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Foreword 
 

Two international conferences, the 9th Asian Symposium on Computer Mathematics (ASCM 2009), and the 3rd 

International Conference on Mathematical Aspects of Computer and Information Sciences (MACIS 2009), are held 

jointly at Fukuoka on December 14th-17th 2009 supported by the GCOE program "Math-for-industry" of the 

Graduate School of Mathematics of Kyushu University and Mathematical Research Center for Industrial Technology 

(MRIT) of Kyushu University. The programs of ASCM and those of MACIS are organized independently by each 

program committee except for invited talks. Sessions of ASCM and those of MACIS are held in parallel and the 

invited talks are given in plenary sessions. There is also a satellite event associated with the conference. The 

Workshop on E-Inclusion in Mathematics and Science 2009 (WEIMS'09) is held at JST Innovation Plaza Fukuoka, 

just prior to ASCM-MACIS 2009. 

 

The Asian Symposium on Computer Mathematics (ASCM) is a series of conferences which serve as a forum for 

participants to present original research, learn of research progress and developments, and exchange ideas and views 

on doing mathematics using computers. The previous ASCM meetings were held in Beijing, China (1995), Kobe, 

Japan (1996), Lanzhou, China (1998), Chiang Mai, Thailand (2000), Matsuyama, Japan (2001), Beijing, China 

(2003), Seoul, Korea (2005), Singapore, Singapore (2007). This year, the meeting consists of invited talks, regular 

sessions of contributed papers, and three organized sessions on the following topics: 

 

1) Digitizing Mathematics � From Pen and Paper to Digital Content� � 

2) Validated Numerical Computation 

3) Computational Algebraic Number Theory 

 

Each organized session is run by its organizer(s) independently. Regular sessions are run in a traditional style of 

ASCM. Specific topics include but are not limited to: 

* Computer-aided problem solving and instruction 

* Symbolic, algebraic, and geometric computation 

* Computational number theory, cryptography, and combinatorics 

* Automated mathematical reasoning and interactive theorem proving 

* Symbolic/numeric hybrid methods 

* Computational algebra and geometry 

* Formalization of mathematics 

* Computational methods for differential and difference equations 

* Mathematical software design and implementation 

* Parallel/distributed/network computing 

* Exact numerical methods and zero bounds 

* Foundations of real computation and complexity issues 
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Mathematical Aspects of Computer and Information Sciences (MACIS) is a new series of conferences where 

foundational research on theoretical and practical problems of mathematics for computing and information 

processing may be presented and discussed. MACIS also addresses experimental and case studies, scientific and 

engineering computation, design and implementation of algorithms and software systems, and applications of 

mathematical methods and tools to outstanding and emerging problems in applied computer and information 

sciences. The first MACIS conference took place in Beijing (China), July 24-26, 2006. The second MACIS 

conference took place in Paris (France), December 5-7, 2007. 

MACIS2009 is run in a format where each PC member organizes a session on a specific topic. MACIS 2009 

consists of 3 sessions on three main themes as shown in the following: 

1) Polynomial system solving (Complex/Real/Rational) 

2) Systems and Control  

3) Software Science 

There were 39 papers submitted to ASCM regular sessions this year. The program committee selected the 26 papers 

appearing in these proceedings after careful evaluation including two or more referee reports per submission. Almost 

all the papers for the organized sessions of ASCM and MACIS were solicited by the organizers. The numbers of 

selected papers for organized session are as follows: 

ASCM: 

1) Digitizing Mathematics     6 

2) Validated Numerical Computation    6 

3) Computational Algebraic Number Theory    3 

MACIS: 

1) Polynomial system solving (Complex/Real/Rational)  8 

2) Systems and Control      5 

3) Software Science      6+1 (Short presentation) 

We gratefully acknowledge the thorough and important work of the program committee members and referees, 

whose names appear on the following pages, and thank all the authors and lecturers for their contributions.  

We are grateful for the support of the sponsoring organizations noted at the web page of ASCM-MACIS 2009. As 

for their organizational assistance we particular thank the local organizers and the COE office at Kyushu University. 
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A New Symbolic Method for Linear Boundary Value
Problems Using Groebner Bases

Markus Rosenkranz1

(joint work with Bruno Buchberger2,
Georg Regensburger1, and Loredana Tec2)
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Abstract

Boundary value problems are of utmost importance for science and engineering. In
fact, most differential equations come along with boundary conditions of some sort. It
is therefore surprising that such problems—even in the linear case—have gained little
attention in Symbolic Computation. Consequently, their coverage in computer algebra
systems is rather unsystematic and unpredictable.

The proper consideration of boundary conditions leads to a substantial revision
of the algebraic structures currently used in established symbolic methods like differ-
ential algebra or differential Galois theory. One important ingredient in an algebraic
approach to boundary value problems is the interaction of differential, integral and
boundary operators. We present one such approach, based on Buchberger’s powerful
concept of Groebner bases.

For the implementation of the method we use the functor concept introduced by
Buchberger for the Theorema system. This allows for easy adjustment of the code to
various coefficient domains and different representations of the underlying objects.



Holonomic functions revisited

Toshinori Oaku

Tokyo Woman’s Christian University
2-6-1, Zempukuji, Suginami-ku, Tokyo, 167-8585 Japan

oaku@lab.twcu.ac.jp

Abstract

A holonomic function is a differentiable or generalized function which satisfies a
holonomic system of linear partial or ordinary differential equations with polynomial
coefficients. We present algorithms for computing systems of differential equations
which the sum, the product, the restriction, and the integration of holonomic functions
satisfy. These algorithms are based on Gröbner bases of differential operators and are
rigorous in the sense that the output differential equtaions are also holonomic.

1 Differential operators and holonomic systems

Let us denote by Dn the ring of differential operators on the variables x = (x1, . . . , xn) with
polynomial coefficients. An element P of Dn is written in a finite sum

P =
∑

α∈Nn

aα,βx
α∂β , (1)

where α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ N
n are vectors of nonnegative integers with

N = {0, 1, 2, . . . }, xα = xα1

1 · · ·xαn

n , ∂β = ∂β1

1 · · · ∂βn

n with the derivations ∂i = ∂/∂xi

(i = 1, . . . , n), and aα,β are complex numbers.
Given P1, . . . , Pr ∈ Dn, we associate the left ideal I = DnP1 + · · ·+DnPr generated by

P1, . . . , Pr with a system of linear differential equations

P1u = · · · = Pru = 0 (2)

for an unknown function u. This enables us to work with a left ideal of Dn instead of
each system of linear differential equations. Here we suppose that the unknown function u
belongs to a ‘function space’ F which is a left Dn-module. Examples of such F are the set
C∞(U) of C∞ functions on an open subset U of R

n, the set Õ(U) of possibly multi-valued
analytic functions on an open subset U of C

n, the set D′(U) of the Schwartz distributions
on an open subset U of R

n, and the set S′(Rn) of tempered distributions.
A weight vector for Dn is an integer vector

w = (w1, . . . , wn;wn+1, · · ·w2n) ∈ Z
2n

with the conditions wi + wn+i ≥ 0 for i = 1, . . . , n, which are necessary in view of the
commutation relation ∂ixi = xi∂i + 1 in Dn. For a nonzero differential operator P of the
form (1), we define its w-order to be

ordw(P ) := max{〈w, (α, β)〉 = w1α1 + · · ·+ wnαn + wn+1β1 + · · ·+ w2nβn | aα,β �= 0},
and its w-initial part to be

inw(P ) :=
∑

〈w, (α,β)〉=ordw(P )

aα,βx
α∂β .



In particular, when w = (0,1) = (0, . . . , 0; 1, . . . , 1), then the polynomial

σ(P )(x, ξ) :=
∑

〈w, (α,β)〉=ordw(P )

aα,βx
αξβ ∈ C[x, ξ]

is called the principal symbol of P .

Definition 1 A left ideal I of Dn is said to be holonomic if the ideal σ(I) of C[x, ξ] which
are generated by the set {σ(P )(x, ξ) | P ∈ I, P �= 0} is of dimension n, that is, the
characteristic variety of I, which is defined to be

Char(I) := {(x, ξ) ∈ C
2n | p(x, ξ) = 0 for any p ∈ σ(I)},

is of dimension n. (In general, the dimension of Char(I) is greater than or equal to n if
I �= Dn.) We call (2) a holonomic system if the left ideal I = DnP1 + · · · + DnPn is
holonomic. We also call Char(I) the characteristic variety of the holonomic system (2).

The characteristic variety of (2) can be computed by Gröbner bases ([4]). The dimension
of the characteristic variety can be computed by using the Hilbert function.

2 Holonomic functions

Definition 2 Let u be a C∞ function or a distribution (in the sense of L. Schwartz, or
a generalized function in the sense of Gelfand-Shilov) defined on an open subset U of R

n.
Then we call u a holonomic function or a holonomic distribution on U if u satisfies a
holonomic system. In other words, u is holonomic if and only if its annihilator

AnnDn
u := {P ∈ Dn | Pu = 0 on U}

is a holonomic ideal.

For example, given an arbitrary polynomial f , the C∞ function ef is holonomic on R
n.

In fact we can easily verify that

AnnDn
ef = Dn

(
∂1 − ∂f

∂x1

)
+ · · ·+Dn

(
∂n − ∂f

∂xn

)
,

which shows that the characteristic variey is {(x, ξ) ∈ C
2n | ξ1 = · · · = ξn = 0}.

If f1, . . . , fm are nonzero polynomials with real coefficients, then the distribution u =
(f1)λ1

+ · · · (fm)λm

+ defined by

〈u, ϕ〉 =
∫

f1≥0,...,fm≥0

f1(x)λ1 · · · fm(x)λmϕ(x) dx (ϕ ∈ C∞
0 (Rn))

is holonomic on R
n unless (λ1, . . . , λm) ∈ C

m is not contained in an exceptional set where
u cannot be defined. There is an algorithm to compute a holonomic ideal of which u is
a solution if the coefficients of fi are contained in a computable field. In particular, the
product of Heaviside’s functions

Y (f1) · · ·Y (fm) = (f1)0+ · · · (fm)0+

is a holonomic distribution on R
n. Elementary functions are not necessarily holonomic. For

example, the smooth (C∞) function xy in the two variables x and y defined on {(x, y) ∈
R

2 | x > 0, y ∈ R} is not holonomic in the sense above.



3 Operations on holonomic functions

For the sake of simplicity, let us assume that u and v are holonomic functions or distributions
defined on the whole R

n. Then the following functions or distributions are holonomic under
the condition that they are well-defined. Moreover, if a holonomic ideal for u (and a one for
v if relevant) is explicitly given, then there exist algorithms to compute a holonomic ideal
which each of the following functions satisfies.

(1) Pu with P ∈ Dn.

(2) The sum u+ v.

(3) The restriction u|Y of u to an affine subspace of R
n if it is well-defined as in the case

that u is smooth.

(4) The product uv if it is well-defined as in the case that u is C∞ and v is a distribution.

(5) The definite integral
∫

Rn−d

u(x1, . . . , xn−d, xn−d+1, . . . , xn) dxn−d+1 · · · dxn with pa-

rameters if it is well-defined as in the case that u has a compact support with respect
to the integration variables.

Let us explain briefly how to compute holonomic ideals for functions above. Let I and
J be holonomic ideals for u and v respectively. First, a holonomic ideal for Pu can be
computed as an ideal quotient I : P , and a one for u+ v as an ideal intersection I ∩J , both
by using Gröebner bases.

The restriction algorithm was given in [5] for one codimensional case and in [8] for the
general case. For this, one needs a Gröbner base of the ideal I with respect to an ordering
compatible with the weight vector of type

w = (0, . . . , 0,−1, . . . ,−1; 0, . . . , 0, 1, . . . , 1).

A holonomic ideal for u(x)v(y) is generated by I and J over D2n. Then by restricting
u(x)v(y) to the diagonal x = y, we obtain a holonomic ideal. Finally, the definite integral
with parameters can be computed also by the restriction algorithm applied to the Fourier
transform of I (cf. [7], [9], [6]).

The theory of D-modules assures that the functions obtained by the operations (1)–
(5) above are holonomic (See for example, [2]). The outputs of our algorithms are also
holonomic since they follow the D-module theoretic procedures precisely, not in a heuristic
way as in the pioneering works of Almkvist-Zeilberger [1] and Takayama [10].

4 Definite integrals with the Heaviside function

Let u be a holonomic function on R
n. Let f1, . . . , fm be nonzero polynomials in x =

(x1, . . . , xn) with real coefficients. Setting

D(x1, . . . , xd) = {(xd+1, . . . , xn) ∈ R
n−d | f1(x) ≥ 0, . . . , fm(x) ≥ 0},

let us consider the definite integral

v(x1, . . . , xd) =
∫

D(x1,...,xd)

u(x) dx =
∫

Rn

Y (f1) · · ·Y (fm)u(x) dx.



We suppose that this integral is well-defined. This is the case, for example, when u is
smooth and D(x1, . . . , xd) is compact for any (x1, . . . , xd) ∈ R

d. Then a holonomic ideal
for this integral can be computed by combining the algorithms explained so far. If the
integrand is the exponential of a polynomial, a power of a polynomial, or the product of
such functions, then there are some shortcuts to follow. For practical computations, a
library file nk restriction.rr of a computer algebra system Risa/Asir provides one of the
most efficient implementations of the restriction and integration algorithms.

Example 3 Consider the definite integral

v(t) =
∫

D(t)

√
x+ t dxdy =

∫
R2

Y (1− x2 − y2)(x+ t)
1

2

+ dxdy

with D(t) = {(x, y) ∈ R
2 | x2 +y2 ≤ 1, x+ t ≥ 0}. Then by the algorithm described above,

we know that v(t) satisfies a linear ordinary differential equation

4(1− t2)d
2v

dt2
+ 8t

dv

dt
− 5v = 0 (3)

as a distribution on R. In fact, v(t) is continuous on R but may fail to be infinitely
differentiable at the singular points t = ±1 of the equation (3).
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Differential Equations. Springer Verlag, 2000.

[10] Takayama, N., An approach to the zero recognition problem by Buchberger algorithm.
J. Symbolic Computation 14 (1992), 265–282.



Computational Illusion
Toward Escher and Beyond Escher

Kokichi Sugihara

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University,
1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan

kokichis@isc.meiji.ac.jp

..........

Abstract

M. C. Escher, a Dutch woodcut artist, is one of a few artists who utilized math-
ematical structures in creating artworks. We study three groups of Escher’s works,
isohedral-tiling art, Sky-and-Water-type art, and pictures of impossible objects, from
a mathematical point of view. In particular, we consider how to generate Escher-like
art by purely mathematical algorithms, and how to extend them to generalize his art
patterns.
Keywords: Illusion, Escher, tiling, impossible objects, figure–ground reversal.

1 Introduction

Mathematics and art are usually very far apart, but come close together in some spe-
cial cases. M. C. Escher, a Dutch woodcut artist, is a remarkable artist who shortened
the distance between mathematics and art by explicitly utilizing mathematical structures.
Typical examples are isohedral tiling in “Regular Division of the Plane No. 56 (Lizard)”
(1942), hyperbolic-space tiling in “Circle Limit IV” (1960), continuously changing tiling in
“Sky and Water I” (1938) and unrealizable motion in “Waterfall” (1961).

Indeed, Escher’s artworks have been analyzed from a mathematical point of view in
a variety of ways. Escher’s tiling artworks were classified according to the mathematical
categorization of isohedral tilings [3, 7]. Creation of Escher-like tiling patterns by computers
has also been tried for isohedral tiling by Cervini et al. [1] and Kaplan and Salesin [4, 5].

However, simple introduction of mathematical structures to art might just generate ab-
stract patterns. What is remarkable in Escher is that he combined mathematical structures
with optical illusions, and thus made mathematical structures nontrivial from an artistic
point of view. The visual effects used by Escher include continuous morphing, animal-like
complicated tiles, figure–ground reversal, and impossible objects and motions.

Therefore, to generate Escher-like art using computers, we must consider not only geo-
metric structures but also the effects of visual illusion.

We show three examples of trials to combine mathematical structures and visual illu-
sion aiming at computer-aided systems to generate Escher-like art patterns. They are de-
sign of complicated isohedral tilings, generation of Sky-and-Water-type tilings, and three-
dimensionalization of impossible objects and impossible motions, which are presented in
Sections 2, 3 and 4, respectively.

2 Isohedral Tiling and Faithful Escherization

The first group of Escher’s works we consider is tiling art with mutually congruent tiles.
This group is based on a geometric structure called isohedral tilings.



A partition of the plane into topological disks and their boundaries is called a tiling. A
tiling is said to be monohedral if all the tiles are congruent. A monohedral tiling is said to
be isohedral if there is a subgroup of the group of congruent transformations in the plane
such that the tiling is invariant under those transformations and any pair of tiles has a
congruent transformation in the subgroup that maps one to the other.

In isohedral tiling, the relation of one tile with the surrounding tiles around it is the
same for every tile. Hence, the same deformation rules can be applied to all the tiles
simultaneously and the resulting structures remain a tiling. This way, we can modify the
shape of the tiles into a complicated one such as an animal or a human. This is what
Escher did in his work notes. In other words, Escher started with a simple initial tiling,
and modified the tiles to the shape he wanted.

In computers, on the other hand, we can move in the opposite direction. That is, we
first choose an arbitrary goal shape, and next search for a tile that is similar to the goal
shape and that admits an isohedral tiling. In this process, visually interesting tilings will
be generated if we can find tiles that are close to the goal shape.

Suppose that we are given a figure represented by a cyclic sequence of n points on the
boundary of the figure. Let W be a 2 × n matrix composed of the x and y coordinates of
the n points. We call W the goal shape. Let U be another 2 × n matrix such that:

U =
(

x1 x2 · · · xn

y1 y2 · · · yn

)
, (1)

by which we want to represent the shape of a tile that admits an isohedral tiling and that
is close to W . That is, U is the tile we want to search for; so the entities of U are known
variables. We assume that both shapes are placed so that their center of gravity coincides
with the origin of the coordinate system.

To measure the distance between U and W , we define the index:

D2(U,W ) = min
s,θ

∥∥∥∥sR(θ)
U

‖U‖ − W

‖W‖
∥∥∥∥

2

, (2)

where ‖X‖ denotes the Frobenius norm of matrix X, s is a scalar representing the scale
transformation, and R(θ) represents the rotation of the figure by angle θ around the origin.

The above distance is convenient because we can rewrite it as:

D2(U,W ) = 1 − ‖UWT‖2 + 2 det(UWT)
‖U‖2‖W‖2

, (3)

and thus we can remove the minimum operation with respect to s and θ [11].
We want to find a shape U that admits an isohedral tiling. Isohedral tilings were

classified into 93 types and they are represented by symbols IH01, IH02, . . . , IH93 [2]. If we
fix the type of the isohedral tiling, we can represent the constraint as a relationship among
the points on the boundary of U . For example, suppose that U admits the isohedral tiling
of type IH07, which is generated by rotations by 2π/3 around two points. Let pi, pj , pk be
three points on the boundary of U such that rotating the plane around pj by 2π/3 results
in pi moving to the position previously occupied by pk. Then:

R(2π/3)(pi − pj) = pk − pj , (4)

which is represented by linear constraints with respect to the x and y coordinates of the
three points xi, yi, xj , yj , xk and yk. Collecting similar constraints:

Au = 0, (5)



where u = (x1, x2, . . . , xn, y1, y2, . . . , yn)T and A is a constant matrix associated with the
isohedral tiling type IH07. For other isohedral tilings, we similarly obtain linear constraints
depending on the type.

On the other hand, the second term of eq. (3) can be rewritten as:

‖UWT‖2 + 2 det(UWT)
‖U‖2‖W‖2

=
uTV u

uTu
, (6)

where V is a symmetric matrix depending on W .
Therefore, if we fix the type of the isohedral tiling, the problem of finding the tile that is

similar to the goal shape and that admits isohedral tiling can be reduced to the optimization
problem:

maximize uTV u
uTu

subject to Au = 0,

which can be solved efficiently [6].
Figure 1 shows an example of a tiling obtained by this method: (a) shows a pair of a

goal shape (the larger shape) and the tile found by our method (the smaller shape), and
(b) shows the resulting tiling.

(a) (b)

Figure 1: Isohedral tiling generated from a goal shape of a rabbit.

3 Morphing for Sky-and-Water Tilings

The second group of Escher’s works we consider is the Sky-and-Water- type tiling, in which a
figure at the top changes its shape gradually downward and melts away into the background,
and another shape gradually appears from the background. This group of artworks is a
combination of tiling, morphing, and figure–ground reversal.

Escher constructed this type of tiling by first generating a dihedral tiling at the inter-
mediate level, and deforming it so that one tile gradually becomes a clear object upward,
and the other tile gradually becomes the other clear object downward [8].



In computers, on the other hand, we first fix two goal shapes at the top and at the
bottom, and generate intermediate tiles to form the Sky-and-Water tiling pattern. For this
purpose, the morphing is applied to the top figure and to the shape of the vacant space
surrounded by four copies of the bottom figure [10].

Figure 2 shows an example of the tiling generated in this way: (a) shows a pair of top
and bottom figures, and (b) shows the computer-generated tiling.

(a) (b)

Figure 2: Sky-and-Water tiling generated from a bee and a butterfly.

4 Realization of Impossible Objects and Impossible Mo-
tions

The third group of Escher’s works is the class of pictures using impossible objects. A typical
example is “Waterfall” (1961), in which water that falls down runs through a water path
upward to the start point of the fall again, and thus the water runs in a cyclic manner
forever. This is physically impossible because it contradicts the impossibility of an eternal
engine.

Escher drew his impossible objects and impossible motions only on a plane. On the
other hand, we found that some of those pictures are realizable as actual objects and actual
motions in the three-dimensional world through optical illusion.

The picture lacks depth information, and hence there is great freedom in reconstructing
the three-dimensional objects from the picture. Therefore, even if a picture looks impossible,
we can sometimes construct a solid, although the resulting solid is quite different from
our intuition. With the same trick, we can also create impossible-looking motions. Such
impossible objects and motions can be searched for by a computer in the following manner.

Suppose that the viewpoint is fixed at the origin of the xyz Cartesian coordinate system,
and the picture is fixed on the plane z = 1. Let vi = (xi, yi, 1) be the ith vertex in
the picture, and let (xi/ti, yi/ti, 1/ti) be the associated vertex on the three-dimensional
solid whose projection coincides with the given picture, where ti is an unknown variable



representing the depth of vi. Furthermore, let the jth face of the solid be represented by
the equation:

ajx + bjy + cjz + 1 = 0. (7)

Let m be the number of vertices and n be the number of faces represented in the picture.
Suppose that the ith vertex is on the jth face. Then:

ajxi + bjyi + cj + ti = 0. (8)

For all pairs of vertices and faces containing them, we obtain similar equations, and thus
we can construct a system of linear equations, which we represent by:

Aw = 0, (9)

where w is a vector of unknown parameters:

w = (t1, t2, . . . , tm, a1, b1, c1, . . . , an, bn, cn)T, (10)

and A is a constant matrix.
Next, suppose that the kth vertex is behind the lth face when it is extended. Then:

ajxi + bjyi + cj + ti < 0. (11)

Collecting all such inequalities yields a system of linear inequalities:

Bw > 0. (12)

The set of all solids that generate a given projected picture is represented by the feasible
region specified by the linear equations (9) and inequalities (12).

This feasible region is fragile in the sense that it may become empty when even a slight
numerical error occurs in the plane. However, we constructed a method to snap the vertex
positions in the picture to the correct locations, and thus established a robust method to
judge the realizability of solids from a picture [9]. Using this method, we can construct
solids for some pictures of “impossible objects” and can also generate impossible motions
using those solids.

Figure 3 shows an example of a realization of an impossible object: (a) shows a picture
of an impossible object, (b) shows a realization of the associated solid, and (c) shows the
same solid seen from another angle.

5 Concluding Remarks

We have presented three examples of computer-aided methods, by which we can generate
Escher-like tilings and three-dimensional solids that realize Escher-like impossible objects
and motions. The success of these computer-aided methods means that not only can we
realize the mathematical structures behind Escher’s works, we can also realize visual effects
by applying computer power to the search for the optimal shapes.

Escher also generated many other types of artwork, most of which are also based on
mathematical structures. Hence, there still remain many possibilities for utilizing computer
power to generate those artistic patterns automatically and effectively.



(a)

(b) (c)

Figure 3: Realization of a solid that appears to be an impossible object.
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Extended Abstract

Consider an ideal I generated by a polynomial system F = {f1, . . . , ft}, where fi ∈
C[x1, . . . , xs], i = 1, . . . , t. For a given isolated singular solution x̂ = (x̂1, . . . , x̂s) of F , sup-
pose Q is the isolated primary component whose associate prime is P = (x1−x̂1, . . . , xs−x̂s),
in [Wu and Zhi, 2008a], we use symbolic-numeric method based on the geometric jet theory
of partial differential equations introduced in [Bonasia et al., 2004, Reid et al., 2003, Zhi
and Reid, 2004] to compute the index ρ and multiplicity μ, such that Q = (I, P ρ) and
μ = dim(C[x]/Q). We also derive a simple involutive criterion based on the special struc-
ture of the ideal (I, P k) and apply it to the truncated coefficient matrices formulated from
the Taylor series expansions of polynomials in prolonged systems of F at x̂ to order k. The
number of columns of these coefficient matrices is fixed by

(
k+s−1

s

)
. A basis for the Max

Noether space of I at x̂ is obtained from the null space of the truncated coefficient matrix
of the involutive system.

If a singular solution is only known with limited accuracy, by choosing a tolerance,
we can compute the index, multiplicity and a basis of the Max Noether space for this
approximate singular solution. It is well known that numeric computations deeply depend
on the choice of tolerance. In order to obtain accurate information about the multiplicity
structure, we present in [Wu and Zhi, 2008a] an algorithm to improve the accuracy of the
singular root. Suppose x̂ = x̂exact+x̂error, where x̂exact denotes the exact singular solution of
F and x̂error denotes the error in the solution, we compute the truncated coefficient matrix
of the involutive system by shifting the coefficient matrix formulated from the truncated
multivariate Taylor series expansions of polynomials in F at x̂ to order ρ, then generate
multiplication matrices from its null vectors. Let ŷ be the averages of the traces of the
multiplication matrices. In [Wu and Zhi, 2008b], we prove that if the given singular solution
satisfies ‖x̂ − x̂exact‖ = O(ε), and the index and multiplicity of the singular solution are
computed correctly, then the refined solution obtained by adding ŷ to x̂ will satisfy ‖x̂ +
ŷ − x̂exact‖ = O(ε2). If we underestimate or overestimate the index due to poorly chosen
tolerance, then we can rediscover the correct index after the accuracy of the approximate
singular solution improved after one or two iterations.

The size of these coefficient matrices in [Wu and Zhi, 2008a,b] is bounded by t
(
ρ+s−1

s

)×(
ρ+s−1

s

)
which will be very big when ρ or s is large. In general ρ ≤ μ, however, when the

corank of the Jacobian matrix J(x̂) is one, then ρ = μ, which is also called the breadth one
case in [Dayton et al., 2009, Dayton and Zeng, 2005], the sizes of the matrices can easily
exceed the storage capacity of a personal computer. This is the main motivation for us to
consider whether we can compute the multiplicity structure of x̂ efficiently in this worst

∗This is the joint work with my Ph.D students Xiaoli Wu and Nan Li.
†Supported by NKBRPC (2004CB318000) and the Chinese National Natural Science Foundation under

Grant 10401035 and 60821002/F02.



case. In Li and Zhi [2009], we prove in the breadth one case, the number of free parameters
used in computing each order of the Max Noether condition of I at x̂ can be reduced to s−1.
Therefore, in order to determine a closed basis of the Max Noether space incrementally for
k from 2 to μ − 1, we only need to check whether a computed vector pk can be written as
a linear combination of the last s − 1 linear independent columns of the Jacobian matrix
J(x̂). If pk is not consistent with J(x̂), then we are finished. Otherwise, the coefficients
of the linear combination will give us unique values of those free parameters and we find a
new Max Noether condition of the k-th order. The size of matrices we used in computing
each order of the Max Noether conditions is bounded by t× (s− 1). It does not depend on
the multiplicity. Moreover, during the computation, we only need to store polynomials, the
LU decomposition of the last s− 1 columns of the Jacobian matrix and the computed Max
Noether conditions. Therefore, in the breadth one case, both storage space and execution
time for computing a closed basis of the Max Noether space are reduced significantly. We
also apply these strategies to reduce the matrices appeared in [Wu and Zhi, 2008a] to
obtain a more efficient algorithm for refining an approximately known multiple root for this
special case.
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Abstract

We present an algorithm RealRootIsolate for isolating the real roots of a system
of multivariate polynomials given by a zerodimensional squarefree regular chain. The
output of the algorithm is guaranteed in the sense that all real roots are obtained and
are described by boxes of arbitrary precision. Real roots are encoded with a hybrid
representation, combining a symbolic object, namely a regular chain, and a numeri-
cal approximation given by intervals. Our isolation algorithm is a generalization, for
regular chains, of the algorithm proposed by Collins and Akritas. We have imple-
mented RealRootIsolate as a command of the module SemiAlgebraicSetTools of the
RegularChains library in Maple. Benchmarks are reported.

1 Introduction

Finding real roots for univariate polynomials has been widely studied. Some methods
guarantee the number of real roots and isolate each real root in an arbitrary small interval.
The algorithm presented in this paper is a generalization to regular chains of the algorithm
given by Collins and Akritas [8], whose termination proof is based on a theorem due to
Vincent [32] and [24, Theorem of 2 circles].

There exist many different approaches for isolating real roots of univariate polynomials
by means of Descartes rules of signs [13]. Uspensky [31] rediscovered independently∗ an
inefficient version of Vincent’s work [1]. More recent algorithms are closer to the original
work of Vincent and based on continuous fractions [2, 3]. The approach of [29] is very
efficient in memory since it avoids the storage of one polynomial at each node of the tree
of the recursive calls. Observe that the application of this idea to our context should be
possible. It is left to future work.

The methods mentioned above are all for univariate polynomials with integral or ra-
tional coefficients. In [14], the authors apply Descartes Algorithm for polynomials with
bit-stream coefficients. In [9, 16], the authors present algorithms for isolating the real roots
of univariate polynomials with real algebraic number coefficients.

There exist different approaches for isolating real roots of polynomial systems with
finitely many complex solutions. Various constructions are employed to generalize to mul-
tivariate systems the techniques known for univariate equations: rational univariate repre-
sentation [27], polyhedron algebra [23], and triangular decompositions [7, 20, 25, 35].

In this paper, we generalize the Vincent-Collins-Akritas Algorithm to zerodimensional
squarefree regular chains; therefore our work falls in the same category as this latter group

∗Recent investigations of A. Akritas seem to prove that Uspensky only had an incomplete knowledge of
Vincent’s paper, from [30, pages 363-368].



of papers. Our idea is to build inductively (one variable after another) “boxes” in which
one and only one real solution lies. This basically amounts to applying the Vincent-Collins-
Akritas Algorithm to polynomials with real algebraic coefficients defined by a regular chain.
Our main algorithm RealRootIsolate takes a zerodimensional squarefree regular chain T as
an input and returns a list of disjoint boxes (Cartesian products of intervals) such that
each box contains exactly one real root of T (as a byproduct, RealRootIsolate counts the
number of real roots). We have implemented our algorithm in Maple in the module
SemiAlgebraicSetTools of the RegularChains library.

Although rediscovered independently, the techniques presented here share some ideas
with those of [25, 26]. However, our algorithm focuses on finding isolation boxes for real
solutions of polynomial systems whereas Rioboo’s primary goal is to implement the real
closure of an ordered field. Moreover, Rioboo relies on Sturm sequences and subresultants
for univariate polynomial real root isolation.

The other real root isolation algorithms based on triangular decompositions, namely
those reported in [7, 20, 35], rely on the so-called “sleeve polynomials”, see Section 2.5.

We do not report on a comparative implementation with the methods in [7, 9, 20, 25, 35].
In order to ensure a fair comparison (similar to what was done in [4] for four triangular
decomposition methods) one would need to bring these six real root isolation methods
(including ours) in a common implementation framework. This would require a significant
amount of work, and we leave this comparative implementation for future work.

As mentioned, the algorithm presented here has been implemented in Maple inter-
preted code. However, it does not rely yet on fast polynomial arithmetic nor modular
methods for regular chain computations. Following [18], these techniques should speed-up
our implementation dramatically.

We compare our code with another real root isolation tool available in Maple: the
RootFinding[Isolate] command based on the rational univariate representation [27]. With no
surprise, the highly optimized supporting C code allows RootFinding[Isolate] to outperform
our modest Maple implementation on systems that are in Shape Lemma position [5].
However, for different families of examples, corresponding to non-equiprojectable† varieties
the situation is reversed which demonstrates the great interest of our approach, even in this
unfair comparative implementation framework.

Another contribution of our work is that it equips Maple with a tool for manipulating
real numbers exactly. For instance, our code provides a data-type (called a box) for encoding
a point with n coordinates that are real algebraic numbers, together with a function for
deciding whether this point cancels a given n-variate polynomial. Our encoding of such
points uses a hybrid representation, combining a symbolic object, namely a regular chain,
and a numerical approximation given by intervals.

We investigate the impact of different strategies for isolating roots. In particular, we
identify a family of examples where the use of normalized regular chains instead of arbitrary
(but still zero-dimensional) regular chains can speed-up the root isolation even though
normalization tends to substantially increase coefficient sizes, as established in [11].

2 Real root isolation of a zerodimensional regular chain

After recalling the Vincent-Collins-Akritas algorithm in Section 2.1 and introducing defi-
nitions in Section 2.2 and Section 2.3, the algorithm RealRootIsolate and its subalgorithms

†The notions of an equiprojectable variety and equiprojectable decomposition are discussed in [10].



are presented in Section 2.4. In Section 2.5 we compare our method with other existing
approaches.

2.1 The Vincent-Collins-Akritas algorithm

The Vincent-Collins-Akritas algorithm isolates the real roots of a squarefree polynomial
(with rational coefficients) with an arbitrary precision. A basic version (Algorithm 1) is
recalled here, as a first step to its generalization in Section 2.4.

Definition 1 Let V be a finite set of t real numbers. An interval decomposition of V is a

list I1, . . . , It of intervals such that each interval Ii is an open rational interval ]a, b[ or a

rational singleton {a}, each interval Ii contains one element of V and Ii ∩ Ij = ∅ if i �= j.

Algorithm 1 RootIsolateVCA(p)
Input: p squarefree polynomial of Q[x]
Output: an interval decomposition of the real roots of p
1: H ← a strict bound on the roots of p
2: return RootIsolateAuxVCA(p, ]−H,H[)

In Algorithm 1, there are different ways to compute a strict bound H (in the sense that
any root α of p satisfies |α| < H). For example, if p =

∑d

i=0 aix
i, take the Cauchy bound

H = 1
|ad|

∑d

i=0 |ai|. Sharper bounds are given in [2].

Algorithm 2 RootIsolateAuxVCA(p, ]a, b[)
Input: p squarefree polynomial in Q[x] and a < b rational
Output: an interval decomposition of the real roots of p which lie in ]a, b[
1: nsv ← BoundNumberRootsVCA(p, ]a, b[)
2: if nsv = 0 then return ∅
3: else if nsv = 1 then return ]a, b[
4: else

5: m← (a+ b)/2 res← ∅
6: if p(m) = 0 then res← {{m}}
7: {Next line ensures the roots are sorted increasingly}
8: return RootIsolateAuxVCA(p, ]a,m[) ∪ res ∪ RootIsolateAuxVCA(p, ]m, b[)

Algorithm 3 BoundNumberRootsVCA(p, ]a, b[)
Input: p ∈ Q[x] and a < b rational
Output: a bound on the number of roots of p in the interval ]a, b[
1: p̄← (x+ 1)d p

(
a x+b
x+1

)
where d is the degree of p, and denote p̄ =

∑d

i=0 aix
i

2: a′e, . . . , a
′
0 ← the sequence obtained from ad, . . . , a0 by removing zero coefficients

3: return the number of sign variations in the sequence a′e, . . . , a
′
0

The main arguments for the correctness of Algorithm 1 are the following. Algorithm 3
computes a polynomial p̄ whose positive real roots are in bijection with the real roots of p



which lie in ]a, b[. The application of Descartes’ rule of signs on p̄ thus provides a bound on
the number of real roots of p which lie in ]a, b[. This bound is exact when equal to 0 or 1
[24, Theorem 1.2]. Since p is squarefree, the bound returned by Algorithm 3 will eventually
become 0 or 1, by [24, Theorem 2.5] so that the whole method terminates.

2.2 Regular chains

In this paper one only considers zerodimensional squarefree regular chains, abbreviated by
zs-rc. Roughly speaking, a zerodimensional regular chain is a triangular set‡ of polynomials,
with as many equations as variables, and which has a finite number of complex roots (and
consequently a finite number of real roots).

Zerodimensional regular chains are easier to understand and define than general regular
chains. Let x1 < · · · < xs be s variables. Let p ∈ Q[x1, . . . , xs] be a non-constant poly-
nomial. We denote by mvar(p) the main variable (or largest variable) of p, by init(p) the
initial (or leading coefficient w.r.t. mvar(p)) of p, by mdeg(p) the degree of p in its main
variable and by sep(p) the separant of p, that is ∂p/∂mvar(p). If T is a set of polynomials in
Q[x1, . . . , xs], 〈T 〉 denotes the ideal generated by T and V (T ) denotes the set of all complex
solutions of the system T = 0. For a given xi, T≤xi

(resp. T>xi
) denotes the elements of T

whose main variable is less (resp. strictly greater) than xi.

Definition 2 Let T = {p1, . . . , ps} where each pi lies in Q[x1, . . . , xs]. The set T is a

zerodimensional squarefree regular chain (or zs-rc) of Q[x1, . . . , xs] if mvar(pi) = xi for

1 ≤ i ≤ s, init(pi) does not vanish on V ({p1, . . . , pi−1}) for any 2 ≤ i ≤ s, and sep(pi) does

not vanish on V ({p1, . . . , pi}) for any 1 ≤ i ≤ s
Thanks to the first two conditions, it is easy to show that the system T = 0 has a

finite number of complex solutions, which is equal to the product of the main degrees of the
elements of T denoted Deg(T ). Moreover those solutions can be computed “incrementally”
using the following solving scheme. The number of complex roots of the univariate poly-
nomial p1 is equal to its degree. For each root x0

1 of p1, consider the polynomial p2(x0
1, x2)

which is univariate in x2. This polynomial has the same degree in x2 as p2 since the initial
of p2 does not vanish on the solutions of p1 = 0. Thus, the number of complex roots of
p2(x0

1, x2) is equal to the degree of p2. Proceeding on the remaining variables, one concludes
that the number of complex solutions of T = 0 is equal to Deg(T ).

The third condition, which forbids multiple roots, is the natural generalization of square-
free polynomials to regular chains. As for the algorithm RootIsolateVCA, this condition is
only required to make the isolation algorithms terminate.

In practice, the zs-rc can be computed using the Triangularize algorithm [22] available
in the RegularChains library shipped with Maple. Moreover, the regular chains are not
built by checking the conditions of Definition 2 but by using regularity tests of polynomials
modulo ideals. A polynomial p is said to be regular modulo an ideal I if it is neither zero,
nor a zero-divisor modulo I. If T is a regular chain, p is said to be regular modulo the
regular chain T if p is regular modulo 〈T 〉. Thus, the following definition is equivalent to
Definition 2.

Definition 3 Let T = {p1, . . . , ps} where each pi lies in Q[x1, . . . , xs]. The set T is a

zerodimensional squarefree regular chain (or zs-rc) of Q[x1, . . . , xs] if mvar(pi) = xi for

any 1 ≤ i ≤ s, init(pi) is regular modulo the ideal 〈p1, . . . , pi−1〉 for any 2 ≤ i ≤ s, and

sep(pi) is regular modulo the ideal 〈p1, . . . , pi〉 for any 1 ≤ i ≤ s.
‡triangular set in the sense that each polynomial introduces exactly one more variable



The expert reader has probably noticed that saturated ideals are not mentioned. Indeed,
this precision in not necessary in dimension zero. The next lemma makes the link between
the regularity property of a polynomial q modulo a zs-rc and the fact that q does not vanish
on the solutions of a zs-rc. It is implicitly used to check whether or not a polynomial
vanishes on a root of a regular chain in the CheckZeroDivisor algorithm.

Lemma 1 Let T be a zs-rc of Q[x1, . . . , xs] and q a polynomial of Q[x1, . . . , xs]. Then q is

regular modulo T iff q does not vanish on any complex solution of T .

2.3 Boxes

This section defines the boxes used for isolating solutions of zs-rc, as well as extra definitions
needed to specify the algorithms of Section 2.4.

Definition 4 An s-box (or box) B is a Cartesian product B = I1×· · ·×Is where each Ii is

either a rational open interval ]a, b[ (a and b are rational) or a singleton {a} with a rational.

The width of B, denoted by |B|, is defined as the maximum of the |Ii| where |Ii| = 0 if it is

a singleton and b− a if Ii =]a, b[.

Algorithm 4 EvalBox(p,B)
Input: p ∈ Q[x1, . . . , xs] and B is a s-box
Output: a rational interval I such that p(v) ∈ I for any v ∈ B

Different variants for EvalBox(p,B) exist. A simple version of this algorithm consists in
using the three basic operations (×,−,+) defined in interval arithmetics after “expanding”
p into a sum of monomials. Any variant for EvalBox(p,B) satisfying the following property
can be used: the box EvalBox(p,B) should tend to the singleton {p(x0)} when the width of
B tends to zero (by keeping the condition x0 ∈ B). This simply ensures that the interval
EvalBox(p,B) should shrink as the width of the box B decreases.

Definition 5 Let B = I1 × · · · × Is be an s-box and T = {p1, . . . , ps} be a zs-rc of

Q[x1, . . . , xs]. We say (B, T ) satisfies the Dichotomy Condition (or DC) if

• one and only one real root of T lies in B

• if I1 =]a, b[ then p1(x1 = a) and p1(x1 = b) are nonzero and have opposite signs

• for each 2 ≤ k ≤ s, if Ik =]a, b[ then the two intervals EvalBox(pk(xk = a), B) and

EvalBox(pk(xk = b), B) do not meet 0 and have opposite signs.§

This last condition is the natural generalization of the condition p(a) and p(b) are
nonzero and have opposite sign, and p vanishes only once on the interval ]a, b[ in the
univariate case. Condition DC allows to refine a box very much like one refines the interval
]a, b[ by dichotomy.

Please note that if I1 = a is a singleton, then one necessarily has p1(a) = 0 since one
real root of T lies in B. Equivalently, if Ik = a is a singleton for some k, then p(xk = a)
vanishes on the real root of T lying in B.

§the sign of an interval not meeting zero is just the sign of any element of it



Definition 6 Let V be a finite set of t points of R
s. A list B1, . . . , Bt of s-boxes is called a

box-decomposition of V if each point of V lies in exactly one Bi and Bi∩Bj = ∅ if i �= j. If

T is a zs-rc, we call box-decomposition of T a box-decomposition of the real roots of T = 0.

Definition 7 A task M = task(p, ]a, b[, B, T ) is defined as: T is a zs-rc of Q[x1, . . . , xs],
p is a polynomial in Q[x1, . . . , xs+1], T ∪ {p} is a zs-rc, B is an s-box, (B, T ) satisfies

DC, and a < b are rational numbers. The solution of M denoted by Vt(M) is defined as

V (T ∪ {p}) ∩ (B×]a, b[) (i.e. the real solutions of T ∪ {p} which prolong the real root in B
and whose component xs+1 lies in ]a, b[).

2.4 Algorithms

The main algorithm RealRootIsolate, which isolates the real roots of a zerodimensional
squarefree regular chain, is presented here. Only elements of proofs are given but focus has
been made on specifications. In this section, one assumes n > 1.

The algorithms presented here use the mechanism of exceptions which is available in a
lot of programming languages. We find it appropriate since doing computations using the
D5 principle [12] can be seen as doing computations as if one is computing over a field.
When a zero divisor is hit (leading to a splitting), one raises an exception exhibiting the
splitting. This exception can then be caught to restart computations. This shortens and
makes clearer¶ the algorithms presented here. Only the Algorithm 5 throws exceptions.

Algorithm 5 CheckZeroDivisor(p, T )
Input: T a zs-rc Q[x1, . . . , xs] and p ∈ Q[x1, . . . , xs]
Output: If p is regular modulo T , then the algorithm terminates normally. Otherwise, an

exception is thrown exhibiting t zs-rc T1, . . . , Tt such that C1 V (T1)∪· · ·∪V (Tt) = V (T ),
and C2

∑t

i=1 Deg(Ti) = Deg(T ) hold.
1: T1, . . . , Tt ← Regularize(p, T )
2: if p belongs to at least one 〈Ti〉 then throw exception(T1, . . . , Tt)

Algorithm 5 checks whether p is regular modulo T or not. If p is regular modulo T ,
the algorithm returns normally, otherwise an exception is raised. Algorithm 5 is called
whenever one wants to know if a polynomial vanishes on a real root x0 of T isolated by a
box B. Indeed, if p is regular modulo T , thanks to Lemma 1, p does not vanish on x0. This
allows to refine B until EvalBox(p,B) does not contain 0, which gives the sign of p(x0).

The algorithm Regularize is not recalled here (see [22] for details) but its specification
is: if T is a zs-rc, Regularize(p, T ) returns a list of zs-rc T1, . . . , Tt such that for each Ti,
p either belongs to 〈Ti〉 or is regular modulo Ti. Moreover T1, . . . , Tt is (what we call) a
splitting of T , which in dimension 0 satisfies the two conditions C1 and C2 of the output
of Algorithm 5. Due to condition C2, splittings cannot occur indefinitely.

Algorithm 6 RefineBox(B, T )
Input: T is a zs-rc of Q[x1, . . . , xs], (B, T ) satisfies DC and |B| > 0
Output: an s-box B̄ such that |B̄| ≤ |B|/2, B̄ ⊂ B and (B̄, T ) satisfies the DC

Algorithm 6 is able to refine a box containing a real root by dividing its width by 2. It is
simply the generalization of the dichotomy process for splitting in two an isolating interval.

¶without using exceptions, splittings need to be handled basically each time a function returns a value



The algorithm is not detailed here for brevity. The main idea is to divide by two each
interval Ii of B = I1 × · · · × Is which is larger than |B|/2 while keeping the DC condition.

Algorithm 7 RealRootIsolate(T )
Input: T is a zs-rc
Output: a box-decomposition B1, . . . , Bp of T
1: I1, . . . , It ← RootIsolateVCA(Tx1

)
2: toDo← {(T>x1

, (Ii, T≤x1
))}1≤i≤t

3: res← ∅
4: while toDo �= ∅ do

5: pick and remove a (T>xi
, (B, T≤xi

)) from toDo
6: B′

1, . . . , B
′
t′ ← SolveNewVar(Txi+1

, B, T≤xi
)

7: if xi+1 = xn then res← res ∪ {B′
1, . . . , B

′
t′}

8: else toDo← toDo ∪ {(T<xi+1
, (B′

j , T≥xi+1
))}1≤j≤t′

9: return res

Algorithm 7 is a generalization of Algorithm 1 for a zs-rc. Line 1 isolates the real roots
of the univariate polynomial Tx1

. The variable toDo is a set of (T>xi
, (B, T≤xi

)) such that
each (B, T≤xi

) satisfies DC. It means that (B, T≤xi
) represents one (and only one) real

root of T≤xi
. The set T>xi

simply is the set of polynomials which have not be solved yet.
Algorithm 7 calls Algorithm 8 (which allows to solve one new variable) until all variables
are solved. Note that Algorithm 7 could be followed by a refinement of each returned box
so that the width of each box is smaller than a given precision.

Also remark that any raised exception will hit Algorithm 7 since none of the algorithms
presented here catches any exception. It is however very easy to adjust Algorithm 7 so that
it would catch exceptions and recall itself on each regular chain returned by the splitting.
The recursion would eventually stop because of condition C2 of Algorithm 5 (i.e. splittings
cannot occur indefinitely).

Algorithm 8 SolveNewVar(p,B, T )
Input: T is a zs-rc of Q[x1, . . . , xs], p ∈ Q[x1, . . . , xs+1] and T ∪ {p} is a regular chain

and (B, T ) satisfies DC

Output: a box-decomposition of the roots (x0
1, . . . , x

0
s+1) of T ∪{p} such that (x0

1, . . . , x
0
s)

is the root of T which lies in B
1: refine B into a box B′ such that 0 /∈ EvalBox(ip, B′)
2: compute a bound H on the roots of p(x0

1, . . . , x
0
s, xs+1)

3: toDo← {task(p, ]−H,H[, B′, T )}
4: res← ∅
5: while toDo �= ∅ do

6: pick and remove a taskM from toDo
7: for all e in SolveTask(M) do

8: if e is a box then res← res ∪ {e} else toDo← toDo ∪ {e}
9: return res

Algorithm 8 finds the real roots of p (seen as univariate in xs+1) that “prolong” the
real root which lies in B. Line 1 always terminates. Indeed, ip is regular modulo T , so
it does not vanish on any root of T . Thus, ultimately, B′ will be small enough so that
0 /∈ EvalBox(ip, B′). Refining the box is needed to compute the bound H.



The bound H at line 2 can be computed in the following way. Denote p =
∑d

i=0 aix
i
s+1

and Ai = EvalBox(ai, B
′). Then take H = 1

min |Ad|

∑d

i=0(max |Ai|) where min |Ai| (resp.
max |Ai|) denotes the minimum (resp. maximum) of the modulus of the bounds of the
interval Ai. The rest of the algorithm is based on Algorithm 9 which transforms tasks into
new tasks and boxes.

Algorithm 9 SolveTask(M)
Input: a task M = task(p, ]a, b[, B, T ) where T is a zs-rc of Q[x1, . . . , xs]
Output: One of the four following cases:

1: ∅ which means Vt(M) = ∅.
2: a box B′ such that (B′, T ∪ {p}) satisfies DC and B′ is a box-decomposition of
Vt(M), which means Vt(M) is composed of only one point
3: two tasks M1 andM2 such that Vt(M1) and Vt(M2) forms a partition of Vt(M)
4: two tasks M1 and M2 plus a box B′ such that (B′, T ∪ {p}) satisfies DC and the
three sets Vt(M1), Vt(M2) and {x0} form a partition of Vt(M), where x0 denotes the
only real root of T ∪ {p} which lies in B′.

1: nsv,B′ ← BoundNumberRoots(M)
2: if nsv = 0 then return ∅
3: else if nsv = 1 then

4: B′′ ← B′×]a, b[
5: refine B′′ until (B′′, T ∪ {p}) satisfies DC

6: return {B′′}
7: else

8: m← (a+ b)/2 res← ∅ p′ ← p(xs+1 = m)
9: if p′ ∈ 〈T 〉 then res← {B′ × {m}} else CheckZeroDivisor(p′, T )

10: return res ∪ {task(p, ]a,m[, B′, T ),task(p, ]m, b[, B′, T )}

Algorithm 10 BoundNumberRoots(M)
Input: a task M = task(p, ]a, b[, B, T ) where T is a zs-rc of Q[x1, . . . , xs]
Output: (nsv,B′) such that B′ ⊂ B, (B′, T ) satisfies DC, and nsv is a bound on the

cardinal of Vt(M). The bound is exact if nsv = 0 or 1.
1: p̄← (xs+1 + 1)d p

(
xs+1 = a xs+1 + b

xs+1 + 1

)
with d = mdeg(p)

2: denote p̄ =
∑d

i=0 aix
i
s+1

3: a′e, . . . , a
′
0 ← the sequence obtained from ad, . . . , a0 by removing the ai belonging to 〈T 〉

4: for all a′i do CheckZeroDivisor(a′i, T )
5: B′ ← B
6: while there is an a′i such that 0 ∈ EvalBox(a′i, B

′) do B′ = RefineBox(B′, T )
7: return the number of sign variations of the sequence

EvalBox(a′e, B
′),EvalBox(a′e−1, B

′), . . . , EvalBox(a′0, B
′)

Algorithm 9 is a generalization of Algorithm 2. The cases nsv = 0 or 1 are straight-
forward. When nsv > 1, one needs to split the interval ]a, b[ in two, yielding two tasks
returned on line 10. Lines 8-9 correspond to the lines 5-6 of Algorithm 2. Indeed, checking
p(m) = 0 is transformed into checking if p′ lies in 〈T 〉 or is not a zero divisor modulo T .

Algorithm 10 is a generalization of Algorithm 3. One discards the coefficients of p′

which lie in 〈T 〉 because they vanish on the real root v which is in B. One also ensures that



the other coefficients (the a′i) are not zero divisors, so they cannot vanish on v. Thus the
loop at line 6 terminates. Moreover, this guarantees that the number of sign variations is
correct. Please note that the sequence a′e, . . . , a

′
0 is never empty. Indeed if all ai’s were in

〈T 〉, then all coefficients of p would lie in 〈T 〉 (impossible since ip is regular modulo T ).

2.5 Comparison with other methods

In the introduction we provided a comparison of our work with others. More technical
details are reported below.

[25, 26] give algorithmic methods (available in AXIOM) to manipulate real algebraic
numbers. These developments were designed for improving Cylindrical Algebraic Decom-

position (CAD) methods in AXIOM. Although [25] contains all the tools to solve our
problem, this paper focuses on the problem of manipulating real algebraic numbers. It
does not address directly the problem of isolating the real roots of a given zerodimensional
regular chain. [26] provides tools to perform univariate polynomial real root isolation by
using quasi Sylvester sequence which according to [26] can be faster than the techniques
based on the Descartes rules.

[9, 16] present algorithms for isolating real roots of univariate polynomials with algebraic
coefficients. Their algorithms require the ideal to be prime, and this condition is ensured
by performing univariate factorization [21] into irreducible factors for polynomials with
algebraic coefficients. Our method does not require such factorizations and only requires
the ideal to be squarefree. Thus, our method replaces a decomposition into prime ideals by
regularity tests which are often less costly.

[27] is based on Gröbner basis computations and rational univariate representation.
Thus, [27] transforms the initial problem into the problem of isolating the real roots of a
univariate polynomial with rational number coefficients

[20] starts from a zerodimensional regular chain (although [20] uses the terminology of
characteristic sets) and proceeds variable by variable. Their technique is different from ours.
After isolating a real root say x0

1 for p1(x1) = 0, they build two univariate polynomials p2(x2)
(the so-called upper bound polynomial) and p

2
(x2) (the so-called lower bound polynomial)

whose real roots will interleave nicely (see [20, Definition 2]) when the precision on x0
1 is

sufficiently low, yielding isolation intervals for the variable x2.
[35] uses a similar techniques as [20]. The main difference is that the authors use

explicitly interval arithmetic and contrarily to [20] where the algorithm may have to restart
from the beginning with a smaller precision (called ac) in some special cases, [35] uses a
refinement process (algorithm NSHR) until the real roots of the upper and lower bound
polynomial interleave sufficiently.

Such techniques are also used in [7], where the authors consider general zerodimensional
triangular systems (which may not be a regular chain) and treat multiple zeros directly.

Quoting the abstract of [23], the Authors use a powerful reduction strategy based on

univariate root finder using Bernstein basis representation and Descartes’ rule. Basically,
they reduce the problem to solving univariate polynomials by using the Bernstein basis
representation and optimizations based on convex hulls.



3 Implementation

3.1 The SemiAlgebraicSetTools package

The algorithm RealRootIsolate has been coded using exceptions in Maple in the module
SemiAlgebraicSetTools of the RegularChains library [17]. We present some implemen-
tation issues and optimizations integrated in our code.

Precision. The user can specify a positive precision so all isolation boxes have a width
smaller than the given precision. If an infinite precision is provided, then the algorithm
only isolates the real roots by refining the boxes the least possible. We take the precision
into account as soon as possible in the algorithm, meaning that each time an isolation box
is extending with a new variable, one refines the box.

Constraints. The user can restrict the solutions by imposing that some variables lie
in a prescribed interval. If the intervals are restrictive (i.e. smaller than the intervals
computed using bounds), this helps avoiding useless computations.

The CheckZeroDivisor algorithm is not directly called in our code. Indeed, regular-
ity test can be very expensive and should be avoided as much as possible. When a call
CheckZeroDivisor(p, T ) returns, one knows that a box B isolating a real root of T can al-
ways be refined until the interval EvalBox(p,B) does not meet zero. This is in fact the only
reason why we call CheckZeroDivisor. In order to avoid a regularity test, we first try to
refine B a few times to see if EvalBox(p,B) still meets zero. If it does not, we do not need
to check the regularity.

Refining boxes. In the Maple implementation, Algorithm 6 receives an extra param-
eter xk. In that case, the box is only refined for the variables smaller than xk (i.e. the vari-
ables xi with i ≤ k). This is useful for example at line 6 of Algorithm BoundNumberRoots.
Indeed, if mvar(a′i) = xk holds, then it is not necessary to refine the complete box B′ to
ensure that EvalBox(a′i, B

′) does not meet 0.
Change of variables. By slightly modifying algorithms 8 and 9, we call algorithm 10

with a = 0 and b = 1. This allows to replace the operation (xs+1 +1)d p
(
xs+1 = a xs+1 + b

xs+1 + 1

)
by substitutions of the form p(xs+1 = xs+1/2), p(xs+1 = 1/xs+1) and p(xs+1 = xs+1 + 1)
which can be written very efficiently, the last one being based on fast Taylor shift [33].

Refining other branches. Due to the triangular structure of the system, many dif-
ferent roots share a common part (meaning the values for some variables are equal). When
refining a root, we refine other roots which share a common part to save computations.

Further refining. After being computed, an isolation box isolating a real root v can
be refined further using the Maple command RefineBox. To do so, exceptions has to be
caught. Our implementation associates a regular chain T to each box B encoding a real
root. Thus, if T is split into T1, . . . , Ts after an exception, one replaces (B, T ) by the right
(B, Ti) which also defines the real root v as done in [26, page 528].

EvalPoly. For evaluating EvalBox(p,B), we first collect p using a Hörner scheme. For
example, the polynomial p := x3

2x1 + 3x2
2 + x2x

2
1 + x2

1 + x1 + 1 is collected as 1 + (1 +
x1)x1 + (x2

1 + (3 + x1x2)x2)x2. This strategy seems to behave quite well on our examples.
The intuition for doing that is the following. Since x2 > x1 for our ordering, the interval of
B for the variable x2 tend to be in practice wider than that for the variable x1, since the
intervals for smaller variables tend to be more refined than those for higher variables. On
the example, the Hörner collected form tends to decrease the exponentiations for x2.



3.2 Further development

Using fast polynomial arithmetic and modular methods. The current implementa-
tion of the CheckZeroDivisor algorithm can be improved in a significant manner. Indeed, the
modular algorithm for regularity test of [18] and implemented with the Modpn library [19]
outperform the regularity test used in CheckZeroDivisor by several orders of magnitude.

Computing with algebraic numbers. Using the two algorithms RefineBox and
CheckZeroDivisor, one can encode algebraic numbers and check if a multivariate polyno-
mial cancels on some algebraic numbers. This allows computing with algebraic numbers,
very much as in [25]. Moreover, inequations and inequalities could be included with almost
no work. Indeed they can be handled at the end of RealRootIsolate using CheckZeroDivisor.
They can also be treated inside the subalgorithms as soon as a box in construction involves
all the variables of an inequality or inequation, allowing to cut some branches.

Floating-point computations. As suggested by Fabrice Rouillier (private communi-
cation), it would speed up the algorithm to use multiple-precision floating-point computa-
tions with exact rounding (as in the MPFI library [28]) instead of rational numbers.

Exceptions could be caught sooner so one does not lose the computations already done.
Unsing continuous fractions as in [2, 3] may also be investigated.
Interval arithmetics. The algorithm EvalBox could certainly be improved by tech-

niques such as [6] where the polynomial to evaluate is factorized using greedy algorithms.
Newton method. Some tries were made to incorporate a Newton method for system

of polynomials in the RefineBox algorithm. Due to the triangular form of the system, the
jacobian is also triangular which eases the method. However, although the convergence was
really faster, it was not satisfactory because of the coefficient swell of the isolation intervals.
However, we believe the Newton method should be investigated more carefully.

4 Benchmarks

4.1 Description of the experimentation

The names of the examples used for benchmarking are listed in Figure 4.3. Most of them
are classical. The lhlp files tests are taken from [20]. The examples chemical-reaction,
geometric-constraints, neural-network, p3p-special and Takeuchi-Lu appear in [34]. The
nld-d-n and nql-n-d examples are described in Section 4.3. Examples can be found at
www.lifl.fr/~lemaire/BCLM09/BCLM09-systems.txt.

Benchmark results are given on Figure 4.3. They were run on an Intel(R) Pentium(R)
D CPU 3GHz with 2Gb of memory, using Maple 13 beta 64bits. Timings are in sec-
onds. Timeouts are indicated with >, meaning that the computation was aborted. The
column Sys denotes the name of the system. The column v/e/s stands for the number of
variables/equations/real solutions.

The Maple command RootFinding[Isolate] isolates real roots within the times indicated
in the group of columns RF/Is. For multivariate systems, this command relies on Gröbner
basis computations [15] and rational univariate representation [27]. In Column 1, the com-
mand used is RootFinding [Isolate](sys, variables, digits=10, output=interval). For Column 2
the same command is used but that the ordering of the variables has been reversed. We used
those two commands in case the variable ordering has an effect on the command RootFind-
ing[Isolate]. Note that the option digits=10 ensures that the ten first digits of the results
are correct which is not the same as guaranteeing a width less than 1e-10 for the isolation



boxes in RealRootIsolate. However, the difficulty for isolating the real roots is comparable
if the real roots are not too close to zero nor too big; this is the case for our test examples.

The other groups of columns correspond to three strategies for isolating real roots using
our algorithm RealRootIsolate. In each strategy, the initial system is first decomposed into
zerodimensional regular chains using the Triangularize command together with the option
radical=’yes’ ensuring those regular chains are squarefree. In order to keep things simple and
uniform, the option probability=xx of Triangularize is not used, even when it could be, that
is, for square systems generating radical ideals. Therefore the modular algorithm of [10] is
not applied even though it can solve all our examples that the non-modular algorithm of
Triangularize cannot.

Strategy 1. We build regular chains (column Tr) and call the RealRootIsolate algorithm
(column Is/10) on each regular chain with a precision of 1e-10.

Strategy 2. A variant of Strategy 1 where we compute strongly normalized regular
chains (column Tr/No) using the option normalized=’strongly’ of Triangularize.

Strategy 3. Another variant of Strategy 1. We build regular chains (column Tr) and
call the RealRootIsolate algorithm on each regular chain with an infinite precision (column
Is/∞), in the sense that the width of the boxes are not constrained. Thus, only the isolation
is performed. Then we call the command RefineListBox to refine the list of boxes with a
precision of 1e-5 (column ∞/5). Then we refine again the boxes for a precision of 1e-10
(column 5/10).

4.2 Comparison of different strategies

Strategies 1 and 2 are comparable. Strongly normalized regular chains take more time to
be computed, since normalization is a post-processing for the command Triangularize. The
isolation time is roughly the same in general for both types of regular chains. For the nld-d-
n (except nld-9-3) family of examples, normalization helps the isolation process. However,
for some other examples, such as 5-body-homog, p3p-special and Rose, normalization make
things worse.

Compared to Strategy 1, Strategy 3 shows two things. First, it is usually faster to isolate
solutions with an infinite precision rather than with a small precision. Secondly, it shows
that the overall times for Strategies 1 and 3 are comparable.

4.3 Comparison with RootFinding

The RootFinding[Isolate] is obviously a lot faster on many examples. One should keep in
mind that this command calls internal routines written in C that have been developed
intensively for years. However, the RootFinding[Isolate] has difficulties on some systems
such as the nql-n-d and nld-d-n ones.

The nql-n-d (for non quasi linear) example is very specific and was suggested by Fabrice
Rouillier. It is defined by n equations in n variables xd

1−2 = 0, xd
i +x

d/2
i −xi−1 = 0 for 2 ≤

i ≤ n for some even degree d. This system is already a zs-rc. The algorithm RealRootIsolate
solves it easily since the degrees are distributed evenly among the equations. On the other
hand, the RootFinding[Isolate] needs to build a rational univariate representation which we
believe has a very large degree roughly equal to dn (that is about one million when d = 4
and n = 10).

A similar example is simple-nql-n-d defined by xd
1 − 2 = 0, xd

i − xi−1 = 0 for 2 ≤ i ≤ n.
The degree of the rational univariate representation is also roughly dn. For the example
simple-nql-20-30, dn is around 1029.



RF/Is Strategy 1 Strategy 2 Strategy 3

Sys v/e/s 1 2 Tr Is/10 Tr/No Is/10 Tr Is/∞ ∞/5 5/10

4-body-homog 3/3/7 0.31 0.32 1.6 11 6.2 11 1.5 3.4 4 4.1

5-body-homog 3/3/11 0.31 0.36 3.1 32 38 43 3.2 9.4 11 12

Arnborg-Lazard-rev 3/3/8 <0.1 <0.1 0.43 7 0.5 6.6 0.38 1.8 3 2.6

Arnborg-Lazard 3/3/8 <0.1 <0.1 0.46 7.3 0.62 6.4 0.53 2 3.1 3

Barry 3/3/2 <0.1 <0.1 <0.1 1.5 0.11 3.8 <0.1 0.19 0.64 0.51

Caprasse-Li 4/4/18 0.13 0.14 1.2 3.1 1.4 1.7 1.1 0.44 1.4 1.2

Caprasse 4/4/18 0.13 0.12 1.2 2.9 1.5 2 1.2 0.52 1.6 1.4

chemical-reaction 4/4/4 <0.1 <0.1 0.11 2.8 0.16 2.2 0.12 0.46 1.7 1.1

circles 2/2/22 0.89 0.9 0.55 26 1.1 26 0.59 16 4.6 4.5

cyclic-5 5/5/10 0.4 0.4 2.4 4.6 3.6 1.4 2.5 0.67 3.9 1.8

Czapor-Geddes-Wang 5/5/2 <0.1 0.13 3 6 18 7.9 2.8 2.3 2.5 2.1

fabfaux 3/3/3 <0.1 <0.1 2.4 7.3 51 8.5 2.5 2 3.2 3.3

geom-constraints 3/3/8 <0.1 <0.1 <0.1 2.2 <0.1 2.2 <0.1 0.27 1.2 0.88

GonzalezGonzalez 3/3/2 <0.1 <0.1 <0.1 0.76 0.13 0.75 0.1 0.15 0.4 0.36

Katsura-4 5/5/12 <0.1 <0.1 0.54 14 0.77 19 0.58 2.9 6.8 6.5

lhlp1 3/3/6 <0.1 <0.1 <0.1 1 <0.1 1.5 <0.1 0.14 0.53 0.39

lhlp2 3/3/2 <0.1 <0.1 <0.1 0.95 <0.1 1.4 <0.1 0.19 0.51 0.38

lhlp3 3/3/2 <0.1 <0.1 <0.1 0.63 <0.1 0.75 <0.1 <0.1 0.29 0.24

lhlp4 2/2/4 <0.1 <0.1 <0.1 2.9 <0.1 4.8 <0.1 0.48 1.5 1

lhlp5 3/3/4 <0.1 <0.1 0.26 2 0.26 2.4 0.22 0.35 0.95 0.76

lhlp6 4/4/4 <0.1 <0.1 0.26 2.4 0.34 1.7 0.23 0.36 1.5 0.78

neural-network 4/4/22 1 1 0.81 18 1.2 15 0.87 4.5 7.7 7

nld-3-4 4/4/27 1.1 1.1 3.4 13 4.3 5.1 3.2 2.2 6.6 5.8

nld-3-5 5/5/111 79 79 1804 406 1961 45 1832 67 134 133

nld-4-5 5/5/? >2000 >2000 >2000 ? >2000 ? >2000 ? ? ?

nld-7-3 3/3/7 96 95 5.8 9.8 9.1 7.7 5.8 11 0.37 0.16

nld-8-3 3/3/8 457 456 4 29 21 17 4 25 4.3 2.4

nld-9-3 3/3/7 1785 1777 39 43 121 70 40 45 0.34 0.29

nld-10-3 3/3/8 >2000 >2000 26 148 370 308 25 148 8.1 8.1

nql-5-4 5/5/2 109 102 0.1 1.3 0.12 1.3 0.1 0.39 0.27 0.39

nql-10-2 10/10/2 250 225 0.15 3.1 0.29 3.2 0.2 0.98 0.67 0.99

nql-10-4 10/10/2 >2000 >2000 0.33 3.2 0.61 3.3 0.34 0.92 0.62 0.83

nql-15-2 15/15/2 >2000 >2000 0.36 5.8 0.65 5.7 0.33 3.1 1.3 1.9

p3p-special 5/5/24 0.41 0.46 0.23 23 0.69 31 0.24 6.4 8.2 9

PlateForme2d-easy 6/6/0 <0.1 <0.1 1.1 0.12 1.4 0.12 0.99 <0.1 <0.1 <0.1

r-5 5/5/1 1.6 1.6 0.43 <0.1 0.49 <0.1 0.37 <0.1 <0.1 <0.1

r-6 6/6/1 >2000 >2000 0.96 <0.1 1.2 <0.1 0.98 <0.1 <0.1 <0.1

Rose 3/3/18 0.63 0.67 0.72 39 1.1 59 0.71 5 22 20

simple-nql-20-30 20/20/2 >2000 >2000 0.57 28 0.88 28 0.63 65 2.8 0.33

Takeuchi-Lu 4/4/14 <0.1 <0.1 0.22 7.2 0.23 9.7 0.17 0.87 4.4 3.1

Trinks-2 6/7/0 <0.1 <0.1 <0.1 <0.1 0.11 <0.1 <0.1 <0.1 <0.1 <0.1

Trinks-difficult 6/6/2 <0.1 <0.1 0.13 2.8 0.22 4 0.13 0.34 1.4 1.3

wilkinson20 1/1/21 <0.1 <0.1 <0.1 1 <0.1 0.98 <0.1 0.12 0.49 0.39

wilkinsonxy 2/2/25 <0.1 <0.1 <0.1 8 <0.1 7.9 <0.1 2.8 2.6 2.6

Figure 1: Benchmarks

The second family of systems which causes difficulties to RootFinding[Isolate] are the nld-
d-n (for non leading linear) defined by n equations of the form x1 + · · ·+xi−1 +xd

i +xi+1 +
· · ·+xn−1 = 0 for 1 ≤ i ≤ n. On those systems the computations performed by Triangularize
tend to split into many branches, even though the equiprojectable decomposition consists
of a few components (generally 2). For System nld-9-3, the command Triangularize (used
without normalization option) produces 16 components where the largest coefficient has size
20 digits. The command EquiprojectableDecomposition (which requires the use normalized
regular chains) produces 3 components for nld-9-3, where most coefficients have more than
1,000 digits. Since nld-9-3 has 729 complex solutions, this suggests that the univariate
polynomial in the rational univariate representation has degree 729 and coefficients with
size at least 1,000 digits. This makes it difficult to isolate the real roots of such polynomial.
Therefore, the nld-d-n examples show that splitting can help solving some problems.

5 Conclusion

We presented a generalization of the Vincent-Collins-Akritas Algorithm for zerodimensional
squarefree regular chains, and its implementation in Maple. Each box isolating a root can
be refined arbitrarily after being computed. This allows manipulating algebraic numbers
(encoded by a isolation box and a regular chain) very much like in [25]. Many improvements
of the algorithm RealRootIsolate are possible and should be investigated. Among them, we
believe that writing a C library to perform the isolation would improve a lot the timings.



Yet for some non-equiprojectable varieties, our algorithm and its Maple implementation
show favorable performances.
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[2] Alkiviadis G. Akritas, Adam W. Strzeboński, and Panagiotis S. Vigklas. Implementations of a new
theorem for computing bounds for positive roots of polynomials. Computing, 78(4):355–367, 2006.

[3] Alkiviadis G. Akritas and Panagiotis S. Vigklas. A Comparison of Various Methods for Computing
Bounds for Positive Roots of Polynomials. Journal of Universal Computer Science, 13(4):455–467,
2007.

[4] Philippe Aubry and Marc Moreno Maza. Triangular sets for solving polynomial systems: A comparative
implementation of four methods. J. Symb. Comp., 28(1-2):125–154, 1999.

[5] Eberhard Becker, Teo Mora, Maria G. Marinari, and Carlo Traverso. The shape of the shape lemma.
In Proc. of the international symposium on Symbolic and algebraic computation, pages 129–133, New
York, NY, USA, 1994. ACM Press.

[6] Martine Ceberio and Vladik Kreinovich. Greedy algorithms for optimizing multivariate horner schemes.
SIGSAM Bull., 38(1):8–15, 2004.

[7] Jin-San Cheng, Xiao-Shan Gao, and Chee-Keng Yap. Complete numerical isolation of real roots in
zero-dimensional triangular systems. Journal of Symbolic Computation, 44(7):768 – 785, 2009.

[8] George E. Collins and Alkiviadis G. Akritas. Polynomial real root isolation using Descartes’rule of
signs. In proceedings of ISSAC’76, pages 272–275, Yorktown Heights NY, 1976.

[9] George E. Collins, Jeremy R. Johnson, and Werner Krandick. Interval arithmetic in cylindrical alge-
braic decomposition. J. Symb. Comput., 34(2):145–157, 2002.
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Abstract

We briefly review a modular algorithm to perform row reduction of a matrix of
Ore polynomials with coefficients in Z[t], and describe a practical implementation in
Maple that improves over previous modular and fraction-free versions. The algorithm
can be used for finding the rank, left nullspace, and the Popov form of such matrices.

1 Introduction

Ore domains provide a general setting for describing the arithmetic of linear differential,
difference, and q-difference operators. Systems of differential, difference and q-difference
equations can then be defined via matrices of Ore operators (polynomials) evaluated at
unknown functions. One can then make use of matrix constructions to investigate such
systems. For example, performing row reduction on a matrix of Ore polynomials to simpler
forms allows one to determine its rank and left nullspace which give the minimum number
of equations needed to represent the system of equations [1]. When a transformation is
invertible, then the normal form gives the matrix representing an equivalent system with
a minimum number of equations. When the leading coefficient is triangular (as in the
weak Popov form), then the normal form allows one to rewrite high-order operators (e.g.
derivatives) in terms of lower ones [3]. These transformations can also be applied to the
computation of greatest common right divisors (GCRDs) and least common left multiples
(LCLMs) [2, 7, 8, 9], which represents the intersection and the union of the solution spaces
of systems of equations.

The FFreduce algorithm [2] is a procedure for row reducing a matrix of Ore operators
which performs row operations in a fraction-free way to reduce to simpler form while still
controlling coefficient growth. This algorithm computes the rank and left nullspace of these
matrices, and can be used to compute the row-reduced and weak Popov forms of shift
polynomial matrices [2], as well as the Popov form of general Ore polynomial matrices [4].
It can also be used to compute a greatest common right divisor (GCRD) and a least common
left multiple (LCLM) of such matrices. Besides their general use with systems of equations,
LCLMs are also used in nonlinear control theory in order to define the notion of transfer
function in some cases [6].

∗Correspondence to: University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4,
Canada.



A modular version of the FFreduce algorithm was developed by the authors to reduce the
computational complexity [3]. In the modular algorithm, it was observed that the evaluation
reduction Zp[t][Z; σ, δ] → Zp[Z; σ, δ] is not generally an Ore ring homomorphism [9]. Instead
of performing the row operations on the Ore polynomial matrices directly, the problem was
converted to one involving a system of linear equations over Zp. Larger striped Krylov
matrices over Zp was constructed and row reductions were performed on these matrices.
Each Krylov matrix was constructed dynamically—rows were added depending on which
row is selected as the pivot in each step. This was needed to ensure that the correct image
was computed during the reduction in the presence of potential unlucky homomorphisms,
even though unlucky homomorphisms occur rarely in practice. Thus, the modular algorithm
was a trade-off between not exploiting polynomial arithmetic (or equivalently, the structure
of the matrix) and the improved efficiency of coefficient arithmetic in simpler domains.

One obstacle in obtaining further improvement was that the row operations to reduce
the Krylov matrix have to be done one step at a time, because it is not possible to construct
the entire Krylov matrix a priori or the wrong system of solutions may have been solved.
As a result, the only linear algebra subroutines in the LinearAlgebra:-Modular package in
Maple used to accelerate the computation were operations on individual rows instead of the
entire matrix. The resulting implementation has to switch back and forth between high-
level Maple code and low-level compiled linear algebra subroutines that are significantly
faster. In practice, the resulting modular algorithm was only faster than the corresponding
fraction-free algorithm for very large inputs.

In this work, we investigate the applicability of linear algebra subroutines on blocks of
matrices to speed up the computation. Assuming that the first evaluation point is “lucky,”
the Krylov matrices for the remaining evaluation points can be constructed and the entire
matrix can be reduced with a few calls to the appropriate linear algebra subroutines. This
allows more sophisticated implementations of linear algebra subroutines to speed up the
reduction process (e.g. [5]).

2 Notation and Definitions

The definitions given here are similar to those in our previous works [2, 3].
For any vector of integers (also called multi-index ) �ω = (ω1, . . . , ωp), we denote by

|�ω| =
∑p

i=1 ωi. The vector �ei denotes the i-th unit vector (of the appropriate dimension)
such that (ei)j = δij ; we also have �e = (1, . . . , 1) (of the appropriate dimension). We denote
by Z�ω the diagonal matrix having Zωi on the diagonal.

Let k be any field and let σ : k → k be an injective endomorphism of k. Then, a
derivation δ : k → k with respect to σ is an endomorphism of the additive group of k
satisfying

δ(rs) = σ(r)δ(s) + δ(r)s

for all r, s ∈ k. In this paper, we will examine Ore polynomial rings with coefficients in
Z[t]. That is, the ring Z[t][Z; σ, δ] with σ an automorphism, δ a derivation and with the
multiplication rule

Z · a = σ(a)Z + δ(a)

for all a ∈ Z[t]. When δ = 0, we call the polynomials shift polynomials. For brevity, we will
use Z[t][Z] when the specific choices of σ and δ are not important.

Let Z[t][Z]m×n be the ring of m × n Ore polynomial matrices over Z[t]. We shall
adapt the following conventions for the remainder of this paper. Let F(Z) ∈ Z[t][Z]m×n,



N = deg F(Z), and write

F(Z) =
N∑

j=0

F (j)Zj , with F (j) ∈ Z[t]m×n.

We also write cj (F(Z)) = F (j) to denote the j-th coefficient matrix. The row degree of an
Ore polynomial matrix F(Z) is �ν = rdeg F(Z) if the i-th row has degree νi. Some useful
properties of matrices of Ore polynomials, such as linear independence and rank, can be
found in [2].

The problem of row reduction of Ore polynomial matrices can be formalized as follows.
An Ore polynomial vector P(Z) ∈ Z[t][Z]1×m is said to have order∗ �ω with respect to F(Z)
if

P(Z) · F(Z) = R(Z) · Z�ω (1)

for some residual R(Z). The set of all vectors of a particular order �ω forms a Q[t][Z]-
module. An order basis for this module, M(Z) ∈ Z[t][Z]m×m of row degree �μ, is a basis
such that

1. every row, M(Z)i,∗, has order �ω for all 1 ≤ i ≤ m;

2. the rows of M(Z) form a basis of the module of all vectors of order �ω. That is,
every P(Z) ∈ Q[t][Z]1×m of order �ω can be written as P(Z) = Q(Z) ·M(Z) for some
Q(Z) ∈ Q[t][Z]1×m;

3. the leading column coefficient is normalized. That is, there exists a nonzero d ∈ Z[t]
such that

M(Z) = d · Z�μ + L(Z)

where deg L(Z)k,l ≤ μl − 1.

An order basis represents all row operations to eliminate a specified number of low-order
coefficients. An order basis of a particular order and degree, if it exists, is unique up to a
constant multiple [2, Theorem 4.4]. When �ω = (mN +1) ·�e and R(Z) is the corresponding
residual, the rows in M(Z) corresponding to the zero rows in R(Z) give a basis for the left
nullspace of F(Z). However, it is not known a priori the row degree �μ of the order basis.
A row-reduced form and weak Popov form, together with the unimodular transformation
matrix, can be extracted from M(Z) and R(Z) if F(Z) is a matrix of shift polynomials [2].
In the general case of matrices of Ore polynomials, the computation of the Popov form can
be formulated as a left nullspace computation and can be extracted from the result of an
order basis computation [3].

3 The Modular Algorithm

A modular algorithm was given in [3] to compute the order basis and the residual. The
fraction-free algorithm [2] can be reduced easily from Z[t][Z] to Zp[t][Z] using Chinese
remaindering. The usual issue of normalization of the image, detecting unlucky homomor-
phisms, and termination can be dealt with as described in [3]. It should be noted that the

∗Orders in this paper will be with respect to F(Z) and it will not be explicitly stated for the remainder
of the paper.



algorithm is output-sensitive in that the number of primes used is determined by the output
size, and there is no need to verify the result (e.g. by trial division).

However, the reduction from Zp[t][Z] to Zp[Z] was not possible because the evaluation
homomorphism t ← α is generally not an Ore ring homomorphism. Instead, we formulate
the order basis problem as a system of linear equations over Zp and perform Gaussian
elimination on the coefficient matrix. The method we follow is similar to polynomial GCD
computation by Gaussian elimination on the well-known Sylvester matrix [10]. It can also be
considered an extension to the modular algorithm for Ore polynomial GCRD computation
of Li and Nemes [9].

Given row degree �μ and order �ω, the coefficients in the order basis M(Z) can be viewed
as a solution to a linear system of equations over the coefficient ring. By equating the
coefficients of like powers, each row of the order basis satisfies a system of equations of the
form

Z0 · · · Zμk−1+δ1,k[
· · · p(0)

k p
(0)
k · · · p

(μk−1+δ1,k)
k · · · p(0)

k

]
·

Z0 · · · Z�ω−�e⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
· · · Z0 · Fk,·(Z) · · ·

...
· · · Zμk−1+δ1,k · Fk,·(Z) · · ·

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

(2)
More formally, for any P(Z) ∈ Q[t][Z]m×n we define

P�v =
[
P

(0)
∗,1 · · · P

(v1)
∗,1 | · · · |P (0)

∗,n · · · P
(vn)
∗,n

]
. (3)

We also define (recall that �ω = σ · �e)

K(�μ, �ω) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0( F(Z)1,∗) · · · cσ−1( F(Z)1,∗)
...

...
c0( Zμ1 · F(Z)1,∗) · · · cσ−1( Zμ1 · F(Z)1,∗)

...
...

c0( F(Z)m,∗) · · · cσ−1( F(Z)m,∗)
...

...
c0( Zμm · F(Z)m,∗) · · · cσ−1( Zμm · F(Z)m,∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Then the i-th row of the order basis satisfies

(Mi,∗)�μ−�e+�ei
· K(�μ − �e + �ei, �ω) = 0. (5)

The matrix K(�μ, �ω) has dimensions |�μ+�e|× |�ω|, and is called a striped Krylov matrix (with
m stripes). This is a generalization of the well-known Sylvester matrix when m = 2 and
n = 1. We also define K∗(�μ, �ω) to be the matrix K(�μ, �ω) with linearly dependent columns
removed.

Example 3.1 Let �μ = (2, 2), �ω = (3, 3), and

F(Z) =
[
2Z2 + 3tZ + 6t2 Z2 − Z + 2
(t − 1)Z + 3t3 3tZ + t

]
∈ Z[t][Z;σ, δ]2×2, (6)



with σ(a(t)) = a(t) and δ(a(t)) = d
dta(t). Then

K(�μ, �ω) =

⎡
⎢⎢⎢⎢⎢⎢⎣

6t2 2 3t −1 2 1
12t 0 6t2 + 3 2 3t −1
12 0 24t 0 6t2 + 6 2
3t3 t t − 1 3t 0 0
9t2 1 3t3 + 1 t + 3 t − 1 3t
18t 0 18t2 2 3t3 + 2 t + 6

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7)

One way to obtain an order basis of degree �μ and order �ω is to perform Gaussian
elimination on K(�μ, �ω) so that the first �ω columns are eliminated. The rows in the sub-
matrix K(�μ − �e, �ω) are used for pivots in the elimination process, and the remaining rows
give the residual R(Z). The order basis can be recovered from the transformation matrix
corresponding to these rows.

Example 3.2 Continuing from Example 3.1, we perform Gaussian elimination on
K((2, 2), (3, 3)) using the first two rows of each stripe as pivots. After removing some
common factors in each row to reduce the results, the resulting matrix is
2
66666664

6 t2 2 3 t −1 2 1

0 −4 6 t3 − 3 t 2 t + 2 3 t2 − 4 −t − 2

0 0 0 0 −252 t5 + 270 t4 − 234 t3 − 22 t2 − 16 t + 16 882 t4 − 104 t2 − 56 t − 10

0 0 −3 t2 + 2 t − 2 7 t −2 t −t

0 0 0 21 t2 − 14 9 t4 − 12 t3 + 10 t2 − 8 t + 8 −21 t3 + 11 t2 − 14 t + 2

0 0 0 0 −126 t6 + 135 t5 − 180 t4 − 11 t3 + 118 t2 − 20 t 441 t5 − 52 t3 − 28 t2 − 103 t

3
77777775

(8)

with the corresponding transformation matrix
2
6666664

1 0 0 0 0 0

−2 t 0 0 0 0

−6 t2 + 4 −126 t4 + 6 t3 − 4 t2 + 4 t + 14 21 t3 − 14 t −252 t2 + 24 t + 34 252 t3 − 12 t2 − 34 t − 8 0

−t 0 0 2 0 0

−3 t2 + 2 3 t3 − 2 t2 + 2 t 0 12 t − 4 −6 t2 + 4 t − 4 0

−3 t3 + 2 t −63 t5 + 3 t4 − 2 t3 + 2 t2 + 21 t 0 −126 t3 + 12 t2 + 59 t 126 t4 − 6 t3 − 59 t2 − 4 t 21 t3 − 14 t

3
7777775

.

(9)

The order basis M(Z) of degree �μ = (2, 2) and order �ω = (3, 3) can be easily extracted. The
rows of M(Z) are:

[(21t3 − 14t)Z2 + (−126t4 + 6t3 − 4t2 + 4t + 14)Z − 6t2 + 4 (252t3 − 12t2 − 34t − 8)Z − 252t2 + 24t + 34]

and

[(−63t4 + 3t3 − 2t2 + 2t + 21)Z − 3t2 + 2 (21t3 − 14t)Z2 + (126t3 − 6t2 − 59t − 4)Z − 126t2 + 12t + 59] .

Unfortunately, the row degree �μ of the order basis M(Z) of order �ω is not known a
priori. In practice, one starts with �μ0 = �0 and performs elimination on K(�μ0, �ω). For
any i ≥ 0, �μi+1 is determined by the pivoting needed to reduce K(�μi, �ω) by one more
column. Thus, each step in the algorithm involves performing Gaussian elimination of one
column followed by adding one row to the matrix. Unlucky homomorphisms occur when the
determinant of K∗(�μ, �ω) vanishes under the evaluation t ← α. In such case, the pivoting
that occurs during the elimination is different. Unlucky homomorphisms can be detected by
comparing the different row degrees of the final order basis computed under each evaluation
homomorphism.

The LinearAlgebra:-Modular package in Maple was used to perform efficient compu-
tations over Zp. The use of Gaussian elimination for solving the system of linear equations
instead of working on the Ore polynomial matrices directly means that the modular al-
gorithm is no longer exploiting the structure present in the Krylov matrix. On the other



hand, coefficient arithmetic over Z[t] can be replaced by simpler coefficient arithmetic over
Zp. For larger problems, the gain in simpler coefficient arithmetic more than offsets the loss
in efficiency by not exploiting the structure. The algorithm outperforms the fraction-free
algorithm [2] for very large problems even though the fraction-free algorithm exploits the
structure of the Krylov matrix. However, the modular algorithm is not competitive for
small input [3].

4 Improved Implementation

The implementation of the modular algorithm described in [3] has two drawbacks. First,
the interleaving between matrix construction and row elimination means that routines
such as Gaussian elimination (on an entire matrix) or block matrix multiplication can-
not be applied to speed up the computation further. The implementation would have
to switch between high-level Maple code and the faster, low-level compiled code in the
LinearAlgebra:-Modular package. Second, the extra work and bookkeeping required for
incremental matrix construction reduce the advantage of the modular algorithm. We would
like to make use of low-level compiled linear algebra routines as much as possible without
switching to Maple code.

In order to improve the modular algorithm, we note the unpredictability of the final row
degree is mostly due to the presence of unlucky homomorphisms, but they occur rarely in
practice. Therefore, the incremental elimination algorithm given previously [3] is used on
one evaluation point in Zp. Assuming that the evaluation point (and the prime p) is not
unlucky, the order basis computed has the correct degree �μ. If �μ turns out to be incorrect,
it will be detected when combined with the results from other primes. In that case, we
perform extra computations in Zp that are wasted. However, it does not occur often in
practice.

When the correct degree �μ of the order basis is known (as assumed), it is relatively
straightforward to compute the order basis and the residual:

1. construct A = [K(�μ, �ω + (N + 1) · �e) | I];

2. perform Gaussian elimination on A to compute a reduced row echelon form to elimi-
nate the first |�ω| columns, using only rows in K(�μ − �e, �ω) as pivots;

3. record the linearly dependent columns J as well as d = det K∗(�μ− �e, �ω) which is (up
to sign) the product of the pivots used;

4. construct B from −A∗,J after removing the pivot rows and inserting the m × m
identity matrix into the columns corresponding to those rows.

5. compute C = (−1)
Pm

i=2
μi · d · B · A;

6. if C is not zero in the first |�ω| columns, then the homomorphism is unlucky. Otherwise,
extract R(Z) from the left part and M(Z) from the right part of C.

The Gaussian elimination in Step 2 can be performed, for example, by calling the RowReduce
routine in the LinearAlgebra:-Modular package of Maple on the entire matrix A. The
matrix multiplication in Step 5 can be performed by the Multiply routine. As a result,
the new implementation can fully take advantage of good low-level implementation of block
Gaussian elimination and multiplication (e.g. [5]). Since there is no need to perform incre-
mental matrix construction, both memory management and bookkeeping are reduced. In



addition, the control of the program can stay inside the low-level LinearAlgebra:-Modular
subroutines instead of switching back and forth between them and Maple code.

Example 4.1 We apply this method to Example 3.1. We perform our calculations in Z31

and perform the evaluation t ← 7. To conserve space, we only show A′ = [K(�μ, �ω) | I] and
compute only M(Z). Initially,

A′ =

2
6666664

15 2 21 30 2 1 1 0 0 0 0 0
22 0 18 2 21 30 0 1 0 0 0 0
12 0 13 0 21 2 0 0 1 0 0 0
6 7 6 21 0 0 0 0 0 1 0 0
7 1 7 10 6 21 0 0 0 0 1 0
2 0 14 2 8 13 0 0 0 0 0 1

3
7777775

. (10)

Performing Gaussian elimination on rows 1, 2, 4, and 5, we obtain:
2
6666664

1 0 0 0 14 14 29 5 0 27 1 0
0 1 0 0 25 9 11 1 0 24 28 0
12 0 13 0 21 2 0 0 1 0 0 0
0 0 1 0 14 25 0 23 0 6 20 0
0 0 0 1 25 8 22 2 0 21 26 0
2 0 14 2 8 13 0 0 0 0 0 1

3
7777775

. (11)

Here, J = {1, 2, 3, 4} and d = 26. Thus,

C = 26 ·
[−12 0 1 −13 0 0

−2 0 0 −14 −2 1

]
· A′

=

[
0 0 0 0 2 6 4 28 26 26 27 0

0 0 0 0 28 14 14 6 0 1 27 26

]
,

where the highlighted entries are the identity matrix inserted to form B. Therefore, the
image of the order basis computed is

M(Z) = 5 ·
[
6Z2 + 16Z + 20 11Z + 6

30Z + 8 6Z2 + 11Z + 5

]
. (12)

One may easily verify that this is a scalar multiple of the image of the order basis computed
in Example 3.2 under the evaluation t ← 7 in Z31.

The introduction of the scalar multiple is due to the removal of content in Example 3.2.
The implementation given here in fact computes exactly the same result (including the
scalar multiple) as the previous fraction-free and modular implementations for the order
basis problem [2, 3].

5 Experimental Results

Experiments were performed on Ore polynomial matrices in differential case. The results
of these experiments are shown in Tables 1 and 2. The application of block linear algebra
routines reduces the running time of the modular algorithm in all cases. The improve-
ment is more significant for smaller problems, where the original modular algorithm is not
competitive against the fraction-free problems.



