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Abstract.

The modified two-stream instability in the foot of supercritical quasi-perpendicular

shock wave is investigated. A linear analysis shows that the instability can

sufficiently grow during the shock reformation cycle for the case of a real-

istic ion to electron mass ratio. The wave-particle interactions of the Lan-

dau type of both the electrons and ions are essential in a finite beta plasma

and lead to a reduction of the growth rate with increasing beta. The mag-

netic polarization in terms of wavevector is also analyzed. Additional one-

dimensional full particle electromagnetic simulations in a periodic system re-

veal some important nonlinear wave properties: The wave spectra indicate

a lower cascade due to wave-wave interactions. The parallel phase space dis-

tribution of electrons correlates well with the wave profile of the magnetic

field component perpendicular to both the ambient magnetic field and the

wavevector. The nonlinearly generated waves lead to electron heating par-

allel to the magnetic field.
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1. Introduction

In the transition region of collisionless shocks numerous instabilities can get excited.

In particular, it has been recognized that in high Mach number quasi-perpendicular su-

percritical shocks specularly reflected ions play an essential role in the wave excitation

mechanisms. Recent theoretical studies have shown that the electron dynamics is in-

separably related with the excitation mechanisms of the short wavelength waves. For

instance, it has been suggested that the Buneman instability is excited in the foot if the

relative bulk velocity between electrons and the reflected ions, ud, exceeds the electron

thermal velocity, vthe, [e.g., Papadopoulos, 1988, Cargill and Papadopoulos, 1988, Shimada

and Hoshino, 2000]. The ion acoustic instability is also thought to be a candidate for

a possible instability when Te/Ti À 1 and ud exceeds the ion acoustic speed, where Te

and Ti are the electron and ion temperatures, respectively [Papadopoulos, 1988, Cargill

and Papadopoulos, 1988]. In addition, at the shock ramp a variety of instabilities, e.g.,

the lower-hybrid drift instability, the electron cyclotron drift instability, etc., have been

theoretically investigated [see the review by Wu et al., 1984].

In addition, the so-called modified two-stream (MTS) instability is a possible candi-

date. This instability is driven by the relative drift between electrons and ions across the

magnetic field, B0, even for Te/Ti ∼ 1 and ud < vthe [Krall and Liewer, 1971], a condi-

tion which is often satisfied in the Earth’s bow shock. The MTS instability was thought

to be a favorable dissipation mechanism at the ramp of the (quasi-) perpendicular sub-

critical shocks. Since the physical quantities, like magnetic field, density, temperature,

and electrostatic (ES) potential, have significant gradients at the ramp, the relative drift

between the electrons and ions is produced along the shock surface [Lashmore-Davies,
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1971, Krall and Liewer, 1971, Ott et al., 1972, McBride et al., 1972, McBride and Ott,

1972, Lemons and Gary, 1978, Winske et al., 1987]. Some in situ observations at the

subcritical bow shock were explained by the MTS instability of this type [Winske et al.

1987]. In contrast, for the supercritical shocks, the relative ion drift to the electrons

arises in the direction parallel to the shock normal because of the presence of specularly

reflected ions. This relative drift can also be the free energy for the MTS instability [Wu

et al., 1984, Wu et al., 1983, Gary et al., 1987]. Scudder et al. [1986] gave comparison

between linear theory of this instability and the ISEE spacecraft data at the bow shock.

Recently, Scholer et al. [2003] reproduced the MTS instability of the latter type in the

foot of a quasi-perpendicular supercritical shocks by performing shock simulations with a

one-dimensional full particle code. They showed that the instability can grow sufficiently

during the shock reformation cycle if a realistic ion to electron mass ratio is assumed.

Although a number of studies on this instability have been reported, some important

points are still unresolved. Wu et al., [1983] pointed out the importance of kinetic effects

of the MTS instability (they termed it kinetic cross-field streaming instability). However,

they did not investigate kinetic effects in any detail. The polarization of the generated

waves has also not been discussed thoroughly. It is known that the waves propagate

almost perpendicular to B0, and that the ratio of ES to EM (electromagnetic) electric

field energy is very large. But, the energy of the magnetic field fluctuation is comparable

to that of the ES field fluctuation [Lemons and Gary, 1977]. In this respect, it is useful to

discuss magnetic polarization in terms of the wavevector. The nonlinear development of

the instability has also been examined by many authors [Ott et al., 1972, McBride et al.,

