedings in Japanese.



2. THE DQDS ALGORITHM

We assume that the given real matrix A has already been
transformed to a bidiagonal matrix

b1 bo
b3

boym—2
b2m—1

to which the dqds algorithm is applied. Furthermore, fol-
lowing [8], we assume without loss of generality that the
matrix has been normalized so that it satisfies the follow-
ing assumption:

Assumption (A) The bidiagonal elements of
B are positive: by >0 for k=1,2,...,2m — 1.

This assumption guarantees that the singular values of B
are all distinct: o9 > -+ > g, > 0 (see [13]).

The dqds algorithm in computer program form reads as
follows.

Algorithm 1 The dqds algorithm
2(k=1,2,...,m

Initialization: qlgo) = (bog—1) ); eéo) =

(bor)? (k=1,2,...,m—1); {0 :=0

1: forn:=0,1,--- do
2:  choose shift s (>0)

n+1 n n
5 A = g g
4.  for k := 1 —1do
5 q](anrl) — d](CnJrl) +e (n)
6: (n+1) . (n)qk+1/q(n+1

n+1 n+1 n n+1 n

7. d;(f+1)-*d( )(1/(L ) _ o(n)
8: end for
0. g0 i gt

10: t(n+1) = t(n) + s(n)
11: end for

The outer loop is terminated when some suitable conver-
gence criterion, say |em 1| < e for some prescribed constant
€ > 0, is satisfied. At the termination we have

n—1
1=0
and hence o,, can be approximated by 1/¢%) + ¢(). Then

by the deflation process the problem is shrunk to an (m —
1) x (m — 1) problem, and the same procedure is repeated
until o,,_1,...,01 are obtained in turn.

It is convenient to define a bidiagonal matrix

/QYL) /e(ln)
AN

) BY-
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to simplify the description of Algorithm 1. With this nota-
tion, Algorithm 1 can be rewritten in terms of the Cholesky
decomposition (with shifts):

(2) (B(n-i-l))TB(n-i-l) _ B(n)(B(n))T o s(n)]—
It is also convenient to introduce additional notations:

el™ =0

(3) e =0, e (n=0,1,...).

3. GLOBAL CONVERGENCE THEOREMS OF
THE DQDS ALGORITHM

In this section we review the global convergence theorems
of the dqds algorithm for arbitrary initial matrices satis-
fying Assumption (A). We also discuss the relation of the
theorem of the present authors [3, 4] and Rutishauser’s the-
orem [16] for the global convergence of the shifted Cholesky
LR method for symmetric positive definite matrices.

3.1. GLOBAL CONVERGENCE THEOREM OF THE DQDS

ALGORITHM BY AISHIMA ET AL.

Here the global convergence theorem of the dqds algorithm
recently established by the present authors is shown. The
theorem states that, if 0 < s(™) < (U(n~) )2 in each iteration

min

step n, where oﬁrﬁ)n denotes the smallest singular value of
B then the variables in the dqds algorithm converge for
any initial matrix B that satisfies Assumption (A). The
proof [3, 4], consisting of a sequence of elementary calcu-
lations, is reproduced in Appendix A.

Theorem 1 (Global convergence of the dqds algorithm
(Aishima et al. [3, 4])). Suppose the initial matriz B sat-

isfies Assumption (A), and the shifts in the dqds algorithm
satisfy

(4) 0<s™ < (62 (n=0,1,2,...).
Then
nlin;oe;") =0 (k=1,2,....,m—1),
nlin;oq,i”) 1™ =02 (k=1,2,...,m).

The condition (4) is necessary for the Cholesky decompo-
sition of B (BT —s(" [ in (2) to be well-defined. Con-
versely, this condition guarantees that the dqds algorithm
does not break down, as is seen from (2). Hence Theorem 1
above states that the convergence is always guaranteed as
far as the dqds algorithm runs without breakdown.

3.2. RELATION TO RUTISHAUSER’S CLASSICAL RESULT

The dqds algorithm is mathematically equivalent to the
shifted Cholesky LR method applied to symmetric positive-
definite irreducible tridiagonal matrices, where a tridiago-
nal matrix is said to be irreducible if all the subdiagonal
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elements are nonzero. This might ring a bell of some read-
ers, since for general symmetric positive-definite matrices,
we know Rutishauser’s global convergence theorem on the
shifted Cholesky LR method [16]. In what follows, how-
ever, we point out that Theorem 1 cannot be derived di-
rectly from Rutishauser’s theorem. Furthermore, we point
out that Rutishauser’s theorem does imply a global conver-
gence result, though weaker than Theorem 1, for the dqds
algorithm, when it is combined with another observation
about tridiagonal matrices. To the best of the authors’
knowledge, there is no reference in the literature where
this point is explicitly noted. The proof of Rutishauser’s
theorem, written in German, can be found in [16]; for read-
ers’ convenience, we give a brief English summary in Ap-
pendix B.