Table 1: Comparison of fraction-free, modular, and the new modular algorithm on random
m × n matrices with degt = 1 and integer coefficients having magnitude ≤ 5.

m, n N FFreduce (s) Modular (s) New Modular (s) Improvement

2 1 0.023 0.115 0.069 40%
2 2 0.107 0.242 0.192 21%
2 4 1.689 2.984 2.301 23%
2 8 15.047 28.499 23.232 18%
2 16 278.883 279.041 232.877 17%
2 32 5447.542 4669.801 3992.689 15%

3 1 0.472 1.060 0.723 32%
3 2 3.808 6.268 5.416 20%
3 4 41.549 51.498 44.253 14%
3 8 667.682 599.466 521.571 13%

4 2 41.348 47.841 41.765 13%
4 4 663.707 554.060 487.000 12%
4 6 3850.143 2561.281 2303.989 10%

5 2 293.122 260.021 227.314 13%
5 4 6179.169 3845.945 3362.376 13%

8 1 1660.258 1088.609 998.659 8%

10 1 16179.879 8019.137 7524.240 6%

Table 2: Comparison of fraction-free, modular, and the new modular algorithm on random
m × n matrices with degt = 2 and integer coefficients having magnitude ≤ 5.

m, n N FFreduce (s) Modular (s) New Modular (s) Improvement

2 2 0.470 1.647 1.378 16%
2 4 5.920 11.611 10.004 14%
2 8 86.214 128.528 109.911 14%
2 16 1237.410 1437.492 1300.804 10%

3 2 14.718 25.101 21.954 13%
3 4 216.214 267.295 238.497 11%
3 6 1157.705 1220.524 1114.106 9%
3 8 3933.234 3994.955 3735.837 6%

4 2 170.561 193.981 174.399 10%
4 4 2397.460 2270.272 2096.580 8%

For the larger problems, however, the improvement is less significant. For larger prob-
lems, the size of the coefficients in the output becomes larger as well. More time is spent
on the other parts of the algorithm such as reconstruction by Chinese remaindering and
memory management, and the amount of time spent on actual elimination is proportion-
ally smaller. Since the new implementation improves mainly the elimination process, the
improvement is less significant for larger problems. On the other hand, we see that the im-
proved implementation given in this paper increases the advantage of the modular algorithm



over the fraction-free algorithm, and allows the modular algorithm to be used beneficially
for smaller problems.
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Abstract

We generalize the celebrated construction of the graphs of Lubotzky, Phillips and
Sarnak in their classical work “Ramanujan graphs” [4]. Our new approach consists
in using octonion algebras rather than quaternions. The families obtained by this
mean present not only the same spectacular spectral property that make them good
expanders, but also show a higher girth, yielding a new record for regular graphs.

1 Introduction

In this extended abstract, we define Ramanujan graphs by introducing first the notion that
made them famous, the expanders.

The concept of expansion in a graph has several but closely related meanings, and plays a
significant role at several places of computer science. We refer to the praising Introduction’s
of a work of M. Klawe, recopied in Chapter 1 of Lubotzky’s book [3]. The more recent and
complete survey [2] on expanders is worth consulting for an overview on the broad range
of applications of expanders: complexity theory, derandomization, design of optimal codes,
networks theory and more. The following lines are taken from [1, Introduction], where the
references for the results presented can be found.

Let X = (V (X), E(X)) be a connected regular undirected graph of size n = |V (X)|
and valency k. Let F ⊂ V (X) be a subset of the the vertices, and ∂F be the boundary,
consisting of the set of edges connecting F to its complement V (X) − F . The expanding

coefficient of X is:

h(X) := inf
{ |∂F |

min{|F |, |V (X) − F |} , s.t. F ⊂ V (X), and |F | > 0
}

. (1)

For example, the complete graph on n vertices Kn has h(Kn) = inf{ k(n−k)
min{k,n−k} s.t. 0 < k <

n}, that is always equal to n − �n/2	 
 n/2.
On the other extreme, the cyclic graph on n vertices Cn has a small expanding coefficient.

By taking F a half-cycle in Equation (1) comes h(Cn) ≤ 2/(n/2) 
 4/n, so h(Cn)
n↑∞−−−→ 0.

Definition 1 A family of regular graphs (Xn)n∈ of increasing size |Xn|, and of fixed
valency k is a family of expanders if the graphs are connected, and if there exists ε > 0 such
that h(Xn) > ε for all n ≥ 1.

Of course, what is expected is a high expansion coefficient for a rather small valency. While
it is easy to prove existence of expanders, it has been much more difficult to efficiently con-
struct ones. Margulis [5] did it first, its proof using quite involved mathematical tools. Then

∗Correspondence to: X. Dahan. Kyushu university, Dept of Mathematics, Moto-oka 744, Nishi-ku,
819-0395 Fukuoka. Tel/Fax: +81 (0)92 802 4482



came Ramanujan graphs (Margulis [6] and [4] independently), that achieve the expansion
property by taking another door, the “spectral” one, as explained hereunder.

The adjacency matrix of an undirected graph X is symmetric, so its eigenvalues are real,
denoted and ordered as follows: λ0(X) ≥ λ1(X) ≥ · · · ≥ λn−1(X). If the graph is regular
of valency k, then k is an eigenvalue and it is the largest one, so λ0 = k. If the graph is
connected, then λ0 > λ1, and reciprocally. By a result of Dodziuk and independently Alon
& Milman, if X is a connected, k-regular finite graph:

1
2
(k − λ1(X)) ≤ h(X) ≤

√
2k(k − λ1(X)). (2)

The difference k − λ1 is called the spectral gap. Inequalities (2) provide a convenient
way to prove expansion for the regular graphs. However, the spectral gap, and hence the
expansion coefficients, can not hoped to be too large, as the following theorem, proved by
Alon & Boppana, states:

lim inf
n→∞ λ1(Xn) ≥ 2

√
k − 1. (3)

Ramanujan graphs should be graphs with the asymptotic largest spectral gap. Equa-
tions (2) and (3) suggests that they are optimal expanders (well, actually only asymptoti-
cally, since it is not the case else, as seen by Kahale, see [2, § 4.6]).

Definition 2 A finite, k-regular, connected and undirected graph X is a Ramanujan graph
if λ1(X) ≤ 2

√
k − 1.

Given a fixed valency k, it is proved that Ramanujan graphs exist if k−1 is a power of prime
(Cf. [10, Figure 2] or [2, § 5.3] for surveys apart from the finite upper-half plane graphs of
A. Terras et al.).

The girth of a graph is the length of its shortest closed path, without backtrack-
ing. Given a family (Xn)n∈ of k-regular graphs of increasing size, the following upper
bound, proved by combinatorial observations, is well-known (a special instance of the Moore
bound):

girth(Xn) ≤ (2 + on(1)) logk−1 |Xn|, with on(1)
n↑∞−−−→ 0. (4)

The family (Xn)n∈ is said to have large girth if there exists a constant γ > 0 such that
girth(Xn) ≥ γ logk−1 |Xn|.

It is a difficult task to find graphs with large girth. Using the probabilistic method,
Erd´́os and Sachs proved the existence of graphs of large girth with a constant γ = 1. The
graphs of [4], that are explicit, present as to today the largest constant γ, namely γ ≥ 4/3
(and actually γ = 4/3, from the work of Biggs & Boshier). Our new families of Ramanujan
graphs will also have a large girth with a constant γ = 12/7, yielding a new record on the
girth for regular graphs.

2 Outline of the constructions

Our construction is similar to the one of [4], on slightly more complicated objects, since
non-associative, the octonions, whereas it was quaternions in [4]. It is worth recalling first
this previous construction.

Let p ≡ 1 mod 4 and q > p two prime numbers. The 2x2 matrices over q are isomorphic
to any quaternion algebra over q (indeed, they are all isomorphic, called split quaternions,



denoted ( q)). For example, if Zq is the center of the group of units ( q)×, we have:
( q)×/Zq 
 PGL2(q) (�). Let us consider now integer quaternions. We denote by

1, i, j, ij the usual basis of quaternion algebras, and by N(α) the norm of a quaternion α. A
theory of (left) gcd, with a (left) Bézout identity exists since Hurwitz for integer quaternions.
Hence a factorization into primes makes sense. The following distinguished set of prime
divisors permit to gain an unique factorization.

P(p) := {α = a0 + a1i + a2j + a3ij ∈ ( ), | N(α) = p , a0 > 0, and α− 1 ∈ 2 ( )}. (5)

Let Λ(p) be the set of reduced words with letters taken in P(p), reduced meaning that two
successive letters are not conjugate (if an element α ∈ P(p) then its conjugate α = 2a0 −α
also). By unique factorization, it is possible to define a structure of free group on Λ(q).
Then the reduction modulo q, τq : ( ) → ( q), sends Λ(p) (in fact, embedded in ( )
but not through the inclusion) onto ( q)×/Zq. Next, let S (p, q) = τq

(P(p)
)

modulo Zq.
Thanks to Isomorphism (�), we define the graphs Yp,q of [4] as the Cayley graphs

Cay
(
PGL2(q), S (p, q)

)
if

(
p
q

)
= −1, and as the Cayley graphs Cay

(
PSL2(q), S (p, q)

)
else, when p is a square modulo q. Indeed, S (p, q) only generates PSL2(q) in the later
case, and S (p, q) generates fully PGL2(q) in the former. This shows that the graphs
Yp,q are connected. Moreover they are bipartite when

(
p
q

)
= −1 and else, not. Since

|S (p, q)| = p + 1, we have the following proposition.

Proposition 1 Yp,q is p+1-regular of cardinality q(q2−q) if
(

p
q

)
= −1, and of cardinality

1
2q(q2 − 1) else.

The proof of the estimates on the girth [4, Theorem 3.4] is very easy, and is similar for the
new graphs the same proof is used.

Theorem 1 girth(Yp,q) ≥ 4 logp q − logp 4 if
(

p
q

)
= −1, else girth(Yp,q) ≥ 2 logp q.

This yields the constant 4/3 mentioned in Introduction, since 4 logp q 
 4/3 log|S (p,q)|−1 |Yp,q|.

The new construction based on octonions. In the same way, octonion algebras over
q are all isomorphic and called split octonions. The set of invertible elements ( q)×

is no more a group (non-associative) but, this weaker structure is called a loop. While
non-associative, octonions are composition algebras, (the norm is multiplicative) hence are
alternative and they verify the Moufang identities: a((bc)a) = (a(bc))a = a(bc)a. The loop

( q)× is a Moufang loop, and in analogy with PSL2(q), let M be the normal subloop of
( q)× of elements of norm 1. We introduce the normal central subloops Z and ZM of
( q)× and M respectively, so that we have a loop embedding M/ZM ↪→ ( q)×/Z .

Paige proved [8] that M/ZM is a simple loop, and an index 2 normal subloop of ( q)×/Z
(in total analogy with PGL2 and PSL2).

Let 1, i, j, ij, t, it, jt, (ij)t the be the usual basis of the octonions over . We denote by
N(α) the norm of an octonion α. As done with quaternions, we define the set:

P(p) := {α = a0 + a1i + a2j + a3ij + a4t + a5it + a6jt + a7(ij)t ∈ ( ),
such that a0 > 0, and N(α) = p, and α − 1 ∈ 2 ( )} (6)

Unique factorization for integral octonions is not trivial (even in a Coxeter maximal arith-
metic, that permits the Euclidean division). Rehm very nicely proposed a “distortion”



of the Euclidean algorithm [9, Proposition 4.1] and reached unique factorization (for our
purpose it is [9, Proposition 5.4, Theorem 5.7]). Unavoidably, we need to prescribe one
bracketing:

Definition 3 A reduced word of length � over a set of octonions A is an element(
· · · (α1α2)α3

) · · ·)α�,

such that αi ∈ A and αi 
= αi+1 for i = 1, . . . , � − 1.

Let L (p) the set of all reduced words of any length over P(p). It can be made a loop,
in which two different words will always gives two distinct elements in ( ) (kind of a
“free loop”, but not trivially included in ( )). The reduction modulo q, τq : ( ) →

( q) permits to define a loop homomorphism L (p) → ( q)×/Z , that is onto. Let,
T (p, q) := τq

(
P(p)

)
modulo Z .

Lemma 1 If
(

p
q

)
= −1, then T (p, q) generates ( q)×/Z , and if

(
p
q

)
= 1, T (p, q)

generates M/ZM .

Cayley graphs are usually defined for groups, but it is possible to define them for loops as
well (Cf. [7] for an exposition), under light restrictions.

Definition 4 If
(

p
q

)
= −1 let Xp,q be the Cayley graphs Cay

(
( q)×/Z , T (p, q)

)
, and

if
(

p
q

)
= 1, the Cayley graph Cay

(
M/ZM ,T (p, q)

)
.

We have |T (p, q)| = p3+1, [9, Proposition 6.4] and | ( q)×/Z | = q7−q3, [9, Lemma 3.2]
This permits to prove:

Proposition 2 The graphs Xp,q are p3 + 1-regular, connected and undirected. They are

bipartite of cardinal q7 − q3 if
(

p
q

)
= −1, and not bipartite of cardinal 1

2 (q7 − q3) else.

The construction being achieved, let us give the idea of the proofs of the estimates on the
spectral property (Definition 2) and on the girth. A main difference with quaternions is that
unlike Cayley graphs on groups, the Xp,q are (very probably) not vertex-transitive. This
comes about in the (essential) fact that the closed paths (without backtracking) of given
length at each vertex, are no more in one-one correspondence (Cf. [1, Corollary 1.4.7]). It
can however easily bypassed (e.g., little changes in [1, Lemma 4.4.2]), and the machinery
of § 4.4 (until Prop. 4.4.3, then directly Remark 4.4.7) of [1] can be applied.

Another difference is the quadratic form arisen here, in 8 variables f(x) = x2
0 + 4q2x2

1 +
· · ·+ 4q2x2

7, similar to the one in 4 variables of [4, Equation (1.3)] (we need the estimate of
Ramanujan-Petersson on the number of integer solutions of f(x) = pm). The theta function
associated to f is a modular form of weight 4. In [4], it had weight 2, the Eichler’s proof
of the Ramanujan-Petersson conjecture was sufficient. Here it is required the Deligne’s
reduction of the Ramanujan-Petersson conjecture for modular forms of even weight to the
Weil conjectures (that he himself happened to prove).

To prove the estimate on the girth of the non vertex-transitive graphs Xp,q, we need
to consider cycle paths at each nodes and not only at the “origin”. This appears, as said
above, to be not a problem and a the same estimates as in Theorem 1 (with the same proof)
are obtained. The characteristics of the graphs being different, we have:

girth(Xp,q) ≥ 4 logp q =
12
7

logp3 q7 ≥ 12
7

log|T (p,q)|−1 |Xp,q|,
when p is not a square modulo q. That is the result announced in Introduction.
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Abstract

In this paper we define the Popov and weak Popov forms of matrices over Poincaré-
Birkhoff-Witt (PBW) extensions, and exhibit effective algorithms to find them. As
applications we give general methods to calculate the ranks of such matrices, and a
method to transfer a system of differential equations into a first order equation.

1 Introduction

When seeking to determine left and right equivalence properties of a matrix over a domain,
one often seeks to transform that matrix into a canonical form, such as the Hermite or
Smith form. These forms capture all left and two-sided equivalence properties respectively,
but suffer from substantial growth in the size of entries. For example, for polynomial
matrices, their degrees are generally on the order of the size of the matrix, even when the
degrees of the entries in the original matrix are small. In order to avoid this increase in
degree, Popov (1972) introduced another normal form, which has been successfully applied
to control theory (see for example, Kailath (1980)). This form has come to be known as
the Popov normal form.

Recently, the Popov form has attracted considerable interest in the computer algebra
field for its low degree and correspondingly efficient algorithms. For example, Villard (1996)
and Beckermann et al. (1999) defined and discussed shifted-Popov forms. In Mulders and
Storjohann (2003) they define the weak Popov form, which while not canonical, is easier to
compute and elicits many of the matrix properties we are interested in.

In the non-commutative case, matrices over Ore domains (domains which satisfy the
Ore condition, which essentially says that any two elements have a non-trivial left (or right)
common multiple) have been considered at least since the 1930’s (see Ore (1933), Jacobson
(1943, 1996)). In Jacobson (1943) the Hermite and Smith forms of matrices over skew
polynomial rings are considered. Recent treatments from a ring theoretic perspective can be
found in Cohn (1995). In the computer algebra field, Abramov and Bronstein (2002) gave a
method to calculate the ranks of matrices over skew polynomial rings R[x, x−1; σ], and their
method can be applied to Weyl algebras. Beckermann et al. (2006) use fraction-free methods
to discuss weak Popov form of matrices over skew polynomial rings. Giesbrecht et al.
(2005) discuss Popov forms of matrices over valuation domains. Davies et al. (2008) and
Giesbrecht and Kim (2009) develop reductions to linear algebra over a (commutative) field
to give polynomial-time algorithm for Popov and, respectively, Hermite forms of matrices
over an Ore domain.



Matrices over multivariate polynomial rings and rings of differential operators have been
extensively used in multidimensional linear systems since the mid-1970s (see, for example,
Bose (1985), Park (2004), Youla and Pickel (1984), Zerz (2000), Hillebrand and Schmale
(2001)), and also in other areas such as operator algebras; see for example, Finkel and
Kamran (1997). This work motivates us not only to consider the univariate case, but also
the case of multivariate non-commutative polynomial rings.

In this paper, we discuss matrices over noncommutative rings called Poincaré-Birkhoff-
Witt (PBW) extensions, which includes most popular rings with derivations studied in
computer algebra. At first, we consider the row spaces of matrices as left modules over base
rings and define two kinds of reductions which are used to construct weak Popov forms and
Popov forms respectively. The rank of matrices remains invariant under our reductions,
and equals the number of nonzero rows of the (weak) Popov forms. Note that the ranks of
matrices are independent of term orders. Therefore some term orders may produce ranks
very quickly, while some may be considerably slower.

As an application, this gives a direct method to calculate the rank of matrices over Weyl
algebras, as compared to the method given by Abramov and Bronstein (2002), which sets
up a bijection between the Weyl algebra and a skew Laurent polynomial ring.

In this extended abstract, we first recall the definition of PBW extensions, and then
outline how to define (weak) Popov forms of matrices over PBW extensions. We then
present an algorithm to construct Popov forms. More results including algorithms and
examples will appear in the forthcoming journal version.

2 Definitions and some results
The definition of a PBW extension was first given by Bell and Goodearl (1988). This
lead to a unified treatment of many polynomial-type rings which are currently studied in
associative ring theory and computer algebra.

Definition 2.1 Let R and E be two associative rings with R ⊆ E. E is called a (finite)
PBW extension of R if there exist x1, x2, · · · , xn ∈ E such that

(a) monomials xi1
1 · · ·xin

n form a basis for E as a free left R-module, for i1, . . . , in ∈ N;
(b) xir − rxi ∈ R for each i = 1, . . . , n and any r ∈ R;
(c) xixj − xjxi ∈ R + Rx1 + · · · + Rxn for all i, j = 1, . . . , n.

Let R = R〈x1, . . . , xn〉 be a PBW extension of an Ore domain R. One can naturally
define a term-ordering on R which satisfies the usual multiplicative properties and respects
degree; we refer to (Giesbrecht et al., 2002, Section 2) for details. Furthermore, we can
extend the term ordering on R to the left R-module Rm and define leading monomials,
leading coefficients and leading terms in the natural way. Throughout this paper assume
that ≺ is a term-over-position admissible term order on Rm, i.e., the monomial term order
has higher priority than the position in the vector; see Giesbrecht et al. (2009) for details.

We now define the notions of weak reduction and reduction as mechanisms for cancelling
terms in vectors via the leading term (designated by lt(·)) of another vector.

Definition 2.2 Given �a,�b,�c ∈ �m, we say that
(a) �a weakly reduces to �c modulo �b in one step if and only if lt(�b) divides lt(�a) and
�c = �a − q1

�b, where q1 ∈ � is such that lt(�a) = lt(q1
�b).

(b) �a reduces to �c modulo �b in one step if and only if lt(�b) divides a term �d that appears
in �a and �c = �a − q2

�b, where q2 ∈ � is such that �d = lt(q2
�b).



Thus, weak reduction uses the leading term of �b to cancel the leading term of �a, whereas
full reduction is much stronger, and uses the leading term of �b to cancel any possible term
in �a. The weak division algorithm (resp. the division algorithm) for �r ∈ Rm by a set
Γ ⊆ Rm is defined correspondingly to reduce the least leading monomials (resp. all possible
monomials) in �r by the leading monomials of elements of Γ.

Definition 2.3 A nonzero vector �a in �m is called (weakly) reduced with respect to a set
S = {�s1, . . . , �sl} of nonzero vectors in �m if no (leading) term that appears in �a is divisible
by any one of the lt(�si), i = 1, . . . , l.

Furthermore, a set S = {�s1, . . . , �s�} of nonzero vectors is called (weakly) reduced if each
vector �si (for 1 ≤ i ≤ �) is (weakly) reduced with respect to S \ {�si}.
We can now define the weak Popov and Popov forms as follows:

Definition 2.4 Given a matrix Rm×n and a term-over-position admissible term order on
Rm, let Γ = {�r1, . . . , �rm} be its set of its row vectors.

(a) Rm×n is in weak Popov form with respect to ≺ if Γ is a weakly reduced set.
(b) Rm×n is in Popov form with respect to ≺ if

(i) Γ is a reduced set;
(ii) the leading coefficients of {�ri} are monic;
(iii) rows are in a descending chain with respect to ≺, that is, �rm ≺ · · · ≺ �r2 ≺ �r1.

The weak reduction and reduction correspond to weak Popov form and Popov form,
respectively. In this paper, we first describe two algorithms to present (weak) divisions,
and then use them to construct (weak) Popov forms. Here we list one as follows:

Algorithm: Popov form for Rm×n

Input: � row vectors �r1, . . ., �rm of a matrix A ∈ Rm×n;
Output: � row vectors �p1, . . . , �pm of Popov form of A ∈ Rm×n;

Initialization: �p1 := 0, . . ., �pm := 0; changes:=true;
While (changes) do

changes := false;
Swap rows so that they are in a descending chain with respect to ≺;
For i from 2 to m do

If �ri is reducible modulo �r1 then
Using the division algorithm, let �ri equal the remainder of �ri by �r1;
changes := true;

end do;
end do;
Return: �p1 := �r1, . . ., �pm := �rm;
Make leading coefficients 1 by multiplying by suitable elements of quotient field of R.

Theorem 2.5 The Popov form algorithm terminates after a finite number of steps and
produces a Popov form.

The proof follows relatively easily from the fact that Rm is noetherian, and the repeated
reduction yields a descending chain of ideals which must be finite. Of course, the number
of reduction steps is of great interest in the efficiency of our algorithms.

One of the applications of Popov forms is to provide the rank information efficiently.
First we prove the following theorem which implies that the ranks of matrices are invariant
under Popov form transformations.



Theorem 2.6 For any matrix A ∈ Rm×n there exists a unimodular matrix U such that
UA is in Popov form (similarly for weak Popov form).

The transformation matrix U and the Popov form can be computed by our algorithms.
As an application, we can find the rank of a matrix by counting the number of non-zero
rows. Also, given a unimodular matrix Rn×n (one whose inverse is also in Rn×n), one can
find its inverse simply by noting that the Popov form of a unimodular matrix is the identity.

We also anticipate that the Popov form will be useful as an intermediate step to effi-
ciently computing the Hermite and Smith/Jacobson forms in an effective manner.
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Abstract

We show how we can make Boolean Gröbner bases computations feasible on stan-
dard computer algebra systems which have a routine to compute Gröbner bases in
polynomial rings over the Galois field GF2. We also show that we can even compute
a comprehensive Boolean Gröbner basis using only computations of Gröbner bases in
a polynomial ring over GF2. Our implementation on the computer algebra system
Risa/Asir achieves tremendous speedup comparing with previous implementations of
Boolean Gröbner bases.

1 Introduction

A commutative ring B with an identity is called a Boolean ring if every element of which
is idempotent. A residue class ring B[X1, . . . , Xn]/〈X2

1 − X1, . . . , X
2
n − Xn〉 with an ideal

〈X2
1 −X1, . . . , X

2
n −Xn〉 also becomes a Boolean ring, which is called a Boolean polynomial

ring and denoted by B(X1, . . . , Xn). A Gröbner basis in a Boolean polynomial ring (called
a Boolean Gröbner basis) is first introduced in [4, 5] and further developments are done in [2,
6, 7, 8, 10]. The original computation algorithm introduced in [4, 5] uses a special monomial
reduction which is more complicated than a usual monomial reduction in a polynomial ring
over a field. It is also directly applicable for the computations of comprehensive Boolean
Gröbner bases. This algorithm is first implemented in Prolog as a free software([6]) for the
computations of both Boolean Gröbner bases and comprehensive Boolean Gröbner bases
for the case that B is a Boolean ring PFC(S) that consists of all finite or co-finite subsets
of S. (Here, S is a set of all strings of the computer language.)

It seems a very natural and easy way to implement them in a computer algebra system
which has a facility to manipulate polynomials, however it is not very simple to implement
computations of the above Boolean ring(including how to represent their data structures) in
standard computer algebra systems. In [7], an alternative algorithm is introduced where we
can obtain a Boolean Gröbner basis by only computing usual Gröbner bases in a polynomial
ring over the Galois field GF2. Its implementation brought us a much faster program than
[6]. Unfortunately, this algorithm is not applicable for the computations of comprehensive
Boolean Gröbner bases, and no implementations had been done in any computer algebra
system.

After a decade of the pioneering work of Boolean Gröbner bases, further developments
are recently done in [2, 8, 10]. Based on these results, we have implemented a software [1]
to compute both Boolean Gröbner bases and comprehensive Boolean Gröbner bases for the
Boolean ring PFC(S) in the computer algebra system Risa/Asir [3]. Our software achieves
a tremendous speedup comparing with the previous one. It enables us to do our recent
work [9] of a non-trivial application of Boolean Gröbner bases.



In this short paper, we describe how we can implement computations of both Boolean
Gröbner bases and comprehensive Boolean Gröbner bases for the Boolean ring PFC(S) in
the computer algebra system Risa/Asir. We can also easily modify our method for any other
computer algebra systems which have a routine to compute Gröbner bases in polynomial
rings over the Galois field GF2.

The reader is referred to [2, 10] for the detailed descriptions of the properties of Boolean
Gröbner bases which we use in this paper together with important definitions such as
a Boolean closed polynomial, a reduced Boolean Gröbner basis and a stratified Boolean
Gröbner basis.

2 Several key facts of Boolean Gröbner bases

Given a finite set F of Boolean polynomials in B(X1, . . . , Xn), let B
′
be its smallest Boolean

subring that contains all coefficients of polynomials in F . Obviously, any Boolean Gröbner
basis G of the ideal 〈F 〉 in B

′
(X1, . . . , Xn) is also a Boolean Gröbner basis of the ideal 〈F 〉

in B(X1, . . . , Xn). Note that B
′

is a finite Boolean ring, so it is isomorphic to a direct
product GF

k
2 of the Galois field GF2 for some natural number k.

In what follows, ci denotes the i-th component of c ∈ GF
k
2 for each i = 1 . . . , k, fi denotes

the Boolean polynomial of GF2(X̄) obtained from a Boolean polynomial f of GF
k
2(X̄) by

replacing each coefficient c with ci. X̄ is an abbreviation of X1, . . . , Xn.

Computation of Boolean Gröbner bases in GF2(X̄) is quite easy.

Theorem 1 For a finite set {f1, . . . , fl} of Boolean polynomials in GF2(X̄), let G be a
(reduced) Gröbner basis of the ideal 〈f1, . . . , fl, X

2
1 − X1, . . . , X

2
n − Xn〉 in the polynomial

ring GF2[X̄] over the field GF2 w.r.t. a term order.
Then G \ {X2

1 − X1, . . . , X
2
n − Xn} is a (reduced) Boolean Gröbner basis of the ideal

〈f1, . . . , fl〉 in GF2(X̄) w.r.t. the same term order.

The next theorem which is essentially a special instance of Theorem 2.3 of [11] plays an
important role in the computation algorithm of Boolean Gröbner bases employed in [7].

Theorem 2 In a Boolean polynomial ring GF
k
2(X̄), let G be a finite set of Boolean closed

Boolean polynomials. Then, G is a (reduced) Boolean Gröbner basis of an ideal I in GF
k
2(X̄)

if and only if Gi = {gi|g ∈ G}\{0} is a (reduced) Gröbner bas is of the ideal Ii = {fi|f ∈ I}
in GF2(X̄) for each i = 1, . . . , k.

Example 1 The following left constraint with unknown set variables X and Y is equivalent
to the right system of equations of a Boolean polynomial ring B(X, Y ), where B is a Boolean
ring PFC(S).⎧⎪⎪⎨
⎪⎪⎩

X ∪ Y ⊆ {s1, s2}
s1 ∈ X
s2 ∈ Y
X ∩ Y = ∅

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

(1 + {s1, s2})(XY + X + Y ) = 0
{s1}X + {s1} = 0
{s2}Y + {s2} = 0
XY = 0

Let F = {(1 + {s1, s2})(XY + X + Y ), {s1}X + {s1}, {s2}Y + {s2}, XY } . B
′
is a finite

subring of B that consists of {0, 1, {s1}, {s2}, {s1, s2}, 1 + {s1}, 1 + {s2}, 1 + {s1, s2}}. It is
isomorphic to GF3 with the isomorphism ψ given by ψ({s1}) = (1, 0, 0), ψ({s2}) = (0, 1, 0)



and ψ(1+{s1, s2}) = (0, 0, 1). Considering B
′
as GF3 with this isomorphism, F1 = {0, X +

1, 0, XY }, F2 = {0, 0, Y + 1, XY } and F3 = {XY + X + Y, 0, 0, XY }. Reduced Gröbner
bases of them in a Boolean polynomial ring GF2(X, Y ) w.r.t. a lexicographic term order
such that X > Y are G1 = {(1, 0, 0)Y, (1, 0, 0)(X + 1)}, G2 = {(0, 1, 0)(Y + 1), (0, 1, 0)X}
and G3 = {(0, 0, 1)X, (0, 0, 1)Y } respectively. and we have a reduced Boolean Gröbner
basis G = {{s1}Y, {s1}(X + 1), {s2}(Y + 1), {s2}X, (1 + {s1, s2})X, (1 + {s1, s2})Y } of F .
Stratified Boolean Gröbner basis is obtained simply adding elements which have the same
leading monomial. For this G, its stratified Boolean Gröbner basis is {X + {s1}, Y + {s2}}.

The computation of comprehensive Boolean Gröbner bases is much simpler than the compu-
tation of usual comprehensive Gröbner bases in polynomial rings over fields. Given a finite
set F of Boolean polynomials in B(A1, . . . , Am, X1, . . . , Xn), let G be a (stratified) Boolean
Gröbner basis of the ideal 〈F 〉 in the Boolean polynomial ring (B(A1, . . . , Am))(X1, . . . , Xn)
over the coefficient Boolean ring B(A1, . . . , Am), then G is a (stratified) comprehensive
Boolean Gröbner basis of F with parameters A1, . . . , Am. We can also apply the above
method for them, however, when m is not very small we need a huge natural number k for
the isomorphism between B(A1, . . . , Am) and GF

k
2 , namely k ≥ 2m. Therefor the above

method is not feasible when we have many parameters. The next result recently reported
in [2] enables us to apply the above method for the computation of comprehensive Boolean
Gröbner bases.

Theorem 3 Let G = {g1(Ā, X̄), . . . , gk(Ā, X̄)} be a Boolean Gröbner basis of 〈F 〉 for
F = {f1(Ā, X̄), . . . , fl(Ā, X̄)} in a Boolean polynomial ring B(Ā, X̄) w.r.t. a block term
order > such that X̄ � Ā. Then G is a comprehensive Boolean Gröbner basis of F w.r.t.
>X̄(restriction of > on T (X̄)).

Example 2 The following left constraint is same as the previous example except that we
have an another unknown variable a for an element. Using another set variable A to rep-
resent a singleton set {a}, it is equivalent to the right system of equations of a Boolean
polynomial ring B(A,X, Y ).⎧⎪⎪⎨
⎪⎪⎩

X ∪ Y ⊆ {s1, s2}
s1 ∈ X
a ∈ Y
X ∩ Y = ∅

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

(1 + {s1, s2})(XY + X + Y ) = 0
{s1}X + {s1} = 0
AY + A = 0
XY = 0

Let F = {(1 + {s1, s2})(XY + X + Y ), {s1}X + {s1}, AY + A,XY }.
The stratified Boolean Gröbner basis G of F w.r.t. a lexicographic term order such that
X > Y > A has the following form:

G = {{s2}XY, {s2}Y A + {s2}A, (1 + {s2})Y,
{s2}XA, (1 + {s2})X + {s1}, (1 + {s2})A}.

This is not stratified or even reduced as a Boolean Gröbner basis in (B(A))(X, Y ).
In fact, if we specialize A by {s2}, G({s2}) \ {0} becomes {{s2}XY, {s2}Y + {s2}, (1 +
{s2})Y, {s2}X, (1 + {s2})X + {s1}}, which is not stratified or even reduced.
But, from the above comprehensive Boolean Gröbner basis we can easily construct the strat-
ified Boolean Gröbner basis of F in (B(A))(X, Y ):

{({s2}A + {s2})XY, (A + 1 + {s2})X + {s1}A + {s1},
(A + 1 + {s2})Y + {s2}A, (1 + {s2})A}.



3 Implementation

We show how we can implement the computation method of Boolean Gröbner bases de-
scribed in the last section using the only manipulations of polynomial rings over the Galois
field GF2.

In our implementation, an element of PFC(S) is represented as a polynomial over GF2. For
example, an element 1 + {s1, s2} of PFC(S) is represented as a polynomial 1 + s1 + s2 of
GF2[s1, s2]. Using this representation, a polynomial f of PFC(S)[X̄] is translated into a
polynomial in GF2[s1, . . . , st, X̄], where s1, . . . , st are all the strings which occurs in some
coefficient of f . The smallest Boolean subring of PFC(S) that contains s1, . . . , st is iso-
morphic to the direct product GF

t+1
2 . Using an isomorphism ψ such that ψ({si}) is the

(t + 1)-tuple of 0, 1 such that only the i-th component is 1 and the others are all 0 and
ψ(1+ {s1, . . . , st}) is the (t+1)-tuple of 0, 1 such that only the last component is 1, we can
consider f as a polynomial of GF

t+1
2 [X̄]. Under this isomorphism, fi can be computed by

simply specializing si with 1 and other sj with 0 for i = 1, . . . , t, for i = t+1 by specializing
all variables s1, . . . , st with 0.

Example 3 f = (1 + {s1, s2})XY is translated into XY + s1s2XY .
g = {s1, s2}X({s1}Y ) is translated into (s1 + s2)Xs1Y = s2

1XY + s1s2XY .

Note that the second polynomial g could be further simplified to s1XY , however we do not
employ this simplification since it does not affect the above specializations. By this rather
lazy strategy together with the computation technique of Boolean Gröbner bases described
in Theorem 1, we can construct most part of Boolean Gröbner bases computations by only
using facilities of Risa/Asir. Our codes for the computations of both Boolean Gröbner bases
and comprehensive Boolean Gröbner bases consists of less than 300 lines.

Example 4 The following are computation examples of Example 1 and 2 by our software.
The first list [x,y] is the list of main variables, the second one [] or [a] is the list of
parameters, the third one [s1,s2] is the list of strings and the last number 2 is the type
of the term order (in Risa/Asir 2 is for a lex order).

[1378] G=cbgb([(1+(s1+s2))*(x*y+x+y),s1*x+s1,s2*y+s2,x*y],
[x,y],[],[s1,s2],2)$

[1379] bp_str(G,[x,y],[]);
[1*y+[s2],1*x+[s1]]

[1380] G=cbgb([(1+(s1+s2))*(x*y+x+y),s1*x+s1,a*y+a,x*y],
[x,y],[a],[s1,s2],2)$

[1382] bp_str(G,[x,y],[a]);
[([s2]+1)*a,1*a*y+([s2]+1)*y+[s2]*a,1*a*x+([s2]+1)*x+[s1]*a+[s1],

[s2]*a*y*x+[s2]*y*x]

4 Conclusions and remarks

Our program achieves tremendous speed-up comparing with the old implementation of [7].
It enables us to do our recent work [9] of a non-trivial application of boolean Gröbner
bases. The following table contains computation time(in terms of seconds) of 7 boolean



Gröbner bases for solving 7 Sudoku puzzles which are ranked as extremely difficult. The
row Risa/Asir and Klic contain computation times of the same boolean Gröbner basis in
each column by our new program and by the old program of [7] respectively, the symbol ∞
means that the computation did not terminate within 2 hours. All computations are done
by a PC with 2GB memory and Core2Duo2GHZ CPU.

puzzle 1 2 3 4 5 6 7
Risa/Asir 41.7 43.6 48.1 40.1 44.3 48.9 76.2

Klic 134.1 398.3 1025.3 ∞ 1242.3 686.5 ∞
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Abstract

We study some important classes of optimization problems originating from opti-
mal design of semiconductor memories such as static random access memory (SRAM)
aiming at boosting the yield rate. For the purpose we propose new optimization meth-
ods for the classes based on a symbolic algorithm called quantifier elimination (QE)
combined with numerical computation. This improves the total efficiency of the design
process by reducing the number of repetitions of numerical yield rate simulations and
also provides some useful information e.g., explicit relations among design parameters,
objective functions and the yield rate.

1 Introduction

Recently, in manufacturing design, model-based design has attracted much attention. Man-
ufacturing design problems can often be treated as mathematical constraints via mathemat-
ical models of the target systems. Therefore, developments in design processes are closely
related to the available computational methods (in particular, optimization methods) at the
time. Numerical convex optimization methods enable us to obtain globally optimal solu-
tions to many design problems that cannot currently be solved analytically. Design methods
based on numerical optimizations are becoming more practical due to enhanced computer
performance and the development of algorithms with superior accuracy and efficiency. How-
ever, some hurdles still remain in these numerically computed design methods. Demands for
higher quality, better performance, high-value added, and manufacturing small quantities
of a wide variety of products require more accurate globally optimal solutions of non-convex
problems as well as parametric solutions to the problems (i.e., regions of feasible solutions,
the optimal solutions in terms of the parameters). Constraint solving/optimization methods
based on symbolic and algebraic computation have been gaining attention recently as an
effective method. Specifically, quantifier elimination (QE), which is an algebraic algorithm
based on theories of real algebraic geometry, has been successfully applied in many fields
of science and engineering [1, 3, 5]. However, to realize practically effective methods using
QE, its speeding-up is the most significant issue.

In this paper we consider some important classes of optimization problems that are
originating from an optimal design process for boosting the yield rate of SRAM production.
For such optimization problems, various kinds of numerical approaches based on Monte
Carlo methods or genetic algorithms (GA) have been commonly used.

∗Correspondence to: iwane@jp.fujitsu.com



However, it is desired to develop more efficient methods which help us take an overall
view of design due to miniaturization of SRAM technologies. For the purpose, in this paper,
we propose new optimization methods based on quantifier elimination by combining it with
numerical computation.

2 Statement of the problem

First we explain the target problems which come from SRAM optimal design.
Let x be a set of variables x = (x1, . . . , xn) where x ∈ D ⊆ Rn. D is usually given

as a cartesian product of intervals, that is xi ∈ Ii where Ii = [ai, bi] and ai, bi ∈ R. We
consider the three polynomials g1, g2 and g3 in x over the reals R and assign new variables
y1, y2 and y3 to them respectively: y1 ≡ g1(x), y2 ≡ g2(x) and y3 ≡ g3(x). Then we denote
min(y1, y2) by z: z ≡ min(y1, y2). Usually y1 and y2 correspond to noise margins of SRAM
and z stands for the yield rate of SRAM production. Moreover, y3 is another objective
function such as a cell size of SRAM. To put it simply, what we want to do is to optimize
design parameters (e.g., xi) and objective functions (e.g., y3) so as to boost the yield rate z.
This is regarded as some classes of optimization problems such as parametric optimization or
multi-objective optimization. Concretely speaking, fundamental problems to be examined
in the design process, which are our main concerns here, are formulated below. Though here
we do not mention any combined problems among the following problems, such problems
are frequently considered in actual design work.

Problem 1 Find out the maximal value of z:{
maximize z ≡ min(y1, y2),
subject to y1 ≡ g1(x), y2 ≡ g2(x), x ∈ D ⊆ Rn.

Problem 2 Find out the relation between z and a design parameter xi.

Problem 3 Find out the relation between z and another objective function y3.

In general you may imagine that the polynomials g1, g2 and g3 are nonlinear. However,
we should note that we can expect some special structures in the optimization problems
derived from the actual situation of SRAM optimal design. In fact, we can assume the
following properties for most problems from SRAM optimal design. Our aim is to develop
effective and efficient algorithms to solve Problems 1, 2 and 3 by exploiting the following
properties.

Structure 1 g1 and g2 are polynomial models generated from simulation data. In many
cases it is sufficient that we employ linear models w.r.t. x for g1 and g2.

Structure 2 The objective function g3 associated with a cell size is usually given as a
quadratic polynomial in x, which consists of two linear factors g

(1)
3 and g

(2)
3 : g3 = g

(1)
3 ·g(2)

3 .

3 Our solution

The outline of our approach to Problems 1-3 is very simple. Our main tool is a symbolic
algorithm “quantifier elimination” for solving real algebraic constraints [2].

〈1〉 First each problem is reduced to a QE problem expressed as a first-order formula,
〈2〉 then the resulting QE problems are solved by using QE,



〈3〉 finally we obtain the feasible regions of desired items (which are chosen at step 〈1〉
among design parameters xi, objective functions yj , z) in a parameter space.

The solutions to three problems are obtained by solving the following QE problems, re-
spectively. The two structural properties of the problems are incorporated at each step of
solving Problems 1, 2 and 3 as shown below:

Problem 1 The associated QE problem is given as

∃x (z ≤ g1(x) ∧ z ≤ g2(x) ∧ x ∈ D). (1)

Performing QE on (1), we obtain an equivalent quantifier-free formula φ(z), which describes
the feasible regions of z (results in a union of intervals in z). Therefore the desired maximum
is the maximal endpoint of all the intervals. Furthermore we can get the exact expression
of the maximal value. Usually the polynomials appearing in (1) are all linear, hence we can
utilize a specialized QE algorithm [4], which is generally much more efficient than a general
QE algorithm, and thus this greatly improves the computational efficiency.

Problem 2 The associated QE problem is given as

∃x1∃x2 · · · ∃xi−1∃xi+1∃xi+2 · · · ∃xn (z ≤ g1(x) ∧ z ≤ g2(x) ∧ x ∈ D). (2)

Performing QE on (2), we obtain an equivalent quantifier-free formula ψ(z, xi), which shows
the feasible regions in the z-xi plane as a semi-algebraic set. By focusing attention on
the upper bounds of the feasible regions w.r.t. z, if they exist, one can see the explicit
relation between the maximal yield rate and the design parameter xi. This is a parametric
optimization problem. If the polynomials appearing in (2) are also all linear, then we can
utilize a specialized QE algorithm [4] as well.

Problem 3 The associated QE problem is given as

∃x (z ≤ g1(x) ∧ z ≤ g2(x) ∧ y3 − g3(x) = 0 ∧ x ∈ D). (3)

Performing QE on (3), we obtain an equivalent quantifier-free formula τ(z, y3), which
demonstrates the feasible regions in the z-y3 plane as a semi-algebraic set. By focusing
attention on the upper bounds of the feasible regions w.r.t. z and the lower bounds w.r.t.
y3 simultaneously, we can see the relation (typically “trade-off”) between maximal yield
rate and the cell size y3. This is a multi-objective optimization problem.

As we mentioned, if g3 is a polynomial with degree 2 in x, it might significantly increase
the computational complexity, in particular for the case with many variables. Fortunately,
g3 is normally factorized into two linear factors g

(1)
3 and g

(2)
3 , so we can reformulate (3) as

follows:
∃x (z ≤ g1(x) ∧ z ≤ g2(x) ∧ y4 − g

(1)
3 = 0 ∧ y5 − g

(2)
3 = 0 ∧ x ∈ D). (4)

The polynomials occurring in (4) are also all linear, so we can employ a specialized QE
algorithm [4] as well. Here we do not have the formula of y3 explicitly in (4), instead we have
the formulas with y4, y5. Then we numerically evaluate z, y4 and y5 at a sufficiently large
number of sample points. We obtain a numerical plot in the z-y3 plane via y3 = y4 ·y5. This
combined method of QE and numerical sampling is quite efficient and effective compared
with conventional methods such as a GA-based method because we can drastically reduce
the number of repetitions of numerical yield rate simulations.



Remark 1 In the actual design field it is required to solve some of the above problems
simultaneously, for example, minimize x1 and y3 and maximize z concurrently. Such opti-
mizations can be naturally and similarly formulated as QE problems.

Computational examples: We briefly show computational results of examples for Prob-
lems 2 and 3. In Fig.1., (a) is a typical result of the feasible region in z-x1, here x1 corre-
sponds to a voltage. The result for Problem 3 obtained by our method after 10,000 times
of simulations is (b) and the result for the same problem obtained by a GA-based method
after 20,000 times of simulations is (c). The figure (d) is the superposition of (b) and (c).
We used a GA tool called Single and Multiobjective Genetic Algorithm Toolbox∗, which is
developped by K. Sastry, for computing (c). We can say that (c) is less optimal compared
with (b) (see the portion indicated by a circle in (c)).

Figure 1: Computational results for Problems 2 and 3

4 Conclusions

We have proposed new optimization methods based on quantifier elimination combined
with numerical computation for some important classes of optimization problems in SRAM
optimal design. The methods improve the total efficiency of the design process by reducing
the number of repetitions of numerical simulations and also bring some useful information
e.g., relations among design parameters or objective functions.
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Abstract

Recently, Computer algebra system (CAS) such as Maple, Mathematica is gain-
ing its popularity in various fields of science, education and engineering. Symbolic
computation, one of their features, provides us new applications of computer systems
that conventional numerical packages can not. One of examples of such applications
is control engineering, where unknown parameters play an important role as design
parameters and uncertain indeterminates. This paper utilizes the CAS to PID control
theory (PID control is a basis of feedback control theory, and despite of celebrated
modern control theory, has been a major force in industrial applications). We focus
on a PI controller that has the form kp + ki

s
with two real parameters kp, ki ∈ R.

Although the form of the controller is rather simple, design of parameters kp, ki ∈ R is
usually difficult, and often requires trial and error process (in general, there is no clear
link between parameter values and desired properties of a controlled system). This
paper presents a method to design the parameters kp, ki so that H∞ norm |G(s)|∞ is
minimized where G(s) is the transfer function from reference r to output y of the con-
trolled system. Such control is called ’H∞ optimal control’ in modern control theory,
and our method can be viewed as a mixture of classical and modern control theory.
We also consider constraints on the step response and frequency restricted norm of
the system, and present a method to design the parameters kp, ki satisfying those
constraints.

1 Introduction

Recently, Computer algebra system (CAS) such as Maple, Mathematica is gaining its popu-
larity in various fields of science, education and engineering. Symbolic computation, one of
their features, provides us new applications of computer systems that conventional numer-
ical packages can not. One of examples of such applications is control engineering, where
unknown parameters play an important role as design parameters and uncertain indetermi-
nates. For example, [1]-[6] apply Quantifier elimination (QE), which is a new technique of
computer algebra, to the design of control systems. In [7]-[9], using a similar technique to
QE, the authors of this paper present methods to compute H∞ norm of a given parametric
system (system with a parameter) as a root of polynomial. The algorithms in [7]-[9] are
extended in [12] so that it can compute frequency restricted norm (FRN), which is a gen-
eralization of H∞ norm to a finite range of frequencies. In [11], the same authors present a
method to compute H2 norm of a given parametric system.

In this paper, we focus on a PI controller that has the form kp + ki

s with two real param-
eters kp, ki ∈ R. PID control theory has a long history and is formulated in the framework
of classical control. It is a basis of feedback control theory, and despite of celebrated modern
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Figure 1: Control system

control theory, has been a major force in industrial applications. Although the form of the
PI controller is simple, design of such controllers usually requires trial and error process.
Because it is often hard to determine parameter values kp, ki ∈ R so that controlled sys-
tem has desired properties (usually there is no clear link between desired properties of a
controlled system and parameter values).

This paper presents a method to design parameters kp, ki so that H∞ norm |G(s)|∞
of G(s) is minimized where G(s) is the transfer function from reference r to output y of
the controlled system. We also consider constraints on the step response and frequency
restricted norm of the system, and present a method to design the parameters kp, ki

satisfying those constraints. We demonstrate the methods in this paper, showing illustrative
design examples of a control system.

This paper is composed as follows: In Section 2, we formulate our problem. Then, in
Section 3, we describe how to optimize the parameters according to given specifications. In
Section 4, we show two design examples, and lastly, in Section 5, we conclude.

2 Problem formulation

Let us consider the system in Fig. 1, where P (s) is a given plant with one input and one
output and K(s) is a PI controller in the form of K(s) = kp + ki

s . In this paper, we consider
the following conditions to determine design parameters kp, ki ∈ R:

(C1) The controlled system is stable, i.e. all roots of the denominator of 1/(P (s)K(s) + 1)
have negative real parts.

(C2) H∞ norm |G(s)|∞ is minimized where G(s) is the transfer function from r to y in
Fig. 1 and H∞ norm of G(s) is defined by

|G(s)|∞ def= sup
0≤ω

|G(iω)|. (1)

(C3) Frequency restricted norm FRN(G(s))[ω,ω] is minimized where G(s) is the transfer
function from r to y in Fig. 1 and frequency restricted norm of G(s) is defined by

FRN(G(s))[ω,ω]
def= sup

ω≤ω≤ω
|G(iω)|. (2)

(C4) Rise time (the time required for y(t) to change from y(t) = 0 to y(t) = 0.9 to step
input) of the controlled system is minimized.



3 Optimization of design parameters

3.1 Equivalent condition for condition (C1)

We can apply well-known Routh stability criteria to the denominator of 1/(P (s)K(s) + 1),
which provides us an equivalent condition for condition (C1) in the form of

f1(kp, ki) > 0, f2(kp, ki) > 0, · · · , fn(kp, ki) > 0, (3)

where fj(kp, ki) are rational functions in kp and ki.

3.2 Equivalent condition for condition (C2)

First, we express H∞ norm |G(s)|∞ as a root of a polynomial with algorithms in [8], which
computes polynomial f(kp, ki, q) satisfying for any kp, ki that

f(kp, ki, q) = 0, q = (1/|G(s)|∞)2 . (4)

Obviously, the minimization problem of |G(s)|∞ is equivalent to the maximization problem
of q in (4). We note that the gradient of q with respect to ki and kp can be computed as
follows: Suppose that f(kp, ki, q) is in the form of

f(kp, ki, q) = f0(kp, ki) + f1(kp, ki)q + · · · + fr(kp, ki)qr, (5)

where fj(kp, ki) (j = 1, · · · , r) are polynomials in kp, ki. Differentiating the above equation
by kp, we obtain

∂f0(kp, ki)
∂kp

+ · · · + ∂fr(kp, ki)
∂kp

qr +
{
f1(kp, ki) + · · · + rfr(kp, ki)qr−1

} ∂q

∂kp
= 0. (6)

Thus, we see that

∂q

∂kp
= −

∂f0(kp,ki)
∂kp

+ · · · + ∂fr(kp,ki)
∂kp

qr

f1(kp, ki) + · · · + rfr(kp, ki)qr−1
. (7)

Similarly, we obtain

∂q

∂ki
= −

∂f0(kp,ki)
∂ki

+ · · · + ∂fr(kp,ki)
∂ki

qr

f1(kp, ki) + · · · + rfr(kp, ki)qr−1
. (8)

Thus, the gradient of q with respect to kp, ki is given by[
∂q
∂kp
∂q
∂ki

]
=

1
F (kp, ki, q)

[
∂f0(kp,ki)

∂kp
+ · · · + ∂fr(kp,ki)

∂kp
qr

∂f0(kp,ki)
∂ki

+ · · · + ∂fr(kp,ki)
∂ki

qr

]
,

F (kp, ki, q) = −{f1(kp, ki) + · · · + rfr(kp, ki)qr−1
}

. (9)

We can apply the above gradient to a numerical optimization package to compute the
maximum of q. We can also use the following method to compute all the extrema of q:
Since (9) implies that extrema of q with respect to kp, ki satisfy⎧⎪⎨⎪⎩

∂f0(kp,ki)
∂kp

+ · · · + ∂fr(kp,ki)
∂kp

qr = 0,
∂f0(kp,ki)

∂ki
+ · · · + ∂fr(kp,ki)

∂ki
qr = 0,

f(q, kp, ki) = 0,
(10)



any extremum of q is a root of the above system of polynomial equations. Hence, computing
the roots of (10), 5 with Groebner basis, we obtain all the extrema of q with respect to
kp, ki.

3.3 Equivalent condition for condition (C3)

Reference [12] presents an algorithm to compute FRN (2) as a root of polynomial. More
concretely, the algorithm in [12] computes polynomial f(kp, ki, q) satisfying for any kp, ki

that
f(kp, ki, q) = 0, q =

(
1/FRN(G(s))[ω,ω]

)2
, (11)

where ω, ω are given real numbers. The minimization of FRN(G(s))[ω,ω] can be performed
as is done in the previous subsection.

3.4 Equivalent condition for condition (C4)

Step response, which is the time response to step input

r =
{

1 when t > 0
0 when t ≤ 0 ,

of output y(t) is given by y(t) = C̄Ā−1(eĀt −E)B̄ where E denotes the identity matrix and
(Ā, B̄, C̄) is a state space realization of G(s) = P (s)K(s)

P (s)K(s)+1 . This implies that the rise time
t0 (i.e. the time satisfying y(t0) = 0.9) is a root of equation

C̄Ā−1(eĀt − E)B̄ = 0.9

with respect to t. When matrices Ā, B̄, C̄ contain parameters kp, ki, roots of the above
equation are functions of kp, ki, and it is difficult to compute the functions in explicit form
in general. However, as is shown in [13], it is possible to compute the functions in the form
of power series of kp, ki as follows: First, let us define ȳ(t) by ȳ(t) = y(t)−0.9. Then, t0 is a
root of ȳ(t) = 0, and its power series can be computed by the following symbolic Newton’s
method:

t
(2k+1−1)
0 ← t

(2k−1)
0 − ȳ(t(2

k−1)
0 )

dȳ
dt (t(2

k−1)
0 )

(mod (kp, ki)2
k+1

) (12)

In the above formula, the arithmetic is performed as arithmetic of power series, and t
(r)
0

denotes power series expansion of t
(r)
0 up to r-th total degree of kp and ki (for details of

symbolic Newton’s method, see [15],[16]). Since ȳ(t) and dȳ
dt are given by

ȳ(t) = C̄Ā−1(eĀt − E)B̄ − 0.9,
dȳ

dt
(t) = C̄eĀtB̄, (13)

the only difficulty of performing the above symbolic Newton’s method is the evaluation of
eĀt(2

k−1)

as a power series up to (2k+1 − 1)-th total degree in kp and ki. Reference [13]
presents a method to evaluate the function by matrix pade approximation of the exponential
function, and we can compute the power series expansion t

(m)
0 of t0 up to any total degree

m of kp and ki. In this way, an approximation of t
(m)
0 of the rise time t0 can be computed,

and condition (C4) can be approximated by the minimization of polynomial t
(m)
0 .
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Figure 2: The region of parameters satisfying condition (C1)

4 Design examples

4.1 Design example I

Let us consider the system given by P (s) = 16
(s+1)(s2+s+16) . In this subsection, we design a

PI controller K(s) = kp + ki

s that satisfies conditions (C1), (C2) and (C4).
First, let us derive an equivalent condition for (C1). Since the denominator of 1

1+P (s)K(s)

is given by g(s) = s4 + 2s3 + 17s2 + 16(kp + 1)s + 16ki, we apply Routh stability criteria to
g(s) and obtain

9 − 8kp > 0,
16(2ki + 8k2

p − kp − 9)
8kp − 9

> 0, 16ki > 0, (14)

which is the equivalent condition for g(s) to be stable (all roots have negative real parts).
Obviously, the condition in (14) is equivalent to

−2ki − 8k2
p + kp + 9 > 0, ki > 0, (15)

which is the region displayed in Fig. 2. Although condition (C1) is satisfied on the any
point in the region in Fig. 2, the point near the boundary of the region is on the verge of
instability and undesirable. Hence, we set stricter condition,

−2ki − 8k2
p + kp + 9 > 0.5, ki > 0.5, (16)

which is the region displayed in Fig. 3, to guarantee the robustness of the controlled system.

Next, let us consider condition (C2). Transfer function G(s) from r to y is given by

G(s) =
P (s)K(s)

1 + P (s)K(s)
=

16(ki + kps)
16ki + (16 + 16kp)s + 17s2 + 2s3 + s4

, (17)

whose state space realization (Ā, B̄, C̄) is

Ā =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1

−16ki −(16kp + 16) −17 −2

⎤⎥⎥⎦ , B̄ =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ ,

C̄ =
[

16ki 16kp 0 0
]
. (18)



-1 -0.5 0.5 1

1

2

3

4

-1 -0.5 0.5 1

1

2

3

4

pk

ik
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Figure 4: Plot of zeros of (20)

With the algorithm in [8], polynomial f(q, kp, ki) satisfying (4) is computed to be

f(q, kp, ki) = (q − 1)(1306368 − 6542208ki + 3271104kp + · · · + 442368k8
pq4). (19)

It is easy to see that |G(s)|∞ ≥ 1, because we have G(0) = 1. In this case, we have the
region of the parameters that attains the minimum |G(s)|∞ = 1. To compute the region of
parameters, we substitute q = 1 into the second factor of (19), and obtain

(−8 + 17ki − 16kp)2(20412 − 15471ki + · · · − 4096k3
p). (20)

We show the plot of zeros of (20) ((kp, ki) satisfying equation (20) = 0) in Fig. 4. From the
continuity of H∞ norm, the region of parameters satisfying |G(s)|∞ = 1 must be encircled
by the zeros of (20). In fact, the region is given by the shaded region of Fig. 5. In
other words, all parameters in the shaded region in Fig. 5 attains the minimum H∞ norm
|G(s)|∞ = 1.

From Fig. 3 and 5, we see that all parameters in the shaded region in Fig. 6 satisfy
conditions (C1) and (C2), and let us consider condition last condition (C4). We first
compute the rise time t0 as a power series in kp and ki with expansion point (kp, ki) =
(0.4, 0.8), using technique in [13]. Fig. 7 shows the step response of y(t) when (kp, ki) =
(0.4, 0.8). From the figure, we see that constant term of t0 (i.e. t0|(kp,ki)=(0.4,0.8)) is 2.50837.
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Figure 6: The region of parameters satisfying (16) and |G(s)|∞ = 1

Thus we set t
(0)
0 = 2.50837. Then, we compute t

(2k)
0 with (12) where ȳ(t) is given by (13)

and (18), and obtain

t
(3)
0 = 2.50837 − 1.23291k̄i − 0.167303k̄p + 1.71757k̄2

i + 2.82468k̄ik̄p − 0.521985k̄2
p

−6.58699k̄3
i − 2.23265k̄2

i k̄p − 1.54157k̄ik̄
2
p + 0.546237k̄3

p, (21)

where k̄p = k − 0.4 and k̄i = ki − 0.8. The above t
(3)
0 is Taylor series expansion of the rise

time t0, and hence is an approximation of t0. Thus, the parameter satisfying the conditions
(C1), (C2) and (C4) is given by solving the optimization problem max(kp,ki)∈Ω1

t
(3)
0 where

Ω1 is the shaded region in Fig. 6. The solution of the above optimization problem is
computed to be

max
(kp,ki)∈Ω1

t
(3)
0 = 2.40941 (22)

with (kp, ki) = (0.44444, 0.88889). Fig. 8 shows the step response of y(t) when (kp, ki) =
(0.44444, 0.88889). From the figure, we see that the rise time t0 is improved to t0 = 2.41073.
Comparing this with (22), we also see that the relative error in approximation t

(3)
0 is

|2.41073 − 2.40941|/2.41073 = 0.055%

and t
(3)
0 is a good enough approximation of t0.
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4.2 Design example II

Let plant P (s) be the same as in Design example I, and consider conditions (C1) and (C3)
with ω = 1, ω = ∞. Condition (C1) is satisfied by the parameters in the shaded region
in Fig. 2, and we use stricter condition (16) that is shown in Fig. 3 as we did in Design
example I.

Next, let us consider condition (C3). Unlike H∞ norm |G(s)|∞, FRN(G(s))[1,∞] can be
less than 1. In fact, with (kp, ki) = (0, 0.5), we have FRN(G(s))[1,∞] = 0.496139. Thus, we
consider minimization problem

min
(kp,ki)∈Ω2

FRN(G(s))[1,∞], (23)

where Ω2 is the shaded region in Fig. 3. First, we compute polynomial f(q, kp, ki) satisfying
(11) with the algorithm in [12], and obtain

f(q, kp, ki) = (q − 1)(1306368 + · · · + 442368k8
pq4)(−113 + · · · + 64k2

pq). (24)

First two factors in the right-hand side of (24) is the same as ones in (19), hence the above
f(q, kp, ki) can be written as

{Polynomial in (19)} × (−113 + 128ki + · · · + 64k2
pq). (25)

Since we have (11), minimization problem (23) is equivalent to the maximization problem

max
(kp,ki)∈Ω2

{q in (11)}.
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To compute extrema of q in (11), we compute roots of (10) satisfying (kp, ki) ∈ Ω2,
and find that there is no root corresponding to FRN(G(s))[1,∞] inside of Ω2. Thus, the
maximum is taken on the boundary of Ω2. Searching the maximum on the boundary of Ω2,
we find that

max
(kp,ki)∈Ω2

{q in (11)} = 4.85659, (26)

which is taken at (kp, ki) = (0.22688, 0.5). Hence, we see

min
(kp,ki)∈Ω2

FRN(G(s))[1,∞] = 1/
√

4.85659 = 0.453768. (27)

For the reference, we show the step response of y(t) with (kp, ki) = (0.22688, 0.5) in Fig. 9.
The figure shows the rise time is 4.0363 in this case.

5 Conclusion

We proposed a method to design a PI controller K(s) = kp + ki

s that considers conditions
(C1), (C2), (C3) and (C4). It is shown that condition (C1) is equivalent to a set of poly-
nomial inequalities, and condition (C2) and (C4) are equivalent to the maximization of
a polynomial root. Condition (C4) can be approximated by a polynomial minimization.
Utilizing these equivalent conditions, a controller design is formulated as a minimization
problem with polynomial inequality constraints, which can be solved by computing poly-
nomial roots.

Two design examples are shown. In the first design example, we design a PI controller
satisfying condition (C1), (C2) and (C4) for a given system, and obtain a controller such
that (i) |G(s)|∞ = 1, and (ii) rise time of the controlled system is 2.41073. In the second
design example, we consider condition (C1) and (C3), and design a PI controller that
minimizes FRN of G(s) (the minimized FRN is 0.453768).

References and Notes

[1] C. Abdallah, P. Dorato, W. Yang, R. Liska and S. Steinberg, “Application of Quanti-
fier Elimination Theory to Control System Design,” Proc. of 4th IEEE Mediterranean
Symposium of Control and Automation pp. 340–345, Maleme, Crete, 1996.



[2] H. Anai and H. Yanami, “SyNRAC: A maple-package for solving real algebraic con-
straints,” Proc. of CASA’2003, P.M.A. Sloot et al. (ICCS 2003) editors, Vol. 2657 of
LNCS, Springer-Verlag, 2003.

[3] H. Anai and P. A. Parrilo, “Convex quantifier elimination for semidefinite program-
ming,” In Proc. of CASC’2003, pp. 3-11, Passau, Germany, 2003.

[4] P. Dorato, W. Yang and C. Abdallah, “Robust Multi-Objective Feedback Design by
Quantifier Elimination,” J. Symbolic Computation, Vol. 24, pp. 153–159, 1997.

[5] H. Hong, R. Liska and S. Steinberg, “Testing Stability by Quantifier Elimination,” J.
Symbolic Computation, Vol. 24, pp. 161–187, 1997.

[6] I. A. Fotiou, P. Rostalski, P. A. Parrilo, and M. Morari, “Parametric optimization and
optimal control using algebraic geometry methods,” International Journal of Control,
Vol. 79, No. 11, pp. 1340-1358, 2006.

[7] T. Kitamoto. On the computation of H∞ norm of a system with a parameter. The
IEICE Trans. Funda. (Japanese Edition), Vol. J89-A, No. 1, pp. 25–39, 2006.

[8] T. Kitamoto and T. Yamaguchi. Parametric Computation of H∞ Norm of a System.
Proc. SICE-ICCAS2006, Busan, Korea, 2006.

[9] T. Kitamoto and T. Yamaguchi. The optimal H∞ norm of a parametric system achiev-
able using a static feedback controller. The IEICE Trans. Funda., Vol. E90-A, No.
11, pp. 2496–2509, 2007.

[10] T. Kitamoto and T. Yamaguchi. The optimal H∞ norm of a parametric system achiev-
able using a output feedback controller. The IEICE Trans. Funda., Vol. E91-A, No.
7, pp. 1713–1724, 2008.

[11] T. Kitamoto and T. Yamaguchi. On the parametric LQ control problem. The IEICE
Trans. Funda. (Japanese Edition), Vol. J91-A, No. 3, pp. 349–359, 2008.

[12] T. Kitamoto. Extension of the algorithm to compute H∞ norm of a parametric system.
The IEICE Trans. Funda., Vol. E92-A, No. 8, pp. 2036-2024, 2009.

[13] T. Kitamoto. Computation of the Peak of Time Response in the Form of Formal
Power Series. The IEICE Trans. Funda., Vol. E86-A, No. 12, pp. 3240–3250, 2003.

[14] K. Zhou, J. Doyle and K. Glover, “Robust and Optimal Control,” Prentice-Hall. Inc,
New Jersey, 1996.

[15] K.O. Geddes, S.R. Czapor and G. Labahn, “Algorithms for Computer Algebra,”
Kluwer Academic Publishers, Boston, 1992.

[16] J. Gathen and J. Gerhand, “Modern Computer Algebra,” Cambridege University
Press, Cambridge, 1999.



Comprehensive Gröbner Bases in
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Abstract

We present an implementation of the algorithms for computing comprehensive
Gröbner bases in a Java computer algebra system (JAS). Contrary to approaches to
implement comprehensive Gröbner bases with minimal requirements to the computer
algebra system, we aim to provide and utilize all necessary algebraic structures occur-
ring in the algorithm. In the implementation of a condition we aim at the maximal
semantic exploitation of the occurring algebraic structures: the set of equations equal
zero are implemented as an ideal (with Gröbner base computation) and the set of in-
equalities are implemented as a multiplicative set which is simplified to polynomials of
minimal degrees using, for example, square-free decomposition. With our approach we
can also make the transition of a comprehensive Gröbner system to a polynomial ring
over a (commutative, finite, von Neuman) regular coefficient ring and test or compute
Gröbner bases in such polynomial rings.

1 Introduction

In this paper we present an implementation of the algorithms for computing comprehensive
Gröbner bases [23, 25, 14, 20] in a Java computer algebra system (JAS) [5, 9, 6, 7].

JAS uses Java to implement a computer algebra library with special emphasis on object
oriented programming in an algebraic setting. The emphasis of this paper is also on the
library design for comprehensive Gröbner bases. Contrary to approaches to implement com-
prehensive Gröbner bases with minimal requirements to the computer algebra system, like
the one of Suzuki and Sato [21], we aim to provide and utilize all necessary algebraic struc-
tures occurring in the algorithm. For example there are parametric polynomials, colored
polynomials or coefficients in residue class rings.

In the implementation of a condition we aim at the maximal semantic exploitation of the
occurring algebraic structures: the set of equations equal zero are implemented as an ideal
(with Gröbner base computation and ideal membership test) and the set of inequalities are
implemented as a multiplicative set which is simplified to polynomials of minimal degrees
using square-free decomposition or factorization. This approach has partially been taken
by [19, 12, 1].

With our approach we can even make the transition of a comprehensive Gröbner system
to a polynomial ring over a (commutative, finite, von Neuman) regular coefficient ring and
test or compute Gröbner bases in such polynomial rings [22, 24].

1



1.1 Related Work

Comprehensive Gröbner bases have been introduced by Weispfenning [23] and improved
to obtain canonical properties in [25]. Further improvements are achieved by Montes and
Manubens [14, 15] and alternative approaches are presented by Sato and Suzuki [20, 21]
and [4].

A first implementation comprehensive Gröbner bases was by [19] in ALDES/SAC-2
and MAS, which was improved in [12] and [1]. Newer implementations are presented in
[16, 3, 21].

Due to limited space we do not discuss the related mathematical work on Gröbner bases
and other computer algebra algorithms, which can be found in standard text books.

1.2 Outline

In the next section 2, we give an an example on using the JAS library. Due to limited space
we must assume that you are familiar with the Java programming language, object oriented
programming and the JAS type system [9, 11]. Section 3 presents the design of the classes
for the implementation of comprehensive Gröbner bases. The topics of the subsections are:
conditions and colored polynomials, parametric reduction and colored systems, Gröbner
systems and comprehensive Gröbner bases. In section 4 we present some examples with
performance measurements and the transition to regular coefficient rings. Finally section 5
draws some conclusions.

2 Introduction to the JAS Library

In this section we discuss an example for the usage of the JAS library. This section contains
revised parts of the JAS introduction in [8].

JAS provides a well designed library for algebraic computations implemented with the
aid of Java’s generic types. The library can be used as any other Java software package
or it can be used interactively or interpreted through an jython (Java Python) front end.
JAS implements interfaces and classes for basic arithmetic of arbitrary precision integers,
rational numbers and multivariate polynomials with such coefficients. Other packages in
JAS are: edu.jas.ufd with algorithms for unique factorization domains. edu.jas.gb
with classes for polynomial and solvable polynomial reduction, Gröbner bases and ideal
arithmetic as well as thread parallel and distributed versions of Buchberger’s algorithm.
edu.jas.gbmod contains classes for module Gröbner bases, syzygies for polynomials and
solvable polynomials.

For an introduction to the JAS type system see [9, 11]. To get an idea of the interplay
of the types, classes and object construction consider the following type

List<GenPolynomial<Product<Residue<BigRational>>>>

of a list of polynomials with coefficients from a direct product of residue class rings mod-
ulo some polynomial ideal over the rational numbers. It arises in the computation of
Gröbner bases over commutative regular rings S′ =

(∏
p∈spec(R) R/p

)
[y1, . . . , yr], where

R = Q[x1, . . . , xn], see [17, 22, 24] and section 4. To keep the example simple we will show
how to generate a list L of polynomials in the ring

S = (Q[x0, x1, x2]/ideal(F ))4[a, b].



The ring S is represented by the object in variable fac in the listing in figure 2. Random
polynomials of this ring may look like the one shown in figure 1. The coefficients from
(Q[x0, x1, x2]/ideal(F ))4 are shown enclosed in braces {} in the form i=polynomial. I.e.
the index i denotes the product component i = 0, 1, 2, 3 which reveals that the Product
class is implemented using a sparse data structure. The list of F is printed after the ‘rr =’
together with the indication of the type of the residue class ring ResidueRing as polyno-
mial ring in the variables x0, x1, x2 over the rational numbers BigRational with graded
lexicographical term order IGRLEX. The variables a, b are from the ‘main’ polynomial ring
and the rest of figure 1 should be obvious.

rr = ResidueRing[ BigRational( x0, x1, x2 ) IGRLEX

( ( x0^2 + 295/336 ),

( x2 - 350/1593 x1 - 1100/2301 ) ) ]

L = [ {0=x1 - 280/93 , 2=x0 * x1 - 33/23 } a^2 * b^3

+ {0=122500/2537649 x1^3 + 770000/3665493 x1^2

+ 14460385/47651409 x1 + 14630/89739 ,

3=350/1593 x1 + 23/6 x0 + 1100/2301 } , ... ]

Figure 1: Random polynomials from ring S

The output in figure 1 is computed by the program from figure 2. Line number 1 defines
the variable L of our intended type and creates it as an Java ArrayList. Lines 2 and 3
show the creation of the base polynomial ring Q[x0, x1, x2] in variable pfac. In lines 4 to 9
the list F of random polynomials is constructed which will generate the ideal of the residue
class ring. Lines 10 to 13 create a Gröbner basis for the ideal, setup the residue class ring
rr and print it out. Line 14 constructs the regular ring pr as direct product of 4 copies
of the residue class ring rr. The the final polynomial ring fac in the variables a and b is
defined in lines 15 and 16. Lines 17 to 22 then generate the desired random polynomials,
put them to the list L and print it out.

With this example we see that the software representations of rings snap together like
‘LEGO blocks’ to build up arbitrary structured rings. This concludes the introduction to
JAS, further details can be found, as already mentioned, in [11, 5, 7, 9, 8].

3 Comprehensive Gröbner Bases

Recall some definitions from [23]. Let K be a field, R = K[U1, . . . , Um] a polynomial
ring over K in the variables U1, . . . , Um. Let S = R[X1, . . . , Xn] be a polynomial ring
over R in the variables X1, . . . , Xn and let ≺S be a term order on S. S is called a
parametric polynomial ring with parameters U1, . . . , Um in the main variables X1, . . . , Xn.
K[U1, . . . , Um][X1, . . . , Xn] will be abbreviated by K[U][X]. For polynomials f ∈ S, the
highest term, the leading coefficient, and the leading monomial of f with respect to ≺S is
denoted by HT(f), HC(f), and HM(f) = HT(f)HC(f) as usual.

A specialization σ of S is a ring homomorphism σ : R −→ K ′ into some field K ′. Let F
be a subset of S and let ideal(F ) denote the ideal generated by F . A finite subset G ⊂ S is
a comprehensive Gröbner base for ideal(F ) (with respect to ≺), if for all fields K ′ and all
specializations σ : R −→ K ′ of S, σ(G) is a Gröbner base for ideal(σ(F )) in K ′[X1, . . . , Xn]
(with respect to ≺).



1 List<GenPolynomial<Product<Residue<BigRational>>>> L

= new ArrayList<GenPolynomial<Product<Residue<BigRational>>>>();

2 BigRational bf = new BigRational(1);

3 GenPolynomialRing<BigRational> pfac

= new GenPolynomialRing<BigRational>(bf,3); // no names given

4 List<GenPolynomial<BigRational>> F

= new ArrayList<GenPolynomial<BigRational>>();

5 GenPolynomial<BigRational> pp;

6 for ( int i = 0; i < 2; i++) {

7 pp = pfac.random(5,4,3,0.4f);

8 F.add(pp);

9 }

10 Ideal<BigRational> id = new Ideal<BigRational>(pfac,F);

11 id.doGB();

12 ResidueRing<BigRational> rr = new ResidueRing<BigRational>(id);

13 System.out.println("rr = " + rr);

14 ProductRing<Residue<BigRational>> pr

= new ProductRing<Residue<BigRational>>(rr,4);

15 String[] vars = new String[] { "a", "b" };

16 GenPolynomialRing<Product<Residue<BigRational>>> fac

= new GenPolynomialRing<Product<Residue<BigRational>>>(pr,2,vars);

17 GenPolynomial<Product<Residue<BigRational>>> p;

18 for ( int i = 0; i < 3; i++) {

19 p = fac.random(2,4,4,0.4f);

20 L.add(p);

21 }

22 System.out.println("L = " + L);

Figure 2: Constructing algebraic objects

Comprehensive Gröbner bases can be computed, for example, via Gröbner systems. A
Gröbner system G for an ideal(F ), F ⊂ S is a finite set of pairs (γ, Gγ) where γ is a
condition and Gγ ⊂ S is a finite set of polynomials, determined by γ. A comprehensive
Gröbner base G for an ideal(F ) is then obtained as the union of all Gγ , where each γ also
determines F . The meaning of ‘condition’ and ‘determined’ is explained next. If in S we
have ideal(F ) = ideal(G) then G is called a faithful comprehensive Gröbner base.

A condition γ is a finite set {zi(U) = 0} ∪ {nj(U) �= 0} of polynomial equations and
inequalities. A coloring of the ring R by a condition γ associates a color, namely green,
red and white, with each polynomial in R. For a ∈ R, a is colored green if a(U) = 0 can
be deduced from γ, a is colored red if a(U) �= 0 can be deduced from γ, else a is colored
white. If a is colored c we write color(a) = c. The coloring of R is extended to a coloring
of S by the coloring of the coefficients. For p ∈ S we write p = pgreen + pred + pwhite with
the restriction pgreen � pred � pwhite for pc �= 0 (for a color c). Note, that we allow pwhite

to contain green, red and white coefficients, but pgreen and pred may only contain green
respectively red coefficients, if they are not zero. The wording ‘deduced’ is left unspecified.
It may mean simple inspection of the polynomials in γ or the usage of more sophisticated
methods, like ideal membership tests.

A polynomial p is said to be determined with respect to a condition γ, if pred �= 0 or if



pred = 0 and pwhite = 0. A set F of polynomials is said to be determined wrt. γ, if each
p ∈ F is determined wrt. γ. A polynomial p is said to be determined with respect to a set
of conditions Γ, if p is determined wrt. each γ ∈ Γ.

More on the mathematical background can be found in [23, 25, 24], see also [20, 21, 3, 16].

3.1 Class Layout

We turn now to the algorithms for the computation of comprehensive Gröbner bases in
JAS. Due to space restrictions, we must assume some knowledge of Java, object oriented
programming and JAS [9, 7, 11] in the following.

The overall layout of the implemented classes is shown in figure 3. The computation of
comprehensive Gröbner bases in class ComprehensiveGroebnerBaseSeq is done via Gröbner
systems, class GroebnerSystem. Gröbner systems are implemented as lists of colored sys-
tems in class ColoredSystem. The colored systems consist of a tuple of a condition in class
Condition, a list of colored polynomials and data structure OrderedCPairlist represent-
ing the critical pairs to be considered. Class ColorPolynomial implements a polynomial
colored with respect to a certain condition.

Figure 3: Overview of involved classes

The last class CReductionSeq provides methods for parametric reductions relative to
conditions and also methods for computing conditions which determine polynomials and
sets of polynomials. All classes are parameterized by a type parameter C which extends
the interface RingElem<C>. The implementation is defined for polynomials with polynomial
coefficients over a coefficient ring of type C, namely GenPolynomial<GenPolynomial<C>>.

In the next sub-sections we discuss the functionality of each of the mentioned classes.

3.2 Colored Polynomials and Conditions

Figure 4 shows a class diagram with attributes and methods of the classes Condition
and ColorPolynomial. A condition is defined by a finite set of polynomial equations,
polynomials equal to zero z(U) = 0, and a finite set of polynomial inequalities, polynomials
not equal to zero n(U) �= 0. A condition then ‘colors’ the coefficients of a parametric
polynomial in the following way: if a coefficient is contained in the ‘equals zero’ set, it
is colored green, if a coefficient is contained in the ‘not equals zero’ set, it is colored red.
In case a coefficient is not contained in one of these sets, it is colored white. Before we



discuss the implementation of these sets, we first explain the rest of the functionality and
the colored polynomials.

Figure 4: Conditions and colored polynomials

The class Condition provides the method color() to deduce if a given (parametric)
coefficient is zero or not with respect to this condition. The method determine() takes a
parametric polynomial as input an returns a colored polynomial with respect to this con-
dition. The methods extendZero() and extendNonZero() add a (parametric) coefficient
to the set of zero, respectively the set of non-zero, polynomial equations.

A colored polynomial ColorPolynomial consists of these three colored parts determined
by a condition, with the following restriction on the ordering on the terms. A non-zero
green part green is greater with respect to the term order of the main variables than a
non-zero red part red, which is greater than a non-zero white part white. In case, one
or more of these parts are zero the restriction holds on the remaining non-zero parts.
The method checkInvariant() provides a test, if these restrictions are fulfilled. The
method isDetermined() tests if the red part is non-zero or the white part is also zero.
Methods isZERO() and isONE() ignore the green part in performing the respective test.
The getPolynomial() method returns the sum of all colored parts. The methods sum()
and subtract() compute a colored polynomial which consists of the sum (difference) of
the green parts, a zero red part, and a white part computed from the sum (difference) of
the given red and white parts. The methods multiply() and divide() compute a colored
polynomial with each colored part multiplied (divided) by a coefficient.

We now turn to the implementation of the sets of equations and inequalities defining a
condition. First we do not store the equations them-self, but only the respective polynomi-
als. The implementation is partially inspired by the implementation in [12] which is based
on the implementation of [19].

The test if a polynomial is zero, by inspecting a list of polynomials, is not very efficient.
For example, the test polynomial might be a linear combination of some polynomials in
the list (in other words, it lies in the ideal generated by the polynomials in the list), a fact
which is not detected by just inspecting the list. So we replace the list of polynomials by
the ideal generated by the list. Then the test if a polynomial is a linear combination of
the polynomials is replaced by an ideal membership test. This test can be performed via a
normal form computation modulo a Gröbner base of the ideal generated by the polynomials.
This functionality is provided by the class Ideal. Its method contains() lazily computes a
Gröbner base if it is required for the ideal membership test. Further we add the square-free
part of the polynomials that are put into the ideal, since the test only requires a radical
membership test.



Similarly, the test if a polynomial is non-zero can be improved. Instead of just inspecting
the list of polynomials if the given polynomial is contained, we can check if the given
polynomial is some product of the polynomials in the list. This is done by computing
quotients and remainders with respect to polynomials in the list as long as the remainders
are zero. If a quotient is constant, the given polynomial was a product of other non-
zero polynomials. This algorithms are implemented in class MultiplicativeSet. In sub-
classes further optimizations are implemented, for example making the polynomials in the
set co-prime MultiplicativeSetCoPrime, co-prime and square-free MultiplicativeSet-
Squarefree or irreducible MultiplicativeSetFactors. The irreducible factors version
relies on the new factorization package, which is not yet in a final state. The default is to
use squarefree and co-prime multiplicative sets which are also not too expensive to compute.

The methods extendZero() and extendNonZero() of Condition use the tests just
described to avoid adding unnecessary polynomials and to add only maximally reduced
polynomials to the respective sets. The methods further try to simplify the condition with
method simplify() and perform checks for contradictions and return null as condition in
such a case. Contradictions can show up during the extension operations, as a polynomial in
the non-zero list might be contained in the extended ideal generated by the zero polynomials.
Similarly a polynomial in the zero polynomial ideal could be a product of polynomials in
the extended non-zero polynomials set, again a contradiction. In particular the ideal of zero
polynomials might contain 1 at some extension operation. Such contradictory conditions
can then be given special treatment in the main part of the algorithm.

3.3 Parametric Reductions and Colored Systems

Class CReductionSeq implements parametric reductions with respect to conditions. The
class diagram is shown in figure 5. The methods isNormalform() and normalform()
test if a polynomial is in reduced form with respect to a list of polynomials or compute
such a reduced form relative to a condition and a list of polynomials. All polynomials are
colored polynomials as described above and must be colored consistently and be determined.
isNormalform() checks if a term with a red coefficient is divisible by a red head term of a
polynomial in the list.

The computation of the normal form proceeds by inspecting the first non-green term
(of the main variables) in the polynomial to be reduced. If it is actually colored green with
respect to the condition, then it is put to the green terms of the result polynomial. If it is
colored red or white, the term is reduced with respect to a suitable polynomial in the list. If
no such polynomial is found, the process ends for top reduction. For non top-reduction the
term is put to the result polynomial and the process continues with the next term. Method
SPolynomial() computes the S-polynomial of two determined polynomials.

The other methods in class CReductionSeq implement the computation of sets of con-
ditions and a list of determined polynomial lists. The method determine() takes a list
of parametric polynomials as input List<GenPolynomial<GenPolynomial<C>>> and re-
turns a list of colored systems List<ColoredSystem<C>> (explained further down). The
method first computes a set of conditions for the list of input polynomials with method
caseDistinction() and then determines the polynomials with a method determine()
which takes a case distinction as input.

A case distinction (a set of conditions) is represented by a list of Condition objects.
The conditions are constructed in a way, such that every polynomial will have a red head
term (or the white part is zero). In the construction of the condition, each (parametric)



Figure 5: Parametric reduction

coefficient of the given polynomial is checked if it is already colored red or green relative to
a given condition. If this is not the case, i.e. the coefficient is colored white, the condition
is extended two times. First it is extended by adding the coefficient to the set of non-
zero polynomials and then it is extended again by adding the coefficient to the set of zero
polynomials (as explained in the previous section). If such a newly computed condition is
not contradictory and is not already contained in the list of conditions, it is added to the
list of conditions.

The two methods determine() take a list of parametric polynomials and return a list
of ColoredSystems, see figure 6. A ColoredSystem is a container for a Condition, which
determines a list of ColorPolynomials and a OrderedCPairlist. Besides the pair-list
which is explained below, the ColoredSystem class provides methods similar to the Color-
Polynomial class. Namely, there are methods to check for the validity of the term order
invariants or to check if the list of polynomials is correctly determined. Further there are
methods to extract lists of the green or red coefficients, the essential parts or the parametric
polynomials them-selfs. Other methods just return respective parts of the condition.

To construct a list of ColoredSystems, method determine() with a list of Condition
parameter, uses a list variant of method determine() of class Condition to compute a list
of colored polynomials from the list of the given parametric polynomials. The condition
together with the list of determined colored polynomials are then the building parts for
the ColoredSystem container. The determine() method without a Condition parameter,
first constructs a set of conditions and then constructs a colored system for each condition
in the case distinction.

Class OrderedCPairlist implements a data structure for the critical pairs to be consid-
ered during the curse of the Buchberger algorithm. It encapsulates pair selection strategies
and book keeping for criteria to avoid critical pairs.



Figure 6: Colored systems and critical pair lists

3.4 Gröbner Systems and Comprehensive Gröbner Bases

A GroebnerSystem is a container for a list of ColoredSystems, see figure 7. Like class
ColoredSystem, it has a method isDetermined() to test if all contained colored systems
are determined and a method checkInvariant() to check all invariants of all contained
colored polynomials. The method getConditions() extracts a list of all Conditions from
all ColoredSystems and stores them for later access in attribute conds. The Method get-
CGB() extracts a list of all parametric polynomials as a union of all parametric polynomials
from all colored systems.

The computation of comprehensive Gröbner bases via Gröbner systems is implemented
in class ComprehensiveGroebnerBaseSeq. This class has methods to test if a given list of
parametric polynomials is a comprehensive Gröbner base (method isGB()) and to test if
a given list of colored systems is a Gröbner system (method isGBsys()). Both methods
are over-loaded to allow also GroebnerSystems as parameters and perform the respective
checks. Internally there exist two tests, if a list of parametric polynomials is a comprehen-
sive Gröbner base. isGBcol() determines the given list of polynomials and calls method
isGBsys() on the list of ColoredSystems. The second test isGBsubst() also determines
the given list of polynomials but then maps the polynomials to each residue class modulo
the zero polynomial ideal contained in the Condition and test if it is a Gröbner base over
these coefficient rings. That is, we transform the polynomials from

GenPolynomial<GenPolynomial<C>> to GenPolynomial<Residue<C>>

and use method isGB() from implementation GroebnerBasePseudoSeq for the test, that
is, we map K[U1, . . . , Um][X1, . . . , Xn] −→ K[U1, . . . , Um]/ideal(Zi)[X1, . . . , Xn], where Zi is



Figure 7: Gröbner systems and comprehensive Gröbner bases

the set of polynomials to be treated as zero in condition i. As one last test a random ideal
in the coefficient polynomial ring is generated (an ideal generated by random polynomials)
and the test is performed modulo this random ideal. Note, that the ideal(Zi) of the zero
conditions might not be a prime ideal. However, the head terms of the polynomials have
moreover been colored red by the multiplicative set of non-zero conditions. And, if the
condition is not a contradiction, it is guaranteed that they miss all prime ideals which
contain the residue class ideal.

To compute a faithful comprehensive Gröbner base, the method GB() first computes a
GroebnerSystem and then extracts the comprehensive Gröbner base with getCGB().

The main work is performed in method GBsys(), which takes a list of parametric poly-
nomials as input an returns a GroebnerSystem container. In this method, first the method
determine() of the parametric reduction engine is used to construct a list of determined
colored systems. Each ColoredSystem is then augmented by a pair list OrderedCPairlist
containing all critical pairs of the colored polynomials of it. For each ColoredSystem, an
inner loop iterates over all critical pairs of this system. For each critical pair a parametric
S-polynomial and a parametric normalform of it with respect to the list of colored polyno-
mials is computed. If the normal-form polynomial is non-zero, the condition is refined so
that it becomes determined with method determineAddPairs(). This method also adds
new pairs to the critical pair list if required. The method returns a list of ColoredSystems,
consisting of successors of the actual condition, an updated list of colored polynomials and
an updated list of critical pairs. This list of new ColoredSystems is then merged with the
existing list of ColoredSystems and the actual ColoredSystem is replaced by a suitable
new system. In this way, a depth first search for a ColoredSystem with empty pair list
is performed. If all critical pairs of the actual ColoredSystem are done, it is moved to
the result list and the next colored system is taken. By the termination argument for the
computation of Gröbner systems only finitely many new colored systems are added at each
step and for each colored system only finitely many new critical pairs are generated. So by
Königs tree lemma combined with Dickson’s lemma the two interleaved loops eventually
terminate. Upon termination all critical pairs in a colored system have been processed, so
the polynomials form a Gröbner base relative to the given condition. Since the conditions
of the colored system cover the empty condition, the list of colored systems form a Gröbner



system for the list of given input polynomials.

4 Examples and Gröbner bases over regular rings

In this section we report on some performance measurements and relations to Gröbner
bases for regular rings. We first show the performance on the examples from Raksanyi and
Hawes2, see [2]. The examples are contained in the examples directory of [11].

Table 1: Gröbner system for Raksanyi and Hawes examples
example MAS time conditions JAS time conditions

Raksanyi, S, Gr 40 3 520 / 229 / 190 5

Raksanyi, Lr not impl. – 344 / 134 / 94 3

Raksanyi, L 5630 22 511 / 225 / 175 4

Raksanyi, G 30 3 337 / 147 / 99 3

Hawes2, G > 20 min – 1119 / 603 / 578 5

time in milliseconds, Term order: G = graded, L = lexicographical, S = Gr = reverse graded, Lr
= reverse lexicographical, timings in slashes are for subsequent runs.

In table 1 we compared the computation with MAS [12] on the same computer. For JAS
we compute the same Gröbner system three times in the same instance of a Java virtual
machine. The time for the second and third run is separated by a slash. We see, that
for the first run there is considerable time spend in JVM code profiling and just-in-time
compilation. In subsequent runs we then see performance improvements. In most cases,
the computing times for the third run are less than half to one third of the computing for
the first run. We see that for small examples the MAS code runs faster, but for bigger
examples the JAS code runs faster.

Table 2: Gröbner system for Nabeshima examples
example from [16] cond JAS, AMD, L cond JAS, AMD, G cond

F1 31 4 285 / 151 / 97 7 270 / 142 / 99 7

F2 93 6 2299 / 1765 / 1664 12 509 / 281 / 165 10

F3 2203 22 1186 / 720 / 660 29 1199 / 967 / 681 29

F4 234 15 1231 / 722 / 674 34 1365 / 845 / 751 34

F5 109 6 359 / 184 / 126 11 367 / 187 / 125 8

F6 359 17 95 / 43 / 34 4 90 / 42 / 34 4

F7 375 7 392 / 194 / 117 6 424 / 242 / 128 6

F8 133200 458 2548 / 1856 / 1788 32 4883 / 4043 / 3664 32

time in milliseconds, Term order: G = graded, L = lexicographical, cond = number of conditions,
timings in slashes are for subsequent runs.

In table 2 we present the JAS computation times of the examples from Nabeshima.
The timings of Nabeshima are the original timings from the article [16]. These timings
are measured on a Pentium M running at 1.73 GHz. The computing times for JAS are
in milliseconds on one (older) AMD 2.1 GHz CPU, with JDK 1.6 and 32-bit server VM.
So the timings are not directly comparable, but the CPU influence should not be more
than a factor of two. Nevertheless we can draw the conclusion, that the CPU or the
system software (C, Risa/Asir versus Java, JAS) is qualitatively in the same speed region



and the timing differences seem to be mainly caused by different algorithms. That is, the
mathematical optimization to produce a minimal number of conditions, is more important
than the relative CPU speed.

Table 3: Gröbner system for Montes examples
example JAS time conditions DISPGB time conditions

11.1, L 777 / 308 / 327 23 8800 6

11.2, L 490 / 246 / 143 10 5200 6

11.3, L 1013 / 600 / 516 9 115900 7

11.4, L 371939 / 359274 / 355794 7 33000 7

5.1 simpl., L 248 / 95 / 86 3 8400 4

time in milliseconds, Term order: G = graded, L = lexicographical, timings in slashes are for
subsequent runs. DISPGB times from [14].

In table 3 we present the JAS computation times of the examples from Montes. The
timings of Montes are the original timings from [14]. As in the examples above we conclude,
that the different algorithms are most important for the different computing times. As it
is not the primary focus of this paper to compare different algorithmic details the timings
show that our object oriented approach with Java is not slower than other approaches.

As pointed out in [17, 18, 24] there is some strong relation between comprehensive
Gröbner bases and Göbner bases over (von Neumann) regular rings [22]. Since we also have
Gröbner bases over (finite) regular rings implemented in JAS, we can check, for example,
if a comprehensive Gröbner base is indeed also a Gröbner base over a suitable regular ring.