1972,Winske et al., 1985,Winske et al., 1987, Yoon and Lui, 1993]. For example, Ott et al.
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[1972] and McBride et al. [1972] showed that in the low beta case the unstable waves heat

the electrons parallel to B0 and ions perpendicular to B0 comparably. Later, Winske et

al. [1985] revealed that ion heating becomes more isotropic and electron heating becomes

more concentrated in the parallel direction as beta increases. However, most of these past

studies did not mention the characteristics of the nonlinear waves. This is expected to

be very important when interpreting observational data. Therefore, the purpose of this

study is to investigate the MTS instability as it applies to the foot of quasi-perpendicular

shocks in more detail. In particular, the parameters used in the numerical calculations

are applicable to the foot of a supercritical quasi-perpendicular terrestrial bow shock.

In next section, the linear dispersion relation is derived, and the kinetic effects and

the magnetic polarization are discussed. In section 3, the results of one-dimensional full

particle simulation of the instability in a homogeneous system with realistic mass ratio are

shown and the nonlinear wave characteristics are presented. A Summary and Discussion

is given in section 4.

2. Dispersion Relation

During the shock reformation, the bulk velocity of the ions in the foot decreases because

some (20 ∼ 30%) of the incoming ions are reflected at the shock front. Then, requiring

zero current in the shock normal direction, the electron bulk velocity should also decrease

in the foot. As a result, a finite difference of the bulk velocities between the electrons

and the incoming/reflected ions arises. Such a velocity difference can be the source of

instabilities. Although the velocity difference between the incoming and the reflected

ions can also drive ion-ion instabilities [Biskamp and Welter, 1972], our discussion here is

restricted to the instabilities based on the electron-ion interaction.
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In the following, we adopt the coordinate system in which the electrons are at rest. The

waves are assumed to propagate in the x− z plane, and the incoming/reflected ions drift

in a direction parallel or antiparallel to the waves. The ambient magnetic field, B0, is in

the z−direction, and the wave propagation angle to B0 is θ. Since we consider waves with

much higher frequencies than the ion gyrofrequency (or with much smaller wavelength

than the ion gyroradius) the ions are assumed to be unmagnetized. The distribution

functions of each plasma component are given by a (shifted-) Maxwellian:

f0j(vk, v⊥) =
n0j

(π)3/2v
3/2
thj

exp

Ã
−(vk − uj)

2

v2
thj

− v2
⊥
v2

thj

!
, (1)

where vk and v⊥ are velocities parallel and perpendicular to the wave propagation direc-

tion, n0j the density, v
2
thj = 2�Tj/mj the thermal velocity (� indicates the Boltzmann

constant, Tj is the temperature and mj is the mass), and uj is the drift velocity, respec-

tively. The subscript j denotes particle species (j = e, i, r for the electrons, the incoming

ions, and the reflected ions, respectively).

After the standard procedure of linearization, the following relation is obtained [e.g.,

Stix, 1992]. ²xx −N 2 cos2 θ ²xy ²xz +N
2 cos θ sin θ

²yx ²yy −N 2 ²yz

²zx +N
2 cos θ sin θ ²zy ²zz −N 2 sin2 θ


 Ex

Ey

Ez

 = 0, (2)

where N 2 = c2k2/ω2 (c indicates the light speed, k and ω denote the wavenumber and the

frequency of the wave, respectively), and ²lm = 1+
P

j χj,lm represents the components of

the dielectric tensor. Here, the elements of susceptibility tensor are as follows.
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χe,xx = Ce1(1− λe)[Z(ζe,+1) + Z(ζe,−1)],
χe,yy = Ce1{4λeZ(ζe,+1) + (1− 3λe)[Z(ζe,+1) + Z(ζe,−1)]},
χe,zz = Ce2{2ω(1− λe)[1+ ζe,0Z(ζe,+1)]

+λe[(ω + Ωe)(1+ ζe,+1Z(ζe,+1)) + (ω − Ωe)(1+ ζe,−1Z(ζe,−1))]},
χe,xy = iCe1(1− 2λe)[Z(ζe,+1)− Z(ζe,−1)] = −χe,yx,
χe,xz = Ce3(1− λe)[ζe,+1Z(ζe,+1)− ζe,−1Z(ζe,−1)] = χe,zx,
χe,yz = iCe3{(2− 3λe)[1+ ζe,0Z(ζe,0)]

−(1− 2λe)[2 + ζe,+1Z(ζe,+1) + ζe,−1Z(ζe,−1)]} = −χe,zy,
χi,xx = Ci1ζi,0Z(ζi,0) cos

