On the classification of rank 2 almost Fano bundles on projective space

Yasutake, Kazunori
Faculty of Mathematics, Kyushu University

http://hdl.handle.net/2324/16961
On the classification of rank 2 almost Fano bundles on projective space

Kazunori Yasutake

MI 2010-17

(Received April 14, 2010)
ON THE CLASSIFICATION OF RANK 2 ALMOST FANO BUNDLES
ON PROJECTIVE SPACE

KAZUNORI YASUTAKE

ABSTRACT. An almost Fano bundle is a vector bundle on a smooth projective variety
that its projectivization is an almost Fano variety. In this paper, we prove that almost
Fano bundles exist only on almost Fano manifolds and study rank 2 almost Fano bundles
over projective spaces.

INTRODUCTION

An almost Fano variety is a smooth projective variety whose anti-canonical line bundle
is nef and big. This is a natural generalization of Fano varieties and often appears in the
study of deformation of a Fano variety ([12], [15]). Almost Fano surfaces were completely
classified by Demazure [3]. Recently Jahnke, Peternel and Radloff classified almost Fano
threefolds with picard number 2 whose pluri-anti-canonical morphism is divisorial in [8].
In [19], Takeuchi studied almost Fano threefolds with del pezzo fibration structure whose
pluri-anti-canonical morphism is small. In higher dimensional case, Jahnke and Peternell
classified almost del Pezzo varieties, which are almost Fano n-folds with index n − 1 i.e.
its anti-canonical line bundle is divisible by n − 1 in the Picard group.

The aim of this paper is to study ruled almost Fano varieties M of dimension $n \geq 3$
over nonsingular variety S i.e. there is a vector bundle E on S such that M is isomorphic
to its projectivization $\mathbb{P}_S(E)$.

Szurek and Wisniewski introduced the notion of Fano bundle in [16]. As an almost
Fano version, we introduce the notion of almost Fano bundle as below.

DEFINITION 0.1. Let E be a vector bundle on a smooth complex projective variety M.
We say that E is almost Fano if its projectivization $\mathbb{P}_M(E)$ is an almost Fano variety.

Such bundles always exist on an almost Fano variety M. In fact, we notice that the
trivial rank r vector bundle is almost Fano since $\mathbb{P}_M(\mathcal{O}_M^r) \cong M \times \mathbb{P}^{r-1}$ is also an almost
Fano variety. In [16, Theorem 1.6], it is shown that Fano bundles are only on Fano
manifolds. We consider the almost Fano case and obtain the following theorem.

THEOREM A. If E is an almost Fano bundle over a smooth complex projective variety
M, then M is an almost Fano variety.

2000 Mathematics Subject Classification. Primary 14J40; Secondary 14J10, 14J45, 14J60.
Key words and phrases. Projective manifold, anticanonical class, almost Fano variety, vector bundle.
On projective spaces, rank 2 Fano bundles are completely classified in [1], [16] and [17]. Using their methods, we study the classification of rank 2 almost Fano bundles on projective spaces and have the list mentioned below.

Theorem B. Let \mathcal{E} be a rank 2 normalized (i.e. $c_1(\mathcal{E}) = 0$ or -1) almost Fano bundle on \mathbb{P}^n. Assume that \mathcal{E} is not Fano. Then, \mathcal{E} is isomorphic to one of the following:

1. $\mathcal{O}_{\mathbb{P}^n}(\lfloor \frac{n}{2} \rfloor) \oplus \mathcal{O}_{\mathbb{P}^n}(\lceil -\frac{n}{2} \rceil)$, where $\lfloor \frac{n}{2} \rfloor$ is the largest integer $\leq \frac{n}{2}$.
2. a stable bundle on \mathbb{P}^3 with $c_1 = 0$, $c_2 = 2$.
3. a stable bundle on \mathbb{P}^3 with $c_1 = 0$, $c_2 = 3$.
4. a vector bundle on \mathbb{P}^2 determined by the exact sequence: $0 \to \mathcal{O}_{\mathbb{P}^2} \to \mathcal{E} \to \mathcal{I}_p(-1) \to 0$, where \mathcal{I}_p is the ideal sheaf of a point p.
5. a stable bundle on \mathbb{P}^2 with $c_1 = -1$, $2 \leq c_2 \leq 5$.
6. a stable bundle on \mathbb{P}^2 with $c_1 = 0$, $4 \leq c_2 \leq 6$.