3.2.1. THE sHIFTED CHOLESKY LR METHOD

The shifted Cholesky LR method for an m x m positive
definite symmetric matrix A reads as follows.

Algorithm 2 The shifted Cholesky LR method
Initialization: A©) := A, ¢ =0
1: forn:=0,1,--- do
2. choose shift s (> 0)
3:  Cholesky decomposition:
(R(n+1))TR(n+1) _ A(n) o S(n)]
(R™*Y is upper triangular)
4 A(n+1) . R(n+1)(R(n+1))T
5 t("+1) = t(n) + s('n)

6: end for

Let us write the matrix A(™ as

(5) am = | U

(00T

W™

where U™ is the leading principal (m — 1) x (m — 1) sub-
matrix of A™, v is a vector of length (m — 1) and
w(™ is the diagonal element at the position (m, m). Let
A1 > Ao > -+ > )\, denote the eigenvalues of A and )\Sfi)n
the smallest eigenvalue of A(™).

Suppose the Cholesky LR method is applied with suit-
able shifts. Then practically for almost all initial matrices
A, [[v™] in (5) tends to 0, and w™ + t(™ converges to
Am. Hence an approximation of one eigenvalue can be ob-
tained by setting \,, ~ w(™ + ¢t when [|[v(™| becomes
sufficiently small. Deflation is then carried out to obtain
Am—1, Am—2, ..., A1 in turn.

3.2.2.
CHOLESKY LR

Comparing the matrix form of the dqds algorithm (2) and
the algorithm of the shifted Cholesky LR method, we eas-

REFORMULATION OF THEOREM 1 FOR THE SHIFTED

ily see that “the dqds algorithm for the bidiagonal matri-
ces satisfying Assumption (A)” is mathematically equiv-
alent to “the shifted Cholesky LR method for symmetric
positive-definite irreducible tridiagonal matrices.” In order
to discuss the relationship between the convergence theo-
rem of the dqds algorithm (Theorem 1) and that of the
shifted Cholesky LR method for general positive-definite
matrices, it is convenient to reformulate Theorem 1 for the
shifted Cholesky LR method.

Theorem 2 (Global convergence of the shifted Cholesky
LR method for irreducible tridiagonal matrices (Aishima
et al. [5])). Suppose A is an irreducible symmetric positive-
definite tridiagonal matriz, and the shifts in the Cholesky
LR method satisfy

0<sM™ <A (n=012..).
Then

lim (A™ +¢MT) = diag(\1, ..., Am).
3.2.3. RUTISHAUSER'S THEOREMS

This section gives an overview of the global convergence
theorems by Rutishauser on the unshifted and shifted Cholesky
LR methods. We begin with the unshifted case [15]. The
proof is simple and elementary, where the key is to fully
utilize the positive-definiteness (see [15, 17, 18]).

Theorem 3 (Global convergence of the unshifted Cholesky
LR method (Rutishauser [15])). If the unshifted Cholesky
LR method is applied to a symmetric positive-definite ma-
triz A, A™ converges to a diagonal matriz whose diagonal
elements are the eigenvalues of A.

In most cases the eigenvalues A\y > Ay > -+ > A, ap-
pear in descending order on the diagonal of A but there
exist exceptional cases. Rutishauser called this exceptional
phenomenon “disorder of latent roots,” and gave a concrete
example as follows.

Example 1 (“disorder of latent roots” [15]). Let A be the
positive-definite matrix:

— = s o
— = O
N > = =
I N

whose eigenvalues are 10, 5, 2, 1. If the unshifted Cholesky
LR method is applied to A, A™ converges to

—_

0

o o = O
o oo O
N O OO

0
0
0

Next we proceed to the shifted case. In this case the
proof is no longer elementary and many technical tools are
involved. The proof of [16], in German, is outlined in Ap-
pendix B.