2 θ + Ci2[1+ ζi,0Z(ζi,0)] sin
2 θ,

χi,yy = Ci1ζi,0Z(ζi,0),
χi,zz = Ci1ζi,0Z(ζi,0) sin

2 θ + Ci2[1+ ζi,0Z(ζi,0)] cos
2 θ,

χi,xz = {−Ci1ζi,0Z(ζi,0) + Ci2[1+ ζi,0Z(ζi,0)]} sin θ cos θ = χi,zx,
χi,xy = χi,yx = χi,yz = χi,zy = 0,

(3)

where Ce1 = ω
2
pe/2ωkkvthe, Ce2 = ω

2
pe/ωk

2
kv

2
the, Ce3 = ω

2
pek⊥/2ωΩekk, Ci1 = ω

2
pi/ω

2, Ci2 =

2ω2
pi/k

2v2
thi, λe = k

2
⊥v

2
the/2Ω

2
e, ζe,n = (ω + nΩe)/kkvthe (n = 0,±1), ζi,0 = (ω − kui)/kvthi,

and Z is the so-called plasma dispersion function. kk = k cos θ, k⊥ = k sin θ, ω2
pj =

4πn0je
2/mj , and Ωe = eB0/mec. In deriving the above equation, the contribution from

the electron cyclotron higher harmonics (n = ±2,±3, · · ·) are neglected. The susceptibility

tensor of the reflected ions is given by replacing the subscript i with r. However, since

we focus here on the interaction between the electrons and ions, it is sufficient if only

one ion component is considered. Therefore, we discuss hereafter the case for ωpr = 0

for simplicity. The dispersion relation is given by putting the determinant of the above

matrix coefficient to zero.

2.1. Asymptotic Solutions for Cold Plasma

Let us discuss some asymptotic solutions of the dispersion relation. In the case that

N 2 À 1, ω2
pi/k

2c2 ¿ 1, and a cold plasma (vthe = vthi = 0), the dispersion relation is

simplified as follows:

Ã
1− ω2

pi

(ω − kui)2
− ω

2
pe

ω2

!Ã
1− Ω2

e cos
2 θ

ω2(1+He)2

!
− Ω2

e sin
2 θ

ω2(1+He)

Ã
1− ω2

pi

(ω − kui)2

!
= 0, (4)
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where He = ω
2
pe/k

2c2. It is easily found that the ES and the EM oscillations are decoupled

when θ = 0. In this case the ion beam can generate only the ES plasma oscillation through

the Buneman instability, while the EM whistler wave is stable. However, if θ is finite, the

ion beam can interact also with the whistler waves. If we assume ω2
pe À Ω2

e > ω2, and

ω = ω0 + ω1(|ω0| À |ω1|), then we obtain

ω0

Ωi

=
µ cos θ√
1+He

"
τ

τ (1+He) + sin
2 θ

#1/2 Ã
=
kui

Ωi

!
, (5)

δmax

Ωi

=

√
3µ2/3

2

Ã
cos θ sin2 θ

2
√
1+He

!1/3 "
τ

τ(1+He) + sin
2 θ

#1/2

, (6)

where Ωi = eB0/mic, µ = mi/me, τ = ω2
pe/Ω

2
e, and δmax = Im[ω1]. This is the MTS

instability. Figure 1 represents the solution of (4) for, µ = 100, θ = 60◦, τ = 4, and

ui/vA = 1. The upper/lower panel shows the real/imaginary part of the frequency as a

function of wavenumber. The whistler wave is actually unstable, although the Buneman

instability is dominant for this parameter regime (the electrons are cold). In this paper,

we restrict ourselves to the MTS instability. The possibility of the Buneman instability

taking place will be discussed in the discussion section.

Figure 2 shows the µ dependence of the maximum growth rate, δmax, for θ = 85◦,

ui/vA = 2, and τ = 10 and 2 × 104. Note that δmax strongly depends on µ, while the τ

dependence is not significant. This characteristics is common for a wide parameter range.

If me is fixed, the dispersion relation of the whistler wave and the ion beam velocity are

almost independent of µ. But the normalization factors Ωi (to δmax) and vA (to the ion

beam velocity, ui) have a µ dependence. As a result, δmax/Ωi varies as ∼ µ2/3 [see (6)].