As with method isGBsubst() we take a list of colored polynomials from Groebner-
System (which could be a Gröbner system). From the condition of each colored system we
construct a residue class ring modulo the ideal generated from the condition zero polyno-
mials. The (finite) product of these residue class rings are then used as coefficient ring for
a polynomial ring with type

GenPolynomialRing<Product<Residue<C>>>

or in mathematical notation
(∏k

i=1 K[U1, . . . , Um]/ideal(Zi)

)
[X1, . . . , Xn], where k is the

number of colored systems. See section 2 for the construction of the required polyno-
mial rings. Then the union of the parametric polynomials from the colored polynomials is
mapped to this polynomial ring. The described conversion is implemented by the (static)
method toProductRes() of class PolyUtilApp. The boolean closure of such a list of polyno-
mials is constructed by method booleanClosure() of class RReductionSeq. The computa-
tion of Gröbner bases for a regular ring is provided via class RGroebnerBasePseudoSeq<C>
and method GB(). The test for a Gröbner base is implemented by method isGB(). So
if we start with a boolean closed set derived from a comprehensive Gröbner system, the
method isGB() of the regular coefficient ring Gröbner base will return true. An example is
contained in the jython file examples/raksanyi cr.py in [11]. Note, as mentioned above,
the ideal(Zi) of the zero conditions might not be a prime ideal. However the head terms of
the polynomials have also been colored red by the multiplicative set of non-zero conditions,
so it is guaranteed that they miss all prime ideals which contain the residue class ideal, if
the condition is not contradictory.



5 Conclusions

We have presented an implementation of the algorithms for computing comprehensive
Gröbner bases in a Java computer algebra system (JAS). We provide and utilize all neces-
sary algebraic structures occurring in the comprehensive Gröbner bases algorithm, such as
parametric polynomials, colored polynomials, conditions or colored systems. A condition is
implemented as an ideal, with normal Gröbner base computations to decide ideal member-
ship and a multiplicative set which is targeted to produce polynomials of minimal degrees
using square-free decomposition.

The computing times for our object oriented approach using Java are at least as fast as
the times of other implementations. Differences in the computing times are from different
mathematical details, which have not been the primary focus of investigation in this paper.
With our explicit algebraic types approach we showed how to transform a comprehensive
Gröbner system to a polynomial ring over a (commutative, finite, von Neuman) regular
coefficient ring and test for Gröbner bases in such polynomial rings.

In the future we will finish the implementation of multivariate polynomial factorization
and use it in the handling of the conditions. Further we plan to implement comprehen-
sive Gröbner bases for parametric solvable polynomial rings [13]. There are also many
opportunities for utilizing parallelism, see [3] and [10] for a start.
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Abstract

A symbolic-numeric method is presented for the computed of monodromy groups of
plane algebraic curves, by using the extended Hensel construction. For Puiseux expan-
sion to be used for analytic continuation, we employ an algorithm developed by Inaba,
Shiihara and Sasaki based on the extended Hensel construction combined with Smith’s
theorem. The extended Hensel construction allows up to compute all the Puiseux-series
roots of a given polynomial efficiently and stably, even with floating-point numbers.
Hence, our method can obtain the local monodromies of plane algebraic curves con-
taining floating-point coefficients around each critical point. A computational example
is given, explaining a control of the jump of Puiseux-series roots. In addition, we show
the calculated result of a monodromy group generated by local monodromies.

1 Introduction
If we trace analytically a convergent power series along a path in the complex plane,

we may find a multiple-valued function. The multiple-valuedness is called monodromy.
This paper presents an application of the extended Hensel construction (EHC in short) for
computing monodromy groups defined by plane algebraic curves. In [DH01], Deconinck
and van Hoeij proposed a method for computing Riemann matrices of algebraic curves.
The computation of monodromy groups is one step of the computes. The method is based
on analytic continuation of algebraic functions along paths in the complex plane. The
analytic continuation is a very impotant operation in mathematics: for the determination
of Riemann matrices of algebraic curves, the computation of Abel’s map, and so on [DH01,
DP08]. Nearly a decade ago, Sasaki et al. [SS96, IS04] proposed an algorithm for analytic
continuation based on the EHC combined with Smith’s theorem. Furthermore, Inaba and
Sasaki [IS04] proposed an enhanced method by using a bound for the smallest root [TS00].
In this paper, we apply the method based on Smith’s theorem to analytic continuation.

Deconinck and van Hoeij [DH01] use first order approximations in their analytic contin-
uation process, and avoid critical points as much as possible. At the same time, Poteaux
[Pot07] made improvements to the method for computing monodromy groups by using
an enhanced Newton-Puiseux method. Hence, we can continue analytically Puiseux-series
roots above critical points of algebraic curves with floating-point numbers. In order to
choose a path of analytic continuation, Poteaux use Euclidean minimal spanning tree. Ad-
ditionally, Poteaux explained the truncation orders of Newton-Puiseux algorithm. In this
paper, we employ the EHC to compute the Puiseux series. The EHC has been invented by
Sasaki and Kako [SK99] so as to solve multivariate algebraic equations in series form. So
far, the EHC applied to an approximate factorization, an analytic factorization, and so on,
of polynomial of more than two variables [Ina05, Iwa03]. Note that series obtained by the
EHC is essentially different series from multivariate Puiseux series.

In this paper, we investigate an application of the EHC to compute monodromy groups
of plane algebraic curves. Using the EHC, it is possible to compute all Puiseux-series
roots concurrently, like Durand-Kerner method in numerical computation. Furthermore,
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the EHC is essentially a expansion method at branch points and quite stable [SY98] if
performed with floating-point numbers (conventional Newton-Puiseux’s method is very un-
stable). Therefore, our method is able to perform analytic continuation with floating-point
numbers. Finaly, we can determine monodromy groups of plane algebraic curves.

2 Preliminaries
In this section, we survey briefly calculation of the monodromy group of a plane algebraic

curve. For details, see [DH01, Pot07, Mir95]. Let K be a subfield of the complex number
field C, K̄ be its algebraic closure in C and consider a plane algebraic curve defined over C,

C = {
(x, y) ∈ C2|F (x, y) = 0

}
, (2.1)

where F (x, y) ∈ K[x, y] is a squarefree polynomial, monic in the variable y, and we write

F (x, y) = yd + fd−1(x)y
d−1 + · · ·+ f1(x)y + f0(x), (d ≥ 1). (2.2)

Here fm(x), m = 0, . . . , d − 1, are polynomials in x. Let fm(x) =
∑

n fnmxn, where the
coefficients fnm are complex numbers. d is the degree of F (x, y) with respect to y. An
irreducible polynomial (2.2) defines a plane algebraic curve (2.1) along with a ramified
covering π : C → C of the complex plane and a compact Riemann surface Γ canonically
associated to the curve C. We want to compute the monodromy group defined by this
curve. A complex number c such that the univariate polynomial F (c, y) has multiple roots
is called a critical point. Critical points are finite since they are precisely the roots of the
discriminant of F in y. We denote them by c1, . . . , cp, and the set of critical points by S.
A point a ∈ C is called regular, if the equation

F (a, y) = yd + fd−1(a)y
d−1 + · · ·+ f1(a)y + f0(a) = 0 (2.3)

has d distinct roots {α1, . . . , αd}. The set {α1, . . . , αd} forms a fiber at a of the covering,
denote them by π−1(a). By the implicit function theorem, there exist d analytic functions
y1(x), . . . , yd(x) such that {yi(a)} = π−1(a) and F (x, yi(x)) = 0 in a neighborhood of a
for all i. Consider a path γ : [0, 1] → C \ S which is a loop in the x-plane starting and
ending at a that does not meet any critical point. When τ approaches 1, γ(τ) approaches
a so that the values of the continuations {y1(γ(τ)), . . . , yd(γ(τ))} tend to the fiber π−1(a).
Choose one analytic solution of equation (2.2) above γ(0). One can continue analytically
this solution along γ, yielding an analytic function defined in a neighborhood of γ(1) which
is still a solution of the equation. Now take γ to be a loop with base point a: then
analytic continuation along γ (or any other path homotopic to γ) induces a permutation σ
of {1, . . . , d} of the fiber π−1(a).

yi(γ(τ))→ yσ(i) = yσ(i)(a). (2.4)

The action of the fundamental group π1(C \ S, a) thus defined on π−1(a) is called the
monodromy of C with base point a. Up to conjugate, it does not depend on the choice

a cj

γjyi(γj(0))

yσ(i)(γj(1))

↓

Figure 1: Analytic continuation along the path γj around the critical point cj .

of the base point. The monodromy action of a loop enclosing exactly one critical point
cj is called the local monodromy around cj . If the permutation σj about cj is not the
identity, cj is called a branch point. The whole monodromy may be represented by the
local monodromy around each critical point with respect to a common base point. This is
the expected output of an algorithm for monodromy computation.
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Figure 2: Permutation σ of Puiseux-series roots at x1 and x2.

3 Analytic continuation based on the EHC
Many methods for monodromy computation are based upon its definition by means

of analytic continuation. Poteaux [Pot07] use an enhanced Newton-Puiseux method to
analytic continuation of algebraic function above path in the complex plane. The method
is possible to expand at a critical point, and connect near a critical point. At the same
time, we apply a symbolic-numeric method for analytic continuation based on the EHC
[SS96, IS04] to monodromy computation. In a bivariate case, our method is possible to
compute Puiseux-series roots (fractional-power series roots) at a critical point likewise. In
addition, the EHC is possible to compute not only series expansion of all roots concurrently
but also a multivariate case easily [SK99, SI09]. In this paper, we suppose a bivariate case.

The first of all, we consider the EHC (for details, see [SK99, SI09] and section 5).

Let G
(∞)
1 , . . . , G

(∞)
d be Hensel factors, and let ϕ1(x), . . . , ϕd(x) be roots of the bivariate

polynomial (2.2) with respect to y :

F (x, y) = G
(∞)
1 (x, y) · · ·G(∞)

d (x, y)

= (y − ϕ1(x)) · · · (y − ϕd(x)).
(3.1)

At a critical point, some roots have multiplicity. In this case, we apply the EHC to Hensel
factors repeatedly [SK99]. Finally, we obtain factors of (3.1) which are linear with respect
to y, i.e. Puiseux expantions of ϕ1(x), . . . , ϕd(x). We denote them by y1(x), . . . , yd(x). In

actual calculation, Hensel factors G
(∞)
i (x, y) (i = 1, . . . , d) are truncated at kth Hensel fac-

tors G
(k)
i (x, y). Hence, we obtain the kth fractional-power series expansions with conjugate

algebraic coefficients in the neighborhood of a critical point cj , as follows.

y
(k)
i,j (x) =

k∑
�=0

gi� (x− cj)
�/ei , e1 + · · ·+ es = d, (3.2)

where the integers ei are ramifiication indices. Let a be a regular point: then Puiseux
expansions at a regular point a are usual power series expansions, the ramification indices
are all 1 and the local monodromy is the identity permutation.

For analytic continuation, we find critical points of a polynomial (2.2) by using the
following discriminant.

R(x) = Resultanty

(
F (x, y),

∂F (x, y)

∂y

)
. (3.3)

The roots of the discriminant (3.3) are critical points. We calculate the roots of R(x) by
a numerical method. Note that not every root of R(x) is a branch point. Hence, for each
root cj of R(x), we must check whether cj is a branch point or not. We perform this check

by expanding y = y
(k)
i,j (x) at the point x = cj : if the expansion yields a fractional-power

series expansions then cj is a branch point, otherwise cj is not a branch point.



Let cj and cĵ be two different critical points, and let ζjĵ be a regular point. We consider
the simple case in which the circles of convergence of Puiseux-series roots at x = cj and
x = cĵ overlap and the point x = ζjĵ is inside the overlapping area. Furthermore, assume
that ζjĵ is chosen so that F (ζjĵ , y) has no multiple root, then F (ζjĵ , y) has d different
roots which we put y = α̃1, . . . , α̃d, α̃s �= α̃t for any s �= t. Note that the α̃i is computed

from the EHC at a regular point ζjĵ . For 
̂ = j, ĵ, let y
(∞)

i,�̂
(x) (i = 1, . . . , d) be the

roots of F (x, y) expanded into fractional-power series roots at x = c�̂, then there is the
following one-to-one correspondence between each element of {α̃1, . . . , α̃d} and each element

of {y(∞)

1,�̂
(ζjĵ), . . . , y

(∞)

d,�̂
(ζjĵ)},
y
(∞)
si,j

(ζjĵ) = α̃i = y
(∞)

ti,ĵ
(ζjĵ), i = 1, . . . , d, (3.4)

where {s1, . . . , sd} = {1, . . . , d} = {t1, . . . , td, }. The y
(∞)

i,�̂
(x) are infinite fractional-power

series roots theoretically, but we can handle only truncated at kth fractional-power series

cj cĵζjĵ
γ̃

α̃iy
(∞)
si,j

(x) y
(∞)

ti,ĵ
(x)

Figure 3: Continuation between y
(∞)
si,j

(x) and y
(∞)

ti,ĵ
(x)

roots y
(k)

i,�̂
(x) practcally. Furthermore, the coefficients of y

(∞)

i,�̂
(x) are calculated only approx-

imately. Hence, we cannot calculate y
(∞)

i,�̂
(ζjĵ) accurately. We can, however, determine the

above-mentioned correspondence rigorously by using Smith’s theorem [Smi70]. Let P (y) be
a monic univariate polynomial in C[y], and let z1, . . . , zd be d distinct numbers in C. Let d
numbers ρ1, . . . , ρd be defined as follows.

ρi =
d|P (zi)|

Πd
î=1, �=i

(zi − zî)
(i = 1, . . . , d). (3.5)

Let D1, . . . , Dd be d discs in the complex plane, such that center(Di) = zi and radius(Di) =
ρi (i = 1, . . . , d). Then, the union D1∪· · ·∪Dd contains all the roots of Dk̂+1, . . . , Dd, then

the number of roots contained in this union is k̂. Let a polynomial P̃λ(cj , cĵ , y) be

P̃λ(cj , cĵ , y) = F (cj + λ(cĵ − cj), y), (3.6)

where λ is a parameter such that 0 ≤ |λ| ≤ 1. Let D̃i(λ) (i = 1, . . . , d) be Smith’s
discs for P̃λ(cj , cĵ , y) with zi = α̃i. If D̃1(λ), . . . , D̃d(λ) do not overlap one another for

any λ on cj path connecting 0 and 1, then we have the correspondence y
(k)
si,j

(ζjĵ) ←→ α̃i.

In the same way, the y
(k)

ti,ĵ
(ζjĵ) is connected to α̃i. Finally, we get the correspondence

y
(k)
si,j

(ζjĵ)←→ α̃i ←→ y
(k)

ti,ĵ
(ζjĵ).

4 Determining the global monodromy
Since we can obtain the local monodromy in any critical point simply by looking at the

EHC, all we need to compute the global monodromy is to express local monodromies using



the same base point. And to that end, we need to determine the path γ around a critical
point. In this paper, we apply a method in [DH01] to path choice.

Let V = {c0 = a, c1, . . . , cp} be the set of critical points, augmented by the base point a.
Note that we choose a so that its real part is less than the real part of each critical point. By
this choice, the arguments of cj − a are between −π/2 and π/2. Now paths are chosen for
the analytic continuation. The paths chosen are composed of line segments and semi-circles.
Let D(cj , r(cj)) (j = 1, . . . , p) denote the circle with center cj ∈ V and radius r(cj), and let
ξj denote the point cj − r(cj). The simplest path γj around cj consists of one line segment
from a to ξj . This is followed by D(cj , r(cj)), starting at ξj . Successively, a line segment
is followed from ξj , back to a. However, in many cases, this path will intersect one of the

circles D(cĵ , r(cĵ)), ĵ �= j. This indicates that the path comes close to the critical point
cĵ . To avoid accuracy issues during the analytic continuation, this should be avoided. This
is remedied as indicated in figure 4: the path takes a detour along a semi-circles is around
cĵ . Whether this semi-circles goes above or below cĵ depends on the relative positions of
a, cj and cĵ . The semi-circles is chosen such that the new path is deformable to γj , without
crossing any critical points of the analytic continuation.

This process is iterated, until a path is obtained, which stays at least r(cĵ) away from cĵ ,

for ĵ = 1, . . . , p. These new paths are homotopic to each γ1, . . . , γp in C\S, and we denote
them by γ̃1, . . . , γ̃p. In order to calculate the global monodromy, we need to continue

analytically the functions y
(k)
i (x) (i = 1, . . . , d) along each path γ̃j . Finally, we obtain the

permutations associated to each critical point cj , and we determine the global monodromy.

cj

cĵ
a

ξĵ
ξj

γj

γ
′
j

D(cĵ , r(cĵ))

D(cj , r(cj))

r(cj)

r(cĵ)

Figure 4: Path homotopic to γj

5 The extended Hensel construction
We review the EHC proposed by Sasaki and Kako. For more details, see [SK99, SI09].

ex

ey
1 2 · · ·

1

2

d

...

0

μ

L

Figure 5: Example of Newton’s line L

For each non-zero term fnm · xnym of a bivariate
polynomial (2.2), we plot a dot at the point (n,m)
in the two-dimensional Cartesian coordinate sys-
tem. Let L be a straight line such that it passes
the point (d, 0) as well as another dot plotted and
that no dot is plotted below L. The line L is called
Newton’s line for F (x, y). Figure 5 shows L. The
sum of all the term of a polynomial (2.2), which are
plotted on Newton’s line is called Newton’s polyno-
mial for (2.2). We denote Newton’s polynomial by
FNew(x, y). Newton’s line is uniquely determined
by F (x, y). Let Newton’s line FNew in (ey, ex)-



plane be ey/d + ex/μ = 1, where μ is the intersection of L and ex-axis. Then, Newton’s
polynomial consists of some of the terms

yd, yd−1xμ/d, yd−2x2μ/d, . . . , xdμ/d. (5.1)

Let μ̂ and d̂ be positive integers such that

μ̂/d̂ = μ/d, gcd(μ̂, d̂) = 1. (5.2)

Suppose that FNew(x, y) is factorized over C as

FNew(x, y) = G
(0)
1 (x, y) · · ·G(0)

q (x, y), q ≥ 2,

gcd
(
G

(0)
ŝ , G

(0)

t̂

)
= 1, ŝ �= t̂.

(5.3)

We define an ideal Ik as

Ik =
(
ydx(k+0)/d̂, yd−1x(k+μ̂)/d̂, . . . , y0x(k+dμ̂)/d̂

)
, (5.4)

and we compute Lagrange’s interpolation polynomials. For each value of m = 0, . . . , d− 1,

there exists only one set of polynomials {W (m)
1 (x, y), . . . ,W

(m)
r (x, y)} satisfying

W
(m)
1 (x, y)

FNew(x, y)

G
(0)
1 (x, y)

+ · · ·+W (m)
q (x, y)

FNew(x, y)

G
(0)
q (x, y)

= ymx(d−m)μ̂/d̂,

degy

(
W

(m)
ŝ (x, y)

)
< degy

(
G

(0)
ŝ (x, y)

)
, ŝ = 1, . . . , q.

(5.5)

Suppose that G
(k−1)
1 , . . . , G

(k−1)
q have been calculated. We express F −G

(k−1)
1 · · ·G(k−1)

q as

F −G
(k−1)
1 · · ·G(k−1)

q ≡ δf
(k)
d−1y

d−1x(μ̂/d̂) + · · ·+ δf
(k)
0 y0xdμ̂/d̂ (mod Ik+1). (5.6)

Then, we construct G
(k)
ŝ (x, y) by the following formula.

G
(k)
ŝ (x, y) = G

(k−1)
ŝ (x, y) +

d−1∑
m=0

δf (k)
m (x)W

(m)
ŝ (x, y), ŝ = 1, . . . , q. (5.7)

This construction is called extended Hensel construction. This method gives repeatedly, we
finally obtain factors of F (x, y) which are linear with respect to y.

6 A computational experiment
In this section we show the results of application of the methods proposed in the previous

sections to example of monodromy group. We consider the following equation.

F (x, y) = y3 − x7 + 2x3y. (6.1)

The equation (6.1) come from [DH01]. Let c0 be a base point, and we calculate critical
points of (6.1) from the discriminant (3.3). Results are following.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −1.4483892023 · · · ,
c1 = −0.3196977699 · · · − 0.98392856357 · · · i,
c2 = 0.8369796279 · · · − 0.60810129478 · · · i,
c3 = −1.0345637159 · · · ,
c4 = 0.0000000000 · · · ,
c5 = 0.8369796279 · · ·+ 0.60810129478 · · · i,
c6 = −0.3196977699 · · ·+ 0.98392856357 · · · i.

(6.2)

We indicate the above values and each circle D(cj , r(cj)) (j = 1, . . . , 6) in figure 6. As a



Figure 6: Critical points (6.2)

simple example, we describe Puiseux-series roots of (6.1) about one critical point c4 = 0 by
using the EHC, as follows.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y
(k)
1,4 (x) =

1

2
x4 − 1

16
x9 +

3

128
x14 + · · ·,

y
(k)
2,4 (x) =

√
2ix3/2 − 1

4
x4 +

3

64

√
2ix13/2 +

1

32
x9 − 105

8192

√
2ix23/2 − 3

256
x14 + · · ·,

y
(k)
3,4 (x) = −

√
2ix3/2 − 1

4
x4 − 3

64

√
2ix13/2 +

1

32
x9 +

105

8192

√
2ix23/2 − 3

256
x14 + · · · .

(6.3)

To make it easier to understand visually, we use the exact value c4 = 0 as the expansion
point. In actual calculation, the values of cĵ (ĵ = 0, . . . , 6) are obtained as floating-point
numbers. Therefore, the EHC would be a symbolic-numeric approach [SY98, IS07]. At a
base point c0 which is a regular, Taylor-series roots are obtained as following.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
(k)
1,0 (x) = −3.20203 · · ·+ 4.25125 · · ·x− 1.68471 · · ·x2 + 0.16816 · · ·x3 + · · ·,
y
(k)
2,0 (x) = 1.60101 · · · − 2.12562 · · ·x+ 0.84235 · · ·x2 − 0.08408 · · ·x3 + · · ·

+ i
(
1.26997 · · · − 3.08354 · · ·x+ 1.35754 · · ·x2 − 0.46412 · · ·x3 + · · · ),

y
(k)
3,0 (x) = 1.60101 · · · − 2.12562 · · ·x+ 0.84235 · · ·x2 − 0.08408 · · ·x3 + · · ·

− i
(
1.26997 · · · − 3.08354 · · ·x+ 1.35754 · · ·x2 − 0.46412 · · ·x3 + · · · ) .

(6.4)

Let γ̃j be the paths built in section 4, and let Taylor-series roots y
(k)
i,0 (x) (i = 1, . . . , 3) be

initial functions of analytic continuation along the paths γ̃j . Then, we calculate local mon-

odromies associated to each critical point cj . Since the y
(k)
i,j (x) are impossible to continue



over the nearest critical point, we need to connect Taylor-series roots from c0 to c3 always
first. Furthermore, note that we entail Taylor-series roots at regular points between each
critical point. Because Puiseux-series roots at critical points have ramification indices. We
plot a phase of the jump of each Puiseux-series root around the critical point c3 in figure 8
and 9. This behavior does not arise from regular points. Hence, we can control the jump
of Puiseux-series roots, and we can continue analytically Puiseux-series roots around each
critical point. Let the behavior speak for itself, in figure 10 and 11. In these figures, we

evaluate y
(20)
i,0 (x) and y

(20)
i,3 (x) along the circle x = 0.3 (cos(θ) + i sin(θ)) (0 ≤ θ ≤ 2π). We

can see the jump between y
(20)
2,3 (x) and y

(20)
3,3 (x).

Finally, we obtain permutations related the local monodromy in any critical point as

cj c1 c2 c3 c4 c5 c6 ∞
σj (13) (23) (23) (13) (23) (12) (132)

Figure 7: Permutations σj associated to each critical point cj .

follows. The collection of all σj generates the monodromy group, which is represented here
as a subgroup of Sd, the group of permutations of {1, . . . , d}. The point x = ∞ might
also be a branch point. The corresponding permutation σ∞ does not need to be computed
by analytic continuation, since it can be determined from the other σ using the following
relation [DH01].

σ∞ ◦ σp ◦ σp−1 ◦ · · · ◦ σ1 = 1 (6.5)

This states that analytic continuation along a closed path in the extended complex x-
plane that encircles all branch points will act as the identity permutation. Such a path
is deformable to a point and analytic continuation along this path does not permute the
entries of yi,0(c0).

7 Conclusion
In this paper, we have presented a symbolic-numeric method for computation of mon-

odromy groups of plane algebraic curves based on the EHC. The EHC is essentially a ex-
pansion method at critical points and quit stable if performed with floating-point numbers.
Hence, we can compute local monodromies of plane algebraic curves with floating-point co-
efficients. Moreover, the EHC may compute a multivariate case, that is about an algebraic
surface. Let F (x, u1, . . . , uq̂), with q̂ ≥ 2, be an irreducible multivariate polynomial over
some subfield K of the complex numbers. Then we can obtain a multivariate Puiseux-series
roots ϕi(u1, . . . , uq̂), (i = 1, . . . , d), such that

F (x, u1, . . . , uq̂) = G
(∞)
1 (x, u1, . . . , uq̂) · · ·G(∞)

d (x, u1, . . . , uq̂)

= (x− ϕ1(u1, . . . , uq̂)) · · · (x− ϕd(u1, . . . , uq̂)).
(7.1)

Note that in multivariate case we introduce the total-degree variable t̄ by the replacement
u1 → t̄u1, . . . , uq̂ → t̄uq̂ in F (x, u1, . . . , uq̂). Acoordingly, we determine Newton’s line L in
(ey, et̄)-plane [SK99]. As a result, the EHC is possible to continue analytically multivariate
Puiseux-series roots above critical points. However, in a multivariate case, the treatment of
singularities, the region of convergence, fundamental groups, and so on, become a problem.
These problems are future tasks.
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Figure 8: Real part of y
(20)
i,3 (x) around c3. Figure 9: Imaginary part of y

(20)
i,3 (x) around c3.

Figure 10: Real part of y
(20)
i,0 (x) around c0. Figure 11: Imaginary part of y

(20)
i,0 (x) around c0.
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Abstract: A special class of multistage and multistep integration methods which can 
obtain r new values simultaneously at each integration step were developed. The 
block extended backward differentiation formulas also contain extended step-point in 
the formulas. Their stability regions were sketched, and their regions are either 
A-stable or ( )A α -stable. In addition, in a predictor-corrector scheme, their stability 
interval is one of the largest among some known articles. Applications of the block 
formulas to numerical solutions of stiff differential equations by Newton’s scheme 
were also studied. 
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1. Introduction 
Numerical solutions for ordinary differential equations (ODEs) have great importance 
in scientific computation, as they were widely used to model in representing the real 
world problems [9]. The common methods used to solve ODEs are categorized as 
one-step (multistage) methods and multistep (one stage) methods, which Runge-Kutta 
methods represent the former group, and Adams-Bashforth-Molton method represents 
the later group. Some multistage methods are available in the community. Implicit 
one-step method has been studied by Stoller and Morrison [9], Butcher [5], and 
Shampine and Watts [9]. But, here we tried to set up a system with combination of 
different number of stages and step formulas, in addition, these formulas have good 
stability region for ordinary differential equations.  
In this paper we shall be concerned with the approximate numerical solutions of the 
stiff initial value problem 

0 0( , ),   ( )dy f x y y x y
dx

= =          (1) 



on the finite interval [ ]0 , NI x x=  where 0:[ , ] m
Ny x x R→ and 

0:[ , ] m m
Nf x x R R× → . Many efficient numerical methods have been proposed, but 

despite the algorithm developed by Gear [6] more than 3 decades ago which remains 
one of the most efficient general purpose algorithms. We quoted the following 
description from [2] to describe the importance of this algorithm. Three of the most 
important factors contributing to the success of this algorithm, which incorporates 
backward differentiation formulae of orders 1-6 are: 
(1) the relative ease with order and stepsize maybe changable, 
(2) the possibility of using higher order, highly stable schemes, 
(3) the relatively small amount of computational effort required per step.  
Based on this description, same idea of adapting backward differentiation is also 
implemented, we consider a class with both explicit and implicit multistep and 
multistage methods for solving ordinary differential equations, and we can call it a 
block method. For nonstiif ODEs, it can be implemented by a predictor and corrector 
schemes since it contains explicit and implicit formulas. In addition, if dealing with 
stiff problems, implicit formulas can be used solely by some Newton-like methods if 
computing complexity is a concern. The advantage of our method is that it can obtain 
a block of new values simultaneously which makes it be more competitive. A stepsize 
adjustment strategies was developed to be implemented in the predictor-corrector 
scheme.  
As for the rest of the paper, we organized the content as the following. In section 2, 
we will show some of the block multistage/multistep formulas, and their stability 
regions will be sketched and be given at section 3. In section 4, we implement a 
variable stepsize strategy for moderate stiff ODEs by Block formulas. Some 
numerical results for stiff ODEs will be given too. Conclusion is given at section 5.  

2. Block Multistage and Multistep Method 
Given an s stages and m steps integration formula [1, 7], where 

1

0
( )

m
q
j i s j

j
h k y−

+ −
=
� approximates ( )i qy x +′ of order mh , 1,2,...,q s= , and m s≥ . Define an 

s stages and m steps extended backward differentiation scheme to be one taking the 
general form  

1, 1, 1 1 1, 1,

, , 1 1 , ,

... ,

... .

s n s s n s s m n s m s m n s m

s s n s s s n s s s m n s m s s m n s

y y y h f

y y y h f

α α α β

α α α β

+ − + − − + − − + −

+ − + − − + − − +

� + + + =
�
�
� + + + =�

�      (2.1) 



A few formulas are given in the following:  
a. For s=m=1, it is exactly the same as the classical BDF formula. 
b. For s=2, m=3, explicit and implicit formula are the following:  

(2.2) 

2 1 1 1, 1

2 1 1 2 2

2 3 6 6 ( )
11 18 9 2 6 ( , )

n n n n n n

n n n n n n

y y y y hf x y
y y y y hf x y

+ + − + +

+ + − + +

+ − + =
− + − =

(2.3) 

c. For s=3, m=5, explicit and implicit formulas are the following:  
3 2 1 1 2 2 2

3 2 1 1 2 1 1

3 2 1 1 2

12 75 200 300 300 137 60 ( , )
3 20 60 120 65 12 60 ( , )

2 15 60 20 30 3 60 ( , )

n n n n n n n n

n n n n n n n n

n n n n n n n n

y y y y y y hf x y
y y y y y y hf x y

y y y y y y hf x y

+ + + − − − −

+ + + − − − −

+ + + − −

− − + − + − =
− + − + − − =

− + − − + =
 (2.4) 

3 2 1 1 2 1 1

3 2 1 1 2 2 2

3 2 1 1 2 3 3

3 30 20 60 15 2 60 ( , )
12 65 120 60 20 3 60 ( , )
137 300 300 200 75 12 60 ( , )

n n n n n n n n

n n n n n n n n

n n n n n n n n

y y y y y y hf x y
y y y y y y hf x y

y y y y y y hf x y

+ + + − − + +

+ + + − − + +

+ + + − − + +

− + + − + − =
+ − + − + =

− + − + − =
(2.5) 

Additional formulas can be derived by the same way, and we will not give detail here. 
If we let the leading coefficient of n sy + to be one, and additional function evaluation at 
advanced step-point are equipped into the original formulas, then a new block 
formulas can be derived, and interestingly, the formulas are similar to the 
EBD(extended Backward Differentiation Formulas) which J.R. Cash derived in [2]. 
The derivation will be given in the next section. Some reports show that EBD has 
great performance in solving stiff ODEs. Also a MEBDF (modified extended 
backward differentiation formulas) are derived [3] and has great performance in 
solving stiff ODEs and DAEs. We will investigate if our methods have good 
performance to stiff ODEs and some DAEs in future research. Our block formulas can 
be implemented by either Newton iteration with the implicit formulas, such as 
Formulas 2.3 and 2.6 or by a predictor-corrector scheme, such as Formulas 2.2 and 
2.3; 2.5 and 2.6, etc. Some numerical results will be given in section 4.  
3. Stability property
The main difficulty associated with stiff equations is that even though the component 
of the true solutions corresponding to some eigenvalues that may becoming negligible, 
the restriction on the stepsize imposed by the numerical stability of the method 

requires that hλ  remain small throughout the range of integration. So a suitable 

formula for stiff equations would be the one that would not require that hλ remains 

small. Dahlquist [5] investigated the special stability problem connected with stiff 

2 1 1 1 1

2 1 1

2 9 18 11 6 ( , )
6 3 2 6 ( , ).

n n n n n n

n n n n n n

y y y y hf x y
y y y y hf x y

+ + − − −

+ + −

− + − =
− + − − =



equations, he introduced the concept of A-stability, and we quote the definition as the 
following:  

Definition 3.1: The stability region R associated with a multistep formula is 

defined as the set { :R hλ= A numerical formula applied to y yλ′ = , 0 0( )y x y= , with 

constant stepsize 0h > , produce a sequence ( )ny satisfying that 0ny → as n → ∞ }.  

Definition 3.2: A formula is A-stable if the stability region associated with that 
formula contains the open left half complex place. 

Definition 3.3 [5]: A convergent linear multistep method is ( )A α -stable, for 

0 / 2α π< < , if { : arg( ) ,  0}Sα μ μ α μ= − < ≠ . A method is A(0)-stable if it is 

( )A α -stable for some (sufficiently small) 0α > .  
To derive the region of absolute stability, one may consider the model problem for 
ODEs. We apply formulas 2.3 and 2.6 to y yλ′ = , 0 0( )y x y= , and manipulation is 

skipped here. Let hμ λ= � we have the following locus plots for the block formulas: 

a. Locus plot of Formula 2.3 (implicit block formula) : 

Figure 3.1: Stability region of implicit Formula 2.3 
The region is the exterior of the blue line 

We notice that in Figures 3.1, the stability region is at the exterior of the blue line and 
it shows that Formula 2.3 is an A-stable method, which means the regions covers 
entirely left half plan. 
b. Locus plot of Formula 2.5 (implicit block formula): 
We notice that in Figures 3.2, the stability region is at the exterior of the blue line and 
it shows that Formula 2.5 is an ( )A α -stable method, which means the regions covers 
almost all the left half plan. The other regions of absolute stability were not sketched 
and details will be given in the outcoming paper.  



Figure 3.2: Stability region of implicit Formula 2.6 
The region is the exterior of the blue line 

For estimation of the absolute stability region of the Block Predictor-Corrector 
scheme, we derive in the following. Let H = λh . We could rewrite Formulas 2.2 and 
2.3 (or similarly Formulas 2.4 and 2.5) by the following: 

1 1
* *

1 1

p c c
m m m
c c p

m m m

Y AY hBF
Y A Y hB F

− −

− −

= +
= +

          (3.1) 

For s=2, m=3,  

1 1 1
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    (3.2) 

and  

1 1 1

2 2

5 28 11/ 69 2 / 69 623 23
6 / 23 1/ 23 64 / 23 27 / 23
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n n n
c c p
n n n

y y f
h

y y f
+ − +

+ +

−� �� � � � − � �� �
= +	 
	 
 	 
 	 
	 

	 
 � �−� � � � � �� �

  (3.3) 

or in matrix formulation  

1 1
p c c

m m mY AY hBF− −= +           (3.4) 

and  

* * * * 2 *
1 1 1 1( ) ( )c c c c c

m m m m mY A Y HB AY HBY A HB A H B B Y− − − −= + + = + +   (3.5) 

Define  
* * 2 *( )P H A HB A H B B= + +          (3.6) 

The locus of Formula 3.6; ( )P H , it determines the boundary of the stability region 
and is given in Figure 3.3.  



Figure 3.3:Locus plot of a block 1)(CEPE  by Formulas 2.2 and 2.3 
The region is the interior of the blue line 

Define In Figure 3.3, the intercept is 
about -2.5. According to [4,7,8,9], this intercept is among the largest of the PECE 
schemes, and especially our method is a block PECE scheme. That makes our scheme 
has a better control of the stepsize in the integration.  

Before ending this section, we like to point out one special observation of our formula 
3.3 which has great similarity to EBD method [2]. The first component of formula 3.3 
can be written as  

1 1 1
28 5 22 4
23 23 23 23n n n n ny y y f f+ − +− + = − ,       (3.7) 

and the same order formula from EBD can be written as 

1 1 1
28 5 22 4
23 23 23 23n n n n ny y y f f+ − +− + = − ,  

which is exactly the same as Formula 3.7. But, in Formula 3.3, since it is a block 
formula, so we have an additional formula for further extended step-point 2ny + , and it 
makes our formula to be a block extended step-point backward differentiation 
formulas. It may increase the competitive in computation.  

4. Numerical Experiments 
In the numerical schemes, Formulas 2.2 ~2.7 can be implemented in either Newton 
iteration by the implicit formulas, such as Formulas 2.3, 2.5 and 2.6; or by a 
predictor-corrector scheme, such as Formulas 2.2 and 2.3; 2.4 and 2.5, or 2.6 and 2.7, 
etc. We will show few examples to see the effect of applying a variable stepsize 
selection strategy, and a Block Predictor-Corrector numerical scheme on mildly stiff 
ODEs. Example 1 is a mildly stiff ODE. The initial stepsize is 310− . Numerical output 

{ .}0)Re(,,1)((sup* <=<−= λλρ hHHPHH



is given in Figure 4.1, and the absolute error is between 8 1010 ~ 10− −  and is given in 
Figure 4.2. Example 2 is a nonlinear mildly stiff ODEs. Numerical output is given in 
Figure 4.3, and the absolute error is between 8 1110 ~ 10− −  and is given in Figure 4.4. 

Example 1: A mild stiff ODE. yy λ−=′ , ,1)0( =y  ]5,0[∈t . 
The exact solution is tey λ−= . Case 2: 60=λ

Figure 4.1: Block PECE numerical solution with 60=λ

  
Figure 4.2: Absolute error log plot with variable stepsize when 60=λ

(the y-axis is by log scale and is about 125 10~10 −− ) 
Example 2: 
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Figure 4.3: Block PECE numerical solutions 

Figure 4.4: Absolute error of Block PECE numerical solutions with fixed stepsize  
(the y-axis is by log scale and is about 9 1210 ~ 10− − ) 

We also show a stiff ODE example by using implicit formulas, e.g., Formulas 2.3 (or 
2.6). 
Example 3:  

2

2

4
1 1 2 3

4 7 2
2 1 2 3

7 2
3

0.04 10

0.04 10 3 10

3 10

y y y y
y y y y y

y y

′ = − +
′ = − − ×

′ = ×

 with 
1

2

3

(0) 1
(0) 0
(0) 0

y
y
y

=
=
=

A fixed stepsize 310h −= was used to solve this example by applying Formula 2.3 with 
Newton iteration. A variable stepsize solver ode15s from MATLAB was also 
implemented, and its numerical solutions are used as comparison. Figures 4.5 - 4.7 
contain solutions solved by these two schemes. From the output, solutions by ode15s 



from MATLAB and our scheme match well. Since our scheme is currently 
implemented by fixed stepsize and ode15s is by variable stepsize, the estimation of 
absolute error will be not given shown.  
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Figure 4.5: Numerical output of 1( )y x obtained by 2 schemes 
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Figure 4.6: Numerical output of 2 ( )y x obtained by 2 schemes 
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Figure 4.7: Numerical output of 3( )y x obtained by 2 schemes 

 
5. Conclusion 
In this paper, we have shown a new Block extended backward differentiation 
formulas with different stages s and steps m. Some absolute stability regions of these 
formulas have been sketched, the results show that the region are either A stable or 

( )A α  stable. In addition, stability region of implement a predictor corrector scheme 
by these block formula is also established, their intercept of stability region is the best 
among some known literatures. Numerical results by implementing a predictor- 
corrector schemes with stepsize selection strategy to some mildly stiff ODEs are 
obtained, the numerical results show that the method is both effective and accurate 
regarding to obtain r new values at each integration step and its rate of convergence. 
In addition, an implicit implementation is also given, their numerical results match 
well with the output of the famous MATLAB numerical method ode15s. Numerical 
solutions of stiff ODEs and some linear DAEs with constant and time dependent 
coefficients matrices by implicit block scheme will be studied in the future.  
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Abstract

We describe a new software package, named PGB, for computing parametric poly-
nomial systems and related objects. PGB is applicable to a wide range of expressions
for many of which there has not been any software available up to now. The purpose
of this paper is to illustrate how to solve using that package.

1 Introduction

In this paper, we shall introduce a new Risa/Asir[17] package for computing parametric
polynomial systems. The main part of this package is based on the theory of parametric
Gröbner bases. (That why, this package is called PGB (Parametric Gröbner Bases).) The
use of Gröbner basis computations for treating systems of polynomial equations has become
an important tool in many areas, reaching from pure mathematics to industrial applications.
For every concept and construction in computer algebra the question of uniformity in the
input parameters is crucial both from a theoretical and a practical viewpoint. This applies
in particular to the concept of Gröbner bases. Recently, Gröbner bases for parametric
polynomials have been actively investigated. For example, one can see several papers for
Gröbner bases of a polynomial ideal with parametric coefficients in [1, 3, 7, 12, 13, 14, 19,
20, 22, 23]. The goal of this article is to describe what PGB can do and to explain how
to get it do something, but we do not comments on how it obtains its results. The paper
is intended as a guide for potential user of the package. The underlying algorithms are
described elsewhere [13, 15, 19].

The outline of the paper is as follows: Section 2 presents the basic notations for poly-
nomial rings over a filed, rings of differential operators, and modules. Section 3 describes
how to solve problems of parametric polynomial systems. Section 4 describes how to solve
a system of parametric linear equations. In the section 5, we conclude this paper.

PGB has been implemented in the computer algebra system Risa/Asir [17] (http://
www.math.kobe-u.ac.jp/Asir/asir.html). It is available free of charge for any non-
commercial user and can be obtained from

http://www.math.sci.osaka-u.ac.jp/~nabeshima/PGB/

or upon request from the author. In the web-page, one can download the manual of PGB,
too. This paper is not the manual, the purpose of this paper is to illustrate how to
solve using that package.

∗Correspondence to: Graduate School of Information Science and Technology, Osaka University,
Machikaneyama 1-1, Toyonaka 560-0043, Osaka, JAPAN. Tel:+81-6-6850-5551



2 Notations

Throughout this paper, we assume that K and L are fields such that L is an extension
of K. Q and C denote as the set the field of rational numbers and the field of complex
numbers, respectively. The notations X̄ and Ā will be used as an abbreviation for the
set of n variables {x1, . . . , xn} and m variables {a1, . . . , am}, respectively. I.e., K[X̄] :=
K[x1, . . . , xn], K[Ā] := K[a1, . . . , am]. Let f1, . . . , fs be polynomials in K[Ā]. Then we set
V(f1, . . . , fs) = {(b1, . . . , bm) ∈ Lm|fi(b1, . . . , bm) = 0 for all 1 ≤ i ≤ s}, and V(0) := Lm,
V(1) := ∅. Let I be an ideal in K[X̄] and � a term order. Then, lm(I) := {lm(g)|g ∈ I}
where lm(g) is the leading monomial of g with respect to �.

For arbitrary ā ∈ Lm, we can define the canonical specialization homomorphism

σā : K[Ā] → L induce by ā, and we can naturally extend it to σā : K[Ā, X̄] → L[X̄].

© Rings of differential operators

Let ∂i = ∂
∂xi

: K[X̄] → K[X̄] be the partial derivative by xi, 1 ≤ i ≤ n. Let K[X̄, D̄] :=
K[x1, . . . , xn, ∂1, . . . , ∂n] be the rings of differential operators (and variables) with coeffi-
cients in K. K[X̄, D̄] has the commutation rules

xixj = xjxi, ∂i∂j = ∂j∂i, ∂ixj = xj∂i, for i �= j, and ∂ixi = xi∂i + 1.

It is well-known that K[X̄, D̄] is a left-Noetherian associative K-algebra. By an “ideal in
K[X̄, D̄]” we always mean a left-ideal of K[X̄, D̄].

© Modules

Let e1, . . . , er be the canonical basis of the free module K[X̄]r :=
⊕r

i=1 K[X̄]ei. I.e, for
each i = 1, . . . , r,

ei =
( ith
0, . . . , 0, 1, 0, . . . , 0

)
T ∈ K[X̄]r

denotes the i-th canonical basis vector of K[X̄]r with 1 at the i-th place. (Let A be a
matrix. In this paper, the transposed matrix of A is written as AT .) Two module orders
are of particular practical interest: POT (position over term) and TOP (term over position)
which follows [4].

Let Z be a K[X̄], K[X̄, D̄] or K[X̄]r and f1, . . . , fs ∈ Z. Then we set 〈f1, . . . , fs〉 =
{∑s

i=1 hifi |h1, . . . , hs ∈ Z } . The crucial fact is that 〈f1, . . . , fs〉 is an ideal (or a module)
in Z. We call 〈f1, . . . , fs〉 the ideal (or module) generated by f1, . . . , fs.

3 Parametric Gröbner Bases in various domains

PGB has commands for computing parametric Gröbner bases in commutative polynomial
rings over fields, rings of differential operators and modules. These computational com-
mands are the main achievements of this package. In order to apply these commands, we
can solve some parametric problems, like normal Gröbner bases.

In general, parametric Gröbner bases (with parametric coefficients) have two types. One
is called “comprehensive Gröbner bases”. The other is called “comprehensive Gröbner sys-
tems”. Comprehensive Gröbner bases and systems for parametric polynomial ideals were
introduced, constructed, and studied by Weispfenning in 1992 [20]. Since then comprehen-
sive Gröbner bases and systems have been studied and implemented in the several computer



algebra systems. After Weispfenning’s paper was published, Dolzman and Sturm have im-
plemented and published a software [2]. However, there was no big development about
comprehensive Gröbner bases and systems for ten years. Recently, the big developments
were made by Montes, Sato, Suzuki, Weispfenning and the author, as follows;

• Montes published the new algorithm for computing comprehensive Gröbner systems
and its software in 2002 and 2006 [12, 13]. .

• Suzuki and Sato presented an alternative definition of comprehensive Gröbner bases
in terms of Gröbner bases in polynomial rings over commutative von Neumann regular
rings in 2003 [18]. This Gröbner basis is called “alternative comprehensive Gröbner
basis (ACGB)”. Alternative comprehensive Gröbner bases have the following nice
properties, which do not hold in standard comprehensive Gröbner bases;

- There is a canonical form of an alternative comprehensive Gröbner basis in a
natural way.

- We can use reductions of an alternative comprehensive Gröbner basis.

• Weispfenning presented a concept of canonical comprehensive Gröbner bases under
very general assumptions on the parameter ring in 2002 and 2003 [21]. After this
paper was published, this result was applied for improving Montes’ algorithm by
Montes [12].

• Suzuki and Sato published the new algorithms for computing comprehensive Gröbner
bases and systems in 2006 [19]

• The author has improved the Suzki-Sato algorithm (not ACGB) for computing com-
pressive Gröbner systems in 2007 [15].

Now, there exist the software packages or programs for computing comprehensive Gröbner
bases and systems; REDLOG in Reduce, Montes’ program in Maple, Suzuki’s program in
Maple, Risa/Asir, Mathematica, singular and the author’s this PGB in Risa/Asir.

In the package PGB, the Suzuki-Sato algorithm[19] and Nabeshima’s techniques[15] are
applied for computing parametric Gröbner bases, because the Suzuki-Sato algorithms and
the Nabeshima’s techniques are faster than other existing algorithms. Moreover, in the
structure point of view, these algorithms are simpler than other existing algorithms. This
means that one can easily implement them. That’s why we applied the algorithms.

Before describing the package, first we introduce the definitions of “comprehensive
Gröbner bases” and “comprehensive Gröbner systems”.

Let Z be a K[Ā][X̄], K[Ā][X̄, D̄] or (K[Ā][X̄])r. Fix a term or module order.

Definition 3.1 (Comprehensive Gröbner bases). Let F and G be subsets in Z. G ⊂
〈F 〉 is called a comprehensive Gröbner basis for 〈F 〉 if ∀ā ∈ Lm, σā(G) is a Gröbner
basis for 〈σā(F )〉 in σ(Z).

Definition 3.2 (Comprehensive Gröbner systems). Let F be a subset of Z, A1, . . . ,
Al algebraically constructible subsets of Lm and G1, . . . , Gl subsets of Z. A finite set G =
{(A1, G1), . . . , (Al, Gl)} of pairs is called a comprehensive Gröbner system for 〈F 〉 if
σā(Gi) is a Gröbner basis of the ideal 〈σā(F )〉 in σ(Z) for each i = 1, . . . , l and ∀ā ∈ Ai.
Each (Ai, Gi) is called a segment of G.



Example 3.3. Let F = {ax2y+y, bx2y2 +ax+y} ⊂ Q[x, y], a, b parameters, x, y variables
and � the purely lexicographic order such that x � y. Then, a comprehensive Gröbner basis
for 〈F 〉 with respect to � is

G =
{

bxy3 − axy2 + ay, a2x − by2 + ay,−b2y5 + 2aby4 − a2y3 − a3y,−bx3y3 − xy2 + y,

bx2y2 + ax + y, bx2y4 + bxy3 + y3 + ay, ax2y + y
}

.

Even if we substitute arbitrary values for the parameters a and b of the set G, the set σ(G)
is always a Gröbner basis for 〈σ(F )〉 with respect to �.

A comprehensive Gröbner system for 〈F 〉 with respect to � is

G1 =
{(

Q2 \V(a, b), {a2x − by2 + ay,−b2y5 + 2bay4 − a2y3 − a3y}), (V(a, b), {y})}.
The union of the all parameters’ spaces is Q2. i.e., Q2 =

(
Q2 \V(a, b)

)
∪ (V(a, b)

)
.

3.1 Commutative polynomial rings

PGB has commands for computing parametric Gröbner bases in commutative polynomial
rings. These commands are based on the Suzuki-Sato algorithms and Nabeshima’s compu-
tational techniques. We do not aim in this article at explaining in detail the algorithm that
PGB is bases on. We illustrate how to solve using PGB.

© Parametric Gröbner bases

There exist several commands for computing comprehensive Gröbner bases and systems in
PGB. Each command has different techniques for getting optimal outputs. One have to
select one command to compute parametric Gröbner bases.

Let I = 〈ax2y2+bxy+2, bx+ay+2〉 be an ideal in C[x, y] with parameters a, b, and � be
the purely lexicographic order such that x � y. We select a command “cgs1” for obtaining
a comprehensive Gröbner system. Then, cgs1([a*x^2*y^2+b*x*y+2,b*x+a*y+2],[a,b],
[x,y],1,2) outputs the following as a comprehensive Gröbner system for I with respect
to �.

[394] cgs1([a*x^2*y^2+b*x*y+2,b*x+a*y+2],[a,b],[x,y],1,2);
[b]==0, [a]!=0,
[-2*x^2-a,a*y+2]
[b,a]==0, [1]!=0,
[1]
[a]==0, [b]!=0,
[b*x+2,-y+1]
[0]==0, [b*a]!=0,
[-a^3*y^4-4*a^2*y^3+(b^2-4)*a*y^2+2*b^2*y-2*b^2,b*x+a*y+2]
Number of segments is 4

This output means⎧⎪⎪⎨⎪⎪⎩
{ay + 2,−2x2 − a}, if V(b)\V(a),
{1}, if V(a, b),
{−y + 1, bx + 2}, if V(a)\V(b),
{−a3y4 − 4a2y3 + (b2 − 4)ay2 + 2b2y − 2b2, bx + ay + 2} if C2 \V(ab).



Next, let see that PGB computes comprehensive Gröbner bases. We choose a command
“cgb1” for getting a comprehensive Gröbner bases. Then, cgb1([a*x^2*y^2+b*x*y+2,b*x
+a*y+2],[a,b],[x,y],2) outputs the following as a comprehensive Gröbner basis for I
with respect to �.

[394] cgb1([a*x^2*y^2+b*x*y+2,b*x+a*y+2],[a,b],[x,y],2);
[a*y^2*x^2-a*y^2-2*y+2,(a^2*y^3+2*a*y^2)*x+b*a*y^2+2*b*y-2*b,a^3*y^4+4*a^2*
y^3+(-b^2+4)*a*y^2-2*b^2*y+2*b^2,b*x+a*y+2,-a*y^2*x^2+a*y^2+2*y-2,-b*x-a*y-
2,(-b*a*y+2*b)*x^3+4*x^2+b*a*y*x+2*a]

If we substitute any values for the parameters a, b of the output above, then the set computed
always a Gröbner basis for σ(I) with respect to � where σ is the specialization defined the
substitution. However, note that this Gröbner basis is not always the reduced Gröbner
basis for σ(I) with respect to �.

© Applications

There are a lot of applications of parametric Gröbner bases, like normal Gröbner bases.
One of the applications is a classification of dimensions for parametric ideals. Dimensions
of a parametric ideal are dependent on the values of parameters. For example, let I =
〈ax, by2 + y〉 be an ideal in C[x, y] with parameter a and b. In this case, if a = 0, b �= 0,
then the dimension of this ideal is clearly 1. However, if ab �= 0, then the dimension of this
ideal is clearly 0. By the values of the parameters, the dimension of this parametric ideal is
changed. Now, we have a question. How can we classify dimensions of a parametric

ideal by parameters’ spaces? The theory of parametric Gröbner bases is able to solve
this question, and PGB has a command to solve this question.

The Suzuki-Sato algorithms and Nabeshima’s computational techniques are based on
the theory of stability of ideals [5, 6]. This means that the algorithms find a parameters’
space which lets the ideal stable. Here, let G = {(A1, G1), . . . , (Al, Gl)} be an output of
the Suzuki-Sato algorithm (or Nabeshima’s) for computing comprehensive Gröbner systems
where A1, . . . ,Al are parameters’ spaces and G1, . . . , Gl are set of parametric polynomials.
Then, ∀α ∈ Ai, σα(lm(Gi)) does not have any zero elements, for each i = 1, . . . , l. That
is, all leading coefficients of the polynomials can not become zero under the specialization
[15, 19]. This fact leads us to compute a classification of dimensions for a parametric ideal
I, because it is same as a classification of lm(I). This computational algorithm is the
following;
1. Compute a comprehensive Gröbner system G.
2. Compute the dimension of each segment of the comprehensive Gröbner system G.

PGB has a command “class_dim_para” for a classification of dimensions for a parametric
ideal. Let I = 〈ax, by2 + y〉 in C[x, y] with parameter a and b. The command works as
follows;

[395] class_dim_para([a*x,b*y^2+y],[a,b],[x,y],0);
[[0],[b*a]]
the dim. is 0
[[b],[a,b]]
the dim. is 0

[[a],[a,b]]
the dim. is 1
[[a,b],[1]]
the dim. is 1

This output means;
if the parameters take the values from C2 \V(ba), then the dimension of the ideal I is 0,
if the parameters take the values from V(b)\V(a, b), then the dimension of the ideal I is 0,



if the parameters take the values from V(a)\V(a, b), then the dimension of the ideal I is 1,
if the parameters take the values from V(a, b), then the dimension of the ideal I is 1.

3.2 Rings of differential operators

Here we describe how to get parametric Gröbner bases in K[X̄, D̄] a ring of differential
operators by PGB. That is, PGB has commands for computing non-commutative parametric
Gröbner bases. In [9, 10], Kredel and Weispfenning studied parametric Gröbner bases for
non-commutative polynomials. In these papers, they applied the Weispfenning method [20]
to compute parametric Gröbner bases. However, they have not implemented them. Now,

PGB is the only one existing program for computing parametric Gröbner bases

in rings of differential operators. The commands for computing parametric Gröbner
bases in rings of differential operators, are bases on the Suzuki-Sato algorithms. The author
has generalized the algorithms to the case rings of differential operators, and implemented
them in Risa/Asir.

© Parametric Gröbner bases

As well as the case of commutative polynomial rings, there exist several commands for
computing comprehensive Gröbner bases and systems in PGB. Each command has different
techniques for getting optimal outputs. One have to select one command to compute
parametric Gröbner bases in Weyl algebra.

Let I = 〈ax1∂
2
1∂2 + (a + 1)x1x2∂2, x

2
2∂2 + bx1, ∂1∂

2
2〉 be an ideal in C[x1, x2, ∂1, ∂2] with

parameters a, b, and � be the purely lexicographic order such that x1 � x2 � ∂1 � ∂2. (We
have the rules xixj = xjxi, ∂i∂j = ∂j∂i, ∂ixj = xj∂i, for i �= j, and ∂ixi = xi∂i + 1. for
i = 1, 2.) We select a command “cgs1” for obtaining a comprehensive Gröbner system.

[396] cgsw([a*x1*d1^2*d2+(a+1)*x1*x2*d2,x2^2*d2+b*x1,d1*d2^2],[a,b],[[x1,
x2],[d1,d2]],1,2);
[a+1]==0, [b]!=0,
[x1,d2]
[b,a+1]==0, [1]!=0,
[x2^2*d2,d1*d2]
[b]==0, [a+1]!=0,
[x2*d2,d1*d2]
[0]==0, [b*a+b]!=0,
[x1,d2]
Number of segments is 4

This output means the following⎧⎪⎪⎨⎪⎪⎩
{x1, ∂2}, if V(a + 1)\V(b),
{x2

2∂2, ∂1∂2}, if V(b, a + 1),
{x2∂2, ∂1∂2} if V(b)\V(a + 1),
{x1, ∂2} if C2 \V(ba + b).

Next, we choose a command “cgbw” for getting a comprehensive Gröbner basis for I
in the ring of differential operators. Then, cgbw outputs the following as a comprehensive
Gröbner basis for I with respect to �.

[397] cgbw([a*x1*d1^2*d2+(a+1)*x1*x2*d2,x2^2*d2+b*x1^2,d1*d2^2],[a,b],[[x1,
x2], [d1,d2]],2);
[x2^2*d2+b*x1^2,x2^2*d2^2+2*x2*d2,(a+1)*x2*d2,d1*d2,b*d2]

© Applications

Here, we give one simple example for applying the elimination property of Gröbner bases
to systems of parametric linear differential equations.



Let {2xy′′+axy′ = 0, xy′′′+bx2y′−bxy = 0, xy′′−axy = 0} be a set of linear differential
equations with parameters a, b. This system of linear ordinary differential equations can be
written as {(2x∂2 + ax∂)y = 0, (x∂3 + bx2∂ − bx)y = 0, (x∂2 − ax)y = 0} where ∂ is the
partial derivative ∂

∂x . Set f1 = 2x∂2 + ax∂, f2 = x∂3 + bx2∂ − bx, f3 = x∂2 − ax in C[x, ∂].
Now, we can compute a comprehensive Gröbner system for 〈f1, f2, f3〉 in C[x, ∂] by using
PGB. Then, PGB outputs the following as the comprehensive Gröbner system.

[396] cgsw([2*x*d^2+a*x*d,x*d^3+b*x^2*d-b*x,x*d^2-a*x],[a,b],[[x],[d]],1,2);
[b,a]==0, [1]!=0,
[d^2]
[a]==0, [b]!=0,
[b*x*d-b,d^2]
[0]==0, [a]!=0,
[1]
Number of segments is 3

This output means the following;⎧⎨⎩
{∂2}, if V(a, b),
{bx∂ − b, ∂2}, if V(a)\V(b),
{1}, if C2 \V(a).

Hence, the system of linear differential equations can be reduced to :⎧⎨⎩
{y′′}, if V(a, b),
{bxy′ − b, y′′}, if V(a)\V(b),
{y}, if C2 \V(a).

Therefore;

(1) In case the values of parameters a, b are from V(a, b), then y′′ = 0. Hence, y = c1x+d1

is the general solution of the system where c1, d1 ∈ C.

(2) In case the values of parameters a, b are from V(a)\V(b), then y′′ = 0. Hence,
y = c2x + d2 is the general solution of the system where c2, d2 ∈ C.

(3) In case the values of parameters a, b are from C2 \V(a), then y = 0. That’ is, we have
only the trivial solution y = 0.

3.3 Modules

In this subsection, we describe the command for computing comprehensive Gröbner bases
and systems for modules. In several papers and books [4, 8, 11], an algorithm for com-
puting Gröbner bases for K[X̄]-modules and its properties were introduced. Theoretically,
Gröbner basis algorithms admit natural extensions to modules. However, especially in the
parametric situation, complexity is an important issue. An efficient algorithm for com-
putation of comprehensive Gröbner bases over polynomial rings, was proposed by Suzuki
and Sato[19]. The author generalized the Suzuki-Sato algorithms to the module [16] and
implemented them in Risa/Asir. Now, PGB is the only one existing program to compute
parametric Gröbner bases for modules.

© Parametric Gröbner bases

As well as the case of commutative polynomial rings, there exist several commands for
computing comprehensive Gröbner bases and systems in PGB. Each command has different
techniques for getting optimal outputs. One have to select one command to compute
parametric Gröbner bases for modules.



Let x, y be variables, a, b parameters and �lex the purely lexicographic order such that

x �lex y. We consider f1 =
(

ax − bx + 1
ax2y + ax + b

)
and f2 =

(
by + a

bx2 + bx + 2

)
in Q[x, y]2

with parameters a, b. Then, our the command “cgs_m” outputs the following list which is
a comprehensive Gröbner system for 〈f1, f2〉 with respect to POT with �lex.

[397] cgs_m([[a*x-b*x+1,a*x^2*y+a*x+b],[b*y+a,b*x^2+b*x+2]],[a,b],[x,y],1,p,
2);
[a-b]==0, (b)!=0,
[0,(b^2*y^2+b^2*y-b)*x^2+(b^2*y+b^2-b)*x+b^2*y+b^2-2]
[1,b*y*x^2+b*x+b]

[b,a]==0, (1)!=0,
[0,1]
[1,0]

[b]==0, (a)!=0,
[0,-a^2*y*x^2+(-a^2+2*a)*x+2]
[1,a*y*x^2+(a-2)*x]

[0]==0, (b)*(a-b)!=0,
[0,(-b*a+b^2)*x^3+(b*a*y^2+a^2*y-b*a+b^2-b)*x^2+(b*a*y+a^2-2*a+b)
*x+b^2*y+b*a-2]
[b*y+a,b*x^2+b*x+2]
[(a-b)*x+1,a*y*x^2+a*x+b]

The output means the following:

If V(a − b)\V(b), then
{(

0
(∗1)

)
,

(
1

byx2 + bx + b

)}
.

If V(a, b), then
{(

1
0

)
,

(
0
1

)}
.

If V(b)\V(a), then
{(

0
−a2yx2 + (−a2 + 2a)x + 2

)
,

(
1

ayx2 + (a − 2)x

)}
.

If C2 \V((a − b)b), then
{(

0
(∗2)

)
,

(
by + a

bx2 + bx + 2

)
,

(
(a − b)x + 1

ayx2 + ax + b

)}
,

where (∗1) = (b2y2 + b2y − b)x2 + (b2y + b2 − b)x + b2y + b2 − 2 and (∗2) = (−ba + b2)x3 +
(bay2 + a2y − ba + b2 − b)x2 + (bay + a2 − 2a + b)x + b2y + ba − 2.

Next, we see a command “cgb_m” for getting a comprehensive Gröbner basis for I.
Then, cgb_m outputs the following as a comprehensive Gröbner basis for I with respect to
the module order.

[398] cgb_m([[a*x-b*x+1,a*x^2*y+a*x+b],[b*y+a,b*x^2+b*x+2]],[a,b],[x,y],1,p,
2);
[0,(-b*a+b^2)*x^3+(b*a*y^2+a^2*y-b*a+b^2-b)*x^2+(b*a*y+a^2-2*a+b)*x+b^2*y+
b*a-2]
[b*y+a,b*x^2+b*x+2]
[(a-b)*x+1,a*y*x^2+a*x+b]
[(-b*y-b)*x+1,-b*x^3+(a*y-b)*x^2+(a-2)*x+b]



This means;{(
0

(∗1)

)
,

(
by + a

bx2 + bx + 2

)
,

(
(a − b)x + 1

ayx2 + ax + b

)
,
(

(−by − b)x + 1
(∗2)

)}
,

where (∗1) := (−ba+b2)x3 +(bay2 +a2y−ba+b2−b)x2 +(bay+a2−2a+b)x+b2y+ba−2
and (∗2) = −bx3 + (ay − b)x2 + (a − 2)x + b.

In general, as parametric Gröbner bases are huge in K[X̄]1, parametric Gröbner bases
in K[X̄]r are huge, too. This means that we need high speed machines and a lot of memory
(RAM) in the machines. However, PGB in the both the computer algebra system Risa/Asir
still works for a lot of (easy) examples in K[X̄]r where r ≤ 3, |X̄| ≤ 3 and |Ā| ≤ 3 (OS:
WindowsXP, CPU: Pentium M 1.73GHz, Memory: 512MB RAM).

© Applications

By studying parametric Gröbner bases for modules, we can solve a lot of parametric prob-
lems. For example, consider the problem of syzygy computations. In the ordinary setting,
computing a Gröbner basis over a module is closely related to the computation of syzy-
gies [4]. In parametric setting, by computing a comprehensive Gröbner system we can
obtain parametric syzygies. PGB has the command “p_syzygy” for computing parametric
syzygies. By this command, we can solve problems of parametric syzygies as follows.

Let f1 = x2 + ay, f2 = x + b, f3 = bx + y be polynomials in C[x, y] with parameters
a, b. We consider the purely lexicographic order � such that x � y. Then, the command
outputs the following as bases of parametric syzygies of (f1, f2, f3) (w.r.t. �).

[399] p_syzygy([[x^2+a*y],[x+b],[b*x+y]],[a,b],[x,y],1,2);
[0]==0, (b)*(a+1)!=0,
[-x-b,x^2+a*y,0]
[-y+b^2,y*x-b*a*y,-b*x+a*y]
[0,b*x+y,-x-b]

[b]==0, (1)!=0,
[1,-x,-a]
[0,y,-x]

[a+1]==0, (b)!=0,
[1,-x,1]
[0,b*x+y,-x-b]

This output means the following

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝⎛⎝ −x − b
x2 + ay

0

⎞⎠ ,

⎛⎝ −y + b2

yx − bay
−bx + ay

⎞⎠ ,

⎛⎝ 0
bx + y
−x − b

⎞⎠⎞⎠ , if C2 \V(b(a + 1)),⎛⎝⎛⎝ 1
−x
−a

⎞⎠ ,

⎛⎝ 0
y
−x

⎞⎠⎞⎠ , if V(b),

⎛⎝⎛⎝ 1
−x
1

⎞⎠ ,

⎛⎝ 0
bx + y
−x − b

⎞⎠⎞⎠ , if V(a + 1)\V(b).



4 Solve -systems of parametric linear equations-

PGB has the following command for solving a system of parametric linear equations.

solve_para([eqns],[para],[vars])

The linear system defined by eqns is solved for the unknowns vars with parameters para.
If a solution exists, the solution is returned as a list of equations. If the system is under-
determined, the solver will parameterize the solutions in terms of one or more of the un-
knowns with parameters. If a solution does not exist in some parameters’ spaces, then the
solver returns the parameters’ spaces.

The author has generalized an ordinary Gaussian elimination to a system of parametric

linear equations, and implemented it in Risa/Asir. One can solve systems of parametric
linear equations as follows.

[400] solve_para([a*x+2*y-z-2,2*x-3*y+5*z+3,x+b*y+2*z+2],[a,b],[x,y,z]);
No solution
[[[(5*b+6)*a+2*b+1],[-4*a-3,-b-2]]]

solutions
[[0],[(-25*b^2-60*b-36)*a-10*b^2-17*b-6]]
[[y,(-4*a-3)/((5*b+6)*a+2*b+1)],[z,((-3*b-6)*a-4*b-8)/((5*b+6)*a+2*b+1)],
[x,(7*b+14)/((5*b+6)*a+2*b+1)]]

[[-4*a-3,-b-2],[1]]
[[y,1/4*x+1],[z,-1/4*x]]

[[-5*b-6],[1]]
[[y,20/7*a+15/7],[z,-10/7*b*a-15/14*b+1],[x,-4]]

This output means the following.
If the parameters take the values from V((5b + 6)a + 2b + 1)\V(−4a− 3,−b− 2), then the
system has no solution.
If the parameters take the values from C2 \V((−25b2 − 60b − 36)a − 10b2 − 17b − 6), then
the solution is{

y =
−4a − 3

(5b + 6)a + 2b + 1
, z =

(−3b − 6)a − 4b − 8
(5b + 6)a + 2b + 1

, x =
7b + 14

(5b + 6)a + 2b + 1

}
.

If the parameters take the values from V(−4a − 3,−b − 2), then the solution is{
y =

1
4
x + 1, z = −1

4
x

}
which was parameterized.
If the parameters take the values from V(−5b − 6), then the solution is{

y =
20
7

a +
15
7

, z = −10
7

ba − 15
14

b + 1, x = −4
}

.



5 Conclusion

PGB is a software package for dealing with parametric expressions. It is based on the theory
of parametric Gröbner bases. One can solve problems of parametric polynomial systems by
PGB. Right-now, PGB is the only one existing software for computing parametric Gröbner
bases in rings of differential operators, modules and solving systems of parametric linear
equations. In this point, this software package is valuable.
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[11] Möller, M. and Mora, F. New Constructive Methods in Classical Ideal Theory. Journal
of Algebra, 100:138–178, 1986.

[12] Manubens, M. and Montes, A. Improving DISPGB algorithm using the discriminant
ideal. Journal of Symbolic Computation, 41:1245–1263, 2006.

[13] Montes, A. A new algorithm for discussing Gröbner basis with parameters. Journal
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[22] Weispfenning,V. Comprehensive Gröbner bases and regular rings. Journal of Symbolic
Computation, 41:297–316, 2006

[23] Yokoyama, K. Stability of parametric decomposition. In Iglesias, A. and Takayama,
N. editors, International Congress on Mathematical Software,LNCS 4151, pages 391–
402. Springer Berlin / Heidelberg, 2006.



An Algorithm to Compute Parametric Standard Bases
Using Algebraic Local Cohomology for Zero

Dimensional Ideals

(Extended Abstract)

Katsusuke Nabeshima1, Yayoi Nakamura2 and Shinichi Tajima3

1 Graduate School of Information Science and Technology, Osaka University
Machikaneyama 1-1, Toyonaka 560-0043, Osaka, JAPAN, and

Japan Science and Technology Agency, CREST
Sanbancho, Chiyoda-ku, Tokyo, 102-0075, JAPAN.

nabeshima@math.sci.osaka-u.ac.jp

2 School of Science and Engineering, Kinki University
3-4-1, Kowakae, Higashiosaka, Osaka, JAPAN

yayoi@math.kindai.ac.jp

3 Faculty of Engineering, Niigata University
8050, Ninomachi, Igarashi, Nishiku, Niigata, JAPAN

tajima@ie.niigata-u.ac.jp

1 Introduction
We describe a method for computing parametric standard bases of zero-dimensional ideals
with parameters. There exist algorithms and softwares for computing parametric Gröbner
bases [9, 11, 14], because parametric Gröbner bases are becoming important tools for ap-
plications in several fields both inside and outside mathematics. Parametric standard bases
are also useful tools for studying mathematics. However, there is no software for computing
parametric standard bases, and no algorithm which guarantees the termination. In this
article, we give a new algorithm for treating parametric standard bases of zero-dimensional
ideals with parameters. The motivation is to study the variations of the singular locus of a
parametric multivariate polynomial f over C[x1, . . . , xn].

The theory of standard bases for ideals in power series rings was introduced in 1964
by H. Hironaka [5] on the resolution of singularities. Since then, standard bases have
been extensively utilized in various fields. There are now two classical and widely used
method that compute standard bases of ideals, in local rings, generated by polynomials.
One method is based on Mora’s tangent cone algorithm and the other is based on Lazard’s
homogenization technique [3, 4, 8]. For the zero-dimensional case, there is an another
approach, called duality method to deal with ideals in local rings, which has also been
extensively studied by several authors in the context of computer algebra[1, 6, 7]. In [18],
we have adopted another classical duality, the Grothendieck duality on local residues, for
treating standard bases of zero-dimensional ideals. The key ingredient in this approach
is the concept of algebraic local cohomology which was introduced by A. Grothendieck in
the context of Algebraic Geometry [2]. The paper [18] shows that the use of algebraic
local cohomology provides an efficient method for computing standard bases. In general,
algorithms for computing standard bases do not guarantee the termination. However, our
algorithm [18] for computing standard bases of zero-dimensional ideals (with a singular

∗Correspondence to: Graduate School of Information Science and Technology, Osaka University,
Machikaneyama 1-1, Toyonaka 560-0043, Osaka, JAPAN. Tel:+81-6-6850-5551



point at the origin), guarantee the termination. Moreover, the algorithm ends up only with
linear algebra.

We generalize our algorithm [18] to the case of parametric ideals for computing para-
metric standard bases. In the algorithm generalized, we need to algorithms for computing
algebraic local cohomology classes, which are from [10, 15, 16, 17, 18]. Moreover, we need a
lot of techniques for treating equations with parameters. Some of the techniques are from
[11, 13, 14]. In this article, we give the rough procedure for computing parametric standard
bases, and an example.

2 Rough Procedure
Due to the page restriction, we give a rough procedure for computing parametric standard
bases. In order to compute algebraic local cohomology classes, we need to consider a
classification of dimensions for parametric ideals, because the dimensions are changed by the
values of the parameters and we are interested in only zero-dimensional ideals. For example,
let I = 〈ax, by2+y〉 be an ideal in C[x, y] with parameter a and b. In this case, if a = 0, b �= 0,
then the dimension of this ideal is clearly 1. However, if ab �= 0, then the dimension of this
ideal is clearly 0. As the algorithm [18] works for a zero-dimensional ideal, we need the
classification of dimensions for parametric ideals. If the ideal is not zero-dimensional, we
do not consider the ideal. (We consider only the case of zero-dimensional ideal, because
algebraic local cohomology classes are defined by only zero-dimensional ideals. We would
like to use parametric standard bases for studying singularities.) After the classification, we
need to compute algebraic local cohomology classes with parameters. By the information
of the algebraic local cohomology, we can easily compute parametric standard bases.

Algorithm PSD
Input: f : a polynomial in C[x1, . . . , xn] with parameters a1, . . . , am such that f has the
singular point at the origin, �: a local term oder, �1: a global term order,
Output: G = {(Si, Gi)|Si ⊆ Cm, Gi is a standard basis on Si of J := 〈∂f/∂x1, . . . , ∂f/∂xn〉
w.r.t. �}, E = {Ei|Ei ⊆ Cm, J is not zero-dimensional in �1 on Ei}.

1. Compute a classification of dimensions for J in �1.

2. Compute algebraic local cohomology classes for the case of zero-dimensional ideal.

3. For each parameters’ space, computer a standard basis for J by using the information
of the each basis of algebraic local cohomology.

Note that, we need a local term order � to compute a standard basis. In local term
orders, it is difficult to classify the parameters of the Jacobian ideal of f in function of its
dimension. Therefore, we need to consider another way without local term orders. If we
use a global term order for computing the classification, then we can get the classification
in the mean of the global term order (in the first step). If an ideal is zero dimension in
the mean of global, then the ideal is zero dimension in the mean of local (at the origin).
However, if an ideal is not zero dimension in the mean of global, then we can not say that
is not zero dimension in the mean of local (at the origin). Therefore, the algorithm above
is not complete for all zero-dimensional cases. After the procedure, we need to check

the dimension of J on E by other way. In this point, we are still studying. Anyway,
now in some cases, we can study singularities by using the algorithm above. (Not complete,
however, in some cases, the algorithm gives us good enough information.) Remark that,
in the computation, we need a lot of techniques for treating parametric equations. For



example, parametric Gröbner basis, solving a system of parametric linear equations and
computations of parameters’ spaces.

3 Examples
The algorithm PSD has been implemented in the computer algebra system Risa/Asir [12].
We demonstrates an example. Let f = x3 + x2y3 + ay9 + xy7 in C[x, y] with parameters a.
Our program outputs a parametric standard basis for J = 〈∂f/∂x, ∂f/∂y〉 with respect to
the local degree reverse lexicographical term order � such that y � x. (I.e., 1 � y � x �
y2 � yx � x2 � · · · )
[368] p_std(x^3+x^2*y^3+a*y^9+x*y^7,[a],[x,y],1);
non zero-dim.
[]
parametric standard bases
[[10584*a+1331],[1]]
[x^2+2/3*y^3*x+1/3*y^7,y^5*x+1667/192*y^10+1667/672*y^9+1331/2352*y^8,y^11]
[[a],[1]]
[x^2+2/3*y^3*x+1/3*y^7,y^5*x+343/16*y^12+49/8*y^11+7/4*y^10+1/2*y^9,y^13]
[[27*a+4],[1]]
[x^2+2/3*y^3*x+1/3*y^7,y^5*x+833/24*y^11+(-441/8*a+7/4)*y^10+(-63/4*a+1/2)*
y^9-9/2*a*y^8,y^12]
[[0],[18003384*a^4+4359663*a^3+178866*a^2-10648*a]]
[x^2+2/3*y^3*x+1/3*y^7,y^5*x+(-441/8*a+7/4)*y^10+(-63/4*a+1/2)*y^9-9/2*a*y^
8,y^11]
[[63*a-2],[1]]
[x^2+2/3*y^3*x+1/3*y^7,y^5*x+(-63/4*a+1/2)*y^9-9/2*a*y^8,y^11]

This output means the following.

© For any value of the parameter a, J is always zero-dimensional.

© If the parameters a take a value from V(a), then a standard basis of J w.r.t. � is
{x2 + 2/3y3x + 1/3y7, y5x + 1667/192y10 + 1667/672y9 + 1331/2352y8, y11}.

© If V(27a + 4), then a standard basis is {x2 + 2/3y3x + 1/3y7, y5x + 833/24y11 +
(−441/8a + 7/4)y10 + (−63/4a + 1/2)y9 − 9/2ay8, y12}.

© If C \V(18003384a4+4359663a3+178866a2−10648a), then {x2+2/3y3x+1/3y7, y5x+
(−441/8a + 7/4)y10 + (−63/4a + 1/2)y9 − 9/2ay8, y11}.

© If V(63a − 2), {x2 + 2/3y3x + 1/3y7, y5x + (−63/4a + 1/2)y9 − 9/2ay8, y11}.
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Journal of Symbolic Computation, 36/3-4, pages 649–667, 2003.

[14] Suzuki, A. and Sato, Y. A Simple Algorithm to compute Comprehensive Gröbner
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ABSTRACT

Here we are going to introduce a case of the application of computer algebra systems to
mathematics research and its implication for the mathematics education.
We are going to study three themes. The first is the Josephus problem in both direction,
the second is bitter chocolate problems that are variants of the game of Nim and the third
is a new reiterative process. With the power of computer algebra system Mathematica the
authors discovered sequences with self-similarity in the Josephus problem, the Sierpinski
gasket in the list of previous player’s positions of the game and interesting loops in a new
reiterative process. The authors are members of a group of students and a mathematician
who have been doing a research using Mathematica, and most of the facts that are pre-
sented in this article have been discovered by high school students. These results shows the
remarkable power of computer algebra systems in education.

1 Introduction.

In this article the authors are going to present the result of the research on the Josephus
Problem in both direction, the chocolate problems that are variants of the game of Nim
and a new reiterative process. In the research they have made the best of Mathematica in
the research. The authors are members of a group of students and a mathematician who
have been doing the research of mathematics for more than 15 years. See Remark 4.2 for
the results of the research in 2009.
This is a very important fact for the application of computer algebra to mathematics edu-
cation.
throughout this article the authors are going to write about the method of research in
remarks.

2 The Josephus problem in both direction.

In Josephus Problem we put n players in a circle, and remove them one by one according
to a fixed rule. In the Josephus problem in both directions that the authors proposed we
remove numbers in both directions.

∗Uegahara 1-1-155 Nishinomiya City, Japan.



Definition 2.1. Let n and k be natural numbers such that k ≥ 2. We put n numbers in
a circle, and two numbers are to be eliminated at the same time. These two processes of
elimination go in different directions. Suppose that there are n-numbers. Then the first
process of elimination starts with the 1st number and the k-th, 2k-th, 3k-th number, ... are
to be eliminated. The second process starts with the n-th number, and the (n − k + 1)-th,
(n − 2k + 1)-th, (n − 3k + 1)-th number, ... are to be eliminated. We suppose that the first
process comes first and the second process second at every stage. We denote the position of
the survivor by JI(n, k).

Remark 2.1. When students learn a problem, they usually make a new problem out of the
original one. In the case of the Josephus problem they changed the way to remove numbers.

Example 2.1. Suppose that there are n = 14 numbers and k = 2. Then the 2nd, 4th,
6th number will be eliminated by the first process. Similarly 13th, 11th, 9th number will
be eliminated by the second process. Then we have Graph 2.1. Here we covered numbers
eliminated by the first process and the second process with gray color disks and gray color
rectangles respectively. In Graph 2.1 the last number eliminated is 9 and 6 was eliminated
before it.

Now two directions are going to overlap. The first process will eliminate 8 and the second
process will eliminate 5. See Graph 2.2.

After this the first process will eliminate 12, 3, 14, and the second process will eliminate
1, 10. The number that remains is 7.
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Graph 2.1.
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Graph 2.2.

Example 2.2. This Mathematica function jose[m, k] calculates the value of JI(n, k). Note
that the program is quite simple, because Mathematica has many mathematical functions
that are very useful.

jose[m_, k_] :=
Block[{t, p, q, u, v, w},
If[m == 1, 1, w = k - 1 ; t= Range[m]; p = t; q = t;
Do[p = RotateLeft[p, w]; u = First[p]; p = Rest[p];
q = Drop[q, Position[q, u][[1]]];
If[Length[p] == 1, Break[],]; q = RotateRight[q, w]; v = Last[q];
q = Drop[q, -1];
p = Drop[p, Position[p, v][[1]]];
If[Length[q] == 1, Break[],], {n, 1, Ceiling[m/2]}]; p[[1]]]];

If there is only one number, you cannot remove any number, and the number that remains
is 1. Therefore jose[1, k] = 1 for any natural number k.

By using the Mathematica function jose[m, k] the authors have discovered interesting
properties. They have also made recursive relations that are useful when it is necessarily



to calculate a lot of data. For recursive relations of JI(n, k) see [5].
There is a very interesting fact about the function JI(n, 2).

We denote by JI( mod k) the sequence of the least nonnegative residues of the terms
of {JI(n, 2), n = 1, 2, ...} taken modulo k. It is easy to study the sequence JI( mod k) by
Mathematica.

Example 2.3. Mathematica program to produce JI( mod k) is very simple. Let t be the
number of the terms in the sequence, then the following program can calculate the sequence.

Table[Mod[jose[m,2],k],{m,1,t}]

Example 2.4. The list of the sequence {JI(n, 2), n = 1, 2, 3, ..., }is
{1, 1, 3, 4, 3, 6, 1, 3, 9, 1, 11, 5, 11, 7, 9, 14, 5, 12, 7, 12, 11, 14, 9, 22, 5, 20, 7, 28, ...}.
(1) We are going to calculate JI( mod 2).

By the program in Example 2.3 JI( mod 2) is
{1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...}.
We can find a very beautiful pattern if we arrange them as the following.
{1}, {1, 1}, {1, 0, 1, 0}, {1, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}....
(2) Similarly we can find a very interesting pattern in JI( mod 4).

JI( mod 4) is
{1, 1, 3, 0, 3, 2, 1}, {3, 1, 1, 3, 1, 3, 3, 1}, {2, 1, 0, 3, 0, 3, 2, 1}, {2, 1, 0, 3, 0, 3, 2, 1},
{3, 1, 1, 3, 1, 3, 3, 1}, {3, 1, 1, 3, 1, 3, 3, 1}, {3, 1, 1, 3, 1, 3, 3, 1} ,{3, 1, 1, 3, 1, 3, 3, 1}
,{2, 1, 0, 3, 0, 3, 2, 1} ,{2, 1, 0, 3, 0, 3, 2, 1} ,{2, 1, 0, 3, 0, 3, 2, 1} ,{2, 1, 0, 3, 0, 3, 2, 1}
,{2, 1, 0, 3, 0, 3, 2, 1} ,{2, 1, 0, 3, 0, 3, 2, 1} ,{2, 1, 0, 3, 0, 3, 2, 1} ,{2, 1, 0, 3, 0, 3, 2, 1} ...

Remark 2.2. The pattern in (1) of Example 2.4 is published in [5], but the pattern in
(2) is a new result. By the program in Example 2.3 you can produce JI( mod k) for any
natural number k, and you can discover interesting patterns. The authors think that they
can prove the existence of patterns for JI( mod 2m) when m is a arbitrary natural number.
The pattern in Example 2.4 has been discovered by one of the authors when he has tried to
find patterns by dividing numbers with various numbers. The author do not know why, but
there are always several students in the group who are good at finding interesting patterns
in the output data of Mathematica.

3 A variant of the game of Nim.

In a combinatorial game there are two kinds of positions. One is a P-position, a previous-
player-winning position. The other is an N-position, a next-player-winning position.
Let me explain about these positions. In the followings we use the word option to mean
”choice of move”. Our aim is to find all the P-positions.
It is clear that they have the following properties.

Graph 3.1.

P � positions N � Positions

Every option

leads to an N � position

There is always

at least one option

leading to a P �position

Here we are going to present a bitter chocolate problem that is a variant of the game of
Nim.



Definition 3.1. Given a pieces of chocolate, where the light gray parts are sweet and the
dark gray part is very bitter.Two players in turn break the chocolate (in a straight line along
the grooves) and eats the piece he breaks off. The player to leave his opponent with the
single bitter part is the winner.

We are going to study this problem by using examples.

Example 3.1. We are going to use the chocolate in Graph 3.2.

Graph 3.2.

This problem has been proposed in [2], and it is easy to see that this is equivalent to the
traditional Nim of 4 piles.
The chocolate of Graph 3.2 has 6 columns and 4 rows, but we can study the bitter chocolate
problem with arbitrary number of rows and columns. We can represent the position of the
game with 4-numbers {x1, x2, x3, x4}. For example the position of the chocolate of Graph 3.2
is {1,2,2,3}, since there are one row above the bitter part, two columns in the right side of
it, two rows below it and three columns in the left side. These 4 coordinates are independent,
i.e., you can take a number from one coordinate without affecting other coordinates.

Definition 3.2. Here we are going to define the nim-sum. The nim-sum is the sum (in
binary) neglecting all carries from one digit to another. The nim-sum of numbers x and y
is denoted by x ⊕ y.

Theorem 3.1. In the game of Example 3.1 {x1, x2, x3, x4} is a P-position if and only if
x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0.

We omit the proof, because this is a well known fact about the game of Nim. This
theorem was proved in [1].

By Theorem 3.1 the P-positions of the chocolate problem of Example 3.1 can be obtained
by mathematical theory, but in many other combinatorial games it is often the case that it
is difficult to get all the P-positions mathematically, and we can get the list of P-positions
only by calculation of computer.
When we calculate P-positions, one of the most important tools for that is the Grundy
Number.

Here we are going to define Grundy Number using the the game of Example 3.1 as an
example.
First we define a very important function Mex[ ].

Definition 3.3. The Mex of a set of nonnegative integers is the least nonnegative integer
not in the set.

Example 3.2. Mex[0, 1, 4, 5, 6] = 2 and Mex[1, 4, 5, 6] = 0.

Definition 3.4. For any position x we denote by Move[x] the set of all the positions that
players can reach directly from the position x.

Example 3.3. We are going to use the chocolate in Example 3.1 to explain about Move[x].
Let x = {1, 1, 1, 2}. Then this position is the chocolate in Graph 3.3.



Graph 3.3.

From this position the player can reach the positions in Graph 3.4.

Graph 3.4.

Therefore Move[x] = {{0, 1, 1, 2}, {1, 0, 1, 2}, {1, 1, 0, 2}, {1, 1, 1, 1}, {1, 1, 1, 0}}.

We are going to define the Grundy Number G(x).

Definition 3.5. Let P0 be the set of positions from which the players can have no legal
option.
For any position x ∈ P0 we define G(x) = 0.
Let N1 be the set of positions from which the players can choose a proper option that leads
to P0.
For any position x ∈ N1 we define G(x) = 1.
For any position x we define G(x) recursively.
G(x) = Mex[G(y),y ∈ Move[x]].
For the details of the Grundy Number see [3].

By the theory of Grundy Number we know that x is a P-position if and only if G(x) = 0.
Therefore we can find P-positions by calculating Grundy Number G(x).

Example 3.4. This time we are gong to use the chocolate in Graph 3.5. This problem has
been introduced by the authors.

Graph 3.5.

Remark 3.1. It is fairly easy to propose a new combinatorial game, and with Mathematica
you can make a program to discover the strategy to win the game. You can also find whether
the new game is mathematically interesting or not.

The problem in Graph 3.5 is different from the problem in Graph 3.2. In Graph 3.5
you can cut the chocolate in 6 ways, so it is appropriate to represent it with 6 numbers
{x1, x2, x3, x4, x5, x6}. We represent the position in Graph 3.5 with {2,1,2,1,2,1}, since
there are two rows above the bitter part, one row in the right-above side, two columns in the
right-below, etc.

Note that these 6 coordinates are not independent, i.e., in some cases you cannot take
a number from one coordinate without affecting other coordinates.
It is clear that we have 6 inequalities between these 6 coordinates.

x1 ≤ x2 + x6, x2 ≤ x1 + x3 + 1, x3 ≤ x2 + x4,

x4 ≤ x3 + x5 + 1, x5 ≤ x4 + x6, x6 ≤ x5 + x1.



We can study chocolate of any size with non-negative numbers x1, x2, x3, x4, x5, x6 that
satisfy these 6 inequalities. The authors studied this chocolate problem, and calculated the
list of P-positions for some cases by Mathematica. See [12]. The authors have not found
any method to get P-positions mathematically.

The chocolate problem of Example 3.4 is very difficult to study mathematically, and
hence the authors have made a easier version the chocolate problem. This chocolate has a
very simple formula to calculate P-positions.

Example 3.5. Suppose that you have the chocolate in Graph 3.6. In Graph 3.6 you can
cut the chocolate in 3 ways, so it is appropriate to represent it with 3 numbers {x, y, z}.
We represent the position in Graph 3.6 with {4, 6, 2}, since there are four columns in the
left side of the bitter part, six rows above it and two columns in the right side of it. It is
clear that we have an inequality between these 3 coordinates. y ≤ x + z.

Graph 3.6.

Example 3.6. We are going to find P-positions of this game in the list {{x, y, z} , x ≤
60, y ≤ 60, z ≤ 60 and y ≤ x + z} by a Mathematica program. Here we use the theory of
Grundy number.

ss = 60;
al
= Flatten[Table[{a, b, c}, {a, 0, ss}, {b, 0, ss},
{c, 0, ss}], 2];
allcases = Select[al, (#[[1]] + #[[3]]) >= #[[2]] &];
move[z_] := Block[{p}, p = z ;
Union[Table[{t1, Min[ (t1 + p[[3]]), p[[2]]], p[[3]]},
{t1, 0,p[[1]] - 1}],

Table[{p[[1]], t2, p[[3]]}, {t2, 0, p[[2]] - 1}],
Table[{p[[1]], Min[ (t3 + p[[1]]), p[[2]]], t3}, {t3, 0,

p[[3]] - 1}]
]
];

Mex[L_] := Min[Complement[Range[0, Length[L]], L]];
Gr[pos_] := Gr[pos] = Mex[Map[Gr, move[pos]]];
pposition = Select[allcases, Gr[#] == 0 &];

Note that it is easy to calculate the Grundy number by Mathematica, since Mathematica
has many mathematical functions. By calculating Grundy numbers we can get P-positions.
The list of P-positions has 3547 elements. Since this is a big list, we are going to present a
part of it here.

Example 3.7. {{0, 0, 0}, {1, 0, 1}, {1, 1, 2}, {1, 2, 3}, {1, 3, 4}, {1, 4, 5}, {1, 5, 6},
{1, 6, 7}, {1, 7, 8}, {1, 8, 9}, {1, 9, 10}, {1, 10, 11}, {1, 11, 12}, {1, 12, 13}, {1, 13,
14}, {1, 14, 15}, {1, 15, 16}, ...}
After that we replace {a,b,c} by {a,b,c-a}, then we can get a very interesting strucuture of
data. We denote this data by Data. Then
Data = {{0, 0, 0}, {1, 0, 0}, {1, 1, 1}, {1, 2, 2}, {1, 3, 3}, ...}.



Mathematica has a very powerful function for 3D graphics.
If you make a 3D graph of the list of Data, then you get the following graph.
The Mathematica program for this 3D graphics is very simple.

ListPointPlot3D[Data, PlotStyle -> PointSize[0.005]]

You can rotate the 3D graphics made by Mathematica, and hence the authors have rotated
the 3D graph to find any interesting pattern. After some attempts the authors have discov-
ered a pattern that looked like a Sierpinski-like gasket.

Graph 3.7.
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By Graph 3.7 we know that it is important to project the 3D graph onto the plane made by
the first and the third coordinates. By the projection we get Graph 3.8 .

Graph 3.8.
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Remark 3.2. Graph 3.8 is the Sierpinski gasket itself and this graph suggests that there
must be some formulas to calculate P-positions of the game. Therefore the authors began
to try to find a simple formula. After a while they discovered the following theorem.