Theorem 4 (Global convergence of the shifted Cholesky
LR method (Rutishauser [16])). Suppose A is a symmetric
positive-definite matriz for which “disorder of latent roots”
does not occur, and whose smallest eigenvalue Ay, is simple:
Am < A (B =1,...,m —1). Suppose also that the shifts
in the Cholesky LR method satisfy

0<sM < >‘x(:111
For the variables in (5) we have

lim (w™ +¢™) =

n—oo
lim [Jo™]| = 0.
n—oo

Obviously, Theorem 2, which is the Cholesky LR coun-
terpart of the dqds global convergence theorem, cannot be
derived immediately from Theorem 4 above. Theorem 4
states the convergence only for the case where “disorder of
latent roots” is absent. We would like to find a missing link
that connects these two theorems.

Actually the link is provided by the following known re-
sult: if the unshifted Cholesky LR method is applied to
an irreducible symmetric positive-definite tridiagonal ma-
trix, A" converges to a diagonal matrix, and eigenvalues
appear properly in descending order (i.e., “disorder” does
not occur). This seems to be a classical known fact, but
as far as the authors know, there is no explicit statement
in the literature. There seems to have been no explicit
proof either, although it is not difficult to deduce it from
the known result for the dqd algorithm [8] or for the qd
algorithm [17, 18]. Thus we see the following fact.

Ams

Lemma 1. The “disorder of latent roots” does not occur
in irreducible symmetric positive-definite tridiagonal ma-
trices.

Combining this and another known fact: “eigenvalues
of irreducible tridiagonal matrix are distinct,” we finally
obtain from Theorem 4 the global convergence theorem
below.

Theorem 5 (Global convergence of the shifted Cholesky
LR method (Rutishauser)). Suppose A is an irreducible
symmetric positive-definite tridiagonal matriz, and the shifts
in the Cholesky LR method satisfy

0<s™ <A (n=0,1,2,...).

For the variables in (5) we have
lim (w™ +t™) =\,

lim [o™| =0.
n—oo

Translated for the dqds algorithm, the theorem reads as
follows.

Theorem 6 (Global convergence of the dqds algorithm
(Rutishauser)). Suppose the initial matriz B satisfies As-
sumption (A), and the shifts in the dqds algorithm satisfy

0<s™ < (0(") )2

min

(n=0,1,2,...).
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Then
lim 6;?11 =0,
lim (qr(g) + t(")) = o2
n—oo

Thus a global convergence theorem of the dqds algorithm
is obtained through the complicated discussion presented
above, which is based on Rutishauser’s convergence anal-
ysis of the shifted Cholesky LR method. Some experts in
this area might have been aware of this proof scenario but,
to the best of the authors’ knowledge, it has not been ex-
plicitly given in the literature. One of the contributions
of this paper is, as the authors believe, to give a complete
description of this proof scenario for the first time in the
literature.

Before concluding this section, we would like to em-
phasize the differences between Theorem 1 by the present
authors and Theorem 6 based on Rutishauser’s theorem.
First, while the derivation of Theorem 6 is rather compli-
cated, the proof of Theorem 1 is simple and direct. Second
and more importantly, Theorem 6 considers the conver-
gence of lower right elements 65:)—17 q,(,? ) only. Although
this is enough in actual computation which incorporates
deflation, we will need to know the behaviors of all of the
diagonal and subdiagonal elements in order to reveal the
theoretical asymptotic convergence rates. To this end, the
proof of Theorem 1 is indispensable, where concrete esti-
mates of all the elements are given.

4. SHIFT STRATEGIES AND THEIR
CONVERGENCE RATES

In the previous section, we have seen that the condition (4)
is essential for the global convergence (Theorem 1). This
condition can be satisfied by various shift strategies. For
some shift strategies, precise theoretical asymptotic con-
vergence rates have been revealed in recent years, which
we review in this section. In what follows, by “convergence

rate of the dqds algorithm” we mean that of the bottom
(n) .

subdiagonal element e,,” ;; this motivated by the stopping

criterion [ || ~ 0.

4.1. JOHNSON SHIFT

In order to find a shift satisfying the condition (4): 0 <
(n)

s < (o2 )? in Theorem 1, let us look for a lower bound
of (Ur(r?n)2. A possible choice would be the Johnson bound [9],
which gives a lower bound of the smallest singular value of
a given matrix. The Johnson bound reads

(Vi (V)

This satisfies T§n) < Jﬁﬁl, but since it can be negative

as well, the shift should be chosen as

(7)

o

(6)

s = (max{7§n), 0})27
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which we call the Johnson shift. With this shift, the global
convergence of the dqds algorithm is guaranteed by Theo-
rem 1. Furthermore, the convergence rate turns out to be
1.5 as follows.