Therefore, when the mass ratio has the realistic value (µ = 1836), the growth rate is large

enough compared to the ion gyrofrequency, which characterizes the shock reformation
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cycle. In other words, if µ is nonrealistically small (µ < 1836), as assumed in most full

particle simulations of collisionless shocks, it is difficult to obtain this instability in the

foot region.

The MTS instability is stabilized if ui/vA exceeds the maximum phase velocity of

whistler wave, which is obtained as ω/kvA ≈ µ1/2 cos θ/2 for τ À 1. Here, we should note

that this instability can also be excited through an interaction between electrons and re-

flected ions. From the zero current condition in the shock normal direction, a relative bulk

velocity between electrons and reflected ions is obtained as |∆ure|/vA = 2(1−α)MA, while

a relative bulk velocity between electrons and incoming ions is given by ∆uie/vA = 2αMA,

where α is the ratio of reflected to total ion number densities and MA denotes the Alfvén

Mach number. Therefore, the MTS instability can be driven if

cos θ >
4(1− α)MA√

µ
(7)

by the electron-reflected ion interaction, and if

cos θ >
4αMA√
µ

(8)

by the electron-incoming ion interaction, respectively. Typically α ∼ 0.2, so that the

instability of latter type can be destabilized in a wider range of θ compared to the insta-

bility of the former type. Gary et al. [1987] showed, however, that the maximum growth

rate of the former type is greater than that of the latter type for low beta. Nevertheless,

we restrict our discussion to the instability of the latter type hereafter, since one of the

aims of this paper is to give a more precise interpretation of the waves observed by Sc-

holer et al. [2003] who found the instability of this type in their shock simulations. The

characteristics of both types of the MTS instability are similar in many way.
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2.2. Solutions for Hot Plasma

The instability is suppressed not only by assuming nonrealistic µ but also by kinetic

effects due to finite temperature [Wu et al., 1983, Gary et al., 1987]. In order to discuss

kinetic effects, we solve in the following the complete dispersion relation, i.e., we determine

the zero determinant of the matrix coefficients of (2).

Figure 3(a) represents a contour plot of the growth rate in βe(βi)− kc/ωpe space. The

parameters are µ = 1836, θ = 85◦, τ = 2× 104, and ui/vA = 2. The last two parameters

correspond to the parameters in the foot of Earth’s bow shock withMA = 4 and α = 0.25.

It is obvious that the growth rate decreases as βe(βi) increases. To identify the dominant

kinetic effects, the growth rates (upper panel) and the real parts of ζ−1 (lower panel) are

shown in Figure 4(a) for the same parameters as above. The dashed lines correspond to

the case for βe = βi = 0, the dotted lines for βe = 0.25 and βi = 0, and the solid lines

for βe = βi = 0.25, respectively. In the lower panel, it can be seen that Re[|ζ−1
e,±1|] ¿ 1

which indicates that the electron cyclotron damping is less important (the dotted lines

for βe = 0.25 and βi = 0 are almost degenerate with the solid lines). In contrast, electron

Landau damping is essential for βe = 0.25 because Re[ζ
−1
e,0 ] ∼ 1. Furthermore, the kinetic

effect of the ions is also quite important in the case of βe = βi = 0.25. This is because the

positive slope of the ion distribution function decreases as βi increases. This is consistent

with the simulation result obtained by Scholer et al. [2003], who showed that the MTS

instability is not found in their full particle shock simulation (their run 8) for the high

beta medium Mach number case. Figure 3(b) again shows the contour plot of the growth

rate with the same parameters as Figure 3(a) but θ = 70◦. Although the growth rate in

the cold limit is greater than that for θ = 85◦, the damping is significant for finite βe and
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βi. Figure 4(b) indicates the maximum growth rates as a function of βe (= βi) for the

same parameters as Figure 3(b). The solid line with circles denotes a case taking both

the electron and the ion kinetic effects into account, while the dotted line with triangles

corresponds to a case including only the electron kinetic effects, i.e., βi = 0. The dashed

line shows the maximum growth rate of a cold plasma (βe = βi = 0). It is found that

in this parameter regime the electron kinetic effects, mainly electron Landau damping,

largely prevents wave growth.

2.3. Polarization in the Plane Perpendicular to k

It is useful to discuss the polarization of the magnetic field in terms of the wavevector k

as mentioned in the Introduction. If we adopt the coordinate system shown in Figure 5,

where the wavevector is parallel to the x0−axis and B0 is in the x
0−z0 plane, the following

relation is satisfied.