Moreover, we show that all cases stated above really exist, except the case when $c_2 = 6$ in (6). Note that these varieties are of index 1 or 2. On three dimensional projective space, the most difficult part is a construction of almost Fano bundles satisfying the condition in (3). To obtain this, we use Maruyama’s theory of elementary transformation of vector bundles. On projective plane, the case $c_1 = -1$ was classified in [7]. Therefore we treat the case $c_1 = 0$ i.e. $\mathbb{P}(\mathcal{E})$ is of index 1. In particular, we study almost Fano threefolds of index 1 whose pluri-anti-canonical morphism is small, having \mathbb{P}^1-bundle structure over \mathbb{P}^2.

Ruled varieties play an important role in the classification theory of projective varieties. So we may expect that our results also have applications.

Acknowledgements

The author would like to express his gratitude to his supervisor Professor Eiichi Sato for many useful discussions and warm encouragements. He would also like to thank Professor Hiromichi Takagi for helpful advice and Professor Shunsuke Takagi and Professor Yu Kawakami for useful comments on an earlier draft of this paper.

Notation

Throughout this paper \mathcal{E} is a vector bundle on a smooth complex projective variety M and $\xi_{\mathcal{E}}$ is the tautological line bundle on $X = \mathbb{P}_M(\mathcal{E})$. By π we denote the projection $\pi : \mathbb{P}_M(\mathcal{E}) \to M$ and by H the pull-back of hyperplane if $M = \mathbb{P}^n$ (i.e. $\mathcal{O}_{\mathbb{P}_M(\mathcal{E})}(H) \cong \pi^*\mathcal{O}_{\mathbb{P}^n}(1)$). For a curve C in M, we denote by $[C]$ the numerical equivalence class of C in M.

1. **Proof of Theorem A**

In this section we prove Theorem A. Before starting the proof, we prepare some facts.
Definition 1.1. Let X be a normal projective variety and Δ an effective \mathbb{Q}-divisor on X. Let $\varphi : Y \to X$ be a log resolution of (X, Δ). We set

$$K_Y = \varphi^*(K_X + \Delta) + \sum a_i E_i,$$

where E_i is a prime divisor. The pair (X, Δ) is called kawamata log terminal (klt, for short) if $a_i > -1$ for all i.

Definition 1.2. Let X be a normal projective variety and Δ an effective \mathbb{Q}-divisor on X. We say that the pair (X, Δ) is a log Fano variety if (X, Δ) is klt and $-(K_X + \Delta)$ is an ample \mathbb{Q}-divisor.

Lemma 1.3. If X is an almost Fano manifold, there is an effective \mathbb{Q}-divisor Δ such that (X, Δ) is a log Fano variety.

Proof. For any ample divisor A, there are an integer m and an effective divisor E such that $-mK_X = A + E$ by [9, Lemma 2.60]. Put $\Delta = \frac{1}{l}E$ for $l \gg 0$, then (X, Δ) is klt from [9], corollary 2.35 and

$$-lm(K_X + \Delta) = m(l - m)(-K_X) + mA$$

is ample. \hfill \Box

Using this lemma, we get the following results by [9] and [21].

Theorem 1.4. Let X be an almost Fano manifold. Then,

(1) (Basepoint-free Theorem)
Any nef divisor D on X is semiample (i.e. bD is basepoint free for $b \gg 0$).

(2) (Cone Theorem)
There are finitely many rational curves C_j on X such that

$$NE(X) = \sum_{\text{finite}} \mathbb{R}_{\geq 0}[C_j].$$

(3) X is rationally connected i.e. for any two points in X there exists a rational curve which passes through them.

The next lemma is also needed.

Lemma 1.5. (c.f. [20, Lemma 3.3]). Let $\pi : X = \mathbb{P}_M(\mathcal{E}) \to M$ be the projectivization of a rank r almost Fano bundle \mathcal{E} and C an extremal rational curve on X not contracted by π. Then, we have $0 \leq -K_X.C \leq -K_M.\pi(C)$.