Theorem 7 (Convergence rate with the Johnson shift
(Aishima et al. [3, 4])). For the dqds algorithm with the
Johnson shift (7) we have

+1
lim 65:;_1) = L .
n—oo (653)71)3/2 Om_12 — Om2

Therefore the asymptotic convergence rate is 1.5.

4.2. OSTROWSKI SHIFT

Yamamoto et al. proposes to use an Ostrowski-type lower
bound [10], which is tighter [21] than the Johnson bound.
The Ostrowski-type lower bound is given by

min (X —y™),

k=1,....m

(8) 75 =

where

2
n n 1 n n
X0 = i+ L (- )
n 1 n n

This bound satisfies? T(()n) < o™

min’

Hence, the shift is determined by

(9) s = (maX{T(()n), O})2

but it can be negative.

to assure 0 < s(™ < (or(rﬁ)n)Q. Then the global conver-
gence of the dqds algorithm is guaranteed by Theorem 1.
Furthermore, the convergence rate turns out to be 1.5 as

follows.

Theorem 8 (Convergence rate with the Ostrowski shift
(Yamamoto et al. [23])). For the dqds algorithm with the
Ostrowski shift (9) we have

. ef,?fll) 1
lim = .
n—oo (e(")_1)3/2 Om—12 — Om?

Therefore the asymptotic convergence rate is 1.5.

4.3. BRAUER SHIFT

In Yamamoto et al. [21], it is also proposed to utilize a
Brauer-type lower bound [10]. The bound is given by

Livm) ) | o)
1<j<k<m2<Xjk - ij +ij )

min
2Strictly speaking, we should say ar(:g] < T(()n). The equality, how-
ever, holds rarely in practice (the exceptional cases are discussed in
detail in [21, 23]). Furthermore, when the equality holds, the ex-

act singular value is readily obtained. For these reasons we assume
) < o™ fere
o .

min

(10) )=

where

This bound satisfies T}gn) < O'r(:izl, but since it can be

negative as before, the shift is determined by
2

(11) s = (maX{Tl(gn), O})

to meet the condition 0 < s(™ < (ar(:i)n)z. Then the dgds

algorithm is convergent by Theorem 1. Furthermore, it

can be shown that the convergence rate is “super-1.5" as
follows.

Theorem 9 (Convergence rate with the Brauer shift (Ya-
mamoto et al. [23])). For the dqds algorithm with the Brauer
shift (11) we have

Therefore the asymptotic convergence rate is “super-1.57.

4.4. A SHIFT STRATEGY FOR SUPERQUADRATIC CON-

VERGENCE

A shift strategy for superquadratic convergence has been
proposed in [2]. Set
(n)

o =

(X(") — /(X ()2 — Y(M) ,

| =

where

X(n) = q;:)_l + q7(:) — egg)_g + 65:;)_17

Y = 4g(D (g, = el ).

m—

Then the shift is determined as follows.
Shift strategy (Q)

s(n) _ T(gn) (0 < T(%n) < (0’1(1711111)2)7
0 (otherwise).

In view of Theorem 1, we immediately see that the dqds
algorithm with the shift strategy (Q) is convergent. It

might seem difficult to check whether the condition <

(UI(:S]P is satisfied or not, since ar(:izl is the unknown value
to be determined. However, it can be done in the follow-
ing way: suppose we are at the beginning of the n-th step.
Then we execute tentatively one iteration of the dqds al-
gorithm with s(™ = T("), and check if q,(an) >0 (k =
1,...,m) or not. The last condition is mathematically
equivalent to Tén) < (ar(:i)n)2 [8]. Hence the shift strat-
egy (Q) can be implemented as follows.



1. Execute one iteration of the dqds algorithm with the
tentative shift s(™ = Tén).

2. If q,(gnﬂ) >0 (k=1,...,m), then accept this iter-
ation and proceed to the next iteration. Otherwise

reject this one iteration, and execute it again with
(n) =0
s\™ = 0.

In [2], it has been shown that in the dqds algorithm
with the shift strategy (Q), W is accepted as s(™ for all
sufficiently large n. Then, by scrutinizing the asymptotic
behaviour of the algorithm with s = Tgb) < (o™

see the next superquadratic convergence theorem.

2, we

Theorem 10 (Superquadratic convergence by the shift
strategy (Q) (Aishima et al. [2])). For the dqds algorithm
with the shift strategy (Q), we have

(n+1)
. emfl
lim ) =0.
"7 (€y—1)?