Theorem 3.2. (1) The position {x, 0, z} is a P-position if and only if x = z.
(2) The position {x+1, y, z+1} is a P-position if and only if x ⊕ y ⊕ z = 0.

For the proof see [7].

Example 3.8. The authors are going to present two of chocolate problems with other types
of inequalities.

3y ≤ x + z

Graph 3.9.

y ≤ �x+z
3 �

Graph 3.10.



Theorem 3.3. The position {x, y, z} is a P-position of the problem in Graph 3.9 if and
only if x ⊕ y ⊕ z = 0 and 3y ≤ x + z.

For the proof see [11].

Prediction 3.1. The position (x + 2�log2(y+1)� − 1, y, z + 2�log2(y+1)� − 1)is a P-position of
the problem in Graph 3.10 if and only if x ⊕ y ⊕ z = 0.

Remark 3.3. The authors predict that for an arbitrary odd number k we can prove theorems
that are very similar to Theorem 3.3 and Theorem 3.1 for the chocolate problems with
inequalities ky ≤ x+z and y ≤ �x+z

k � respectively. This prediction has been obtained by the
calculation of Mathematica. They have never discovered any formula for the P-positions of
the chocolate problem with inequalities ky ≤ x + z with an even number k.

4 Reiterative Process

Next we are going to study reiterative processes. One of the most well known reiterative
process is the Collatz Problem.
We are going to define Collatz function co(n) for an arbitrary positive integer.

Definition 4.1. We define Collatz fucntion by

co(n) =
{

n
2 , (if n is even.)

3n + 1, (if n is odd.)

Example 4.1. For example, if we apply Collatz function co(n) to the number 156 repeat-
edly, then we have

{156, 78, 39, 118, 59, 178, 89, 268, 134, 67, 202, 101, 304, 152, 76, 38, 19, 58, 29, 88,
44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1,...}.
Remark 4.1. Since Collatz process is a very difficult problem, students of the research
group made a new reiterative process, and after that they made a Mathematica program and
began the research. Reiterative processes are very good topic for students to study by making
computer programs.

The authors are going to present a new process. This is the digit factorial sum process.

Definition 4.2. We define the dfs function by
dfs(n) = n1! + · · ·nm!, where {n1, n2, · · · , nm} is the list of the digits of an integer n. we
start with any positive integer n, and repeatedly apply the function dfs, then we can generate
a sequence of integers {dfsm(n),m = 1, 2, ...}. We call this sequence the dfs process.

Lemma 4.1. For any natural number k such that k ≥ 8 we have

k × 9! < 10k−1. (4.1)

Proof. This is an easy inequality, and hence we will omit the proof.

Lemma 4.2. If m > 7 × 9! = 2540160, then dfs(m) < m.



Proof. Let k be the number of digits of m.
(1) If k ≥ 8, then by Lemma 4.1

dfs(m) ≤ k × 9! < 10k−1 ≤ m. (4.2)

(2) if k = 7, then
dfs(m) ≤ 7 × 9! = 2540160 < m. (4.3)

Lemma 4.3. (1) If m = 2540160, then dsf(m) < m.
(2) If 2000000 ≤ m < 7 × 9! = 2540160, then dfs(m) < m.
(3) If m = 1999999, then dfs(m) = 2177281 > m.

Proof. (1) If m = 2540160, then dfs(m) = 869.
(2) If 2000000 ≤ m < 7 × 9! = 2540160, then

dfs(m) ≤ 2! + 4! + 5 × 9! = 1814426 < m. (4.4)

(3) If m = 1999999, then dfs(m) = 2177281 > m.

Theorem 4.1. For any natural number n {dfsm(n) m = 1,2,3,...} eventually enters into
one of 4 fixed points or 3 loops.
(1) 4 fixed points are {1},{2},{145}, and {40585}.
(2) 3 loops are {871,45361}, {872,45362} and {169,363601,1454}.
Proof. By Lemma 4.2 and Lemma 4.3 dfs(n) is decreasing for n ≤ 2 × 106, and hence we
have only to study the numbers n ≤ 2 × 106 to look for loops. Therefore we can prove this
theorem by calculation of Mathematica programs in Example 4.2 and Example 4.3.

Example 4.2. This is a Mathematica function to calculate the value of dfs(n).

dfs[x_]:=Apply[Plus,(IntegerDigits[x])!];

Example 4.3. This Mathematica function findloop22[n] returns a list of numbers {n, p, t, q}.
We start with the number n, then the sequence (dfsm)(n) enters into a loop when m = p,
and (dfsp)(n) = t. The length of the loop is q and (dfsp+q)(n) = t = (dfsp)(n).

findloop22[n_]:=Block[{m=n,u,dat},dat={m};m=dfs[m];
While[!MemberQ[dat,m],dat=Append[dat,m];m=dfs[m]];
dat=Append[dat,m];u
=Flatten[Position[dat,Last[dat]]];
{n,u[[1]]-1,Last[dat],u[[2]]-u[[1]]}];

Remark 4.2. Throughout this article the authors have written about the method of research,
but it is worth while to write more about it. Usually Dr.Miyadera who has been teaching this
group for 15 years begins the research by presenting some well known problems, and asks
students to make new problems after studying these problems. Students usually can propose
many new problems, and make Mathematica programs for the problems with the help of Dr.
Miyadera. After that they are going to study the output of the program. If the problems
seem to be worth studying, they begin to study them hard. There have always been some
students who are good at discovering interesting patterns in the output data of the programs.
Once they discover some interesting patterns, next job is to prove them mathematically.
As to the results of the research in 2009 by this group see [5], [6], [7], [8], [9], [10] and [11].
They have also got the 1st prize in the Canada Wide Virtual Science Fair. These are the



results in 2009, and there are a lot more results before 2009. These results show that high
school students can discover many kinds of facts and theorems when they can use computer
algebra systems properly.

Many teachers have used computer algebra systems in class rooms, and have made stu-
dents to rediscover many facts of mathematics, and many people think that this is a good
method to teach students how to be creative. The difference between the rediscovery and the
discovery is very big, and high school students in this group have really discovered new facts
of mathematics. The authors think that the best way to teach students how to be creative is
to create something new. Therefore a proper introduction of computer algebra system into
education can make a very big difference.
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Abstract

A method for exactly computing spectral decomposition of diagonalizable matrices
of rational numbers is developed and implemented on Risa/Asir a computer algebra
system. Our idea is based on the residue calculus. As its application eigenvectors also
can be computed. Moreover the method is compliant to parallel computation.

1 Introduction

In this paper we treat a method for computing spectral decomposition and eigenvectors
of matrices by computer algebra. The eigenvalue problem in linear algebra is very impor-
tant in both theory and application. Fast computation of characteristic polynomials and
eigenvalues was studied by many peoples and implemented on computer algebra systems.
However studies of computation of eigenvectors seem insufficient. Spectral decomposition of
matrices is also important and strongly relates to eigenvectors. Although it can be given by
contour integrals of resolvents of matrices theoretically, no computer algebra system seems
to implement its calculation.

In section 2 and 3 we give new algorithms for exactly computing spectral decomposition
and eigenvectors in case of diagonalizable matrices. Our idea is based on residue calculus
of resolvents of matrices. Moreover it is compliant to parallel computation.

2 Spectral Decomposition of matrices

Let A be an n-dimensional square matrix of rational numbers and E the unit matrix of
dimension n. The matrix-valued rational function R(x) = (xE−A)−1 is called the resolvent
of A. Suppose that A is diagonalizable, that is, the minimal polynomial f(x) of A is square
free and has m roots α1, . . . , αm. Each root is an algebraic number. Let γ(λ) be a cycle
around an eigenvalue λ = αj of A with the anti-clockwise direction. We put

P (λ) =
1

2π
√−1

∫
γ(λ)

R(x) dx. (1)

It is well-known that P (λ) is the projective matrix to the eigenspace associated with λ and
the following relation holds:

E =
m∑

j=1

P (αj), A =
m∑

j=1

αjP (αj).

∗Correspondence to: Kakuma-machi, Kanazawa 920–1192, JAPAN and +81–76–2646123



Then any column vector of P (λ) is an eigenvector with λ. As described below, any element
of P (λ) is an algebraic number. The set {P (αj) | j = 1, . . . , m} is called the spectral
decomposition of A.

Theorem 1. If a matrix A is diagonalizable then the projective matrix P (λ) has the fol-
lowing representation:

P (λ) = b(λ)q(A, λE) = b(A)q(A, λE), (2)

where q(x, y) = (f(x) − f(y))/(x − y) and b(x) is the inverse polynomial of the derivative
f ′(x) in the quotient ring Q[x]/〈f(x)〉.
Proof. Clearly q(x, y) is a symmetric polynomial in Q[x, y]. From f(A) = O the resolvent
is written as

R(x) =
1

f(x)
(f(x)E − f(A))R(x) =

1
f(x)

[(f(xE) − f(A))(xE − A)−1]

=
1

f(x)
q(A, xE).

Since f(x) is square free, there exist polynomials a(x), b(x) ∈ Q[x] as follows:

a(x)f(x) + b(x)f ′(x) = gcd(f(x), f ′(x)) = 1.

So b(x) is the inverse of f ′(x) in the ring Q[x]/〈f(x)〉. By the residue theorem we have

P (λ) =
1

2π
√−1

∫
γ(λ)

R(x)dx =
1

2π
√−1

∫
γ(λ)

1
f(x)

q(A, xE)dx

=
1

2π
√−1

∫
γ(λ)

{
b(x)q(A, xE)

f ′(x)
f(x)

+ a(x)q(A, xE)
}

dx

= b(λ)q(A, λE).

Clearly any element of P (λ) lies in the field Q(λ). On the other hand it holds that

b(y)q(x, y) = b(x)q(y, x) − f(x)qb(x, y) + f(y)qb(x, y)

where qb(x, y) = (b(x) − b(y))/(x − y) ∈ Q[x, y]. Finally, by using f(λ) = 0 and f(A) = O,
we have b(λ)q(A, λE) = b(A)q(λE,A).

Note that deg f(x) = m. The polynomial q(x, y) =
∑m−1

i=0 ci(x)yi is expressed by the
following iteration:

cm−1(x) = 1, cm−k−1(x) = cm−k(x)x + am−k (k = 1, . . . , m − 1),

where f(x) =
∑m

i=0 aix
i and am = 1. Hence we have the following algorithm for computing

spectral decomposition by the second equality of the theorem.

Algorithm 1. Input: A a diagonalizable matrix, Output: (f(x), P (λ)) the pair of the
minimal polynomial and the projective matrix

1. Calculation of the minimal polynomial f(x) of A.
2. Calculation of the inverse b(x) = f ′(x)−1 (in Q[x]/〈f(x)〉)



3. k ← deg f − 1, Ck ← b(A)
for i = k − 1, . . . , 0 ; do Ci ← Ci+1A + (coefi+1 f)Ck ; done

P (λ) ← λkCk + · · · + λC1 + C0.

We implemented this algorithm on Risa/Asir a computer algebra system. By computer
experiments we can see that step 3 spends the most part of computing time in Algorithm 1.

Let us discuss the complexity of step 3. Note that deg f(x) = m and deg b(x) ≤ m − 1.
In step 3 we need 2m − 2 multiplication of n-dimensional matrices of rational numbers at
most. The complexity of a multiplication of matrices is O(n2.376) by Strassen-Winograd’s
method. Therefore the total complexity of multiplications of step 3 is O(mn2.376).

If f(x) is reducible over Q[x] then we can prove the following theorem.

Theorem 2. In addition to the hypothesis of Theorem 1, suppose that f(x) can be factorized
to g(x)h(x) over Q[x]. Then, for a root λ of g(x),

P (λ) = bg(λ)d(λ)h(A)qg(A, λE)

Here bg(x) and d(x) are the inverse polynomial of g′(x) and h(x) in the ring Q[x]/〈g(x)〉
respectively and qg(x, y) = (g(x) − g(y))/(x − y).

Note that, by using Theorem 2, we have a faster algorithm for computing spectral
decomposition in case of square free and reducible minimal polynomials.

3 Eigenvectors

Recall that any column vector of the projective matrix P (λ) lies in the eigenspace with
λ. Since P (λ) = b(λ)q(A, λE) and b(λ) is non-zero scalar, any column vector of q(A, λE)
lies in the eigenspace with λ. That is, for computing an eigenvector with λ, we need to
calculate only non-zero column vector of q(A, λE). However, if the minimal polynomial is
irreducible, then it is known that no column vector of P (λ) is zero in general theory of
spectral decomposition.

Hence, by taking the first column vector of q(A, λE), we have the following algorithm
in case of irreducible f(x).

Algorithm 2. Input: A a diagonalizable matrix, Output: (f(x), v(λ)) the pair of the
minimal polynomial and an eigenvector

1. Calculation of the minimal polynomial f(x) of A.
2. k ← deg f − 1

e0 ← t(1, 0, . . . , 0), uk ← e0

for i = k − 1, . . . , 0 ; do ui ← Aui+1 + (coefi+1 f) e0 ; done

v ← λkuk + · · · + λu1 + u0.

Note that in case of reducible f(x) we can also have a method for computing eigenvectors
by Theorem 2.

4 Parallel computation of Spectral Decomposition

Today computers with multi-processors are populated. Risa/Asir has a mechanism for
parallel computation on distributed memory systems. Let us discuss parallelization of



step 3 of Algorithm 1. Let N be number of processors and suppose N << n. Any square
matrix M can be divided to N blocks of row vectors. Denote by Mj the j-th block of M .
Then the j-th block of b(A) is written as b(A)j = b0Ej +b1Aj +· · ·+bm−1AjA

m−2 for b(x) =∑m−1
k=0 bkxk. The block b(A)j can be independently computed on each processor without

communications. The iteration part of step 3 can be also divided to blocks. Therefore step 3
can be parallelizable without communications between processors except the entrance.

For example we show the elapsed time of an implementation of sequential and parallel
version of Algorithm 1 on Risa/Asir. The used PC has two Intel Xeon 3.0 GHz quad core
processors and 32 GB memory with Linux 2.6.18. Each element of matrices is a random
integer at most 18 bits and characteristic polynomials are irreducible.

Table 1: Elapsed Time
dim. of matrix 24 32 40 48 56 64 72 80

sequential 3.20 16.50 57.06 166.00 394.70 873.82 1753.21 3259.38
4 process 1.80 8.53 24.16 72.24 144.46 314.03 592.98 1045.94

We remark that step 3 consists of multiplications of matrices. Fast algorithms are known
to multiply matrices on parallel computers. (see e.g. [2]) Our method has the advantage
of no communication. However, if costs of communications are ignored, the method can be
more optimized by using parallel multiplication algorithms.

5 Conclusion

We developed a method for computing spectral decomposition and eigenvectors exactly in
case of diagonalizable matrices. Our method is compliant to parallel computation for large
size matrices.
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Abstract

We address the problem of root isolation for polynomial systems: for an affine, zero-dimensional
polynomial system of N equations in N variables, we describe an algorithm to encapsulate all
complex solutions into disjoint regions, each containing precisely one solution (called isolating
regions). Our approach also computes the multiplicity of each solution. The main novelty is a
new approach to certify that a set of computed regions is indeed isolating. It is based on an adap-
tive root separation bound obtained from combining information about the approximate location
of roots and resultant calculus. Here we use simple subdivision method to determine the number
of roots within certain regions. The resultant calculus only takes place over prime fields to avoid
the disadvantageous coefficient growth in symbolic methods, without sacrificing the exactness
of the output. The presented approach is complete for uni- and bivariate systems, and in general
applies in higher dimensions as well, possibly after a coordinate change.

1 Introduction
Finding the roots of a zero dimensional polynomial system is a fundamental problem of numerous
applications spread over several important areas, such as algebraic geometry, computer graphics
and computer aided geometric design. In particular, the design of robust and certified algorithms
demands for efficient methods that determine isolating regions for all roots of polynomial systems.
Such methods should also be capable to handle non-simple roots.

This work is driven by the question: How can fast but unreliable root solving techniques be
combined with symbolic computations in an efficient way, such that the overall result can be cer-
tified? We see our main contribution in providing a novel certification scheme in this context. Its
main idea is to follow two threads of computation in parallel. Both threads only deliver incomplete
information, but their combination is sufficient to certify the result of the method.

The first thread is inspired by elimination methods such as Multivariate resultants and Groebner
bases. Both are well-studied tools to obtain the solution set of a system with respect to a projection
direction. However, both methods lead to polynomials with very large bitsizes (for intermediate
results as well as for the final result), which causes a severe drawback regarding the performance.
Therefore, our method computes the multivariate resultant (with some hidden variable) only in
several prime fields Zp and completely avoids Chinese Remaindering. In particular, all symbolic
computations are performed using single precision arithmetic [4]. This method yields a lower bound
on the number of projected solutions. Although this bound is very likely to match the exact number
in practice, this cannot be certified without further knowledge.

The second thread follows an Exclusion and Subdivision method. It keeps on subdividing re-
gions that may contain solutions (from now on, we call such connected regions clusters), whereas
regions that doubtlessly do not contain a solution are discarded. As a simple exclusion method we
use interval arithmetic. Usually, this is combined with a criterion to ensure that a cluster contains
∗Correspondence to: Michael Sagraloff, Max-Planck-Institut für Informatik, Departement 1: Algorithms and Complex-
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precisely one simple root, but these criteria mostly fail in the presence of multiple roots. Instead,
we introduce two new methods based on homotopy arguments. The first ensures the presence of
at least one root inside a cluster, the second sums up the multiplicities of the roots inside a cluster.
Clearly, this cannot suffice to ensure that a cluster is isolating.

Our algorithm merges both building blocks to certify that clusters are isolating. For simplicity,
we sketch the certification idea only for a univariate polynomial f (the general case is discussed in
Section 2). Two real values are computed: LB, obtained by the modular symbolic computation, and
UB, obtained by the distances between clusters, diameters of clusters, and their multiplicities. If the
clusters are not isolating, LB (UB) defines a lower (upper) bound on the absolute value of the first
non-vanishing subresultant coefficient∗ sresk( f , f ′), which is essentially the product of squared root
distances of f . During the certification, LB→ ∞ and UB→ 0. Once LB becomes larger than UB, it
is proven by contradiction that the clusters are isolating.

We see a strength of our certification method in its adaptiveness to the concrete instance: The
quality of the bounds LB and in particular UB are mainly determined by the size of |sresk( f , f ′)|,
small values for it lead to faster certification. This adaptive behavior is a clear advantage compared
to theoretical a priori bounds on sresk( f , f ′) or on the separation of distinct roots which have to
assume the worst-case.

Our new certification approach is embedded within a complete algorithmic description that takes
a zero-dimensional system as input, and starts the subdivision on a sufficiently large bounding box.
We decided for this setup for the sake of a comprehensive description, although there is no need to
restrict to the proposed subdivision strategy. For instance, we propose that for an efficient realization
of our ideas, a fast numerical solver (e.g, based on homotopy methods; see the section on related
work) is first applied to approximate the solutions of the system, and our certification process comes
in afterwards only to validate the outcome of the solver. We sketch the workflow of such a hybrid
solver in the conclusion.

The presented method is complete for 2× 2-systems and applies, in general, also to higher
dimensional systems. It requires the multivariate resultant to be expressible by a Macaulay matrix.
In unfortunate cases, this is not possible, even under projective transformations.

Related Work. Since polynomial root solving is such an important problem in several fields,
plenty of distinct approaches exist and many textbooks are dedicated to this subject. See, for in-
stance, [9, 22, 27, 29] for introductions to symbolic approaches such as (sparse) resultants, Groebner
bases, and methods based on eigenvalue computations or on rational univariate representation.

Homotopy methods numerically track the continuous path of the known complex solutions of
some trivial and appropriate polynomial system during a continuous deformation into the input
system. Such methods, although very robust, lack the certification of their output in general. We
recommend [26] for a more comprehensive overview.

Subdivision methods describe a further class of common tools. Algorithm of that kind profit
from their efficiency and plainness. Most Implementations are using one of the numerous software
packages for efficient interval arithmetic [2, 18, 20], such as IntBis, ALIAS, IntLab or MPFI. Alter-
native variants, using the Bernstein basis and convexity properties of their coefficients, have been
addressed [19]. However, all these approaches lack to certify their results – in general, an approach
stops when a certain subdivision depth is reached or each region contains a simple root, which can,
for instance, be certified by the interval Newton test [26, Sec. 6.1]. So far, in case of multiple roots,
all proposed methods have to go below a certain a-priori worst case root separation bound in order
to certify that a region is isolating. As a result of the bad quality of these bounds in the average
case, subdivision methods turn out to be impractical for an exact and complete approach.
∗In case of a univariate polynomial f . For the general case, we consider |sresk j (r j,r′j)|, where r j is the elimination

polynomial of F = 0 with respect to z j and k j := deggcd(r j,r′j).



Also specializations of the general problem have been extensively studied. The probably most
prominent one is univariate polynomial solving. In particular, this is an integral building block in
elimination methods, where the (univariate) elimination polynomial has to be considered, and lifting
the solutions to higher dimensions usually leads to further univariate systems.

Certified algorithms for real root isolation are mainly subdivision solvers based on Descartes’
Rule of Signs or Sturm sequences, see [3, 10, 29] for modern approaches. For the complex case we
refer to [16, 21, 23, 24, 25].

Other special cases of polynomial systems appear in real algebraic geometry. Recent imple-
mentations for computing the topology of algebraic curves either make use of elimination meth-
ods [11, 13] or subdivision [1, 7]. Already this low dimensional application shows the mentioned
drawbacks of the distinct approaches: subdivision fails to give a certified result in degenerate cases
whereas elimination methods suffer from costly symbolic computations.

Outline. We sketch our algorithm in Section 2. Therein, we refer to the Sections 3-6 for the
details of its submethods. Section 7 finally concludes our results.

2 Our approach
We fix the following notation throughout the paper: our input system is given by polynomials
fi ∈ Z[z1, . . . ,zN ] of total degrees di, i = 1, . . . ,N, and D = ∏N

i=1 di defines their product. Then these
polynomials induce a function F : CN → CN that maps a point p ∈ CN to ( f1(p), . . . , fN(p)). By
assumption, F has only finitely many isolated solutions (or roots), let Γ = V (F) denote them. For
j = 1, . . . ,N, let π j : CN →C,(z1, . . . ,zN) �→ z j denote the canonical projection map with respect to
z j. Likewise, Γ j := π j(Γ) is the set of z j-coordinates of solutions of F .

Given F , our algorithm computes disjoint isolating clusters C1, . . . ,Cs ⊂CN , that is, each cluster
Ci contains precisely one root of F and Γ ⊂ ⋃s

i=1 Ci. In general, we will use the term cluster for a
connected subset of CN .

Transformation phase (Section 3.1): As a first step, the algorithm ensures several genericity
conditions† which further steps rely on. Matrices M1, . . . ,MN with Mj ∈ Z[z j]� j×� j (for some � j) are
computed whose determinants r j ∈ Z[z j] satisfy the following properties: r j describes the projected
solutions of F with respect to the coordinate z j, in short V (r j) = Γ j, and multiplicities are preserved
under projection. Moreover, each r j must be of degree D; this ensures that F has no solution at
infinity, that is, all solutions of its homogenization are contained in CN , considered as an affine
chart of PN . All these properties are tried to be ensured only using modular arithmetic (i.e., without
computing the r j’s exactly). If this fails, the algorithm starts over with a transformation of F by a
linear projective change of coordinates.

The actual isolation algorithm depends on the following three subroutines.
Guess k j (Section 3.2): For j∈{1, . . . ,N}, it computes an upper bound k′j for k j := deggcd(r j,r′j),

which also yields a lower bound m′j on the cardinality m j = D− k j of Γ j. This is done by comput-
ing the index of the first non-vanishing principal subresultant coefficient of r j and r′j in a modular
domain Zp, where the prime p is newly chosen in each call.

Subdivide (Section 4): Returns a set of disjoint clusters that cover all roots of F , and each
contains at least one root (we call clusters known to contain at least one root zero-clusters). This
is done by subdivision in CN ∼= R2N to exclude regions without roots, combined with a criterion to
identify zero-clusters. Repeated calls of Subdivide shrink the zero-clusters, and if a zero-cluster
is not isolating, it will split into several parts after sufficiently many steps.

†for N = 1, the phase can be skipped



Mult of clusters (Section 5): For the zero-clusters C returned by Subdivide, the number
μ(C) of roots of F inside each cluster is computed, counted with multiplicity (notice that μ(C)≥ 2
does not imply that C is non-isolating, since multiple roots can occur). The method slightly perturbs
F into F̃ such that roots remain in their zero-clusters, and such that a root of multiplicity μ turns
into μ simple roots nearby. The number of roots inside a zero-cluster is than counted by further
subdividing the cluster.

Main routine: Our main root isolation routine passes through two phases. First, the syn-
chronization phase (Section 6.1) calls Guess k j repeatedly for each projection direction to obtain
a lower bound m′j on m j, Though it is very likely to coincide with m j, m′j might improve in further
calls. In parallel, it calls Subdivide repeatedly to get smaller and smaller zero-clusters C1, . . . ,Cs′ .
For each direction it examines π j(

⋃
Ci), which decomposes into connected components, called

projected clusters. Once the number of projected clusters under π j coincides with m′j for each j,
Mult of clusters is called for C1, . . . ,Cs (this also yields multiplicities of projected clusters), and
the algorithm switches to the certification phase, described next.

The clusters C1, . . . ,Cs′ are isolating under the condition that m′j = m j, or equivalently k′j = k j,
for each j. The certification phase (Section 6.2) tries to verify this. It computes the values LB j,
that is, the product of the primes used in Guess k j so far, and UB j which is determined by the
diameters and multiplicities of projected clusters, and the distances between them. If k′j > k j, LB j
(UB j) is a lower (upper) bound for |sresk j(r j,r′j)|. The algorithm again calls Guess k j repeatedly,
which makes LB j arbitrary large, and in parallel, it calls Subdivide which lets UB j converge to
zero. Either, LB j >UB j at some point which algorithmically proves by contradiction that k′j = k j.
Or, a call of Guess k j improves the upper bound on k j, or a call of Subdivide makes a projected
cluster split into two parts. Both cases disprove k′j = k j and thus, clusters were not isolating yet; the
algorithm then switches back to the synchronization phase.

3 Symbolic tools

3.1 Transformation phase: Multivariate Resultant ‡

Crucial for our method is the knowledge of univariate polynomials r1, . . . ,rN such that the roots of
r j are precisely the z j−coordinates of points in Γ. Each r j is represented as the determinant of a
matrix Mj in the coefficients of f1, . . . , fN . Also, each r j should have degree D, which ensures that
all D solutions of the homogenized system over PN lie in the considered affine chart.

It is possible that such r j’s (more precisely, the Mj’s) only exist after a projective coordinate
transformation, and in degenerate instances our method might even fail completely to compute such
Mj’s. We closely follow the ideas described in [9, § 3.5], using multivariate resultants and the
“hidden variable” approach. Here, we just mention the main facts from the theory; see [9, 12] for
further explanations. We first introduce the (affine) multivariate resultant:

Definition 1. For a system of n polynomials ( f1, . . . , fn) in n− 1 variables, res( f1,..., fn) is an irre-
ducible polynomial in the coefficients of the fi’s. The resultant vanishes if and only if the homoge-
nized system has a solution over Pn.

To apply the multivariate resultant in our problem with N equations in N variables, we consider
one variable z j as a parameter, that means, the system has coefficients in Z[z j]. Then, res j :=
resz j

( f1,..., fN), j = 1, . . . ,N, defines a polynomial in z j. From the definition, it follows that its roots are
precisely the z j-coordinates where F = 0 has a solution.

‡for N = 1, the whole section can be skipped



Theorem 2. Let deg(res j) = D for all j = 1, . . . ,N. Then F has precisely D roots in CN, counted
with multiplicity§. For each (z1, . . . ,zN) ∈ Γ, z j is a root of res j and the multiplicity of z j is the sum
of the multiplicities of the points in its fiber.

Proof. The degree of each res j is bounded by D (cf. [12]). If any solutions is not finite, at least
one res j must have a “root at infinity”, thus its degree drops by at least one, which shows (1). The
second claim follows directly from the definition of the multivariate resultant and the last from the
previous, noting that the resultant is continuous in the coefficients of the system, and that a slight
perturbation of the system yields D simple solutions with distinct z j-coordinates.

In our algorithm, we exploit that res j can be represented, at least generically and up to a constant,
as the determinant of a coefficient matrix of ( f1, . . . , fN) by a theorem due to Macaulay [17].

Theorem 3. There exist matrices Mj and M′j whose entries are polynomials in the coefficients of
the system ( f1, . . . , fN) and in z j, such that res j = detMj

detM′j
. M′j does not contain z j.

For the definition of Mj and M′j, see [9]. Theorem 3 implies that if for our concrete system
detM′j ∈ C does not vanish, then r j := detMj equals res j up to a constant. At several places in our
algorithm we need to upper bound the coefficients of r j. Using the Hadamard bound on Mj, one
obtains the following estimation:

Lemma 4. The bitsize of the coefficients of each r j is at most σ := n(τ + logn)+ log(dn+1), where
τ is the maximal bitsize of any coefficient of ( f1, . . . , fN), n =

(∑N
i=0 di
N−1

)
and d = maxdi.

Proof. The dimension of Mj equals
(∑i
= j di

N−1
)
< n (cf. [9]). Moreover, each entry of Mj is a univariate

polynomial whose coefficients have bitsize at most τ , and whose degree is bounded by d. Using [3,
Prop. 8.12], the determinant polynomial r j has thus a bitsize bounded by σ .

We next describe the transformation phase of the algorithm. All computations are performed
modulo a prime number p. Let · denote the operation that maps integers to their modular image
in Zp. This map extends to integer polynomials and integer matrices in the obvious way.

Choose a random prime p and compute over Zp, for each j = 1, . . . ,N, detM′j ∈Zp and detMj ∈
Zp[z j]. If any determinant detM′j vanishes, or for any j, deg(detMj) 
= D, transform ( f1, . . . , fN) via
a random linear projective change of coordinates and start over with the transformed system.

We remark that the transformation phase might loop forever, in case that detM′j vanishes for the
input system, and for all its linear projective transformations.

For special cases of polynomial systems, res j is explicitly known as determinant of a matrix,
not just as a quotient. The most prominent case is N = 2, where the Sylvester matrix can be used;
Theorem 3 and consideration of M′j is not needed. Special cases with N > 2 are discussed in [28].

A perhaps unpleasant feature of the transformation is that also infinite solutions of the original
system are computed. It is possible to rule out them in a post-processing step after the algorithm.
For that, we consider a finite region that contains all finite roots of the original coordinate system.
For instance, it is possible to consider the box [−2σ ,2σ ]2N with σ from Lemma 4.

§The multiplicity of a root ξ ∈ CN of F is defined as the dimension of the localization of C[z1, . . . ,zN ]/( f1, . . . , fN) at ξ
considered as a C-vector space (cf.[3, p.148])



3.2 Guess k j: Modular computation
We turn to the method Guess k j that computes an upper bound k′j on k j = deggcd(r j,r′j). Since
deg(r j) = D (guaranteed by the transformation phase), D− k′j constitutes a lower bound m′j on m j,
the number of distinct roots of r j. To compute k′j, we exploit the relation (e.g. [3, Prop. 4.25])

k j := deggcd(r j,r′j) = min{i≥ 0 | sresi(r j,r′j) 
= 0},

where sresi( f ,g) denotes the i-th principal subresultant coefficient of f and g.
By definition, sresi(r j,r′j) can again be expressed as determinant in the coefficients of r j. There-

fore, its computation is possible in a modular domain Zp for a prime p. Defining λ j as the leading
coefficient of r j, we obtain the following.

Proposition 5. Let j ∈ {1, . . . ,N}, and p a prime, that does not divide λ j or D · λ j, the leading
coefficient of r′j. Then, for i = 0, . . . ,D we get sresi(r j,r′j) = sresi(r j,r′j).

Lemma 6. Let p1, . . . , ps be distinct prime numbers that do not divide Dλ j , and

k′j := min
�=1,...,s

min{i≥ 0 | sresi(r j,r′j) 
= 0},

where · is the modular operation with respect to p�. Then, k′j ≥ k j, and thus r j has at least m′j :=
D− k′j distinct complex roots. Moreover, for each i ∈ {0, . . . ,k′j−1},

sresi(r j,r′j) = 0∨|sresi(r j,r′j)| ≥
s

∏
�=1

p�.

The second part of Lemma 6 constitutes a lower bound for the size of non-vanishing principal
subresultants coefficients. We will exploit this lower bound in the certification phase (Section 6.2).
We explain our method Guess k j next. For any j ∈ {1, . . . ,N} it outputs a pair consisting of an
upper bound k(p)

j for k j, and the prime p that has been used to obtain this bound.

Choose a prime p not considered so far, compute r j = detMj and r′j, with respect to p, until
degr j = D and degr′j = D−1. Compute k(p)

j = min{i≥ 0 | sresi(r j,r′j) 
= 0}= deggcd(r j,r′j), and
return the pair (k(p)

j , p).

Note that Guess k j performs all computations in the domain Zp, no exact evaluation of r j is
necessary. The price we pay is that we have to cope with the uncertainty whether k′j = k j holds
or not. This guess must be checked at the end of the overall algorithm. However, we claim that a
wrong guess is very unlikely since k j = k′j will hold as soon as a prime p is chosen that does not
divide sresk j(r j,r′j).

4 Subdivide: Subdivision
We apply a subdivision scheme on CN ∼= R2N to identify clusters containing roots of F . Writing
each z j := x j + i ·y j and f j = g j + i ·h j, F can be interpreted as a function F : R2N →R2N that maps
a point p = (x1,y1, . . . ,xN ,yN) ∈ R2N to (g1(p),h1(p), . . . ,gN(p),hN(p)). For a box A = [a1,b1]×
[c1,d1] . . .× [aN ,bN ]× [cN ,dN ], let �F(A) be the result of evaluating F at A in interval arithmetic,



e.g., by the use of the recursive Horner scheme or centered box evaluation (also denoted as modified
affine arithmetic [14]). By the properties of interval arithmetic [20], we get Im(F|A)⊂�F(A). We
call a box A hot, if �F(A) contains the origin. Clearly, non-hot boxes do not contain any root of F .

We start with an initial box containing all roots.¶ In each iteration, every hot box B is subdivided
into 22N even parts, which replace the old box B. All new boxes are tested to be hot, non-hot boxes
are removed. In each state the hot boxes can be grouped into maximal connected regions, called
hot clusters. In each iteration, a hot cluster either splits into smaller hot clusters, dies (i.e., vanishes
completely), or persists, that means, it remains connected after the subdivision step. However, it is
not clear whether a hot clusters indeed contains a root. We derive a method to ensure the presence
of at least one root inside a hot cluster next.

Theorem 7. Let D ⊂ CN be an open, connected subset. If there exists a point p ∈ D such that
|F(p)|< m∂D := minγ∈∂D |F(γ)|, then F has a root in D.

Proof. Consider the parameterized function Ft = F− tF(p) for t ∈ [0,1]. Then the roots of Ft con-
tinuously depend on t and F1 has a root, namely p, within D. When passing from F1 to F = F0 this
root continuously transforms into a root p′ of F . If p′ is outside D, then there must exist a t0 ∈ [0,1]
such that Ft0 has a root p∗ on ∂D. But, 0 = |Ft0(p∗)| = |F(p∗)− t0F(p)| ≥ ||F(p∗)|− |t0F(p)|| ≥
m∂D−|F(p)|> 0, thus p′ is also located in D.

Definition 8. Let C be a hot cluster consisting of hot boxes B1, . . . ,Bs. We define Δ(C) as the union
of all boxes B̃1, . . . , B̃r that are adjacent to C. We define

ε(C) := min
j=1....,s

∣∣F(ρ j))
∣∣

where ρ j denotes the midpoint of B j. Furthermore

δ (C) := min
l=1,...,r

∣∣�F(B̃l)
∣∣> 0,

if ∂C ⊂ ∂Δ(C) and δ (C) := 0, otherwise.

Notice that ∂C ⊂ ∂Δ(C) exactly holds iff none of the boxes B j has a
common point with the boundary of the initial box. In this situation we
get minγ∈∂C |F(γ)| ≥ δ (C) > 0. Hence, by Theorem 7, we can conclude
that a cluster C contains a root of F if ε(C) < δ (C). For a sequence of
clusters Ck that approximates a root ξ it is clear that ε(Ck)→ 0 as well
as δ (Ck)→ 0 while k→ ∞. This does not imply that we reach a state
such that ε(Ck)< δ (Ck). But for some fixed k′ there is a k′′ ≥ k′ such that
ε(Ck′′)< δ (Ck′)

Corollary 9. Let C′ and C be two hot clusters and C′ be a descendant cluster of C, that is, C′ ⊂C.
If ε(C′)< δ (C) then C contains a root of f .

To illustrate how Corollary 9 is applied, consider the picture on the right. Assume that the
cluster C splits during the subdivision, and yields two hot sub-clusters A, B. If ε(A) < δ (C), then
C must contain a root. However, it does not imply that A also contains a root, it only follows that
A∪B contains a root.

¶e.g., one can use the box [−2σ ,2σ ]2N with σ as in Lemma 4



We introduce a data structure that will help to identify clusters that
are certified to contain a root of F . For that, we maintain a tree T , called
cluster tree, where each node vC in T corresponds to a hot cluster C and
a node vC′ is a child of vC if C′ ⊂C is a hot cluster of the next iteration
step. The root of T corresponds to the initial box. Moreover, each node
in the tree maintains a δ and an ε-value that are initialized according to
Definition 8. While δ does not change, new descendent nodes can give
rise to better ε-values which are propagated to all their ancestors. Once
ε < δ for a node, the corresponding cluster is known to contain a root by Theorem 7. We tag such
a node and all its ancestors with a zero flag. We call these nodes zero-nodes, and the corresponding
clusters zero-clusters. It may also happen that all descendent nodes of a node v die out. In this case
the subtree which is rooted at v is completely removed from T . Hence, the leaves of T are in
one-to-one correspondents to the hot clusters in the current subdivision state.

Proposition 10. A hot cluster that contains a root of F will eventually be a zero-cluster in the
cluster tree. A hot cluster that does not contain a root of F will eventually be removed from the
cluster tree.

Moreover, we maintain a subtree T ′. We start with the root node of T and grow T ′ as follows.
Add all children of a leaf of T ′ as soon as all of them are zero-nodes. By construction, the leaves
of T ′ correspond to a set of disjoint zero-clusters, which covers all roots of F . We call this set the
current minimal zero-cluster overlay (MZCO).

Proposition 11. The MZCO constitutes a set of isolating clusters for F after sufficiently many
subdivisions.

A call of the method Subdivide triggers another subdivision step, updates T , T ′ and finally
returns the current minimal zero-cluster overlay.

5 Mult of clusters: Perturbation
The multiplicity of a root ξ ∈ CN of F is defined as the dimension of the localization of the ring
C[z1, . . . ,zN ]/( f1, . . . , fN) at ξ , considered as a C−vector space (cf.[3, p.148]). A more intuitive
description states that ξ is a root of multiplicity μ if there exists a neighborhood U(ξ ) ⊂ CN such
that almost any sufficiently small perturbation of F has exactly μ distinct, simple roots in U(ξ ).

We next discuss Mult of clusters that computes the sum of the multiplicities of all roots
inside each C ∈ C , where C is a MZCO as returned by the method Subdivide. We first choose
a perturbation vector υ ∈Q2N such that ∀C ∈ C : |υ |< δ (C). The following Lemma ensures that
roots can not leave their cluster when perturbing by υ .

Lemma 12. Let C be some hot cluster and υ ∈ R2N with 0< |υ |< δ (C), then the number of roots
of F +υ equals the number of roots of F in C.

Proof. Consider the parameterized function Ft = F + tυ and proceed as in Theorem 7.

We also ensure that υ is chosen such that all roots of F̃ are simple. One possibility is to check
whether res(r̃1, r̃′1) 
= 0 over some Zp, p a random prime.‖ In case of a failure we simply choose
another υ and perform the modular computation with some other prime until we succeed.
‖For the definition and the computation of the resultant r̃1 with respect to F̃ we refer to Section 3.



Once υ is chosen, we know that all roots of F̃ are simple. In particular, we know that F̃ has
precisely D simple roots. This is guaranteed by the fact that F , and therefore F̃ , has only finite roots,
see also Section 3.1. Hence, we can apply a variant of our subdivision scheme to F̃ as follows:

For a given MZCO C := {C1, . . . ,Cs} for F the method Mult of clusters computes F̃ for
some proper perturbation vector υ ∈ Q2N . Now the subdivision method as discussed in Section 4
is applied to F̃ with initial clusters C1, . . . ,Cs inducing a forest of cluster trees. The subdivision
is continued until the MZCO defined by the forest precisely contains D clusters. The number of
zero-clusters in the MZCO with root Ci then gives the number μ(Ci) of roots of F in the cluster Ci,
counted with multiplicities.

Note that the method Mult of clusters can be modified such that it uses a separate perturba-
tion vector υi for each cluster Ci ∈ C . That is, each υi fulfills |υi| < δ (Ci) and all roots of F + vi
within Ci are simple.

Improved Perturbation Vectors: So far, we sketched a method to compute a global, randomly
chosen perturbation vector υ . Although it is already guaranteed that F̃ has only simple roots, an
unfortunate choice of υ leads to a bad root separation, and hence to a high subdivision depth for F̃ .
To overcome this problem, we next propose an alternative approach. For each Ci ∈ C , it computes
a perturbation vector υi independently. It makes use of a criterion to guarantee that an axis-aligned
box contains at most one root, which is simple. We introduce some notation first. It is well known
(see [3, Prop. 4.94] for a proof) that the Jacobian JF := (∂ f j/∂ zk)1≤ j,k≤N of F at ξ has full rank if
ξ is a simple root of F . For its real counter part

DF :=

( ∂g j
∂xk

∂g j
∂yk

∂h j
∂xk

∂h j
∂yk

)
1≤ j,k≤N

it holds that det(DF) = det(JF)2 [15, p.27], thus it follows:

Lemma 13. F has a simple root at ξ ∈ CN iff F(ξ ) = 0 and det(DF)(ξ ) = (det(JF)(ξ ))2 
= 0.

For n > 1, Rolle’s theorem is not directly applicable to functions ϕ : Rn �→ Rn, thus F might
have two roots without a root of det(DF) in between. But we can use another criterion that exploits
the behavior of interval arithmetic. We consider the matrix DF and denote its row vectors by

G j :=
(

∂g j

∂xi
,

∂g j

∂yi

)
1≤ j≤N

, Hj :=
(

∂h j

∂xi
,

∂h j

∂yi

)
1≤ j≤N

Then for any Φ := (p1, . . . , pN ,q1, . . . ,qN) ∈ (R2N)2N , we define M(Φ) as the 2N×2N−matrix
whose rows are the vectors G j(p j) and Hj(q j), j = 1, . . . ,N.

Lemma 14. Let B ⊂ R2N be an axis-aligned box and D :
(
R2N)2N → R2N defined by D(Φ) :=

det(M(Φ)). Then

1. If 0 /∈�D(B2N), then B contains at most one root of F, which is simple.

2. If B contains exactly one root of F (counted with multiplicity) and B is sufficiently small, then
0 /∈�D(B2N).

Proof. We consider the case N = 1 where F : C→ C is a univariate polynomial. Then the general
case follows in a complete analog manner. F can be written as F(x + iy) = f (x,y)+ ig(x,y) with



polynomials f ,g∈Z[x,y]. If B⊂R2 contains a multiple root a of F , then D(a,a) = DF(a) = 0, thus
we can restrict to the case where B contains two distinct roots a,b. We denote [a,b] the line segment
connecting a and b. From Rolle’s theorem in several real variables, applied to the polynomials f
and g, it follows the existence of points p,q ∈ [a,b] with(

fx(p)
fy(p)

)
· (a−b) =

(
gx(q)
gy(q)

)
· (a−b) = 0.

Thus, ( fx(p), fy(p))t and (gx(p),gy(p))t are perpendicular to a− b, which is only possible if they
are linearly dependent. As a consequence we must get

det
(

fx(p) fy(p)
gx(q) gy(q)

)
= 0

Hence, it follows that 0∈�D(B2). In contrast, if B has only one simple root a∈ B then det(DF |p) 
=
0. D is continuous, thus if we choose B small enough, this guarantees that 0 /∈�D(B2).

Note the subtle difference of Lemma 14 compared with the criterion 0 /∈ �detDF(B) which
does not guarantee the presence of at most one root in B; it is needed that the values in each row of
the matrix are chosen independently of each other.

Using Lemma 14 we compute for each cluster C ∈ C a corresponding perturbation vector υC.
Compared to the modular approach, this leads to a better separation for the roots of F̃ := F + vC
within C. For a box B we define its expanded box B+ as the box with the same center as B, and
thrice as large side length. We call a box simple, if 0 /∈�D((B+)2N), and non-simple otherwise.

Copy all boxes of C that are non-simple into a new subdivision queue. Start subdividing, and
keep only non-simple boxes in the queue. In addition, evaluate �F(B) for each box in the queue,
let U ⊂ CN be the union of these interval vectors. Stop the subdivision as soon as R2N \U contains
a vector v with |v| ∈ [0,δ (C)]. Set υC := v and return.

Why does the above algorithm terminate? Notice that detDF = 0 describes a hypersurface
V (det(DF)) in CN , thus the function values of F on V (det(DF)) also describe a hypersurface in
CN . It follows that after finitely many subdivision steps, the complement of the union U of interval
vectors �F(B) must contain a vector v with |v| ∈ [0,δ (C)].

Lemma 15. For a cluster C, let υC be chosen as by the algorithm above, then F̃ := F +υC has only
simple roots within C and all these roots are separated by at least s, where s denotes the minimal
side length of all boxes considered during the subdivision.

Proof. Note first that DF̃ = DF , thus (non-)simple boxes remain (non-)simple when switching to
F̃ . From the choice of υC, it follows that each ξ ∈ C with F(ξ ) = υC is contained in one of the
simple boxes. Hence, all roots of F̃ within C are simple as well. Now consider two roots a,b of F̃ ,
then both of them are contained in simple boxes B1 and B2 respectively. As none of the boxes B̄1 or
B̄2 contains two roots we get that B1 
= B2 and B1,B2 are not adjacent.

We remark another application of Lemma 14, although it is not directly needed for our appli-
cation. Observe that the method Mult of clusters relies on the fact that all clusters are considered
simultaneously, because it stops as soon as the total number of certified clusters equals D.

With a slight modification it is possible to describe a local version of Mult of clusters that com-
putes the number of roots, counted with multiplicity, within a given cluster C. It computes a ΔC as



before, and subdivides C with respect to the evaluation function FΔC. Also, a cluster tree is main-
tained for C to identify zero-clusters, as before. For each zero-cluster C0 ⊂ C in the subdivision,
a box B of minimal size is computed that completely contains this cluster. If 0 /∈ �D(B2N), the
zero-cluster contains precisely one simple root, we call it simple cluster. If a cluster is simple, all its
subclusters are simple as well. If no such box B can be computed, further subdivision is necessary.
The algorithm stops if each element of the current MCZO is simple.

6 The main routine

6.1 Synchronization phase: Projection
In Section 3.2, we explained a method Guess k j to obtain a lower bound m′j on m j, the number of
distinct roots of r j. In Section 4, we presented a method Subdivide to compute a set of disjoint
clusters in CN , containing all roots of F , and each set contains at least one solution (we called such
clusters zero-clusters). In the synchronization phase, both subroutines are combined to make their
outcome coherent. For that, we introduce the notion of a projected cluster. Recall that, for all
j ∈ {1, . . . ,N}, the roots of r j coincide with Γ j. Therefore, for a zero-cluster C ⊂ CN , π j(C) ⊂ C
is a connected region that contains at least one root of r j. When projecting all clusters returned by
Subdivide, some clusters might overlap in the projection. We therefore define

Definition 16. Let C = {C1, . . . ,Cs} be a set of zero-clusters returned by Subdivide. The projected
clusters under π j are the maximal connected components of

⋃
C∈C π j(C). The multiplicity μ(R) of

a projected cluster R is defined as

μ(R) = ∑
C∈C ,π j(C)⊂R

μ(C),

where μ(C) is the multiplicity of the cluster C.

By the properties of r j (Theorem 2), it follows

Lemma 17. Let R be a projected cluster under π j . Then R contains exactly μ(R) roots of r j,
counted with multiplicity. In particular, the set of projected clusters covers all roots of r j and each
projected cluster contains at least one root.

During the subdivision, the clusters in CN become arbitrary small, and the same holds for their
projections. Thus, after sufficiently many calls of Subdivide, the returned clusters will induce
exactly m j projected clusters under π j.

Lemma 18. Let C = {C1, . . . ,Cs} be a set of zero clusters returned by Subdivide, such that, for
each j, there are mj projected clusters under π j. Then each cluster Ci contains exactly one root.

Proof. If a cluster Ci contains two solutions, they differ in at least one variable z j, and so, r j has
more than m j distinct solutions, a contradiction.

Our algorithm, however, does not apply Lemma 18 directly, since computing the m j’s is too
costly. Instead, the synchronization method both computes a lower bound m′j on m j, and performs
subdivision in CN , until there are precisely m′j projected clusters with respect to z j for each j =
1, . . . ,N. In the subsequent certification phase, it will be verified (or falsified) that m′j = m j holds.

Here is the detailed description of the synchronization phase. The algorithm stores for each j a
current guess m′j, initially set to 0, and a number LB j, initially set to one (the latter will be used in
the certification). Also, it initially calls Subdivide and stores the returned set into C .



Repeat the following steps: For each j = 1, . . . ,N, compute the projected clusters for C under π j,
let c j denote their number. If m′j = c j for all j, call Mult of clusters for each C ∈ C , compute
the multiplicity of each projected cluster according to Definition 16, and pass to the certification
phase. Otherwise, let j be such that m′j 
= c j. If m′j < c j, call Guess k j, let (k(p)

j , p) be the result.
Set m′j to max{m′j,D−k(p)

j }, set LB j to LB j · p, and proceed with the next iteration. If m′j > c j, call
Subdivide, set C to its output, and proceed with the next iteration.

Both m′j and c j are lower bounds for m j, and after sufficiently many calls of Guess k j or
Subdivide, respectively, both will be set to m j. However, the algorithm might jump to the cer-
tification phase earlier, when c j = m′j 
= m j. As we will see, the certification phase will then falsify
m′j = m j, and increase at least one of the values c1, . . . ,cN ,m′1, . . . ,m′N .

6.2 Certification phase: Separation bounds
As Lemma 18 states, the clusters computed by the synchronization phase contain precisely one root
of F under the condition that m′j = m j, or equivalently k′j = k j, for each j. For the sake of simpler
notation in this subsection, we will fix one projection variable z j, and set k := k j, k′ := k j, m := m j,
m′ := m′j, and r := r j. Note that D := deg(r). Also, we will denote the projected clusters for r by
R1, . . . ,Rm′ . Our goal is to prove (or disprove) k′ = k.

Our certification scheme uses two dynamically changing values LB := LB j and UB :=UB j with
the following properties:
• If k′ > k, it holds that LB≤ |sresk(r,r′)| ≤UB.
• If k = k′, further calls of Guess k j improve LB. More precisely, a sequence of calls of
Guess k j leads to values LB that diverge to +∞.
• If k = k′, further calls of Subdivide improve UB. More precisely, a sequence of calls of
Subdivide leads to values UB that converge to 0.

The idea for the certification is to call Guess k j and Subdivide simultaneously (or alternat-
ing), until LB >UB which proves that k′ = k. If a call of Guess k j decreases k′, or if any call of
Subdivide leads to a split of some cluster Ri, the guess is falsified. In this case, the algorithm has
to return to the synchronization phase to produce a new guess for k.

How do we obtain such bounds LB and UB? For LB, the answer is simple. Recall that Lemma 6
provides a lower bound for each non-vanishing |sresl(r,r′)| with l < k′ = k′j, namely the product of
the primes considered so far by Guess k j. The algorithm keeps track of this product by the variable
LB j, compare the description of the synchronization phase. Clearly, each call of Guess k j makes
LB larger, and the product diverges to +∞.

We turn to UB, for which we exploit our knowledge about the clusters of r, and the multiplicity
of each. More precisely, for each such cluster R, we know the number μ(R) of roots of r inside R,
counted with multiplicity (compare Lemma 17). To derive an adaptive upper bound for |sresk(r,r′)|,
we study the possible values of the root product of r.

Definition 19. Given m′ clusters R1, . . . ,Rm′ for r, a set Ψ := {ψ1, . . . ,ψn} ⊂ ⋃i=1,...,m′ Ri with
n≥ m′ is called a valid root distribution (v.r.d.) of order n, if the number of elements of V inside Ri
is at least one, and at most μi := μ(Ri). We also define the product

P(Ψ) := ∏
1≤i< j≤n

(ψi−ψ j)2.



The roots of r obviously define a v.r.d. of order m. We need some additional notation: For two
clusters Ri and R j of r, not necessarily distinct, define di j to be the maximal distance between a
point in Ri to a point in R j (for i = j, di j is the diameter of Ri).

Proposition 20. Let Ψ := {ψ1, . . . ,ψm′ } be a v.r.d. of order m′. Then P(Ψ)≤∏1≤i< j≤m′ d2
i j.

Moreover, we can relate v.r.d.’s of order n+1 with v.r.d.’s of order n as follows.

Lemma 21. Given m′ clusters R1, . . . ,Rm′ for r, and two v.r.d.’s Ψ(n) := {ψ1, . . . ,ψn}, Ψ(n+1) :=
{ψ1, . . . ,ψn+1} of order n and n+1, respectively. Then P(Ψ(n+1))≤ β 2P(Ψ(n)) with

β := max
i=1,...,m′

{
m′

∏
j=1

di j max{di j,1}μ j−1}

Proof. Notice that P(Ψ(n+1)) can be written as the product of P(Ψ(n)) and ∏i |ψi−ψn+1|2. Let ci,
i = 1, . . . ,m′, denote the number of elements among ψ1, . . . ,ψn inside the cluster Ri. By definition,
1≤ ci≤ μi for all i. Further, let q be such that ψn+1 ∈Rq. Then, the additional factor ∏i |ψi−ψn+1|2
can be upper bounded by

m′

∏
j=1

(
dc j

q j

)2
=

m′

∏
j=1

(
dq jd

c j−1
q j

)2
≤
(

m′

∏
j=1

dq j max{1,dq j}μ j−1

)2

.

Theorem 22. Define

UB := 2σ(2D−1) · eD/e ·β 2 ·max{β ,1}2(k′−1) ∏
1≤i< j≤m′

d2
i j,

with σ as in Lemma 4. If k < k′, then sresk(r,r′)≤UB.

Proof. Combining [10, Prop. 3.7] with [3, Prop. 4.27], we obtain the following equation for sresk:

sresk(r,r′) = λ 2(D−k)−1 ∏
i=1,...,m

mult(φi) ·P(Φ),

where Φ := {φ1, . . . ,φm} are the roots of r, mult(φi) is the multiplicity of φi, and λ is the leading
coefficient of r.

We bound each factor separately. λ 2(D−k)−1 ≤ 2σ(2D−1) is obvious, as 2σ is an upper bound
for λ (cf. Lemma 4). For ∏i mult(φi), note that this is a product of D− k numbers that sum up to
D. One can show that such a product is bound by

( D
D−k
)D−k, and by maximizing

( d
x
)x, one easily

verifies that its maximum is eD/e.
For the last factor, reorder the roots Φ of r such that φi lies in cluster Ri, for i = 1, . . . ,m′, the

other m−m′ roots lie in arbitrary clusters. Since Φ is a v.r.d. of order m, Φ(n) := {φ1, . . . ,φn}
is a v.r.d. of order n for each m′ ≤ n ≤ m. Applying Lemma 21 (m−m′) times, we obtain that
P(Φ)≤ β 2(m−m′)P(Φ(m′)). Now the claim follows by Proposition 20, and by the fact that β 2(m−m′) =
β 2(k′−k) = β 2β 2(k′−k−1) ≤ β 2 max{1,β}2(k′−k−1) ≤ β 2 max{1,β}2(k′−1).

Indeed, the bound as defined in Theorem 22 has the properties that we demanded for UB. As
just shown, it is an upper bound for |sresk(r,r′)|, if k < k′. Moreover, β , as defined in Lemma 21
becomes smaller when the clusters get smaller. If k = k′, the diameters dii all tend to zero, when
Subdivide is repeatedly called. As each possible value of β contains at least one diameter dii as a
factor, UB tends to zero, since all other quantities are non-increasing.



We next describe the certification phase. From the synchronization phase, the algorithm knows
current guesses m′j, and values LB j, for each j = 1, . . . ,N. Also, it has stored a set of clusters C ,
which induce precisely m′j projected clusters under π j, and the multiplicity of each projected cluster.

For each j = 1, . . . ,N, call simultaneously (or alternately) Guess k j and Subdivide. When
Guess k j returns (k(p)

j , p), update the values m′j and LB j accordingly, as in the synchronization
phase. If m′j increases, the guess was wrong; switch back to the synchronization phase. After each
call of Subdivide, update C and the projected clusters under π j. If the number of projected clusters
has been increased, the guess was wrong; switch back to the synchronization phase. Otherwise,
compute UB j as in Theorem 22. If LB j >UB j, it is certified that m′j = m j; proceed with the next j.
When all j’s have been considered, return the isolating clusters C .

In case of a wrong guess m′j, the certification phase not just falsifies m′j = m j, but also increases
either m′j itself, or the number of projected clusters under π j. Consequently, the certification phase
is never called twice for the same guesses (m′1, . . . ,m′N). Since the guess can only increase finitely
often, this shows that the algorithm eventually terminates. However, we remark again that it is
rather unlikely that the algorithm switches back to the synchronization phase at all, as we expect in
practice that already the first call of Guess k j will yield k j as result.

Remark. The bound UB = UB j used by the algorithm certainly has room for optimizations. We
hint at an alternative bound, based on the following result.

Lemma 23. For a set R of projected clusters R1, . . . ,Rm′ and maximal distances di j between Ri and
R j, consider

M(R) := maxλ 2n−1 ·∏
i

∏
1≤l≤ni

μi,l ·∏
i

dni(ni−1)
ii ∏

1≤i< j≤n
dnin j

i j

where the maximum is taken over all n (m′ < n≤D) and all possible values ni,μil ≥ 1, i = 1, . . . ,m′,
and l = 1, . . . ,ni such that ∑i ni = n and ∑l μil = μ(Ri). If k< k′, M(R) constitutes an upper bound
of |sresk(r,r′)|.

The estimation follows by considering a valid root distribution Ψ(n) of order n such that within
each Ri there are exactly ni elements of Ψ(n) which we assign multiplicities μil . We omit a more
detailed proof for brevity.

For an improved UB, each factor of the product is upper-bounded. The factor ∏i ∏l μi,l can
easily be bounded by (D/n)n. The factor involving the di j’s leads to a quadratic convex optimization
problem in the variables ni whose matrix becomes diagonal dominant for sufficiently small clusters.
Obviously, such an UB is computationally more involved compared to Theorem 22, but the sharper
upper bound might amortize this additional cost.

7 Conclusion and further work
We have described a novel certification scheme that allows to certify a collection of regions in CN

as isolating for the solutions of a zero-dimensional polynomial system over CN . Our approach com-
bines the advantages of subdivision and modular symbolic computation. The output is certified by
homotopy arguments and bounds on subresultants. We emphasize that an exact evaluation of resul-
tants or Groebner bases is not necessary, that is, we only perform modular computations without
lifting the elimination polynomials to Z. Thus, all (intermediate) results are kept handy during the
computation. At the same time, the performance of the proposed method adaptively depends on



several magnitudes in the algorithm, such as the separation of roots and the size of sresk j(r j,r′j),
instead of using worst-case bounds for them. To the best of our knowledge, only theoretical worst
case bounds have been studied [5, 6, 8] so far. With respect to practical efficiency, these bounds
are not applicable which results from the fact that, in all situation, the worst case scenario has to
be taken into account. We consider our method as the first approach to introduce an adaptive root
separation bound. On the one hand our method processes the exact information given by the integer
coefficients of the polynomial system by the use of modular computation, and on the other hand,
our bound directly depends on the actual geometric situation given by the roots of the system.

Our exposition in this paper is comprehensive in its essence, but does not mention all optimiza-
tions that an actual implementation should take care of. For instance, we expect that a more careful
choice of the bound UB j, as suggested at the end of Section 6.2, speeds up the certification phase.
Recently, it was shown [23] that, for isolating the complex roots of a univariate polynomial of de-
gree N and bitsize L, a subdivision approach based on centered box evaluation is quite effective.
In the corresponding paper, the authors introduce a method called CEVAL that uses centered box
evaluation as an exclusion predicate. They showed that the width of the subdivision tree does not
exceed O((N logN)2) boxes at each subdivision. Applying a different approach to certify the exis-
tence of exactly one root within a region, it was also proven that the overall method requires only
Õ(N4L2) bit operations which matches the costs of most effective and exact methods for real root
isolation. For higher dimensional systems no such results are available yet, but we are convinced
that the techniques from the one dimensional case also apply to the more general setting. Our future
research will concentrate on such an analysis.

For an efficient implementation we propose to use fast numerical methods to find approxima-
tions of the roots. As these methods do not provide any guarantees for their output we consider the
role our subdivision methods as crucial in order to certify that a region contains (a certain number
of) roots. We see a hybrid approach combining a fast numerical solver with our method: Therein,
the numerical solver serves as a fast tool to achieve good approximations of the solutions. From our
subroutines Subdivide and Mult of clusters, based on subdivision, we determine the exact number
of roots within each of the obtained regions and check whether all solutions are captured. If this
test fails, the numerical method is restarted with increased arithmetic precision arithmetic. With our
certification phase, it is possible to verify that the regions are isolating. Thus, assuming that the
numerical method determines arbitrary good approximations of all solutions for some sufficiently
large precision, this shows the feasibility of a hybrid certified method to isolate all roots.

We further remark that all proposed methods are perfectly suited for parallel computations.
For the modular computations this is due to the fact that unhandy terms are avoided and that it is
possible to run a large number of distinct modular computations in parallel. The latter holds for
the subdivision routines as well, since distinct clusters can be examined independently. We plan to
implement and benchmark our algorithm to answer the question whether these advantages lead to
measurable effects also in practice.

Our algorithm requires the solution set of the input system to be zero-dimensional. Furthermore,
its resultants must be computable over a prime field Zp. We achieve this by representing resultants
as determinants of Macaulay matrices, but for N ≥ 3 this might fail in unfortunate cases. This
constitutes the only obstacle for our algorithm to be complete for higher dimensions. A natural
question is whether our ideas also apply to non zero-dimensional systems, and whether a variation
of the proposed method can guarantee to solve the system in all cases.
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Abstract

Computing Gröbner bases with inexact coefficients is eagarly desired in industrial
applications, but the computation with floating-point numbers is quite unstable if
performed naively. In previous papers, the present author clarified that large main-
term cancellations occur frequently making the computation unstable, and he proposed
a method of removing the harm of exact cancellations. However, the estimation of
the amounts of inexact cancellations is very rough and never satisfactory. The inexact
cancellations are due to the ill-conditionedness of the system and damage the accuracy
of the output system, hence its estimation is very important. In this paper, we propose
a new practical method of estimating the amounts of inexact cancellations simply
and accurately, which allows us to estimate the accuracy loss in the Gröbner basis
computed. Furthermore, we propose two ideas to reduce the amounts of exact and
ineaxct main-term cancellations, with preliminary experiments.

1 Introduction

By “floating-point Gröbner basis” we mean a Gröbner basis of polynomial ideal com-
puted with floating-point numbers. There are two kinds of floating-point Gröbner bases.
The first kind is that the coefficients of the input polynomials are exact (say algebraic num-
bers or transcendental numbers) but we utilize the floating-point numbers for some reasons.
The second kind is that the coefficients of input polynomials are inexact hence we inevitably
express the coefficients by floating-point numbers. If the numerical errors increase during
the computation, we can replay the computation with higher precision for the first kind,
however, for the second kind, we must devise to preserve the initial accuracies of the given
polynomials as far as possible. In this paper, we deal with the second kind.

The first kind of floating-point Gröbner bases were studied by Shirayanagi and Sweedler
[13, 14, 15]. The second kind of floating-point Gröbner bases were studied by Stetter
[16], Kalkbrener [5], Fortuna, Gianni and Trager [3], Traverso and Zanoni [21], Traverso
[20], Weispfenning [22], Kondratyev, Stetter and Winkler [7], Gonzalez-Vega, Traverso and
Zanoni [4], Stetter [18], Bodrato and Zanoni [1], and so on. In spite of these studies,
computation of floating-point Gröbner bases of the second kind has been a serious problem
until recent years; the computation was so unstable in most cases if performed naively. This
seriousness forced Mourrain to propose the so-called “border bases” [8, 9]. Furthermore,
recently, Suzuki [19] and Nagasaka [10] proposed to compute Gröbner bases by reducing
large numerical matrices by Gaussian elimination. The border basis is a set of monomials
surrounding the monomials which constitute a basis of the residue class ring of the ideal,
hence it is definable only for 0-dimensional ideals. The author is wondering whether the
border bases can be computed stably when the input polynomials are inexact. The stability
of linear algebra algorithm is not analyzed yet.

Work supported in part by Japan Society for the Promotion of Science under Grants 19300001.



Why the floating-point Gröbner basis computation is so unstable? Shirayanagi [13]
pointed out the appearance of fully-erroneous terms and Sasaki and Kako [11] pointed
out the occurrence of main-term cancellations. In the computation with floating-point
numbers, subtraction of mathematically the same terms often gives a term with coefficient
of no significant bit, and we call such a term fully-erroneous term. In [11], Sasaki and
Kako clarified a simple mechanism of exact cancellations of terms in the Gröbner basis
computation. If there appears a polynomial of small or large leading term then, in later
stages of the computation, large main-term cancellations may occur causing large errors.
The fully-erroneous terms can be removed simply and efficiently by expressing the input
coefficients either by intervals [13] or by “effective floating-point numbers” (“efloats” in
short) [11]. Here, the efloats are floating-point numbers proposed by Kako and Sasaki [6] to
detect the cancellation errors approximately but efficiently. The problem is how to protect
the initial accuracy from large cancellation errors.

Sasaki and Kako classified the main-term cancellations into two types, exact and in-
exact cancellations. In [12], Sasaki and Kako found that if we increase the precision then
we can remove the harm of the exact cancellations, which is the high-precision method;
we will explain this method in Sect. 2. However, the method is powerless for the inexact
cancellations. Sasaki and Kako also proposed a method to estimate the amounts of inexact
cancellations occurred on the coefficients. However, their method is complicated and un-
satisfactory in that the estimation is quite rough and theoretically incomplete: the method
forsees the appearance of large exact cancellations and performs the polynomial subtrac-
tion by removing the main-terms which cancel exactly in the subtraction, but not all the
mechanisms of exact cancellations have been clarified yet. On the other hand, the inexact
cancellation is very important because its amount is directly related with the accuracy of
the output system. Furthermore, we must discard intermediate polynomials the accuracies
of which are almost lost by the inexact cancellations; this means that the floating-point
Gröbner bases are inevitably related with “approximate Gröbner bases”. Therefore, the
problems are how to estimate the amounts of inexact cancellations accurately and how to
reduce them efficiently.

In this paper, we propose a simple and practical method of estimating the amounts of
inexact cancellations occurring on the coefficients of intermediate as well as final polyno-
mials fairly accurately. In our new method, the high-precision method is combined with a
“marking” method which we propose in this paper. Furthermore, we propose two devices
to reduce the amounts of exact and inexact cancellations.

2 Exact cancellation and high-precision method

By F , G, etc., we denote polynomials in C[x, y, . . . , z]; the coefficients are actually
represented by floating-point numbers. By ‖F‖ we denote the norm of F ; we employ the
infinity norm. The term (monomial) with no coefficient is called the power product. By
lt(F ), lc(F ) and rt(F ), we denote the leading term (monomial), the leading coefficient, and
the rest terms, of F , respectively, with respect to a given order �: F = lt(F ) + rt(F ),
lt(F ) � rt(F ). By Spol(F,G) and Lred(F, G), we denote the S-polynomial of F and G and
the leading-term reduction of F by G, respectively.

In this paper, we restrict the reduction of polynomials only to the leading term reduction:
we compute the Gröbner bases by constructing S-polynomials and performing the leading-
term reductions successively. This restriction is essential in our theoretical analysis. If we
need the reduced Gröbner basis then we perform the reduction of non-leading terms after



computing an unreduced Gröbner basis.
No matter how the exact cancellation is caused, Sasaki and Kako showed in [12] that

the following method protects the initial accuracy from the cancellation errors, so long as
the cancellation is exact.

High-precision method Let the accuracy of polynomials of the given initial basis be
εinit (εinit � 1). Let Cexct be the maximum of the exact cancellations occurred on
the coefficients of floating-point Gröbner basis computed. Then, initially, set the
computational precision εcal to εinit/Cexct, convert all the coefficients of the input
polynomials to efloats or intervals of precision εcal, and perform the Gröbner basis
computation (Buchberger’s procedure). After computing the Gröbner basis, recover
the original precision.

Of course, Cexct is not known before the computation but we can know it by increasing the
precision as εcal = 10−30 ⇒ 10−60 ⇒ 10−90 ⇒ · · · , for example.

We explain why this method protects the initial accuracy even if large main-term cancel-
lations occur. Consider, for example, the computation of c+d−c, where c � 1010 and d � 1
and that c+d is computed first, hence the exact cancellation of about 1010 occurs in the
computation of (c+d)− c. Suppose that both c and d have relative accuracy 10−15 initially;
see Fig. 1. In the high-precision method, c and d are converted to numbers of 30 decimal
figures, for example, among which 15 figures padded at tails are completely meaningless.
However, all the 30 figures of c and d are treated by the computer as definite numbers with
formal relative errors 10−30. When c and d are added, c+d becomes a number of formal
error about 10−20. After subtracting c from c+d, the result becomes a number of magnitude
1 with formal relative error about 10−20, because c and −c cancel exactly. Hence the initial
accuracy 10−15 of d is preserved in the computation.
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d
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accuracy
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cancel

�
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......

}
lost bits
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�
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�
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Fig. 1: Computation of c+d−c, |c| � |d|, by high-precision method

3 On inexact cancellation

The high-precision method is useless for errors caused by inexact cancellation; the mech-
anism illustrated by Fig. 1 is not applicable to inexact cancellations. We show a simple
example in which inexact cancellations occur.



Example 1 (inexact cancellation) Let P1, P2, P3 be as follows.⎧⎨⎩
P1 = 57/56 x2y + 68/67 xz2 − 79/78xy + 89/88x
P2 = xyz3 − xy2z + xyz
P3 = 56/57 xy2 − 67/68 yz2 + 78/79 y2 − 88/89 y

⎫⎬⎭ (3.1)

We convert the coefficients into double-precision floating-point numbers, which introduces
relative errors of 2 × 10−16 into the coefficients. Then, we compute a Gröbner basis w.r.t.
total-degree order with 10−30-precision floating-point numbers, obtaining⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P1 and P3 are unchanged, P2 → P ′
2 (no cancellation),

P6 = y2z2 − 2.995436947732552644538319700370 xy2

− 1.0020782165123748257674951096740 y3

+ 1.9983254691737245140192885621560xy
+ 1.003521717256414556431326513500 y2,

P7 = xz2 − 1.764316342370426661429391997320e−3 yz2 + · · ·
The underlines show the correct figures found by comparing with the computation over Q.

We see that cancellations of about 104 occurred on several coefficients even in high-
precision computation. The computation was performed as follows: first, P4 := Spol(P1, P3)
is computed, then P2 is reduced by P4, and we face the following approximate linear de-
pendence in this reduction.

‖56/57 yzP1 − 57/56xzP3 − 2P2‖ = 0.000041.

This approximate linear dependence causes an inexact cancellation of about 104, of the
main terms of P2 and P4. ♦

Let {F1, · · · , Fr} be an initial basis. Example 1 suggests that the inexact cancellation
is caused by approximate linear dependences among polynomials concerned. On the other
hand, any polynomial P appearing in Buchberger’s procedure can be expressed as P =
a1F1 + · · · + arFr, where ai ∈ C[x, y, . . . , z] (i = 1, . . . , r). We call (a1, . . . , ar) syzygy for
P , and we have an approximate linear dependence if ‖P‖ � max{‖a1F1‖, · · · , ‖arFr‖}.
Therefore, we investigate relationship between inexact cancellations and syzygies.

Let {F ′
1, · · · , F ′

s} be an intermediate basis (may be the initial basis) computed by Buch-
berger’s procedure, and assume that the polynomial P is constructed as P = TiF

′
i − TjF

′
j ,

where Ti and Tj are monomials (if P = Lred(F ′
i , F

′
j) then we set Ti = 1). Let syzygies for

F ′
i and F ′

j be (a′
i1, . . . , a

′
ir) and (a′

j1, . . . , a
′
jr), respectively. Then, (a1, . . . , ar) is computed

by the following formula.

(a1, . . . , ar) = Ti (a′
i1, . . . , a

′
ir) − Tj (a′

j1, . . . , a
′
jr). (3.2)

Exact cancellation may occur accidentally, for example, in the subtarction ac−bd, with
a, b, c, d numbers satisfying ac = bd. However, in the Gröbner basis computation, most
exact cancellations are caused systematically. In [11] and [12], Sasaki and Kako clarified
the following mechanism of the exact cancellation.

Known mechanism of exact cancellation Systematic exact cancellation of terms in
Buchberger’s procedure is caused typically, as follows. Consider P1 = Op(F ′

i , F
′
k)

and P2 = Op(F ′
j , F

′
k), i �= j �= k, where Op is either Spol or Lred, hence P1 =



b1F
′
i + c1F

′
k = b1 rt(F ′

i ) + c1 rt(F ′
k), P2 = b2F

′
j + c2F

′
k = b2 rt(F ′

2) + c2 rt(F ′
k). As the

computation proceeds, P1 and P2 may be changed to

P ′
1 = c′1F

′
k + b′11F

′
1 + · · · + b′1sF

′
s, P ′

2 = c′2F
′
k + b′21F

′
1 + · · · + b′2sF

′
s, (3.3)

where lt(· · · lt(F ′
k) · · · ) was canceled in both P ′

1 and P ′
2 but Q = rt(· · · rt(F ′

k) · · · )
remains uncenceled. At some later step of computation, the multiples of Q in the
above c′1F

′
k and c′2F

′
k cancel exactly in the computation of P = Spol(P ′

1, P
′
2) or P =

Lred(P ′
1, P

′
2).

Although the mechanism of exact cancellation is not fully clarified yet, the above mech-
anism is quite general. Therefore, we consider the inexact cancellations in the Gröbner
basis computation, by assuming that all the systematic exact cancellations are caused by
the above mechanism.

Conjecture 1 Let polynomial P be either P = Spol(P ′
1, P

′
2) or P = Lred(P ′

1, P
′
2), and

assume that the exact cancellation occurs in the computation of P , as specified by the above
mechanism. Let (a1, . . . , ar) be the syzygy for P : P = a1F1 + · · · + arFr. Then, the exact
cancellations occur in the corresponding terms of a1, . . . , ar, too.

Corollary 1 If the exact cancellation occurred in P is the main-term cancellation, then
almost the same amounts of cancellations occur in the computation of a1, . . . , ar.

Proof With notations in the above mechanism, P can be expressed as P = T1P
′
1−T2P

′
2,

where T1 and T2 are monomials. By assumption, T1c
′
1Q and T2c

′
2Q cancel each other exactly,

which means that T1c
′
1F

′
k and T2c

′
2F

′
k cancel each other exactly. Expressing F ′

1, . . . , F
′
s

by F1, . . . , Fr, we see that there must occur exact cancellations among a1, . . . , ar, which
correspond to the cancellation of T1c

′
1F

′
k and T2c

′
2F

′
k.

The corollary is a direct consequence of the conjecture. ♦

By Conjecture 1 and its corollary, we characterize the inexact cancellation as follows.

Characterization of inexact cancellation Let P and (a1, · · · , ar) be defined as
above. The inexact cancellation occurred on P is characterized by the syzygy for P : if

max{‖a1F1‖, · · · , ‖arFr‖}
‖P‖ = Cinxt � 1, (3.4)

then the inexact cancellation of amount Cinxt has occurred on P . ♦

4 A new method: high-precision and marking method

In this section, we propose a new practical and stable method for floating-point Gröbner
basis computation. Before describing the method, we specify the conditions we are given
and point out problems we must solve.

• Each coefficient of the input system contains an error, and we assume that we know
the amount of error. Let εinit be the accuracy of the coefficients of the initial system:
εinit is an average value of |error(ci)|/|value(ci)| (i = 1, 2, . . . ), where ci is the i-th
coefficient of the input system. If large inexact cancellations occur on an intermediate



polynomial and its initial accuracy is almost lost then the polynomial is meaningless
hence we must eliminate the polynomial. In particular, if the accuracy of the leading
coefficient has been lost fully then we must discard the leading term. Therefore,
we are necessary to estimate the amounts of inexact cancellations occurred on the
coefficients of not only output polynomials but also all the polynomials appearing in
the computation.

• The high-precision method does not reduce the amounts of exact cancellations, and
efloats allow us to detect only the sum of exact and inexact cancellations in each
coefficient. We can estimate the amount of inexact cancellation occurred on each
polynomial by (3.4), but the computation of syzygies is heavy, and the syzygies do
not show us the inexact cancellation occurred on each coefficient. We need some clever
device to estimate the inexact cancellation occurred on each coefficient accurately.

The above first point means that we are inevitably computing “approximate Gröbner basis”
if the input coefficients are inexact.

Our new method, which we call high-precision and marking method, is based on
the following three devices; we introduce “marks” to solve the second problem.

1. We remove the harm of exact cancellations by the high-precision method; we convert
all the coefficient of the input system to high-precision efloats or intervals. Let εcal be
the computational precision, and let Ctotal be the maximum of the total cancellations
(exact + inexact) occurred on the coefficients of output system. If

εcal < εinit/Ctotal, (4.1)

then εcal is sufficient for the computation. If εcal is found to be insufficient then we
increase the precision and replay the Gröbner basis computation.

2. We prepare two initial systems which are marked differently, and compare two Gröbner
bases computed from two initial systems. Here, the marking is done as follows. Con-
sider an initial coefficient c0 with an error r0. The mark to this coefficient is a tiny
number of magnitude r0/|c0| and either added to or subtracted from c0. By this, a bit
of c0 at the head position of r0 is changed (marked). After giving marks, we convert
the coefficients of the input system into high-precision numbers, as specified above.

3. Let Φ0 = {F1, · · · , Fr} and Φ′
0 = {F ′

1, · · · , F ′
r} be two initial systems with high-

precision coefficients, where F1, . . . , Fr are marked in one way while F ′
1, . . . , F

′
r are

marked in another way. Hence, mutually corresponding coefficients in Φ0 and Φ′
0 are

the same only in their leading bits above the marks. Suppose εcal satisfies (4.1), and
consider mutually corresponding polynomials P and P ′ appearing in intermediate
bases started from Φ0 and Φ′

0, respectively. Let c and c′ be mutually corresponding
coefficients of P and P ′, respectively. We divide c and c′ into two parts, as follows.

c = c̄ + d, c′ = c̄ + d′, (4.2)

where d and d′ are different in their leading bits and the lower bits of c̄ starting from
the leading bits of d and d′ are 0. Then, we can regard that d and d′ are errors while c̄
is accurate down to the bit just before the leading bits of d and d′. Then, the amount
of inexact cancellation occurred on c is given by max{|d|, |d′|}/(εinitc̄).



Figure 2 illustrates the high-precision and marking method. The c0 and c′0 are mutually
corresponding coefficients (normalized to 1.0) of initial systems marked differently at εinit:
symbols ◦ ◦ ◦ and ∗ ∗ ∗ show different figures padded to make their precision εcal. Although
padded figures are different, the computations are performed almost the same because
the computer treats c0 and c′0 as numbers of accuracy εcal. The c and c′ are mutually
corresponding coefficients in intermediate or the final systems marked differently. Many
tail figures of c and c′ will be lost by exact cancellations and some leading figures will be
lost by inexact cancellations. Since the same inexact cancellation must occur on c and c′,
we can estimate the amount of inexact cancellation by dividing c and c′, as in (4.2).
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Fig. 2: Illustration of high-precision and marking method

Example 2 (performance of high-precision and marking method)
We apply the high-precision and marking method to the system given in Example 1. We
put marks as P → P + 1.0e−13× rt(P ) in one system and P → P ′ = P − 1.0e−13× rt(P )
in another system (these markings are too simple in practice). Using big-efloats of 10−30-
precision, we obtained the following P6 and P ′

6; underlines show figures which are the same
in P6 and P ′

6. (Below, #BE[f, e] denotes the big-efloat, where f and e are the value-part
and the error-part, respecitively. The e was set to 10−28 × f initially.)

P6 = y2z2 − #BE[2.995436923212796550471880942470, 4.0e−24] xy2

− #BE[1.0020782165123748434155553029900, 2.0e−25] y3

+ #BE[1.9983254446538675410656723073600, 4.0e−25] xy

+ #BE[1.0035217172564145740994791026400, 2.0e−25] y2,

P ′
6 = y2z2 − #BE[2.995436972279552973969466159280, 1.6e−24] xy2

− #BE[1.0020782165123748081194349163500, 7.7e−25] y3

+ #BE[1.9983254937208258344069357248680, 1.6e−24] xy

+ #BE[1.0035217172564143766318913416240, 7.7e−25] y2.

Compared with the results in Example 1, where we introduced relative errors of 2× 10−16,
we observe that inexact cancellations of about 104 occurred on the 1st and 3rd coefficients,
whici is consistent with those in Example 1. On the other hand, the 2nd and 4th coefficients
show that exact cancellations of about 103 occurred on these coefficients but the initial
accuracy of 2 × 10−16 was almost preserved. ♦



5 Reducing exact and inexact cancellations

In [21], Traverso and Zanoni tested many practical examples and reported that the can-
cellations of 2100 or more occur frequently. The most parts of such big cancellations are
exact ones. Therefore, it is strongly desirable to reduce the amounts of exact cancellations,
because the smaller the εcal is the more time the computation spends. Furthermore, inexact
cancellations damage the accuracy of Gröbner basis computed; in fact, if the inexact can-
cellation is greater than 1/εinit then the Gröbner basis computed is meaningless. Therefore,
we want to reduce the amounts of inexact cancellations, too.

Since large main-term cancellations are caused by polynomials of small or large leading
terms, we define the abnormality of polynomial as follows.

Definition 1 (abnormality) Let a polynomial P be P = cT + P ′, where cT = lt(P )
with c = lc(P ) and we assume P ′ �= 0. We define abnormality of P as follows.

abnormality =
{ ‖P ′‖/|c| if |c| ≤ ‖P ′‖,

−|c|/‖P ′‖ if |c| > ‖P ′‖. (5.1)

We expect that, by treating polynomials of large |abnormalities| specially, we will be able
to reduce the amounts of exact cancellations. We have tested the following three strategies.

Strategy 1: Divide the computation into two stages. In the first stage, the reduction is
performed only by polynomials of small |abnormalities|. The reduction by polynomials
of large |abnormalities| are done after the termination of the first stage.

Result: The first stage sometimes does not terminate, because many S-polynomials
are constructed and not reduced to 0.

Strategy 2: Divide the computation into two stages. In the first stage, construct only
S-polynomials by combining polynomials of similar abnormalities. Combining poly-
nomials of non-similar abnormalities is done in the second stage.

Result: One may expect that many abnormal polynomials are reduced to 0 in the first
stage by this strategy. Actually, however, many abnormal polynomials survive to the
second stage, and large cancellations occur in the second stage.

Strategy 3: Sort existing polynomials in small-to-large order w.r.t. their |abnormalities|.
In constructing S-polynomials and in reducing polynomials, take up polynomials in
this sorted order.

Result: This strategy succeeds considerably, as Example 3 below shows.

Example 3 (test of strategy 3) Consider the following system which was given in [11].
We compute the Gröbner basis w.r.t. total-degree order, with two strategies for choosing
polynomials in the S-polynomial construction and the reduction.⎧⎨⎩

P1 = x3/10.0 + 3.0x2y + 1.0y2

P2 = 1.0x2y2 − 3.0xy2 − 1.0xy
P3 = y3/10.0 + 2.0x2

⎫⎬⎭ ⇒
⎧⎨⎩

P2 = y2

P4 = xy + · · ·
P5 = x2 + · · ·

⎫⎬⎭
If we choose the same strategy as for computing Gröbner bases over Q, we will face the exact
cancellations of about 109. However, with the Strategy 3 mentioned above, we found that
the exact cancellations occurred on P5, P2, P4 are 1010, 89, 1010, respectively. Therefore,
Strategy 3 is pretty successful for this example. ♦



Next, we consider to reduce the inexact cancellations. As mentioned in Sect. 3, the
inexact cancellations are caused by approximate linear dependences among polynomials
concerned. However, the dependence often disappears when we change the term order (of
course, another dependence may appear). Therefore, our strategy is as follows.

Strategy 4: Compute a Gröbner basis by changing the term order variously, and if a
Gröbner basis of high accuracy is obtained then apply the basis changing algorithm
to recover the original term order.

Unfortunately, for the system in Example 1, either the lexicographic or the total-degree
reverse-lexicographic term-order cannot reduce the inexact cancellations. However, the
above strategy works well for the following system.

Example 4 (test of Strategy 4) Let P1, P2, P3 be as follows.

P1 = x2 (2yz + 1), P2 = yz (3xz − 2), P3 = x (3xz − 2) − (2yz + 1).

We have computed the Gröbner basis of P1, P2, P3 with respect to two term-orders, using
double-precision efloats. Below, (GBtdg) and (GBlex) denote the unreduced Gröbner bases
w.r.t. the total-degree and the lexicographic term-orders, respectively.

(GBtdg) :

⎧⎨⎩
P4 = x + #E[1.3333333333333, 1.01e−11] y,

P ′
2 = yz + #E[0.058139534883721, 1.47e−13] x

+ #E[0.077519379844961, 1.96e−13] y + #E[0.5, 2.00e−13].

(GBlex) :

⎧⎨⎩
P ′

3 = yz + #E[0.5, 4.0e−15],
P ′

2 = x − #E[4.0, 4.0e−15] y3z3 − #E[2.0, 4.0e−15] y2z2

− #E[2.666, 2.66e−15] y2z + yz + #E[0.5, 5.0e−16].

We see that inexact cancellations of about 104 and 102 have occurred in (GBtdg), while
almost no cancellation has occurred in (GBlex). Note that even if we reduce P ′

2 by P ′
3 in

(GBlex), no accuracy loss occurs. ♦
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Computation with Maple V. Ideas and Applications, Birkhäuser, 95-106, 1993.
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Abstract

In a series of papers, we have developed a method of expanding multivariate alge-
braic functions at their singular points. The method applies the Hensel construction
to the defining polynomial of the algebraic function, so we named the resulting series
“Hensel series”. In [16], we derived a concise representation of Hensel series and clar-
ified several characteristic properties of Hensel series theoretically when the defining
polynomial is monic. In this paper, we study the case of nonmonic defining polyno-
mial. We show that, by determining the so-called Newton polynomial suitably, we can
construct Hensel series which show reasonable behaviors at zero-points of the leading
coefficients and we can derive a representation of Hensel series in the nonmonic case just
similarly as in the monic case. Furthermore, we investigate the convergence/divergence
behavior and many-valuedness of Hensel series in the nonmonic case.

1 Introduction

Series expansion is a fundamental tool in numerical analysis, such as for solving differential
equations [8], for tracing analytic functions numerically [1], and so on. So far, the Taylor
expansion, multivariate as well as univariate, has mostly been used in numerical analysis.
The Taylor expansion breaks down at singular points, and most numerical algorithms are
constructed to avoid the singular points. However, singular points are very important in
mathematics; many important mathematical properties are concentrated at singular points.
It is strongly desirable to establish numerical analysis at and near the singular points. For
this purpose, we need useful and tractable method of series expansion at singular points.

In a series of papers [5, 13, 14, 15, 16, 17, 18], we have developed a method of expanding
multivariate algebraic functions into series at singular points, where the algebraic functions
are defined as roots of a given multivariate polynomial. Since our method is based on the
Hensel construction, we named the series obtained by our method Hensel series. For bivari-
ate polynomials, our method computes Puiseux series roots simultaneously and efficiently;
for Puiseux series, see [21]. For multivariate polynomials, different kinds of expansions are
possible, and the series obtained by our method are very different from multivariate Puiseux
series [2, 10, 11].

The Hensel series was used so far to the analytic continuation of algebraic functions via
singular points [20], solving multivariate algebraic equations in series forms [17, 18], the
analytic factorization of polynomials of more than two variables [6, 7], and so on. For some
other researches of utilizing series expansions at singular points, see [3, 4, 9, 12, 19].

Work supported in part by Japan Society for the Promotion of Science under Grants 19300001.



Let F (x, u) def= F (x, u1, . . . , u�) be a given multivariate polynomial, and let fn(u) be its
leading coefficient w.r.t. x. The algebraic functions are affected strongly and delicately by
fn(u). If the point u approaches a zero-point of fn(u) then at least one algebraic function
goes to infinity, and if u approaches another zero-point then another algebraic function may
go to infinity. One will think that generalization to nonmonic case is straightforward. For
example, we can employ a famous transformation which converts any nonmonic polynomial
to a monic one. However, with such a transformation, the effect of fn(u) is not fully taken
into the Hensel series. We want to treat the nonmonic case so that the effect of leading
coefficient is taken into the Hensel series as fully as possible.

In this paper, we propose a reasonable treatment of the leading coefficient. In our
method, the so-called Newton polynomial plays an essential role, so we include the leading
coefficient into the Newton polynomial. This treatment seems to be peculiar at first glance.
However, the Hensel series are expressed in the roots of Newton polynomial and many
analytic properties of Hensel series are determined by the roots. Therefore, by including
the leading coefficient into the Newton polynomial, the effect of the leading coefficient
is taken into Hensel series largely. Furthermore, with our treatment, the Hensel series are
represented by the same formula as that in the monic case, and we can clarify the properties
of Hensel series simply. It is, however, emphasized that this paper treats only the case that
the Newton polynomial is squarefree; treatment of general case is complicated, as [13] shows.

2 Our approach to nonmonic case

Let F (x,u) def= F (x, u1, . . . , u�) ∈ C[x, u1, . . . , u�] be a given multivariate polynomial. By
deg(F ) and lc(F ), we denote the degree and the leading coefficient, respectively, w.r.t. x,
of F (x,u). We put deg(F ) = n and lc(F ) = fn(u). By tdeg(f), with f(u) ∈ C[u], we
denote the total-degree of f(u) w.r.t. sub-variables u1, . . . , u�; if T = c ue1

1 · · ·ue�

� , c ∈ C,
then tdeg(T ) = e1 + · · · + e�. By ord(f) we denote the order of f(u), i.e., the minimum
of the total-degrees of terms of f(u). Let ϕ(u) be an algebraic function defined as a root
w.r.t. x, of F (x,u): F (ϕ(u), u) = 0.

Let s
def= (s1, . . . , s�) ∈ C� be an expansion point. Without loss of generality, we assume

that F (x, u) is irreducible hence squarefree. If fn(s) �= 0 and F (x, s) is squarefree then
every root of F (x,u) w.r.t. x can be expanded into Taylor series in u1−s1, . . . , u�−s�.

Definition 1 (singular point, singular leading coefficient) We call the expansion
point s ∈ C� a singular point of algebraic function, or a singular point in short, if F (x, s)
is not squarefree. If fn(s) = 0 then we say the leading coefficient is singular at s.

Without loss of generality, we assume that the origin u = 0 is a singular point or fn(u) is
singular at the origin, and we consider the series expansion at the origin.

We show the importance of treatment of leading coefficient by a simple example.

Example 1 Let F1(x, u, v) be as follows (“H.T.” denotes higher order terms).

F1(x, u, v) = [(u+v)x − (u2+v2)] · [uv x2 − (u4+v4)] + H.T..

If deg(H.T.) ≤ 2 then the root ϕ(u, v) of F1(x, u, v) w.r.t. x behaves as

ϕ(u, v) =
u2+v2

u+v
+ H.T., ϕ(u, v) = ±

(u4+v4

uv

)1/2

+ H.T. for small |u| and |v|.



However, if H.T. of F1(x, u, v) contains (u4 +v4) x3, for example, the algebraic function
ϕ(u, v) does not diverge on lines u+v = 0, u = 0 or v = 0. That is, the algebraic function
is affected strongly by the leading coefficient of its defining polynomial. ♦

The key concept in the Hensel construction at a singular point is the Newton polynomial
FNew(x,u); see [17, 18]. In treating nonmonic case, we want to define FNew(x,u) so that
the resulting Hensel series reflect the effects of leading coefficient as fully as possible yet we
can treat the Hensel series near the expansion point as simply as possible.

An approach which we adopt in this paper is quite simple, although it seems rather
peculiar; we define the Newton polynomial as follows.