E0z
Ex

=
Ez

Ex

sin θ − cos θ, (9)

E0y
Ex

=
Ey

Ex

, (10)

where

Ez

Ex

=
DxyDyx −DyyDxx

DxyDyz −DyyDxz

, (11)

Ey

Ex

= −Dxx

Dxy

− Dxz

Dxy

Ez

Ex

. (12)

In the above, Dij indicates each component of the matrix coefficient in (2). The polariza-

tion of the magnetic fluctuation is defined as

¯̄̄̄
¯B

0
y

B0z

¯̄̄̄
¯ =

¯̄̄̄
¯E 0zE0y

¯̄̄̄
¯ . (13)
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This polarization at the maximum growth rate is shown in Figure 6 for τ = 2 × 104,

µ = 1836, ui/vA = 2, and θ = 85
◦. |B0y/B0z| >∼ 1 in a wide range of βe (= βi). The numerical

solutions show that for these parameters (13) is approximately written as |B0y/B0z| =

|(Dxx/Dxz) sin θ+cos θ|/|Dyx/Dyy| for the unstable mode, and |Dyx| decreases when beta

is finite while other three components of the dielectric coefficient do not vary very much.

This means that the y0− component of current fluctuation produced by the electron

E0
x×B0 drift decreases in a finite beta plasma, which leads to reduction of B

0
z. The above

characteristics holds for a wide range of θ.

3. 1-D Periodic Simulation

In addition to the linear analysis discussed above, we have performed a one-dimensional

full particle simulation. Since we focus here only on the foot region of the shock a peri-

odic boundary condition can be used, i.e., a periodic system is assumed to represent the

foot region. The coordinate system used here is shown in Figure 5. For simplicity, the

primes are omitted hereafter. The one-dimensionality of the system only allows waves

with wavevectors in x−direction. We assume that the system contains three plasma com-

ponents, i.e., incoming ions and electrons, and reflected ions. All plasma components are

magnetized, and a motional electric field is absent because the simulation is performed in

the electron frame of reference.

Because of restrictions in simulation time we use an unrealistically low value of τ = 10.

This should not seriously affect the result of the instability as noted in section 2.1. Other

parameters are µ = 1836, θ = 85◦, ui/vA = 2.0, ur/vA = −6.0, βe = 0.1, βi + βr = 0.1,

α = 0.25, and the system length is 102.4c/ωpe. In a one-dimensional simulation with

above parameters, the reflected ions do not contribute strongly to the instability but
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just neutralize the charge and the zero-th order current. The simulation is done with

8192 spatial grid points, the number of particles for each specie is 100 per cell, and

ωpe∆t = 0.0125.

3.1. Spectral Analysis

Figure 7 shows time evolution of the total ES field energy. The linear instability satu-

rates at Ωit = 0.38. During the period 0.38 < Ωit < 0.55, a clear nonlinear oscillation of

the field energy due to electron trapping is seen. For Ωit > 0.55, the system becomes more

turbulent because a variety of side band waves are excited probably due to the nonlinear

wave-wave interactions discussed below. Figure 8 represents the ω − k spectra of Ex and

By fields during the time interval (a) 0 < Ωit < 0.35 and (b) 0.53 < Ωit < 0.88. Clearly,

Figure 8(a) shows the characteristics of the linear stage. During this period, we observe

parallel electron and perpendicular ion heating, as reported by Scholer et al. [2003]. On

the other hand, in Figure 8(b), the spectra vary considerably from those of the linear

stage. The characteristics of Figure 8(b) can be summarized as follows : (1) The Ex

spectrum contains some waves with small phase velocity which are absent in Figure 8(a),

although the waves with small phase velocity are not observed in the By spectrum. (2)

The wave spectra show a lower cascade in k space. (3) Some higher phase velocity waves

are seen in the Ex spectrum (arrowed region), and they are associated with secondary

electron heating as shown later.

3.1.1. Generation of Small Phase Velocity Waves

The main reason for the small phase velocity waves to be excited is a decrease of the

bulk velocity vix of the incoming ions due to their gyration. This results in a change of

the dispersion relation. We confirmed that the spectral broadening is suppressed (but
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not completely) if it is assumed in the simulation that the ions are demagnetized. A

spreading of the particle distribution function is also responsible for the broadening of the

wave spectrum. For this parameter regime, the instability is resonant (−2 < ζ−1
i0 < −1

during the simulation), so that the wave phase velocity decreases in time when the position

of maximum positive slope of the ion distribution function in vix decreases due to ion

heating [Goldstein et al., 1978]. In contrast, such a spectral broadening is not seen in the

By spectrum. We will show later that this is related with the electron response to the

waves.