Therefore the convergence is asymptotically superquadratic.

4.5. CUBIC CONVERGENCE SHIFT STRATEGY BASED ON

RUTISHAUSER’S SHIFT

Rutishauser proposed to use the following shift strategy
at “the final stage of iterations” [16] in the second step
of Algorithm 1 (strictly speaking, he proposed it in the
context of the shifted Cholesky LR method).

Shift strategy (R)
: eén) =0, cién) =1
2: for k:=1,...,m—1do

—

i(n41) (n)
5 JntD %7% _ q(”)
k Cz(n+1) (n) m
k-1 1T erq
4: end for
di i
5. choose shift s(™ := A(nfﬁl -
dm_l +e7n—1

6: return

Furthermore, he showed that if “a certain condition” re-
garding a constant € with 0 < € < 0,12 — 02 (which is
a condition that is likely to be satisfied in “the final stage
of iterations”) is fulfilled at n, then after one iteration of
the dqds with the above shift, the subdiagonal element of
B (BM)T evolves in such a way that

1 n
oo et gl .

In this sense, the convergence is locally cubic.

Although the study is quite inspiring, the analysis is un-
fortunately not rigorous enough to justify the “asymptotic”
cubic convergence in the strict sense of the word. It is
needed to prove that the above condition on € is satisfied
consecutively for all sufficiently large n. It must be also
made clear when “the final stage of iterations” is reached
before the strategy can actually be implemented.

(12)  |elrtPgln+l) < -

Om—1
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As an answer to these questions, the present authors have
designed a concrete shift strategy that guarantees asymp-
totic cubic convergence based on the shift strategy (R) of
Rutishauser.

Shift strategy (C)

1: eén) =0, d(()n) =1
2: for k:=1,...,m—1do

3(n+1 n
ey A5
B0 = ey ) Im

di_1 " ey

4. if dA,(an) <0 then
5: choose shift s := 0
6: return
7. end if
8: end for
d(nﬂ)q(n)
9: choose shift s(?) ;= ——m—1 T

10: return

The shift strategy (C) satisfies the condition (4) in the
global convergence theorem (Theorem 1). Moreover, it is
possible to prove that Rutishauser’s shift is chosen for all
sufficiently large n, and as a consequence, we arrive at the
following result.

Theorem 11 (Cubic convergence with shift strategy (C)
(Aishima et al. [1])). For the dqds algorithm with the shift
strategy (C), we have

I ef,’:fll) 1
1m = .
n— oo (egs)_l)ii (O’m_12 — O'm2)2

Therefore the convergence is asymptotically cubic.

4.6. GENERALIZED NEWTON SHIFTS

Recently, Kimura et al. have generalized the Newton shift
for symmetric tridiagonal matrices [13, 19] and proposed
to use it in the dqds algorithm [11].

The original Newton shift, in the context of the dqds al-
gorithm of matrix form (2), is defined by 7'1&") = —p(0)/¢'(0),
where @(\) = det(B™ (B™)T — \I) is the characteris-
tic polynomial of BM™(BM)T. Clearly —¢(0)/¢'(0) =
[Tr (B™ (BM™)T)=1]~1 holds, and thus we immediately see
that the Newton shift satisfies the convergence condition
(4). The computational cost for Tlsln) is O(m) [19].

Kimura et al. have generalized the Newton shift to

T = [T (BB 77,
where p is any positive integer. This is called the general-
ized Newton shift of order p.
Obviously

0<7151n):71(ﬁ\)1<72(%<~-~<(0

lim T,
pP— 00 P,

(n) (U(n) )2.

N ™ min
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Thus the generalized Newton shifts satisfy the convergence
condition (4), and are expected to be effective. Although at
a first glance it seems expensive, an algorithm of complexity
O(pm) has been found to compute T( ") [24].

The next theorem reveals the convergence rate of the
dqds algorithm with the generalized Newton shifts TIEZ\%

Theorem 12 (Convergence rate with the generalized New-
ton shifts (Yamamoto et al. [22])). For the dqds algorithm

with the generalized Newton shifts 7'( 1\)1, we have

(n+1)

lim (n)mil =0,
0 (g JPHITE

where € is an arbitrary positive number.