Definition 2 (Newton polynomial FNew(x,u), the nonmonic case) For each
monomial c xitjuj1

1 · · ·uj�

� of F (x, tu), with c ∈ C and j = j1 + · · · + j�, plot a dot at the
point (i, j) in the (ex, et)-plane. Let ν = ord(fn), and let LNew be a straight line in (ex, et)-
plane, such that it passes the point (n, ν) and another dot plotted and that any dot plotted
is not below LNew. Construct FNew(x, tu) by summing all the monomials plotted on LNew

and by replacing lc(FNew) by fn(u). (Hence, lc(FNew) = fn(u).)

Let the slope of LNew be −λ (note the “minus” sign). We have assumed that the origin
u = 0 is a singular point. In drawing figures of ϕ(u) near the origin, we should “regularize”
ϕ(u). The behavior of ϕ(u) near the origin is approximately determined by the Newton
polynomial: if the slope of LNew is positive (negative) then ϕ(u) goes to infinity (zero,
resp.) as (u1, . . . , u�) → (0, . . . , 0). Therefore, we define “regularized-root” ϕ̄(u) as follows
(below, |u| has the meaning only when we substitute values to all the variables u1, . . . , u�).

ϕ̄(u) def= |u|−λϕ(u), |u| def= (|u1|2 + · · · + |u�|2)1/2. (2.1)

Note that ϕ̄(s) → [finite value] as |s| → 0 for most values of s ∈ C�. We also regularize
Hensel series φ(u) to be determined in the next section.

3 Hensel series in a compact representation

First of all, we confine ourselves to discussing the following restricted case.

Assumption A We assume that FNew(x,u) is square-free not only exactly but also
approximately, i.e., we assume that FNew(x,u) has no multiple/close roots. Furthermore,
we assume that FNew(x,u) has no numeric root.

The second condition implies that FNew(x,u) has no xm factor (0 < m < n). If FNew(x,u)
has numeric roots then the corresponding algebraic functions can be expanded into Taylor
series, and we are not interested in such a case.

Let the roots of FNew(x,u) be α1(u), . . . , αn(u), which we often write as α1, . . . , αn.

FNew(x,u) = fn(u)(x − α1(u)) · · · (x − αn(u)), αi �= αj (∀i �= j). (3.1)

The αi(u) is usually an algebraic function.
We define F̃ (x,u, η) by introducing an auxiliary variable η, as follows.{

F (x,u) def= FNew(x, u) + Fh(x,u),

F̃ (x,u, η) def= FNew(x, u) + η Fh(x,u).
(3.2)



We factor FNew(x,u) as FNew(x,u) = G
(0)
1 (x, u) · · ·G(0)

r (x,u), where G
(0)
1 , . . . , G

(0)
r are

relatively prime. Then, using G
(0)
1 , . . . , G

(0)
r as initial factors, we perform the Hensel con-

struction of F̃ (x,u, η) with modulus η to satisfy

F̃ (x,u, η) ≡ G
(k)
1 (x,u, η) · · ·G(k)

r (x, u, η) (mod ηk+1), k = 1, 2, . . . .

Choosing the initial factors as G
(0)
1 = x − α1 and G̃(0) = FNew(x, u)/(x−α1), we obtain{

F̃ (x,u, η) ≡ G
(k)
1 (x,u, η) · G̃(k)(x, u, η) (mod ηk+1),

G
(0)
1 (x,u, 1) = x − α1, G

(k)
1 (x,u, η) = x − φ

(k)
1 (u, η).

(3.3)

The φ
(∞)
1 (u, 1) is the Hensel series corresponding to α1.

Once the Newton polynomial is defined, the Hensel construction is straightforward.
Because of the page limit, we omit the details of deriving a representation of Hensel series,
for which the reader can refer to [16].

Theorem 1 Let FNew(x,u) be squarefree. Then, the Hensel factors G
(∞)
1 and G̃(∞) in

(3.3) are expressed as follows.

G
(∞)
1 (x,u, η) = x − α1 +

∞∑
k=1

ηk δF (k)(α1, u)
F ′

New(α1, u)
, (3.4)

G̃(∞)(x,u, η) =
FNew(x,u)

x−α1
+

n∑
j=2

FNew(x,u)
(x−α1)(x−αj)

( ∞∑
k=1

ηk δF (k)(αj ,u)
F ′

New(αj , u)

)
, (3.5)

where δF (1) = Fh(x,u) and the k-th order residual δF (k) (k ≥ 2) is given as follows.

δF (k)(x,u) = −
n∑

j=2

FNew(x, u)
(x − α1)(x − αj)

( k−1∑
k′=1

δF (k′)(α1,u)
F ′

New(α1, u)
δF (k−k′)(αj , u)

F ′
New(αj , u)

)
. (3.6)

Example 2 (numerical evaluation of Hensel series) Let F2(x, u, v) be as follows.

F2(x, u, v) = [(u+v)x − 1] [uv x2 + (u−v)x + 1] + (u3+v3)x2 + (u+v).

The Newton polynomial for F2(x, u, v) is as follows.

F2New(x, u, v) = [(u+v)x − 1] [uv x2 + (u−v)x + 1].

Let α1 be the root of F2New(x, u, v) corresponding to the factor [(u+v)x − 1] and let the
roots of F2(x, u, v) be ϕi(u, v) (i=1, 2, 3).

Table I. Numerical evaluation.

u φ̄
(4)
1 (u, 0.1) ϕ̄i(u, 0.1) (i = 1, 2, 3)

−0.20 −7.11517 0.696242 −2.75189 ± 1.12207 i
−0.15 ∞ 0.635459 −3.33738 ± 1.33045 i
−0.10 ∞ 0.585786 −3.41421 ∞
−0.05 2.46037 0.573904 2.46039 −3.76102

0.00 ∞ 0.626789 1.59543 ∞
0.05 0.590837 0.590885 0.552400 ± 1.54123 i
0.10 0.565685 0.565685 ±1.41421 i
0.15 0.559016 0.559010 −0.324574 ± 1.41098 i
0.20 0.552161 0.552125 −0.630106 ± 1.40194 i



We have computed Hensel series φ
(k)
1 (u, v) starting from α1 up to k = 4, and compared

with algebraic functions ϕi(u, v) (i =1, 2, 3) which we computed exactly by Mathematica.
Table I shows values of regularized truncated Hensel series φ̄

(4)
1 (u, v) and ϕ̄1(u, v) (i=1, 2, 3)

in the real range −0.20 ≤ u ≤ 0.20, where we fixed v to 0.1.
The “convergence domain” of φ̄

(4)
1 (u, v) will be shown in Sect. 5 (Figs. 1a and 1b). We

see that, in the “convergence domain”, the Hensel series agrees with one of the algebraic
functions fairly well. Note that the values at u = −0.05 show “jumping” of Hensel series
among algebraic functions, which we will discuss in Sect. 6. ♦

4 Order estimations near the expansion point

Formula (3.4) shows that the behavior of each Hensel series depends critically on the roots
α1, . . . , αn. In this section, we order-estimate α1, . . . , αn etc. when u is near the origin.
Because of the page limit, we omit an analysis of the case near zero-points of fn(u), for
which the reader can request the authors to send a full paper version.

Below, we put F (x,u) = fn(u)xn +fn−1(u)xn−1 + · · ·+f0(u), and we define ‖u‖ to be
the Euclidean norm of u, ‖u‖ def= (|u1|2 + · · ·+ |u�|2)1/2, after substituting suitable numbers
for u1, . . . , u�. Note that we have ‖u‖ � 1 in this section, and that if actual values are
substituted for u1, . . . , u� then we may have ‖αi(u) − αj(u)‖ = 0. The following order
estimations are for generic u. Furthermore, by o(‖u‖a) we mean either O(‖u‖a+1) or less.

4.1 When ord(fn) = 0

The condition ord(fn) = 0 means that fn(0) �= 0. Since fn(u) has a nonzero constant term,
we obtain the same order-estimations as in the monic case.

Lemma 1 When ord(fn) = 0, we have the following order estimations for small ‖u‖,
so long as u is not close to the zero-points of αi(u)−αj(u) (∀i �= j).

‖α1‖, ‖α1−αj‖ = O(‖u‖λ) (j = 2, . . . , n), (4.1)

‖F ′
New(αi,u)‖ = O(‖u‖(n−1)λ) (i = 1, . . . , n), (4.2)
‖Fh(αi,u)‖ = o(‖u‖nλ) (i = 1, . . . , n). (4.3)

Proof For small ‖u‖, α1, . . . , αn are determined mostly by the homogeneous parts of
FNew(x,u) (that is, we can discard the higher order terms of fn(u) when ‖u‖ is small).
Hence, by Assumption A, we obtain (4.1) and (4.2) at once. Since each coefficient of
Fh(x,u) is of higher order w.r.t. u1, . . . , u� than the corresponding coefficient of FNew(x,u)
by at least 1, we obtain (4.3). ♦

4.2 When ord(fn) = ν > 0 and ‖fn(u)‖ = O(‖u‖ν)

Under the Assumption A, condition ord(fn) = ν > 0 means that ord(fi) > 0 for i ≥ 1 so
long as fi �= 0; ord(f0) may be 0 or positive. Hence, fi(0) = 0 for any i ≥ 1. If fi = 0
or ord(fi) is large for many i then the theoretical treatment becomes complicated. In this
section, we make the order-estimations by imposing the following assumption.

Assumption F We assume the following for any i.

‖fi(u)‖ = O(‖u‖ν+(n−i)λ) so long as ν + (n − i)λ is an integer. (4.4)



Lemma 2 For small ‖u‖ satisfying (4.4), we have the following order estimations, so
long as u is not close to the zero-points of fn(u) and αi(u)−αj(u) (∀i �= j).

‖α1‖, ‖α1−αj‖ = O(‖u‖λ) (j = 2, . . . , n), (4.5)

‖F ′
New(αi, u)‖ = O(‖u‖ν+(n−1)λ) (i = 1, . . . , n), (4.6)
‖Fh(αi, u)‖ = o(‖u‖ν+nλ) (i = 1, . . . , n). (4.7)

Proof Order estimations in (4.5) and (4.6) are direct consequences of Assumption A and
Assumption F. Since each coefficient of Fh(x,u) is of higher order w.r.t. u1, . . . , un than
the corresponding coefficient of FNew(x,u) by at least 1, we obtain (4.7). ♦

Proposition 1 Let δφ
(k)
1 (u) be the coefficient of ηk-term of Hensel series φ

(∞)
1 (u, t).

Then, except near the zero-points of αi(u)−αj(u) (∀i �= j), we have the following.

‖δφ(k)
1 (u)‖ = o(‖u‖λ+k−1) for small ‖u‖ satisfying (4.4). (4.8)

Proof Consider (3.4) with Lemma 2. Since δF (1) = Fh(x,u), we see

‖δφ(1)
1 (u)‖ =

O(‖Fh(α1,u)‖)
O(‖F ′

New(α1, u)‖) =
o(‖u‖ν+nλ)

O(‖u‖ν+(n−1)λ)
= o(‖u‖λ).

Hence, (4.8) is valid for k = 1. Suppose the proposition is valid up to k−1, hence we have

‖δF (j)(αi, u)‖
‖F ′

New(αi, u)‖ = o(‖u‖λ+j−1) for small ‖u‖, j = 1, . . . , k−1.

Then, we can order-estimate ‖δF (k)(α1, u)‖ in (3.6), k ≥ 2, as follows.

O
( n∑

j=2

‖F ′
New(α1, u)‖
‖α1 − αj‖ ×

[ k−1∑
k′=1

‖δF (k′)(α1, u)‖
‖F ′

New(α1, u)‖
‖δF (k−k′)(αj , u)‖
‖F ′

New(αj , u)‖
] )

=
O(‖u‖ν+(n−1)λ)

O(‖u‖λ)
·

k−1∑
k′=1

o(‖u‖λ+k′−1) o(‖u‖λ+(k−k′)−1) = o(‖u‖ν+nλ+k−1).

Therefore, ‖δφ(k)
1 (u)‖ = ‖δF (k)(α1, u)‖/‖F ′

New(α1, u)‖ = o(‖u‖λ+k−1). ♦

We remark that the order estimation in (4.8) is the same as that in monic case.

5 On convergence property near the expansion point

The formula (3.4) with (3.6) is very useful for analyzing the properties of Hensel series
theoretically. In [16], we have done such an analysis in the case of monic defining polyno-
mials. In this section, we perform a similar analysis in the nonmonic case. We will see that,
except near the zero-points of the leading coefficient, the regularized Hensel series in the
nonmonic case show quite similar convergence behaviors as those in the monic case.

Theorem 2 In a neighborhood of the expansion point, except near the zero-points of
fn(u), any divergence domain of regularized Hensel series φ̄

(∞)
1 (u, 1) starts from the expan-

sion point and spreads outside radially along the zero-points of α1(u) − αj(u), 2 ≤ j ≤ n.



Proof G
(k)
1 (x,u, t) in (3.4) with (3.6) tells us that, in the neighborhood of the expansion

point, φ̄
(∞)
1 (u, 1) diverges on the zero-points of FNew(α1, u) = fn(u)

∏n
j=2(α1(u)−αj(u)),

may diverge on zero-points of fn(u), and on no other point. ♦
Theorem 3 In the neighborhood of the expansion point, two branches ϕ̄1(u) and ϕ̄j(u)

(j ≥ 2) of the regularized algebraic function cross along the zero-points of α1(u)−αj(u) if
α1(u) and αj(u) cross, or they are tangent to each other if α1(u) and αj(u) are so.

Proof Theorem 2 tells that, in the neighborhood of the expansion point, the divergence
domains spread from the expansion point radially along the zero-points of α1(u)−αj(u),
and Proposition 1 says that the Hensel series are well approximated by the initial terms.
Furthermore, algebraic functions are also approximated well by the roots of the Newton
polynomial. Therefore, near the zero-points of α1(u)−αj(u), ϕ̄1(u) either crosses with
ϕ̄j(u) or is tangent to ϕ̄j(u). ♦

Theorem 4 Let Sr be the surface of the hypersphere, ‖u‖2 = r2, where r is a small
real positive number. Suppose Sr contains zero-points of fn(u) on which α1(u) diverges,
and let δSr be small neighborhood of the zero-points, on Sr. Let Šr be Sr − δSr. Then, we
have

[divergence area of φ̄1(u) on Šr]
[convergence area of φ̄1(u) on Šr]

→ 0 as r → 0. (5.1)

Proof The regularized root ᾱ1(u) does not diverge on Šr, and the higher order regu-
larized terms δφ

(k)

1 (u) (k ≥ 1) diverge only at the zero-points of FNew(α1,u). Lemma 2
tells us that ‖δφ(k)

1 (u)‖/‖α1(u)‖ = o(‖u‖k−1) for small ‖u‖ except near the zero-points of
FNew(α1, u). Hence, the ratio in (5.1) becomes smaller and smaller as r → 0. ♦

Corollary 1 The regularized Hensel series ϕ̄
(∞)
1 (u, 1) converges in most area of the

small neighborhood of the expansion point.

Example 3 (convergence domain near the origin) Consider F2(x, u, v) in Example 2.
We compare the regularized truncated Hensel series φ̄

(4)
1 (u, v) with ϕ̄i(u, v) (i = 1, 2, 3) in

the real region −a ≤ u, v ≤ a. Since we do not know the correspondence between the Hensel
series and the algebraic functions, we compute the quantity

d = min{ |φ̄(4)
1 (u, v) − ϕ̄i(u, v)|, i=1, 2, 3 }

at many points in the region and draw a domain in which we have d ≤ δ (δ = 0.01 or
δ = 0.001). Figures 1a and 1b show the results; gray areas are “convergence domains”.
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Fig. 1a (a = 1.0, δ = 0.01)

�0.10 �0.05 0.00 0.05 0.10
�0.10

�0.05

0.00

0.05

0.10

Fig. 1b (a = 0.1, δ = 0.001)



We see from Fig. 1a that the “convergence domain” is pretty wide. On the other
hand, looking around the origin, we notice that Theorem 4 seems to be unsatisfied. So,
we investigate the “convergence domain” near the origin by increasing the plotting points.
Figure 1b shows the result, which is consistent with Theorem 4.

The φ̄
(4)
1 (u, v) drawn in Figs. 1a and 1b corresponds to the initial factor (u+v)x − 1.

Hence, φ̄
(4)
1 (u, v) diverges on the line u+v = 0. We see that the divergence domain near

the line is very narrow, showing that the Hensel series truncated at k = 4 approximates
the corresponding algebraic function well even in a small neighborhood of the zero-points
of the leading coefficient. On the other hand, we have F ′

2New(α1, u, v) = u(2u+3v)/(u+v),
hence φ̄

(4)
1 (u, v) diverges along lines u = 0 and 2u+3v = 0. ♦

6 On many-valuedness of Hensel series

In [5], we observed that a Hensel series may jump from one branch of algebraic function
to another when it passes a divergence domain, and we verified this property theoretically
in [16] for monic defining polynomials. In this paper, we verify this property for nonmonic
defining polynomials.

Definition 3 If α1(u) ∈ C[u] then the Hensel series φ
(∞)
1 (u, 1) is called rational, oth-

erwise the series is called algebraic.

Suppose FNew(x,u) is factored in C[x,u] as FNew,1(x,u) · · ·FNew,r(x,u), and let α1 be
a root of FNew,1(x,u). If deg(FNew,1) = m > 1 then there are m conjugate roots, let them
be α1,1(= α1), α1,2, . . . , α1,m. Let the Hensel series φ

(∞)
1,i correspond to α1,i (1 ≤ i ≤ m).

In [18], it was shown that truncated Hensel series φ
(k)
1,1, . . . , φ

(k)
1,m are mutually conjugate

hence φ
(k)
1,1(u) is m-valued.

Continuous singular points usually form a line when � = 2, a surface when � = 3, or an
(�−1)-dimensional hypersurface when � ≥ 4, and we call them singularity lines for simplicity.

Let P0 and P1 be points in C�, which are in a convergence domain of Hensel series
φ

(∞)
1 (u, 1), in the neighborhood of the expansion point. Let C0 be a path which starts P0,

rounds a singularity line one time, and comes back to P0. Let C1 be a path which starts
P0 and arrives at P1, without rounding any singularity line. The next theorem is obvious.

Theorem 5 Tracing the truncated algebraic Hensel series φ
(k)
1 (u, 1) (k ≥ 2) along the

path C0, the series transfers to one of the conjugate Hensel series when it arrives at P0.

Theorem 6 Tracing the truncated Hensel series φ̄
(k)
1 (u, 1) (k ≥ 2) along the path C1,

we encounter the same Hensel series at P1, no matter whether the series is rational or
algebraic, and no matter whether the path passes a divergence domain or not.

Proof Since the divergence domain spreads from the expansion point radially and the
most area of the small neighborhood of the expansion point is the convergence domain, we
can move the path C1 in C� so that it does not pass any divergence domain. Then, the
value of φ̄

(k)
1 (u, 1) changes continuously from P0 to P1, proving the theorem. ♦

Corollary 2 Let φ̄
(∞)
1 (u, 1) correspond to a branch ϕ̄1(u) of the original algebraic func-

tion. Tracing φ̄
(k)
1 (u, 1) along C1 by passing a divergence domain, it may jump to another

branch of the original algebraic function.



Proof Theorem 3 says that two branches of the algebraic function cross or tangent to
each other in each divergence domain near the origin. Therefore, if we trace the Hensel
series along C1, the series either may stay on the same branch of the algebraic function or
may jump to another branch, if these branches cross there. ♦

We show the jumping by a simple example.

Example 4 (jumping of Hensel series). Let F3(x, u, v) be as follows.

F3(x, u, v) = [(u+v)x − 1] (ux − 1) (vx + 1) + (u4+v4) x2 + u3v3.

We trace truncated Hensel series φ
(10)
3 (u, v) corresponding to the initial factor vx+1 and

the algebraic functions ϕi(u, v) (i = 1, 2, 3), along the circle C3: (u, v) = 0.1 × (cos θ, sin θ)
(0 ≤ θ ≤ 2π). (If we make the circle C3 bigger, the graphs become more complicated.)
We have F ′

3New(−1/v, u, v) = (u+ v)(u+2v)/v2, hence the divergence domain spreads
along the lines u+v = 0 and u+2v = 0, and C3 crosses the divergence domain at about
θ = 3π/4, 5π/6, 7π/4, 11π/6.
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Fig. 2b ϕi(u, v) (i = 1, 2, 3)

In Fig. 2a, we show φ
(10)
3 (u, v) = −1/v + H.T. traced along C3; the graph diverges

at θ = 0, 3π/4, 5π/6, π, 7π/4, 11π/6, 2π. In Fig. 2b, we show real parts of ϕi(u, v)
(i = 1, 2, 3) traced along C3 (gray curves); the value of ϕi becomes complex around θ =
0, 3π/4, π, 7π/4, 2π. (We have used Mathematica to draw the figures in this paper.
Mathematica draws only the principal values of algebraic functions, and four fake vertical
lines in Fig. 2b are due to Mathematica.) For comparison, we show φ

(10)
3 (u, v) traced along

C3 by black curves. We see that the Hensel series jumps from one branch to another when
it passes θ = 5π/6, 11π/6. Note that no jumping occurs at θ = 0, π, 2π where the leading
coefficient vanishes. ♦
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Abstract

Let p and f0 be given nonzero multivariate polynomials with real coefficients and
‖f0‖ = 1, where ‖f0‖ is the Euclidean norm of f0. For j = 1, 2, . . . , let p2j−1 = fj−1gj

be the nearest polynomial to p such that fj−1 is a factor of p2j−1 and deg(p2j−1) ≤
deg(p), where deg is the total degree, and p2j = cjfjgj be the nearest polynomial to p

such that gj is a factor of p2j , deg(p2j) ≤ deg(p), ‖fj‖ = 1, and cj > 0. We investigate
the behavior of the sequences { pj }, { fj }, { gj }, and { cj }.

1 Introduction

Since the mid 1990’s, there have been many studies on the nearest polynomials to given
polynomials with given properties. Finding the nearest polynomial with a given zero is a
typical problem [4]. This problem can be generalized to finding the nearest polynomial with
a given factor.

In this article, we measure the distance between two polynomials f and g by using
‖f − g‖, the Euclidean norm of the vector of coefficients of f − g. Let p and f0 be given
nonzero multivariate polynomials with real coefficients with ‖f0‖ = 1. For j = 1, 2, . . . ,
let p2j−1 = fj−1gj be the nearest polynomial to p such that fj−1 is a factor of p2j−1

and deg(p2j−1) ≤ deg(p), where deg is the total degree, and p2j = cjfjgj be the nearest
polynomial to p such that gj is a factor of p2j , deg(p2j) ≤ deg(p), ‖fj‖ = 1, and cj > 0. We
consider the sequences { pj }, { fj }, { gj }, and { cj }. The following are natural questions.
Do these sequences converge? If they converge to p̃, f̃ , g̃, and c̃, respectively, does p̃ = f̃ g̃
or p̃ = c̃f̃ g̃ hold? The aim of this article is to answer these questions.

If fj and gj+1 (or gj) are not constant, fjgj+1 (or cjfjgj) is an approximate factorization
of p. Hence, by perturbing f0, we might obtain a good approximate factorization of p.

2 Partial Answers to the Questions

Let P and F be nonzero polynomials in R[x1, . . . , xs] with deg(P ) = n and deg(F ) = d (1 ≤
d < n), V be {H ∈ R[x1, . . . , xs] | deg(H) ≤ n }, and W be {H ∈ V | F is a factor of H }.
V is a finite dimensional R-vector space and W is an R-subspace of V . Let Q be the
orthogonal projection of P ∈ V onto W . Then, Q is the unique nearest polynomial to P
such that F is a factor of Q and deg(Q) ≤ deg(P ).

Since V ⊃ {H ∈ R[x1, . . . , xs] | deg(H) ≤ n − d } � X �→ FX ∈ W is a linear map, we
can represent the product of F as a matrix M(F ). Let v(H) be the vector of coefficients
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3644 (fax +81 46 240 4709).



of H ∈ V . Then, P1 = FG is the nearest polynomial if and only if X = v(G) minimizes
‖v(P ) − M(F )X‖. X = v(G) is the unique solution of the normal equation

M(F )∗M(F )X = M(F )∗v(P ), (1)

where M(F )∗ is the conjugate transpose of M(F ) (Theorem 2.1.2 in [1]). Therefore, we
can easily obtain G. Note that M(F )∗M(F ) is nonsingular.

We define the sequences { pj }, { fj }, { gj }, and { cj }, as described in Section 1.

Proposition 1 The following hold when p1 	= 0.

1. ‖pj‖ is monotone non-decreasing and converges.

2. limj→∞ ‖pj+1−pj‖ = limj→∞ ‖fj+1−fj‖ = limj→∞ ‖gj+1−gj‖ = 0 and limj→∞ cj =
1.

Remark 1 g1 and p1 might be 0. For example, g1 = p1 = 0 when s = 1, p = x2
1 + x1 + 1,

and f0 = (x1 − 1)/
√

2. If g1 	= 0, then pj’s, fj’s, and gj’s are nonzero for every j because
‖p1‖ > 0 and ‖pj‖ is monotone non-decreasing.

If ‖pN+1−p‖ = ‖pN −p‖ holds for some N , then pj = pN for every j ≥ N . This follows
from the fact that fj (resp. gj) is a factor of p2j and p2j+1 (resp. p2j−1 and p2j) and that
p2j+1 (resp. p2j) is the unique nearest polynomial to p having fj (resp. gj) as a factor.

To prove Proposition 1, we need the following lemma.

Lemma 1 For f , g ∈ R[x1, . . . , xs], there exist positive constants m and M depending on

only deg(fg) such that m ≤ ‖fg‖
‖f‖·‖g‖ ≤ M hold.

Proof. First we consider the case of s = 1. Let fg = anxn
1 + · · · + a1x1 + a0 (an 	= 0). We

can take 2−n as m (Corollary 6.33 in [2]). Since the inequality |aj | ≤ ‖f‖ · ‖g‖ holds for
every 0 ≤ j ≤ n, we can take

√
n + 1 as M .

Next we consider the case of s ≥ 2. Since the Kronecker substitution σ : R[x1, . . . , xs] →
R[x] that maps xj to xnj−1

(n = deg(fg)) for 1 ≤ j ≤ s is a ring homomorphism and
‖h‖ = ‖σ(h)‖ holds for any h ∈ R[x1, . . . , xs], we can reduce this case to that of s = 1.

Proof of Proposition 1. Let rj = p − pj . ‖rj‖ converges because it is monotone non-
increasing. Thus, ‖pj‖ is monotone non-decreasing and converges because ‖pj‖2 = ‖p‖2 −
‖rj‖2. Note that 〈pj , rj〉 = 0, where 〈·, ·〉 is the inner product of Rn. Since ‖pj+1 − pj‖2 =
‖rj‖2 − ‖rj+1‖2 holds, ‖pj+1 − pj‖ converges to 0. Note that pj+1 − pj = rj − rj+1 and
〈rj+1, rj+1 − rj〉 = 0.

From Lemma 1, there exist positive constants m and M not depending on j such that

‖p2j+2 − p2j+1‖ = ‖gj+1(cj+1fj+1 − fj)‖ ≥ m‖gj+1‖ · ‖cj+1fj+1 − fj‖,
‖p1‖ ≤ ‖p2j+1‖ = ‖fjgj+1‖ ≤ M‖fj‖ · ‖gj+1‖ = M‖gj+1‖.

Therefore, ‖cj+1fj+1−fj‖ ≤ M‖p2j+2−p2j+1‖
m‖p1‖

holds and ‖cj+1fj+1−fj‖ converges to 0. The
triangle inequality implies that

‖cj+1fj+1 − fj‖ ≥ | ‖cj+1fj+1‖ − ‖fj‖ | = |cj+1 − 1|.
Thus, limj→∞ cj = 1. This implies that ‖fj+1 − fj‖ → 0 because

‖fj+1 − fj‖ = ‖fj+1 − cj+1fj+1 + cj+1fj+1 − fj‖ ≤ |1 − cj+1| + ‖cj+1fj+1 − fj‖.



The equality p2j+1 − p2j = fj(gj+1 − cjgj) implies that ‖gj+1 − cjgj‖ → 0. Thus, ‖gj+1 −
gj‖ → 0 because

‖gj+1 − gj‖ = ‖gj+1 − cjgj + cjgj − gj‖ ≤ ‖gj+1 − cjgj‖ + |cj − 1| · ‖gj‖
and { ‖gj‖ } is bounded.

The sequences { pj }, { fj }, and { gj } have limit points because they are bounded.

Theorem 1 The following hold when p1 	= 0.

1. { pj } converges or there are infinitely many limit points.

2. Let { pjk
} be a convergent subsequence of { pj }.

(a) { fjk
} and { gjk

} are convergent sequences and p̃ = f̃ g̃, where p̃ = limk→∞ pjk
,

f̃ = limk→∞ fjk
, and g̃ = limk→∞ gjk

.

Furthermore, for the univariate case, if p̃ 	= p, then deg(gcd(f̃ , g̃)) ≥ 1 holds.

(b) p̃ satisfies the following two conditions.

• p̃ is the unique nearest polynomial to p such that f̃ is a factor of p̃ and
deg(p̃) ≤ deg(p).

• p̃ is the unique nearest polynomial to p such that g̃ is a factor of p̃ and
deg(p̃) ≤ deg(p).

Proof. Statement 1 immediately follows from Lemma 2 below.
Let p̃k = pjk

, f̃k = f�jk/2�, and g̃k = g�(jk+1)/2�. Then, p̃k = c̃kf̃kg̃k holds, where c̃k = 1
or c�(jk+1)/2�. Let { f̃jk

} be a convergent subsequence of { f̃j }. We write p̃jk
, f̃jk

, g̃jk
, and

c̃jk
as p̂k, f̂k, ĝk, and ĉk, respectively. Let f̂ be limj→∞ f̂j . Noting that p̂j = ĉj f̂j ĝj , we

have p̃ = f̂ ĝj + (ĉj f̂j − f̂)ĝj + (p̃ − p̂j). This equation implies that f̂ is a factor of p̃, ĝj

converges, and p̃ = f̂ · limj→∞ ĝj because (ĉj f̂j − f̂)ĝj and p̃ − p̂j converge to 0. Since the
number of polynomials h’s that are factors of p̃ and ‖h‖ = 1 is finite, Lemma 2 implies that
{ f̃j } is a convergent sequence. Similar arguments hold for { g̃j }.

For the univariate case, when p̃ 	= p let deg(f̃) = d, deg(g̃) = e, and

V = {h ∈ R[x1] | deg(h) ≤ d + e },
V1 = { f̃h | h ∈ R[x1],deg(h) ≤ e }, V2 = { g̃h | h ∈ R[x1],deg(h) ≤ d }.

V1 and V2 are R-subspaces of the R-vector space V . The dimensions of V , V1, and V2 are
d+e+1, e+1, and d+1, respectively. For every v1 ∈ V1 and v2 ∈ V2, 〈p−p̃, v1〉 = 〈p−p̃, v2〉 =
0 hold. Therefore, 〈p − p̃, w〉 = 0 for every w ∈ W = V1 + V2. Thus, dim(W ) ≤ d + e and
dim(V1 ∩V2) ≥ 2 since p− p̃ 	= 0. Take a nonzero polynomial h ∈ (V1 ∩V2)\{ af̃ g̃ | a ∈ R }.
If deg(h) = d+e we can take c ∈ R such that deg(h−cf̃ g̃) < d+e because deg(f̃ g̃) = d+e.
Since 0 	= h − cf̃ g̃ ∈ (V1 ∩ V2) \ { af̃ g̃ | a ∈ R }, by replacing h with h − cf̃ g̃, if necessary,
we can assume that h 	= 0 and deg(h) < d + e. Therefore, deg(gcd(f̃ , g̃)) ≥ 1 holds because
h ∈ V1 ∩ V2; that is, both f̃ and g̃ are factors of h.

The normal equation (1) implies that the nearest polynomial p̃ to p such that f is a
factor of p̃ and deg(p̃) ≤ deg(p) is continuous with respect to f . If q (	= p̃) is the nearest
polynomial to p such that f̃ is a factor of q and deg(q) ≤ deg(p), ‖p − q‖ < ‖p − p̃‖ holds.
Then, ‖p− p̃j‖ < ‖p− p̃‖ holds for sufficiently large j. This contradicts the fact that ‖p− p̃j‖
is monotone non-increasing and converges to ‖p − p̃‖. Similar arguments hold for g̃.



Lemma 2 Let { aj } ⊂ Rn and a ∈ Rn. When ‖aj − a‖ is monotone non-increasing and
limj→∞ ‖aj+1 − aj‖ = 0, { aj } converges or there are infinitely many limit points.

Proof. Let B = { c ∈ Rn | ‖c − a‖ ≤ ‖a1 − a‖ }. Note that there exists at least one limit
point of { aj } because { aj } ⊂ B and B is compact.

It is sufficient to prove that if the number of limit points of { aj } is finite, the number
is one and { aj } converges. Let ã1, . . . , ãt (t < ∞) be all the limit points and Bj(δ) =
{ c ∈ Rn | ‖c − ãj‖ < δ } (δ > 0). For any ε > 0, we can take δ such that 0 < δ < ε and
Bj(2δ)∩Bk(2δ) = ∅ (j 	= k). If there are infinitely many aj ’s in A(δ) = B1(δ)c∩· · ·∩Bt(δ)c,
where Bk(δ)c = Rn \Bk(δ), there exists a limit point in A(δ) because A(δ)∩B is compact
and { aj } ⊂ B. This contradicts the assumption that ã1, . . . , ãt are all the limit points.
Thus, { aj } ∩ A(δ) is a finite set. Hence, there exists N ∈ N such that ak 	∈ { aj } ∩ A(δ)
and ‖ak+1 − ak‖ < δ for every k ≥ N . Let μ be the number such that aN ∈ Bμ(δ). Then,
ak ∈ Bμ(δ) for every k ≥ N ; that is, ‖ak − ãμ‖ < δ < ε. Therefore, there exists only one
limit point ãμ and limk→∞ ak = ãμ.

3 Conclusion

We investigated some properties of the sequences { pj }, { fj }, { gj }, and { cj }. One of the
directions of future research is to study algorithms for finding an approximate factorization
of a given polynomial based on the properties of the sequences. The algorithms must be
compared with existing methods such as proposed in [3] and in the references there. Another
direction is to prove that { pj } always converges or to find an example { pj } that does not
converge.
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Abstract

We give an implementation and complexity analysis of an algorithm for computing
branch Gröbner basis over the boolean ring. Our algorithm combines a modified F5
algorithm and strategies of branches for boolean polynomial system, and the imple-
mentation is based on ZDD data structure. The efficiency of the algorithm depends on
the number of branches, which is determined by the branch-strategy. We give an upper
bound on the number of branches in complexity analysis of the algorithm. In prac-
tice, the branch Gröbner bases algorithm performs very well for randomly generated
systems as well as a class of stream cipher systems.

1 Introduction

Solving system of polynomial equations is a basic problem in computer algebra, through
which many practical problems can be solved easily. Among all the methods for this pur-
pose, Gröbner bases method, characteristic set method and resultant method are the most
famous ones [8].

Since Buchberger proposed the Gröbner bases algorithm in 1965. This algorithm has
been improved by many researchers, both from the data structure and the criteria to remove
the redundant S-pairs. Now the most famous Gröbner bases algorithms are the F4 and F5
algorithms proposed by Faugère [3, 4]. The F4 algorithm import the matrix technique to
make the reduction process more efficient, while the F5 algorithm presents two new criteria
to eliminate the useless S-pairs, which can be definitely reduced to 0.

So far, both F4 and F5 algorithms have been implemented. The most efficient imple-
mentation of F4 algorithm is presented by Steel, and is available on the computer algebraic
system Magma, while the the most efficient version of F5 algorithm is implemented by
Faugère himself, which is not open. However, the F4 algorithm is still not perfect, as the
high efficiency leads to the cost of enormous memories. For example, attacking the crypto-
graphic system HFE80 by using F4 algorithm in Magma will cost nearly 16G memories.

For solving system of boolean polynomial equations, a Gröbner bases algorithm based
on the ZDD data structure has been proposed by Brickenstein in 2007 (the PolyBoRi
framework)[2]. His algorithm works very well for computing Gröbner basis with the pure
lexicographic monomial order. However, since it is very expensive to compute the total
degree leading monomial for a polynomial in the ZDD form, this algorithm possibly does
not perform very well with total degree orders. So in our implementation, we prefer a new
graded expression of polynomials such that the leading monomial for total degree order

∗Correspondence to: Zhongguancun East Road 55, Beijing 100190, China. 0086-10-62541834.
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can be calculated extremely fast, so our algorithm is more efficient with graded monomial
orders. A characteristic set method for solving system of boolean polynomial equations is
presented by Gao, and his method has pretty good performance on the problem of stream
cipher systems [6]. Gao’s implementation is also based on ZDD data structure and he use
the branch technique to compute the ascending set series.

The success of Gao’s algorithm is a motivation of our research on branch Gröbner basis.
Our algorithm makes improvements both on saving the usage of memories and limiting
the size of matrices. That is, on one hand, we utilize the ZDD data structure to save
polynomials and decrease the cost of space, and on the other hand, we make new branches
when the matrix grows bigger so that we only need to handle matrix with a reasonable size.

In theory, we employ a modified matrix F5 algorithm. More details can be found in [7].
In this paper, we will concentrate on the implementation and complexity analysis of our
algorithm. The contents of this paper are organized as follow: the second section involves
some preliminaries and the modified algorithm; the third section introduce the ZDD data
structure and some sub-algorithms; complexity analysis comes in the forth section; some
examples and timings are given in the fifth section; we will end this paper with conclusions.

2 The Algorithm

2.1 Notations

Let F2 be the finite field with two elements 0 and 1, and X = x1, · · · , xn stands for the set
of variables. Let H be the set of field polynomials {x2

1 + x1, · · · , x2
n + xn}, then the ring

R2 = F2[X]/ < H > is actually a boolean ring, where < H > is the ideal generated by H
in F2[X], and in addition, we call the elements in R2 boolean polynomials.

Let N be the set of non-negative integer and T be the power set of X, which means T =
{xα1

1 · · ·xαn
n |αi ∈ {0, 1}, i = 1, · · · , n}. Assume ≺ is an admissible monomial order defined

over T , then given t = xα1

1 · · ·xαn
n ∈ T , we define the degree of t as deg(t) =

∑n
i=1 αi. For a

polynomial 0 �= f ∈ F2[X], we have f =
∑

xα1

1 · · ·xαn
n . Define the degree of f as deg(f) =

max{α1 + · · · + αn}, while the leading monomial of f is lm(f) = max≺{xα1

1 · · ·xαn
n }.

2.2 Definitions

In order to introduce our algorithm, some definitions are necessary and the following defi-
nitions are imported from [7].

Definition 2.1 Let L = T ×F2[X]×N×F2[X]×N, and a labeled polynomial is a five-tuple
vector G = (xα, f, i, g, k) ∈ L. We define the signature of G as S(G) = xα, the initial as
init(G) = f , the extended signature as ES(G) = S(G)lm(init(G)) = xαlm(f), the index as
index(G) = i, the polynomial as poly(G) = g and the number as num(G) = k.

Definition 2.2 Let F ,G ∈ L be two labeled polynomials. We say F ≺es G (or G �es F),
if one of the following three cases is satisfied: 1. ES(F) ≺ ES(G). 2. ES(F) = ES(G) and
index(F) > index(G). 3. ES(F) = ES(G), index(F) = index(G) and num(F) > num(G).

The order of labeled polynomials, which alleviate the influence of the order of the input
polynomials or the initial polynomials, is modified from the F5 algorithm. Therefore, the
criteria should be revised correspondingly. In the following two definitions, let F ∈ L be a
labeled polynomial and B ⊂ L be a set of labeled polynomials.



Definition 2.3 We say F is normalized by B, if there do not exist a labeled polynomial
G ∈ B and a monomial v ∈ T , such that S(F) = vlm(poly(G)), F �es vlm(init(F))G.
Particularly, in the boolean ring R2, the condition lm(init(F)) � |S(F) should hold as well.

Definition 2.4 We say F can be rewritten by B, if there exists a labeled polynomial G ∈ B
and a monomial v ∈ T , such that S(F) = S(vG), index(F) = index(G) and num(F) <
num(G).

2.3 Criteria

Now, we will give two new criteria modified from the F5 algorithm without proofs. A partial
proof can be found in [7], and the complete one will come in a future paper.

1. Syzygy criterion: Given a critical pair: s(G1,G2) = (m,u1,G1, u2,G2), where u1, u2 ∈
T and G1,G2 ∈ B. If either u1G1 or u2G2 is not normalized by B, then the critical
pair s(G1,G2) can be discarded.

2. Rewritten criterion: Given a critical pair: s(G1,G2) = (m,u1,G1, u2,G2), where
u1, u2 ∈ T and G1,G2 ∈ B. If either u1G1 or u2G2 can be rewritten by B, then the
critical pair s(G1,G2) can be discarded.

Our non-branch Gröbner bases algorithm is nothing else than a general Buchberger al-
gorithm except replacing the polynomials with the labeled polynomials, adding two criteria
and using matrix reduction. After revising the two criteria, our algorithm has less influence
from the input order of the initial polynomials than the F5 algorithm. Furthermore, the two
revised criteria can also eliminate almost all the useless critical pairs as the F5 algorithm
does. For semi regular systems, there does not exist the critical pairs that can be reduced
to 0, too. In fact, we proved in [7] that the modifications in the comparison of two labeled
polynomials do not affect the function of the criteria. To illustrate how the two new criteria
work, we have tested some randomly generated boolean polynomial systems in section 4.

2.4 Trick

Although the two modified criteria can remove almost all the useless critical pairs generated
during the computation, the total efficiency is not so good as we wished. One possible reason
may be the conflict between the signature and the polynomial.

In fact, the motivation of the signature is to record the origin of the present label
polynomial. Take a labeled polynomial, say G = (xα, f, i, g, k) ∈ L, for example. The
signature tells us that the polynomial g is obtained by reducing the polynomial xαfi with
’smaller’ labeled polynomials under the order ≺es. So the signature actually works as a
clue of the computation, and that is exactly why the two criteria work. However, there
exists a natural conflict between the signature and the polynomial. That is, during the
computation, the label polynomials generated later sometimes have smaller size but with
bigger signature. By our algorithm as well as the F5 algorithm, the label polynomial with a
bigger signature should be dealt with later. It is possible that some polynomials of smaller
size can not be used immediately and this may lead to more computations. One trick
can be used to solve this conflict. The key idea is to clear the signatures of some simple
polynomials and to append them to the initial polynomials. We have

Proposition 2.5 Adding an initial polynomial with the largest index at any time will not
affect the correctness of the two criteria.



Although adding new polynomials will not affect the correctness of the two criteria, in
order to keep the algorithm correct, we must add polynomials that are in the original ideal.
Usually, we add new initial polynomials in the following cases:

1. The new generated polynomial has a very low total degree, such as 1 or 2.

2. The leading monomials of some present initial polynomials can be reduced by the new
generated polynomial.

However, adding too many polynomials cannot speed up the algorithm. Because adding
new initial polynomials is actually to cut off the relationship between this polynomial and
the initial polynomials, which will weaken the criteria, since the system of initial polynomials
may not be semi regular any more, and many useless pairs cannot be detected.

2.5 Branch Strategy

In both the F4 and F5 algorithms, the sizes of matrices in the computation grow quickly
with the degree of critical pairs. Huge matrices occupies enormous memories and is difficult
to deal with. In consideration of the complexity, a natural idea comes to us, and that is,
we should prevent the degree of critical pairs growing too high.

In order to control the size of the matrix, we can add polynomials that are not in the
ideal, but this will apparently make the output incorrect. Fortunately, the cases are better
in the boolean ring R2. Since in R2, any boolean polynomial have only two possible values
0 and 1, which makes the branch algorithm available. We can clone the present system and
add a new polynomial with the value 0 and 1 to them respectively such that two polynomial
sets are obtained. The original ideal is the intersection of the ideals generated by these two
polynomial sets. This fact is very important for solving the original system. Furthermore,
after adding the new polynomial, each system may have smaller matrices and it is easier to
be dealt with. This is the motivation of our branch algorithm.

Theoretically, any polynomials can be added. In consideration of the complexity, we
usually add polynomials which are simple enough or which can be used to reduce other
polynomials. When should we add polynomials? Due to our experiments, we prefer to
adding polynomials when the degree of critical pairs is high enough. We can set a degree
bound D ∈ N. When the remaining pairs have higher degrees than D, we add a new
polynomial, or equivalently we make a new branch.

We have many options to choose the new polynomials and it is very difficult to tell which
is the best. So we list some alternatives that have good performance in the experiments.

1. The polynomial with degree one.

2. The polynomial which is a highest homogeneous part of some present polynomial.

3. The polynomial with a high reference degree, which is a parameter comes from the
shared ZDD data structure.

After all, we can present our branch Gröbner bases algorithm.
In this algorithm, the step 2.3.4.1 is to clear the signature of a polynomial, and the step

2.3.5 is to introduce new polynomials so as to add new branches to the algorithm. In order
to make the algorithm more efficient, some auxiliary data can be kept in BranchSet as
well, such as the number index, k, the set CP and so on.



Algorithm 1 — Branch Grönber bases algorithm

Input: An ordered polynomials set F = (f1, · · · , fm) ⊂ F2[X].
Output: The branch Gröbner bases BranchGB of the ideal generated by F ∪ H, where H =

{x2
1 + x1, · · · , x2

n + xn} ⊂ F2[X] are the field polynomials.

1 Set Fi := (1, fi, i, fi, i), i = 1, · · · ,m, Fm+i := (1, x2
i +xi,m+i, x2

i +xi,m+i), i = 1, · · · , n.
index := m + n, k := m + n, BranchSet := {{Fi|i = 1, · · · , k}}, BranchGB := {}.

2 While BranchSet �= ∅ do
2.1 Select a B ∈ BranchSet and BranchSet := BranchSet \ {B}.
2.2 Generate CP := {s(P,Q)|P,Q ∈ B}.
2.3 While CP �= ∅ do

2.3.1 d := min{deg(c)|c ∈ CP}, D := {c ∈ CP |deg(c) = d} and CP := CP \ D.
2.3.2 D′ := {c ∈ D|c is not satisfied either of the Syzygy or Rewritten criterion }.
2.3.3 Reduce D′ by matrix and collect the new generated labeled polynomials as F+.
2.3.4 For P ∈ F+ do

2.3.4.1 If P is simple enough
then index := index + 1, P := (1, poly(P), index, poly(P), k + 1).
else num(P) := k + 1.

2.3.4.2 k := k + 1, CP := CP ∪ {s(P,Q)|Q ∈ B}. B := B ∪ {P}.
2.3.5 If the minimal degree of CP is high enough, then

2.3.5.1 choose a new polynomial p ∈ F2[X].
2.3.5.2 index := index + 1, k := k + 1
2.3.5.3 Set P ′ := (1, p+1, index, p+1, k), BranchSet := BranchSet∪{B∪{P ′}}.
2.3.5.4 Set P := (1, p, index, p, k), CP := CP ∪ {s(P,Q)|Q ∈ B}, B := B ∪ {P}.

2.4 BranchGB := BranchGB ∪ {{poly(P)|P ∈ B}}.
3 Return BranchGB.

3 Complexity Analysis

3.1 The Principle for Making Branch

One of the motivations of our branch Gröbner bases algorithm is to decrease the complexity
in each branch so as to lessen the total complexity for solving the boolean polynomial
system. Therefore, if we hope our branch algorithm have better efficiency than the non-
branch algorithms, we should constrain the branch number within a reasonable bound.

The complexity of Gröbner bases using the F4 and F5 algorithm is determined by a
degree Dreg, which is the upper bound of the highest degree of matrices, say Dp, constructed
during the computation. Then the total complexity of F4 or F5 algorithm is roughly
O(nωDreg ), where n is the number of variables and ω is the efficiency of matrix elimination
who has a bound 2 ≤ ω ≤ 3. Similarly, since we make a new branch when the degree of pairs
exceed a degree D, the complexity of each branch is roughly O(nω′D), where ω′ is efficiency
of our matrix reduction. Assuming the number of branches is M , then the total complexity
of our branch algorithm is O(Mnω′D). If we hope our branch algorithm perform better,
the complexity O(Mnω′D) must smaller than O(nωDreg ). Roughly speaking, the number
M should satisfy the following inequality:

Mnω′D < nωDreg , or M < nωDreg−ω′D.



However, it is very difficult to predict the number of branches produced in our algorithm.
What we can do is to set up a bound such that when the number of branches exceed it,
we stop the program. Fortunately, the number of branches for one kind of examples is
usually stable, so we can anticipate the general performance for all problems of this kind
by induction. The principle above set up a criterion to check whether it is possible for our
algorithm to have a good performance.

3.2 The Estimation of Dreg

Before the system is computed by the F5 algorithm, we cannot obtain the practical value
of Dp, so we have to try to estimate it or give an upper bound for it. Fortunately, the upper
bound Dreg for F5 algorithm can be obtained from [1]. For a general semi regular system
in the boolean ring, Dreg can be achieved from the following series:

Sm,n(z) =
∑
d≥0

hd,m(n)zd = (1 + z)n/
m∏

k=1

(1 + zdk).

where m is the number of the initial polynomials (f1, · · · , fm) and dk = deg(fk). Then Dreg

is the first d such that hd,m is non-positive. Therefore, the upper bound can be calculated
easily when m,n and the dks are given.

3.3 Theoretical Analysis of Randomly Generated Systems

Faugère has claimed that almost all the systems are semi-regular systems when n is not
too small. So the randomly generated systems can be supposed to be semi-regular systems
naturally, and the estimation of Dreg is a powerful tool to analyze the complexity of the F5
algorithm as well as our branch algorithm.

For convenience, we only consider some special cases and the others can be analyzed in
a similar way. We assume the initial polynomials are m quadratic polynomials in R2 and
n is the number of variables. So when m = n, we can draw a picture of Dreg.
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Although Dreg is only an upper bound of the practical highest degree Dp, the degree
Dreg is reached almost all the time for randomly generated systems.

The motivation of our branch algorithm is to add new polynomials in order to lower the
degree of matrices in the computation. Since randomly generated systems are semi-regular,
so we can use the series in the last subsection to compute Dreg and then find out how many
polynomials should be added such that Dreg becomes lower. If the number of polynomials
is fixed, then the number of branches can be obtained easily.

For example, we consider the systems when m = n = 40 and in Fig.1, the corresponding
Dreg is 7. By the serie, we can calculate the specific number of polynomials we should add



in order to lower the degree. Since adding different polynomials lead to different results,
here we only consider two cases, one is adding polynomials with degree 1 and the other with
degree 2. The Fig.2 shows how the Dreg varies with m′, which is the number of new added
polynomials. We can see that adding 6 polynomials of degree 1 will lower Dreg to 6, while
adding 11 polynomials, the Dreg becomes 5 and so on. Then we obtain the following table.
TH-Num is the theoretic branch number calculated by the inequality in subsection 3.1 with
ω = ω′ = 2. NumPoly is the smallest number of m′ to lower Dreg to the corresponding
degree and EXP-Num is the expected branch number calculated by NumPoly.

Table 1: Adding polynomials with degree 1
Dreg 6 5 4 3 2 1

TH-Num 1600 404 406 408 4010 4012

NumPoly 6 11 17 23 31 40
EXP-Num 64 2048 217 223 231 240

TH/EXP(≈) 24.6 210.3 214.9 219.6 222.2 223.9

In table 1, all the expected branch number are much smaller than the theoretical bound,
so as we discussed in 3.1, our branch algorithm will have a better performance than the
non-branch algorithm and the practical results in section 4 proves this. Remark that, the
proportion in table 1 shows that adding 40 polynomials will lead to best efficiency, however,
this is not the truth, since the matrices with lower degree are much denser than the bigger
ones, then the parameter ω′ is no longer 2 and combined with other factors, TH-Num will
be much smaller than that in the table.

When adding polynomials with degree 2, the cases are not so good as that with degree 1,
and Fig.3 shows the variation of Dreg. At least 15 quadratic polynomials should be added
to lower Dreg to 6, while in Fig.2, only 6 is enough, so the corresponding expected branch
number will be bigger than that in table 1. We can generate a similar table.

Table 2: Adding polynomials with degree 2
Dreg 6 5 4 3 2

TH-Num 1600 404 406 408 4010

NumPoly 15 40 88 207 740
EXP-Num 215 240 288 2207 2704

The expected branch number are all bigger than the theoretic bound, so we can not
expect a better performance of our branch algorithm. However, the practical cases are not
so worse as the table shows, since the data in the table are calculated under a hypothesis that
the new systems are still semi-regular systems, and so if we add some special polynomials
which can reduce the present system significantly, the practical branch number can still be
control in a reasonable bound.

Other examples can be analyzed in the same way as well, due to our experimental results,
we can conclude that for almost all randomly generated systems, our branch algorithm has
a better performance than the non-branch algorithms, such as F4 in Magma.



4 Computational Examples

In this section, some timings are imported from [7], but the complexity information are
obtained by the method discussed in section 3. The branch strategy we used in the ex-
periments is the first strategy in subsection 2.5 and all the timings are obtained from a
computer (OS Linux, CPU Xion 4*3.0GHz, 16.0GB RAM).

4.1 The Criteria

In this subsection, we will see how the two modified criteria work. The initial polynomials
are all randomly generated quadratic polynomials with m = n.

Table 3: The Criteria
n 6 8 10 12 14 16 18

T-pairs 198 740 2483 3296 94077 144801 211385
D-pairs 7 64 727 1146 46221 80308 112925
0-Polys 0 0 0 0 0 0 0
D/T(%) 3.54 8.65 29.28 34.77 49.13 55.46 53.42

In table 3, T-pairs stands for the total number of the pairs generated in the computation,
while D-pairs is the number of the pairs detected by the two criteria and D/T is the
proportion of these two number. Besides, 0-Polys is the number of polynomials that are
reduced to 0 in the algorithm. From the table, all useless pairs are detected and the two
criteria play an important role for improving the efficiency during the computation.

4.2 The Randomly Generated Systems

In this subsection we will see how the branch algorithm performs for randomly generated
systems. In the following table, three groups of data will be presented. The first group
involves the theoretical degree bound Dreg and the theoretical upper bound for the branch
number M ; The second group consists of the practical degree Dp computed by the F4
algorithm and the corresponding theoretical upper bound for M ; in the last group, the
degree D and the practical number of the branches is given. For the second and third
group, the practical timings are given as well.

The initial polynomials are randomly generated quadratic polynomials with m = n. The
practical degree Dp in the second group are obtained by the F4 algorithm in Magma. The
upper bound of M is estimated with ω = ω′ = 2. In the table 4, we use EST to represent
the estimated data and MGB is the experiments data from the F4 algorithm, while BGB
is that from our branch algorithm. TH- is short for theoretical and P- for practical and ”-”
means Magma runs out of memory.

Remark that in the table 4, the theoretical degrees for n = 18, 20, 22 are lower than the
corresponding practical degrees, and the reason is that the F4 algorithm does not have so
powerful criteria to remove all the useless pairs, so some useless computations are still done
in the F4 algorithm. From the table, we can also see that the practical numbers of branches
in our algorithm is always kept within the two theoretical bounds, so our branch algorithm
will have a better performance and the timings prove that.



Table 4: The Randomly Generated Systems
EST MGB BGB

n TH-Deg TH-Num P-Deg TH-Num Time P-Deg P-Num Time

18 5 184 6 186 3.890 3 2048 0.791
20 5 204 6 206 14.220 3 8160 2.992
22 5 224 6 226 82.790 3 29046 13.235
24 6 246 − − − 3 65400 47.682
26 6 266 − − − 3 262018 149.121

4.3 The Stream Ciphers

In this section, we will use our branch algorithm to attack a class of stream ciphers, which
is an important class of encryption algorithm. Here we only consider stream ciphers based
on the linear feedback shift register (LFSR), and the filter functions are from [5].

• CanFil 2, x1x2x3 + x1x2x4 + x1x2x5 + x1x4 + x2x5 + x3 + x4 + x5

• CanFil 3, x2x3x4x5 + x1x2x3 + x2x4 + x3x5 + x4 + x5

• CanFil 8, x1x2x3 + x2x3x6 + x1x2 + x3x4 + x5x6 + x4 + x5

• CanFil 9, x2x4x5x7 +x2x5x6x7 +x3x4x6x7 +x1x2x4x7 +x1x3x4x7 +x1x3x6x7 +x1x4x5x7 +
x1x2x5x7+x1x2x6x7+x1x4x6x7+x3x4x5x7+x2x4x6x7+x3x5x6x7+x1x3x5x7+x1x2x3x7+
x3x4x5+x3x4x7+x3x6x7+x5x6x7+x2x6x7+x1x4x6+x1x5x7+x2x4x5+x2x3x7+x1x2x7+
x1x4x5 + x6x7 + x4x6 + x4x7 + x5x7 + x2x5 + x3x4 + x3x5 + x1x4 + x2x7 + x6 + x5 + x2 + x1

• CanFil 10, x1x2x3 + x2x3x4 + x2x3x5 + x6x7 + x3 + x2 + x1

The data here consists of two parts: one part involves the practical degree Dp, the
theoretical upper bound for M and the practical time costed by the F4 algorithm in Magma;
the other part includes the degree D which is given by the user, the practical branch number
and the time used by our branch algorithm. Again, ω = ω′ = 2 and MGB and BGB
represent the F4 algorithm in Magma and our branch algorithm respectively.

Table 5: The Stream Ciphers
Filters n 81 100 128

Time Deg Num Time Deg Num Time Deg Num

MGB 18.730 7 818 32.930 7 1008 − − −
CanFil2 BGB 0.027 3 9 0.172 3 66 0.357 3 40

MGB − − − 1.360 7 1008 − − −
CanFil3 BGB 0.085 3 11 0.150 3 19 1.210 3 17

MGB 49.460 7 818 12.590 7 1008 − − −
CanFil8 BGB 0.046 3 27 0.170 3 190 0.371 3 140

MGB − − − − − − − − −
CanFil9 BGB 0.418 4 40 1.230 4 217 20.901 4 77

MGB 331.880 7 818 − − − − − −
CanFil10 BGB 0.131 3 99 0.612 3 501 1.296 3 340

Table 5 shows that the practical number of branches is much smaller than the estimated



upper bound, so it is not strange to see that our branch algorithm is more efficient than
the F4 algorithm for this kind of problems.

5 Conclusion

In this paper, we present an implementation of the branch Gröbner bases algorithm and
analyze the complexity briefly. The experimental results show that for both randomly
generated systems and a class of Stream Ciphers problems, our branch algorithm has better
efficiency than the F4 algorithm in Magma. However, there are some problems which are
still not solved completely, for example, how to find a general strategy for all problems
and how to anticipate the number of branches before the computation, and these can be
investigated in the future.
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tions with Boolean Polynomials. MEGA 2007, Austria (2007)

[3] Faugère, J.C.: A new efficient algorithm for computing gröbner bases (f4). Journal of
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1 Introduction

In these years, many application of boolean Gröbner bases have been studied. Thus more
effective algorithms to compute them are demanded. For a such purpose, in this article, we
propose a way to compute within linear algebra.

Computation of Gröbner bases by use of linear algebra has been studied [1, 2, 6], and
an explicit algorithm to compute Gröbner bases within linear algebra is shown at [13]. So
we can calculate boolean Gröbner bases by modifying them.

On the other hand, these methods have a problem of wasting computer memory. In
this article, we show a method to compute boolean Gröbner bases which does not require
additional memory allocation during the computation.

2 Boolean Gröbner Bases

In this section, we give several definitions and notations of boolean polynomial rings and
boolean Gröbner bases, and give a brief view of their properties.

Definition 1 A ring B with an identity is called a boolean ring if every element b of B is
idempotent, i.e., b2 = b.

We can easily check that a boolean ring B is commutative and has characteristic 2.
Furthermore, defining a∨b = a+b+a·b, a∧b = a·b, and ¬a = 1+a, we see that (B,∨,∧,¬)
forms a boolean algebra. For further properties and examples, the reader should refer
[3, 4, 5, 7, 8, 10]. In the rest of this article, let B be a boolean ring and X̄ = {X1, . . . , Xn}
be a set of distinct variables.

Definition 2 The quotient ring B[X1, . . . , Xn]/〈X2
1 + X1, . . . , X

2
n + Xn〉 become a boolean

ring again, and we call it a boolean polynomial ring and denote it B(X1, . . . , Xn). We call
an element of B(X1, . . . , Xn) a boolean polynomial.

Next we give a glance over the definition and properties of boolean Gröbner bases. For
the detailed argument, the reader should refer [9, 11, 12, 14].

A power product X l1
1 · · ·X ln

n is called a boolean power product if each li is either 0 or 1,
and we let BT (X̄) be the set of the power products. We fix a term order ≺ on T (X̄). Then
it can be considered as an well-order on BT (X̄) since BT (X̄) ⊆ T (X̄). Now, a boolean
polynomial f(X̄) ∈ B(X̄) is uniquely represented by bltl + · · · + b1t1 where b1, . . . , bl ∈
B \ {0}, t1, . . . , tl ∈ BT (X̄), and t1 ≺ · · · ≺ tl. Then, for f(X̄), we can naturally define
the leading term lt(f) = tl, the leading coefficient lc(f) = bl, and the leading monomial
lm(f) = bltl. For F ⊆ B(X̄), we use the same notation lt(F ) = {lt(f) : f ∈ F} and
lm(F ) = {lm(f) : f ∈ F}. Next we define boolean-closedness and monomial reductions
of boolean polynomials.



Definition 3 A boolean polynomial f ∈ B(X̄) is boolean-closed if lc(f) · f = f . The
boolean closure bc(f) of f is defined by bc(f) = lc(f) · f . Then we notice that bc(f) is
boolean-closed.

For F ⊆ BT (X̄), we let the boolean closure bc(F ) ⊆ BT (X̄) of F such that 〈bc(F )〉 = 〈F 〉
and that every element of bc(F ) is boolean-closed. We should note that bc(F ) is not uniquely
determined from F , besides an easy algorithm to calculate bc(F ) from F exists.

Definition 4 For a boolean polynomial f ∈ B(X̄), let a = lc(f), t = lt(f) and h = f + at.
Then, a monomial reduction →f by f is defined by

bts + p →f (1 + a)bts + absh + p

where b ∈ B with ab �= 0, s ∈ BT (X̄) with st ∈ BT (X̄), and p ∈ B(X̄) which the term ts
does not appear in p. For a set F ⊆ B(X̄), we write g →F g′ if g →f g′ for some f ∈ F .
A recursive closure of →F is denoted by →∗

F .

Now we can define boolean Gröbner bases and characterize them.

Definition 5 Let I be an ideal of a boolean polynomial ring B(X̄). For a subset G of I,
we say G is a boolean Gröbner basis of I if 〈lm(I)〉 = 〈lm(G)〉 in B(X̄).

Proposition 6 Let I be an ideal of boolean polynomial ring B(X̄). Then, a finite subset
G of I is a boolean Gröbner basis if and only if h →∗

G 0 for any h ∈ I.

We remark that, for a given ideal I over an boolean polynomial ring B(X̄), reduced
boolean Gröbner basis G of I is not uniquely determined in general.

Definition 7 A reduced boolean Gröbner basis G is said to be stratified if G does not
contain two boolean polynomials which have the same leading term.

Proposition 8 If G and G′ are stratified boolean Gröbner bases of the same ideal with
respect to the same term order, then G = G′.

3 Matrices over boolean algebra

Fix a term order ≺ on T (X̄). Let t1, . . . , tN be the enumeration of BT (X̄) such that
t1 ≺ · · · ≺ tN , and so N = 2n. Then there is the canonical isomorphism ψ : B(X̄) → BN

such that ψ(b1t1 + · · · + bN tN ) = (b1, . . . , bN ) where b1, . . . , bN ∈ B. Identifying boolean
polynomials with vectors over boolean ring in this way, we give a procedure to compute
boolean Gröbner bases within a linear algebra over a boolean ring. The algorithm is a
minor modification of the one of [13], and their essential part is in RREF (Reduced Row
Echelon Form) and the function mult().

First we give a definition of RREF of a matrix over a boolean ring, which is a minor
modification of the one over a field.

Definition 9 Let M be a matrix over a boolean ring B. We say M is in Reduced Row
Echelon Form (RREF) if the followings are satisfied:

1. all nonzero rows are above any rows of all zeros,



2. the leading coefficient (pivot) of a nonzero row is always to the right of the leading
coefficient of the row above it,

3. every leading coefficient is the only nonzero entry in its column, and

4. every row r is boolean-closed, i.e. hc(r) · r = r.

From a given matrix over boolean ring, several algorithms to compute RREF exists. For
example, we can use modified Gaussian Elimination to compute them. We let M be the
processing matrix. During the Gaussian Elimination procedure, for each row r, if r is not
boolean closed, we replace the row r with hc(r) · r and append the row r + hc(r) · r to M
if it is nonzero. Moreover, if there are two rows r1 and r2 of M whose leading coefficients
b1 and b2 respectively are on the same column with b1 · b2 = 0 and both of b1 and b2 are
boolean-closed we replace the row r1 with r1 + r2 and delete the row r2. Then, after the
modified Gaussian Elimination procedure, we get the RREF of the given matrix. We also
notice that this RREF procedure can be computed within at most N -many rows, so we
does not need additional memory allocation if we reserve N -many rows at the beginning of
the computation.

For the function mult(), we should apply minor modification to the one of [13]. For two
boolean power product α = X l1

1 · · ·X ln
n and β = Xm1

1 · · ·Xmn
n , we define α ∗ β by

α ∗ β = X
min{1,l1+m1}
1 · · ·Xmin{1,ln+mn}

n .

Then we see that α ∗ β becomes a boolean power product again. For boolean polynomial
f ∈ B(X̄) and a boolean power product α ∈ BT (X̄), saying that f = b1t1 + · · · + bN tN
where b1, . . . , bN ∈ B, we define f ∗ α = b1(t1 ∗ α) + · · · + bN (tN ∗ α) ∈ B(X̄) canonically.

Notation 10 For f ∈ B(X̄), we define mult(f) ⊆ B(X̄) by

mult(f) = {f ∗ α : α ∈ BT (X̄)}.
For F ⊆ B(X̄), we let mult(F ) =

⋃
f∈F mult(f).

Again, we notice that mult(F ) computation can be done within N -many rows.

4 Main Algorithm and Remarks

Using the notations and definitions above, we can describe the algorithm to compute the
stratified boolean Gröbner basis of the ideal generated by the given finite set of boolean
polynomials.

Algorithm BooleanIdealLA

Input: F : a finite subset of B(X̄), ≺ : a term order on T (X̄)
Output: G : the stratified boolean Gröbner basis of 〈F 〉B(X̄) with respect to ≺

F ′ := ∅;
while F �= F ′ do

F ′ := F;
F := the Reduced Row Echelon Form of F;
F := mult(F);



end while
let G be the ⊆-minimal with G ⊆ F and 〈lm(G)〉 = 〈lm(F )〉;
return G;
end.

In this algorithm, we require neither extension of a set of terms nor multi-precision
integers, besides the one of [13] requires them. So, during the computation, additional
memory allocation does not occur, though a mass of memory is required at the beginning
when the number of variables is large. Thus, high-speed computation of stratified boolean
Gröbner bases can be expected using this algorithm in some cases.
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Applied Algebra, 139(1–3), 61–88, (1999)

[2] Faugère, J.C. A new efficient algorithm for computing Gröbner bases without reduction to
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[6] Lazard, D. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equa-
tions. EUROCAL 1983, 146-156, (1983)
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Abstract

The finite element time domain method for electromagnetic wave problems is inves-
tigated. We use Galerkin’s method to discretize Maxwell’s scalar equations directly in
the spatial domain. Assembling finite element equations, the system of equations be-
comes a first-order differential equation with respect to time. Crank-Nicolson’s method
and Gear’s method are used to solve the equation, and to solve the linear system of
equations, IDR(s) iterative method is used. As numerical examples, we compute wave
propagations in a two dimensional rectangular wave guide with an inserted dielectric
obstacle, and wave excitation in a circular resonator.

1 Introduction

In the field of numerical analysis of electromagnetic field, FEM is one of principal methods.
FEM is a powerful and versatile numerical technique for handling wave guides with com-
plicated geometric shapes, and inhomogeneous or anisotropic media. FEM is expected to
be useful for the analysis of electromagnetic field problems in the time domain but there is
few report on the finite element method in the time domain.

The purpose of this work is to develop Finite Element Time Domain Method (FETD)
for electromagnetic wave problems. In the finite element method of electromagneticic wave
problems, the conventional approach is to impose stationary requirements on the func-
tional for the wave equation derived from Maxwell’s equations. It is difficult to introduce
the functional of the wave equations in the time domain problems under given boundary
conditions.

The formulation using Galerkin’s method is available. After discretizing all scalar equa-
tions of Maxwell’s equations directly in the spatial domain by Galerkin’s method, the system
of equations assembled from finite element equations becomes a first-order differential equa-
tion with respect to time. Crank-Nicolson’s method and Gear’s method are used to solve
the equation. For solving the linear system of equations, IDR(s) method based on IDR (In-
duced Dimension Reduction) Theorem is used. The formulation of FETD is so simple that
this method can be widely adopted in electromagnetic field analyses as Finite Difference
Time Domain Method (FDTD).

∗(Home) 5-24-21, Nishihara, Urasoe-shi, Okinawa 901-2101, Japan, Tel: 080-27156273.



2 Formulation of FETD

2.1 Deriviation of Finite Element Equations from Maxwell’s Eqn.

We consider Maxwell’s equations{ ∇× H = ε∂E
∂t + J,

∇× E = −μ∂H
∂t

(1)

combined with the boundary conditions and initial conditions in the solution region Ω. In
equations (1), E is the electric field intensity, H is the magnetic field intensity, J is an electric
current density wave source and ε, μ are permittivity and permeability of the isotropic
medium respectively. The region Ω is discretized into finite number of subregions, denoted
as Ωe, and the electromagnetic fields at time t in the element region are approximated
by interpolation functions and the values of fields at nodal points. The x component
of the electric field at any point in the element Ωe is expressed in the following form:
Ex(x, y, z, t) = {N(x, y, z)}T {Ex(t)}, {N(x, y, z)}T = {N1, N2, · · · , Nm} is the raw vector
of the interpolation functions, and {Ex(t)}T = {E1, E2, · · · , Em} is the raw vector of the
values of electric field component at nodes, where m is the number of nodes in the element
Ωe. Here, T denotes the transpose of a vector. Galerkin’s method is applied for derivation
of finite element equations from Maxwell’s equations. For example, the column vector {N}
is multiplied to the residual of the x component of Ampere’s law equation of Eqs. (1) and
integrated over the element Ωe, the following equation is obtained:∫

Ωe

{N}(∂Ex

∂t
− 1

ε
(
∂Hz

∂y
− ∂Hy

∂z
) − 1

ε
Jx)dv = {0}. (2)

Substituting Ex = {N}T {Ex} and similar expressions of Hz,Hy into Eq.(2), yields the
finite element equation:

[M ]e
d{Ex}

dt
=

1
ε
[B]e{Hz} − 1

ε
[C]e{Hy} + {Jx}e. (3)

Other finite element equations are derived similarly from components of equations (1). In
Eq. (3), the square matrices are given as follows:

[M ]e =
∫∫
Ωe

{N}{N}T dxdy, [A]e =
∫∫
Ωe

{N}∂{N}T

∂x
dxdy,

[B]e =
∫∫
Ωe

{N}∂{N}T

∂y
dxdy, [C]e =

∫∫
Ωe

{N}∂{N}T

∂z
dxdy,

and
{J}e =

∫
Ωe

{N}Jdv

is a current wave source vector in the element.



2.2 The system of equations

The linear system of equations is obtained by assembling the finite element equations which
are derived from each component of Maxwell’s Equations for all finite elements. The first-
order ordinary differential equation in the time domain is given as follows:

[P ]
d{u}
dt

+ [S]{u} = {g(t)}, (4)

where the unknown vector {u} is formed so that the values of electromagnetic field compo-
nents at all nodes in the solution regon are ordered definitely. The vector {g(t)} is a wave
source assembled current sources. Here, [P] denotes a square band matrix built by [M ]e,
and [S] is a square matrix constructed from [A]e, [B]e and [C]e for all finite elements. In
order to solve Eq.(4), Crank-Nicolson’s method is used to get the starting value at first step
of Gear’s Method and then Gear’s method, which is known as a stable solution, is used.
Taking time step h, Crank-Nicolson’s method yields

([P ] + 0.5h[S]){u}(n) = ([P ] − 0.5h)[S]){u}(n−1)

+0.5h({g}(n−1) + {g}(n)), (5)

and Gear’s method gives

([P ] +
2
3
h[S]){u}(n) = [P ](

4
3
{u}(n−1) − 1

3
{u}(n−2)) +

2
3
h{g}(n) (6)

In Eqs. (5) and (6), considering the boundary conditions and the given initial condition,
the spatial distribution of electromagnetic fields {u}(n) at time t = t0 + nh is calculated
successively. For solving the linear system of equations, IDR(s) iterative method[3] is used,
in which non-zero entries of the matrices are stored in CCS(Compressed Column Storage)
format.

2.3 Boundary Conditions

The boundary conditions at discontinuities are expressed as follows. Tangential E on metal
walls is zero. Tangential E and the normal component of elecric flux density D = εE are
continuous at the interface separating two different media. The boundary condition about
magnetic field is satisfied naturally, because the vacuum permeabillity is used. In order
to apply boundary conditions, column and raw elements of the coefficient matrix and the
raw elements of the right vector in Eqs. (5) and (6) are treated to satisfy the boundary
conditions at the common interface of two elements.

2.4 Nonreflecting boundary conditions

When solving open-region problems one needs to truncate the solution region to limit
the size of computational domain. This truncation produces artificial boundaries and the
reflected waves are generated at the interface. In order to treat nonreflecting boundary
condition, attenuated one-directional travelling waves in an absorption region are assumed
and finite element equations derived from the wave forms are incorporated into the System
of equations. We assume that Ez is described in a following form.

Ez(x, y, t) = g(x)e−αyf(y − ct). (7)



Where c is the velocity of light, α is an attenuation constant, and f(y), g(x) are arbitrary
functions. This formula satisfies the next partial differential equation.

∂Ez

∂t
+ c

∂Ez

∂y
+ cαEz = 0. (8)

The FETD method is also applied to Eq.(8), and the finite element equation becomes

[M ]e
∂{Ez}

∂τ
+ ([B]e + α[M ]e){Ez} = {0}, (9)

where τ = ct. Element matices are given by previous expressions. Other finite element
equations regading to Hx,Hy are derived similarly.

3 Numerical computation and results

3.1 The finite elemet equation for two dimensional waves

In the computation of two dimensional wave guide, we assume that the electric field compo-
nent Ez and the magnetic field components Hx and Hy do not depend on the z coordinate
of a point. The finite elemet equation is shown as follows :⎡⎣ [M ]e [0] [M ]e

[0] [M ]e [0]
[0] [0] [M ]e

⎤⎦ d

dτ

⎧⎨⎩
{Ez}

{Z0Hx}
{Z0Hy}

⎫⎬⎭+

⎡⎣ [0] 1
εr

[B]e − 1
εr

[A]e
[B]e [0] [0]
−[A]e [0] [0]

⎤⎦⎧⎨⎩
{Ez}

{Z0Hx}
{Z0Hy}

⎫⎬⎭
=

⎧⎨⎩
−Z0

εr
{jz}e

{0}
{0}

⎫⎬⎭ . (10)

In Eq. (10), Z0 =
√

μ0/ε0 is the characteristic impeadance in a free space, so the product of
Z0 and Hx and Hy has the same dimension as that of Ez, and εr is a relative permittivity.
The variable τ = ct (c: the velocity of light) is used, as an electromagnetic wave travels the
distance τ in a time from 0 to t.

3.2 Wave guide models and computational results

3.2.1 Rectangular wave guide with a dielectric post

Fig.1 is a propagation wave guide model in which a TE10 wave is incident into a waveguide
with a rectangular dielectric post parallel to z direction. The incident TE10 wave as an
equivalent source is given as follows:

Ez = E0cos(2πft + θ) sin(
π

a
x), (11)

where f is frequency and a is a waveguide width. The metal wave guide is terminated by
metal walls at both sides. The boundary conditions on metal walls are expressed as the
tangential component of E is zero. The Analytical region of 22.9[mm]×45.8[mm] is divided
into rectangular subregions by Nx = 40, Ny = 80, and 6 nodes triangular finite elements
are produced. Frequency = 10GHz, the relative permittivity εr = 6.0, and a time step
Δt = 3.34 × 10−13[sec.] are used.
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Figure 1: Incident TE10 wave in a waveguide with a dielectric rectangular post.

The results of numerical computation are shown in Fig.2. In the figure, time steps are
N = 20, 100, 200, 300, 450 respectivly. It is shown that TE wave travelling in the wave
guide is effected by the dielectric post.

3.2.2 Wave excitation in a circular cavity

Fig.3 (a) shows a circular cavity resonator model and (b) is an its finite descretization.
The circular region is divided into 6 nodes triangular finite elements or isoparametric finite
elements. The solution region is discretized into 12 divisions in the angular direction of the
central circle and 6 divisions in the radial direction. The number of elements is 432 and
the number of nodes is 937. On the center of the circle, unit step function current source
is impressd. The computational result at time steps N = 100, 500, 1000, 3000 is shown in
Fig.4. From Fig.4, it is shown that wave is excited and propagates in a cavity resonator.

4 Summary

This paper investigates the finite element time domain (FETD) method in electromagnetic
field problems. Using Galerkin’s method Maxwell’s scalar equations are discretized directly
in the spatial domain and the first-order ordinary differential equation in the time domain
is solved. To solve the system of equations Crank-Nicolson’s method and Gear’s method
are used. IDR(s) iterative method is used to solve the resulting linear system of equations.

As numerical examples, we study electromagnetic field propagations in a two dimensional
waveguide with a dielectric post and a wave excitation in a circular cavity resonator are
investigated. The obtained results show that FETD method proved to be useful for the wave
guide problems and is capable of providing a versatile approach to electromagnetic wave
problems. In order to treat nonreflecting boundary condition, we assume the attenuated
one-directional travelling waves in an absorption region and incorporate the finite element
equations into the system of equations.

We are going to apply this approach to two dimential waveguides and we will report
results in the ASCM conference, as computations are not carried out at this moment.
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Figure 2: Electric field distribution in a wave guide with a dielectric post.
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Figure 3: (a) Circular resonator model; (b) its finite element descretization.
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time step = 1000 time step = 3000

Figure 4: Electric field distribution in a circular resonator.
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Abstract

We present an extension of our GPGCD method, an iterative method for cal-
culating approximate greatest common divisor (GCD) of univariate polynomials, to
polynomials with the complex coefficients. For a given pair of polynomials and a de-
gree, our algorithm finds a pair of polynomials which has a GCD of the given degree
and whose coefficients are perturbed from those in the original inputs, making the
perturbations as small as possible, along with the GCD. In our GPGCD method, the
problem of approximate GCD is transfered to a constrained minimization problem,
then solved with a so-called modified Newton method, which is a generalization of the
gradient-projection method, by searching the solution iteratively. While our original
method is designed for polynomials with the real coefficients, we extend it to accept
polynomials with the complex coefficients in this paper.

1 Introduction

For algebraic computations on polynomials and matrices, approximate algebraic algorithms
are attracting broad range of attentions recently. These algorithms take inputs with some
“noise” such as polynomials with floating-point number coefficients with rounding errors, or
more practical errors such as measurement errors, then, with minimal changes on the inputs,
seek a meaningful answer that reflect desired property of the input, such as a common factor
of a given degree. By this characteristic, approximate algebraic algorithms are expected
to be applicable to more wide range of problems, especially those to which exact algebraic
algorithms were not applicable.

As an approximate algebraic algorithm, we consider calculating the approximate greatest
common divisor (GCD) of univariate polynomials, such that, for a given pair of polynomials
and a degree d, finding a pair of polynomials which has a GCD of degree d and whose coef-
ficients are perturbations from those in the original inputs, with making the perturbations
as small as possible, along with the GCD. This problem has been extensively studied with
various approaches including the Euclidean method on the polynomial remainder sequence
(PRS) ([1], [14], [15]), the singular value decomposition (SVD) of the Sylvester matrix
([3], [6]), the QR factorization of the Sylvester matrix or its displacements ([4], [18], [20]),
Padé approximation [11], optimization strategies ([2], [7], [8], [9], [19]). Furthermore, stable
methods for ill-conditioned problems have been discussed ([4], [10], [13]).

Among methods in the above, we focus our attention on optimization strategies. Already
proposed algorithms utilize iterative methods including the Levenberg-Marquardt method
[2], the Gauss-Newton method [19] and the structured total least norm (STLN) method
([7], [8]). Among them, STLN-based methods have shown good performance calculating
approximate GCD with sufficiently small perturbations efficiently.



In this paper, we discuss an extension of the GPGCD method, proposed by the present
author [17], an iterative method with transferring the original approximate GCD problem
into a constrained optimization problem, then solving it by a so-called modified Newton
method [16], which is a generalization of the gradient-projection method [12]. In the pre-
vious paper [17], we have shown that our method calculates approximate GCD with per-
turbations as small as those calculated by the STLN-based methods and with significantly
better efficiency than theirs. While our original method accepts polynomials with the real
coefficients as inputs and outputs in the previous paper, we extend it to handle polynomials
with the complex coefficients in more generalized settings in this paper.

The rest part of the paper is organized as follows. In Section 2, we transform the
approximate GCD problem into a constrained minimization problem for the case with the
complex coefficients. In Section 3, we show details for calculating the approximate GCD,
with discussing issues in minimizations. In Section 4, we demonstrate performance of our
algorithm with experiments.

2 Formulation of the Approximate GCD Problem

Let F (x) and G(x) be univariate polynomials of degree m and n, respectively, with the
complex coefficients and m ≥ n > 0. We permit F and G be relatively prime in general.
For a given integer d satisfying n ≥ d > 0, let us calculate a deformation of F (x) and G(x)
in the form of

F̃ (x) = F (x) + ΔF (x) = H(x) · F̄ (x), G̃(x) = G(x) + ΔG(x) = H(x) · Ḡ(x),

where ΔF (x) and ΔG(x) are polynomials with the complex coefficients, whose degrees do
not exceed those of F (x) and G(x), respectively, H(x) is a polynomial of degree d, and F̄ (x)
and Ḡ(x) are pairwise relatively prime. In this situation, H(x) is an approximate GCD of
F (x) and G(x). For a given d, we try to minimize ‖ΔF (x)‖2

2 + ‖ΔG(x)‖2
2 the norm of the

deformations.
In the case F̃ (x) and G̃(x) have a GCD of degree d, then the theory of subresultant tells

us that the (d−1)-th subresultant of F̃ and G̃ becomes zero, namely we have Sd−1(F̃ , G̃) = 0,
where Sk(F̃ , G̃) denotes the k-th subresultant of F̃ and G̃. Then, the (d−1)-th subresultant
matrix Nd−1(F,G), where the k-th subresultant matrix Nk(F, G) is a submatrix of the
Sylvester matrix N(F,G) by taking the left n − k columns of coefficients of F and the left
m − k columns of coefficients of G, has a kernel of dimension equal to 1. Thus, there exist
polynomials A(x), B(x) ∈ C[x] satisfying

AF̃ + BG̃ = 0, (1)

with deg(A) < n−d and deg(B) < m−d and A(x) and B(x) are relatively prime. Therefore,
for the given F (x), G(x) and d, our problem is to find ΔF (x), ΔG(x), A(x) and B(x)
satisfying Eq. (1) with making ‖ΔF‖2

2 + ‖ΔG‖2
2 as small as possible.

Let us assume that F (x) and G(x) are represented as

F (x) = (fm,1 + fm,2i)xm + · · · + (f0,1 + f0,2i) = FRe(x) + iFIm(x),
G(x) = (gn,1 + gn,2i)xn + · · · + (g0,1 + g0,2i) = GRe(x) + iGIm(x),

where fj,1, gj,1, fj,2, gj,2 are the real numbers and i is the imaginary unit, and FRe(x) and
GRe(x) represent the real part of F (x) and G(x), respectively, while FIm(x) and GIm(x)



represent the imaginary part of F (x) and G(x), respectively. Furthermore, we represent
F̃ (x), G̃(x), A(x) and B(x) with the complex coefficients as

F̃ (x) = (f̃m,1 + f̃m,2i)xm + · · · + (f̃0,1 + f̃0,2i)x0 = F̃Re(x) + i F̃Im(x),

G̃(x) = (g̃n,1 + g̃n,2i)xn + · · · + (g̃0x
0 + g̃0,2i)x0 = G̃Re(x) + iG̃Im(x),

A(x) = (an−d,1 + an−d,2i)xn−d + · · · + (a0,1 + a0,2i)x0 = ARe(x) + iAIm(x),

B(x) = (bm−d,1 + bm−d,2i)xm−d + · · · + (b0,1 + b0,2i)x0 = BRe(x) + iBIm(x),

(2)

respectively, where f̃j,1, f̃j,2, g̃j,1, g̃j,2, aj,1, aj,2, bj,1, bj,2 are the real numbers, and, as in
above, F̃Re(x), G̃Re(x), ARe(x) and BRe(x) represent the real part of F̃ (x), G̃(x), A(x) and
B(x), respectively, while F̃Im(x), G̃Im(x), AIm(x) and BIm(x) represent the imaginary part
of F̃ (x), G̃(x), A(x) and B(x), respectively.

For the objective function, ‖ΔF‖2
2 + ‖ΔG‖2

2 becomes as
m∑

j=0

[(f̃j,1 − fj,1)2 + (f̃j,2 − fj,2)2] +
n∑

j=0

[(g̃j,1 − gj,1)2 + (g̃j,2 − gj,2)2]. (3)

For the constraint, Eq. (1) becomes as

Nd−1(F̃ , G̃) · t
(
an−d,1 + an−d,2i , . . . , a0,1 + a0,2i , bm−d,1 + bm−d,2i , . . . , b0,1 + b0,2i

)
= 0. (4)

By expressing the subresultant matrix and the column vector in (4) separated into the real
and the complex parts, respectively, we express (4) as

(N1 + N2i)(v1 + v2i) = 0, (5)

N1 = Nd−1(F̃Re(x), G̃Re(x)), N2 = Nd−1(F̃Im(x), G̃Im(x)),

v1 = t(an−d,1, . . . , a0,1, bm−d,1, . . . , b0,1), v2 = t(an−d,2, . . . , a0,2, bm−d,2, . . . , b0,2).
(6)

We can expand the left-hand-side of Eq. (5) as (N1 + N2i)(v1 + v2i) = (N1v1 − N2v2) +
i(N1v2 + N2v1), thus, Eq. (5) is equivalent to a system of equations: N1v1 − N2v2 =
0, N1v2 + N2v1 = 0, which is expressed as(

N1 −N2

N2 N1

)(
v1

v2

)
= 0. (7)

Furthermore, we add another constraint for the coefficient of A(x) and B(x) as

‖A(x)‖2
2 + ‖B(x)‖2

2 = (a2
n−d,1 + · · · + a2

0,1) + (b2
m−d,1 + · · · + b2

0,1)

+ (a2
n−d,2 + · · · + a2

0,2) + (b2
m−d,2 + · · · + b2

0,2) − 1 = 0, (8)

which can be expressed together with (7) as⎛⎝tv1
tv2 −1

N1 −N2 0

N2 N1 0

⎞⎠⎛⎝v1

v2

1

⎞⎠ = 0, (9)

where Eq. (8) has been put on the top of Eq. (7). Note that, in Eq. (9), we have total of
2(m+n− d+1)+1 equations in the coefficients of polynomials in (2) as a constraint, with
the j-th row of which is expressed as qj = 0.



Now, we substitute the variables

(f̃m,1, . . . , f̃0,1, g̃n,1, . . . , g̃0,1, f̃m,2, . . . , f̃0,2, g̃n,2, . . . , g̃0,2,

an−d,1, . . . , a0,1, bm−d,1, . . . , b0,1, an−d,2, . . . , a0,2, bm−d,2, . . . , b0,2), (10)

as x = (x1, . . . , x4(m+n−d+2)), then Eq. (3) and (9) become as

f(x) = (x1 − fm,1)2 + · · · + (xm+1 − f0,1)2 + (xm+2 − gn,1)2 + · · · + (xm+n+2 − g0,1)2

+ (xm+n+3 − fm,2)2 + · · · + (x2m+n+3 − f0,2)2

+ (x2m+n+4 − gn,2)2 + · · · + (x2(m+n+2) − g0,2)2, (11)

q(x) = t(q1(x), . . . , q2(m+n−d+1)+1(x)) = 0, (12)

respectively. Therefore, the problem of finding an approximate GCD can be formulated as
a constrained minimization problem of finding a minimizer of the objective function f(x)
in Eq. (11), subject to q(x) = 0 in Eq. (12).

3 The Algorithm for Approximate GCD

We calculate an approximate GCD by solving the constrained minimization problem (11),
(12) with the gradient projection method by Rosen [12] (whose initials become the name
of our GPGCD method) or a modified Newton method by Tanabe [16] (for review, see the
author’s previous paper [17]). Our preceding experiments [17, Section 5.1] have shown that
a modified Newton method was more efficient than the original gradient projection method
while the both methods have shown almost the same convergence property, thus we adopt
a modified Newton method in this paper.

In applying a modified Newton method to the approximate GCD problem, we discuss
issues in the construction of the algorithm in detail, such as

• Representation of the Jacobian matrix Jg(x) and certifying that Jg(x) has full rank
(Section 3.1),

• Setting the initial values (Section 3.2),

• Regarding the minimization problem as the minimum distance problem (Section 3.3),

• Calculating the actual GCD and correcting the coefficients of F̃ and G̃ (Section 3.4),

as follows.

3.1 Representation and the rank of the Jacobian Matrix

For a polynomial P (x) ∈ C[x] represented as P (x) = pnxn + · · · + p0x
0, let Ck(P ) be a

complex (n + k, k + 1) matrix defined as

Ck(P ) =

⎛⎜⎜⎜⎜⎜⎜⎝

pn

...
. . .

p0 pn

. . .
...

p0

⎞⎟⎟⎟⎟⎟⎟⎠ .

︸ ︷︷ ︸
k+1



For co-factors A(x) and B(x) in (2), define matrices A1 and A2 as

A1 = [Cm(ARe(x)) Cn(BRe(x))], A2 = [Cm(AIm(x)) Cn(BIm(x))]. (13)

(Note that A1 and A2 are matrices of the real numbers of m+n−d+1 rows and m+n+2
columns.) Then, by the definition of the constraint (12), we have the Jacobian matrix Jg(x)
(with the original notation of variables (10) for x) as

Jg(x) =

⎛⎝ 0 0 2 · tv1 2 · tv2

A1 −A2 N1 −N2

A2 A1 N2 N1

⎞⎠ ,

with A1 and A2 as in (13) and N1, N2, v1 and v2 as in (6), respectively, which can be easily
constructed in every iteration.

In executing iterations, we need to keep that Jg(x) has full rank: otherwise, we are
unable to decide proper search direction. For this requirement, we have the following
observations.

Proposition 1. Let x∗ ∈ Vg be any feasible point satisfying Eq. (12). Then, if the cor-
responding polynomials do not have a GCD whose degree exceeds d, then Jg(x∗) has full
rank.

Proof. Let x∗ = (f̃m,1, . . . , f̃0,1, g̃n,1, . . . , g̃0,1, f̃m,2, . . . , f̃0,2, g̃n,2, . . . , g̃0,2, an−d,1, . . . , a0,1,
bm−d,1, . . . , b0,1, an−d,2, . . . , a0,2, bm−d,2, . . . , b0,2) with its polynomial representation
expressed as in (2) (note that this assumption permits the polynomials F̃ (x) and G̃(x) to
be relatively prime in general). To verify our claim, we show that we have rank(Jg(x∗)) =
2(m + n − d + 1) + 1. Let us express Jg(x∗) =

(
JL | JR

)
, where JL and JR are column

blocks expressed as

JL =

⎛⎝ 0 0

A1 −A2

A2 A1

⎞⎠ , JR =

⎛⎝2 · tv1 2 · tv2

N1 −N2

N2 N1

⎞⎠ ,

respectively. Then, we have the following lemma.

Lemma 1. We have rank(JL) = 2(m + n − d + 1).

Proof. For A1 = [Cm(A)1 Cn(B)1], let Cm(A)1 be the right m− d columns of Cm(A)1 and
Cn(B)1 be the right n − d columns of Cn(B)1. Then, we see that the bottom m + n − 2d
rows of the matrix C̄ = [Cm(A)1 Cn(B)1] is equal to the matrix consisting of the real part
of the elements of N(A,B), the Sylvester matrix of A(x) and B(x). By the assumption,
polynomials A(x) and B(x) are relatively prime, and there exist no nonzero elements in C̄
except for the bottom m + n − 2d rows, thus we have rank(C̄) = m + n − 2d.

By the structure of C̄ and the lower triangular structure of Cm(A)1 and Cn(B)1, we
can take the left d + 1 columns of Cm(A)1 or Cn(B)1 satisfying linear independence along
with C̄, which implies that there exist a nonsingular square matrix T of order m + n + 2
satisfying

A1T = R, (14)

where R is a lower triangular matrix, thus we have rank(A1) = rank(R) = m + n − d + 1.