3.1.2. Spectral Cascade

The nonlinear spectral cascade was reported by McBride et al. [1972]. They indicated

that the linearly generated waves strongly couple with each other in the nonlinear stage,

and the wave spectrum predominantly cascades to long wavelength. Our simulation result

also indicates a similar spectral cascade. In Figure 9, the wave power spectra of Ex are

shown as a function of k at three different times. In the linear stage (Ωit = 0.34), a peak

of the spectrum lies at kc/ωpe ∼ 2, as predicted by the linear theory. However, in the

nonlinear stage (Ωit = 0.43, 0.69), the spectral peak shifts to lower k, and further side

band waves are amplified (Ωit = 0.69). In the present simulation the linearly generated

waves have a broad k−spectrum, so that there are a number of candidates for wave-wave

interactions. Therefore, it is rather difficult to identify a dominant wave-wave interaction.

Here, we only discuss some possible mechanisms which may be responsible for the side

band waves. One of them is the decay type in which a large amplitude parent wave

generates a whistler-like wave propagating in the direction opposite to the parent wave.

Some negatively propagating whistler-like waves are actually seen in Figure 8(b). The
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decay instability also generates another side band wave which propagates in the same

direction as the parent wave but has a smaller phase velocity than the parent wave. This

is another possible mechanism for producing the small phase velocity waves seen in the

upper panel of Figure 8(b). If a successive decay takes place, a lower cascade would

be found and both positively and negatively propagating waves would have comparable

amplitudes. However, the peak intensity of the spectrum of positively propagating waves

shown in Figure 8(b) is too high compared with that of the negatively propagating waves.

The modulational instability is also a possible mechanism for cascading. Since all of the

side band waves in this case have nearly equal phase velocities, the cascading takes place

along a single line indicating approximately constant phase velocity. Other higher order

correlations may be also possible.

3.1.3. High Phase Velocity Waves and Associated Electron Heating

In the nonlinear stage waves with a phase velocity larger than the incoming ion bulk

velocity are generated (arrowed region in Figure 8(b)). They are close to another branch of

the dispersion relation shown in Figure 1. These waves are probably excited by a nonlinear

wave-wave interaction, although this is difficult to identify. Tanaka and Papadopoulos

[1983] found in their simulation a nonlinear shift of the phase velocity and an associated

parallel electron heating due to the MTS instability. In our simulation, additional parallel

electron heating is observed as well. Figure 10 displays the electron distribution function

f(vez) versus vez at Ωit = 0.71. Some electrons around vez/vA ∼ 40 are clearly energized,

which is consistent with the parallel phase velocity of the waves (a further peak at vez/vA ∼

14 is the result of wave-particle interaction with linearly generated waves).
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3.2. Wave Profiles and Particle Phase Space Plots

Here, we discuss wave profiles and particle phase space plots obtained by the simula-

tion, and resolve why in the nonlinear stage the ω − k spectrum of By exhibits different

characteristics from that of Ex as seen in Figure 8(b). Figure 11(a) shows from top to the

bottom the ES potential φ, Bz, By, vez, and vix at Ωit = 0.27. The three field components

exhibit well correlated spatial structures. The amplitude of the fluctuation of By is almost

comparable to that of Bz. These characteristics are consistent with the linear analysis.

Furthermore, the electrons and ions are trapped in vez and vix, respectively. The main

electric field is parallel to the x−direction. Since the ions are almost unmagnetized, they

are trapped in vix by this Ex field. However, the electrons are strongly magnetized, so

they can not move in the x−direction across the magnetic field. Instead, they can move

freely parallel to the magnetic field and can feel the parallel electric field of the obliquely

propagating waves. As a result, the electrons are trapped by this parallel electric field

which is almost parallel to the z−direction. The above results are consistent with those

obtained by Scholer et al. [2003] in full particle simulations of quasi-perpendicular shocks.

At the later time Ωit = 0.69, the field profiles and ion and electron phase space plots

exhibit larger structures, as indicated in Figure 11(b). This cascading process was dis-

cussed above. At this stage, the wave profiles of φ and Bz are well correlated with the ion

phase space distribution, while the electron phase space distribution reflects the profile of

By. In contrast to the profile of By, the φ and the Bz profiles contain small structures

with wavelength λ < 8c/ωpe. From a spectral analysis the parallel phase velocity of these

waves is roughly estimated as ω/kkvA < 15, which is smaller than the electron parallel

thermal velocity at this time. Furthermore, the potential energy of the small wavelength

D R A F T November 11, 2003, 2:32pm D R A F T



MATSUKIYO AND SCHOLER: INSTABILITIES IN QUASI-PERPENDICULAR SHOCKS X - 17

waves is about two orders of magnitude less than the electron parallel thermal energy.