4.7. SUPERQUADRATIC CONVERGENCE OF THE DLASQ

ROUTINE

The dqds algorithm is now implemented as the DLASQ
routine in LAPACK. DLASQ incorporates an extremely
sophisticated shift strategy for the best efficiency [14]. In
spite of the apparent complications it is possible to show
that the shifts always satisfy (4) (hence DLASQ is conver-
gent), and the ultimate convergence rate is superquadratic.

Theorem 13 (Superquadratic convergence of the DLASQ
routine (Aishima et al. [6])). For the DLASQ, we have

(n+1)
. €m71
lim o) =0.
" (e 1)?

Therefore the convergence is asymptotically superquadratic.

5. CONCLUSION

In this paper, we surveyed known theoretical results on
global convergence and convergence rate of the dqds algo-
rithm for computing singular values. Despite their math-
ematical importance, the theorems have a practical draw-
back that they deal only with the asymptotic behavior in
n — oo, and do not provide any information about how
things go for finite n. Quantitative estimates for finite n,
like the Kantorovich theorem for the Newton method [20],
remain to be investigated.
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APPENDIX
A. PROOF OF THEOREM 1 BY AISHIMA ET AL. [3, 4]

First, we show the following lemma that states that, if
s < (o (n )) in each iteration n, then the variables remain
positive. Recall that ol(mzl denotes the smallest singular
value of B(™,

Lemma 2. Suppose the dqds algorithm is applied to the
matriz B satisfying Assumption (A). If s < (ar(:ii])Q (n=

0,1,2,...), then (B™)TB™ are positive definite, and hence
(n) >0(k=1,...,m) ande](gn) >0(k=1,...,m—1) for
n=012. ..

Proof. We prove by induction on n. Under Assumption (A),
we have q(o) > 0, e,(co) > 0, and (B®)TBO) is positive
definite. Suppose that (B(™)T B(™ is positive definite and

q,(cn) > 0, e,(cn) > 0. By (2), if s < (6"))2, then (B(+1)T Bn+1)

is positive definite, because B (BT — s(MT is positive
definite. Therefore all the diagonal elements of B("t1) are

nonzero (b 27,?1 # 0) and hence q(nﬂ) > 0 due to (2). By
AR} O

line 6 of Algorithm 1, we have e

; (n)
Now, we prove lim,,_, €,

ei™ > 0. Therefore it is sufficient to prove 3°° e

+o00. From Algorithm 1, we see

(n)

= 0. By Lemma 2, we have
(n) <

n+1 n+1) 4 n)
ql(c b= dl(cl) (:+1) ()+e(
i1
(1) () ) G (n)
= (qk—l — e 1) (nt 1) — S(n) + €L
k—1
A )

where the first equality is due to line 5 and line 7, the
second equality to line 5, and the last equality to line 6.
The equality

(13) qI(CnJrl) ql(cn) (n+1) + e(n)

_ s

appearing above is crucial for the proof of the convergence.
Adding both sides of (13) for n, we obtain

(14) ¢V =@+ Z D -3 30
1=0 1=0

fork=1,2,...,m. Since q,(cnﬂ) > 0 by Lemma 2, it follows
that
(15) Ze(Hl) < q(o) + Z e(l) Zs(l < ](€0) + Zeg)

1=0 1=0
for k = 1,2,...,m. Setting & = m in (15), we obtain
Siso SL+11) < q(o)) with the aid of (3). Similarly, setting

k=m-—1, m—2,

o0
S < hoo
=0

, 2 in (15), we obtain

(k=m—-1,m-2,...,1),



which completes the proof for e,(cn).

Next, we prove lim,_, s q,i") 4+t = 532, From (2) and
line 10 of Algorithm 1 we see

(B("))TB(")
—wm ((B<°>)TB<°) _ t<n>1) (Wmy=1

(16)

where W) = (B(=1 ... B0O)~T i5 a nonsingular matrix
by Lemma 2. Therefore the eigenvalues of (B()TB(") are
the same as those of (B(?))TB(©) —t(") I By the assumption
and Lemma 2, (B(™)TB(™ is a symmetric positive-definite
matrix. It then follows from (16) that

(17) t™ < g,,2

holds for any n. From line 10 of Algorithm 1, we see {t(™}
is a monotonically increasing sequence, and thus there ex-
ists t(°) such that

(18) () < g,

Hence, the right-hand side of (14) converges as n — oo,
(o0) _ (n)

- hmn—>oo qg

0) + i e'gcn)
n=0

exists and satisfies
oo
(n+1)
- E :ek—l
n=0

=0, from (16) we have

and we see g,

_ t(oo).