Furthermore, by using T and R in (14), we have⎛⎝ 0 0

A1 −A2

A2 A1

⎞⎠(T 0

0 T

)
=

⎛⎝ 0 0

R −A2T
A2T R

⎞⎠ , (15)

followed by a suitable transformation on columns on the matrix in the right-hand-side of
(15), we can make A2T to zero matrix, which implies that

rank(JL) = rank

⎛⎝⎛⎝ 0 0

R −A2T
A2T R

⎞⎠⎞⎠ = 2 · rank(R) = 2(m + n − d + 1).

This proves the lemma.

Proof of Proposition 1 (continued). By the assumptions, we have at least one
nonzero coordinate in the top row in JR, while we have no nonzero coordinate in the top row
in JL, thus we have rank(Jg(x)) = 2(m + n− d + 1) + 1, which proves the proposition.

Proposition 1 says that, so long as the search direction in the minimization problem
satisfies that corresponding polynomials have a GCD of degree not exceeding d, then Jg(x)
has full rank, thus we can safely calculate the next search direction for approximate GCD.

3.2 Setting the Initial Values

At the beginning of iterations, we give the initial value x0 by using the singular value decom-

position (SVD) [5] of N =
(

N1 −N2

N2 N1

)
in (7) as N = U Σ tV, U = (u1, . . . ,u2(m+n−2d+2)),

Σ = diag(σ1, . . . , σ2(m+n−2d+2)), V = (v1, . . . ,v2(m+n−2d+2)), with uj ∈ R2(m+n−d+1),
vj ∈ R2(m+n−2d+2), and Σ = diag(σ1, . . . , σ2(m+n−2d+2)) denotes the diagonal matrix
whose the j-th diagonal element is σj . Note that U and V are orthogonal matrices. Then,
by a property of the SVD [5, Theorem 3.3], the smallest singular value σ2(m+n−2d+2)

gives the minimum distance of the image of the unit sphere S2(m+n−2d+2)−1, given as
S2(m+n−2d+2)−1 = {x ∈ R2(m+n−2d+2) | ‖x‖2 = 1}, by N , represented as
N · S2(m+n−2d+1)−1 = {Nx | x ∈ R2(m+n−2d+2), ‖x‖2 = 1}, from the origin, along
with σ2(m+n−2d+2)u2(m+n−2d+2) as its coordinates. Thus, we have N · v2(m+n−2d+2) =
σ2(m+n−2d+2)u2(m+n−2d+2). For vm+n−2d = t(ān−d, . . . , ā0, b̄n−d, . . . , b̄0), let
Ā(x) = ān−dx

n−d + · · · + ā0x
0 and B̄(x) = b̄m−dx

m−d + · · · + b̄0x
0. Then, Ā(x) and

B̄(x) give the least norm of AF + BG satisfying ‖A‖2
2 + ‖B‖2

2 = 1 by putting A(x) = Ā(x)
and B(x) = B̄(x) in (2).

Therefore, we admit the coefficients of F , G, Ā and B̄ as the initial values of the
iterations as

x0 = (fm,1, . . . , f0,1, gn,1, . . . , g0,1, fm,2, . . . , f0,2, gn,2, . . . , g0,2,

ān−d,1, . . . , ā0,1, b̄n−d,1, . . . , b̄0,1, ān−d,2, . . . , ā0,2, b̄n−d,2, . . . , b̄0,2).



3.3 Regarding the Minimization Problem as the Minimum Dis-
tance (Least Squares) Problem

Since we have the object function f as in (11), we have

∇f(x) = 2 · t(x1 − fm,1, . . . , xm+1 − f0,1, xm+2 − gn,1, . . . , xm+n+2 − g0,1,

xm+n+3 − fm,2, . . . , x2m+n+3 − f0,2, x2m+n+4 − gn,2, . . . , x2(m+n+2) − g0,2, 0, . . . , 0).

However, we can regard our problem as finding a point x ∈ Vg which has the minimum
distance to the initial point x0 with respect to the (x1, . . . , x2(m+n+2))-coordinates which
correspond to the coefficients in F (x) and G(x). Therefore, as in the real case (see the
authors previous paper [17]), we change the objective function as f̄(x) = 1

2f(x), then solve
the minimization problem of f̄(x), subject to q(x) = 0.

3.4 Calculating the Actual GCD and Correcting the Deformed
Polynomials

After successful end of the iterations, we obtain the coefficients of F̃ (x), G̃(x), A(x) and
B(x) satisfying (1) with A(x) and B(x) are relatively prime. Then, we need to compute
the actual GCD H(x) of F̃ (x) and G̃(x). Although H can be calculated as the quotient of
F̃ divided by B or G̃ divided by A, naive polynomial division may cause numerical errors
in the coefficient. Thus, we calculate the coefficients of H by the so-called least squares
division [19], followed by correcting the coefficients in F̃ and G̃ by using the calculated H,
as follows.

For polynomials F̃ , G̃, A and B represented as in (2) and H represented as H(x) =
(hd,1 + hd,2i)xd + · · · + (h0,1 + h0,2i)x0, solve the equations HB = F̃ and HA = G̃ with
respect to H as solving the least squares problems of linear systems

Cd(A) t(hd,1 + hd,2i , . . . , h0,1 + h0,2i) = t(g̃n,1 + g̃n,2i , . . . , g̃0,1 + g̃0,2i), (16)

Cd(B) t(hd,1 + hd,2i , . . . , h0,1 + h0,2i) = t(f̃m,1 + f̃m,2i , . . . , f̃0,1 + f̃0,2i), (17)

respectively. Then, we transfer the linear systems (16) and (17), as follows. For (17), let us
express the matrices and vectors as the sum of the real and the imaginary part of which,
respectively, as Cd(B) = B1 + iB2,

t(hd,1 + hd,2i , . . . , h0,1 + h0,2i) = h1 + ih2,
t(f̃m,1 +

f̃m,2i , . . . , f̃0,1 + f̃0,2i) = f1 + if2. Then, (17) is expressed as

(B1 + iB2)(h1 + ih2) = (f1 + if2). (18)

By equating the real and the imaginary parts in Eq. (18), respectively, we have (B1h1 −
B2h2) = f1, (B1h2 + B2h1) = f2, or(

B1 −B2

B2 B1

)(
h1

h2

)
=
(

f1

f2

)
. (19)

Thus, we can calculate the coefficients of H(x) by solving the real least squares problem
(19). We can solve (16) similarly.

Let H1(x),H2(x) ∈ C[x] be the candidates for the GCD whose coefficients are calculated
as the least squares solutions of (16) and (17), respectively. Then, for i = 1, 2, calculate the
norms of the residues as ri = ‖F̃ − HiB‖2

2 + ‖G̃ − HiA‖2
2, respectively, and set the GCD

H(x) be Hi(x) giving the minimum value of ri.
Finally, for the chosen H(x), correct the coefficients of F̃ (x) and G̃(x) as F̃ (x) = H(x) ·

B(x), G̃(x) = H(x) · A(x), respectively.



4 Experiments

We have implemented the GPGCD algorithm for polynomials with the complex coefficients
on the computer algebra system Maple and compared its performance with a method based
on the structured total least norm (STLN) method [7] for randomly generated polynomials
with approximate GCD. The tests have been carried out on Intel Core2 Duo Mobile Pro-
cessor T7400 (in Apple MacBook “Mid-2007” model) at 2.16 GHz with RAM 2GB, under
MacOS X 10.5.

In the tests, we have generated random polynomials with GCD then added noise, as
follows. First, we have generated a pair of monic polynomials F0(x) and G0(x) of degrees
m and n, respectively, with the GCD of degree d. The GCD and the prime parts of
degrees m − d and n − d are generated as monic polynomials and with random coefficients
c ∈ [−10, 10] of floating-point numbers. For noise, we have generated a pair of polynomials
FN(x) and GN(x) of degrees m− 1 and n− 1, respectively, with random coefficients as the
same as for F0(x) and G0(x). Then, we have defined a pair of test polynomials F (x) and
G(x) as

F (x) = F0(x) +
eF

‖FN(x)‖2
FN(x), G(x) = G0(x) +

eG

‖GN(x)‖2
GN(x),

respectively, scaling the noise such that the 2-norm of the noise for F and G is equal to eF

and eG, respectively. In the present test, we set eF = eG = 0.1.
In this test, we have compared our implementation against a method based on the

structured total least norm (STLN) method [7], using their implementation (see Acknowl-
edgments). In their STLN-based method, we have used the procedure C_con_mulpoly
which calculates the approximate GCD of several polynomials in C[x]. The tests have been
carried out on Maple 12 with Digits=15 executing hardware floating-point arithmetic. For
every example, we have generated 100 random test polynomials as in the above. In execut-
ing a modified Newton method, we set a threshold of the 2-norm of the “update” vector in
each iteration ε = 1.0 × 10−8; in C_con_mulpoly, we set the tolerance e = 1.0 × 10−8.

Table 1 shows the results of the test: m and n denotes the degree of a pair F and G,
respectively, and d denotes the degree of approximate GCD. The columns with “STLN”
are the data for the STLN-based method, while those with “GPGCD” are the data for the
GPGCD method. “Error” is the perturbation ‖F̃ −F‖2

2 +‖G̃−G‖2
2, where “ae−b” denotes

a × 10−b; “#Iterations” is the number of iterations; “Time” is computing time in seconds.
We see that, in the most of tests, both methods calculate approximate GCD with almost

the same amount of perturbations, while the GPGCD method runs much faster than STLN-
based method by approximately from 10 to 30 times. Note that, in contrast to the real
coefficient case [17], both methods have converged in all the test cases with the number of
iterations and sufficiently small amount of perturbations as approximately equal to those
shown as in Table 1.

5 Concluding Remarks

Based on our previous research [17], we have extended our GPGCD method for polynomials
with the complex coefficients.

Our experiments have shown that, as in the real coefficients case [17], our algorithm
calculates approximate GCD with perturbations as small as those calculated by methods



Ex. m,n d Error #Iterations Time (sec.)
STLN GPGCD STLN GPGCD STLN GPGCD

1 10, 10 5 3.72e−3 3.72e−3 4.48 4.43 1.79 0.15
2 20, 20 10 4.16e−3 4.16e−3 4.24 4.22 5.88 0.30
3 30, 30 15 4.33e−3 4.33e−3 4.54 4.48 14.29 0.58
4 40, 40 20 4.48e−3 4.48e−3 4.08 4.08 24.10 0.88
5 50, 50 25 4.63e−3 4.64e−3 4.05 4.12 39.19 1.36
6 60, 60 30 4.61e−3 4.61e−3 4.02 4.06 60.48 1.96
7 70, 70 35 4.82e−3 4.82e−3 3.90 4.02 84.51 2.66
8 80, 80 40 4.84e−3 4.84e−3 3.88 4.04 116.03 3.65
9 90, 90 45 4.79e−3 4.79e−3 3.85 4.01 151.27 4.66
10 100, 100 50 4.77e−3 4.78e−3 3.83 4.06 199.48 6.00

Table 1: Test results for large sets of polynomials with approximate GCD. See Section 4
for details.

based on the structured total least norm (STLN) method, while our method has shown sig-
nificantly better performance over the STLN-based methods in its speed, by approximately
up to 30 times, which seems to be sufficiently practical for inputs of low or moderate de-
grees. This result shows that, in contrast to their structure preserving method, our simple
method can achieve accurate and efficient computation as or more than theirs in calculating
approximate GCDs.

Our future research includes theoretical investigation of convergence properties, inves-
tigation for efficient computation in solving a linear system in each iteration by analysis of
the structure of matrices, generalization of our method to several input polynomials, and
so on.
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Abstract

Casimir forces arise from vacuum fluctuations. They are fully understood only
for simple models, and are important in nano- and microtechnologies. We report our
experience of computer algebra calculations towards the Casimir force for models in-
volving inhomogeneous dielectrics. We describe a methodology that greatly increases
confidence in any results obtained, and use this methodology to demonstrate that the
analytic derivation of scalar Green’s functions is at the boundatry of current computer
algebra technology. We further demonstrate that Lifshitz theory of electromagnetic
vacuum energy can not be directly applied to calculate the Casimir stress for models
of this type, and produce results that indicate the possibility of alternative regularisa-
tions. We discuss the relative strengths and weaknesses of computer algebra systems
when applied to this type of problem, and suggest combined numerical and symbolic
approaches towards a more general computational framework.

1 Introduction

Casimir forces result from zero-point vacuum fluctuations confined between two dielectric
materials [4]. Although these forces were predicted theoretically in the 1940s, empirical
evidence confirming the theory has only been obtained in recent years [3, 5, 7, 9, 11].
Casimir forces are important in nanotechnology and microtechnology: repulsive Casimir
forces can reduce friction in nano- and micromechanical devices, whereas attractive forces
can “glue” components together that are designed to be free-moving. Lifshitz theory [6] is
a theoretical approach to the calculation of Casimir forces, in which the Green’s tensor for
the electric field is used to derive electromagnetic stress and energy density.

The standard planar model is to have two plates, L and R, of uncharged dielectric
materials separated in the x direction by a few micrometers. The materials have permit-
tivities εL(x, iξ) and εR(x, iξ), depending on displacement and frequency ξ, which com-
pletely describe the media since we assume that there is no magnetic response (we enforce
μL(x, iξ) = 1 = μR(x, iξ) for the magnetic permeabilities involved). The gap between the
plates, C, is either a quantum vacuum or third dielectric with εC(x, iξ) equal to a constant;
we consider such a model to be homogeneous. For this model, and for variations of this
model that include moving plates [12], the Casimir force can be both calculated analytically
and measured empirically [1]. For extensions of this model involving more than two plates,
numerical methods can be used to obtain the Casimir forces for specific types of plate [10].

∗Correspondence to: Dr Tom Kelsey, School of Computer Science, University of St Andrews, KY16 9SX,
UK; +44 (0)1334 463249 or +44 (0)1334 463253



In this paper we consider inhomogeneous models where the permittivity of the central
region, εC(x, iξ), varies with x. The primary aim of the paper is to see which, if any, in-
homogeneous models allow the analytic derivation of their Casimir forces from calculations
performed in the widely-used computer algebra systems Maple (Waterloo Maple Inc., Lon-
don, Ontario, Canada) and Mathematica (Wolfram Research Inc., Champaign, IL, USA).
All computations were run on an Intel Xeon E5430 2.66GHz with 8 cores and 16 Gb mem-
ory, using Maple version 13.0 and Mathematica version 7.0 under CentOS 5. In particular
we explore the applicability of Lifshitz theory to inhomogeneous models. The Lifshitz reg-
ularisation process described in Section 2 was derived with homogeneous media in mind,
we therefore explore the possibility that this could be a confounding factor in attempts to
calculate Casimir forces in the inhomogeneous case.

In Section 2 we give the standard Lifshitz theoretic approach to deriving Casimir stresses
for homogeneous media, and discuss how these may be calculated using Maple and Math-
ematica. In Section 3 we describe our methodology for performing and checking similar
calculations for inhomogeneous models, and outline the strengths and weakness of the two
computer algebra systems. We present results that suggest that many, but not all, in-
homogeneous models can not be dealt with analytically using current computer algebra
capabilities. Section 4 contains our analysis of standard Lifshitz theory applied to the
model in which the central permittivity decays exponentially (εC(x, iξ) = ae−bx), together
with results that suggest that suitable alternative regularisations may be deriveable. In
Section 5 we discuss computational aspects, such as the limitations of existing computer
algebra systems, and the possibility of future numeric-symbolic approaches.

2 The calculation of Casimir stress in planar media

In this section we describe the mathematical and physical concepts involved in our compu-
tations, and present the sequence of calculations involved in determining the Casimir force
for planar models. A more detailed exposition of the underlying physics, together with full
derivation of the equations involved and descriptions of theoretic approaches other than
that of Lifshitz, is given in [1]. The resulting sequence of calculations can, in principle, be
done by hand, using symbolic computer algebra, via numeric techniques, or by a combined
numeric-symbolic approach. We report on our experiences of the second of these options in
Section 3.

Stresses on objects in electromagnetic fields are given by Maxwell’s stress tensor, in
which Ê and Ĥ are respectively the electric and magnetic fields, B̂ is the magnetic induction
and D̂ is the electric displacement.

σ̂ = Ê ⊗ D̂ + B̂ ⊗ Ĥ − 1
2
(Ê · D̂ + B̂ · Ĥ)I3 (1)

For stationary electromagnetic fields, the divergence of the Maxwell’s stress tensor gives
the force density f̂ ,

f̂ = ∇ · σ̂. (2)

The expectation values (also known as correlation functions) for the tensor products in
Equation (1) are related to the retarded Green’s function as follows:

〈Ê(r, t) ⊗ D̂(r′, t)〉 = − �

πc2

∫ ∞

0

dξε(r, iξ)ξ2G(r, r′, iξ), (3)



〈B̂(r, t) ⊗ Ĥ(r′, t)〉 =
�

π

∫ ∞

0

dξ
1

μ(r, iξ)
∇× G(r, r′, iξ) ×←−∇′ (4)

The notation ×←−∇′ denotes a curl on r′ in G(r, r′, iξ) from the right. G(r, r′, iξ) is the
retarded Green’s tensor for the vector potential in a Coulomb gauge, and is defined as the
solution of the following inhomogeneous electromagnetic wave equation

∇× 1
μ
∇× G(r, r′, iξ) + ε

ξ2

c2
G(r, r′, iξ) = δ(r − r′)I3. (5)

The Green’s function should always obey the reciprocity relation:

G(r, r′, iξ) = G(r′, r,−iξ); (6)

we describe our extensive use of this as a check for correctness of our calculated scalar
Green’s functions in Section 3.
We are considering planar dielectrics, for which the permittivity ε(r, iξ) = ε(x, iξ) and
magnetic permeability μ(r, iξ) = μ(x, iξ), i.e. depend only on the x-coordinate. The Green’s
function in terms of its Fourier transform in y and z is

G(x, x′, u, v, iξ) =
∫ ∞

−∞
dy

∫ ∞

−∞
dzG(r, r′, iξ)e−iu(y−y′)−iv(z−z′). (7)

The Fourier-transformed Green’s function G(x, x′, u, v, iξ) is given by the Fourier-transformed
wave equation:

∇× 1
μ(x, iξ)

∇× G(x, x′, u, v, iξ) + ε(x, iξ)
ξ2

c2
G(x, x′, u, v, iξ) = δ(x − x′). (8)

The Casimir force depends only on the xx−component of Maxwell’s stress tensor because
the force density is also independent of y and z. In the limit r → r′, the result for σxx is

σxx = − �c

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

u

(
1
μ

(w2 − ∂x∂x′)g̃Es +
1
ε
(w2 − ∂x∂x′)g̃Ms

)
dudvdκ |x′=x

= − �c

4π2

∫ ∞

0

du

∫ ∞

0

dκu

(
1
μ

(w2 − ∂x∂x′)g̃Es +
1
ε
(w2 − ∂x∂x′)g̃Ms

)
|v=0,x′=x, (9)

with

w =
√

u2 + v2 + εμκ2, κ =
ξ

c
,

g̃Es = g̃E − μg̃0, and g̃Ms = g̃M − εg̃0.

In Lifshitz theory, g̃Es and g̃Ms are the regularized electric and magnetic Green’s func-
tions (where regularisation involves subtraction of the the relevant divergent part). g̃0 is
the infinite contribution from the retarded Green’s function in a space with homogeneous
medium:

g̃0 = − 1
2w

e(−w|x−x′|). (10)

In summary, to obtain the Casimir force for a planar dielectric model, the sequence of
calculations is:



1. calculate the scalar Green’s functions – Equation (8) – for the permittivity of the
specific media under consideration (recalling the modelling assumption μ(x, iξ) = 1
described in Section 1)

2. perform the regularisation that removes the infinite parts from the above scalar
Green’s functions

3. solve the double integral – Equation (9) – to obtain the stress tensor σxx

4. the divergence of σxx is the theoretically predicted Casimir force – Equation (2).

In the homogeneous case all the calculations can be performed analytically using either
Maple or Mathematica, since ε(x, iξ) does not vary with x. Equation (8) reduces to

d2

dx2
g̃(x) − (u2 + v2 + εκ2)g̃(x) = δ(x − x′) (11)

where g̃ denotes either the electric or magnetic Green’s function, and in which none of the
left-hand parameters depends on x. The general solution involves trigonometric functions
and the Heaviside function; specific solutions are easily obtained from the boundary condi-
tions. The subtractions involved in stage 2 are also straightforward, again since neither μ
nor ε varies with x. The double integrals with infinite ranges produce finite results, since
the integrand converges to zero with increasing u and κ. Stage 4 is relatively simple. In
Section 3 we commence our analysis of how the computational details are affected when
homogeneity is no longer assured.

3 Specific inhomogeneous permittivity models

For a given model of the permittivity ε(x) and μ = 1 (no magnetic response), we first need
to find the scalar Green functions,

d2g̃E

dx2
− (u2 + ε(x)κ2

)
g̃E = δ(x − x′), (12)

d

dx

(
1

ε(x)
d

dx
g̃M

)
−
(

u2

ε(x)
+ κ2

)
g̃M = δ(x − x′). (13)

An intrinsic problem is the assessment of the validity of any results. The output from a
computer algebra system will consist of symbolic expressions, which can be evaluated as real
numbers for supplied values of the parameters involved. Empirical validation is not known
to be possible for all models, and is expensive, time-consuming and technically demanding.

Our solution is to constrain our results to be the same when solving from the left and
from the right. This is not a guarantee that any results obtained are correct, but it does
increase confidence and allows us to detect models for which analytic solution is intractable
using current computer algebra capabilities. Our methodology therefore is to perform the
calculations using two computer algebra systems (Maple and Mathematica) and to use the
reciprocity relations given in Equation (6). If the results from the two independent systems
coincide, and if the results are the same from either the left ’or from the right, then we have
a high level of confidence in their correctness.

For models such as ε(x) = 1 + e−x and ε(x) = x2 using Maple we find that the reci-
procity relations are violated in the magnetic case. Using Mathematica to perform the



Figure 1: The inhomogeneous model given by εL = 5, εC = 5 exp(−4/5x) and εR = 1. The
central part runs from x = 0 to x = log(a)/b ≈ 2.0118.

same calculations, we were unable to solve the equations analytically, and were therefore
unable to perform the reciprocity check. The difference between the two systems is that
recent versions of Maple contain an implementation of the use of Heun’s functions [8] to
solve ODEs. Heun’s functions are the solutions of the Heun form of 2nd order linear ODEs;
any such ODE can be converted into Heun form. Equation (12) is a linear 2nd order ODE,
so, in Maple, it can be converted to Heun form and solved directly, with perfect agreement
from the right and left directions. Equation (13) is non-linear, however. We can convert it
into a modified Heun ODE and obtain a solution in the form of the product of a Heun C
function and an exponential correction factor. There is a discrepancy between the left and
right solutions, which appears to be introduced when the correction factor is computed.
Unfortunately, we are never sure which, if either, of these results is correct, hence further
work is needed to correct the Maple implementation. Mathematica, on the other hand, has
no Heun ODE or function capabilities, and neither the linear nor nonlinear ODEs could be
solved analytically.

We have found only one permittivity model for which the scalar Green’s functions can be
derived analytically (i.e. without using any numeric calculation options) with the reciprocity
relations fully satisfied (Figure 1 is an illustrative example). This is exponentially decaying
permittivity,

ε(x) = ae−bx, for positive constants a and b, (14)

bounded on each side by homogeneous dielectrics.



For this case, the general solutions for g̃E and g̃M were found to be

g̃E = CE1Iν1(−λ) + CE2Kν1(λ) +
2
b
(Iν1(−λ)Kν1(λ′)

−Iν1(−λ′)Kν1(λ))Heaviside(λ − λ′),
(15)

g̃M = CM1λIν2(−λ) + CM2λKν2(λ)

+
bλλ′

2κ2
(Iν2(−λ)Kν2(λ′) − Iν2(−λ′)Kν2(λ))Heaviside(λ − λ′), (16)

where λ =
2κ

√
a

b
e−bx/2, ν1 = 2u2/b, ν2 =

√
1 + ν12, (17)

and in which the Cs are arbitrary coefficients determined by the continuity of

g̃E , g̃M ,
1

μ(x, iκ)
∂xg̃E , and

1
ε(x, iκ)

∂xg̃M (18)

at the boundaries, and I and K are the modified Bessel functions.
Two interesting computational aspects were encountered. Firstly, Mathematica does not

return solutions of the PDEs in terms of Bessel K function; it instead returns expressions
involving Gamma functions which are mathematically equivalent, but which are lengthy and
hard for humans to interpret. Secondly, intermediate Maple output suggested the variable
changes involving λ, ν1 and ν2 – Equations (17). These simplifying re-arrangements both
(i) greatly aid the efficiency of the remaining calculations, and (ii) helped us to interpret
and check the results. The calculations were therefore easier to perform in Maple than in
Mathematica, but, for this model, both systems returned the same results, from the left
and from the right, when evaluated as floats. We are therefore confident that our scalar
Green’s functions are exactly those needed for the Lifshitz regularisation process.

4 The testing of standard Lifshitz regularisation

Standard Lifshitz theory involves the subtraction of the contribution to the stress that
does not arise from material inhomogeneity. This is known to produce accurate (i.e. em-
pirically verifiable) results for the standard model where the gap between the two plates
is either empty or filled with a homogeneous dielectric. However, this approach is known
to result in an infinite Casimir force in models involving cylinders and spheres [2]. In cer-
tain cases an alternative regularisation has been found (but not always agreed upon by the
expert community), whilst for others the problem of calculating a finite stress using any
theoretical approach remains unsolved. For our model (exponentially decaying permittivity
for the central medium) we therefore expect to either (i) use standard Lifshitz theory to
calculate a finite Casimir force, (ii) derive an infinite force, with the structure of the results
indicating the possibility of alternative regularisation, or (iii) derive an infinite force, with
no clues on how to proceed.

Our results, displayed for illustrative parameter choices in Figure 2, indicate that the
for one of the wave parameters (κ) we obtain convergence to a finite integrand, but for the
other (u) the integrand diverges. Unfortunately, we can no longer consider κ and u to be the
respective x and y wave components, since we have performed a Fourier transformation.



Figure 2: The integrand of the stress tensor obtained from Green’s functions regularised
using Lifshitz theory. We use the conventions that the physical constants � = c = 1. The
central permittivity model is ε(x) = 5 exp(−bx). As κ increases, the integrand converges
to zero (left plot). As u increases, the integrand converges to a nonzero constant, the value
of which depends on the model parameter b but not on a (right plot).

Further investigation of the divergence shows that the constant nonzero value depends
neither on a or x, but only on b (Figure 3). Routine simplification, (setting x = x′) gives
the divergence constant DC for the stress tensor as a function of b:

DC ≈ −0.0036b2, (19)

This divergent behaviour leads to the prediction of an infinite Casimir force, which is
not a physically realistic outcome. However, the predictability of the amount of divergence
suggests that it may be possible to modify Lifshitz theory for this model, so that a plausible
finite Casimir force is predicted. Such as regularisation has recently been proposed [13],
with the resulting Casimir forces calculated using the methodology presented in this paper.

5 Conclusions

Our findings suggest that the calculation of scalar Green’s functions for arbitrary inhomoge-
neous media is at the boundary of the current capabilities of Maple and Mathematica. Using
Maple we can get satisfactory results for exactly one model, and believe we could increase
the number of such models if the modified Heun function implementation within Maple
were to be improved. Mathematica is less useful for these calculations, as no Heun function
implementation is present in the current system. However, we have successfully replicated
Maple results using Mathematica, indicating that the lengthy and complex Mathematica
expressions produced as intermediate output are completely correct.

We are highly confident that our scalar Green’s function calculations are accurate. In
addition to the approach described in Section 3, we split the Green’s functions into bare and



Figure 3: The integrand of the stress tensor obtained from Green’s functions regularised
using Lifshitz theory. We use the conventions that the physical constants � = c = 1. The
central permittivity model is ε(x) = 5 exp(−bx). Model parameters have been set as a = 5
and b = 4/5. We observe that for fixed b, the nonzero convergence value is the same for all
choices of x in the central region.

scattered parts, allowing us to derive the specific solution of the bare part using initial rather
than boundary conditions. The results of these calculations agree with those described in
this paper for both systems, and hence also satisfy out reciprocity constraints.

In Sections 3 and 4 we discussed the first two stages of Casimir force prediction using
Lifshitz theory. The third stage, a complicated double integration over infinite ranges, is,
in general, not computable analytically in either Maple or Mathematica for inhomogeneous
models. Instead, we substitute a realistically high finite value for the infinities and obtain
numeric approximations. For example, in the model presented in Figures 2 and 3 with
u = 150 the integrand has a magnitude of 10−13, descreasing to zero with increasing u.
Stage 4 is well within the capabilities of any decent computer algebra system.

Future avenues of research include (i) the testing of any proposed alternative regulari-
sation using our methodology of comparing results from two systems for both the the right
and left limits, (ii) the development of a combined numeric-symbolic framework that agrees
with the symbolically derived results presented here for the exponential model, and which
can be used to calculate Casimir forces for those inhomogeneous model that lie beyond the
current analytic capabilities of Maple and Mathematica.
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Abstract

Project Euclid and other repositories have assembled many millions of pages of dig-
itized mathematical literature. Our goal has been to make mathematical literature,
much of it published initially on paper over the last century, accessible via the World
Wide Web. This content, however, is relatively underutilized, since access has been
primarily conceived as a human activity — discovering and viewing particular works
of mathematical literature. We discuss here principles of the Semantic Web and best
practices from the Linked Data effort, and how they could be relatively easily imple-
mented within the mathematical community and large document repositories. Such
efforts would allow computers access to a large and rich store of data, with the ability
to infer relationships among documents. New user services could then be layered on
top of these capabilities.
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Abstract

Printed mathematical documents have many features which differ from text documents. These
features include two-dimensional structure, such as subscripts, superscripts, and scalable sym-
bols, such as minus, summation. Due to these features, the recognition of printed mathematical
documents becomes very challenging. In this paper, a support vector machine (SVM) classifier
is used to extract baseline information, which provides a basis for finding the two-dimensional
structure from printed mathematical documents. Experiments using very large databases show
high efficiency of the proposed method with the extraction accuracy reaching 99.25 %.

1 Introduction
Mathematical expressions are considered as an essential part in any scientific and technical doc-
ument. Recognition of mathematical expressions have two major steps. (i) Recognition of sym-
bols: each symbol is recognized using an OCR approach. (ii) Structure analysis: from the set of
recognized symbols and their bounding boxes, the expression is reconstructed by analyzing the
two-dimensional structure of the expression. A survey of past attempts on mathematical expression
recognition can be found in [1].

In this paper, we will mainly focus on the structure analysis step of mathematical expressions.
Many researchers have discussed the structure analysis step, starting with Anderson [2], where a
purely syntactic approach was introduced for parsing mathematical expressions. Okamoto and his
colleagues [3] used geometric information to find the structure of the expression. Twaakyondo
et al. [4] used two strategies, namely, top-down and bottom-up, to determine the structure of the
expression.

In past attempts, the evaluations have been carried out with respect to the total performance of
the system and, therefore, they have not evaluated the individual steps of the structure analysis. That
is, those past attempts gave neither qualitative nor quantitative analysis of the discrimination task ‡.
In contrast, this paper gives a solid ground to the structure analysis step through several evaluations
with very large databases.

In this paper, baseline information is extracted as a classification task for mathematical expres-
sions. Figure 1 illustrates the classification task. Baseline is a line containing only symbols which
are not vertically offset from other symbols. Hereafter, these symbols will be called baseline sym-
bols. For example, the expression “A2 + B1” has baseline symbols “A, ”“+, ” and “B.” In contrast,
non-baseline is a line containing symbols which vertically offset from baseline symbols. Hereafter,
these symbols will be called non-baseline symbols. For example, the expression “X2 + Y5” has
∗Correspondence to: 744 Motooka, Nishi-ku, Fukuoka-shi, 819-0395 Japan and Tel:092-802-3574, Fax:092-802-3600.
‡Moreover, in other attempts [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], the detail of the structure part is completely concealed as

a black box of a large math OCR system.
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Figure 1: Baseline/non-baseline classification problem.

Figure 2: Examples of mathematical expressions.

baseline symbols “X, ”“+, ” and “Y, ” and non-baseline symbols “2, ” and “5.” We will classify each
symbol into baseline and non-baseline as the most important step of structure analysis. In the fol-
lowing, all mathematical symbols, such as “∗, ”“∪, ” and “

∫
, ” and alphanumeric characters, such

as “A, ”“2, ” and “η, ” will be called symbols.
The classification task is not trivial. Figure 2 depicts several superscripts and subscripts in

various mathematical expressions. In the bottom example, it is difficult to distinguish non-baseline
characters “r” and “1 − r” from the baseline characters (e.g., “H”) by using only the offset. They
clearly show how difficult it is to extract baseline information.

Although baseline information is very important, there is only little related work, to the authors’
best knowledge. Zanibbi et al [15] is related to our work. They proposed a system to recognize
mathematical expressions by using tree transformation. In their system, they used a layout analysis
technique for discovering baseline information, but, unfortunately, they gave neither a quantitative
nor a qualitative analysis thereof.

The remainder of this paper is organized as follows: Section 2 describes the classification task.
Section 3 introduces the features used in the classification task. Section 4 shows experimental
results with very large databases. Finally, Section 5 derives a conclusion.



2 The Classification Task
Our task is the classification of each symbol into baseline and non-baseline class. In this task,
several features were used. These features include (i) basic features based on the height, width,
location, symbol type, category name, and entity name of the target symbol, and (ii) context features
based on basic features of the symbols around the target symbol. A SVM was used to determine the
class of each symbol.

The main contributions of this paper are two-fold: (i) showing high classification accuracy
through a very large scale experiment, and (ii) showing the importance of the context features and
symbol type for better classification.

3 Feature Extraction

3.1 Basic feature
For each symbol, we extract basic features to classify it into baseline and non-baseline. The basic
features include width, height, location, category name, entity name and symbol type. Each symbol
has a category name and an entity name. For example, symbol “γ” has category name “Greek” and
entity name “gamma.” The details about the category name and entity name can be found in [16].
The details for symbol types will be discussed below.

Note that we assume that the category of the symbol is given by some preceding symbol recogni-
tion method. This assumption is often acceptable because most mathematical OCRs are comprised
of two steps as noted in Section 1.

3.1.1 Symbol types

A type is estimated for each symbol according to its occupation of three regions called the X, Y and
Z regions. Figure 3 shows these regions. Region X is equivalent to the ascender part and region
Z is equivalent to the descender part. Note that the specification of those regions are detailed in
Section 3.1.2.

Estimation of type is very important to describe the variation in symbol sizes. For example,
character “A” has type X and Y and character “a” has type Y. The estimation of types for mathe-
matical symbols has no previous published literature, to the authors’ best knowledge. All the past
attempts have estimated only the types of alphanumeric characters. Characters are classified into 4
types according to ascender and descender parts.

To cover all the variation in symbol sizes, each of the X, Y and Z regions is divided into 4 sub-
regions and, therefore, we have 12 regions. For example, in Fig 3, the symbol “ − ” occupies 0.25
of the Y region, the symbol “ ∈ ” occupies the full Y region, the symbol “ ∩ ” occupies the full Y
region and 0.5 of the X region, and the symbol “

∫
” occupies all of the X, Y and Z regions. In the

proposed method, we have 24 symbol types as a different combination of 12 regions.
To estimate the type of symbol “ ∪ ” in Fig 4, the top and base of the Y region of the mathe-

matical expression which included this symbol are first calculated using all the characters in this
expressions; it is equal to the average of top and base of each individual character in the expression.
For example, the base for character “A” is equal to its leftmost bounding box and its top can be
calculated by subtracting this base value from the Y height. Then, the type is estimated according
to these top and base values. Symbol “ ∪ ” in this expression has type “X + Y + 0.5Z.”



,-. /. 012,3. 3. 31,-. /. 012,4. 3. 41

�

, 1 , 1, 1 , 1

�
�

��

,- / 012,4 4 56 41 , 1 , 1,-. /. 012,4. 4756. 41 ,-. /. 012,476. 3. 41

Figure 3: X, Y, and Z regions.

Figure 4: Example of the type for symbol “ ∪ .”

3.1.2 Specifying X, Y, and Z regions

On setting the types for each symbol, we must know the height of the X, Y, and Z regions. In order
to calculate the X, Y and Z heights of a document, the heights of the X, Y and Z for each baseline
character of a document are first measured. At the measurement, we need to refer to its entity (i.e.,
recognition result). For example, if the entity name of a character is “A,” the height of the X and Y
regions are measured. Then the measured heights are averaged to calculate the X, Y and Z heights
for all the baseline characters of the document. Note that the X, Y and Z heights are different in each
document.

The X, Y and Z heights for non-baseline characters is also estimated in the same way. This is
because they often have their own X, Y and Z heights (which is slightly different from the X, Y and
Z heights of the baseline characters) due to their own font shapes §.

3.2 Context features
Although basic features are important in the classification task, they are insufficient for some cases.
For example, the symbols in Fig. 2 can not be classified directly using only basic features; the non-
baseline symbols are closer in their height and position to baseline symbols. The features of the
§Readers may be confused by the fact that we need to discriminate between baseline characters and non-baseline char-

acters for estimating their own X,Y and Z heights during the process toward our final goal, i.e., the classification task. For
this discrimination we used a predetermined X,Y and Z heights which is calculated from all characters contained in the
database. Of course, the result from this discrimination includes some errors. These errors do not affect the estimation
seriously because we use the average of the heights.
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Figure 5: Example of context symbols for the target symbol “n.”

symbols around the target symbol is very important in these cases. These features are called context
features. Figure 5 shows the context symbols for symbol “n.”

Context features are very important in the classification task; especially for mathematical sym-
bols such as “−, ”“+, ” and “ ∗ .” The basic features cannot classify these mathematical symbols
exactly; their basic features overlap in baseline and non-baseline classes and, therefore, we used
context features. These features include basic features for the symbols around the target symbol.
As will be shown in the experimental results, these context features affect the classification accuracy.

4 Experimental Results

4.1 Database
The classification task was conducted on 229,898 target symbols. This huge number of symbols was
extracted from two large databases, InftyCDB-1 [16, 17] and InftyCDB-2 [18], which together con-
sist of 65 English articles (published between 1949 and 2000), 4 French articles (published between
1974 and 1988), and 7 German articles (published between 1956 and 1987) on pure mathematics.
The total number of pages in the databases is 908.

To the authors’ best knowledge, these databases are the largest of those used in past attempts on
the classification task. For example, they are larger than the database used in [19], which consists
of 297 pages. Such large databases are well suited to derive general properties of mathematical
expressions and thus also suited to design the classifier for the baseline information.

All the mathematical expressions in the database were used, except matrices and fraction ex-
pressions. In these two types of expressions, the size of font is often very irregular and thus they will
distort our results. Matrices and fraction expressions can be detected easily and treated separately
from other mathematical expressions.

4.2 Classification accuracy
We used a binary SVM classifier to classify symbols into baseline and non-baseline symbol. To
classify symbols, SVM determines a hyperplane which separate the two classes with maximum
margin between the the vectors of the two classes. More details about SVM can be found in [20].
We use the LibSVM software [21] to train SVM classifiers. We construct SVM with linear kernel.



Table 1: Classification rate(%).
Category Without context features With context

name without type with type features
Accent 93.39 90.80 96.23
Arrow 95.84 96.00 99.20

Big-symbols 99.93 99.93 99.70
Characters 97.80 99.29 99.42
Numeric 97.71 98.30 99.42
Operator 93.43 93.51 98.57
Others 89.66 91.56 96.92

Parentheses 96.69 99.72 99.60
Point 92.69 98.42 99.65

Average of accuracy 94.98 98.04 99.25

Figure 6: Example of misclassified symbols.

In the following table, we used 5-fold cross validation for the evaluation of the accuracy. The
accuracy rate is evaluated for each category. We have 10 categories in the proposed method.

Table 1 shows the accuracy rate without using the context features. The accuracy rate is low
in this case. From this table, we notice the effect of using symbol types in basic features as the
accuracy rate is increased from 94.98 % to 98.04%.

Table 1 shows also the accuracy rate using the context features. The accuracy rate is increased in
this case. From this table we notice that the effect of context features varies according to the category
type. For example, the operator category is affected very much by the context features; its accuracy
rate increased from 93.51 to 98.57 % when using the context features; its baseline classification
depend on its preceding and succeeding symbols. In contrast, the parentheses category was not
effected by the context features; its baseline classification does not depend on its preceding and
succeeding symbols. This table shows the importance of using context features as the accuracy rate
reached 99.25%. This accuracy rate was achieved with context of one symbol before and one after
the target symbol.



Figure 6 shows an example of misclassified symbols in Table 1. A closer investigation of the
misclassified symbols revealed that, (i) most of them occur in only two documents; these documents
have a very special format. For example, the baseline parentheses in the first expression and the
baseline symbol “ρ” in the second expression have very small height and they will be classified as
non-baseline class. (ii) Some errors are due to the irregularity of symbol and characters. The details
of irregular symbols and characters are found in [22]. For example, the baseline “0” in the third
expression has very small height and it occupied Y region which differs from other files; normally,
numeric symbols occupy X and Y regions. (iii) Some errors due to some symbols such as “−, ” and
“∗; ” these symbols have often difficult characteristics. For example, the non-base symbol “ ∗ ” in
the last expression has large height and low position and will be classified as baseline symbol.

5 Conclusion
In this paper, each symbol is classified into baseline and non-baseline classes. To deal with the large
variation of symbol sizes, the symbol type and the context features were used. A SVM classifier
was used to classify each symbol into baseline and non-baseline class.

The performance of the classification task over very large databases is very high as it reached
99.25%. In this task, we emphasize the importance of both the symbol type and the context features
to improve the performance.
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Figure 8: Angle between the child and its candidate parents.

Appendix

A Determine the parent of each child using SVM and baseline
information

A.1 Outline
An SVM classifier also can be used with the baseline information to determine the parent of each
child. For example, in Fig 7 symbol “ε” will have symbol “3” as parent from candidate parents.
Selecting the parent for each symbol and the baseline information are important to specify the
special relationship among symbols, the details about the special relationship can be found in [22].

The selection of the parent for each child from the candidate parents is done by the following
steps. The symbols of mathematical expression are first ordered according to the leftmost bounding
box. Then, the type of each symbols is estimated; the details about symbol types can be found in
Section 3.1.1. After that, a normalized bounding box is evaluated for each symbol. The details
about the normalized bounding box can be found in [22]. After that, the angle between the center of
the normalized bounding box of the child and the center of the normalized bounding box for each
symbol in the expression is calculated. Then, the first symbols, which satisfy the angle condition
as illustrated in Fig 8, are selected as candidate parents. After that, the features are extracted from
the child and its candidate parents. Finally, the SVM with quadratic kernel is used to select the
parent for the child among 7 candidates (at most). Experiments using very large databases show
high efficiency of the proposed method with the extraction accuracy reaching 98.54%.



Table 2: Classification rate(%) .
basic features only 98.47

with baseline 98.48
with angle 98.47
with H,D 98.49

with baseline and H,D 98.54

A.2 Feature extraction
We will divide features into basic features and additional features. Basic features include width,
height for child and height for each of the candidate parent, and the horizontal distance between the
child and each of the candidate parent. Additional features include baseline information for child
and candidate parents, the angle between the child and the candidate parents, and relative size H
and relative position D features. The details about H,D features can be found in [22].

A.3 Evaluation by cross-validation
An SVM classifier is used to select the parent of each child. In the experiment we have 187,415
children. We construct SVM with polynomial kernel with degree “2.”

In Table 2, we used 5-fold cross validation for the evaluation of the accuracy. The accuracy rate
is evaluated for each category. We have 10 categories in the proposed method. In these experiments
we exclude all accent symbols because they have different characteristics which will confuse the
classification task.

Table 2 shows the effect of using additional features in the proposed method. This table proves
the importance of using baseline information and H,D features as the accuracy improved to 98.54%.
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Abstract

A review is given of the Audio/Tactile/Visual method for making graphical infor-
mation universally accessible to all people including those who are blind or dyslexic
or have other severe print disabilities. Current research is described for improving the
Scalable Vector Graphic (SVG) format as well as SVG authoring and viewing software
to make SVG amenable to excellent usability by all people.

1 Introduction

1.1 Brief Overview of information accessibility

Until a few decades ago, printed pages were synonymous with “information”. Today infor-
mation is understood in a much broader context. It is more and more likely to be delivered
electronically even if still available in print. Electronic plain text is easily accessible to
virtually every person who is capable of using a computer, and that is almost everybody.
Screen reader software, good speech engines, and on-line braille displays make computers
usable by people who are blind or have other print disabilities. Other software enhance-
ments and hardware adaptations make them usable by people with virtually any physical
disability. So “making information accessible” seems less and less necessary.

Unfortunately, plain text is not all there is to “information”. Scientific information in-
cludes equations, and graphical information is ubiquitous. Math and graphics are not yet
automatically accessible to computer users with print disabilities. Math presents a different
accessibility challenge than does plain text. Math in electronic documents is often pre-
sented as an image that can be made automatically accessible only if there is an image ALT
attribute. For example, Wikipedia (http://www.wikipedia.com) has the LaTeX equivalent
of math expressions in the ALT attribute. This ALT attribute is spoken by screen read-
ers, so Wikipedia math is more or less accessible. LaTeX source code is human-readable,
but MathML source code is not. There have been studies of how to speak math both
understandably and unambiguously [1] and a number of computer applications have been
developed that present LaTeX [2,3] or MathML [4,5] in spoken, browsable audio. Some also
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can, at least in principle, present math equations in braille math codes on a braille display.
Unfortunately most math is still published either as images without ALT attributes or in
(inaccessible) PDF format.

Accessibility of graphical information presents an even more daunting challenge than
math. Written descriptions of graphics have often been included in materials intended
for people with print disabilities, but word descriptions are seldom as informative as the
graphic. “A picture is worth a thousand words”.

For some blind people, a tactile copy of a graphic can often provide as much information
as the visual graphic does to sighted readers. Caveats are

• The graphic cannot be extremely complex since tactile access can never match vision
for discerning small details.

• the blind person must generally be a good braille reader to read the text labels on
the tactile graphic.

• the blind person needs to have learned how to interpret tactile graphic objects, a
learning experience that is neither fast nor easy.

• the tactile graphic has been converted by translating text labels to braille and simpli-
fied when necessary to make the graphics amenable to tactile understanding, a process
that can only partially be automated and requires a trained transcriber familiar with
both tactile graphics techniques and the subject matter of the graphic.

Unfortunately, most blind people do not read braille, and many fewer have had any
significant experience with tactile graphics. Since few blind people can understand tactile
graphics, there is little incentive for transcribers to spend the time and money required to
produce them. Consequently there are few examples for blind people to use to learn... - a
classical chicken/egg problem.

1.2 Audio/visual/tactile graphics presentation technologies

About three decades ago, Prof. Donald Parkes [6,7] introduced a hybrid technique that com-
bined audio and tactile information. A tactile graphic was mounted on a touch-sensitive pad
connected to a computer. When a blind reader pressed on a point of interest, information
was spoken by the computer. If the audio information was sufficient, most blind users could
quickly learn to understand well-authored graphics. There have been no good studies of
the subject, but conventional wisdom holds that elegant, well-organized graphics that are
easy for sighted readers to grasp are usually also easy to read by audio/touch. Conversely,
complex confusing graphics are confusing for all readers.Despite its obvious advantages, the
audio/tactile method did not become broadly popular because the components were expen-
sive, tactile graphics were difficult to make, and transcribers had a large learning curve to
become competent to prepare the special computer information maps needed to correlate
with “hot spot” positions on the graphic.

The Oregon State University Science Access Project (SAP http://dots.physics.orst.edu)
took on the challenge of resolving these problems. The SAP was formed in 1990 to develop
new information technologies that make possible universal information access. A major
part of its mission was to ensure that mainstream graphical information could be created
and distributed in a form that, like text and MathML math, is automatically accessible.
The premise was that the electronic graphics file could be both the visual representation



and the audio computer map used for audio/tactile access and that tactile copy could be
generated directly from the visual graphic without human intervention. Initial research [8]
focused on the Virtual Reality Modeling Language (VRML), the only mainstream graphics
language at the time even remotely capable of such use. When Scalable Vector Graphics
(SVG) was developed by the World Wide Web community, the SAP immediately recognized
its potential and adopted SVG as the language of universally usable graphics. It proved
to be a good choice. This research topic eventually moved to the spin-off company View-
Plus Technologies, where accessible SVG was introduced in 2005 as the ViewPlus IVEO
technology [9].

1.3 Refreshable Tactile Graphics Displays

Audio/touch access would be most convenient if a user had a good on-line refreshable tactile
graphics monitor. Unfortunately there is still today no practical refreshable tactile graphics
technology capable of representing general mainstream graphics. Pin matrix devices (PMD)
[10] are technically feasible, although they are too expensive for any but specialty use. A
PMD has pins that can be pushed up by solenoids or piezoelectric actuators, generally with
pin resolution below 10 dpi (dots per inch), and always having only the binary possibility
of pins pushed up or not pushed up. A PMD can sometimes usefully represent black and
white line and block diagrams but not most modern color graphics. Presently there are two
small commercially-available PMD’s (http://www.kgs-jpn.co.jp) with resolution below 10
dpi and priced in the $10,000 price range. A German consortium [11] plans to introduce an
A4 size PMD in the near future but has not announced the price.

Many research programs have been undertaken to develop better refreshable tactile
technologies, and most have failed. A Chemistry research group at Pennsylvania State
University may be succeeding. They have demonstrated prototype braille actuators [12]
based on thin film piezoelectric polymers that could be used to make a modest-cost large
scale tactile graphics display. The display is projected to have resolution better than 10 dpi,
to have controllable dot height, and to be ready for commercialization within five years.

Dot height control is critical, because it enables height to be used as the tactile rep-
resentation of intensity. Any graphic image that is visually understandable in gray scale
is tactually understandable if dark regions are represented by tall dots and light regions
by low dots. The only common graphical information for which a gray scale image is in-
adequate are such things as color-coded bar/column graphs and Geographic Information
System (GIS) images. These color images can easily be made tactually distinguishable with
a user option to represent colors as patterns.

1.4 Off-line Tactile graphics

Ten years ago it was possible to make tactile graphics on paper with “graphics mode”
braille embossers or by using “capsule paper” [13]. Embossed tactile graphics could only
be made using special proprietary software and typically had resolution approximately 10
dpi. These tactile graphics were useful only for low resolution line and block diagrams.
Alternatively one could print or copy onto capsule paper and process it through an infra-
red heater causing black areas to rise. Higher resolution tactile graphics could be made
this way, but the tactile images were still useful only for line and block graphics. Clearly,
neither of these technologies was adequate for general transformation from mainstream to
tactile form.



In 1996 SAP student Peter Langner invented a new high resolution embossing method
[14]. ViewPlus Technologies was spun off to commercialize his invention along with other
SAP-developed technologies. Langner’s method was eventually expanded into the TIGER
(Tactile Graphics EmbosseR) technology which was introduced commercially in 2000 and
is a feature of all ViewPlus embossers. Tiger embossers have resolution of 20 dpi (which
is beyond the static resolution of the average human finger), can emboss with eight dot
heights, and have standard Windows printer drivers permitting them to emboss from any
Windows application. By default, images are embossed in a tactile gray scale in which
dark regions have big dots and light regions have small dots. There is a user option to
replace colors by user-defined tactile patterns, and a user option for automatic generation
of patterns will be introduced soon. Consequently nearly any mainstream image will emboss
so that features are recognizable by touch. Of course additional audio information is needed
for most of these tactile graphics to be understandable.

Figure 1 shows one author (JG) using IVEO Viewer to examine a periodic table. Figure
2 shows a typical GIS IVEO image of cancer statistics, and Figure 3 shows the dot pattern
when that image is embossed on a Viewplus embosser.

2 Current state-of-the-art

2.1 The ViewPlus IVEO Viewer

The IVEO Viewer, which may be downloaded free from the ViewPlus web site, is a SVG
viewer with special features making it appropriate for audio/braille/visual/tactile access
to SVG graphics. A sighted user may mouse click to select text labels and hear them
spoken. Selecting graphical objects causes their titles (contained in the object’s SVG Title
property) to be spoken. Double clicking causes the object’s description field to be spoken. It
is also possible to display the title of the full graphic and its description property in audio.
The viewer permits normal SVG actions such as panning and zooming, all of which are
accessible to a blind user. It has a search function for object titles and many other features
that enhance access. A tactile copy may be obtained easily by printing to any ViewPlus
embosser. A blind user would normally place this tactile copy on a touchpad or clamp it to
a digital pen transceiver and then access the same information that sighted users obtain by
clicking with a mouse. If the image is panned or zoomed, the new image may be embossed
so the blind user can access the changed image. Graphics embossing typically requires 20 to
200 seconds depending on the embosser used and the size of the image. This “semi-on-line”
access is less convenient than a refreshable tactile monitor but any blind person can use it
without sighted assistance and get access in real time.

IVEO Viewer has a status bar whose font size is user-controllable. It permits people
with reduced hearing and vision to optimize access by reading the text while it is being
spoken. The status bar can also be displayed on an on-line braille display, making all audio
information also accessible as braille. All spoken information may be browsed/reviewed by
opening a review window. These features combine to provide maximum opportunity for
anybody to understand the graphical information by using whatever combination of audio,
braille, visual, and tactile modes is most useful.



Figure 1: Picture of John Gardner using IVEO Viewer to read the periodic table of the
elements with a touchpad for input. The ViewPlus Emprint color embosser is also shown.

Figure 2: GIS display of total cancer mortality in the US.
http://cancercontrolplanet.cancer.gov:8080/atlas/index.jsp



Figure 3: The dot pattern obtained when Figure 2 is printed to a ViewPlusR© embosser.
Dark dots represent big dots, light dots represent low dots.

2.2 Authoring accessible SVG Images

Adobe Illustrator, CorelDraw, MS Visio, and most other popular graphics authoring ap-
plications permit one to save-as-SVG. However the saved SVG file is minimally accessible
to a blind person. The ViewPlus IVEO Creator and Creator Pro applications are needed
to make SVG fully accessible. Either can open SVG files created by other applications.
Creator Pro also permits one to import PDF, PostScript, bit map images, or to scan paper
copy with a standard scanner. It also has a pseudo-printer feature permitting one to create
SVG from any Windows application that can print. Creator Pro uses OCR to convert
bit-mapped representations of text to proper SVG text.

The Creator applications permit users to improve text labels to make them optimally-
accessible and to add titles and descriptions to the SVG file and to individual graphical
objects. Not all semantically-meaningful portions of an SVG image are proper SVG objects.
For example, a bit map imported into SVG is still a bit map and is the only SVG object in
that image. Creator permits users to create invisible overlay objects so that any portion of
the SVG image can be made selectable and given a title and description.

In principle SVG text labels should be automatically accessible, but in practice, they
frequently are not. When one selects text, an entire span is selected and is spoken by
IVEO Viewer. When a SVG file is authored in an IVEO Creator application or when non-
SVG image is imported, most text is automatically gathered into semantically-appropriate
spans and spoken properly. Most other authoring applications create SVG files in which
semantically-meaningful phrases are either broken into several text spans or dumped into a
span containing other text. Such text is often not understandable when selected and spoken
in IVEO Viewer. Presently, human editing is required to repair it.



Scientific documents present even more serious difficulties in making text accessible.
Greek characters, advanced math symbols, and other special scientific characters are gener-
ally put into separate spans by authoring applications. Sub- and superscripts are placed in
individual spans. One can select and read these characters, but each Greek character, each
superscript, and each subscript must be individually selected and read. Presently, human
editors can improve accessibility of scientific text labels by pasting invisible overlays on
equations and putting a word description of the equation into the title property.

3 Current Research on Improving SVG Accessibility

3.1 Improving accessibility of SVG text

Intelligent processing is required even for plain text in SVG authored with most applications
if meaningful phrases are to be spoken when text is selected. It is possible in principle but
difficult in practice to reconstruct plain text spans in an arbitrary SVG file. It is not even
possible in principle to encode general math or scientific expressions with the very limited
text structures presently permitted by SVG. Even if SVG was adequate, speech engines
cannot speak such expressions. Both of these text problems can be eliminated elegantly by
expanding the file format to permit plain text and general XML expressions to be associated
with regions of the graphic. Thus it would be straightforward for an intelligent processor
to create a text rendering for any plain text expression and associate it with the bounding
box of that expression on the graphic. It is also possible to create a MathML rendering of
a scientific expression and associate it with the position of that expression. An accessible
viewer could then select and speak these expressions instead of whatever formal SVG text
span is actually chosen.

The Infty group (http://www.inftyproject.org) and ViewPlus are working together to
create the technologies needed to make these improvements. The Infty Reader math Optical
Character Recognition) (OCR) application can recognize math expressions and transform
them to either LaTeX or MathML with excellent accuracy. Their joint research is directed
toward improving the IVEO Creator Pro application to add MathML to scientific SVG
files. The improved software will also ensure that plain text labels on SVG graphics will be
spoken properly.

IVEO Viewer will also be expanded by including the math-speaking algorithm from
the ChattyInfty accessible math editor. ViewPlus will localize the routine to all languages
in the worldwide ViewPlus market and consequently enhance the reach of IVEO and the
ChattyInfty application.

3.2 Improving Accessibility of SVG Graphics

At present, humans must input information into the title and description properties of
graphical objects. The need for graphics annotation is the single most difficult problem
preventing graphics from being automatically fully accessible. Human input may forever be
required for some types of graphical information, but there are several ways that annota-
tions can be included automatically in more abstract information such as charts, diagrams,
and GIS displays. For the near future, IVEO Creator capabilities enhanced by future Infty
developments can increase accessibility of some types of graphical objects. The new In-
fty/IVEO Creator will be gradually improved to recognize graph axes, plain lines, dotted
lines, dashed lines, open and filled data points of various shapes, etc.



More complete graphic object annotations can be included automatically by well-designed
additions to charting/graphing authoring applications. Data set names, fitting curves nota-
tions, and other derived quantities can be given meaningful names by authors and be saved
automatically in the title properties of objects representing these quantities. Both the ac-
cessibility and usefulness of electronic images can be greatly enhanced if the underlying
data are also saved and correlated with position on the graphic. Such capabilities require
further extension of SVG to add appropriate data namespaces. ViewPlus is presently mak-
ing software to save in such extended SVG formats from ESRI GIS authoring software,
Mathematica graph authoring applications, MS Excel charts, and its own Audio Graph-
ing Calculator application. If all such graphical authoring applications eventually have the
capability of saving in such formats, universally-accessible graphical information will no
longer be a dream.

3.3 DAISY activities to extend SVG

DAISY (Digital Accessible Information SYstem http://daisy.org) is a consortium of non-
profit libraries and agencies serving needs of people who are blind, dyslexic, or who have
other disabilities preventing them from reading normal print. DAISY has developed stan-
dards including an XML format for accessibility that is a superset of the popular EPUB
electronic book specification, but it originally could not represent either math or graphics
accessibly. One author (JG) was a member of a DAISY Working Group that developed
a MathML extension that could make math accessible. It was formally adopted as part
of DAISY XML in 2007. In that year the DAISY consortium formed an Accessible SVG
Working Group and asked ViewPlus to join it to assist in developing authoring guidelines,
to refine SVG by defining attributes promoting accessibility, and to extend SVG with addi-
tional DAISY namespaces when necessary. The Infty group has now become active in this
arena and has joined the SVG Working group too. Most of these new specifications should
be useful for many mainstream purposes, because they improve accessibility for everybody
and additionally make images much more searchable and classifiable.

In addition to their collaboration in extending SVG, ViewPlus and Infty are both active
in DAISY projects of their own. Infty is working to make their Infty software DAISY-
compatible. ViewPlus has two DAISY related projects underway that are proving to be
both a fertile source of ideas for DAISY SVG developments and an excellent testing ground
for their usability. One is a ViewPlus collaboration with a group headed by the American
Physical Society (APS)[15]. The goal of that collaboration is developing infrastructure so
APS can publish its journals in DAISY format. The second is an ambitious project to
develop universal DAISY curricula for kindergarten and elementary schools.[16]. Together,
the two projects demonstrate use of DAISY from kindergarten to roket science.

Some of the new DAISY attributes are very specific to the needs of DAISY agencies.
These specific attributes mostly focus on possibilities for creating tactile images independent
of the visual image. For example a contour tactile image of a face could be created by an
artist but cannot presently be reliably computer-derived from the visual image.

More general DAISY attributes include several that permit objects to be grouped into
categories such as countries, states/provinces, large cities, capital cities, etc. on a North
America map. DAISY levels are independent of SVG object parent/child structure. This
is a major advantage since one can impose DAISY structure easily on essentially any SVG
image. Restructuring the SVG itself is often very difficult.

DAISY is also adding additional namespaces to extend the information beyond what can



be included in standard SVG. Standard SVG has a single title and description property for
the file and for individual graphical objects, and these may contain plain text only. This is a
severe restriction for scientific graphics. For example it would be desirable for the SVG file
description property to contain the figure caption. Presently this is not possible, because
scientific figures frequently have math and other nonstandard text characters in the caption.
With DAISY additions, the file, individual graphical objects, and text fields all now have
an unlimited number of description fields capable of containing XML information. XML
information may also be associated with arbitrary regions of the graphic, and quantitative
data may be included and associated with regions of the graphic. These new namespaces
are necessary for the information that will be included by the ViewPlus/Infty collaborative
development and by the “save-as DAISY SVG additions under development by ViewPlus.
Many of these new features will be incorporated into either the American Physical Society
DAISY SVG images or the ViewPlus DAISY curricula.

None of these expansions affects the display of SVG in current mainstream SVG viewers,
but they permit special ones like IVEO Viewer to provide much improved accessibility. It
is likely that mainstream users will eventually adopt a specialty viewer or that mainstream
viewers will expose at least some of the additional DAISY information. When APS journals
begin to include the actual data in a significant number of the images, scientists will certainly
use software that permit them to extract these data and use it in different models, to
compare with similar experiments, etc. This is the most obvious new capability that make
accessible figures of immediate interest to mainstream readers.
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Abstract

We present an approach to recognize handwritten characters independently of their
orientation. The method is based on the theory of integral invariants and yields good
results in classifying rotated samples. We propose two recognition techniques taking
advantage of integral invariants up to second order. Truncated Legendre-Sobolev series
are used to represent the invariant functions and recognition is based on proximity to
the local convex hulls of known classes. We compare performance of these new methods
with another widely used recognition method based on geometric moment invariants.
The results obtained indicate that integral invariants give better recognition rates with
less computation, confirming they are suitable for classification of rotated handwritten
characters in a pen-based environment.

1 Introduction

We are interested in robust methods for the recognition of handwritten mathematical sym-
bols. We view the trace of the symbol, as it is written, as a two-dimensional curve made
up of a number of continuous segments and treat recognition as a classification problem.
This subject of classifying two-dimensional parametric curves has been gaining importance
in recent years. Moreover, mathematical handwriting recognition has received increasing
attention with the popularity of hand-held mobile and digital tablet devices [1]. In this
setting the accuracy and speed of an online character classification algorithm is important.

There are a number of factors that give the recognition of mathematics additional chal-
lenges beyond that of normal text recognition. Among these, we can observe the relatively
large “alphabet” of similar looking few-stroke symbols. It is normally the case that sym-
bols tend to be well isolated. There is no fixed dictionary of multi-symbol “words,” but it
is possible to identify expressions that occur more often in particular fields [2]. In addi-
tion, mathematical expressions are two-dimensional objects and the placement of symbols
is important in contextual analysis [3]. Character classification algorithms for handwritten
mathematics recognition therefore need special consideration.

It has been shown earlier how to classify a curve represented by truncated expansions
of its coordinate functions in orthogonal bases [4, 5, 6, 7, 8]. Different bases have been
considered, including Chebyshev, Legendre and Legendre-Sobolev bases. Most recently,
attention of this research program has focused on Legendre-Sobolev series. These are easy
to compute and provide an useful distance measure in the first jet space, taking derivatives
into account. Test results confirm that this technique is indeed effective and allows to
achieve 97.5% recognition rate.

We now address the problem that the recognition rate may be undermined by the vari-
ation in orientation of individual symbols. This may be more of a problem when symbols
are written in a well-separated manner than when text is written cursively. Orientation
variation is usually addressed by “de-slanting” symbols with a transformation on the coor-
dinate space. One difficulty with this approach in a mathematical handwriting setting is



Figure 1: Rotation of a symbol

that different characters may require different correction and the degree of correction is not
known in advance. With mathematical handwriting, it can be difficult to detect dominant
orientation from symbol features.

Different solutions have been proposed, usually dealing with ad hoc rotation of a char-
acter after it is completely written (Figure 1). This rotation, as well as symbol resizing,
are performed during a normalization stage in most of the online techniques. We propose
a different approach: rather than rotating a sample by some estimated amount, we com-
pute from the sample certain functions that are invariant under rotation. We ask to what
extent these transformations affect the classification rate and present new algorithms for
classifying symbols in the presence of such transformations. We consider methods using
classification with integral invariants (CII) and classification with coordinate functions and
integral invariants (CCFII). For these we use the theory of integral invariants of parametric
curves [9]. To objectively evaluate recognition rate of the proposed techniques, we compare
to a similar algorithm that uses geometric moment functions for the rotation-independent
classification. We call this last method classification with coordinate functions and moment
invariants (CCFMI).

In our methods, curves are represented as points in a vector space formed by the co-
efficients of their approximating truncated Legendre-Sobolev series. For CII, we take the
integral invariants as the curves to be approximated and look for nearest classes in a manner
we describe below. For CCFII, the top N classes are selected with integral invariants, then
the sample is rotated to determine the angle which gives minimal distance based on coor-
dinate curves. The CCFMI method is similar to CCFII except that it computes geometric
moment invariants to obtain top N candidates. The proposed algorithms are online in the
sense that most of the computation is performed while the sample is written, with minor
overhead after pen-up. The algorithms are as well independent of translation and scaling,
which is achieved by dropping the constant terms from the series and by normalizing the
coefficient vectors, respectively.

This paper is organized as follows. In Section 2 we summarize the theory of integral
invariants as applied in our algorithms. In Section 3 we outline concepts of geometric
moments and give examples of moment invariants. Algorithms based on integral invariants
are described in detail in Section 4. In Section 5 we present the CCFMI algorithm, relying
on explanations in Section 4. Experimental settings and performance comparison are given
in Section 6. In the conclusion we discuss causes of misclassification and outline directions
for improvement of the proposed methods.

2 Integral Invariants

Integral invariants provide an elegant approach to planar and spatial curve classification
under affine transformations. In terms of handwriting recognition, a symbol is given as
a parameterized piecewise continuous curve defined by a discrete sequence of points. For
a symbol we compute certain integral quantities from the coordinate functions, which are



Figure 2: Geometric representation of the integral invariant of the first order

Figure 3: Ambiguity, introduced by shear and rotation

then also functions of the curve parameterization. Exposing the sample to transformations
results in the same invariant functions. As opposed to differential invariants, such integral
invariants are relatively insensitive to small perturbations, and are therefore applicable to
classification of handwritten characters with sampling noise.

As the name suggests, integral invariant functions are constructed from quantities ob-
tained by integration. We consider the following invariants, defined in terms of the coordi-
nate functions X(λ) and Y (λ):

I0(λ) =
√

X2(λ) + Y 2(λ) = R(λ),

I1(λ) =
∫ λ

0

X(τ)dY (τ) − 1
2
X(λ)Y (λ)

I2(λ) = X(λ)
∫ λ

0

X(τ)Y (τ)dY (τ) − 1
2
Y (λ)

∫ λ

0

X2(τ)dY (τ) − 1
6
X2(λ)Y 2(λ).

In our case X(λ), Y (λ) are parameterized by Euclidean arc length. The invariant I1(λ) can
be interpreted geometrically as the area between the curve and its secant (Figure 2). The
derivation of these is developed in [9].

Functions I1(λ) and I2(λ) are invariant under SL(2), the group of special linear trans-
formations, while I0(λ) is invariant under the action of the special orthogonal group SO(2).
An invariant under the full affine group can be constructed as the quotient I2(λ)/I2

1 (λ).
This is, however, less stable to compute than I2. Instead, by translating the origin and
normalizing the size of the sample we can restrict our attention to the SL(2) invariants
without loss of generality.

Among the actions of special linear group, two are of particular interest in handwrit-
ing recognition: rotation and shear transformations. The latter, in its full generality, is a
separate nontrivial problem and is not considered in this paper. One of the difficulties is
in choosing the appropriate shear-invariant parameterization of the coordinate functions.
Another problem, arising with mathematical alphabets, is the requirement of careful anal-
ysis of transformation limits to avoid blending classes. For example, a sample L (which
initially can be confused with �), when exposed to shear transformation, becomes a subject
to misclassification with ∠. If, in addition, we allow arbitrary rotation and scaling of the
character, the set of matching candidates will include <, >, 7, V ,

∧
, �, √, Γ and ∧ (Fig-

ure 3). Therefore, our attention is currently drawn to the action of the subgroup SO(2).
We note that in practice shear is seen most on tall, thin symbols and this can to an extent
be corrected by rotation.



The invariant representation of a symbol curve is approximated with Legendre-Sobolev
polynomials. Coefficients of the truncated Legendre-Sobolev expansion are used to con-
struct a point for each character in a training set annotated with ground truth. Classifica-
tion is performed based on the distance from the test point to the convex hull of points in
the nearest classes.

Our experiments show that using I2 gives only a minor increase in the recognition
rate (about 1%) in CII, but increases the computational cost significantly. As for CCFII,
the nature of the algorithm makes the accuracy of the integral invariant classification less
critical. Invariant functions are used only for the purpose of selecting top N candidate
classes, which are subsequently analyzed. The function obtained with invariants I0 and I1

was therefore chosen as sufficient.

3 Geometric Moments

Similar to integral invariants, moment invariants provide a framework to describe curves
independently of orientation. Among moment functions one can select geometric, Zernike,
radial and Legendre moments [10]. For the purpose of online curve classification under
pressure of computational constraints, geometric moments are of special interest since they
are easy to calculate, while invariant under scaling, translation and rotation.

Having been introduced by Hu [11], geometric moments are widely used for shape and
pattern classification [10, 12, 13]. A (p + q)-th order moment of f can be expressed as

mpq =
∑

x

∑
y

xpyqf(x, y)

In general, translation invariance is achieved by computing central moments

μpq =
∑

x

∑
y

(x − x0)p(y − y0)qf(x, y), x0 =
m10

m00
and y0 =

m01

m00

and scale normalization is performed as

ηpq = μpq/(μ00)(p+q+2)/2

The first three moment invariants are derived from algebraic invariants and can be repre-
sented as

M1 = η20 + η02, M2 = (η20 − η02)2 + 4η2
11, M3 = η20η02 − η2

11.

Independence of orientation of the above expressions can be verified by substitution with
the geometric moments obtained after rotation transformation

m′
20 =

1 + cos 2α

2
m20 − sin 2α m11 +

1 − cos 2α
2

m02,

m′
11 =

sin 2α

2
m20 + cos 2α m11 − sin 2α

2
m02,

m′
02 =

1 − cos 2α

2
m20 + sin 2α m11 +

1 + cos 2α

2
m02.

One can omit translation and scale normalization of moments by normalizing a sample’s
coordinates first. In this case the moment invariants are derived in terms of moments mpq.



4 CII and CCFII

Consider the coordinate functions X(λ) and Y (λ) of a single- or multi-stroke sample. Multi-
stroke symbols are represented by the coordinate functions of consecutively joined strokes.
The first step to approximate X(λ) and Y (λ) as truncated series in basis of Legendre-
Sobolev polynomials. These polynomials are orthogonal with respect to Legendre-Sobolev
inner product

〈f, g〉 =
∫ b

a

f(λ)g(λ)dλ + μ

∫ b

a

f ′(λ)g′(λ)dλ

where the functions f(λ) and g(λ) are differentiable on the interval [a, b], μ is a numeric
parameter and can be chosen experimentally. It has been shown in [14] that μ = 1/8 yields
good classification results.

Let x0, x1,...,xd be the coefficients of the approximation for X(λ) and similarly for Y (λ).
Note, that these coefficients are computed while the curve is written with a small constant
time overhead after pen-up [7]. We take d = 12, because it allows us to achieve accurate
enough approximation with error unnoticeable to a human [8].

Since the first polynomial (for any inner product) is 1, point (x0, y0) can be thought
of as the curve’s center. We can therefore normalize the curve with respect to position by
simply discarding the first coefficients. Scale normalization is performed by normalizing
the vector (x1, ..., xd, y1, ..., yd), taking advantage of the fact that the norm of the vector is
proportional to the size of the curve, to obtain (x̄1, ..., x̄d, ȳ1, ..., ȳd).

With this approximation, the integral invariant functions take the form

I0(λ) =

√√√√( d∑
i=1

x̄iPi(λ)

)2

+

(
d∑

i=1

ȳiPi(λ)

)2

,

I1(λ) =
d∑

i,j=1

x̄iȳj

[∫ λ

0

Pi(τ)P ′
j(τ)dτ − 1

2
Pi(λ)Pj(λ)

]

Here Pi denotes the i-th Legendre-Sobolev polynomial.
A similar process of approximation is then applied to the invariant functions, yielding a

24-dimensional vector for each sample (Ī0,1, ..., Ī0,d, Ī1,1, ..., Ī1,d). Taking the second term in
the expression for I1(λ) as precomputed, the Legendre-Sobolev coefficients can be calculated
quickly, in time quadratic in d. The coefficients for I0(λ) are computed in the same way.

Classification is based on evaluation of the distance from the sample to the convex hulls
of the nearest neighbours and selecting the classes with the smallest distance. Different
distance measures were considered in previous work [8] with emphasis on fast computation.
Manhattan distance was chosen as the most efficient for pre-classification (selecting the
nearest neighbours), while square Euclidean distance gave a lower error rate when used as
the distance from a sample to the convex hulls.

Computing the distance from a point to a convex hull can be expensive. We were able
to specialize the problem by taking the convex hull to be a simplex, since the number
of nearest neighbours in our algorithms is less than dimension of the vector space and the
points are in generic position. If the points are not in generic position, a minor perturbation
is performed, only slightly affecting the distance. We then apply the algorithm recursively
to find the projection from the point on the smallest affine subspace containing the simplex,
until the projection happens to be inside the simplex. On each iteration the projection is
expressed as a linear combination of the vertices of the simplex, considering the vertices



with non-negative corresponding coefficients. The complexity of this algorithm is O(N4),
where N is the dimension. In practice it performs much faster, since at each recursive call
the dimension often drops by more than one [14].

The CII algorithm relies on approximation of the invariant functions, as described above.
We select the class closest to the sample in the space of coefficients of truncated polynomial
series. The algorithm does not depend on the number of classes, since only one class is
considered.

As an alternative, in CCFII the coefficients (Ī0,0, . . . , Ī0,d, Ī1,0, . . . , Ī1,d) are used to select
the closest N candidate classes. The value for N may be determined empirically to ensure
high probability of the correct class being within the ones chosen. Having a fixed small
number of classes with the correct class among them, we evaluate the minimal distance
from the sample to each class with respect to various sample rotations. This procedure
gives correct class as well as the rotation angle. The angle is determined as the solution to
the minimization problem

min
α

(∑
k

(Xk − (xk cos α + yk sinα))2 +
∑

k

(Yk − (−xk sinα + yk cos α))2
)

,

where Xk, Yk are the coefficients of the Legendre-Sobolev approximation of the coordinate
functions of the training symbols, and xk, yk are the coefficients of the test sample. The
global minimum is selected among the output of the function at the boundary points of the
closed interval α and at the stationary point

α = arctan
(∑

k(Xkyk − Ykxk)∑
k(Xkxk + Ykyk)

)
.

5 CCFMI

The (p + q)-th moment functions of a sample’s coordinates can be expressed as

mpq(λ�) =
�∑

i=1

�∑
j=1

X(λi)pY (λj)qf
(
X(λi), Y (λj)

)
where X(λi) and Y (λi) are the coordinates X and Y at sample point i. We have taken
the intensity function to be of the form f

(
X(λi), Y (λj)

)
=
√

X(λi)2 + Y (λj)2 and work
directly with moments, since normalization with respect to size and position is already
performed in the algorithm. Specifically, we tested the following rotation invariants

M0(λ) = m00(λ),
M1(λ) = m20(λ) + m02(λ),

M2(λ) = (m20(λ) − m02(λ))2 + 4m11(λ)2.

As in CCFII, CCFMI selects the top N classes with rotation invariant functions. To
make a fair comparison, we considered the classification rate for two combinations of mo-
ment invariants: M0(λ), M1(λ) and M1(λ), M2(λ). Classification with M1(λ), M2(λ) in
general gave 3% higher error rate. We therefore focused our attention on improving the
recognition rate of M0(λ) and M1(λ) by variation of number of classes and number of
nearest neighbours. Details of our experiments are described in the following section.



Table 1: Presence (%) of the correct class within the top N classes, CCFII

N = 1 2 3 4 5 6 7 10 15 20 25

87.9 95.1 96.8 97.7 98.3 98.7 98.9 99.4 99.5 99.5 99.5

Table 2: Error rate (%), depending on number of nearest neighbours, CCFII

angle K = 8 10 12 14 16 18 19 20 21 22
(radians)

0 4.4 3.9 4.2 4.0 3.9 3.9 3.8 3.7 3.8 3.8
0.3 6.2 5.7 5.7 5.4 5.4 5.4 5.3 5.3 5.4 5.4
0.5 7.4 6.9 6.8 6.7 6.6 6.5 6.4 6.4 6.5 6.5
0.7 8.5 7.9 7.7 7.6 7.4 7.4 7.2 7.2 7.3 7.4
0.9 9.3 8.8 8.6 8.3 8.2 8.2 8.2 8.1 8.2 8.2
1.1 9.6 9.0 8.7 8.6 8.4 8.4 8.2 8.2 8.4 8.4

average 7.5 7.0 7.0 6.8 6.6 6.6 6.5 6.5 6.6 6.6

6 Experimental Details and Evaluation of Results

Our dataset comprised 50,703 handwritten mathematical symbols from 242 classes. All
samples were represented in a uniform InkML format [15] and stored in a single file. Each
symbol definition included the number of strokes and the (X, Y ) coordinates of the trace
sample points. For some symbols we also had information about timing, pen-up strokes,
pen pressure and context (the formula containing the symbol). This additional information
was not used in the present experiment.

All symbols had been inspected visually in order to discard samples unrecognizable by
a human. Symbols that looked to a human reader as belonging to more than one class were
labeled with all those classes. Classes that were indistinguishable without context were
merged. For example, we united the classes “Capital O, little o, omicron, zero”, capital
Greek letters with Latin analogues, etc. As a result, 38,493 samples had one class label,
10,224 samples had 2 class labels, 1,954 samples had 3, 19 samples had 4, and 13 samples
had 5. This resulted in 378 composite sets.

To implement 10-fold cross-validation we randomly divided the dataset into 10 parts,
preserving the proportions of class sizes. The normalized Legendre-Sobolev coefficient vec-
tors of coordinate functions of randomly rotated symbols, as well as coefficients of integral
invariants were pre-computed for all symbols. See [8] for more detailed description of the
experimental settings.

According to our tests, CII gives a 88% recognition rate. This recognition rate does
not depend on the angle to which test samples are rotated. Neither does the frequency of
occurrence of the correct class in the top N classes depend on rotation angle.

To measure the best performance of CCFII, we first determined experimentally the
number N of top classes required to contain the correct class most of the time. The
results obtained are shown in the Table 1. We find N = 20 to be an appropriate balance
between accuracy and the complexity introduced by integral invariants. With fixed N , the
relationship between the number of nearest neighbours K and the error rate for different



Table 3: Presence (%) of the correct class within the top N classes, CCFMI

N = 1 2 3 4 5 10 20 30 40 50 55

51.5 68.3 77.2 82.2 85.9 95.3 98.8 98.9 99.0 99.0 99.0

Table 4: Error rate (%), depending on number of nearest neighbours, CCFMI

angle K = 8 10 12 14 16 18 20 21 22 23
(radians)

0 7.0 6.6 6.4 6.2 6.1 6.1 5.9 5.8 5.8 6.0
0.3 8.0 7.8 7.6 7.4 7.2 7.1 7.0 7.2 7.1 7.2
0.5 9.3 9.1 8.9 8.5 8.3 8.3 8.2 8.2 8.1 8.3
0.7 10.4 10.1 9.9 9.5 9.4 9.2 9.1 9.2 9.2 9.3
0.9 11.5 11.1 10.8 10.4 10.2 10.2 10.1 10.0 10.0 10.0
1.1 11.4 11.1 10.7 10.4 10.2 10.1 10.1 10.0 10.0 10.0

average 9.6 9.3 9.1 8.7 8.6 8.5 8.4 8.4 8.4 8.5

Table 5: Error rates of CII, CCFII and CCFMI

α, rad. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0 1.1

CII 12 12 12 12 12 12 12 12 12 12
CCFII 3.7 3.9 4.5 5.3 5.9 6.4 6.6 7.2 8.2 8.2
CCFMI 5.8 5.9 6.5 7.1 7.7 8.1 8.7 9.2 10 10

angles is shown in the Table 2. We observed that CCFII gives the best recognition rate
for K = 20. In this framework, CCFII’s rate starts at 96.3% for non-rotated samples and
decreases slightly with increase in angle, but never approaches CII (see Table 5).

A similar approach was taken to measure the performance of CCFMI. We first measured
the number of classes (N = 50) required to contain the correct class most of the time
(Table 3) and then found the K that yields the best classification results (Table 4).

A comparison of the performance of CCFII and CCFMI is presented in Figures 4 and 5.
Relative classification results are shown in Table 5 and Figure 6. We see that CCFII has
a better error rate, while requiring fewer candidate classes and fewer nearest neighbour
computations.

7 Conclusion

We have presented methods to classify handwritten characters, independently of orientation,
based on integral invariants and have compared them with classification using geometric
moment invariants. We have observed that integral invariants perform better while requiring
less computation. We therefore conclude that integral invariants are a suitable instrument
in the recognition of handwritten characters when orientation is uncertain.



Figure 4: Presence of the correct class within N for CCFII (left) and CCFMI (right)

Figure 5: Error rate for different K for CCFII (left) and CCFMI (right)

Figure 6: Error rates of CII, CCFII, CCFMI

As expected, we noticed an increase in error rate with the rotation angle for CCFII
and CCFMI (Figure 6). The typical misclassifications that arise are when distinct symbols
have similar shape and are normally distinguished by their orientation, for example “1” and
“/”, “+” and “×”, “U” and “⊂”. As a possible solution to this, a system could consider
the tendency to write characters in similar orientations and restrict the range of angles
for nearby symbols. A technique similar to CCFII can be applied to classify symbols as
part of an expression with small adjustments to the minimization function. This approach
has a number of other benefits, such as contextual and notational analysis, and should be
considered as a logical continuation of the work presented.
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Abstract

We present a preliminary study on disambiguation of symbolic expressions in math-
ematical documents. We propose to use the natural language within which the expres-
sions are embedded to resolve their semantics. The approach is based on establish-
ing a similarity between the expression’s discourse context and a set of terms from
Term Clusters based on OpenMath Content Dictionaries. The Term Clusters are
semi-automatically constructed terminological resources which classify related mathe-
matical concepts into groups. Each group is labelled with a term which represents the
common denominator between the concepts.

1 Motivation

Technical and scientific documents have been gaining increasing attention in the computa-
tional linguistics community. These documents stretch the current natural language pro-
cessing technology, among others because they contain embedded structures such as tables,
diagrams, or mathematical formulae, which interact with the textual content. While inter-
pretation of such structures is currently outside of the state-of-the-art in language process-
ing, their automatic understanding will enable us to provide services such as fact search,
plagiarism detection, and change management for technical and scientific documents. In
this paper we address this problem from a linguistic perspective and present a step towards
the semantics construction of mathematical formulae. Concretely, we address symbol over-
loading as one of the sources of ambiguities occurring in mathematical notations.

Authors tend to exploit established conventions in mathematical notation leaving some
of the ambiguous notation without explicit explanation, relying on the reader being able
to recover the intended meaning. Consider the expression “ω−1”: If ω is known to be a
function, then ω−1 is the inverse function corresponding to ω. However, if ω is a scalar,
ω−1 should be understood as 1/ω. Consider now the following expression: “S−Bf(C lnS)”.
It is a complex term consisting of two subterms, S−B and f , whose concatenation denotes
multiplication: S−B is a scalar by which f is multiplied. f(C lnS), in turn, is a function:
here, concatenation of f and (C lnS) denotes function application. The different appropri-
ate interpretations of the superscript and symbol concatenation are taken for granted by
the reader.

∗Correspondence to: Universität des Saarlandes, Allgemeine Linguistik (FR 4.7), Postfach 15 11 50,
66 041 Saarbrücken, Germany; Tel:+49-681-3024345 Fax:+49-681-3024351



Mathematical discourse, however, does not consist of symbolic expressions alone. It is
rather the familiar combination of natural language and symbolic expressions. Crucially for
interpretation, the expressions’ linguistic context often contains information which helps
determine the expressions’ meaning. Readers can therefore in many cases immediately
resolve the intended reading of mathematical expressions by looking at the embedding
discourse context. For instance, in the second example the text actually reads:

“. . .The scaling function has the form S−Bf(C ln S), where f is a 2π-periodic

function.” from [9]

Given this linguistic context, the symbolic expression can be immediately interpreted to
denote a function and with the knowledge that S−B is a scalar, the internal structure of
the expression can be identified.

The intended interpretation of symbolic mathematical expressions can be a useful source
of information in a number of sub-tasks in a mathematical document processing pipeline
for digitalising mathematics. For instance, in the task of parsing mathematical notation,
i.e. identifying the structure and (compositional) semantics of symbolic expressions, the
information about the expressions’ interpretation can guide the selection (or weighing) of
likely parse candidates. This could be useful in processing LATEX documents as well as
in mathematical OCR, in particular, in handwriting recognition; for instance, in examples
such as above, in deciding between horizontal adjacency and super-/subscript relation when
the super-/subscript is written partly across the centre horizontal line of the expression.

In this paper we present a preliminary study on disambiguating a certain subset of sym-
bolic expressions in mathematical documents. Namely, we focus on those mathematical
expressions which are syntactically part of a nominal group and, in particular, are in an
apposition relation with an immediately preceding noun phrase. That is, our target expres-
sions come from a linguistic pattern: “. . . noun phrase symbolic math expression . . . ” (as
in the example above). Therefore, in the approach described here we assume that a target
mathematical expression can be disambiguated using its left context.

We formulate the disambiguation problem as follows: Given a mathematical document
containing a target mathematical expression, can we indicate one (or more) concepts from
a predefined set of concepts as the interpretation of the given expression. We claim that
the linguistic context information improves disambiguation accuracy.

Our approach is based on the use of natural language lexical context information which is
contained in the natural language surrounding a target expression. We compute a semantic
similarity between the words from the lexical context of a given expression and a set of
terms from manually constructed and semi-automatically extended Term Clusters based
on OpenMath. Lexical contexts for the Term Clusters are compiled from a large corpus.
As interpretation of a mathematical expression we consider the cluster (represented by its
name) with the highest similarity to the words in the context.

Outline The paper is organised as follows: In Section 2 we describe our approach to
disambiguation of appositional mathematical expressions: the lexical resources it uses and
the word similarity-based disambiguation. In Section 3 we outline the experiment setup:
the data we used, the performance metrics, and the baselines. The results are presented in
Section 4. In Section 5 we present conclusions and discuss further work.



Symbol Name CD Name Description
(CD Group)

inverse fns1 This symbol is used to describe the inverse of its argu-
(Functional
Operators)

ment (a function). This inverse may only be partially
defined because the function may not have been surjec-
tive. If the function is not surjective the inverse function
is ill-defined without further stipulations. No assump-
tions are made on the semantics of this inverse.

inverse arith2 A unary operator which represents the inverse of an
(Arithmetic
Functions)

element of a set. This symbol could be used to represent
additive or multiplicative inverses.

eigenvector linalg4 This symbol represents the eigenvector of a matrix. It
(Linear
Algebra)

takes two arguments the first should be the matrix, the
second should be an index to specify which eigenvalue
this eigenvector should be paired with. The ordering is
as given in the eigenvalue symbol. A definition of eigen-
vector is given in Elementary Linear Algebra, Stanley I.
Grossman in Definition 1 of chapter 6, page 533.

Table 1: Excerpt from OpenMath Content Dictionaries

2 The Approach

Our approach is based on two observations: First, the linguistic context is often a good
indicator of the intended semantics of a mathematical expression. Second, similar lexical
contexts indicate similar mathematical domain content. The central part of the approach
is the use of co-occurrence statistics in computing semantic similarity between the words
from the mathematical expressions’ context and a set of terms from predefined semantic
classes. These are represented by manually constructed Term Clusters which model certain
logical classes of mathematical concepts according to lexical terms which evoke them.

2.1 Lexical Resources

The main resource on which our approach relies is a collection of Term Clusters (TC)
which we derive from OpenMath Content Dictionaries (CDs). OpenMath [6, 14] is a
language for representing mathematics, in particular symbolic mathematical expressions,
both at the surface structure and the semantics level. It is becoming a de facto standard for
communicating content-based mathematics over the Web. OpenMath uses CDs to define
the semantics of symbols used to build mathematical expressions.

OpenMath Content Dictionaries The OpenMath CDs group symbol definitions by
sub-fields of mathematics and carry names (e.g. arith2, linalg4, set1) that reflect this
(see Table 1). We make use of the fact that they are further organized into groups ac-
cording to mathematical areas (Arithmetic Functions, Linear Algebra, etc.). Note that
mathematical concepts are identified by a symbol name (e.g. inverse, eigenvector, empty-
set) together with CD names, so that CDs can have symbols of the same name, which are
nonetheless different mathematical concepts. Note also that one CD can belong to more
than one group.



TCN Representative Terms
algebraic structure algebra, array, basis, field, generator, group, groupoid, ideal,

lattice, matroid, monoid, quaternion, ring, semigroup, space,
subfield, submonoid, subsemigroup, . . .

function application, automorphism, closure, convolution, density,
eigenfunction, endomorphism, entropy, function, functor,
hamiltonian, hermitian, homomorphism, homotropy, inverse,
isomorphism, lagrangian, logarithm, map, morphism, trans-
formation, . . .

property associativity, commutativity, concavity, continuity, convexity,
differentiability, diffusion, distributivity, goodness, linearity,
noise, property, violation, . . .

Table 2: Excerpt of the Term Clusters

Each symbol declaration in a CD is accompanied by a natural language description
of the symbol’s meaning. The descriptions are written according to an informal set of
guidelines [8]. They share a certain formulaic style, relatively simple syntactic structure, and
are characterized by brevity. There are 190 CDs in the currently available OpenMath [15].
Table 1 shows the definitions of an eigenvector and two definitions of the inverse concepts.

Term Clusters for Mathematical Expression Disambiguation We will use the
OpenMath CDs to build Term Clusters as linguistic terminological resources that group
mathematical lexical terms (corresponding to mathematical concepts) into sets of terms
subordinate to a more general term (concept). It is these more general terms, Term Cluster
Names (TCN), that we will use as interpretations of mathematical expressions in the dis-
ambiguation process: for each target expression we will assign a TCN as its interpretation.

For the experiments described in this paper we created 17 TCs semi-automatically. The
structure and the content of the TCs were to a large extent inspired and semi-automatically
extracted from the OpenMath Content Dictionaries.∗ The Term Clusters were constructed
as follows: First, we extracted mathematical terms from each OpenMath CD and removed
modifiers from multi-word terms obtaining bare nouns. Next, the CDs associated with the
same mathematical area were collapsed (e.g. arith1, arith2 and arith3 correspond to
arithmetics). The same procedure was applied to pairs of CDs with high term overlaps.
We then extended the set of terms per cluster by extracting the top 100 most frequently co-
occurring words from 10,000 documents from the arXMLiv collection [17]. Co-occurrence
frequencies were calculated for pairs of words within one sentence.

Finally, in order to further enrich the lexical resource we partially automatically and
partially manually extracted terms from various online lexica of mathematical terms, in
particular, the University of Cambridge mathematical thesaurus [7] and the MathWorld
lexicon of mathematical terms [11], and added them to the appropriate Term Clusters. The
lexical entries in the TCs are bare nouns in the singular form. Table 2 shows excerpts from
the TCs algebraic structure, function and property.

∗In initial experiments, we used a pre-processed version of OpenMath CDs , but found its granularity
too fine-grained on the one hand, and on the other hand, its coverage too limited.



2.2 Mathematical Expression Disambiguation

The method we propose is inspired by recent computational approaches to word sense
disambiguation and lexical similarity which use statistical association measures to estimate
semantic relatedness between words by analysing their distributional properties. In these
approaches distributional similarity is computed based on, for instance, WordNet glosses [21]
the Wikipedia, large corpora, or even the Web (see, for instance, [3, 12, 13, 16, 19]).

By analogy, our approach considers similarity between the given mathematical expres-
sion’s lexical context and the terms in Term Clusters introduced above. The disambiguation
process consists of three parts: First, we preprocess the documents and identify the candi-
date target mathematical expressions, then we compute corpus-based similarities for each
TC, and finally disambiguate each target expression based on the words in their context
and the TCs. Below we briefly present the disambiguation components.