Proof. Let C be an extremal rational curve on X not contracted by π and φ_C the corresponding elementary contraction map. Then φ satisfies the assumption in [20, Lemma 3.3]. Hence we obtain the inequality in the lemma. \hfill \Box
Proof of Theorem A. Put $X = \mathbb{P}_M(E)$. From Theorem 1.4, we can find finitely many extremal rational curves C_0, C_1, \ldots, C_ρ in X which generate the Kleiman-Mori cone $\overline{NE}(X)$. Let C_0 be contained in a fiber of the projection π. Then we see that $\overline{NE}(M) = \sum_{i=1}^{\rho} \mathbb{R}_{\geq 0}[\pi(C_i)]$. From Lemma 1.5, it follows that

$$-K_M, \pi(C_i) \geq -K_X.C_i \geq 0$$

for $1 \leq i \leq \rho$. Therefore $-K_M$ is nef. Next we show the bigness of $-K_M$. Applying Theorem 1.4 (1) to $D := \pi^*(-K_M)$, we know D is semiample. Because π is projective space bundle, $-K_M$ is also semiample. Let $\varphi = \varphi_{[-lK_M]} : M \to W$ be a morphism induced by $-lK_M$ for $l \gg 0$. Suppose that $\dim M > \dim W$. Take the Stein factorization, we may assume a fiber of φ is connected. We denote its general fiber by F. Then F is smooth and we see that $-K_M|_F = -K_F$ holds. From this,

$$-K_X|_{\pi^{-1}(F)} = (r\xi_E - \pi^* (K_M + c_1(E)))|_{\pi^{-1}(F)}$$

$$= r\xi_{E|_F} - \pi^* (K_F + c_1(E|_F)) = -K_{E|_F}.$$

Therefore we may only consider $\varphi(M)$ is a point. In this case, Kodaira dimension $\kappa(M)$ of M is equal to 0. On the other hand, X is rationally connected due to Theorem 1.4 (3). Since π is surjective, M is also rationally connected. Hence we have $\kappa(M) = -\infty$. This is a contradiction. \hfill \Box

Remark 1.6. (1) This theorem is proved in [2] if $\dim X = 2$ and $\text{rank} E = 2$.

(2) Recently Fujino and Gongyo prove if X is almost Fano and $f : X \to Y$ is a smooth morphism, then Y should be almost Fano [5].

2. Proof of Theorem B

In this section, we study the structure of almost Fano bundles on projective space.

First we consider almost Fano bundles which are decomposed into a direct sum of line bundles. In this case, we can characterize almost Fano bundles for any rank.

Proposition 2.1. Let $E \cong \mathcal{O} \oplus \mathcal{O}(a_1) \oplus \mathcal{O}(a_2) \oplus \cdots \mathcal{O}(a_r)$ be a vector bundle on \mathbb{P}^n, where $0 \leq a_1 \leq a_2 \leq \cdots \leq a_r$. Then, E is almost Fano if and only if $0 \leq c_1(E) = \sum_{i=1}^{r} a_i \leq n + 1$. Moreover E is not Fano if and only if $c_1(E) = n + 1$.

Proof. Put $X = \mathbb{P}_{\mathbb{P}^n}(E)$. Then, we have $-K_X = r\xi_E - (n + 1 - c_1(E))H$. From the choice of E, we can check naturally that E is Fano if and only if $0 \leq c_1(E) \leq n$. Next we will establish the latter part. It is easy to see that $-K_M$ is nef but not ample if and only if $c_1(E) = n + 1$. Therefore it is sufficient to show that $-K_M$ is big if $c_1(E) = n + 1$. In this case, $H^0(\xi_E - H) \cong H^0(E(-1)) \neq 0$. By Kodaira’s lemma, $-K_M = r\xi_E = ((r-1)\xi_E + H) + (\xi_E - H)$ is big. \hfill \Box
From now on, we give a proof of Theorem B. The proof is divided into three parts, (I) \(n \geq 4 \), (II) \(n = 3 \) and (III) \(n = 2 \).

(I) \(n \geq 4 \).

At first, we consider the case where \(n \geq 4 \). The claim is as follows.

Proposition 2.2. Let \(\mathcal{E} \) be an almost Fano 2-bundle on \(\mathbb{P}^n \), \(n \geq 4 \). Then \(\mathcal{E} \) is a direct sum of two line bundles.

These bundles are classified in Proposition 2.1. To show this, we need the next two lemmata.