Therefore, the electrons can move through these small potential wells. This is the reason

why the electron phase space distribution does not exhibit small structures. The parallel

electron motion sustains the current fluctuation parallel to the B0 which is almost in the

z−direction. From Maxwell’s equation, the current fluctuation in z produces By. There-

fore, By correlates well with the electron phase space distribution vez − x. The top panel

of Figure 12 denotes the spatial profile of φ in which the small wavelength waves with

λ < 8c/ωpe are subtracted from φ in Figure 11(b). In the lower panel, By is again shown

for comparison. Excellent correlation is seen between these two wave profiles. Moreover,

since the amplitude of φ in Figure 12 is of the same order as electron parallel thermal

energy, some electrons can be trapped by these waves.

4. Summary and Discussion

We have investigated in this paper the MTS instability as it may occur in the foot of

quasi-perpendicular supercritical shocks. The free energy source of the instability is the

relative velocity between the solar wind electrons and the incoming/reflected solar wind

ions parallel to the shock normal. For finite temperature, kinetic effects of the Landau

type associated with both electrons and ions are important. Although they inhibit wave

growth, the growth rate is still large enough compared to the ion gyrofrequency for a

realistic mass ratio, highly oblique case. In such a case, the instability can sufficiently grow

during a shock reformation cycle. The magnetic polarization in terms of the wavevector

shows that the amplitude of By is of the same order as that of Bz.

In the cold plasma limit, in addition to the MTS instability, the Buneman instability can

also get excited (see Figure 1). At the Earth’s bow shock, τ À 1 so that the wave frequency

D R A F T November 11, 2003, 2:32pm D R A F T



X - 18 MATSUKIYO AND SCHOLER: INSTABILITIES IN QUASI-PERPENDICULAR SHOCKS

of the Buneman instability is much greater than electron gyrofrequency. Hence, electrons

are almost unmagnetized for this frequency regime. It is well known that the Buneman

instability is strongly suppressed by electron Landau damping when the electron thermal

velocity is larger than the relative bulk velocity between electrons and ions. If the current

conservation is satisfied in the foot, the relative bulk velocity between reflected ions and

electrons is ∆ure/vA = 2(1 − α)MA. Since vthe/vA = (µβe)
1/2, the Buneman instability

is suppressed when βe >∼ 4(1 − α)2M2
A/µ. With µ = 1836 and α = 0.2, this results in

βe >∼ M
2
A/720, what is usually satisfied at the Earth’s bow shock. In other words, the

Buneman instability can only be generated in sufficiently low beta or high Mach number

cases [Shimada and Hoshino, 2000]. It should be pointed out that the threshold value of

βe below which the Buneman instability takes place is overestimated under unrealistically

small µ. As mentioned above, on the other hand, the electron Landau damping also

affects the MTS instability. However, since the electrons are magnetized in this case, the

condition for strong Landau damping is given by ω/kk ∼ ∆uje/ cos θ <∼ vthe, i.e., βe >∼

4(1− α)2M2
A/µ cos

2 θ for the electron-reflected ion interaction, and βe >∼ 4α
2M2

A/µ cos
2 θ

for the electron-incoming ion interaction. Therefore, the MTS instability can survive

for larger values of βe compared to the Buneman instability. As a conclusion, the MTS

instability is more plausible than the Buneman instability in the foot of the Earth’s bow

shock.

The nonlinear evolution of the MTS instability is examined in the present paper by

a one-dimensional full particle simulation with periodic boundary conditions. Since the

ions are almost unmagnetized and the electrons are strongly magnetized, the electrons

(ions) are trapped parallel (perpendicular) to B0, as found by Scholer et al. [2003] in a
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full particle simulation of an almost perpendicular shock with realistic mass ratio. The

wave spectra indicate a lower cascade in the nonlinear stage. The wave profiles of By

correlate well with the parallel electron phase space distribution and shows relatively

large spatial structures, while the wave profiles of φ and Bz exhibit good correlation with

ion perpendicular phase space distribution which contains also relatively small spatial

structure. This is due to the fact that By is mainly sustained by the parallel motion

of electrons whose thermal energy is large compared to the ES potential energy of the

small wavelength waves. Additional parallel electron heating by the higher phase velocity

waves, which are excited in the nonlinear stage, has also been observed.