Preprocessing We used 10,000 mathematical documents from the arXMLiv collection [17],
word- and sentence-tokenized them, stemmed the words, and normalized the mathematical
expressions by replacing them with a unique identifier. This preprocessing was performed
both on the corpus for similarity computation and on the documents we used for evaluation
of the approach. The latter documents were also processed with the Stanford part-of-speech
(POS) tagger [18] in order to identify nouns in the left context of appositional mathemat-
ical expressions. The recall results we report in Section 4 are based on the output of this
tagger.†

The evaluation set we furthermore processed in two ways in order to obtain results for
alternative approaches to selection of candidates for computing semantic similarity: stop-
word based and POS-based. In the stop-word approach the candidate terms for computing
similarity were selected using a stop-word list alone. In the POS approach we used those
words which were tagged as nouns by the Stanford tagger.

Computing term similarity We experimented with three statistics to find words se-
mantically related to the TC terms: the Dice coefficient (Dice), the pointwise mutual
information (PMI ) and the z-score (z ). These measures estimate relative probability with
which words occur in proximity and have been previously successfully used in computa-
tional linguistics [4, 5, 20]. For two words w1 and w2, Dice is defined as twice the ratio of
the joint probability to the sum of the individual probabilities, PMI is defined as the log of
the ratio of the probability of the words occurring together to the product of the individual
probabilities, and z is the proportion of the difference of the expected and the observed
probabilities (P ) to the expected probability (E):

Dice(w1, w2) =
2 × P (w1, w2)

P (w1) + P (w2)

PMI(w1, w2) = log2
P (w1,w2)

P (w1)×P (w2)
z(w1, w2) = P (w1,w2)−E(w1,w2)√

E(w1,w2)

Because log is monotonically increasing, relative ordinal rankings of PMI estimates are
preserved if log is dropped. We approximate the probabilities by raw frequencies, as is a
common practice.

†We are aware of the fact that these results are affected by the low performance of the tagger which was
not trained on documents from our domain. To our knowledge, there are currently no available dedicated
language processing tools, in particular, part-of-speech taggers, for mathematical discourse. In the future,
we are planning to develop a dedicated tagger and re-evaluate our approach on more accurate POS outputs.



Based on experimentation we used the Dice coefficient for those words with Dice scores
higher than a certain predefined threshold, λ ≈ 0.6, otherwise we used either PMI or z :

sim(w1, w2) =

{
Dice(w1, w2) if Dice(w1, w2) > λ

PMI(w1, w2) or z(w1, w2) otherwise

PMI is a frequently used statistical estimator of the strength of word co-occurrence; see,
for example, [20]. The use of different lexical co-occurrence statistics is motivated by the
fact that mutual information is reported to be less efficient on low-frequency events [10].
Comparisons with latent semantic analysis show that PMI achieves better results when
large amounts of data is used [4, 5]. In Section 4 we report results for different similarity
thresholds: for PMI we experimented with thresholds δ ∈ {0.6, 0.8, 0.9}, while for z the
considered values were δ ∈ {0.0, 10.0, 20.0} Lexical similarity was computed based on a
subset of arXMLiv documents preprocessed as described above. The obtained co-occurrence
pairs were type- not token-based, i.e. they contained only word-stems.

Disambiguation For each mathematical expression identified as appositional (i.e. pre-
ceded by a noun, based on the output of the Stanford parser; see Section 3 for the details
on the evaluation set) we considered a local context C consisting of all the nouns appearing
in the five word window to the left of a target mathematical expression. For each candidate
noun w in the context C we identified the TC terms, tct, with the highest semantic similar-
ity according to the similarity metrics described above. In order to identify the TC which
best matches the context, we used modified versions of similarity measures presented in [12].
The obtained similarity scores were weighted, summed up, and normalized by the length of
the considered context (e.g. the number of nouns found within the five word windows). In
weighing the candidates we took into account the distance to the target expression; with the
weights decreasing with the distance to the target expression. The similarity was calculated
using the following scoring function:

Sim(C, TC) =
∑
w∈C

maxsim(w, TC)× cw(w), where

maxsim(w, TC) = max
tct∈TC

{sim(w, tct)} and cw(w) is the weight for the word w

That is, the resulting assigned interpretation is the TC with the highest similarity score
between the lexical context and the terms from each of the sets of TC terms.

3 Experiment Setup

We tested the disambiguation method on a manually constructed gold-standard, a set of
manually identified and disambiguated appositive mathematical expressions. We compared
the algorithm’s performance with two baselines which do not use context or have access to
limited context information. Below we introduce our evaluation sets, define the performance
measures we employed and present the baselines.

Data We conducted an initial evaluation of the approach on all mathematical expressions
from one randomly selected document from the arXMLiv containing 451 mathematical
expressions [2]; we will refer to this initial evaluation set as init-set.



In order to obtain more reliable performance results, in particular, on disambiguation in
documents originating from various authors and mathematical sub-areas, we also conducted
further evaluation on a set of randomly selected mathematical expressions extracted from
a random collection of different documents. This evaluation set (eval-set) was constructed
as follows: First, we selected 28 random arXMLiv documents which were successfully pre-
processed. Second, from each of these documents we selected 20 random mathematical
expressions and manually identified the appositive cases among those, obtaining 116 ap-
positive instances. Third, we manually annotated this set with the expected categories,
thereby creating a gold standard. The gold standard contains 101 disambiguated appositive
mathematical expressions. (15 unclear cases from the original set were discarded.)

Performance measures As evaluation metrics we use precision (P), recall (R), F0.5, and
Mean Reciprocal Rank (MRR). Precision and recall are set-based measures. In classifica-
tion, precision is the proportion of correctly labelled examples, while recall is the proportion
of labelled examples out of all examples. In mathematical expression disambiguation we
prefer correct disambiguation over coverage, therefore, we choose F0.5 as a combined mea-
sure. F0.5 is a variant of the harmonic mean of precision and recall which weights precision
twice as high as recall. MRR is one of the standard measures used in Information Retrieval
for evaluating performance of systems which produce ranked lists of results, for example,
ordered lists of documents retrieved in response to a query. It is the inverse of the rank of
the expected (best) result item. More specifically,

P = tp
tp+fp

R = tp
tp+fn

F0.5 = (0.52+1)PR

0.52P+R
MRR = 1

N

∑N

i=1
1

ranki

where tp are true positive classifications, fp are false positives, fn are false negatives, and
N is the number of evaluated instances.

Baselines We employed two baselines for comparison with our approach. The trivial
baseline does not use any context information and simply assigns a random order of cat-
egories. The top random category is used in calculating precision. We can consider this
as the lower-bound for the performance of the approach. The second baseline uses lim-
ited context information: It uses only the noun (NN ) immediately preceding the target
mathematical expression as candidate for disambiguation.

4 Results

Table 3 summarises the results of the evaluation. Init-set is our initial set of mathematical
expressions from a single document. Eval-set is our gold-standard evaluation set. Re-
sults are reported for the two baselines: random ranking (random) and limited context
(nearest NN ). SW is the approach which uses stop-words to select candidates for simi-
larity computation and PMI as the similarity measure. POS-z and POS-PMI are the
approaches which use POS tags for candidate selection and z and PMI as co-occurrence
statistics alternative to Dice. δ are the different similarity thresholds.

Init-set was our preliminary evaluation set which served to verify the plausibility of the
approach. We did not calculate MRR for this set, however, with the average precision at
81% (for δ = 0.9) we considered the approach promising. With limited access to context
information both baselines perform poorly, as expected; recall is not reported because for
the baselines some interpretation is always returned. In future experiments we will use



δ P R F0.5 MRR

Init-set POS-PMI
0.6 64.00 31.00 52.77 −
0.9 81.00 21.00 51.55 −

Eval-set

Baselines random − 8.51 − − 0.19
nearest NN − 20.21 − − 0.32

SW
0.6 53.09 81.13 57.03 0.60
0.8 61.36 36.49 54.00 0.68
0.9 63.16 14.28 37.50 0.74

POS-z
0.0 56.96 44.55 53.96 0.68
10.0 65.52 37.62 57.06 0.74
20.0 69.70 22.77 49.36 0.77

POS-PMI

0.6 65.67 43.56 59.62 0.76
0.8 80.39 40.59 67.21 0.85
0.9 83.33 39.60 68.26 0.87

Table 3: Evaluation results

other baselines with less limited context information, but limited capabilities of similarity
estimation; one plausible baseline could use larger context (e.g. five word window) but
calculate only word overlap with Term Clusters, rather than corpus-based similarity.

Considering the limited linguistic preprocessing we employ (the method is based solely
on co-occurrence statistics with only stemming, stop-words and largely faulty POS tagging
as preprocessing) both the precision results and the ranking results on the evaluation set
are encouraging. PMI appears to outperform the z-score on this task. Interestingly, the
results of the best performing stop-word based model appear comparable not only with the
z-score models, but also with the PMI -based model at δ = 0.6. This suggests that perhaps
further work could be also invested in the knowledge-poor approaches, given the lack of
reliable language processing tools for mathematical discourse. Moreover, not surprisingly,
with all the measures, the performance is strongly sensitive to the similarity thresholds. We
must perform further systematic analyses of the effect of different threshold combinations.

5 Conclusion and Future Work

We can cautiously conclude that the method produces promising results and that, even
with limited linguistic information, the lexical context provides useful information in math-
ematical expression disambiguation. Of course more work and experimentation is needed
to further tune the co-occurrence statistics and the similarity metrics. In particular, we are
planning to experiment with other corpus-based term association measures. Moreover, we
have started to experiment with methods analogous to those presented here, but applied to
mathematical expressions which need the right context for disambiguation.

Our Term Clusters require further work. In their present state some of the clusters
group unrelated terms; see, for instance, the terms grouped under property. We are currently
working on a more coherent resource with a richer hierarchical structure and with thesaurus-
like relations between concepts. With such a resource we can investigate thesaurus-based
similarities based on relations such as “broader/narrower concept”. As an initial step we are
planning to investigate the relations included in the Cambridge Mathematical Thesaurus.



Similarity could be computed as inversely proportional to the distance between words in
the thesaurus hierarchy; short paths between two concepts would indicate high degree of
semantic similarity. This is analogous to the way WordNet is used in lexical similarity tasks.

Another resource that we plan to take into account is the “Mathematics Subject Classifi-
cation” (MSC [1]), a hierarchically organized set of over 5000 mathematical subjects. These
could act as Term Cluster Names that cover all of mathematics. We will try to generate the
representative terms from the Zentralblatt Math corpus [22], an MSC-classified set of 2.5
million abstracts of mathematical (journal) publications of the last 100 years. We expect
to obtain much more accurate disambiguation results from such a resource.

It is clear that linguistic knowledge would help in the disambiguation task. For the left-
context appositional cases, the noun phrase part of the nominal group is alone sufficient
for disambiguation. However, in order to be able to perform more linguistically-based
analysis of the context, we need language processing tools (POS taggers, chunkers, etc.)
which are nowadays taken for granted in language processing. Unfortunately, existing tools
are typically trained on newspaper text and therefore produce sub-standard results on the
mathematical genre. A serious problem here is the lack of annotated data to re-train such
tools. We are presently investigating ways of creating a POS-annotated document set and
building a specialised POS tagger.

Finally note that our definition of disambiguation still falls significantly short of seman-
tics construction for formulae, where every symbol is interpreted by a semantic concept.
Our approach based on the left context and general mathematical resources cannot work
since mathematical texts are well-known to introduce notations and concepts as they go
along. We would need a deeper discourse analysis that detects notation introductions (and
imports for that matter) and brings them to bear locally in the disambiguation process.
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Abstract

Experience in setting up a workflow from scanned images of mathematical writings into a
fully fledged mathematical library is described on the example of the project Czech Digital Math-
ematics Library DML-CZ. An overview of the whole process is given, with detailed description
of production steps involving scanned image processing and optical character recognition. Exper-
ience gained, lessons learned and tools prepared during development of DML-CZ are described.
DML-CZ now serves over 25,600 articles (275,000 digitised pages) to the public.

Keywords: digital mathematical library, mathematical knowledge representation, digitisation
workflow, optical character recognition, OCR, retro-digitisation, DML-CZ

Viva la Workflows! (Carole Goble [6])

1 Motivation

Digital Library business has moved from data/files centered processing towards process-oriented
workflows. Workflows enact the machinery of building and running a digital library. Instead of
running simple tools and mirroring file repositories more subtle solutions have to be devised: data
curatorship changes to workflow curatorship and services.

There are communities and systems that start to dominate in some thematic areas: PubMed
Central (PMC) is one such system in the medical domain, speeding up research and author’s citation
indexes in the area. Unfortunately, only domains where global initial funding was available took
advantages of the platforms established and tools and workflows developed. In the PMC case,
journal publishers are now eager to join the club, and authors enjoy global topical ontology-based
search. Researchers send their papers only to journals available in PMC as this leverages their
citation indexes. However, the realization of the dream of a World Digital Mathematics Library [7]
is yet to come.

We report on the experience gained, lessons learned and tools prepared during the development
of a digitisation workflow for The Czech Digital Mathematics Library DML-CZ project. The aim
of the project approved for the five years period 2005–2009 was to digitize the relevant mathem-
atical literature published in the Czech lands. It comprises periodicals, selected monographs and
conference proceedings from the nineteenth century up until currently produced mathematical pub-
lications. It has been launched and is readily available on dml.cz, serving more than 25,600 articles
on 275,000 pages to the public.

The general workflow of the project, shown on Figure 1 on the following page, reflects different
types of acquired input data:

full digitisation from print work starts from a paper copy;

full digitisation from bitmap image work starts from an electronic bitmap of pages;

retro-born-digital work starts from an electronic version of the document (usually in POSTSCRIPT
or PDF);

born-digital workflow of the journal production is enriched with an automated export of data for
the digital library.



Figure 1: DML-CZ top-level workflow scheme

Within the project, several general purpose tools have been developed:

1. scripting of transformation pipes of scanned images,

2. DML-CZ OCR workflow allowing recognition of scanned mathematical documents,

3. web-based Metadata Editor [1],

4. tools for classification of mathematical documents and measuring their similarity [14];

5. workflow for born-digital publication production with direct export of metadata for DML [15]
and

6. plenty of other smaller tools like: extensions to LUCENE engine allowing indexing of math-
ematics, batch PDF stamper for digital signing of produced PDF, an optimizer recompressing
image objects in PDF with the new JBIG compression filter supported by Adobe since PDF
specification version 1.6 (Adobe Reader 5) or batch article PDF generation with titlepage by
XeLATEX.

In the following sections we describe part (steps 2, 3, 7 and 8 in Figure 1) of our digitisation
workflow with the hope that they can be used by similar projects or even in other domains.



We are all apprentices in a craft where no-one ever becomes a master. (Ernest Hemingway)

2 Scanning and Image Transformations

Processing of scanned images is aimed at final delivery of 600 DPI bi-tonal images suitable for
quality OCR and a fine print. This is the quality recommended by the Committee on Electronic
Information and Communication (CEIC) and used for example by JSTOR and NUMDAM. Images
from the Göttingen Digitisation Centre (GDZ) and images scanned in the Digitisation Centre of
the Library of Academy of Sciences, Czech Republic prior to the project DML-CZ have bi-tonal
400 DPI quality. The difference is visible, and leads to a higher OCR error rate. We strongly support
the recommendation to scan with a resolution of at least 600 DPI.

We perform our new scans at 600 DPI with 4-bit depth, ‘having a depth/space’ for geometrical
and other transformations done on images before binarization. Scanning is carried out in Digitisa-
tion Centre of the Library of Academy of Sciences in Jenštejn near Prague on the Zeutschel OS
7000 A2 book scanners.

The primary scans in TIFF format are archived for a possible future reprocessing if needed.
We use BOOK RESTORER™ image restoration software by i2S for interactive and batch image pro-
cessing in an uncompressed TIFF format. Operations performed on images are:

1. geometrical correction as narrowing the baselines and widths of the same characters on the
same line;

2. cropping the page to cut out the speckles at page borders;

3. blur filter, 3 × 3 pixels, to eliminate one or two pixel size variations;

4. binarisation with manually adjusted parameters for every batch (usually journal volume);

5. despeckle filter, with both white and black spotting, 3 × 3 pixels;

6. publish/export: processed TIFFs are stored being compressed by the Lempel-Ziv-Welsh
method for compressing grayscale and the G4 one for binarized images to speed up further
processing (OCR) and to save space.

Both the order of these steps and the parameter adjustments for images of different quality are
very important. For the data from GDZ, slightly different operations are needed as the input files
are already bi-tonal and some filters are applicable only on grayscale images.

Step 1 employs the algorithms that allow perspective correction of a scanned image. As most of
the material to digitize cannot be cut, we scan 2-up page spreads, making the text size non-uniform
even when trying to flatten the spread by pane of glass. Book Restorer can also flatten the lighting
across the scanned spead. For more details of this step see [2, page 2].

Step 2 crops the unnecessary border parts of the page shot.

Step 3 aims at better binarisation and despeckling by unsharping the shapes in the image.

Step 4 is necessary as most OCR engines work on bi-tonal images. It may be left to the high-
quality OCR engine—clever thresholding starts to be a standard part of OCR programs [18], or
perform it ourselves adaptively based on OCR feedback [13].



Step 5 is inserted to remove small impurities in the image.

Step 6 is the final step: image is stored as LZW-compressed grayscale or G4-compressed bi-tonal
TIFF.

For the lower resolution data from GDZ, slightly different operations are needed as the input
files are already bi-tonal (e.g. we did upscaling before unsharping) and because some filters are
applicable only on grayscale images.

It is wise to differentiate processing of pages with grayscale images (e.g. photos) so that they
are not degraded by image filters suitable for text. To avoid possible difficulties in the later steps it
is important from the very beginning to carefully check image quality before proceeding with the
remaining steps. At least automated procedures that check the technical metadata (e.g. tiffinfo)
and image quality (pixel width and height) has to be the part of quality assurance. Metrics of
compressibility by the JBIG2 encoder were used to trigger quality checks.

There is a tradeoff between price of image cleanup and quality results within constraints of
digitisation budget. When acquiring a craftmanship in good image editing software, results very
close to (or even better than) the original could be achieved [17]. These hand made touches are
usually beyond the budget of most digitisation projects, where the highest degree of automation
is needed to reduce the cost of digitisation. In DML-CZ, we have prepared [12] set of batches of
typical transformation procedures to be used by BOOK RESTORER™ operators to achieve the best
price/effort ratio.

Fine-tuning of operations on the pixel level pays back in the following step: the OCR.

The road to wisdom?
Well, it’s plain and simple to express:

Err and err and err again,
but less and less and less. (Piet Hein)

3 Optical Character Recognition – DML-CZ OCR

To have papers indexed we need to get full text from page bitmaps by the process of optical character
recognition. Also, we need to recognize logical page numbers located in every TIFF, to link the page
images to article metadata.

Tests with various OCR programmes showed that no single one gives acceptable results for
mathematical content, with character error rates often above 10% (counting wrong character po-
sitions and font types as errors too). For text recognition, FINEREADER by ABBYY® gave the
best results, whereas for the structural recognition of mathematics InftyReader [24] had impressive
results.

The FINEREADER software development kit (SDK for Windows version 8.1) was used to de-
velop a part of the system for the location and recognition of page numbers, and a batch system
DML-CZ OCR [19, 22] which takes sequences of TIFF images and produces two-layered one page
PDFs (with invisible full-texts behind the images). The processing starts with the recognition of
languages used in every paragraph, and then blocks are recognized again with a special setting (lan-
guage dictionaries used) for every given block of text. With such a fine-tuning of parameters, we
are able to achieve a one percent character error rate [22].

Among solutions and software evaluated on plain texts, FINEREADER gave the best results, but
it has no support for the recognition of mathematical expressions. Texts without recognized maths
may be sufficient for basic indexing and search. However, it is not surprising that omitting maths
matters when the full texts are used for such tasks as automated text classification and categoriz-
ation or for computing paper similarity [23]. Therefore we strive to enhance the state-of-the-art
possibilities for mathematical OCR.



Neither ABBYY® nor Google responded positively on the near future of math OCR develop-
ment plans—mathematics is only a small market niche for them. On the other hand, developers of
the INFTYREADER system [24] were willing to gradually improve their support for European lan-
guages, MATHML and LATEX export filters and to enrich their recognized database of mathematical
symbols.

We found that setting the parameters of the OCR engine (language, word-list consultation) in-
fluences the precision significantly. We trained FINEREADER on the type cases used at the printer
where journals were typeset.

At the end of extensive experiments, we developed a method of OCR processing consisting
of several phases, both in FINEREADER and Infty. Processing using FINEREADER consist of the
following:

1. A page or block of text is recognised for the first time using a universal setup (non-language
specific). A histogram of character bigrams and trigrams from words with lengths greater
than three is created.

2. The computed histogram of the text block is compared [5] to the histograms created from
the journal data during the training phase for all languages used (English, French, Russian,
German and Czech). Perl module Lingua::Ident is used. Block with bibliography is
detected by different algorithms and is treated differently.

3. Page or block of text is processed for the second time with parameters optimised for recog-
nised ‘language’ in previous step and saved as a two-layer PDF (with text layer used for
searching, indexing and similarity computation).

Recognition of mathematical formulae in FINEREADER is not satisfactory, however. The only
suitable tool for this domain that we have found and experimented with is INFTY. INFTY’s new
PDF import capability is very significant to us: it will allow to import our current FINEREADER’s
two-layer PDFs, use the text part only, throw away badly recognized maths and to detect and re-
cognize maths expressions. A new INFTY version that combines FINEREADER’s technology (OCR
voting [9]) is in preparation. In the meantime,

1. PDF is passed to INFTYREADER and results are stored in the INFTY Markup Language (IML)
and in LATEX (Human readable LATEX).

2. IML is postprocessed by a home-grown programme in JAVA to fix recognition errors of some
of the accented characters that INFTY does not yet have in its glyph database.

Using the process outlined above we have managed to decrease the character error rate from
an initial 11.35% (universal language setup of FineReader) to an average 0.98% character error
rate. [10, 11, 20] The whole processing is fully automated after initial font recognition and language
detection training. The error rate may be further decreased when INFTY’s character database is
semiautomatically enriched when processing a new journal.



When in doubt, use brute force. (Ken Thompson)

4 Text Postprocessing and Metadata Enhancements

The OCR step is followed by further text processing, and its results are used for editing of metadata
and references.

4.1 Metadata Editor

The Metadata Editor (ME) [1, 4] has gradually developed into a fully-fledged and efficient web
application, https://editor.dml.cz, that allows simultaneous remote editing according to
assigned structured access rights. It supports two levels of actions. On the first one the operator
editing the data is provided with page thumbnails so that he can visually check the completeness,
scan the quality and configuration of the articles, easily shuffle the pages and cut or merge articles if
necessary. On the other level the operator can check the automatically imported metadata, edit and
complete them. An integral part of the ME is the module for administration of authority files with
authors’ names. It enables the most suitable version of the name for the DML-CZ to be selected
and to match it with all its other versions.

We consider bibliographical references as important metadata of every paper. Their availability
makes it possible to use professional systems like CROSSREF® for cross-publisher citation linking.
The work starts from OCR of the text, in which a block of references is found. Citations are tagged
by a script based on regular expressions written for the citation style of every journal. The operator
then checks, edits and approves the list of paper citations.

For fixing errors that can be safely detected (such as a Mathematics Subject Classification (MSC)
code string that is invalid in the MSC 2000 standard) procedures are formulated and coded in XS-
chema generated also from a web-based interface (forms). Other sets of constraint checkers run as
overnight jobs together with updates of the database and metadata statistics and logs useful for the
management of Metadata Editor workflow.

Finally, various detection procedures for possible errors have been suggested, evaluated and
implemented for finding anomalous and suspicious content of metadata fields, with lists of warnings
generated, including hyperlinks for easy checking by an operator. An important control concerns
the integrity of TEX sequences in metadata to assure seamless typesetting of article cover pages in
the later stages: all metadata to be typeset are exported in one big file with unique references to the
article, and typeset by XeLATEX to check the TEX control sequences used in the metadata fields. This
ensures that all of the TEX encoded mathematics converts into MathML format smoothly. Similar
procedures allow for an efficient and economical increase of metadata completeness and quality.

4.2 Mathematical Document Classification and Categorization

Article full texts have many applications, e.g. for document classification and categorization. Fine
document classification allows document filtering to reach higher precision in information retrieval
systems such as DML. The most commonly used classification system today is the Mathematics
Subject Classification (MSC) scheme (www.ams.org/msc/), We have developed an MSC classi-
fier (guessed MSC) that is able to assign top-level MSC for retro-digitized articles. Our results
convincingly demonstrated the feasibility of a machine learning approach to the classification of
mathematical papers [14].

Another round of experiments was done with mathematical document similarity computation.
We have collected corpus of full texts of more than 40,000 articles (from DML-CZ and NUMDAM)



and we have computed paper similarities using tfidf [16] and Latent Semantic Analysis (LSA) [3]
and Random Projection methods. Methods use a Vector Space Model, first converting articles to
vectors and then using the cosine of the angle between the two document vectors to assess their
content similarity [8]. The difference between the methods is that while tfidf works directly over
tokens, LSA first extracts concepts, then projects the vectors into this conceptual space where it
only computes similarity.

We are now showing the links to closest document lists in DML-CZ article landing pages to get
feedback from authors and readers to evaluate metrics computed in this experiment. Given that we
will enrich our full text mathematical corpus significantly (with data from JSTOR, ARXIV and other
sources as planned), we hope it will help to tackle plagiarism, too.

Automating the creation of useful digital libraries—that is, digital libraries affording searchable text and
reusable output—is a complicated process, whether the original library is paper-based or already available in

electronic form. (Simske and Lin [17])

5 Summary, Conclusions and Acknowledgement

We have described several steps of DML-CZ workflow, as introduced and tested developed during
the project development. We carried out most of the steps ourselves, to gain expertize and retain
control of fine details, allowing us to plug-in new modules arising from leading edge research in the
future—there are, currently, many new developments appearing and much research underway in the
digitisation area. It is advisable for smaller project to outsource most of the workflow steps.

The most time consuming and costly step is metadata handling and editing, and image trans-
formation and editing (if it cannot be automated). Bare scanning costs amount to less than 10% of
the total page costs, and even less when pages can be physically cut before being used for batch
scanning.

The complexity of the full digitisation workflow should not be underestimated, especially when
digitising heterogeneous sources—continuous and flexible workflow adaptation is a must.

We believe that the methods, algorithms and tools developed do represent important step towards
a European (EuDML) or even world-wide framework for a digital mathematics library, evolved,
bottom up, from smaller “pilot” projects.

This research has been partially supported by the grant reg. no. 1ET200190513 of the Academy
of Sciences of the Czech Republic, by MŠMT grants MSM0021622419 and 2C06009. The author
thanks other DML-CZ colleagues for fruitful discussions that led to the design of the workflow
described there and to the paper reviewers for improvement suggestions. Drawing of Figure 1 by
Mirek Bartošek is acknowledged.
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Abstract

This paper describes algebraic representations of error bounds for harmonic balance
methods. Because the error bound of the harmonic balance method is high dimensional
variety, the calculation of the error bound by numerical approaches is time consuming.
We introduce an algebraic approach to the representation of the error bound. The
error bound of the harmonic balance method is calculated by Gröbner base.

1 Introduction

Harmonic Balance (HB) method is one of the most popular methods for analyzing periodic
solutions of nonlinear ordinary differential equations. The method gives approximated
solutions by truncated Fourier series. In order to guarantee the solutions by the HB method,
several methods with homotopy invariance theorem are reported[1, 2, 3]. These methods
guarantee the approximated solutions by bounded regions, called error bounds, within which
the exact solutions must exist. We introduce a method by symbolic manipulations which
gives the error bound by a single algebraic equation[4].

2 Harmonic Balance Method

We explain the HB method with Duffing equation defined by

d2u

dτ2
+ μ

du

dτ
+ u3 = E cos τ (1)

for simplicity although the method can be applied to higher order differential equation and
higher order polynomial nonlinearity[3, 4]. Eq.(1) can be rewritten as

G−1(s;μ)u(τ) = v(τ) − N [u(τ)], (2)
v(τ) ≡ E cos τ, N [u(τ)] ≡ u3, s ≡ d/dτ, G−1(s;μ) ≡ s2 + μs.

Period 2π solution of Eq.(1) is given by Fourier series;

u(τ) ≡
∞∑

k=0

Re
[
x∗

kejkτ
]

=
∞∑

k=0

	 [(xkr + jxks)ejkτ
]
, (3)

where x∗
k ∈ C, xkr, xks ∈ R, C is a set of complex numbers, R is a set of real numbers,

x0s = 0 and 	[·] denotes the real part. We define projection operators KL and KH by

uL(τ) ≡ KLu(τ) ≡
n∑

k=0

	 [x∗
kejkτ

]
, uH(τ) ≡ KHu(τ) ≡

∞∑
k=n+1

	 [x∗
kejkτ

]
, (4)



where the uL and uH represent the truncated Fourier series and ignored higher harmonics,
respectively. Applying the operator LH to Eq.(2), we obtain an equation FE(uL) which
gives exact solutions of low frequency component uL as

FE(uL) ≡ G−1(s;μ)uL−{v(τ)−KLN [uL + uH]} = 0. (5)

Eq.(5), however, contains unknown high frequency component uH. Ignoring the uH in
Eq.(5), we obtain the harmonic balance equation FH(uL) defined by

FH(uL) ≡ G−1(s;μ)uL−{v(τ)−KLN [uL]} = 0. (6)

Because the uL is represented by x ≡ (x0r, x1r, x1s, . . . , xnr, xns) ∈ R2n+1, Eq.(6) is an
algebraic equation of (x0r, x1r, x1s, . . . , xnr, xns).

3 Derivation of Error Bound

3.1 Homotopy invariance

In order to find out the error bound of solutions by HB method, we use the following lemma
of the homotopy invariance theorem[1, 2].

Lemma 1 Let Ω be an open bounded set in Rm and let f , g:Ω → Rm be two continuous
maps where Ω denotes the closure of the set Ω. If

‖f(z) − g(z)‖2 < ‖f(z)‖2 ∀z ∈ ∂Ω, (7)

where ∂Ω denotes the boundary of the set Ω, then deg(f , Ω) = deg(g, Ω) where we denote
by deg(f , Ω) the degree of f with respect to Ω.

That is, if there exists a bounded region Ω containing a single solution of Eq.(6) and on
the boundary ∂Ω

‖FT(uL) − FH(uL)‖2 < ‖FH(uL)‖2 (8)

holds, then the solution of Eq.(5) also exists in Ω.

3.2 Estimation of uH

In order to calculate the left hand side of Eq.(8) we estimate the high frequency component
uH. Let λ be a positive number satisfying

λ ≥
∥∥∥∥dN [u]

du

∥∥∥∥
∞

. (9)

Applying the operator KH to Eq.(2), we obtain the relation;

uH = −KHG(s; μ)N [uL + uH]. (10)

If λH ≡ λ supk>n |G(jk; μ)| < 1, where H ≡ supk>n |G(jk; μ)|, is satisfied, then there exists
a unique uH [3]. Using the mean value theorem and the contraction mapping, we obtain
the following relations;

‖uH‖i ≤ λH

1 − λH
‖uL‖i for i = 1, 2. (11)

The inequality estimates the higher frequency component uH by the lower frequency com-
ponent uL with respect to l1 and l2 norms.



3.3 Equation of error bound

Using the mean value theorem and the estimation of the higher frequency components (11),
we estimates the left hand side of Eq.(8) as

‖FT(uL) − FH(uL)‖2 = ‖KLN [uL] − KLN [uL + uH]‖2

≤ λ‖uH‖2 ≤ λ2H

1 − λH
‖uL‖2. (12)

From Eq.(8) and Eq.(12) we define the error bound for the HB method by

λ2H

1 − λH
‖uL‖2 = ‖FH(uL)‖2. (13)

3.4 Equation for determination of λ

The estimation of the higher frequency component (11) gives the following relation;

‖u‖1 ≤ ‖uL‖1 + ‖uH‖1 ≤
(

1 +
λH

1 − λH

)
‖uL‖1. (14)

Thus, if we determine the variable λ as

λ = 3
(

1 +
λH

1 − λH

)2

‖uL‖1
2 (15)

≥ 3‖u‖1
2 =

∥∥∥∥dN [u]
du

∥∥∥∥
1

≥
∥∥∥∥dN [u]

du

∥∥∥∥
∞

, (16)

then λ satisfies Eq.(9).

4 Error Bound by Gröbner Base

If we eliminate λ from Eq.(13) using Eq.(15), we obtain the error bound. In order to
eliminate λ by symbolic manipulation efficiently, we define the following variables,

α(x) ≡ ‖uL(τ)‖1 =
n∑

k=0

√
x2

kr + x2
ks, β(x) ≡ ‖uL(τ)‖2

2 =
n∑

k=0

(
x2

kr + x2
kr

)
,

γ(x;μ, E) ≡ ‖FH(uL)‖2
2 =

n∑
k=0

(
f2

kr(x; μ,E)+f2
ks(x; μ,E)

)
, (17)

where fkr and fks denotes the real and imaginary part of kth Fourer components of FH(uL),
respectively. Next, we rewrite Eq.(15) and Eq.(13) by polynomial equation of (λ, α, β, γ)
with the parameter H respectively as

fEB1(λ, α; H) = λ(1 − λH)2 − 3α2 = 0, (18)
fEB2(λ, β, γ; H) = λ4H2β − (1 − λH)2γ = 0. (19)

Now, using Gröbner base of order λ � (α, β, γ), we eliminate λ from Eqs.(18) and (19),
and obtain the following error bound:

gEB(α, β, γ;H) = 9α4H6γ3 − 135α4βH4γ2 − 6α2βH3γ2 − 270α6β2H3γ + 225α4β2H2γ

−30α2β2Hγ + β2γ − 81α8β3H2 = 0. (20)



It is noted that Eq.(20) does not explicitly depend on n, G(s;μ) and parameters E and μ.
Substituting Eq.(17) into Eq.(20), we obtain the error bound represented by x.

5 Parameter Dependency of Error Bound

Because Eq.(20) symbolically contains the parameters E and μ, it is easy to estimate the
parameter dependency of the error bound. In order to estimate the error bound which is
a 2n-dimensional variety in R2n+1, we use an approximation by quadratic form[4]. Figure
1 represents the parameter dependency of the error bounds with respect to E. We can
observe that the error bounds are broken around the bifurcation points by the collision of
two error bounds. The exact point of the collision is also calculated from Eq.(20) [4]. The
lines EB1 and EB2 in Fig.1 show the exact break point of the error bounds.

Figure 1: Parameter dependency of the approximated error bound.
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Abstract

Numerical methods which assure the reliability of the numerical results obtained by
a computer, which sometimes are also called ”Numerical Verification Methods”, have
attracted a great deal of attention in recent years. These methods assure not only a
bound for the error between an approximate solution and an exact solution, but also
prove the existence of an exact solution within the computed error bounds. This is
why such methods are also called ”Computer-Assisted Proofs”. In particular, cases
can be covered where purely analytical methods have failed. In this talk, we will show
how guaranteed bounds for eigenvalues (together with eigenvectors) are obtained and
how non-existence of eigenvalues in a concrete region could be assured. Some examples
for several types of operators in bounded and unbounded domains will be presented.

1 Introduction

Up to now we have developed a method to enclose and exclude eigenvalues for differential
operators [4, 5, 6, 7, 8, 9]. This method is based on Nakao’s theory known as a numerical
verification method for partial differential equations [10, 11, 12, 13], and it has a merit
that it could be applied even in case the operator is not self-adjoint. A remarkable point
of this eigenvalue enclosing/excluding is to assure an existence and non-existence range
of eigenvalues with mathematically rigorous sense. This means not only a reliability of
computed eigenpairs but also that such evaluation of eigenvalues (and eigenvectors) can
be applied to related another problems, e.g. another numerical verification methods for
nonlinear problems or stability analysis of bifurcation phenomenon in hydrodynamics.

This talk aims to show how eigenvalues (and eigenvectors) are enclosed or excluded
in mathematically rigorous sense. In Sections 2 and 3 the principle of our eigenvalue
enclosing/excluding method is presented, and in Section 4 we introduce some successful
applications.

2 Eigenvalue enclosing method

Several methods to compute rigorous upper and lower bounds for eigenvalues of symmetric
operators have been proposed so far, e.g. Krylov-Weinstein’s bounds [2], Kato-Temple’s
bounds [3], Rayleigh-Ritz bounds [2], Lehman’s Bounds [1], Homotopy Method [14] etc.

We have also developed a method to enclose eigenvalues and eigenvectors for differential
operators [4, 5, 6], which was based on Nakao’s verification methods for nonlinear differential
equations [10, 11, 12, 13]. Our method is also applicable to non-symmetric operators. So
far we have applied our enclosure method to enclose eigenpair of symmetric operators and
to enclose real eigenvalues and corresponding eigenvectors of a non-symmetric operator. In
the below we describe the principle of our method.



When we consider an eigenvalue problem Lu = λu for a linear operator L in bounded
or unbounded domains, we treat it as a nonlinear system as follows:

Find (u, λ) ∈ V × C s.t.{
Lu = λu,
‖u‖ = 1,

(1)

here V is a certain Sobolev space which is chosen depending on the property of the eigen-
function u. Then, by using a suitable operator F , we transform (1) into an equivalent fixed
point equation

w = F (w) in V × C (2)

for w = (u, λ). In order to treat the infinite dimensional equation (2) in a computer, we
consider a finite dimensional subspace Vh ⊂ V and a projection Ph : V → Vh. Then we
decompose (2) into the finite and the infinite dimensional parts:{

Phw = PhF (w),
(I − Ph)w = (I − Ph)F (w), (3)

here I is the identity map on V . And we use the Newton-like method only for the former
part, and the latter part is estimated by using an error estimation for Ph. If we construct
a candidate set W suitable for Banach’s fixed point theorem, then we obtain the local
uniqueness and even the simplicity of the enclosed eigenvalue.

3 Eigenvalue excluding method

We have also proposed a method to exclude an eigenvalue in a concrete region, i.e. to prove
that there is no eigenvalue in such an interval. This can be done as follows.

Let Λ be a small region in which we want to exclude any eigenvalues. Then consider a
linear equation

Lu = Λu. (4)

Since the equation (4) has a trivial solution u ≡ 0, if we could prove the uniqueness of
the solution of (4) then the non-existance of eigenvalues in Λ could be confirmed. In order
to prove the uniqueness we construct an equivalent fixed point equation u = TΛ(u) as in
the case of enclosing method. If there exists a non-empty, closed, bounded and convex set
U ⊂ V satisfying TΛ(U) ⊂ int(U), then there exists a unique solution u ∈ V of TΛu = u.
Here V is a certain Sobolev space. This assertion can be easily derived by the linearity of
TΛ. (See [4, 5] for details.)

4 Applications

Here we briefly introduce some successful applications. In [6] we proposed a numerical
method to enclose eigenvalues and eigenfunctions of second-order elliptic operators, proving
also local uniqueness properties. We numerically constructed a set containing eigenpairs
which satisfied the hypotheses of Banach’s fixed point theorem in a certain Sobolev space,
by using a finite element approximation and constructive error estimates. We then proved
the local uniqueness separately for eigenvalues and eigenfunctions. This local uniqueness
assures the simplicity of the eigenvalue.



As an example in an unbounded domain, we studied the eigenvalue problem for an oper-
ator which defines a sort of non-trivial coupling of usual harmonic oscillators [8]. Since one
has only a limited understanding of its eigenvalues, of the behavior of eigenfunctions, and
in particular of the multiplicity of eigenvalues, here we tried to make a numerical approach
to this system. More precisely, applying a numerical enclosure method for elliptic eigen-
value problems which is based on a verification procedure for nonlinear elliptic equations,
adapted to such coupled-type eigenvalue problems on an unbounded domain, we developed
a verified numerical computation for eigenvalues which also gave guaranteed information
about multiplicity.

There exists a huge number of references concerned with bifurcations and stability re-
sults for the Navier-Stokes equations. Only a few, however, provide a rigorous result which
guarantees stability or instability. Our aim in [9] was to present a rigorous theorem which
proves the stability of certain solutions arising in what is called the Kolmogorov prob-
lem. We accomplish this by verified computation. The eigenvalue problem arising in the
Kolmogorov problem is not self-adjoint and, accordingly, it is quite difficult to treat the-
oretically. Our method is a rigorous numerical approach to deal with this difficulty, and
numerical examples were given as a demonstration.

As the most recent application we treat Eigenvalue excluding for 1-D Schrödinger opera-
tors. We consider a 1-D Schrödinger operator on the whole real line, with a potential which
is a sum of a periodic function and some decaying perturbation. This kind of operator has
essential spectrum with band-gap structure, and depending on the perturbation it may have
isolated eigenvalues in the spectral gaps. Due to the lack of appropriate variational charac-
terizations and to the ”spectral pollution” problem, it is difficult to locate these eigenvalues
analytically or numerically. Here we focus on excluding eigenvalues in spectral gaps and
show how a mathematically rigorous treatment of such a problem can be done by numerical
verification.

The details for these applications will be presented in the talk.
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1 Introduction

Homoclinic and heteroclinic connections of hyperbolic objects play an important role in the
study of dynamical systems from a global point of view. They were used in the design of
space missions using libration point dynamics [1], among which the Genesis [2] has been
the first one to make use of a heteroclinic connection.

For the design of such missions, the circular Restricted Three Body Problem (RTBP)
is the natural problem to start with. Of special interest are the L1 and L2 libration points
because of their suitability to place stationary satellites.

It turns out that the existence of homoclinic and heteroclinic orbits as well as chaotic
dynamics for a given parameter values of the system is rather difficult to prove by means
of an analytic approach. In this report we propose a method that allows us to verify the
existence of homoclinic and heteroclinic orbits for maps and flows by means of a computer
assisted proof. The method is geometric in the spirit and it assumes that the map is
of class C1 and that we can compute rigorous bounds for values and derivatives of the
map. The method has been applied to the Planar Circular Restricted Three Body Problem
(PCR3BP).

Let S and J be two bodies called Sun and Jupiter, of masses ms = 1 − μ and mj = μ,
μ ∈ (0, 1), respectively. They rotate in the plane on circles counter clockwise about their
common center of mass and with the angular velocity normalized to one. Choose a rotating
coordinate system, so that the origin is at the center of mass and the Sun and the Jupiter
are fixed on the x-axis at (−μ, 0) and (1 − μ, 0), respectively. In this coordinate frame
the equations of motion of a massless particle called the comet or the spacecraft under the
gravitational action of the Sun and the Jupiter are (see [3] and references given there)

ẍ − 2ẏ = Ωx(x, y), ÿ + 2ẋ = Ωy(x, y), (1)

where

Ω(x, y) =
x2 + y2

2
+

1 − μ

r1
+

μ

r2
+

μ(1 − μ)
2

r1 =
√

(x + μ)2 + y2, r2 =
√

(x − 1 + μ)2 + y2.

Equations (1) are called the equations of the Planar Circular Restricted Three-Body Prob-
lem (PCR3BP). They have a first integral called the Jacobi integral, which is given by

C(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) + 2Ω(x, y).
∗Correspondence to: Department of Mathematics, University of Uppsala,
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We consider the PCR3BP on the hypersurface

M(μ,C) = {(x, y, ẋ, ẏ) | C(x, y, ẋ, ẏ) = C}
and we restrict our attention to the following parameter values C = 3.03, μ = 0.0009537 -
the parameter values for the Oterma comet in the Sun-Jupiter system (see [3]).
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Figure 1: Left: the primary heteroclinic connection between L1 and L2 orbits. Right: the
graph of symbolic dynamics for the PCR3BP.
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Figure 2: Homoclinic orbits to L1 and L2 orbits. The projection of the energy surface
M(μ,C) for μ = 0.0009537 and C = 3.03 onto (x, y) coordinates does not contain the
C-shaped black region. In this region a comet cannot move due to its energy level.

Theorem 1 [5, 6] For the parameter values C = 3.03, μ = 0.0009537 there are two periodic
solutions of the equation (1) around the libration points L∗

1 and L∗
2 called the Lyapunov orbits

and denoted by L1 and L2, respectively. Moreover, there exist

• heteroclinic orbits in both directions connecting L1 and L2 – see Fig. 1 left panel,

• two geometrically different homoclinic solutions in the Sun region to the L1 orbit,
denoted by S and I – see Fig. 2,



• two geometrically different homoclinic solutions in the exterior region to the L2 orbit,
denoted by X and E – see Fig. 2.

Moreover, for any biinfinite path on the graph presented in Fig. 1 (right panel)

a = (ai)i∈Z ∈ {L1, L2, X, E, I, S}Z

• there exists a true orbit of the PCR3BP which stays close (explicitly given estimation)
to the orbits {L1, L2, X, E, I, S} with the order given by the sequence a,

• if the sequence a is periodic then the corresponding solution to PCR3BP can be chosen
to be periodic,

• if the sequence a has the form

(. . . , Lk, Lk, a0, a1, . . . , aN , Ls, Ls, . . .)

then there exists a solution u(t) of the equation (1) such that

– the omega limit set ω(u) = Ls,
– the alpha limit set α(u) = Lk,
– there is a part of trajectory of u which stays close to the orbits (a0, a1, . . . , aN )

with the preserved order.

2 Topological tools.

The main idea of the proof of Theorem 1 is to use the method of covering relations in
order to prove the existence of orbits which intersect given subsets of the phase space with
a desired order. The existence of homoclinic and heteroclinic orbits requires an argument
for the convergence of an orbit. This will be verified by means of the cone conditions and
presented in the next section.

Definition 1 [7] Let N be a parallelogram with distinguished left and right halfplanes Nr

and N l and corresponding right and left edges Nre, and N le as presented in Fig. 3 (left
panel). We will call such an object an h-set.

Let N , M be h-sets and let f : N → R2 be continuous.

Definition 2 [7] We say that N f -covers M and denote this by N
f

=⇒ M if

• f(N) ⊂ int(M ∪ Mr ∪ M l)

• f(Nre) and f(N le) are mapped into different halfplanes int(Mr) and int(M l).

The geometry of this concept is presented in Fig. 3 - right panel.
The following theorem is the main tool used in this paper for proving the existence of

chaotic dynamics.

Theorem 2 [7] Assume {Ni}i=1,...,K are pairwise disjoint h-sets. Let (ij)Z be a biinfinite
sequence such that

Nij

f
=⇒ Nij+1

.

Then there exists a sequence (xj)j∈Z such that f(xj) = xj+1 and xj ∈ int(Nij ) for j ∈ Z.
If the sequence (ij)Z is periodic then x0 can be chosen to be a periodic point for f with the
same principal period.



left side Nl

right side N r

support N

Figure 3: Left: an h-set. Right: geometry of the covering relations. In this case N
f

=⇒ M

and N
f

=⇒ N .

3 Cone conditions.

Let Q : R2 × R2 → R be a quadratic form. An h-set N with associated quadratic form QN

will be called an h-set with cones and denoted by (N,QN ).

Definition 3 [4] Let f : N → R2 be a smooth map. Let (N, QN ) and (M, QM ) be h-sets
with cones. We will say that f satisfies the cone conditions with respect to the pair (N,M)
if for x, y ∈ N holds

QM (f(x) − f(y)) > QN (x − y).

The following theorem can be used to prove the convergence of a trajectory to a fixed
point.

Theorem 3 [4] Let (N, QN ) be an h-set with cones. Assume that N
f

=⇒ N and f satisfies
the cone conditions with respect to the pair (N, N). Then

• the map f has unique fixed point x∗ in N ,

• if x ∈ N is such that fk(x) ∈ N for k ∈ N then limk→∞ fk(x) = x∗,

• if (xk)k≤0 is such that f(xk−1) = xk and xk ∈ N for k ≤ 0 then limk→−∞ xk = x∗.

4 Proof of Theorem 1.

The proof of Theorem 1 consists of the following steps which were verified by means of
verified numerics.

• After fixing the Jacobi constants C and the mass ratio μ corresponding to the Oterma
comet the motion is on three dimensional isoenergetic manifold M(μ,C). On this
manifold we choose a Poincaré section Π = M(μ,C) ∩ {y = 0}.

• We construct two h-sets with cones (H1, Q1), (H2, Q2) on Π and verified that The-
orem 3 apply to a suitable Poincaré map P and the sets (Hi, Qi), i = 1, 2. This
proves the existence of two periodic orbits (called Lyapunov orbits) L1 and L2 which
intersect the sets H1 and H2, respectively, at exactly one point.

• We construct six chains of h-sets along homoclinic and heteroclinic orbits presented
in Fig 1 and Fig. 2 such that

Hki

P=⇒ Mi,1
P=⇒ · · · P=⇒ Mi,Ni

P=⇒ Hsi ,



for i = 1, . . . , 6, where P is a suitable Poincaré map. The cases ki �= si correspond to
heteroclinic connections between L1 and L2 in both directions. The cases ki = si = 1
and ki = si = 2 correspond to two pairs of homoclinic orbits in the interior and the
exterior regions, respectively.

Now the assertion follows from Theorems 2 and 3.

We would like to point out here that the verification of the cone conditions required
verified integration of the variational equations associated to the equations for the PCR3BP.
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[7] P. Zgliczyński, Computer assisted proof of chaos in the Rössler equations and the
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Abstract

Our aim is to construct a computer program for validated computation on boundary
value problems (BVPs) of ODEs. The user gives an equation and boundary conditions,
and set some parameters, then the program gives a validated results for the equation.
It is not necessary for the user to write complicated codes in order to adjust the
program to his equation.

For validated computation of BVPs, we use interval arithmetic with INTLAB, Tay-
lor expansion method, multiple-Newton method, and Brouwer’s fixed point theorem.
Most part of the validated process is based on a paper of R.J.Lohner [1], but a quasi-
Newton method is adopted instead of the interval Newton method in his paper. This
change reduces the cpu time remarkablly, however needs complicated program codes
to install. Symbolic Math Tool Box in Matlab can be used to write the program codes
almost automatically.

Moreover we make some device to treat large size matrices which appaer in vali-
dated computation of the quasi-Newton method.

1 Introduction

R.J Lohner introduced a validated computation method for boundary value problems in
[1]. The method is based on Taylor expansion with polynomials of some degree. But it is
pointed out by himself that the method needs interval matrices for systems which should
be solved by validated computation, and that this may cause some difficulty in practical
computation, because the sizes of the systems depend on the number of time steps and
are usually large. The cpu time for solving such large size interval systems will become so
much.

We propose a method without using interval matrices. This method gives a better
performance than Lohner’s method but needs more complicated program codes. In order
to reduce human effort, we make automatic program generators using a computer algebra
system so called Symbolic Math Tool Box which can be invoked together with MATLAB
and INTLAB.

The authors will discuss

• An application of the Lohner method using non-interval matrices in the systems and
comparison with the original method

• Some device to treat large size matrices which appear in the systems

• Automatic formulation for installing programs using Symbolic Math Tool Box in
MATLAB combined with INTLAB

All computation was carried out by R.Ukawa and N.Matsuda.
∗Correspondence to: Nobito Yamamoto, 1-5-1 Chofu-ga-oka, Chofu, Tokyo, Japan, TEL:+81424435349

.



2 Problem

Consider a system of ODEs. Find u(t) ∈ Rm such that{
du

dt
= f(t, u), a < t < b,

r(u(a),u(b)) = 0

holds. Here,

f : R × Rm → Rm

r : Rm × Rm → Rm

should be differentiable w.r.t. u.

3 Validated Computation

Now we describe a method of validated computation for our problem.
Take mesh points by

a = t0 < t1 < · · · < tm−1 < tm = b, m ∈ N.

Consider n dimensional vectors s0, s1, · · · , sm−1, sm, and take a vector s of n × (m + 1)
dimension as

s = (s0, s1, · · · , sm−1, sm)T .

Solve the ODEs with an initial condition u(tk) = sk at t = tk, and let the solution at
t = tk+1 be denoted by

u(tk+1; tk, sk).

In actual computation, we have to apply validated methods to get the solution u(tk+1; tk, sk).
The Lohner method is the most popular for this purpose. But in this case it is sufficient to
use the Taylor expansion method without QR decomposition, since we can ignore Wrapping
Effects for just 1 step computation.

Define F (s) for s by

F (s) :=

⎡⎢⎢⎢⎢⎢⎣
u(t1; t0, s0) − s1
u(t2; t1, s1) − s2

...
u(tm; tm−1, sm−1) − sm

r(s0, sm)

⎤⎥⎥⎥⎥⎥⎦
We solve an equation

F (s) = 0.

If the solution s exists, then the solution u(t) to the boundary problem of the ODEs also
exists. Moreover sj gives the values of u(tj).



The equation F (s) = 0 is transformed into Newton-type equations

s = N(s)
= s − (F ′(s̃))−1F (s),

where s̃ ≈ s.
For validated computation, we will find some interval vector [s] such that

N([s]) ⊂ [s]

holds, and use Brouwer’s fixed point theorem.
Lohner’s original equation gives the operator N by

NL([s]; s̃) := s̃ − (F ′([s]))−1F (s̃)

where s̃ is the center of [s]. Note that the system matrix is an interval matrix.
Instead we use Quasi-Newton equation.

N([s]; s̃) := (F ′(s̃))−1(F ′(s̃)[s] − F ([s]))

where s̃ is an approximate solution to s. Note that the system matrix is not interval any
longer.

• Lohner’s original equation has an interval matrix, which need much cpu time in com-
putation.

• Quasi-Newton equation has an advantage in cpu time.

• On the other hand, the implementation of a computer program for Quasi-Newton
equation has some defect. See the Section 5.

4 Treatment of large size systems

In practical computation, the number of the steps m might become so large, 10,000 to
20,000 as usual. Then the system matrices in the Newton operators have large sizes. Indeed
they are sparse, but the inverse matrices are full which we have to hold in the memory of
our computers in order to solve the systems with validated computation. Usually this is
impossible.

In our case, the Jacobian F ′ has a special form, almost block diagonal, then we can use
a kind of sweep out method. But naive use of sweep out causes Wrapping Effect. In order
to avoid Wrapping Effect, we use the mathod so called Top Down Algorithm in which the
operations of matrix products are done before matrix-vector products.

5 Symbolic manipulation

Before the implementation of calculation of interval polynomials, we have to combine the
linear parts to get rid of unnecessary width expansion of intervals (’Dependency Prob-
lem’). For complicated calculation of intervals, the mean value formula is the most popular
countermeasure to dependency problem:

[g([v])] ⊂ g(v̂) + [g′([v])]([v] − v̂),



where v̂ ∈ [v].
On the Quasi-Newton equation, we have to apply the mean value formula to the term

F ′(s̃)[s] − F ([s]). But this is not a light work because we have to treat Taylor expansion
method w.r.t [s]. Then we use a symbolic manipulator in MATLAB.

• Symbolic Math Toolbox is a package in MATLAB to treat symbolic transformation
in computers.

• In order to substitute some numerical values for symbols, Symbolic Math Toolbox
usually uses a command subs. But this command cannot be used for interval values
in Intlab.

• We adopt some devices in order to substitute interval values to symbols.

Details of these devices will be shown in the talk.
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Abstract

In this paper we present a new formulation and its simpler analysis of the lattice
based attack of Boneh and Durfee for the RSA cryptography [2]. We follow the same
approach of Boneh and Durfee, however we propose a new way of defining a lattice
with which we can achieve the same solvable key bound d < N0.292. Our lattice is
represented as a lower triangle matrix, which makes its analysis much simpler that
of [2]. We think that this simpler analysis would be useful for considering applica-
tions/generalisations of this approach. In fact, as an example of such applications, we
give a way of attacking RSA secret key with a certain repetitive structure. We omitted
the proof of some lemmas in this paper, see the full version [1] for the complete proof.

1 Introduction

In [2], Boneh and Durfee proposed a polynomial time attack by which we can recover the
RSA secret key d from the public information (e,N) when d < N0.292; in the following, we
call the bound d < N0.292 the solvable key bound of Boneh and Durfee or simply the Boneh-
Durfee bound. The basic idea of the attack is based on the Coppersmith technique by which
we can obtain small solutions of a modular equation such as f(x1, x2, . . . , xn) ≡ 0 (mod W ).
The technique converts the problem of finding a small solution of the equation to the
problem of solving a system of polynomial equations by a lattice reduction algorithm such
as the LLL algorithm [10].

Here is more detail explanation of their approach. The goal is to obtain a small solution
(x0, y0) of the following target equation to recover the secret key.

fBD(x, y) = −1 + x(y + A) ≡ 1 (mod e) (1)

Here A = N + 1. From this first the following bivariate polynomials are defined

gi,j(x, y) =
{

xi−j(fBD(x, y))iem−i for i ≥ j
yj−i(fBD(x, y))jem−j for i < j

(2)

for a certain range of (i, j) and an integer m. These polynomials are converted to a lattice
represented by a row echelon matrix LBD defined by using the coefficients of gi,j(x, y) with
some parameters. Then by using a lattice reduction algorithm, we obtain a system of
polynomial equations from which we can compute polynomial number of candidates of the
solution (x0, y0) numerically.

In this approach a technically crucial point is to design a matrix for a lattice with a small
determinant. They showed that their matrix has a sufficiently small determinant; however,
its analysis is complicated since the technique of geometrically progressive matrices, and it
seems hard to apply for the other situations. The purpose of this paper is to give a new

∗The author and this research was supported in part by JSPS Global COE program “Computationism
as a Foundation for the Sciences”.



way to construct a lattice with asymptotically the same determinant that is much simpler
to analyse.

Since Boneh and Durfee’s work, variants of their technique have been proposed. Blömer
and May [3] proposed a new lattice based algorithm for attacking RSA with a short secret
key. They constructed a lower triangle lattice by eliminating some columns from the original
lattice; this makes simplify the determinant analysis. In [9], Jochemsz and May gave an
algorithm for finding small roots of a multivariate modular/integer equation based on a
generalised lattice construction strategy. Note that both algorithms, achieve a slightly
weaker solvable key bound than the Boneh-Durfee bound.

In this paper we follow the strategy of Boneh and Durfee to give a new variation of the
lattice based attack with a simpler analysis. We propose a conversion from the polynomi-
als (2) to three-variable polynomials Gi,j(x, y, z) when we construct lattice; on the other
hand, Boneh and Durfee directly constructed the lattice from gi,j(x, y). Since we obtain a
lower triangle matrix representation of our lattice, we can easily compute its determinant.
Therefore, we give a new simple algorithm to achieve the Boneh-Durfee bound.

As the application of our analysis technique we consider the situation where an RSA
secret key has a repetitive structure; more precisely, the situation that the secret key d (in
its binary representation) is the repeat of r short bit string d0. In this situation, we showed
that we can recover the secret key when β < (r + 3 −√

r2 + 6r + 1)/4 where β = logN d0.
For r = 1, we can see this is equivalent to the attack of Boneh and Durfee.

This paper is organised as follows: In section 2, we give basic symbols, notations, lem-
mas. We give our formulation of the lattice based attack in section 3 and its detailed
analysis is explained in 4. In section 5, we demonstrate that our approach can be used to
analyse the situation when a secret key has a repetitive structure.

2 Preliminaries

In this section, for the following discussions, we introduce some notations, state some known
facts, and key technical lemmas.

We use standard RSA notations throughout this paper. A given RSA instance is defined
by p, q, e, and d, where p and q are large primes, e is a public key, and d is the corresponding
secret key. Let N = p×q, and let ϕ(N) be the Euler’s function; here we may simply assume
that ϕ(N) = (p− 1)(q − 1). We assume that gcd(e, ϕ(N)) = 1. The key relation between e
and d is ed ≡ 1 (mod ϕ(N)) from which we derive our target equation (1) by following the
argument in [2].

The basic strategy of the lattice based attack is to convert the problem of recovering
RSA to the problem of finding small solution of a modular equation; more precisely, this
problem is to find a solution within a certain range of a modular equation such as f(x, y) ≡
0 (mod W ) for a polynomial f(x, y) and a nonnegative integer W . In general, solving
modular equation is not easy, whereas there are some cases where we may be able to use
the standard numerical method for solving this problem. The Howgrave-Graham lemma
[8] provides us with one of such cases.

To state the Howgrave-Graham lemma, we introduce the following norm for bivariate
polynomials and integers.

Definition 1. XY -norm Let f(x, y) =
∑

i,j ai,jx
iyj be a polynomial with integral coef-



ficients, X and Y be natural numbers. We define the XY -norm of f(x, y) by

||f(x, y)||XY
def=
√∑

i,j

a2
i,jX

2iY 2j .

Lemma 1. (Howgrave-Graham [8]) For any positive integers X, Y and W , let f(x, y)
be a bivariate polynomial consisting with w terms with integral coefficients such that the
following holds

||f(x, y)||XY <
W√
w

.

Then we have
f(x, y) ≡ 0 (mod W ) ⇔ f(x, y) = 0

within the range of |x| < X and |y| < Y .

Note that f(x, y) = 0 clearly implies f(x, y) ≡ 0 (mod W ). What is important is its
converse. This lemma guarantees that we can find all solutions of the modular equation
within the range from the integral solutions of f(x, y) = 0 (if they exist).

Now we introduce some definitions and some lemmas about the lattice; we need to obtain
a polynomial with a small XY -norm to use Lemma 1, and this problem can be reduced
to a problem of finding a short vector in a lattice. Consider linearly independent vectors
b1, . . . ,bn, then the lattice with basis b1, . . . ,bn is defined by

L(b1, . . . ,bn) =

{
n∑

i=1

aibi

∣∣∣∣∣ ai ∈ Z for i = 1, . . . , n

}
. (3)

That is, the lattice is the set of integral linear combinations of its basis vectors.
The shortest vector problem is to find a vector v ∈ L(b1, . . . ,bn) \ {0} such that

|v| ≤ |v′| for ∀v′ ∈ L(b1, . . . ,bn) \ {0}. In other word, this problem is to find a non-zero
vector having the minimum length in L(b1, . . . ,bn). We know that a lattice basis reduction
algorithm finds a good approximation of the problem by computing a reduced basis. We use
the LLL algorithm [10], the most widely used lattice reduction algorithm, in our analysis.
The two short vectors in the reduced basis described in the following theorem are important.

Theorem 1. [2, Fact 3.3] Let b1, . . . ,bn be a given linearly independent basis. Then the
LLL algorithm can find linearly independent lattice vectors v1 and v2 such that

|v1| ≤ 2(n−1)/4| det(L)|1/n and |v2| ≤ 2n/2|det(L)|1/(n−1). (4)

Here, det(L) is the determinant of the lattice which is defined by the determinant of a
matrix representation of the lattice; this is actually defined by

det(L) = det

⎛⎜⎝ b1

...
bn

⎞⎟⎠ .

When we obtain a lower triangle matrix representation of a lattice, we can easily compute
| det(L)| by the product of its diagonal elements. we convert the short vectors in the reduced
basis to polynomials satisfying the sufficient condition of the Howgrave-Graham lemma.



We introduce a mapping for converting polynomials to vectors; since a lattice reduction
algorithm is designed for vectors, while our targets are polynomials. We divide this mapping
into two steps, named a vectorisation and an instantiation respectively. We introduce
a way to map three-variable polynomials to vectors since we will consider three-variable
polynomials in our construction. i

Definition 2. Polynomials ⇒ vectors

Let K be a finite sequence of distinct three-variable monomials. We assume a linear
order on this, and let it be fixed; for any t, let xityjtzkt be the t-th monomial in this order.
Then for any f(x, y, z) =

∑
1≤t≤|K| atx

ityjtzkt , we map it to the following vector b, which
is called the vectorisation of f(x, y, z) and is denoted as VK(f).

f(x, y, z) = a1x
i1yj1zk1 + a2x

i2yj2zk2 + · · · + a|K|xi|K|yj|K|zk|K|

↓ ↓ ↓
b = ( a1x

i1yj1zk1 , a2x
i2yj2zk2 , . . . , a|K|xi|K|yj|K|zk|K| ).

We introduce a conversion named an instantiation and its inverse; it converts a three-
variable monomials to integers by substitution. Our matrix will be defined by using the
vectorizations and hence each element of the matrix is monomial. On the other hand,
a lattice reduction algorithm is designed for integer lattices or integer matrices. Thus,
for using a lattice reduction algorithm, we need to instantiate our matrix by substituting
some integers X, Y and Z to x, y and z, which we call an instantiation with X, Y and
Z. Conversely, converting an integer vector to a polynomial is called a deinstantiation.
Note that (since K and the order of monomials is fixed) we know a monomial xityjtzkt

corresponding to the t-th entry of a given vector; hence, deinstantiation at the t-th entry
can be achieved by simply dividing its integral value by XitY jtZkt .

These vectorization, instantiation, and deinstantiation procedures are essentially the
same as those used by Boneh and Durfee (except that we consider three-variable polynomials
while bivariate polynomials have been used by them).

3 A New Lattice Based Algorithm

In this section we give a new lattice based algorithm for RSA with a short secret key; that
is, a new lattice construction and its simpler analysis to derive the same Boneh-Durfee
bound d < N0.292. Our analysis requires only elementary lemmas and calculations. The
detailed analysis is given in the next section. What is different from the original algorithm
is to use three-variable polynomials to construct a lattice; the bivariate polynomials (2) are
used directly in the original paper. We first state some definitions and lemma to explain
our lattice construction.

Canonical Replacement

We convert the bivariate polynomials gi,j(x, y) to three-variable polynomials artificially.
We first express gi,j(x, y) as a sum of monomials and then replace every xy by z + 1 in
gi,j(x, y). For example, the polynomial g2,3(x, y) = em−2(−1 + xy + Ax)2y = em−2y +
A2em−2x2y − 2Aem−2xy − 2em−2xy2 + 2Aem−2x2y2 + x2y3 is converted to the polynomial
G3,2(x, y, z) = em−2y + A2em−2x(1 + z) − 2Aem−2(1 + z) − 2em−2y(1 + z) + 2Aem−2(1 +
z)2 + em−2y(1 + z)2. Like this example, we will denote the converted polynomial from
gi,j(x, y) by Gi,j(x, y, z), and we call this conversion a canonical replacement. It is clear
that Gi,j(x, y,−1 + xy) = gi,j(x, y). Though artificial, this canonical replacement allows us
to define a lower triangle matrix representation of our lattice.



Step 1: Choose attack parameters m and δ.
Step 2: Define an index sequence I and a monomial sequence K (as explained

in Section 4). For each (i, j) ∈ I, define a polynomial gi,j(x, y) as (2)
and a polynomial Gi,j(x, y, z) by the canonical replacement of gi,j(x, y).
Construct a lattice L using vectors VK(Gi,j) as row vectors in the order
of (i, j) following I.

Step 3: Instantiate L with X = �N δ�, Y = �N0.5� (and Z =
√

X2Y 2 + 1). Then
apply a lattice reduction algorithm to it.

Step 4: For two short vectors v1 and v2 computed by a reduction algorithm,
compute their deinstantiations v′

1 and v′
2. Define polynomials H1(x, y, z)

and H2(x, y, z) by summing up the monomials in v′
1 and v′

2 respectively.
Then define h1(x, y) = H1(x, y,−1+xy) and h2(x, y) = H2(x, y,−1+xy).

Step 5: Enumerate all integral solutions of h1(x, y) = h2(x, y) = 0. For each of
those solutions, compute d by (1) and check whether it is an integer.

Figure 1: Our version of the lattice based attack

Here we extend the notion of XY -norm for converted three-variable polynomials and
show some useful bound. Though we consider such converted three-variable polynomials,
they are essentially bivariate polynomials; hence, we still discuss its XY -norm and show an
inequality. Let F (x, y, z) =

∑
i,j,k bi,j,kxiyjzk be a three-variable polynomial. For this F ,

we define a three-variable version of the XY -norm as follows:

||F (x, y, z)||XY
def=
√∑

i,j,k

b2
i,j,kX2iY 2j(X2Y 2 + 1)k.

Again this definition is somewhat artificial; one motivation is to have the following bound.

Lemma 2. Let f(x, y) be any bivariate polynomial and let F (x, y, z) be is a polynomial
obtained by applying the canonical replacement to f(x, y). Let v be the maximum degree of
z in F (x, y, z). Then for any non-negative integers X and Y , the following holds.

||f(x, y)||XY ≤ (v + 1)||F (x, y, z)||XY .

Remark. We will assume that Z =
√

X2Y 2 + 1 whenever we consider
instantiation/deinstantiation with some X and Y to keep its consistent with this extended
XY -norm notion. Thus, for any three-variable polynomial F (x, y, z) obtained as a sum of
monomials of the deinstantiation of some vector F w.r.t. X and Y , the following relation
is immediate.

||F (x, y, z)||XY = |F|. (5)

Now we explain our version of the lattice based attack for RSA following its outline
stated in Figure 1. This is essentially the same as the one by Boneh and Durfee except for
polynomials and a lattice construction.

We first define symbols used in the algorithm. Let δ be the ratio of the bit-length of d
to that of N ; here we assume that δ < 0.5. Let m be an another parameter that is set as an
integer greater than one; the larger m would yield the better solvable key range but the more
computation time is necessary. The Boneh-Durfee bound δ < 0.292 is the approximated
value when we take sufficiently large m. Thus, considering available computational resource
and δ, an appropriate number should be chosen for m.



Then we define the set I = {(i, j) ∈ Z2|0 ≤ i ≤ m, 0 ≤ j ≤ 2(1 − δ)i}. The sequence I

is defined by introducing some order to elements in I; however we postpone its explanation
to the next section. For (i, j) ∈ I, polynomials gi,j(x, y) are defined as follows:

gi,j(x, y) def=
{

xi−j(fBD(x, y))iem−i for i ≥ j
yj−i(fBD(x, y))jem−j for i < j.

(6)

These are the same polynomials defined in [2]; more precisely, our gi,j(x, y) for i ≥ j and
for i < j correspond to their gi,j(x, y) and hi,j(x, y) respectively. We then further extend
them to three-variable polynomials Gi,j(x, y, z) by the canonical replacement. Consider the
set of monomials of type xiyjzk that appear in some Gi,j(x, y, z). Again its ordered version
K will be defined in the next section. Now we let bi,j = VK(Gi,j) and define our lattice L
as follows:

L =

⎡⎢⎣ b0,0

...
bm,m′

⎤⎥⎦ (7)

where m′ is �2(1− δ)m�. One important point here is that we can choose some appropriate
ordering for K so that L becomes lower triangle; we prove this in the next section.

Next we carry out a lattice reduction algorithm on L′ that is obtained as the instantiation
of L with parameters X = �N δ� and Y = �3N0.5� (and Z =

√
1 + X2Y 2); for our analysis,

we consider the LLL algorithm. The algorithm computes a reduced basis, which contains
short vectors in the lattice.

From two short vectors v1 and v2 in the reduced basis, we construct the corresponding
polynomials h1(x, y) and h2(x, y). First we convert the two vectors to their deinstantiations
v′

1 and v′
2. Then define H1(x, y, z) and H2(x, y, z) as the sums of all monomials in v′

1 and v′
2

respectively. From the construction of L and the nature of the instantiation/deinstantiation,
that is, we can easily see each vc is a integral linear combination of bi’s; hence this yields
that H1(x, y, z) and H2(x, y, z) are integral linear combinations of Gi,j(x, y, z). We then
obtain h1(x, y) and h2(x, y) by hc(x, y) = Hc(x, y,−1 + xy) for c = 1, 2.

Finally, in step 5, we solve the simultaneous equation h1(x, y) = h2(x, y) = 0. For each
(x1, y1) of the integral solutions of the equation, compute d by d = (−1 + x1(y1 + A))/e
and check it is indeed the correct secret key, i.e., check whether it is a non-negative integer.
This is the outline of our version of the lattice based attack.

Now we show relationships between the polynomials computed in the algorithm; our
target is to derive the Boneh-Durfee bound via considering a sufficient condition of the
Howgrave-Graham lemma. By construction we have

fBD(x, y) ≡ 0 (mod e) ⇒ [gi,j(x, y) = Gi,j(x, y,−1 + xy) ≡ 0 (mod em) for ∀(i, j) ∈ I].

On the other hand, [Gi,j(x, y,−1+xy) ≡ 0 (mod em) for ∀(i, j) ∈ I] ⇒ [Hc(x, y,−1+xy) =
hc(x, y) ≡ 0 (mod em) for c = 1, 2] since each Hc(x, y, z) is an integral linear combination
of Gi,j(x, y, z). Thus, if both h1(x, y) and h2(x, y) satisfy the condition of the Howgrave-
Graham lemma for X, Y and W = em, we have

hc(x, y) ≡ 0 (mod em) ⇔ hc(x, y) = 0 for c = 1, 2, |x| < X and |y| < Y

and this implies

fBD(x, y) ≡ 0 (mod e) ⇒ hc(x, y) = 0 for c = 1, 2, |x| < X and |y| < Y. (8)



Therefore a small solution of fBD(x, y) ≡ 0 (mod e) must be included in the set of small
solutions of h1(x, y) = h2(x, y) = 0 when h1 and h2 satisfy the Howgrave-Graham condition;
more precisely, if for each c = 1, 2, hc satisfies the following.

||hc(x, y)||XY <
em

√
w

(9)

Here w is the number of terms in hc(x, y), which is equal or less than (1 − δ)m2.
Now we consider this condition for each hc(x, y) to derive the Boneh-Durfee bound. We

have by Lemma 2,

||hc(x, y)||XY ≤ (v + 1)||Hc(x, y, z)||XY ≤ (m + 1)||Hc(x, y, z)||XY

where v is the maximum degree of z in Hc(x, y, z), which is equal to or smaller than m.
Moreover by Theorem 1 and (5) we have

||Hc(x, y, z)||XY = |vc| ≤ 2n/2 det(L′)1/(n−1).

Rearranging these conditions, we have a sufficient condition for the Howgrave-Graham
lemma as follows.

(m + 1)2n/2 det(L′)1/(n−1) <
em

√
1 − δm

.

Following the analysis of Boneh and Durfee, we disregard the numbers (m + 1)2n/2 and√
1 − δm because these are sufficiently small comparing to the RSA parameters, and we

use det(L′)1/n instead of det(L′)1/(n−1). Hence we have our simplified sufficient condition.

det(L′)1/n < em. (10)

Here from the analysis of the next section, we have both

n = (1 − δ)m2 + o(m2) and det(L′) = N(− 1

3
δ2− 1

3
δ+ 5

6 )m3+o(m3).

Therefore, the condition (10) is equivalent to

N(− 1

3
δ2− 1

3
δ+ 5

6 )m3+o(m3) = det(L′) < enm = N (1−δ)m3+o(m3).

Hence we have − 1
3δ2 − 1

3δ + 5
6 < 1− δ for sufficiently large m. Then we have the condition

for δ as follows
δ < 1 − 1√

2
≈ 0.292. (11)

This is the same as the Boneh-Durfee bound [2].

4 Analysis in Detail

We show that L defined in the above section is lower triangle; hence we can easily derive
the determinant of the L′ defined as the instantiation of L with parameters X and Y .

We need to give the detailed construction of L to prove our claim; before this, we
define an index sequence I and a monomial sequence K to set an order of terms in our
matrix. For fixed m and δ < 0.5, we define the set I

def= {(i, j) ∈ Z2|0 ≤ i ≤ m, 0 ≤
j ≤ 2(1 − δ)i}. We respectively define I1 and I2 by the lexicographic order of (i, j) in



{(i, j) ∈ I|i ≥ j} and that of (j, i) in {(i, j) ∈ I|i < j}; we use these sequences to de-
fine the order of the vector Gi,j(x, y, z). We further set the index sequence I as the con-
catenation of I1 and I2. For I1 = ((i1, j1), . . . , (iu, ju)) and I2 = ((i′1, j

′
1), . . . , (i

′
u′ , j′u′)),

we construct monomial sequences K1 and K2; we use these sequences to set the mono-
mial order in vectorization. We define the monomial sequences K1 and K2 by K1 =
(xi1−j1zj1 , . . . , xiu−juzju) and K2 = (yj′

1
−i′

1zi′
1 , . . . , yj′

u′−i′
u′ zi′

u′ ) respectively. We also set
K by the concatenation of K1 and K2. We use these sequences to define our L. Here
we give a small example for m = 3 and δ = 0.25; we have I1 = ((0, 0), (1, 0), (1, 1), (2, 0),
(2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3)) and I2 = ((2, 3), (3, 4)). By them, we have the mono-
mial sequence K1 = (1, x, z, x2, xz, z2, x3, x2z, xz2, z3) and K2 = (yz2, yz3).

We state two facts for our analysis; we will use them in the proof of Lemma 3 and
Lemma 4. We denote a symbol ≺ the order in K1 and K2.

Fact 1. We have for the elements in K1, xizj ≺ xi′zj′ ⇔ i + j < i′ + j′ or [i + j = i′ + j′

and j < j′]. For the elements in K2, yizj ≺ yi′zj′ ⇔ i + j < i′ + j′ or [i + j = i′ + j′ and
j < j′].

Fact 2. For elements in K, we have xjzi ∈ K1 ⇔ 0 ≤ i + j ≤ m, and yjzi ∈ K2 ⇔ [0 ≤
i ≤ m and 0 < j < (1 − 2δ)i]

Now we define our lattice L by using the polynomials Gi,j(x, y, z) and the defined
sequences; here we actually give a matrix representation of L. Our matrix is defined by the
row matrix of vectors VK(Gi,j) for (i, j) ∈ I whose order is from I. We divide L as follows
to show its lower triangularity:

L =

⎡⎢⎣ VK(G0,0)
...

VK(Gm,m′)

⎤⎥⎦ =

K1 K2︷ ︸︸ ︷ ︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎢⎣
L00 L01

L10 L11

⎤⎥⎥⎥⎥⎥⎥⎦

}
I1

}
I2

(12)

Here, m′ = �2(1 − δ)m�. Therefore, we need to show that L00 and L11 are lower triangle
matrices and show that L01 is the zero matrix to proof the triangularity of L; of course, we
need to prove that the monomials in Gi,j(x, y, z) are contained in K. This will be showed
via the proof of Lemma 3 and Lemma 4.

Lemma 3. L00 and L01 are a lower triangle matrix and the zero matrix respectively.

Proof. Let (ik, jk) be k-th element in I1. We first show the triangularity of L00; we need
to show that the polynomial Gi,j(x, y, z) can be expressed as an linear combination of the
first k elements in K1, and show that the coefficient of xik−jkzjk in Gik,jk

(x, y, z) is not
zero.

The expression of Gi,j(x, y, z) is computed as follows by the definition (6) and the
canonical replacement:

Gik,jk
(x, y, z) = xik−jk(−1 + xy + Ax)jkem−jk

= xik−jk(z + Ax)jkem−jk =
jk∑

�=0

a�x
ik−�z�.

where a� are certain integers.



Thus, by the Fact 1, xik−jkzjk , this is the k-th element in K1, is the most right non-zero
element in VK(Gik,jk

) in the order ≺; this also corresponds to the k-th diagonal element in
our matrix. Hence the non-zero elements in bik,jk

are on the diagonal position or its left;
This shows that L00 is a lower triangle matrix. It is clear that L01 is the zero-matrix since
the polynomial Gik,jk

(x, y, z) for (ik, jk) ∈ I1 does not have a monomial of type zj′
yi′ .

Lemma 4. L11 is a lower triangle matrix.

We omit the proof of this lemma. We can prove this by a similar argument in Lemma 3.
Now we can easily compute the determinant of L′; since L and its instantiation L′

are lower triangle matrices by combining Lemma 3 and Lemma 4. We have from the
expressions, the diagonal elements in L′ corresponding to Gi,j(x, y, z) are em−jXi−jZj for
(i, j) ∈ I1, and em−iY j−iZi for (i, j) ∈ I2 respectively. Hence by using the approximations
e ≈ N, X ≈ N δ, Y ≈ N0.5 and Z =

√
X2Y 2 + 1 ≈ Nδ+0.5, we have

det(L00) = em(m+1)(m+2)/3Xm(m+1)(m+2)/6Y m(m+1)(m+2)/6

= N( 5

12
+ 1

3
δ)m3+o(m3),

det(L11) = e(1−2δ)m3/6+o(m3)Y (1−2δ)2m3/6+o(m3)Z(1−2δ)m3/3+o(m3)

= N(− 1

3
δ2− 2

3
δ+ 5

12 )m3+o(m3),

(13)

and hence
det(L) = det(L00) · det(L11) = N(− 1

3
δ2− 1

3
δ+ 5

6 )m3+o(m3).

On the other hand, the dimension of the matrix is n = |I| = (1 − δ)m2 + o(m2). Thus we
have enm = N (1−δ)m3+o(m3). Therefore as explained in the previous section, we can derive
the bound δ < 0.292 by using these values.

5 On the Case of Repetitive Secret Key

In this section we give an application of our simple analysis; we propose a new RSA as-
sumption which we named repetitive secret key.

We assume that the secret key is the repeat of r short bit string d0 with binary length
�. We let β = logN d0, that is, the rough ratio of the bit-length of N to that of d0. Hence
this is close to �/ log2 N .

In this situation we derive the target equation by following the argument in [2]; our
equation is

frep(x, y) = −1 + x(y + A) (mod eR) (14)

where R = 1+2� + · · ·+2(r−1)�. We notice that the difference between (1) and (14) is only
the modulo. To solve the equation (14), we consider the lattice based attack and we can
construct a lattice with lower triangle representation by the technique in this paper.

Hence the determinant of constructed matrix is easily compute by substituting the ap-
proximations e ≈ N, R ≈ N (r−1)β , X ≈ Nrβ , Y ≈ N0.5, and Z =

√
X2Y 2 + 1 ≈ Nrβ+0.5,

for (13). We further consider the Howgrave-Graham condition det(L′)1/n < (eR)m, where
n and m are explained as the outline section.

Finally we obtain the condition for recovering the repetitive secret key as follows.

β <
r + 3 −√

r2 + 6r + 1
4

. (15)

For r = 1, this is equivalent to the result of Boneh and Durfee.



6 Conclusion

In this paper we study the lattice based attack for RSA with short secret key. We give
the new simple analysis to obtain their bound δ < 0.292. One important advantage of our
technique is that it does not require any technical method or involved calculation that are
necessary in the original technique. We hope that our analysis technique will be applicable
in other situations of the lattice based attack.
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Abstract

Let K be a field of char K �= 2. For a ∈ K, we give an explicit answer to the field
isomorphism problem of the simplest quartic polynomial X4 − aX3 − 6X2 + aX + 1
over K. From this result, over an infinite field K, we see that the polynomial gives the
same splitting field over K for infinitely many values a of K. We also see by Siegel’s
theorem for curves of genus zero that only finitely many algebraic integers m ∈ OK in
a number field K may give the same splitting field. By applying the result over the
field Q of rational numbers, we establish a correspondence between primitive solutions
to the parametric family of quartic Thue equations

X4 −mX3Y − 6X2Y 2 +mXY 3 + Y 4 = c,

where m ∈ Z is a rational integer and c is a divisor of 4(m2 + 16), and isomorphism
classes of the simplest quartic fields.

1 Introduction and main results

Let K be a field of char K �= 2 and K(s) the rational function field over K with variable s.
We take the simplest quartic polynomial

fs(X) := X4 − sX3 − 6X2 + sX + 1 ∈ K(s)[X]

whose Galois group GalK(s)fs(X) over K(s) is isomorphic to the cyclic group C4 of order
four. We note that discX(fs(X)) = 4(s2+16)3. In the case whereK = Q, for a ∈ Z\{0,±3},
the polynomials fa(X) are irreducible over Q with GalQfa(X) ∼= C4 and the splitting fields
SplQfa(X) of fa(X) over Q are called the simplest quartic fields (cf. [Gra77], [Gra87]). We
also see SplKfa(X) = SplKf−a(X). We consider the field isomorphism problem of fs(X),
i.e. for a fixed a ∈ K, whether b ∈ K gives the same splitting field over K as SplKfa(X) =
SplKfb(X). In Section 3, we will give an explicit answer of the field isomorphism problem
of fs(X) over K (cf. the simplest cubic case [Mor94], [Cha96], [HM09a], [H]).

Theorem 1.1. Let K be a field of char K �= 2 and fa(X) = X4−aX3−6X2+aX+1 ∈ K[X]
for a ∈ K. For a, b ∈ K with a �= ±b and (a2 + 16)(b2 + 16) �= 0, the following three
conditions are equivalent :
(i) the splitting fields of fa(X) and of fb(X) over K coincide ;
(ii) the polynomial fA(X) splits completely into four linear factors over K for A = A1 or
A = A2 where

A1 =
ab+ 16

−a+ b
and A2 =

ab− 16

a+ b
;
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(iii) there exists z ∈ K such that

B = a+
(a2 + 16)z(z + 1)(z − 1)

fa(z)

where B = b or B = −b.
Moreover if GalKfa(X) ∼= C4 (resp. GalKfa(X) ∼= C2 or {1}) then (ii) occurs for only

one of A1 and A2 (resp. for both of A1 and A2) and (iii) occurs for only one of b and −b
(resp. for both of b and −b).

Note that the equivalence of the conditions (i) and (iii) is valid also for a = ±b.
By Theorem 1.1, for a fixed a ∈ K with a2+16 �= 0, we have SplKfS3

b (X) = SplKfS3
a (X)

where b is given as in Theorem 1.1 (iii) for arbitrary z ∈ K with fa(z) �= 0 and b2 +16 �= 0.
Hence we have the following:

Corollary 1.2. Let K be an infinite field of char K �= 2. For a fixed a ∈ K with a2+16 �= 0,
there exist infinitely many b ∈ K such that SplKfa(X) = SplKfb(X).

In contrast with Corollary 1.2, by applying Siegel’s theorem for curves of genus zero (cf.
[Lan78, Theorem 6.1], [Lan83, Chapter 8, Section 5]) to Theorem 1.1, we get:

Corollary 1.3. Let K be a number field and OK the ring of integers in K. For a ∈ OK

with a2 + 16 �= 0, there exist only finitely many integers b ∈ OK such that SplKfa(X) =
SplKfb(X).

We treat the case of K = Q and a = m ∈ Z. We get an application of Theorem 1.1 to
a related family of quartic Thue equations as follows.

Consider the parametric family of quartic Thue equations

Fm(X,Y ) := X4 −mX3Y − 6X2Y 2 +mXY 3 + Y 4 = c

for m, c ∈ Z with c �= 0. Note that fm(X) = Fm(X, 1). The equation Fm(X,Y ) = c has
the following solutions

Fm(0,±e) = Fm(±e, 0) = e4, Fm(∓e,±e) = Fm(±e,±e) = −4e4.
We call such solutions (x, y) to Fm(x, y) = c with xy(x+y)(x−y) = 0 the trivial solutions.

For c ∈ {±1,±4}, Lettl-Pethö [LP95] and Chen-Voutier [CV97] gave a complete solution
to Thue equation Fm(X,Y ) = c independently. For c ∈ {±1,±4} and m ≥ 0, all solutions
to Fm(X,Y ) = c are given by eight trivial solutions for arbitrary m ≥ 0 and additionally

F1(∓2,±1) = F1(±1,±2) = −1, F1(±3,±1) = F1(∓1,±3) = 4,

F4(∓3,±2) = F4(±2,±3) = 1, F4(±5,±1) = F4(∓1,±5) = −4.
Note that if (x, y) ∈ Z2 is a solution to Fm(x, y) = c then four pairs ±(x, y), ±(y,−x) are
also solutions because Fm(X,Y ) is invariant under the action X �−→ Y �−→ −X.

In [LPV99], Lettl-Pethö-Voutier showed that for m ≥ 58, the only primitive solutions
(x, y) ∈ Z2, i.e. gcd(x, y) = 1, of the Thue inequality |Fm(x, y)| ≤ 6m+ 7 with |x| ≤ y are
trivial solutions (0, 1), (±1, 1) and non-trivial solutions (±1, 2). We note that Fm(±1, 2) =
±6m− 7.

Put Lm := SplQfm(X) for m ∈ Z. We give the following correspondence between integer
solutions to Fm(X,Y ) = c and isomorphism classes of the simplest quartic fields Lm.



Theorem 1.4. Let m ∈ Z \ {0,±3} and Lm = SplQfm(X). There exists an integer
n ∈ Z\{±m} such that Ln = Lm if and only if there exists non-trivial solution (x, y) ∈ Z2,
i.e. xy(x+ y)(x− y) �= 0, to the quartic Thue equation

Fm(x, y) = c(∗)

where c is a divisor of 4(m2 +16). Moreover integers m, n and solutions (x, y) ∈ Z2 to (∗)
can be chosen to satisfy the equation

N = m+
(m2 + 16)xy(x+ y)(x− y)

Fm(x, y)
(∗∗)

where either N = n or N = −n, and the equation (∗∗) occurs for only one of N = n and
N = −n.

The assumption m �= 0,±3 ensures that fm(X) is irreducible over Q, GalQfm(X) ∼= C4

and the equality (∗∗) holds for only one of N = n and N = −n. This phenomenon
comes from the group theoretical reason (see Section 2). Indeed, in the case of m = ±3,
f±3(X) = (X2 ± X − 1)(X2 ∓ 4X − 1) and the equation (∗∗) occurs for both of N = 3
and N = −3. Thus non-trivial solutions (x, y) ∈ Z2 to (∗) which satisfy (∗∗) for N = −m
exist (cf. Theorem 1.1). Hence the assumption m �= 0,±3 also ensures that a non-trivial
solution (x, y) to (∗) corresponds N ∈ Z \ {±m} via (∗∗).

If there exists an integer n ∈ Z \ {±m} such that Ln = Lm, then we may choose a
primitive solution (x, y) ∈ Z2 to (∗) with (x, y) ≡ (1, 0) (mod 2). Then four solutions
±(x, y), ±(y,−x) to (∗) for c = d and four solutions ±(x′, y′), ±(y′,−x′) to (∗) for c = −4d
are primitive, where (x′, y′) = (x − y, x + y) and d is an odd divisor of m2 + 16, and only
these eight primitive solutions satisfy (∗∗) for the same N as in Theorem 1.4.

Corollary 1.5. For m ∈ Z\{0,±3}, let N be the number of primitive solutions (x, y) ∈ Z2

with xy(x+ y)(x− y) �= 0 to Fm(x, y) = c where c is a divisor of 4(m2+16). Then we have

#
{
n ∈ Z \ {±m}

∣∣∣ Ln = Lm, n > 0
}
=
N
8

where Lm = SplQfm(X). In particular, if there does not exist n ∈ Z \ {±m} with Ln = Lm

then Fm(x, y) = c where c is a divisor of 4(m2 + 16) has only trivial solutions (x, y) ∈ Z2

with xy(x+ y)(x− y) = 0.

2 Preliminaries

In order to prove Theorem 1.1, we recall known results of the resolvent polynomials which
are fundamental tools in the computational aspects of Galois theory (cf. [Coh93], [Ade01]).
We intend to explain how to get an answer of the field intersection problem of fs(X) =
X4− sX3−6X2+ sX+1, i.e. for a, b ∈ K how to determine the intersection of SplKfa(X)
and SplKfb(X) (cf. [HM09a], [HM09b]). An answer of the field isomorphism problem
(Theorem 1.1) may be obtained as the special case of the field intersection problem.

Let K be a fixed algebraic closure of a field K. Let f(X) :=
∏m

i=1(X − αi) ∈ K[X] be
a separable polynomial of degree m with some fixed order of the roots α1, . . . , αm ∈ K. By
resolvent polynomials with suitable invariants, we may determine the Galois group of the
polynomial f(X) over K as follows.



Let R := K[x1, . . . , xm] be the polynomial ring over K with m variables x1, . . . , xm.
For Θ ∈ R, we take a surjective homomorphism ωf : R→ k(α1, . . . , αm), Θ(x1, . . . , xm) �→
Θ(α1, . . . , αm), which is called the specialization map. The kernel of ωf is the ideal If :=
{Θ ∈ R | Θ(α1, . . . , αm) = 0} in R.

Let Sm be the symmetric group of degree m. We extend the action of Sm on m letters
{1, . . . ,m} to that on R by π(Θ(x1, . . . , xm)) := Θ(xπ(1), . . . , xπ(m)). We define the Galois
group of f(X) over K by Gal(f/K) := {π ∈ Sm | π(If ) ⊆ If}. Then the Galois group of
the splitting field SplKf(X) of f(X) over K is isomorphic to Gal(f/K). If we take another
ordering of roots απ(1), . . . , απ(m) of f(X) for some π ∈ Sm, the corresponding realization of
Gal(f/K) is conjugate in Sm. Hence, for arbitrary ordering of the roots of f(X), Gal(f/K)
is determined up to conjugacy in Sm.

ForH ≤ U ≤ Sm, an element Θ ∈ R is called a U -primitiveH-invariant ifH = StabU (Θ)
:= {π ∈ U | π(Θ) = Θ}. For a U -primitive H-invariant Θ, the polynomial

RPΘ,U (X) =
∏

π∈U/H

(X − π(Θ)) ∈ RU [X]

where π runs through the left cosets of H in U , is called the formal U -relative H-invariant
resolvent by Θ. The polynomial

RPΘ,U,f (X) := ωf (RPΘ,U (X))

is called the U -relative H-invariant resolvent of f by Θ. The following theorem is funda-
mental in the theory of resolvent polynomials (see e.g. [Ade01, p.95]).