Lemma 2.3. Let \(\mathcal{E} \) be a normalized rank 2 almost Fano bundle on \(\mathbb{P}^n \). If \(n > 4 \), then \(\mathcal{E}(n) \) is generated by its global sections.

Proof. The proof is in the similar fashion as in [1, Proposition 2.6]. We give an outline of the proof in the case where \(n \) is even and \(c_1 = -1 \). Put \(n = 2k \) and \(X = \mathbb{P}_{\mathbb{P}^n}(\mathcal{E}) \), then we have

\[
-K_X = 2\xi + (2k + 2)H = 2(\xi + (k + 1)H)
\]

is nef and big. Therefore \(\mathcal{E}(k+2) \) is ample vector bundle. By Le Potier vanishing theorem,

\[
H^i(\mathcal{E}(k+2+j) \otimes K_{\mathbb{P}^n}) = H^i(\mathcal{E}(j-k+1)) = 0
\]

for any \(i \geq 2 \) and \(j \geq 0 \). Especially letting \(j = 3k - i - 1 \), we have \(H^i(\mathcal{E}(n-i)) = 0 \) for \(i \geq 2 \). Moreover

\[
H^1(\mathbb{P}_{\mathbb{P}^n}(\mathcal{E}), 3(\xi + (k + 1)H) + (k - 2)H + K_{\mathbb{P}^n}(\mathcal{E})) = H^1(\mathbb{P}^n, \mathcal{E}(n-1)) = 0
\]

from Kawamata-Vieweg vanishing theorem. Combining above, then we see that \(H^i(\mathcal{E}(n-i)) = 0 \) for \(i \geq 1 \) namely \(\mathcal{E} \) is \(n \)-regular. By means of Castelnuovo-Mumford lemma, \(\mathcal{E}(n) \) is generated by its global sections. Other cases are proved in the same way. \(\square \)

Lemma 2.4. [1] Let \(\mathcal{E} \) be a globally generated 2-bundle on \(\mathbb{P}^n \). Then we have

1. If \(\mathcal{E} \) is not stable and \(c_2(\mathcal{E}) < (n - 1)(c_1(\mathcal{E}) - n + 2) \), then \(\mathcal{E} \) is split into a direct sum of two line bundles.
2. If \(n \geq 6 \) and \(c_1(\mathcal{E})^2 < 4c_2(\mathcal{E}) \), then we have \(c_1(\mathcal{E}) \geq 2n + 3 \).

Proof of Proposition 2.2. Applying Lemma 2.4 to \(\mathcal{E}(n) \), we can show immediately that \(\mathcal{E} \) is split except for \(n = 4 \) and 5 essentially in the same as in the proof of Proposition 3.1 and Proposition 5.1 in [1]. If \(n = 4 \) (resp. \(n = 5 \)), then \(\mathcal{E}(3) \) (resp. \(\mathcal{E}(4) \)) is nef. From [1, Proposition 9.2] (resp. [1, Proposition 9.4]), \(\mathcal{E} \) is split. \(\square \)

(II) \(n = 3 \).

Next, we consider the case where \(n = 3 \). To start with, we demonstrate rank 2 almost Fano bundle on \(\mathbb{P}^3 \) is one of vector bundles below.
Proposition 2.5. Let E be a normalized almost Fano 2-bundle on \mathbb{P}^3. Then E is isomorphic to a direct sum of two line bundles or one of the following:

1. stable vector bundle with $c_1 = 0$, $c_2 = 1$.
2. stable vector bundle with $c_1 = 0$, $c_2 = 2$.
3. stable vector bundle with $c_1 = 0$, $c_2 = 3$.

Proof. We shall discuss the two cases $c_1 = 0$ and $c_1 = -1$ separately.

First we treat $c_1 = -1$. Since $-K_X = 2\xi + 5H$ is nef and big, we have that $E(3)$ is ample. We can apply the argument in [16, Theorem 2.2], to this case and we can show that E is decomposed into a direct sum of two line bundles.