Although we have discussed in this paper mainly the MTS instability based on electron-

incoming ion interaction, the instability based on electron-reflected ion interaction can

occur simultaneously in a system with higher spatial dimensions allowing a wider k-space.

Actually, Gary et al. [1987] concluded from linear analysis that the electron-reflected

ion MTS instability is dominant for the low beta case (βe <∼ 0.5), while the electron-

incoming ion MTS instability become dominant for high beta value (βe >∼ 0.5) in the

foot. We confirmed a similar tendency for various values of α (they mainly considered

the case α = 0.1). Furthermore, these results do not conflict with the results shown by

Scudder et al. [1986] that the MTS instability via the electron-incoming (solar wind) ion

interaction predominantly generates waves seen in data observed at the high beta bow

shock foot. It is expected from the above sequence that two types of the MTS instability

simultaneously exist for a middle range of βe ∼ 0.5 which is often satisfied at the bow

shock. Therefore, the interaction of these two instabilities will be an important subject

for further investigation.
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Finally, let us discuss a possibility of shock reformation due to the MTS instability.

This may be possible if the majority of ions is trapped by generated waves within an ion

gyroperiod. Assuming a monochromatic wave spectrum, the ion trapping frequency is

written as ωti ∼ (eEk/mi)
1/2. Hence, ωti/Ωi ∼ [µ√τ (kc/ωpe)(E/B0)]

1/2 > 1 is required.

Furthermore, in order for the majority of the ions to be trapped, the ES potential energy

must exceed or at least be comparable to the kinetic energy of the majority of the ions in

the wave frame. If the MTS instability is strong enough, the above conditions should be

satisfied and reformation is expected to occur. Confirmation of this process requires full

particle quasi-perpendicular shock simulations in the appropriate parameter regime.
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Figure 1. Dispersion relation in the cold plasma limit. The parameters are τ = 4, µ = 100,

ui/vA = 1, and θ = 60
◦. The upper and lower panels show the real and imaginary parts of the

frequency, respectively, as a function of wavenumber.

Figure 2. Mass ratio dependence of the maximum growth rate of the modified two-stream

instability for ui/vA = 2, θ = 85
◦ and two values of τ .

Figure 3. Contour plots of the growth rate in βe(βi) − kc/ωpe space. The parameters are

τ = 2× 104, µ = 1836, ui/vA = 2, and (a) θ = 85
◦ and (b) θ = 70◦.

Figure 4. Kinetic effects of the instability. (a) The growth rates (upper panel) and the Re[ζ−1]

(lower panel) are represented for the same parameters as in Figure 3(a). The three different lines

correspond to the case βe = βi = 0 (dashed lines), βe = 0.25 and βi = 0 (dotted lines), and

βe = βi = 0.25 (solid lines), respectively. (b) The maximum growth rates as a function of

βe (= βi) for the same parameters as Figure 3(b). The three different lines indicate the case

βe = βi = 0 (dashed line), βe 6= 0,βi = 0 (dotted line with triangles), and βe = βi 6= 0 (solid line

with circles), respectively.

Figure 5. Coordinate system used in the calculation of the magnetic polarization and in the

numerical simulation.

Figure 6. Polarization of the magnetic field fluctuation in terms of wavevector as a function

of βe(= βi). The parameters are τ = 2× 104, µ = 1836, ui/vA = 2, and θ = 85
◦.

Figure 7. Time history of total ES field energy obtained by the simulation.

Figure 8. ω−k spectra of Ex (upper panel) and By (lower panel) fields for (a) 0 < Ωit < 0.35,

and (b) 0.53 < Ωit < 0.88.
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Figure 9. Wave power spectra for Ex at Ωit = 0.34 (top panel), Ωit = 0.43 (middle panel),

and Ωit = 0.69 (bottom panel).

Figure 10. Electron parallel distribution function at Ωit = 0.71.

Figure 11. Wave profiles and particle phase space plots obtained by the simulation at (a)

Ωit = 0.27, and (b) Ωit = 0.69.

Figure 12. Profile of φ (upper panel) in which the small wavelength waves with λ < 8c/ωpe are

subtracted from the data at Ωit = 0.69. Profile of By is shown in the lower panel for comparison.
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