Because lim,, o e,i n —

lim W) ((Bw))TBw) . t(”)I) (Wm)y-1

which shows the convergence of the form

o =0

o) — )

(k=1,...,m),

where p(k) denotes a permutation of indices k (k = 1,. . .,

It remains to show that q,(coo) + t(°) line up in descending
order. From line 6 of Algorithm 1, we have

n—1

e — H

qk+1
D

(k=1,...,m—1).

Because by assumption all the singular values are distinct,
(c0) (00)

ie., o4 > -+ > Oy, the limits ¢, 7, ..., gm = are also dis-
tinct. Since lim,,— oo eli") =0, we have
> >q> (k=1,2,...,m—1).

This completes the proof of Theorem 1.

B. PROOF OF THEOREM 4 BY RUTISHAUSER [16]

From Algorithm 2 we see

A — R(n)(R(n))TR(n)(R(n))*l

RM (A=Y _ s(r=Dy(R(M)~1
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where the first equality is due to line 4 and the second
equality to line 3. Combining this with line 5 of Algo-
rithm 2, we have?3
(19) A™W =14 M @EH=t (. =0,1,...),
where T'") = R RM=1 ... R GSince A is a symmet-
ric positive-definite matrix and ¢ is nonnegative from
Algorithm 2, we have
(20) 0<t™ <X,  (n=0,1,...).
Recall that Ay > --- > A, denote the eigenvalues of A. Let
Z1,...,2m denote the corresponding normalized eigenvec-
tors (z;Tz; = 1), and ¢; denote the mth element of z;
(i=1,...,m). Z =[z1,..., 2] is an orthogonal matrix,
whose mth row is (cy,...,¢,). Here we also utilize the
expression of A given in (5).

We first prepare the following lemmas.

Lemma 3. Forn > 1,

(21) (A—tW1)... (A=t 1) = (@)Tpt),
Proof. We see

(R("))T R

— A(n—l) _ S(n—l)I

_ I\(nfl)(A _ t(nfl)I)(F(nfl))fl . S(nfl)]—

- p(nfl)(A _ t(n)])(p(nfl))fl

3

where the first equality is due to line 3 of Algorithm 2, the

second to (19), and the last to line 5 of Algorithm 2. Since
R =T0)/(T(=1)=1 we have

A—tr = ((p(n—l))T p(n—l))—l((p(n))T p(n))’
which implies (21). O

Lemma 4. Forn > 1,

(22)

1
w( w(” ZC’“ O — ) (g — ¢y

Proof. From Lemma 3 we have

(23) (@)7HC) T = (A=) (A=t D)
We will compute the (m,m) elements of both sides.

First we consider the left-hand side. From line 4 of Al-
gorithm 2 we see w™ = (7"5,?) )2, where rgm)n 1s the (m,m)
element of R(™. On the other hand (R"™)~! is an upper
tr1angular matrix and its (m, m) element is 1/ r{") . Hence,

(P™)~1 is an upper triangular matrix whose (m,m) ele-

ment is 1/ ]} -1 rm)m Therefore, the
left-hand side of (23) is

(m,m) element of the

1 1
[, 2 Ihs

(24 5

3We define I'(©) = T for convenience.
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Next, we consider the right-hand side of (23).
introduce a diagonal matrix

Let us

D™ = diag(1/(A1 — t™), ..., 1/(Apm — ™).

Then we see (A — tMT)~! = ZDM™ ZT. Recall that Z =

[z1, ..., 2m] is orthogonal, and the mth row of Z is (¢1, . . .

Therefore, the right-hand side of (23) is expressed as a ma-

trix product
[(A—tDI). (A=t

“1_ z(D™...pW)ZT,

the (m,m) element of which is equal to

m

> o 1
A —tM) ...

k=1

O — £y
This completes the proof. O

We are now in the position to prove Theorem 4. From
Lemma 4 we see

m

1
C
n) ; " 0w — t0) (g — @) (A =t D)
w = P )
2 1
kO —tY A — @) - (A — £
= (A= W) (A =) (A — t)
It then follows that
(25)  w™ 4+t -,
ic 2 )‘k - )\m
C R O — D) (g — t@) - (A — )
% 1
ch (A ) (2) (n)
mzlc ()\ —tM) e Ay — M)
k - —
1 (Ak—tU) (Mg — )
D) (A — )
em” + Z o’ t(l)) T — )