Next we treat $c_1 = 0$. In this case, $E(2)$ is nef. If $H^0(E(-2)) \neq 0$, then we can take a non-zero section $s \in H^0(E(-2))$. If $Z := \{s = 0\} = \emptyset$, then E is decomposed into a direct sum of line bundles. If $Z \neq \emptyset$, then for a line L meeting Z in a finite number of points we would have

$$E(-2)|_L \cong \mathcal{O}_L(d) \oplus \mathcal{O}_L(-4 - d), (d \geq 1)$$

which contradicts to the nefness of $E(2)$. If $H^0(E(-2)) = 0$ and $H^0(E(-1)) \neq 0$, then we can take a non-zero section $s \in H^0(E(-1))$. If $Z := \{s = 0\} = \emptyset$, then E is decomposed into a direct sum of line bundles. If $Z \neq \emptyset$, then Z is a curve. Suppose that $\deg Z \geq 2$, we can take a line L intersecting with Z at least two points. Then

$$E(-1)|_L \cong \mathcal{O}_L(d) \oplus \mathcal{O}_L(-2 - d), (d \geq 2)$$

and contradict to the nefness of $E(2)$. If $\deg Z = 1$, then Z is a line. But,

$$\deg K_Z = \deg(K_{\mathbb{P}^3} + c_1(E(-1)))|_Z = -6.$$

This is a contradiction. If $H^0(E(-1)) = 0$ and $H^0(E) \neq 0$, then we can take a non-zero section $s \in H^0(E)$. If $Z := \{s = 0\} = \emptyset$, then E is decomposed into a direct sum of two line bundles. If $Z \neq \emptyset$, then Z is a curve and $\deg Z = c_2 \geq 1$. On the other hand, $\xi_E(-K_X)^3 = 8 - 6c_2 \geq 0$. Therefore $\deg Z = 1$ i.e. Z is a line. But,

$$\deg K_Z = \deg(K_{\mathbb{P}^3} + c_1(E))|_Z = -4.$$

This is a contradiction. Finally we assume $H^0(E) = 0$ i.e. E is stable. In this case, $c_1^2 < 4c_2$ and $(-K_X)^4 = 128(4 - c_2) > 0$ hold. Hence $1 \leq c_2 \leq 3$. $box{}$

It is shown [16] that all stable bundles satisfying $c_1 = 0$, $c_2 = 1$ are Fano. If $c_2 = 2$, then E is 2-regular by [6]. Therefore $-K_X = 2(\xi_E + 2H)$ is nef and big i.e. E is almost Fano. Such E is not Fano bundle [16]. The case $c_2 = 3$ is more complicated. First we show such an almost Fano bundle really exists.

Proposition 2.6. There is an almost Fano stable bundle on \mathbb{P}^3 with $c_1 = 0$, $c_2 = 3$.

To show this, we use the following result.
Theorem 2.7. [13, Proposition 6] There is a nonsingular elliptic curve C on a smooth quartic surface $S \subset \mathbb{P}^3$ and a very ample divisor A on S such that

1. $\text{Pic}(S) \cong \mathbb{Z}[A] \oplus \mathbb{Z}[C]$.
2. $A^2 = 4$, $A.C = 7$, $C^2 = 0$.
3. C is base point free.
4. S does not contain any rational curve.

Proof of Proposition 2.6. Let (S, C) be a pair in Theorem 2.7. Using the theory of elementary transformation [10] and [11], we can construct a rank 2 regular vector bundle F on \mathbb{P}^3 where $c_1(F) = S$, $c_2(F) = C$ modulo numerical equivalence. We will prove that $E := F(-2)$ is the bundle we want. Since F has a global sections, we have a following exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^3} \to F \to I_C(4) \to 0.$$ Twist by $\mathcal{O}_{\mathbb{P}^3}(-2)$, we obtain

$$0 \to \mathcal{O}_{\mathbb{P}^3}(-2) \to F(-2) \to I_C(2) \to 0.$$ Because C is not contained in any quadric surface, we see that $H^0(I_C(2)) = 0$. Therefore F is stable since $H^0(F(-2)) = 0$ and $c_1(F(-2)) = 0$. Next we show F is nef. Note that F has 2 global sections which induce the generically surjective morphism $\varphi : \mathcal{O}^{\oplus 2} \to F$ where φ is isomorphic outside S by the construction. Consequently F is nef over curves not contained in S. Over S, we get an exact sequence

$$0 \to \mathcal{O}_S(C) \to F|_S \to \mathcal{O}_S(4A-C) \to 0.$$ From the choice of C, $\mathcal{O}_S(C)$ is nef. We have only to check the nefness of $\mathcal{O}_S(4A-C)$. Since $(aA + bC)(4A - C) = 9a + 28b$, we must prove that $9a + 28b \geq 0$ if $aA + bC$ is effective. But this is true since $(28A - 9C)^2 = -17 < 0$ and in view of Kleiman-Mori cone. Therefore $-K_X = 2\xi_F$ is nef and big. Namely F is almost Fano. Hence $E = F(-2)$ is a stable 2-bundle with $c_1 = 0$, $c_2 = 3$ which is almost Fano.

Let $\mathcal{M}(0, 3)$ be the moduli space of stable rank 2 vector bundles on \mathbb{P}^2 with $c_1 = 0$ and $c_2 = 3$. From Theorem in [4], we see that $\mathcal{M}(0, 3)$ has two irreducible components $\mathcal{M}_0(0, 3)$ and $\mathcal{M}_1(0, 3)$ where $\mathcal{M}_a(0, 3)$ is the moduli space of vector bundles E satisfying the condition $\dim H^1(E(-2)) \equiv \alpha (\text{mod } 2)$. The dimension of each components are 21. Almost Fano bundles constructed in Proposition 2.6 are contained in $\mathcal{M}_0(0, 3)$. The author does not know whether $\mathcal{M}_1(0, 3)$ contains almost Fano bundles or not.

Next we show that each components contain the member which is not almost Fano.

Example 2.8. From Proposition in [14], we see that vector bundles in $\mathcal{M}_0(0, 3)$ which have a maximal order jumping line is of dimension 20. Such a bundle E is decomposed into $\mathcal{O}_L(3) \oplus \mathcal{O}_L(-3)$ over some line L. These bundles cannot be almost Fano since $E(2)$ is not nef.

Example 2.9. Let Y be a disjoint union of a plane cubic and a nonsingular space elliptic curve in \mathbb{P}^3. By Serre construction, we can construct a rank 2 bundle F on \mathbb{P}^3.
with \(c_1 = 4, \ c_2 = 7 \). Then, we can check \(H^0(\mathcal{F}(-2)) = 0 \) due to the exact sequence \(0 \to \mathcal{O}_{P^3} \to \mathcal{F} \to \mathcal{I}_Y(4) \to 0 \). Hence \(\mathcal{F} \) is stable. Since every nonsingular space elliptic curve is a complete intersection of two quadrics, we have \(H^0(\mathcal{I}_Y(3)) = H^0(\mathcal{F}(-1)) \neq 0 \).

From easy computation, \((\xi_{\mathcal{F}} - H)(-K_{P^2(\mathcal{F})})^3 = -1\). Thus \(\mathcal{E} := \mathcal{F}(-2) \) is a stable vector bundle with \(c_1 = 0, \ c_2 = 3 \) which is not almost Fano. We can check

\[
\dim H^1(\mathcal{E}(-2)) = \dim H^1(\mathcal{I}_Y) = \dim H^0(\mathcal{O}_Y) - 1 = 1
\]

using the exact sequence \(0 \to \mathcal{I}_Y \to \mathcal{O}_{P^3} \to \mathcal{O}_Y \to 0 \). Hence \(\mathcal{E} \) is contained in \(\mathcal{M}_1(0, 3) \).

\[
(III) \ n = 2.
\]

Finally, we consider the case where \(n = 2 \). If \(c_1 = -1 \), then \(X = P_{P^2}(\mathcal{E}) \) is an almost del Pezzo 3-fold and completely classified in [7]. So we may only study bundles with \(c_1 = 0 \).

The statement is as follows.