Since the smallest eigenvalue is simple by assumption, there
exists a constant € > 0 such that Ay > A\, + € (k =
1,...,m —1). This implies, in view of (20), that

(>\m - t(l))()\m - t(Q)) o
O — 1) (A — 1) -

| (/\m — t(n)) < /\m "
(Mg — t(™) Am + €

for k=1,2,...,m — 1, which then yields
—¢@ _t@)y... _ ¢(n)
fim A =) =) (A =) )
n—oo (A — t(l))(/\k — t(2)) (g — t("))

It then follows from (25) that lim, . w(™ + ™ =\,
provided that ¢, # 0.
The condition ¢, # 0 is in fact true under the assump-

tion that “disorder of latent root” does not occur. We show

this by contradiction?, i.e., that if ¢,, = 0 then “disorder
of latent root” occurs. Put

m = max{k|c, # 0}.

If ¢, = 0, then necessarily m < m with ¢z4; =0 (j =

)1, ...,m —m). Similarly to (25) we have

,Cm, )

w® )

(/\m—t(l))-‘-
A —tM) -

(A, — t(7))
(Ax — ()
O — £y
(Ag —t™)

- )

2 2(>\m,t(1))...
Crn, +ch (A —tM) .-

Let us consider in particular the unshifted case with ¢ =
0(n=0,1,...). Then the (m,m) element of A(™ converges
to A by the same argument as for (25). Since Ay, is not
the smallest eigenvalue, this means the “disorder of latent
root” does occur in the unshifted Cholesky LR method.
This completes the proof of lim,,_,.c w(™ +t(™ = \,,.
Next, we prove lim, o 0™ = 0. Let p{™ > .-+ >
uf,?ll denote the eigenvalues of U™ 4 ("] which is the
(m—1) x (m—1) leading principal submatrix of A 4+¢(" T
Obviously,
ué”) < Ak

(26) (k=1,...,m—1).

Moreover, we see

m—1

Te(A™ +¢0VT) 1 4™ ),

-3 -

k=1 k=1
It follows that
m—1
(27) ST 0w =) = w™ 4t — A,
k=1

From the convergence of the diagonal element:

lim w®™ 4+ ¢™ = \,,,

we have

(28) nlir&(xk—ufc">)=o (k=1,...,m—1).
Hence, there exist two constants f < g such that
(29) w™ 1™ <

(30) wM s g (k=1,...,m—1)

for all sufficiently large n.
Let us write R as

(31) R™ =

4The proof of ¢, # 0 is not given in [16]. The proof here is by the
present authors.
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similarly to (5). From line 3 of Algorithm 2, we see

(p(n+1))Tp("+1) U — gy,
q(n+1) (P(n+1))—T,v(n)7
(r(n+1))2 w™ — ¢ _ (q(n+1))Tq(n+1)’

and from line 4 we see

o)

W™D

T(n-i—l)q(n-&-l)’

(,r(n+1))2.

Therefore, we see

Hv(n+1)||2

— (p(nF1)N\2( (n+1)N\T (n+1)
()@ ) g

1(P(n+1))—

s )Ly,

w(n+1)(1,(n))T(p(n+1))— Ty (1)

= "D ()T () —

The eigenvalues of U™ — s(™T are ,u,(cn) — t D) (k=
1,...,m — 1) because those of U™ 4 (T are u,(cn) (k =
1,...,m—1). Hence, by using (29), (30), together with the
equality above, we see
(n+1)H2 f - t(n+
g—

[o™]2.
n+1)

lv

From the condition (20), we finally obtain

_ 4(n+1
oty < L10

n f
— e P <

~[lv

(32) .

This means that ||v(™)|| converges to 0. This completes the
proof of Theorem 4.

Remark 1. In the original article [16], the accumulated
shift is assumed to satisfy

(33) M <t <X,  (n=0,1,...)

for some prescribed constant M > 0. The condition (33) is
weaker than (20) employed in the proof presented above.
We employed the latter condition since we see no practi-
cal advantage in choosing negative shifts (which necessarily
slows down the convergence). It is noted, however, that the
proof goes almost the same way for (33). We also note that
the inequality (15) in [16]:

f_zs-‘rl
7| R

|2 M+)‘71 |2
g — Zst1 M+, +9g—

2
|U8+1| < I ‘Us
is incorrect. The correct inequality is

f+M
g+ M

f — Zs+1 |vs|2

|US|2~
g — Zs+1

|US—&-1|2 <

The inequality (32) above is rectified along this line. W

[1]
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