Proposition 2.10. Let \(\mathcal{E} \) be a rank 2 almost Fano bundle on \(P^2 \) with \(c_1 = 0 \). Then, \(\mathcal{E} \) is isomorphic to one of the following

\[
\begin{align*}
(1) \ & \mathcal{O}_{P^2}(1) \bigoplus \mathcal{O}_{P^2}(-1), \\
(2) \ & \mathcal{O}_{P^2} \bigoplus \mathcal{O}_{P^2}, \\
(3) \ & \mathcal{E} \text{ is determined by } 0 \to \mathcal{O}_{P^2} \to \mathcal{E} \to \mathcal{I}_p \to 0, \text{ where } \mathcal{I}_p \text{ is the ideal sheaf of a point}, \\
(4) \ & \text{stable vector bundle with } 2 \leq c_2 \leq 6.
\end{align*}
\]

Proof. In this case, \(\mathcal{E}(2) \) is ample. If \(H^0(\mathcal{E}(-1)) \neq 0 \), we take a non-zero section \(s \in H^0(\mathcal{E}(-1)) \). If \(Z := \{ s = 0 \} = \emptyset \), then \(\mathcal{E} \) is decomposed into a direct sum of line bundles. If \(Z \neq \emptyset \), then for a line \(L \) meeting \(Z \) in a finite number of points we would have

\[
\mathcal{E}(-1)|_L \cong \mathcal{O}_L(d) \oplus \mathcal{O}_L(-2 - d), \ d \geq 1.
\]

This contradict to the ampleness of \(\mathcal{E}(2) \).

If \(H^0(\mathcal{E}(-1)) = 0 \) and \(H^0(\mathcal{E}) \neq 0 \), take a non-zero section \(s \in H^0(\mathcal{E}) \). If \(Z := \{ s = 0 \} = \emptyset \), then \(\mathcal{E} \) is decomposed into a direct sum of line bundles. If \(Z \neq \emptyset \) and \(\deg Z \geq 2 \), then for a line \(L \) intersecting with \(Z \) at least two points we would have

\[
\mathcal{E}|_L \cong \mathcal{O}_L(d) \oplus \mathcal{O}_L(-d), \ d \geq 2.
\]

This is a contradiction.

If \(\deg Z = 1 \), \(\mathcal{E} \) has an exact sequence \(0 \to \mathcal{O}_{P^2} \to \mathcal{E} \to \mathcal{I}_p \to 0 \), where \(\mathcal{I}_p \) is the ideal sheaf of a point \(p \). In this case \(\mathcal{E} \) is Fano bundle by [17, Proposition 2.3]. Finally we consider the case \(H^0(\mathcal{E}) = 0 \) i.e. \(\mathcal{E} \) is stable. Then \(2 \leq c_2 \leq 6 \) since \((-K_X)^3 = 54 - 8c_2 > 0 \).

We have some comments of Fano bundles with \(c_1 = 0 \). If \(c_2 = 2 \), all stable bundles are Fano bundle from [17]. In the situation \(c_2 = 3 \), there is a stable Fano bundles by [17]. Moreover, we have the following result.
PROPOSITION 2.11. If E is a stable almost Fano bundle on a projective plane with $c_1 = 0$, $c_2 = 3$. Then E is Fano bundle.

PROOF. Let E be a stable almost Fano bundle on a projective plane with $c_1 = 0$, $c_2 = 3$. Using Riemann-Roch theorem, we have $\dim H^0(E(1)) > 0$. Therefore we get an exact sequence $0 \to \mathcal{O}_{\mathbb{P}^2} \to E(1) \to I_Z(2) \to 0$ where Z is 4 points in \mathbb{P}^2 and I_Z is the ideal sheaf of Z. If E is not Fano, then the linear system $|\xi + H|$ has one dimensional base locus B by [17], Claim 2.7. By virtue of Claim 2.10 and 2.11 in [17], we have $H.B \leq 2$ and $(\xi + H).B \leq -1$. Since $0 \leq -K_{\mathbb{P}^2}(E) \cdot B = 2(\xi + H).B + H.B \leq 0$, we obtain $H.B = 2$ and $(\xi + H).B = -1$. If $\pi(B)$ is a line L, we have $E(1)|_L \cong \mathcal{O}(d) \oplus \mathcal{O}(2-d)$, $d \geq 3$. This contradicts the ampleness of $E(2)$. Finally we consider the case where $\pi(B)$ is nonsingular conic C. Since $(\xi + H).B = -1$, we obtain the splitting $E(1)|_C \cong \mathcal{O}_C(d) \oplus \mathcal{O}_C(4-d), d \geq 5$. This is impossible because Z is only 4 points.

COROLLARY 2.12. Let E be a stable vector bundle on a projective plane with $c_1 = 0$, $c_2 = 3$. If $S^2(E)(3)$ is nef, then $E(1)$ is generated by global sections.

PROOF. If $S^2(E)(3)$ is nef, then E is almost Fano. From Proposition 2.11, E is Fano bundle. By means of Proposition 2.6 in [17], $E(1)$ is generated by global sections.

When $c_2 = 4$, no stable 2-bundle is Fano [17]. We can construct almost Fano 2 bundle with $c_1 = 0, c_2 = 4$ as follows.

EXAMPLE 2.13. Let Y be 5 points in general position and C is a smooth conic containing Y. Then the pair (C, Y) yields us a rank 2 regular vector bundle F with $c_1 = C$, $c_2 = Y$ by virtue of an elementary transform by [10] and [11]. We have a following exact sequence

$0 \to \mathcal{O}_{\mathbb{P}^2} \to F \to I_Y(2) \to 0$

where I_Y is the ideal sheaf of Y. Twist by $\mathcal{O}_{\mathbb{P}^2}(-1)$, we get

$0 \to \mathcal{O}_{\mathbb{P}^2}(-1) \to F(-1) \to I_Y(1) \to 0$.

Because there is no line containing Y, we have $H^0(I_Y(1)) = 0$. Therefore F is stable since $H^0(F(-1)) = 0$ and $c_1(F(-1)) = 0$. We check $-K_{\mathbb{P}^2}(F) = 2\xi_F + H$ is nef. First we remark that F has 2 global sections which induce the generically surjective morphism $\varphi: \mathcal{O}\otimes^2 \to F$ where φ is isomorphic outside C by the construction. Hence we notice that $2\xi_F + H$ is nef outside $\pi^{-1}(C)$. On C, we have that $F|_C \cong \mathcal{O}_C(5) \oplus \mathcal{O}_C(-1)$ from the theory of elementary transformation. From this fact, we can check that $(2\xi_F + H).D \geq 0$ for every curves D contained in Hirzebruch surface $\mathbb{P}_C(F|_C)$. The equality holds only for the minimal section associated with the quotient line bundle $F|_C \to \mathcal{O}_C(-1) \to 0$.

Therefore $-K_{P^{2}}(F)$ is nef and big. Hence $E := F(-1)$ is a stable almost Fano bundle with $c_2 = 4$.

There exists an almost Fano stable bundle with $c_1 = 0, c_2 = 5$ from Theorem 0.19(C) in [18]. Finally we construct stable vector bundles with $c_1 = 0, 3 \leq c_2 \leq 6$ which are not almost Fano.

Example 2.14. Let $Y_k = \{p_0, p_1, \cdots , p_k\}$ be the $k + 1$ points $(4 \leq k \leq 7)$ in P^2. We assume that p_0, p_1, p_2 are lying in a line L and other points are not on L. By Serre construction, we have rank 2 vector bundles E_k on P^2 with $c_1 = 2, c_2 = k + 1$. E_k has an exact sequence $0 \rightarrow O_{P^2} \rightarrow E_k \rightarrow I_{Y_k}(2) \rightarrow 0$. Because there is no line containing Y_k, we see $\dim H^0(E_k(-1)) = \dim H^0(I_{Y_k}) = 0$. Combining with $c_1(E_k(-1)) = 0$, E_k is stable bundle. Restricting each bundles into L, we get $E_k|_L \cong O_L(3) \oplus O_L(-1)$. Since $E_k(1)$ is not ample, E_k is not almost Fano.

References

Graduate School of Mathematical Sciences
Kyushu University
Fukuoka 819-0395
Japan
E-mail address: k-yasutake@math.kyushu-u.ac.jp
List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTsu & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuihiro T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric Φ-functions of the q-Painlevé system of type $E_{8}^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain
MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection
MI2009-26 Manabu YOSHIDA
 Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
 Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic
 three-space

MI2009-28 Masahisa TABATA
 Numerical simulation of fluid movement in an hourglass by an energy-stable
 finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
 Asymptotic behaviors of solutions to evolution equations in the presence of
 translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
 On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
 Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
 Stability and convergence of a Galerkin-characteristics finite element scheme
 of lumped mass type

MI2009-33 Chikashi ARITA
 Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
 Projective reduction of the discrete Painlevé system of type$(A_2 + A_1)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
 Finite element computation for scattering problems of micro-hologram using
 DtN map
MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments
MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space