Theorem 2.1. Let G = Gal(f/K), H ≤ U ≤ Sm be a tower of finite groups with G ≤ U

and Θ a U -primitive H-invariant. Suppose that RPΘ,U,f (X) =
∏l

i=1 h
ei
i (X) gives the

decomposition of RPΘ,U,f (X) into a product of powers of distinct irreducible polynomials
hi(X), i = 1, . . . , l, in K[X]. Then we have a bijection

G\U/H −→ {he1
1 (X), . . . , hel

l (X)}
GπH �−→ hπ(X) =

∏
τH⊆GπH

(
X − ωf (τ(Θ))

)
where the product runs through the left cosets τH of H in U contained in GπH, that
is, through τ = πσπ where πσ runs a system of representative of the left cosets of G ∩
πHπ−1; each hπ(X) is irreducible or a power of an irreducible polynomial with deg(hπ(X))
= |GπH|/|H| = |G|/|G ∩ πHπ−1|.
Corollary 2.2. If G ≤ πHπ−1 for some π ∈ U then RPΘ,U,f (X) has a linear factor over
K. Conversely, if RPΘ,U,f (X) has a non-repeated linear factor over K then there exists
π ∈ U such that G ≤ πHπ−1.

When RPΘ,U,f (X) is not squarefree, there exists a suitable Tschirnhausen transforma-

tion f̂ of f over K such that RPΘ,U,f̂ (X) is squarefree (cf. [Gir83], [Coh93, Alg. 6.3.4]).

We apply Theorem 2.1 to the cyclic quartic case. Let f1(X) ∈ K[X] and f2(X) ∈ K[X]
be separable quartic polynomials over K respectively. We put f(X) := f1(X)f2(X), G1 :=
Gal(f1/K), G2 := Gal(f2/K) and G := Gal(f/K).

We assume that G1, G2 ≤ C4 and apply Theorem 2.1 to m = 8, f(X) = f1(X)f2(X),
U = 〈σ〉 × 〈τ〉, H = 〈στ〉 or 〈στ3〉 where σ, τ ∈ S8 act on R = K[x1, . . . , x8] by

σ : x1 �→ x2 �→ x3 �→ x4 �→ x1, τ : x5 �→ x6 �→ x7 �→ x8 �→ x5.



We put U := 〈σ〉 × 〈τ〉. Let Θ1 (resp. Θ2) be a U -primitive 〈στ〉-invariant (resp. 〈στ3〉-
invariant). Then we have the U -relative 〈στ〉-invariant (resp. 〈στ3〉-invariant) resolvent
polynomial of f(X) = f1(X)f2(X) by Θ1 (resp. Θ2) as

Ri
f (X) := RPΘi,U,f (X), (i = 1, 2).

This kind of resolvent polynomial is also called (absolute) multi-resolvent polynomial (cf.
[RV99], [Ren04]).

For a squarefree polynomial R(X) ∈ K[X] of degree l, we define the decomposition type
DT(R) of R(X) by the partition of l induced by the degrees of the irreducible factors of
R(X) over K. By Theorem 2.1, we get the intersection field SplKf1(X) ∩ SplKf2(X) via
the decomposition types DT(R1

f ) and DT(R2
f ).

Theorem 2.3. For f(X) = f1(X)f2(X) ∈ K[X] with G1, G2 ≤ C4, we assume that
#G1 ≥ #G2 and both R1

f (X) and R2
f (X) are squarefree. Then the Galois group G =

Gal(f/K) and the intersection field SplKf1(X)∩SplKf2(X) are given by the decomposition
types DT(R1

f ) and DT(R2
f ) as Table 1 shows.

Table 1

G1 G2 G DT(R1
f ) DT(R2

f )

C4 × C4 L1 ∩ L2 = K 4 4

C4
C4 × C2 [L1 ∩ L2 : K] = 2 2, 2 2, 2

C4 L1 = L2
2, 2 1, 1, 1, 1

C4 1, 1, 1, 1 2, 2

C2
C4 × C2 L1 ∩ L2 = K 4 4

C4 L1 ⊃ L2 4 4
{1} C4 L1 ⊃ L2 = K 4 4

C2
C2 × C2 L1 ∩ L2 = K 2, 2 2, 2

C2 C2 L1 = L2 1, 1, 1, 1 1, 1, 1, 1
{1} C2 L1 ⊃ L2 2, 2 2, 2

{1} {1} {1} L1 = L2 = K 1, 1, 1, 1 1, 1, 1, 1

We checked the decomposition types DT(Ri
f ), (i = 1, 2), on Table 1 using the computer

algebra system GAP [GAP].
Now we get an answer of the field isomorphism problem of fs(X) = X4 − sX3 − 6X2 +

sX + 1 via multi-resolvent polynomials Ri
fa,b

(X) := RPΘi,〈σ〉×〈τ〉,fa,b
, (i = 1, 2), where

fa,b(X) := fa(X)fb(X), as the special case of Theorem 2.3.

Theorem 2.4. For a, b ∈ K with (a2+16)(b2+16) �= 0, we assume that both R1
fa,b

(X) and

R2
fa,b

(X) are squarefree. Then two splitting fields of fa(X) and of fb(X) over K coincide

if and only if R1
fa,b

(X) or R2
fa,b

(X) splits completely into four linear factors over K.

3 Proof of Theorem 1.1

We give an explicit answer to the field intersection problem of fs(X) via suitable invariants
Θ1 and Θ2. As the special case, we obtain Theorem 1.1.

Let K(z) be the rational function field over K and σ a K-automorphism of K(z) of
order four which is defined by

σ : z �→ z − 1

z + 1
�→ −1

z
�→ −z + 1

z − 1
�→ z.



We consider the fixed field K(z)〈σ〉 and the C4-extension K(z)/K(z)〈σ〉. Then we get

fs(X) =
∏

x∈Orb〈σ〉(z)

(
X − x

)
=
(
X − z

)(
X − z − 1

z + 1

)(
X +

1

z

)(
X +

z + 1

z − 1

)
= X4 − sX3 − 6X2 + sX + 1 with s =

z4 − 6z2 + 1

z(z2 − 1)
,

as the generating polynomial of the field extension K(z)/K(z)〈σ〉. It follows that K(z)〈σ〉 =
K(s) and the Galois group of the polynomial fs(X) over K(s) is isomorphic to C4.

We also take another rational function field K(w) over K with indeterminate w, a
K-automorphism τ of K(w) defined by

τ : w �→ w − 1

w + 1
�→ − 1

w
�→ −w + 1

w − 1
�→ w

and ft(X) = X4− tX3− 6X2+ tX +1 with t = (w4− 6w2+1)/(w(w2− 1)), by the similar
manner of K(z), σ and fs(X).

Put U := 〈σ〉×〈τ〉. Then the field K(z, w) is (C4×C4)-extension of K(z, w)U = K(s, t).
In order to apply Theorem 2.4, we should find suitable U -primitive 〈στ〉-invariant Θ1

and U -primitive 〈στ3〉-invariant Θ2. The following is the key lemma of this paper:

Lemma 3.1. Let U = 〈σ〉 × 〈τ〉. We take

Θ1 :=
zw + 1

−z + w
and Θ2 :=

zw − 1

z + w
.

Then the following assertions hold :
(i) the element Θ1 is a U -primitive 〈στ〉-invariant ;
(ii) the element Θ2 is a U -primitive 〈στ3〉-invariant ;
(iii) the U -orbit of Θi is given by the same as 〈σ〉-orbit of z ;

OrbU (Θi) =
{
Θi,

Θi − 1

Θi + 1
, − 1

Θi
, −Θi + 1

Θi − 1

}
, (i = 1, 2).

The multi-resolvent polynomials Ri
fa,b

(X) := RPΘi,〈σ〉×〈τ〉,fafb(X), (i = 1, 2), with
respect to Θ1 and Θ2 as in Lemma 3.1 are given by

R1
fa,b

(X) = fA1(X) = X4 − ab+ 16

−a+ b
X3 − 6X2 +

ab+ 16

−a+ b
X + 1,(1)

R2
fa,b

(X) = fA2(X) = X4 − ab− 16

a+ b
X3 − 6X2 +

ab− 16

a+ b
X + 1

where A1 = (ab+ 16)/(−a+ b) and A2 = (ab− 16)/(a+ b). Note that

disc(R1
fa,b

(X)) =
4(a2 + 16)3(b2 + 16)3

(a− b)6
, disc(R2

fa,b
(X)) =

4(a2 + 16)3(b2 + 16)3

(a+ b)6
.

By Theorem 2.3, we get the intersection field SplKfa(X) ∩ SplKfb(X) via Table 1.

Theorem 3.2. Let Ri
fa,b

(X), (i = 1, 2) be as in (1). For a, b ∈ K with a �= ±b and

(a2+16)(b2+16) �= 0, we assume that #GalKfa(X) ≥ #GalKfb(X). Then the intersection
field SplKfa(X)∩SplKfb(X) is given by the decomposition types DT(R1

fa,b
) and DT(R2

fa,b
)

as on Table 1 in Theorem 2.3.



Proof of Theorem 1.1. As the special case of Theorem 3.2, we see the conditions (i) and (ii)
are equivalent (cf. also Theorem 2.4).

The condition (iii) is just a restatement of (ii). Indeed, we may check that z ∈ K is
a root of fA1(X) (resp. fA2(X)) if and only if z satisfies the condition (iii) for B = b
(resp. B = −b). Note that if z is a root of fAi(X) then z−1

z+1 , − 1
z , − z+1

z−1 are also roots of
fAi(X) for i = 1, 2. By Table 1 as in Theorem 2.3, if SplKfa(X) ∼= C4 (resp. C2 or {1})
and fAi(z) splits completely then fAj (X) is irreducible (resp. splits completely) over K for
(i, j) = (1, 2) and (2, 1). This completes the proof.

4 Proof of Theorem 1.4: the correspondence

The aim of this section is to prove Theorem 1.4 which establishes the correspondence
between isomorphism classes of the simplest quartic fields Lm and non-trivial solutions to
quartic Thue equations (∗).
Proof of Theorem 1.4. We use Theorem 1.1 in the case where K = Q.

For m ∈ Z \ {0,±3}, we assume that there exists an integer n ∈ Z \ {±m} such that
Lm = Ln. By Theorem 1.1, there exists z = x/y with x, y ∈ Z and gcd(x, y) = 1 such that

N = m+
(m2 + 16)z(z + 1)(z − 1)

fm(z)
= m+

(m2 + 16)xy(x+ y)(x− y)

Fm(x, y)
∈ Z

where either N = n or N = −n. By the assumption n �= ±m, we have xy(x+y)(x−y) �= 0.
We will show that c := Fm(x, y) divides 4(m2 + 16).
Put h(z) := (m2 + 16)z(z + 1)(z − 1) and f(z) := Fm(z, 1). We take the resultant

Rm := Resz(h(z), f(z)) = 16(m2 + 16)4

of h(z) and f(z) with respect to z. We see that Rm is also given by

Rm =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m2 + 16 0 −m2 − 16 0 0 0 h(z)z3

0 m2 + 16 0 −m2 − 16 0 0 h(z)z2

0 0 m2 + 16 0 −m2 − 16 0 h(z)z
0 0 0 m2 + 16 0 −m2 − 16 h(z)
1 −m −6 m 1 0 f(z)z2

0 1 −m −6 m 1 f(z)z
0 0 1 −m −6 m f(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 4(m2 + 16)3

(
h(z)p(z) + f(z)q(z)

)
where p(z) = 5z3 − 5mz2 − 29z + 4m, q(z) = −(m2 + 16)(5z2 − 4). Hence we have

h(z)p(z) + f(z)q(z) = 4(m2 + 16).

Put H(x, y) := (m2 + 16)xy(x + y)(x − y), P (x, y) := 5x3 − 5mx2y − 29xy2 + 4my3,
Q(x, y) := −(m2 + 16)y(5x2 − 4y2). Then it follows from z = x/y that

H(x, y)P (x, y) + Fm(x, y)Q(x, y) = 4(m2 + 16)y7.



Because Fm(x, y) is invariant under the action of σ : x �→ y, y �→ −x, we get

H(x, y)P (x, y)

Fm(x, y)
+Q(x, y) =

4(m2 + 16)y7

Fm(x, y)
∈ Z, and

4(m2 + 16)(−x)7
Fm(x, y)

∈ Z.

Since x and y are relatively prime, we conclude that c = Fm(x, y) divides 4(m2 + 16).

Conversely if there exists non-trivial solution (x, y) ∈ Z2 with xy(x+ y)(x− y) �= 0 such
that c = Fm(x, y) divides 4(m2 + 16) then we can take N ∈ Q \ {m} by

N = m+
(m2 + 16)xy(x+ y)(x− y)

Fm(x, y)
.

We see N ∈ Z \ {m} as follows: First we may assume that (x, y) �≡ (0, 0) (mod 2) by
replacing (x′, y′) = ( x

2r ,
y
2r ) for Fm(x′, y′) = c

(2r)4 ∈ Z.

If (x, y) ≡ (0, 1) or (1, 0) (mod 2) then c = Fm(x, y) divides m2 + 16 and hence N ∈
Z \ {m}, because Fm(0, 1) ≡ Fm(1, 0) ≡ 1 (mod 2).

If (x, y) ≡ (1, 1) (mod 2) then c = Fm(x, y) divides (m2+16)xy(x+y)(x−y) and hence
N ∈ Z \ {m}, because xy(x+ y)(x− y) ≡ 0 (mod 4).

From the assumption m ∈ Z\{0,±3}, we have GalQfm(X) ∼= C4. Hence it follows from
Theorem 1.1 (i) and (iii) that N ∈ Z \ {0,−m} and Lm = LN .

5 Primitive solutions

By the proof of Theorem 1.1 and Theorem 1.4, a non-trivial solution (x, y) ∈ Z2 to (∗)
may be obtained as z = x/y with gcd(x, y) = 1 where z ∈ Q is a root of fA(X) =
X4−AX3−6X2+AX+1 for A = (ab+16)/(−a+b) or A = (ab−16)/(a+b) as in Theorem
1.1 (ii). Hence we now consider only primitive solutions (x, y) ∈ Z2, i.e. gcd(x, y) = 1, to
(∗). Note that if (x, y) ∈ Z2 is a primitive solution to (∗) then four pairs ±(x, y), ±(y,−x)
are primitive solutions to (∗). Corollary 1.5 follows from the following two lemmas:

Lemma 5.1. Put (x′, y′) := (x − y, x + y). If (x, y) ∈ Z2 with (x, y) ≡ (0, 1) or (1, 0)
(mod 2) is a primitive solution to Fm(x, y) = c then c is an odd integer and (x′, y′) ≡ (1, 1)
(mod 2) is a primitive solution to Fm(x′, y′) = −4c. Conversely if (x′, y′) ∈ Z2 with
(x′, y′) ≡ (1, 1) (mod 2) is a primitive solution to Fm(x′, y′) = d then d = −4c for an odd

integer c and (x, y) = (x
′+y′

2 , −x′+y′

2 ) ≡ (0, 1) or (1, 0) (mod 2) is a primitive solution to
Fm(x, y) = c.

Lemma 5.2. Let m ∈ Z \ {0,±3} and Lm = SplQfm(X). We assume that there exists
n ∈ Z \ {±m} such that Ln = Lm.
(i) We may choose non-trivial primitive solution (x, y) ∈ Z2 with (x, y) ≡ (0, 1) (mod 2)
to Fm(x, y) = d where d is an odd divisor of m2 + 16. Then four pairs ±(x, y), ±(y,−x)
are primitive solutions to Fm(X,Y ) = d and four pairs ±(x′, y′), ±(y′,−x′) are primitive
solutions to Fm(X,Y ) = −4d where (x′, y′) = (x− y, x+ y).
(ii) All primitive solutions to (∗) which satisfy (∗∗) for either N = n or N = −n are given
by the eight solutions as in (i), and such solutions exist for only one of N = n and N = −n.

By Theorem 1.1, we obtain

L1 = L103, L2 = L22, L4 = L956



where Lm = SplQfm(X) for m ∈ Z. Hence for m ∈ {1, 2, 4, 22, 103, 956}, we get non-trivial
eight primitive solutions to (∗) via Theorem 1.4 as on the following table:

Table 2

m N Fm(x, y) = c m2 + 16 xy(x+ y)(x− y) (x, y)

1 103 −1 17 −6 ±(−2, 1), ±(1, 2)

1 103 4 17 24 ±(3, 1), ±(−1, 3)

2 −22 5 20 −6 ±(−2, 1), ±(1, 2)

2 −22 −20 20 24 ±(3, 1), ±(−1, 3)

4 −956 1 32 −30 ±(−3, 2), ±(2, 3)

4 −956 −4 32 120 ±(5, 1), ±(−1, 5)

22 −2 125 = 53 500 = 2253 −6 ±(−2, 1), ±(1, 2)

22 −2 −500 = −2253 500 = 2253 24 ±(3, 1), ±(−1, 3)

103 1 −625 = −54 10625 = 5417 6 ±(2, 1), ±(−1, 2)

103 1 2500 = 2254 10625 = 5417 −24 ±(−3, 1), ±(1, 3)

956 −4 28561 = 134 913952 = 25134 −30 ±(−3, 2), ±(2, 3)

956 −4 −114244 = −22134 913952 = 25134 120 ±(5, 1), ±(−1, 5)

6 Reducible case

In the reducible cases m = 0,±3, fm(X) splits as f0(X) = (X2 + 2X − 1)(X2 − 2X − 1)
and f±3(X) = (X2 ± X − 1)(X2 ∓ 4X − 1) over Q, and hence SplQf0(X) = Q(

√
2) and

SplQf±3(X) = Q(
√
5).

If m = 0, the trivial solutions correspond to N = ±m = 0.
If m = 3, then the eight trivial solutions ±(0, 1), ±(1, 0) for c = 1 and ±(−1, 1), ±(1, 1)

for c = −4 give N = 3 and non-trivial eight solutions ±(2, 1), ±(−1, 2) for c = −25 and
±(−3, 1), ±(1, 3) for c = 100 give N = −3.

Table 3

m N Fm(x, y) = c m2 + 16 xy(x+ y)(x− y) (x, y)

3 −3 −25 25 6 ±(2, 1), ±(−1, 2)

3 −3 100 25 −24 ±(−3, 1), ±(1, 3)

However we do not know other non-trivial primitive solutions to (∗) for m ≥ 0 except on
Table 2 and Table 3. By the correspondence as in Theorem 1.4, in order to find primitive
solutions to (∗) we should get Lm = Ln for some m �= ±n. In [HM09b, Example 5.4], we
checked with the aid of computer that for integers 0 ≤ m < n ≤ 105, Lm = Ln if and only
if (m,n) ∈ {(1, 103), (2, 22), (4, 956)}.
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Abstract

We present a C library of in-place subroutines for univariate polynomial multiplica-
tion, division and GCD over Lp where Lp is an algebraic number field L with multiple
field extensions reduced modulo a machine prime p. We assume elements of Lp and
L are represented using a recursive dense representation. The main feature of our
algorithms is that we eliminate the storage management overhead which is significant
compared to the cost of arithmetic in Zp by pre-allocating the exact amount of storage
needed for both the output and working storage. We give an analysis for the work-
ing storage needed for each in-place algorithm and provide benchmarks demonstrating
the efficiency of our library. This work improves the performance of polynomial GCD
computation over algebraic number fields.

1 Introduction

In 2002, van Hoeij and Monagan in [10] presented an algorithm for computing the monic
GCD g(x) of two polynomials f1(x) and f2(x) in L[x] where L = Q(α1, α2, . . . , αk) is an
algebraic number field. The algorithm is a modular GCD algorithm. It computes the GCD
of f1 and f2 modulo a sequence of primes p1, p2, . . . , pl using the monic Euclidean algo-
rithm in Lp[x] and it reconstructs the rational numbers in g(x) using Chinese remaindering
and rational number reconstruction. The algorithm is a generalization of earlier work of
Langymyr and MaCallum [5], and Encarnación [2] to treat the case where L has multiple
extensions (k > 1). It can be generalized to multivariate polynomials in L[x1, x2, . . . , xn]
using evaluation and interpolation (see [4, 11]).

Monagan implemented the algorithm in Maple in 2001 and in Magma in 2003 using
the recursive dense polynomial representation to represent elements of L, Lp, L[x1, . . . , xn]
and Lp[x1, . . . , xn]. This representation is generally more efficient than the distributed and
recursive sparse representations for sparse polynomials. See for example the comparison by
Fateman in [3]. And since efficiency in the recursive dense representation improves for dense
polynomials, and elements of L are often dense, it should be a good choice for implementing
arithmetic in L and also Lp.

However, we have observed that arithmetic in Lp is very slow when α1 has low degree.
Since this case often occurs in practical applications, and since over 90% of a GCD compu-
tation in L[x] is typically spent in the Euclidean algorithm in Lp[x], we sought to improve
the efficiency of the arithmetic in Lp. One reason why this happens is because the cost
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of storage management, allocating small arrays for storing intermediate polynomials of low
degree can be much higher than the cost of the actual arithmetic being done in Zp.

Our main contribution is a library of in-place algorithms for arithmetic in Lp and Lp[x]
where Lp has one or more extensions. The main idea is to eliminate all calls to the storage
manager by pre-allocating one large piece of working storage, and re-using parts of it in a
computation. In Section 2 we describe the recursive dense polynomial representation for
elements of Lp[x]. In Section 3 we present algorithms for multiplication and inversion in Lp

and multiplication, division with remainder and GCD in Lp[x] which are given one array
of storage in which to write the output and one additional array W of working storage for
intermediate results. In Section 4 we give formulae for determining the size of W needed
for each algorithm. In each case the amount of working storage is linear in d the degree
of L. We have implemented our algorithms in the C language in a library which includes
also algorithms for addition, subtraction, and other utility routines. In Section 5 we present
benchmarks demonstrating its efficiency by comparing our algorithms with the Magma ([1])
computer algebra system and we explain how to avoid most of the integer divisions by p
when doing arithmetic in Zp because this also significantly affects overall performance.

2 Polynomial Representation

Let Q(α1, α2, . . . , αr) be our number field L. We build L as follows. For 1 ≤ i ≤ r,
let mi(z1, . . . , zi) ∈ Q[z1, . . . , zi] be the minimal polynomial for αi, monic and irreducible
over Q[z1, . . . , zi−1]/ 〈m1, . . . , mi−1〉. Let di = degzi

(mi). We assume di ≥ 2. Let L =
Q[z1, . . . , zr]/ 〈m1, . . . , mr〉. So L is an algebraic number field of degree d =

∏
di over

Q. For a prime p for which the rational coefficients of mi exist modulo p, let Ri =
Zp[z1, . . . , zi]/ 〈m̄1, . . . , m̄i〉 where m̄i = mi mod p and let R = Rr = L mod p. We use
the following recursive dense representation for elements of R and polynomials in R[x] for
our algorithms. We view an element of Ri+1 as a polynomial with degree at most di+1 − 1
with coefficients in Ri.

To represent a non-zero element β1 = a0 +a1z1 + · · ·+ad1−1z
d1−1
1 ∈ R1 we use an array

A1 of size S1 = d1 + 1 indexed from 0 to d1, of integers (modulo p) to store β1. We store
A1[0] = degz1

(α1) and, for 0 ≤ i < d1 : A1[i + 1] = ai. Note that if degz1
(α1) = d̄ < d1 − 1

then for d̄ + 1 < j ≤ d1, A1[j] = 0. To represent the zero element of R1 we use A[0] = −1.
Now suppose we want to represent an element β2 = b0 + b1z2 + · · · + bd2−1z

d2−1
2 ∈ R2

where bi ∈ R1 using an array A2 of size S2 = d2S1 + 1 = d2(d1 + 1) + 1. We store
A2[0] = degz2

(β2) and for 0 ≤ i < d2

A2[i(d1 + 1) + 1 . . . (i + 1)(d1 + 1)] = Bi[0 . . . d1]

where Bi is the array which represents bi ∈ R1. Again if β2 = 0 we store A2[0] = −1.

Similarly, we recursively represent βr = c0 + c1zr + · · · + cdr−1z
dr−1
r ∈ Rr based on the

representation of ci ∈ Rr−1. Let Sr = drSr−1 + 1 and suppose Ar is an array of size Sr

such that Ar[0] = degzr
(βr) and for 0 ≤ i < dr

Ar[i(dr−1) + 1 . . . (i + 1)(dr−1 + 1)] = Ci[0 . . . Sr−1 − 1].

Note, we store the degrees of the elements of Ri in Ai[0] simply to avoid re-computing them.
We have

r∏
i=1

di < Sr <
r∏

i=1

(di + 1), Sr ∈ O(
r∏

i=1

di).



Now suppose we use the array C to represent a polynomial f ∈ Ri[x] of degree dx in
the same way. Each coefficient of f in x is an element of Ri which needs an array of size
Si, hence C must be of size

P (dx, Ri) = (dx + 1)Si + 1.

Example 1. Let r = 2 and p = 17. Let m̄1 = z3
1 +3, m̄2 = z2

2 +5z1z2 +4z2 +7z2
1 +3z1 +6,

and f = 3 + 4z1 + (5 + 6z1)z2 + (7 + 8z1 + 9z2
1 + (10z1 + 11z2

1)z2)x + 12x2.
The representation for f is

C = 2 1 1 3 4 0 1 5 6 0︸ ︷︷ ︸
3+4z1+(5+6z1)z2

1 2 7 8 9 2 0 10 11︸ ︷︷ ︸
10z1+11z2

1

0 0 12 0 0 −1 0 0 0

Here dx = 2, d1 = 3, d2 = 2, S1 = d1 + 1 = 4, S2 = d2S1 + 1 = 9 and the size of the array A
is P (dx, R2) = (dx + 1)S2 + 1 = 28.

We also need to represent the minimal polynomial m̄i. Let m̄i = a0 + a1zi + . . . adiz
di
i

where aj ∈ Ri−1. We need an array of size Si−1 to represent aj so to represent m̄i in
the same way we described above, we need an array of size S̄i = 1 + (di + 1)Si−1 =
diSi−1 + 1 + Si−1 = Si + Si−1. We define S0 = 1.

We represent the set of minimal polynomials {m̄1, . . . , m̄r} as an Array E of size∑r
i=1 S̄i =

∑r
i=1 (Si + Si−1) = 1 + Sr + 2

∑r−1
i=1 Si such that E[Mi . . . Mi+1 − 1] repre-

sents mr−i where M0 = 0 and Mi =
∑r

i=r−i+1 S̄i. The minimal polynomials in Example 1
will be represented in the following figure where E[0 . . . 12] represents m̄2 and E[13 . . . 17]
represents m̄1.

E = 2 2 6 3 7 1 4 5 0 0 1 0 0︸ ︷︷ ︸
m̄2

3 3 0 0 1︸ ︷︷ ︸
m̄1

3 In-place Algorithms

In this section we design efficient in-place algorithms for multiplication, division and GCD
computation of two univariate polynomials over R. We will also give an in-place algorithm
for computing the inverse of an element α ∈ R, if it exists. This is needed for making
a polynomial monic for the monic Euclidean algorithm in R[x]. We assume the following
utility operations are implemented.

• IP ADD(N, A, B) and IP SUB(N, A, B) are used for in-place addition and subtraction of
two polynomials a, b ∈ RN [x] represented in arrays A and B.

• IP MUL NO EXT is used for multiplication of two polynomials over Zp. A description of
this algorithm is given in Section 5.1.

• IP REM NO EXT is used for computing the quotient and the remainder of dividing two
polynomials over Zp.

• IP INV NO EXT is used for computing the inverse of an element in Zp[z] modulo a minimal
polynomial m ∈ Zp[z].

• IP GCD NO EXT is used for computing the GCD of two univariate polynomials over Zp

(the Euclidean algorithm, See [7]).



3.1 In-place Multiplication

Suppose we have a, b ∈ R[x] where R = Rr−1[zr]/〈mr(zr)〉. Let a =
∑da

i=0 aix
i and b =∑db

i=0 bix
i where da = degx(a) and db = degx(b) and Let c = a × b =

∑dc

i=0 cix
i where

dc = degx(c) = da + db. To reduce the number of divisions by mr(zr) when multiplying
a × b, we use the Cauchy product rule to compute ck as suggested in [7], that is,

ck =

⎡⎣ min(k,da)∑
i=max(0,k−db)

ai × bk−i

⎤⎦ mod mr(zr).

Thus the number of multiplications in Rr−1[zr] (in line 11) is (da + 1) × (db + 1) and the
number of divisions in Rr−1[zr] (in line 15) is da + db + 1. Asymptotically, this saves about
half the work.

Algorithm IP MUL: In-place Multiplication

Input: • N the number of field extensions.

• Arrays A[0 . . . ā] and B[0 . . . b̄] representing univariate polynomials a, b ∈ RN [x] (RN =
Zp[z1, . . . , zN ]/ 〈m̄1, . . . , m̄N 〉). Note that ā = P (da, RN ) − 1 and b̄ = P (db, RN ) − 1
where da = degx(a) and db = degx(b).

• Array C[0 . . . c̄]: Space needed for storing c = a × b =
Pdc

i=0 cix
i where c̄ = P (degx(a) +

degx(b), RN ) − 1.

• E[0 . . . eN ] : representing the set of minimal polynomials where eN = SN + 2
PN−1

i=1 Si.

• W [0 . . . wN ] : the working storage for the intermediate operations.
Output: For 0 ≤ k ≤ dc, ck will be computed and stored in C[kSN + 1 . . . (k + 1)SN ].
1: Set da := A[0] and db := B[0].
2: if da = −1 or db = −1 then Set C[0] := −1 and return.
3: if N = 0 then Call IP MUL NO EXT on inputs A, B and C and return.
4: Let M = E[0 . . . S̄N − 1] and E′ = E[S̄N . . . eN ] (M points to m̄N in E[0 . . . eN ]).
5: Let T1 = W [0 . . . t − 1] and T2 = W [t . . . 2t − 1] and W ′ = W [2t . . . wN ] where t = P (2dN −

2, RN−1) and dN = M [0] = degzN
(m̄N ).

6: Set dc := da + db and sc := 1.
7: for k from 0 to dc do
8: Set sa := 1 + iSN and sb := 1 + (k − i)SN .
9: Set T1[0] := −1 (T1 = 0).

10: for i from max(0, k − db) to min(k, da) do
11: Call IP MUL(N − 1, A[sa . . . ā], B[sb . . . b̄], T2, E

′, W ′).
12: Call IP ADD(N − 1, T1, T2) (T1 := T1 + T2)
13: Set sa := sa + SN and sb := sb − SN .
14: end for
15: Call IP REM(N − 1, T1, M, E′, W ′). (Reduce T1 modulo M = m̄N ).
16: Copy T1[0 . . . SN − 1] into C[sc . . . sc + SN − 1].
17: Set sc := sc + SN .
18: end for
19: Determine degx(a × b): (There might be zero-divisors).
20: Set sc := sc − SN .
21: while dc ≥ 0 and C[sc] = −1 do Set dc := dc − 1 and sc := sc − SN .
22: Set C[0] := dc.

The temporary variables T1 and T2 must be big enough to store the product of two
coefficients in a, b ∈ RN [x]. Coefficients of a and b are in RN−1[zN ] with degree (in zN )
at most dN − 1. Hence these temporaries must be of size P (dN − 1 + dN − 1, RN−1) =
P (2dN − 2, RN−1).



3.2 In-place Division

The following algorithm divides a polynomial a ∈ RN [x] by a monic polynomial b ∈ RN [x].
The remainder and the quotient of a divided by b will be stored in the array representing
a hence a is destroyed by the algorithm. The division algorithm is organized differently
from the normal long division algorithm which does db × (da − db + 1) multiplications and
divisions in RN−1[zr]. The number of divisions by M in RN−1[zr] in line 16 is reduced to
da + 1 (see line 8). Asymptotically this saves half the work.

Algorithm IP REM: In-place Remainder

Input: • N the number of field extensions.

• Arrays A[0 . . . ā] and B[0 . . . b̄] representing univariate polynomials a, b �= 0 ∈ RN [x]
(RN = Zp[z1, . . . , zN ]/ 〈m̄1, . . . , m̄N 〉) where da = degx(a) ≥ da = degx(b). Note b must
be monic and ā = P (da, RN ) − 1 and b̄ = P (db, RN ) − 1.

• E[0 . . . eN ] : representing the set of minimal polynomials where eN = SN + 2
PN−1

i=1 Si.

• W [0 . . . wN ] : the working storage for the intermediate operations.
Output: The remainder R̄ of a divided by b will be stored in A[0 . . . r̄] where r̄ = P (Dr, RN ) − 1

and Dr = degx(R̄) ≤ db − 1. Also let Q represent the quotient Q̄ of a divided by b. Q[1 . . . q̄]
will be stored in A[1 + dbSN . . . ā] where q̄ = P (da − db, RN ) − 1.

1: Set da := A[0] and db := B[0].
2: if da < db then return.
3: if N = 0 then Call IP REM NO EXT on inputs A and B and return.
4: Set Dq := da − db and Dr := db − 1.
5: Let M = E[0 . . . S̄N − 1] and E′ = E[S̄N . . . eN ] (M points to m̄N in E[0 . . . eN ]).
6: Let T1 = W [0 . . . t − 1] and T2 = W [t . . . 2t − 1] and W ′ = W [2t . . . wN ] where t = P (2dN −

2, RN−1) and dN = M [0] = degzN
(m̄N ).

7: Set sc := 1 + daSN

8: for k = da to 0 by −1 do
9: Copy A[sc . . . sc + SN − 1] into T1[0 . . . SN − 1].

10: Set i := max(0, k − Dq), sb := 1 + iSN and sa := 1 + (k − i + db)SN .
11: while i ≤ min(Dr, k) do
12: Call IP MUL(N − 1, A[sa . . . ā], B[sb . . . b̄], T2, E′, W ′).
13: Call IP SUB(N − 1, T1, T2) (T1 := T1 − T2).
14: Set sb := sb + SN and sa := sa − SN .
15: end while
16: Call IP REM(N − 1, T1, M , E′, W ′) (Reduce T1 modulo M = m̄N ).
17: Copy T1[0 . . . SN − 1] into A[sc . . . sc + SN − 1].
18: Set sc := sc − SN .
19: end for
20: Set sc := 1 + DrSN .
21: while Dr ≥ 0 and A[sc] = −1 do Set Dr := Dr − 1 and sc := sc − SN .
22: Set A[0] := Dr.

Let arrays A and B represent polynomials a and b respectively. Let da = degx(a) and
db = degx(b). Array A has enough space to store da + 1 coefficients in RN plus one unit
of storage to store da. Hence the total storage is (da + 1)SN + 1. The remainder R̄ is of
degree at most db − 1 in x, i.e. R̄ needs storage for db coefficients in RN and one unit for
the degree. Similarly the quotient Q̄ is of degree da −db, hence needs storage for da −db +1
coefficients and one unit for the degree. Thus the remainder and the quotient together need
dbSN +1+(da−db +1)SN +1 = (da +1)SN +2. This means we are one unit of storage short
if we want to store both R̄ and Q̄ in A. This is because this time we are storing two degrees
for Q̄ and R̄. Our solution is that we will not store the degree of Q̄. Any algorithm that



calls IP REM and needs both the quotient and the remainder must use degx(a) − degx(b)
for the degree of Q̄.

After applying this algorithm the remainder R̄ will be stored in A[0 . . . dbSN ] and the
quotient Q̄ minus the degree will be stored in A[dbSN . . . (da + 1)SN ]. Similar to IP MUL,
the remainder operation in line 16 has been moved to outside of the main loop to let the
values accumulate in T1.

3.3 Computing (In-place) the inverse of an element in RN

In this algorithm we assume the following in-place function:
• IP SCAL MUL(N, A, C, E, W ): This is used for multiplying a polynomial a ∈ RN [x] (repre-

sented by array A) by a scalar c ∈ RN (represented by array C). The algorithm will multiply
every coefficient of a in x by c and reduce the result modulo the minimal polynomials. It
can easily be implemented using IP MUL and IP REM.

The algorithm computes the inverse of an element a in RN . If the element is not
invertible, then the Euclidean algorithm will compute a proper divisor of some minimal
polynomial mi(zi), a zero-divisor in Ri. The algorithm will store that zero-divisor in the
space provided for the inverse and return the index i of the minimal polynomial which is
reducible and has caused the zero-divisor.

Algorithm IP INV: In-place inverse of an element in RN

Input: • N ≥ 1 the number of field extensions.

• Array A[0 . . . SN − 1] representing the univariate polynomial a ∈ RN .

• Array I[0 . . . SN − 1]: Space needed for storing the inverse a−1 ∈ RN .

• E[0 . . . eN ] representing the set of minimal polynomials. Note eN = SN + 2
PN−1

i=1 Si.

• W [0 . . . wN ] : the working storage for the intermediate operations.
Output: The inverse of a (or a zero-divisor, if there exists one) will be computed and stored in

I. If there is a zero-divisor, the algorithm will return the index k where m̄k is the reducible
minimal polynomial, otherwise it will return 0.

1: Let M = E[0 . . . S̄N − 1] and E′ = E[S̄N . . . eN ] (M = m̄N ).
2: if N = 1 then Call IP INV NO EXT on inputs A, I, E, M and W and return.
3: if A[i] = 0 for all 0 ≤ i < N and A[N ] = 1 ( Test if a = 1) then
4: Copy A into I and return 0.
5: end if
6: Let r1 = W [0 . . . t − 1], r2 = W [t . . . 2t − 1], s1 = I, s2 = W [2t . . . 3t − 1], T = W [3t . . . 4t − 1],

T ′ = W [4t . . . 4t + t′ − 1] and W ′ = W [4t + t′ . . . wN ] where t = P (dN , RN−1) − 1 = S̄N − 1,
t′ = P (2dN − 2, RN−1) and dN = M [0] = degzN

(m̄N ).
7: Copy A and M into r1 and r2 respectively.
8: Set s2[0] := −1 (s2 represents 0 ).
9: Let Z ∈ Z := IP INV(N − 1, A + Da SN−1 + 1, T, E′, W ′) where Da = A[0] = degzN

(a).

(A[DaSN−1 + 1 . . . SN − 1] represents l = lczN (a) and T represents l−1.)
10: if Z > 0 then Copy T into I and return Z.
11: Copy T into s1.
12: Call IP SCAL MUL(N, r1, T, E′, W ′) (r1 is made monic).
13: while r2[0] �= −1 do
14: Set Z = IP INV(N − 1, r2 + Dr2 SN−1 + 1, T, E′, W ′) where Dr2 = r2[0] = degzN

(r2).
15: if Z > 0 then Copy T into I and return Z.
16: Call IP SCAL MUL(N, r2, T, E′, W ′) (r2 is made monic).
17: Call IP SCAL MUL(N, s2, T, E′, W ′).
18: Set Dq := max(−1, r1[0] − r2[0]).



19: Call IP REM(N, r1, r2, E
′, W ′).

20: Swap the arrays r1 and r2. (Interchange only the pointers).
21: Set t1 := r2[r1[0]SN−1] and set r2[r1[0]SN−1] := Dq.
22: Call IP MUL(N − 1, r2[r1[0]SN−1 . . . SN − 1], s2, T

′, E′, W ′).
23: Call IP REM(N − 1, T ′, M, E′, W ′) and then IP SUB(N − 1, s1, T

′). (s1 := s1 − qs2.)
24: Set r2[r1[0]SN−1] := t1.
25: Swap the arrays s1 and s2. (Interchange only the pointers).
26: end while
27: if r1[i] = 0 for all 0 ≤ i < N and r1[N ] = 1 then
28: Copy s1 into I (r1 = 1 and s1 is the inverse) and return 0.
29: else
30: Copy r1 into I (r1 �= 1 is the zero-divisor) and return N − 1 (m̄N−1 is reducible).
31: end if

As discussed in Section 3.2, IP REM will not store the degree of the quotient of a divided
by b hence in line 21 we explicitly compute and set the degree of the quotient before using
it to compute s1 := s1−qs2 in lines 22 and 23. Here r2[r1[0]SN−1 . . . SN −1] is the quotient
of r1 ÷ r2 in line 19.

3.4 In-place GCD Computation

In the following algorithm we compute the GCD of a, b ∈ RN [x] using the monic Euclidean
algorithm. Note, since mi(zi) may be reducible modulo p, RN is is not necessarily a field,
and therefore, the monic Euclidean algorithm may encounter a zero-divisor in RN when
calling subroutine IP INV.

Algorithm IP GCD: In-place GCD Computation

Input: • N the number of field extensions.

• Arrays A[0 . . . ā] and B[0 . . . b̄] representing univariate polynomials a, b �= 0 ∈ RN [x]
(RN = Zp[z1, . . . , zN ]/ 〈m̄1, . . . , m̄N 〉) where da = degx(a) ≥ da = degx(b) and A, B �= 0.
Note that b is monic and ā = P (da, RN ) − 1 and b̄ = P (db, RN ) − 1.

• E[0 . . . eN ] : representing the set of minimal polynomials where eN = SN + 2
PN−1

i=1 Si.

• W [0 . . . wN ] : the working storage for the intermediate operations.
Output: If a zero-divisor is encountered, it will be stored in A and the index of the reducible

minimal polynomial will be returned. Otherwise the monic GCD g = gcd(a, b) will be stored
in A and 0 will be returned. Also, B is destroyed.

1: if N = 0 then CALL IP GCD NO EXT on inputs A and B and return 0.
2: Set da := A[0] and db := B[0].
3: Let r1 and r2 point to A and B respectively.
4: Let I = W [0 . . . t − 1] and W ′ = W [t . . . wN ] where t = S̄N − 1 = SN + SN−1 − 1.
5: Let Z be the output of IP INV(N, r1 + r1[0] SN + 1, I, E, W ′).
6: if Z > 0 then Copy I into A and return Z.
7: Call IP SCAL MUL(N, r1, I, E, W ′).
8: while r2[0] �= −1 do
9: Let Z be the output of IP INV(N, r2 + r2[0] SN + 1, I, E, W ′).

10: if Z > 0 then Copy I into A and return Z.
11: Call IP SCAL MUL(N, r2, I, E, W ′) (make r2 monic).
12: Call IP REM(N, r1, r2, E, W ′) (the remainder of r1 ÷ r2 is in r1).
13: Swap r1 and r2 (interchange pointers).
14: end while
15: Copy r1 into A.
16: return 0.



Similar to the algorithm IP INV, if there exists a zero-divisor, i.e. the leading coefficient
of one of the polynomials in the polynomial remainder sequence is not invertible, in steps 6
and 10 the algorithm stores the zero-divisor in the space provided for a and returns Z the
index of the minimal polynomial which is reducible and has caused the zero-divisor.

4 Working Space

In this section we will determine recurrences for the exact amount of working storage wN

needed for each operation introduced in the previous section. Recall that di = degzi
(m̄i) is

the degree of the ith minimal polynomial which we may assume is at least 2. Also Si is the
space needed to store an element in Ri and we have Si+1 = di+1Si + 1 and S1 = d1 + 1.

Lemma 2. SN > 2SN−1 for N > 1.

Proof. We have SN = dNSN−1 + 1 where dN = degzN
(m̄N ). Since dN ≥ 2 we have

SN ≥ 2SN−1 + 1 ⇒ SN > 2SN−1.

Lemma 3.
∑N−1

i=1 Si < SN for N > 1.

Proof. (by induction on N). For N = 2 we have
∑1

i=1 Si = S1 < S2. For N = k + 1 ≥ 2
we have

∑k
i=1 Si = Sk +

∑k−1
i=1 Si. By induction we have

∑k−1
i=1 Si < Sk hence

∑k
i=1 Si <

Sk + Sk = 2Sk. Using Lemma 2 we have 2Sk < Sk+1 hence
∑k

i=1 Si < 2Sk < Sk+1 and the
proof is complete.

Corollary 4.
∑N

i=1 Si < 2SN for N > 1.

Lemma 5. P (2dN − 2, RN−1) = 2SN − SN−1 − 1 for N > 1.

Proof. We have P (2dN − 2, RN−1) = (2dN − 1)SN−1 + 1 = 2dNSN−1 − SN−1 + 1 =
2(dNSN−1 + 1) − SN−1 − 1 = 2SN − SN−1 − 1.

4.1 Multiplication and Division Algorithms

Let M(N) be the amount of working storage needed to multiply a, b ∈ RN [x] using the
algorithm IP MUL. Similarly let Q(N) be the amount of working storage needed to divide
a by b using the algorithm IP REM. The working storage used in lines 5,11 and 15 of
algorithm IP MUL and lines 6,12 and 16 of algorithm IP REM is

M(N) = 2P (2dN − 2, RN−1) + max(M(N − 1), Q(N − 1)) and (1)

Q(N) = 2P (2dN − 2, RN−1) + max(M(N − 1), Q(N − 1)). (2)

Comparing equations (1) and (2) we see that M(N) = Q(N) for any N ≥ 1. Hence

M(N) = 2P (2dN − 2, RN−1) + M(N − 1). (3)

Simplifying (3) gives M(N) = 2SN − 2N + 2
∑N

i=1 Si. Using Corollary 4 we have

Theorem 6. M(N) = Q(N) = 2SN − 2N + 2
∑N

i=1 Si < 6SN .

Remark 7. When calling the algorithm IP MUL to compute c = a×b where a, b ∈ R[x], we
should use a working storage array W [0 . . . wn] such that wn ≥ M(N). Since M(N) < 6SN ,
the working storage must be big enough to store only six coefficients in Lp.

Let C(N) denote the working storage needed for the operation IP SCAL MUL. It is
easy to show that C(N) = M(N − 1) + P (2dN − 2, RN−1) < M(N).



4.2 Inversion

Let I(N) denote the amount of working storage needed to invert c ∈ RN . In lines 6, 9, 12,
14, 16, 17, 19 , 22 and 23 of algorithm IP INV we use the working storage. We have

I(N) = 4P (dN , RN−1) + P (2dN − 2, RN−1) + max(I(N − 1),M(N − 1), Q(N − 1)). (4)

But we have M(N − 1) = Q(N − 1), hence

I(N) = 4P (dN , RN−1) + P (2dN − 2, RN−1) + max(I(N − 1), M(N − 1)). (5)

Lemma 8. For N ≥ 1, we have M(N) < I(N).

Proof. (by contradiction) Assume M(N) ≥ I(N). Using (5) we have I(N) = 4P (dN , RN−1)
+P (2dN − 2, RN−1)+M(N − 1). On the other hand using (3) we have M(N) = 2P (2dN −
2, RN−1)+M(N −1). We assumed I(N) ≤ M(N) hence we have 4P (dN , RN−1)+P (2dN −
2, RN−1) + M(N − 1) ≤ 2P (2dN − 2, RN−1) + M(N − 1) thus 4P (dN , RN−1) + P (2dN −
2, RN−1) ≤ 2P (2dN − 2, RN−1) ⇒ 6SN + 3SN−1 − 1 ≤ 4SN − 2SN−1 − 2 which is a
contradiction. Thus I(N) > M(N).

Using Equation (4) and Lemma 8 we conclude that I(N) = 4P (dN , RN−1) + P (2dN −
2, RN−1) + I(N − 1). Simplifying this yields:

Theorem 9. I(N) = 4
∑N

i=1 P (di, Ri−1) +
∑N

i=1 P (2di − 2, Ri−1) = 4
∑N

i=1 (Si + Si−1) +∑N
i=1 (2Si − Si−1 − 1) = 6SN + 9

∑N−1
i=1 Si − N.

Using Lemma 2 an upper bound for I(N) is I(N) < 6SN + 9SN = 15SN .

4.3 GCD Computation

Let G(N) denote the working storage needed to compute the GCD of a, b ∈ RN [x]. In
lines 4,5,7,9,11 and 12 of algorithm IP GCD we use the working storage. We have G(N) =
S̄N +max(I(N), C(N), Q(N)). Lemma 8 states that I(N) > M(N) = Q(N) > C(N) hence

G(N) = S̄N + I(N) = SN + SN−1 + 6SN + 9
N−1∑
i=1

Si − N = 7SN + SN−1 + 9
N−1∑
i=1

Si − N.

Since I(N) < 15SN , we have an upper bound on G(N) :

Theorem 10. G(N) = SN + SN−1 + I(N) < SN + SN−1 + 15SN < 17SN .

Remark 11. The constants 6, 15 and 17 appearing in Theorems 6, 9 and 10 respectively,
are not the best possible. One can reduce the constant 6 for algorithm IP MUL if one also
uses the space in the output array C for working storage. We did not do this because it
complicates the description of the algorithm and yields no significant performance gain.

5 Benchmarks

We have compared our C library with the Magma (see [1]) computer algebra system. The
results are reported in Table 1. For our benchmarks we used p = 3037000453, two field
extensions with minimal polynomials m̄1 and m̄2 of varying degrees d1 and d2 but with d =



d1×d2 = 60 constant so that we may compare the overhead for varying d1. We choose three
polynomials a, b, g of the same degree dx in x with coefficients chosen from R at random.
The data in the fifth and sixth columns are the times (in CPU seconds) for computing both
f1 = a × g and f2 = b × g using IP MUL and Magma version 2.15 respectively. Similarly,
the data in the seventh and eighth columns are the times for computing both quo(f1, g) and
quo(f2, g) using IP REM and Magma respectively. Finally the data in the ninth and tenth
columns are the times for computing gcd(f1, f2) using IP GCD and Magma respectively.
The data in the column labeled #fi is the number of terms in f1 and f2.

Table 1: Timings in CPU seconds on an AMD Opteron 254 CPU running at 2.8 GHz
d1 d2 dx #fi IP MUL MAG MUL IP REM MAG REM IP GCD MAG GCD
2 30 40 2460 0.124 0.050 0.123 0.09 0.384 2.26
3 20 40 2460 0.108 0.054 0.106 0.11 0.340 2.35
4 15 40 2460 0.106 0.056 0.106 0.10 0.327 2.39
6 10 40 2460 0.106 0.121 0.105 0.14 0.328 5.44
10 6 40 2460 0.100 0.093 0.100 0.37 0.303 7.84
15 4 40 2460 0.097 0.055 0.095 0.17 0.283 3.27
20 3 40 2460 0.092 0.046 0.091 0.14 0.267 2.54
30 2 40 2460 0.087 0.038 0.087 0.10 0.242 1.85
2 30 80 4860 0.477 0.115 0.478 0.27 1.449 9.41
3 20 80 4860 0.407 0.127 0.409 0.27 1.304 9.68
4 15 80 4860 0.404 0.132 0.406 0.28 1.253 9.98
6 10 80 4860 0.398 0.253 0.400 0.35 1.234 22.01
10 6 80 4860 0.380 0.197 0.381 0.86 1.151 31.57
15 4 80 4860 0.365 0.127 0.364 0.40 1.081 13.49
20 3 80 4860 0.353 0.109 0.353 0.33 1.030 10.59
30 2 80 4860 0.336 0.086 0.337 0.26 0.932 7.83

The timings in Table 1 for in-place routines show that as the degree dx doubles from
40 to 80, the time consistently goes up by a factor of 4 indicating that the underlying
algorithms are all quadratic in dx. This is not the case for Magma because Magma is
using a sub-quadratic algorithm for multiplication. We describe the algorithm used by
Magma ([9]) briefly. To multiply two polynomials a, b ∈ Lp[x] Magma first multiplies
a and b as polynomials in Z[x, z1, . . . , zr]. It then reduces their product modulo the ideal
〈m1, . . . , mr, p〉. To multiply in Z[x, z1, . . . , zr], Magma evaluates each variable successively,
beginning with zr then ending with x, at integers kr, . . . , k1, k0 which are powers of the
base of the integer representation which are sufficiently large so that that the product of
the two polynomials a(x, z1, . . . , zr) × b(x, z1, . . . , zr) can be recovered from the product of
the two (very) large integers a(k0, k1, . . . , kr) × b(k0, k1, . . . , kr). The reason to evaluate at
a power of the integer base is so that evaluation and recovery can be done in linear time.
In this way polynomial multiplication in Z[x, zr, . . . , z1] is reduced to a single (very) large
integer multiplication which is done using the FFT. This, note, may not be efficient if the
polynomials a(x, z1, . . . , zr) and b(x, z1, . . . , zr) are sparse.

Table 1 shows that our in-place GCD algorithm is a factor of 6 to 27 times faster than
Magma’s GCD algorithm. Since both algorithms use the Euclidean algorithm, this shows
that our in-place algorithms for arithmetic in Lp are efficient. This is the gain we sought
to achieve. The reader can observe that as d1 increases, the timings for IP MUL decrease
which shows there is still some overhead for α1 of low degree.



5.1 Optimizations in the implementation

In modular algorithms, multiplication in Zp needs to be coded carefully. This is because
hardware integer division ( %p in C ) is much slower than hardware integer multiplication.
One can use Peter Montgomery’s trick (see [8]) to replace all divisions by p by several
cheaper operations for an overall gain of typically a factor of 2. Instead, we use the following
scheme which replaces most divisions by p in the multiplication subroutine for Zp[x] by at
most one subtraction. We use a similar scheme for the division in Zp[x]. This makes GCD
computation in Lp[x] more efficient as well. We observed a gain of a factor of 5 on average
for the GCD computations in our benchmarks.

The following C code explains the idea. Suppose we have two polynomials a, b ∈ Zp[x]
where a =

∑da

i=0 aix
i and b =

∑db

j=0 bjx
j where ai, bj ∈ Zp. Suppose the coefficients ai

and bi are stored in two Arrays A and B indexed from 0 to da and 0 to db respectively.
We assume elements of Zp are stored as signed integers and an integer x in the range
−p2 < x < p2 fits in a machine word. The following computes c = a × b =

∑da+db

k=0 ckxk.

M = p*p;

d_c = d_a+d_b;

for( k=0; k<=d_c; k++ ) {

t = 0;

for( i=max(0,k-d_b); i <= min(k,d_a); i++ )

{

if( t<0 ); else t = t-M;

t = t+A[i]*B[k-i];

}

t = t % p;

if( t<0 ) t = t+p;

C[k] = t;

}

The trick here is to put t in the range −p2 < t ≤ 0 by subtracting p2 from it when it
is positive so that we can add the product of two integers 0 ≤ ai, bk−i < p to t without
overflow. Thus the number of divisions by p is linear in dc, the degree of the product. One
can further reduce the number of divisions by p. In our implementation, when multiplying
elements a, b ∈ Zp[z][x]/ 〈m(z)〉 we multiply a, b ∈ Zp[z][x] without division by p before
dividing by m(z).

Note that the statement if( t<0 ); else t = t-M; is done this way rather than the
more obvious if( t>0 ) t = t-M; because it is faster. The reason is that t < 0 holds
about 75% of the time and the code generated by the newer compilers is optimized for the
case the condition of an if statement is true. If one codes the if statement using if( t>0
) t = t-M; instead, we observe a loss of a factor of 2.6 on an Intel Core i7, 2.3 on an Intel
Core 2 duo, and 2.2 on an AMD Opteron for the above code.

6 Concluding Remarks

Our C library of in-place routines has been integrated into Maple 14 for use in the GCD algo-
rithms in [11] and [4]. These algorithms compute GCDs of polynomials in K[x1, x2, . . . , xn]
over an algebraic function field K in parameters t1, t2, . . . , tk by evaluating the parameters
and variables except x1 and using rational function interpolation to recover the GCD. This



results in many GCD computations in Lp[x1]. In many applications, K has field extensions
of low degree, often quadratic or cubic.

Our C library is available on our website at
http://www.cecm.sfu.ca/CAG/code/ASCM09/inplace.c

The code we used to generate the Magma timings in Section 5 is available in the file
http://www.cecm.sfu.ca/CAG/code/ASCM09/magma.txt

In [6], Xin, Moreno Maza and Schost develop asymptotically fast algorithms for mul-
tiplication in Lp based on the FFT and use their algorithms to implement the Euclidean
algorithm in Lp[x] for comparison with Magma and Maple. The authors obtain a speedup
for L of sufficiently large degree d. Our results in this paper are complementary in that we
sought to improve arithmetic when L has relatively low degree.
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Abstract

Methods for computing triangular decompositions of polynomial systems can be
classified into two groups. First, those computing a series of regular chains C1 . . . , Ce

such that for each irreducible component V of the variety of the input system, one of the
Ci’s encodes a generic zero of V . An example is the algorithm of Michael Kalkbrener
in his PhD thesis. Secondly are those methods computing a series of characteristic sets
C1 . . . , Cf (in the sense of Wu Wen Tsün) such that the variety of the input system is
the union of the quasi-components of the Ci’s.
A large variety of methods fall in the second family, in particular the one proposed in
1987 by Wu Wen Tsün in the 1st volume of the MM Research Preprints. Some methods
belong to both families, this is the case for those proceeding in an incremental manner,
that is, solving one equation after another. These latter methods rely on an operation
for computing the intersection of an hypersurface and the quasi-component of a regular
chain. This is an attractive operation since its input can be regarded as well-behaved
geometrical objects. However, known algorithms (the one of Daniel Lazard in 1991
and the one of the second author in 2000) are quite involved and difficult to analyze.
We revisit this intersection operation. We show that under “genericity assumptions”
a simple algorithm can be stated and analyzed. In this context, it follows a classical
projection-extension scheme. However, we shall see that the cost of the extension step
can be neglected in comparison to that of the projection, which itself “essentially”
reduces to a cost that all such intersection algorithms have to pay. In our experimental
results, realized with the RegularChains library in Maple, our new intersection
outperforms the one of the second author by several orders of magnitude on sufficiently
difficult problems.
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In this paper, we present a new explicit representation for the roots of a zero-dimensional
polynomial system: the roots are represented as linear combinations of some roots of several
univariate polynomial equations, which is a generalization of the method proposed in [1].
We call this representation as Linear Univariate Representation (shortly LUR). This
gives an algebraic representation for the roots of the system. It is different from the well-
known RUR representation which is based on the idea of generic position [3]. From LUR,
we can obtain the roots of the system under any given precision by refining the isolation
intervals of these univariate polynomial equations at most once.

1 Linear univariate representation

Let
P = {f1(x1, . . . , xn), . . . , fs(x1, . . . , xn)}

be a zero-dimensional polynomial system in Q[x1, . . . , xn], where Q is the field of rational
numbers. We use VC(P) to denote its roots in Cn, where C is the field of complex numbers.
Denote (P) to be the ideal generated by P and

Ii = (P) ∩ Q[x1, . . . , xi], i = 1, . . . , n.

By a linear univariate representation (abbr. LUR), we mean a set like

{T1(x), . . . , Tn(x), si, di, i = 1, . . . , n − 1} (1)

where Ti ∈ Q[x] are univariate polynomials, si and di are positive rational numbers. The
roots of (1) are defined to be

{(α1,
α2 − α1

s1
, . . . ,

αn − αn−1

s1 · · · sn−1
) |Ti(αi) = 0, i = 1, . . . , n and

|αi+1 − αi| < s0 · · · si−1di, i = 1, . . . , n − 1, where s0 = 1.} (2)

An LUR for P = 0 is a set of form (1) whose roots are exactly the roots of P = 0.

∗Partially supported by a National Key Basic Research Project of China and by a USA NSF grant
CCR-0201253.
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It is clear that an LUR represents the roots of P as linear combinations of the roots of
univariate polynomial equations. The LUR representation has the following advantage: we
can easily derive the precision of the roots of P from that of the univariate equations.

Lemma 1.1 If αi is a root of Ti(x) = 0 with precision εi, then the root (α1,
α2−α1

s1
, . . . ,

αn−αn−1
s1··· sn−1

) of P has precision max{ε1, ε2+ε1
s1

, . . . , εn+εn−1
s1··· sn−1

}.
For a zero-dimensional polynomial system P, let di, ri+1, si, i = 1, . . . , n− 1 be rational

numbers satisfying

di < min{1
2
|α − β|, ∀η ∈ VC(Ii−1), (η, α), (η, β) ∈ VC(Ii), α �= β},

ri > 2max{|αi|, ∀(α1, . . . , αi) ∈ VC(Ii)}, (3)

0 < si <
di

ri+1
.

Geometrically, di (ri) is half (double ) of the separation bound (root bound) for roots of Ii

considered as points on a “fiber” over each root of Ii−1, and si, meaning the slope of certain
line, is a key parameter to be used in our method. Note that di = +∞ if ∀η ∈ VC(Ii−1),
#{α|(η, α) ∈ VC(Ii)} = 1. We can choose any positive number as di.

For si satisfying (3), consider the ideal

Īi = (Ii ∪ {x − x1 − s1x2 − · · · − s1 · · · si−1xi})

where x is a new variable. It is clear that Īi is a zero-dimensional ideal in Q[x1, . . . , xi, x].
And the elimination ideal (Īi) ∩ Q[x] is principal. Let Ti(x) be the generator of this ideal:

(Īi) ∩ Q[x] = (Ti(x)). (4)

Theorem 1.2 If si, di satisfy condition (3) and Ti is defined in (4), then the corresponding
set (1) is an LUR for P.

2 Algorithm for computing an LUR and roots isolation

We use intervals to isolate real numbers: let Q denote the set of intervals of the form [a, b]
where a ≤ b ∈ Q. The length of an interval I = [a, b] ∈ Q is defined to be |I| = b − a.

Let 〈α, β〉 = α + βi (i2 = −1) be a complex root of T (x) = 0. We call 〈IR, II〉 (IR, II ∈
Q) its isolation interval if it contains only one root 〈α, β〉. The length of the isolation

interval of 〈α, β〉 is max{|IR|, |II|}. We call BC = 〈IR
1 , II

1〉 × · · · × 〈IR
n , II

n〉 an ε-isolation

box of a root of P if BC contains only one root of P and max
i

{|IR

i |, |II

i |} ≤ ε.

The main step of the algorithm is as follows.
1. We compute a Gröbner basis G of P under the pure lexicographical order induced by

x1 < · · · < xn with the method introduced in [2]. The advantage of this approach is that
its worst case complexity is of single exponential. It is clear that G is of the form:

G =

⎧⎪⎪⎨⎪⎪⎩
P1(x1)
P2,1(x1, x2) . . . , P2,k2(x1, x2)
. . .
Pn,1(x1, . . . , xn), . . . , Pp,kn(x1, . . . , xn)

(5)



where Pi,j ∈ Q[x1, . . . , xi]. Let Gi = {P1, P2,1, . . . , P2,k2 , . . . , Pi,1, . . . , Pi,ki}.
2. Compute a linear univariate representation (LUR) of P = 0 and roots isolation of

P = 0 from the Gröbner basis (5) of P.
We will compute the LUR (1) recursively. Assume that we have computed an LUR of

Gi, the ε-isolation boxes of the roots of Gi (1 ≤ i ≤ n− 1) and also di. It is reasonable since
T1(x) = P1(x) and we can isolate the roots of T1(x) = 0 and derive d1. We will show how to
compute an LUR for Gi+1 and ε-isolation boxes of the roots of Gi+1 = 0. We will compute
ri+1, si as introduced in (3), then compute Ti+1(x) defined in (4) for 1 ≤ i ≤ n − 1.

Now we show how to estimate ri+1. With the method in [2], we compute a univariate
polynomial in xi+1: (gi+1(xi+1)) = (Gi+1) ∩ Q[xi+1].

Lemma 2.1 Use the notations introduced before. Then we can take

ri+1 = 2 max{RB(gi+1(xi+1))}, (6)

where RB(g) is the root bound of a univariate polynomial equation g = 0.

Then we can choose a rational number si such that the third formula of (3) holds.
We need also to choose si to ensure that there is no polynomial f ∈ Gi+1 − Gi such that
hi+1 = x−x1−s1x2− . . .−s1 · · · si xi+1 mod f ∈ Q[x]. Otherwise, the hyperplane hi+1 = 0
is parallel to the hyperplane f = 0, then Ti+1(x) is of degree 1.

We will compute Ti+1(x). Note that

Ḡi+1 = Gi+1 ∪ {x − x1 − s1x2 − . . . − s1 · · · si xi+1}
is still a Gröbner basis under the variable order x1 < . . . < xi < x. We can compute Ti+1(x)
such that (Ḡi+1) ∩ Q[x] = (Ti+1(x)) with the method in [2].

After Ti+1(x) is obtained, we derive an LUR for Gi+1. We will compute the ε-isolation
boxes for the roots of Gi+1 = 0 as follows.

Consider x−x1− s1 x2− . . .− s1 . . . sixi+1 = 0 in Ḡi+1. It is clear that x′ = x1 + s1 x2 +
. . . + s1 . . . si−1xi is a root of Ti(x) = 0 when (x1, . . . , xi) ∈ VC(Gi). We have

xi+1 =
x − x′

s1 · · · si
, (7)

|x − x′| = |s1 · · · sixi+1| < s1 · · · si(ri+1 − RB(gi+1)) < s1 · · · si−1di − s1 · · · sidi/2. (8)

From the formula above and the way we compute di, the isolation intervals of the roots
of Ti+1(x) = 0 corresponding to the root (ξ1, . . . , ξi) ∈ VC(Gi) is exactly inside

Iηi = 〈(Re(ηi)− s1 · · · si−1di, Re(ηi)+ s1 · · · si−1di), (Im(ηi)− s1 · · · si−1di, Im(ηi)+ s1 · · · si−1di)〉

if we isolate the roots of Ti+1(x) = 0 with precision no larger than s1 · · · sidi/2, where
ηi = Re(ηi) + Im(ηi)i is the corresponding root of (ξ1, ..., ξi) in Ti(xi) = 0 and 〈[a, b], [c, d]〉
is its isolation interval.

We will compute the isolation intervals of the roots of Gi+1 = 0 at (η1, . . . , ηi) ∈ VC(Gi)
to ensure that they are disjoint and their lengths are no larger than ε.

Assume a1 ≤ a2, p1 ≤ p2, we define the distance between two isolation intervals:

Dis([a1, b1], [a2, b2]) =

{
a2 − b1, if [a1, b1] ∩ [a2, b2] = ∅,
0, otherwise,



Dis(〈[a1, b1], [p1, q1]〉, 〈[a2, b2], [p2, q2]〉) = max{Dis([a1, b1], [a2, b2]), Dis([p1, q1], [p2, q2]}.
Let 〈[pj , qj ], [gj , hj ]〉(1 ≤ j ≤ m) be the isolation intervals for the roots of Ti+1(x) = 0

in Iηi . Then from (7), the isolation intervals of ηi+1,j(1 ≤ j ≤ m) is

Ji+1,j =
〈[pj , qj ] − [a, b], [gj , hj ] − [c, d]〉

s1 · · · si
=

〈[pj − b, qj − a], [gj − d, hj − c]〉
s1 · · · si

(9)

We have two conditions (One is to ensure the precision (10), the other is to ensure any two
insolation interval are disjoint (11).) to derive ε-isolation boxes (1 ≤ j ≤ m):

(qj − pj) + (b − a) < s1 · · · siε, (gj − hj) + (d − c) < s1 · · · siε (10)

Dη,i+1 = min
1≤k �=j≤m

Dis(〈[pk, qk], [gk, hk]〉, 〈[pj , qj ], [gj , hj ]〉) > max{b − a, d − c}. (11)

We also derive

di+1 = min
η∈VC(Gi)

{ di

2si
,
Dη,i+1 − max{b − a, d − c}

2s1 · · · si
}. (12)

In the end, we obtain the ε-isolation boxes for P = 0 and also an LUR for P.
We can write the above result as a theorem.

Theorem 2.2 Using the same notations as before. Let εi be the precision to isolate the
roots of Ti(x) = 0, and θi+1 is the minimum of the distance of any two isolation intervals
of Ti+1(x) = 0 (1 ≤ j ≤ n − 1). If

εi + εi+1 < s1 · · · siε, εi+1 <
s1 · · · si di

2
, εi < min{θi+1,

di

2 si
},

and we construct the last isolation interval of the isolation boxes of the roots of Gi+1(1 ≤
j ≤ n − 1) by (9), the derived isolation boxes for Gn = 0 are ε-isolation boxes.

Example 2.3 P := [x2 + y2 + z2 − 3, x2 + 2 ∗ y2 − 3 ∗ z + 1, x + y − z].
An LUR of P is as follows: [[T1(t), T2(t), T3(t)], [s1, s2], [d1, d2]] = [[5− 60 t + 6 t2 + 18 t3 +
6 t4, 863337 − 6119640 t + 360000 t2 + 1920000 t3 + 640000 t4, 53294617 − 309903360 t
+ 11884800 t2 + 94464000 t3 + 30720000 t4], [1/20, 1/2], [1/2, 5]]. It has four complex roots.
The roots of P are: [(α, 20(β − α), 40(γ − β))|T1(α) = 0, T2(β) = 0, T3(γ) = 0, |β − α| <
1/2, |γ − β| < 1/4]. Assuming the final precision ε = 1/210 for the real roots of the system,
we can set ε1 = 1

40ε, ε2 = ε3 = 1
80ε. Its two real roots with the given precision are

[
5519

65536
,

345

4096
] × [

4835

4096
,
38695

32768
] × [

20715

16384
,
20725

16384
], [

44479

32768
,
88959

65536
] × [

−10985

32768
,
−5485

16384
] × [

16745

16384
,
16755

16384
].
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Abstract

If H is a finite subgroup of the general linear group GLn(k), we propose a general
frame to compute efficiently in the invariant algebra k[X1, . . . , Xn]H . The classical
Noether normalization of this Cohen-Macaulay algebra takes a natural form when ex-
pressed with adequate data structures, based on evaluation rather than writing. This
allows to compute more efficiently its multiplication tensor.
As an illustration we give a fast symbolic algorithm to compute the coefficients of the
Lagrange resolvent associated to the given subgroup H, either generically or special-
ized. We show also how to find square-free resolvents with better theoretical complexity
(polynomial in the index of the group after a precomputation depending only on H).
This relies on a geometric link between the discriminant of the natural Noether pro-
jection and two other discriminants related to fundamental invariants.

A complete text with the bibliography can be found at
http://lix.polytechnique.fr/˜giusti

1 Introduction and result

Let k be a field of characteristic 0. In all that follows, H is a finite subgroup of the general
linear group GLn(k). We consider the right action of the group GLn(k) on the polynomial
ring k[X] = k[X1, . . . , Xn], defined by the following action of the matrix A = (ai,j) on the
polynomial p:

(p,A) �→ pA = p(A.X) = p (a11X1 + . . . a1nXn, . . . , an1X1 + · · ·+ annXn)

The invariant polynomials under this action form the invariant algebra denoted by
k[X]H , equipped with the induced graded structure inherited from k[X].

The general linear group has also a left action on the affine space An
k � kn: for any

point x ∈ kn, A.x is defined as the usual product of the matrix A and the column x. This
left action is coherent with the right action on k[X], in the sense that pA(x) = p(A.x).

We consider the symmetric group Sn as a subgroup of GLn(k) by identifying a per-
mutation τ with the permutation matrix Aτ = (δi,τ(j)). It induces a right action of Sn

on k[X]. Therefore, in the following, the case H ⊂ Sn will be considered as a subcase of
H ⊂ GLn(k).

In this framework, Hochster-Eagon’s theorem states that the invariant algebra k[X]H is
Cohen-Macaulay, and, using the Noether normalization lemma, admits a natural Hiron-

aka decomposition in terms of primary invariants Π = (Π1, . . . ,Πn) and secondary

∗Correspondence to: LIX, Polytechnique, F-91128 Palaiseau Cedex France, +33 1 69 33 40 83.



invariants Σ = (Σ1, . . . ,Σr):

k[X]H =
r⊕

i=1

k[Π]Σi (direct sum of k[Π]-modules)

where the Πi are algebraically independent over k. In the case of a permutation subgroup
H of Sn, the elementary symmetric polynomials are always a possible choice. The Σi

are algebraic integers and are linearly independent over k[Π]. The inclusion k[Π] ↪→ k[X]H

realizes the integral extension of a Noether normalization. The number r of secondary in-
variants is then [Sn : H].

On the other hand, M. Giusti, J. Heintz, L. M. Pardo and their collaborators showed
in a sequence of papers that a Noether position is a good frame for fast computations in
the context of multivariate polynomial algebras. The reason is that it enables to use an
adequate data structure (straight-line programs) to store with better complexity the free
(or transcendental) variables. In particular this explains why fast evaluation techniques
work when specializing these variables.

In this paper, we show that this idea has a new application in computational geometric
invariant theory: considering primary invariants as free variables will allow to compute
more efficiently in invariant algebras under finite groups. As an illustration we obtain:

Theorem There exists an algorithm that computes a square-free Lagrange H-resolvent of

a univariate polynomial in polynomial time in the index of the group H, after a precompu-

tation depending only on H.

2 Geometry of the problem

The geometric properties considered in this section and the following need to assume that
the ground field k is algebraically closed.

Usually in computer algebra, a variety is naturally embedded in a given ambient space
since it is defined by equations. So its algebra of functions is a quotient of a regular alge-
bra. On the opposite here, the invariant algebra k[X]H is a subalgebra of a regular algebra.
From the section above, it can be seen as the algebra of functions on the algebraic variety
V = V(I) ⊂ An+r, which is irreducible (k[X]H is a domain, so I is prime).

Call respectively x, Π(x) and Σ(x) the points:
(x1, . . . , xn), (Π1(x), . . . ,Πn(x)), (Σ1(x), . . . ,Σr(x)). Let

ϕ :
∣∣∣∣ An

k −→ V
x �−→ ϕ(x) = (Π(x),Σ(x))

We have two notions of quotient. First, the categorical quotient An
k//H, defined as

the affine variety corresponding to the ring k[X]H . The projection ϕ realizes the embedding
V in An+r

k of this categorical quotient.
Second, the classical set quotient An

k/H, defined as the set of orbits under H, associated
to the orbit projection ∣∣∣∣ An

k −→ An
k/H

x �−→ H.x
.



The categorical quotient V is the image of ϕ, and coincides with the quotient set An
k/H.

We say that the categorical quotient is a geometric quotient: the quotient map of the
projection ϕ by the orbit projection realizes a bijection from An

k/H onto V, the embedding
of the affine variety An

k//H.

The projection p :
∣∣∣∣ V −→ An

k

(π,σ) �−→ π
achieves a Noether position w.r.t. the free

variables Π is called the Noether projection.
We call primary projection the map defined from the primary invariants:

� :
∣∣∣∣ An

k −→ An
k

x �−→ �(x) = Π(x) .

We get the two following commutative diagrams, where ψ is the canonical injection.

(D1)

An
k

�V�An
k × Ar

k

ϕψ

�

�
�

�
�

��

�
�

�
�

�	
An

k

�pr1 p

All the maps in the right triangle of this diagram are finite hence proper (indeed, k[X]
is integral over k[X]H , which is itself integral over k[Π]).

(D2)OAn
k

�OV
�O

A
n+r

k

ϕ∗ψ∗ = Ψ

�

�
�

�
�

�


�
�

�
�

��

k[Y]

�∗pr∗1

k[X]�k[Y,Z]/I�k[Y,Z]�I�0
| || || |

p∗

An important feature of this geometric presentation relies in the relationship between
the discriminants of the three maps ϕ, p and � = p ◦ϕ: D(�) = D(p)∪ p(D(ϕ)) (where D
denotes the discriminant).

Let us introduce r new variables λ = (λ1, . . . , λr) over kr. The multiplication by Θλ =
λ1Σ1 + · · · + λrΣr is an endomorphism of the free k[Π]-module k[X]H . Its characteristic
polynomial is the generic Lagrange resolvent LΘλ

of Θλ. It can be computed from the
multiplication table between the elements of the basis Σ of the k[Π]-module k[X]H .

We suppose this multiplication table precomputed once and for all.



3 Application to Lagrange resolvents

The geometric framework developed above finds an application to the computation of La-
grange resolvents. One of the interests of these lies in the direct Galois problem, i.e. de-
scribing the Galois group of a given polynomial. Observe however that this problem is not
our main concern here. To illustrate this point of view, we give at the end an enlightening
example which has its own interest.

From now on, let H be a subgroup of Sn and let us take the elementary symmetric poly-
nomials as primary invariants. In this situation the discriminant of the Noether projection
and the (irreducible) discriminant of the primary projection coincide.

Let now f(T ) = Tn−π1T
n−1+· · ·+(−1)nπn be a univariate polynomial of degree n. We

specialize the k[Π]-algebra structure on k[X]H into a k-algebra structure, by specializing
Πi in πi in the precomputed multiplication table between the elements of the basis Σ. The
Lagrange resolvent LΘλ,f of f is the specialisation of the generic one at π = (π1, . . . , πn).
We compute it thanks to the specialized multiplication table. This algorithm to compute
LΘλ,f is in fact a straigt line program defining the evaluation of LΘλ

. This evaluation
algorithm is even quicker than evaluating the precomputed generic LΘλ

.
If π is outside the discriminant of the Noether projection (equal to the discriminant of

the generic monic univariate polynomial of degree n, hence irreducible), then we can find a
point λ such that LΘλ,f is squarefree. For such fixed π and λ, we call Θλ a separating or
primitive invariant.

The bad choices of the λ are enclosed in a hypersurface. As we know its degree and a
good upper bound on the evaluation complexity of its equation, we can find a good choice
with a good complexity thanks to the Heintz–Schnorr theorem.

Let us finish with the example of the metacyclic subgroup H of index 6 of S5, generated
by the permutations ((1, 2, 3, 4, 5), (2, 3, 5, 4)). The secondary invariants can be taken as
follows: Σ1 = 1, Σ2 is the sum of the monomials of the orbit of X2

1X2X3, Σ3 is the sum of
the monomials of the orbit of X3

1X2X3, . . .

Let us consider the general polynomial of degree 5 under its Bring–Jerrard form:

f(T ) = T 5 + π4T − π5

and consider only elements Θλ of the form λ2Σ2 + λ3Σ3.

The bad hypersurface has equation:

δ(π4, π5)3(λ3 � + 976565λ15
2 π5

6)
2

= 0

where δ(π4, π5) is the discriminant of f and � a polynomial function of the variables
λ2, λ3, π4, π5. Observe that Σ2 is almost a universal separating element, i.e. if f is separa-
ble, then its Lagrange resolvent LΘ(0,1,0,0,0,0)

is still separable, provided that π5 is non zero,
which is insured by the extra hypothesis of irreducibility of f .

This resolvent is known as the Cayley resolvent, and this result was proved by Ar-
naudiès–Valibouze for the general irreducible polynomial of degree 5, but only over the
rational numbers.
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Abstract

Neurons are the central biological objects in understanding how the brain works.
The famous Hodgkin-Huxley model, which describes how action potentials of a neuron
are initiated and propagated, consists of four coupled nonlinear differential equations.
Because these equations are difficult to deal with, there also exist several simplified
models, of which many exhibit polynomial-like non-linearity. Examples of such models
are the Fitzhugh-Nagumo (FHN) model, the Hindmarsh-Rose (HM) model, the Morris-
Lecar (MR) model and the Izhikevich model. In this work, we first prescribe the
biologically relevant parameter ranges for the FHN model and subsequently study the
dynamical behaviour of coupled neurons on small networks of two or three nodes. To do
this, we use a computational real algebraic geometry method called the Discriminant
Variety (DV) method to perform the stability and bifurcation analysis of these small
networks. A time series analysis of the FHN model can be found elsewhere in related
work [11].

The Fitzhugh-Nagumo Model The Fitzhugh-Nagumo (FHN) system of equations is
a prototypic model of excitability. Introduced by FitzHugh [9] with equivalent circuit by
Nagumo et al.[19] the system is a generalization of the Van der Pol oscillator [7] and a
reduction of the neural electrophysiological model due to Hodgkin and Huxley (HH) [12].
As a generic model of excitability and oscillatory dynamical behavior, the FHN system is
of relevance for a range of physical and physiological research topics[1, 8, 15, 17, 18, 21, 24],
the most extensive of which are those concerned with cardiac [2, 10, 16, 22, 25] and neuronal
[4, 23, 28, 31] cell dynamics. The corresponding equations for coupled FHN neurons are

dxi

dt
= xi −

x3

i

3
− yi + g

n∑

j=1

(xi − xj)

dyi

dt
= ε(xi + a− b yi), (1)

for i = 1, . . . , n and where we have taken a ∈ [−2, 2], b ∈ (0,∞), −1 ≤ g ≤ 1 (g �= 0) and 0 <
ε ≤ 0.1. It is well-known that in the FHN model, the variables have no direct physiological
interpretation. However, for the parameter ranges quoted above, the qualitative behaviour
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of the x’s and y’s are similar to that of the voltage and gating variables in the Hodgkin-
Huxley equations.

Stationary points in the FHN system Neurons within the central nervous system
can exist in a variety of dynamical states. Many, for example, are in a state of quiescence
and elicit a relaxation oscillation, known as an action potential, when perturbed with a
suprathreshold stimulus. This is oft termed as ”spiking”. With the appropriate choice of
parameters, the FHN model can exhibit such behaviour.

However, upon varying these parameters, one can also invoke a Hopf bifurcation resulting
in relaxation oscillations at an intrinsic frequency without the need for any stimulation.
Such self sustained neurons can be found within the central nervous system and can have
complex interactions with the environment. A typical example is that of circadian cells

which act like the organisms clock cells and have been shown to have the ability to entrain
their oscillations with the environments light-dark cycle [29].

Neurons have also been shown to express bistability [26, 27], which again is present in
the FHN model due to the cubic nonlinearity present in the system.

The dynamical states in the FHN model described above can be identified via a stability
analysis of the stationary points in the system corresponding to dxi

dt
= dyi
dt

= 0. Such an
analysis is thus essential if one is to have a basic understanding of the system. In fact, the
steady state equations of this model have already been solved exactly for the n = 1 and
n = 2 cases [5].

Below we use the DV method to solve the corresponding equations for the n = 3 case
and study the stability and bifurcation structure of these systems. The functions we use are
in the packages Groebner and RootFinding[Parametric] of the computer algebra system
Maple 13. Due to the polynomial-like nonlinearity also exhibited in the HM, MR and
Izhikevich models, the same technique may also be applied to these systems.

The problem adresssed in this paper can also be related to the more general problem of
the algebraic analyisis of the solutions of a differential system, studied for example in [3],
[20],[30] or [32],[33].

Also, even if we didn’t use them, other software address some of the computations (quan-
tifier elimination, sample points extraction) that we are doing with Maple. In particular, it
is worth mentionning Discoverer∗, QEPCAD†, REDUCE‡, Mathematica§, or RAG¶.

Agebraic tools For this study, we used the Discriminant Variety ([14]) and the Cylindri-
cal Algebraic Decomposition ([6]). The Discriminant Variety is an implicit representation
of the desired partition, and the Cylindrical Algebraic Decomposition describes explicitly
each cell of the partition.

Combined together, these 2 methods are well adapted the analysis of the steady and
stable points. They provide a partition of the parameter space in connected cells, such that
within each cell, the number of steady state (resp. stable state) is constant.

Finally, the main algebraic criterion to decide if a solution is stable is the Routh-Hurwitz
criterion, or its Liénard-Chipart variant ([13]). For our problem, we used a reduced criterion,
more adapted to the algebraic DV and CAD methods.

∗http://www.is.pku.edu.cn/ xbc/discoverer.html, developped by Wang, Xia et al.
†http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html, developped by Hong et al.
‡http://reduce-algebra.sourceforge.net/, developped by Hearn, Weispfenning et al.
§http://www.wolfram.com/products/mathematica/index.html
¶http://www-spiral.lip6.fr/ safey/RAGLib/distrib.html, developped by Safey El Din



Figure 1: Parameter space
decomposition adapted to
the number of steady states
for n = 3: in each
connected component out-
side the surface, there is a
constant number of steady
state.

g ] −∞, μ1[ ]μ1, μ2[ ]μ2, μ3[ ]μ3, μ4[ ]μ4, μ5[ ]μ5, μ6[

Steady states 3 3 3 3 3 3

Stable states 2 2 2 2 2 2

g ]μ6, μ7[ ]μ7, μ8[ ]μ8, μ9[ ]μ9, μ10[ ]μ10, μ11[]μ11, μ12[

Steady states 3 3 3 3 3 15

Stable states 2 2 2 2 2 2

g ]μ12, μ13[]μ13, μ14[]μ14, μ15[]μ15, μ16[]μ16, μ17[]μ17, μ18[

Steady states 15 15 15 15 27 27

Stable states 2 2 2 2 8 8

g ]μ18, μ19[]μ19, μ20[]μ20, μ21[]μ21, μ22[]μ22, μ23[]μ23, μ24[

Steady states 27 27 27 27 27 27

Stable states 8 8 8 14 6 6

g ]μ24, μ25[]μ25, μ26[]μ26, μ27[ ]μ27,∞[
Steady states 27 27 15 15
Stable states 6 6 6 6

where:
μ1 ≈ −1.690122506, μ2 ≈ −.3010608116, μ3 ≈ −.2787081900, μ4 ≈

−.2530108085,
μ5 ≈ −.2200916671, μ6 ≈ −.2119432516, μ7 ≈ −.1972651791, μ8 ≈

−.1944444444,
μ9 ≈ −.1797585308, μ10 ≈ −.1768496368, μ11 ≈ −.1666666667, μ12 ≈

−.1111111111,
μ13 ≈ −.09533095509, μ14 ≈ −.08765527212, μ15 ≈ −.08093319477, μ16 ≈
−.06753407911,
μ17 ≈ −.06313592910, μ18 ≈ .1646239760, μ19 ≈ .2210124208, μ20 ≈

.2847525372,
μ21 ≈ .3136620682, μ22 ≈ .3333333333, μ23 ≈ .3372096920, μ24 ≈

.3373316121,
μ25 ≈ .3483417636, μ26 ≈ .3562092137, μ27 ≈ .3888888889.

Figure 2: Number of steady and stable states for a = 0,
b = 2 according to the parameter g

Results This model was studied and for the case n = 2 in [5]. We focused our work on
the case n ≥ 3.

First, we succeeded in describing completely the steady states. The result of our com-
putation is summarized in Figure 1.

However, when n ≥ 3, the computations of the stable states are much more difficult
and we did not succeed in describing the full parameter space according to the number
of stable states. Nevertheless, by fixing the 2 parameters a and b to the numerical values
(respectively 0 and 2), we managed to described the number of steady and stable states
according to the free parameter g, in the case n = 3. Since there is only 1 parameter, the
description of the parameter space is an union of interval in the variable g for which the
number of stable (and steady) solutions is constant.

The results of the computations are summarized in Figure 2.
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Abstract

Optimally management of portfolio risk is an essential component of modern asset
allocation. The classical mean-variance approach of Markowitz is enhanced if integer
variables can be involved.

We propose an algebraic approach to maximize the expected return of a portfolio
under a given admissible level of risk measured, in principle, by the variance. To obtain
an exact solution, it is an essential ingredient the computation via Gröbner basis of
test-sets corresponding to linear subproblems. These test-sets are used in a strategy
similar to the one introduced in [9].

1 Motivation

Mean-variance portfolio construction lies at the heart of modern asset management and
has been among the most investigated fields in the economic and financial literature. The
classical Markowitz’s approach (cf. [7]) rests on the presumption that investors choose
among n risky assets and look for the corresponding weights w1, . . . , wn of each asset in
their portfolios, on the basis of 1) previously estimated expected returns μ1, . . . , μn of each
asset, and 2) on the corresponding risk of the portfolio measured by the covariance matrix
Ω.

Portfolios are considered mean-variance efficient if they maximize the expected return
for a given admissible risk (variance) r2:

max μ1w1 + · · · + μnwn,

subject to (w1, . . . , wn)Ω

⎛⎜⎝ w1

...
wn

⎞⎟⎠ ≤ r2,

w1 + · · · + wn = 1,

wi ∈ R,

or, equivalently, if they minimize the variance for a given admissible return R (this is the
usual presentation of the problem in the literature).

∗Correspondence to: Facultad de Matemáticas, Avda. Reina Mercedes s/n. Sevilla 41012 (Spain). Fax
+34 954556938



It is more realistic to consider integer variables to present the problem taking into
account the prices a1, . . . , an of the products, variables x1, . . . , xn for the quantities of each
product and the total available budget B of the investor (as in [4]):

max
∑r

i=1 μixi

subject to
∑r

i=1 aixi ≤ B,

Q(x) = 1
B2 (a1x1, . . . , anxn)Ω

⎛⎜⎝ a1x1

...
anxn

⎞⎟⎠ ≤ r2, (1)

xi ∈ Z+.

Although the standard statement of the mean-variance portfolio problem uses continuous
variables, there are different reasons to consider integer variables (apart from the problems of
rounding continuous solutions) as the existence of transaction costs, bounds on the number
of assets, or the constraint of buying stocks by lots (cf. [10], [6] or [4]).

2 Previous works and our approach

The integer portfolio problem has been treated with different methods in [2], [8] or [10],
and more recently in [4] and [6]. The approach of [1] could be applied in principle, but it is
a work in progress to do it in an effective way.

Our approach to obtain an exact solution for Problem (1) rests in the following fact:
we have a linear objective function and constraints that are linear and non-linear, as in
the problem treated in [9]. Generalizing the ideas of [9], to solve an integer programming
problem P with linear objective function under linear and non-linear constraints, a general
method can be applied:

1. First obtain a test-set for the linear part, let us call it P′, of P. A test-set T of P′ is a
set of vectors in Zn which verifies the following condition: given a feasible point p of
P′ (that is, a point for which the linear conditions hold), if none of the feasible points
obtained adding the elements of T to p improve the value of the objective function,
then p is an optimum of P′. A test-set of a linear integer problem can be obtained via
Gröbner bases (the seminal work is [3]). A good way to obtain these bases is using
4ti2 [5].

2. Use the corresponding reversal test-set —the one whose vectors decrease the objective
function— to travel into the set (tree) of feasible points of P′ until you obtain feasible
points for the whole problem P (in our case, it means, portfolios with admissible risk).
If this happens, one can prune the remaining feasible solutions in this branch of the
tree of solutions of P′ .

Our approach consists of applying this general idea to Problem (1) or, more precisely,
to the original problem with some extra linear restrictions. This is necessary in order to
avoid the huge regions you need to explore with the reversal test-set for real examples. The
required initial data is:

• The best expected return Rc of the continuous relaxation of the problem.



• The Re return associated with a discrete feasible point pe.

• Solving the continuous problems

minxi

s.t.
∑n

j=1 ajxj ≤ B,

Re ≤ ∑n
j=1 μjxj ≤ �Rc	,

1
B2 Q(x) ≤ r2, xj ∈ R, j = 1, . . . , n,

we obtain lower bounds bi for each variable xi, applying the ceiling function. Upper
bounds of the continuous problem can be computed but their introduction produces
much bigger Gröbner bases. In the examples, we have used them to delete components
and reduce the dimensionality of the problem when lower and upper bounds match.

• Add, iteratively, some extra hyperplanes (quasi)-tangent to the region defined by the
admissible risk (so they do not eliminate points with admissible risk).

Then, usually Problem (1) produce a problem of the folowing type:

max
∑n

i=1 μixi

s.t.
∑r

i=1 aixi ≤ B,

Re ≤ ∑n
i=1 μixi ≤ �Rc	,

nt
kx ≤ ck, k = 1, . . . , s,

xi ≥ bi, i = 1, . . . , n
1

B2 Q(x) ≤ r2,

where nt
kx = ck, k = 1, . . . , s are the new (quasi)-tangent hyperplanes. As soon as a new

feasible point p′
e is found that improves the value of Re, the problem can be reformulated

and we are closer to the optimum

Remark 2.1 If a new feasible point is not produced by the search in a reasonable time,
branch-and-cut techniques have been used successfully.

3 Examples

We have been able to treat real examples of n = 35, 40, 50 stocks in a reasonable CPU
running time: it takes less than 2 minutes to compute the Gröbner bases of the linear part
and less than 5 minutes to finish the total process.

For a particular example∗ we have obtained the following table. The column r2
0 is the

admissible risk, r2
max is the maximum risk over the polytope defined by the linear restrictions

of Problem (1), the number of tangents added, the number of elements in the Gröbner bases
and the number of points processed.

∗In this case, data form 44 stocks from Eurostoxx index, from January 2003 to December 2007. The
vector of initial prices is given by the prices of the stocks on January 3rd 2008.



r2
0 r2

max tangents basis processed optimum
0.0015 0.00154 1 6657 165 x6 = 42, x14 = 4, x16 = 29,

x20 = 5, x28 = 1, x36 = 8.
0.0020 0.00205 1 40256 137 x6 = 51, x14 = 5, x16 = 19,

x20 = 1, x28 = 1, x36 = 12.
0.0025 0.00256 2 20782 32 x6 = 59, x14 = 6, x16 = 13,

x28 = 2, x36 = 10.
0.0030 0.00301 1 12504 62 x6 = 64, x8 = 1, x14 = 8, x16 = 1,

x28 = 1, x36 = 10, x37 = 1
0.0035 0.00351 1 2357 0 x6 = 68, x14 = 10, x16 = 1, x36 = 5.
0.0040 0.00430 0 569 9904 x6 = 74, x14 = 10, x16 = 1,

x28 = 2, x36 = 1.
0.00404 1 11924 11 x6 = 74, x14 = 10, x16 = 1,

x28 = 2, x36 = 1.
0.0045 0.00451 1 7087 0 x6 = 84, x14 = 6, x16 = 1,

x28 = 1.
0.0050 0.00508 0 357 6 x6 = 91, x14 = 3, x28 = 1.
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Abstract

A point is is usually represented, in computational geometry, by the vector of its coordinates.
But when computing with curved objects, these coordinates become real algebraic numbers,
which makes computation very difficult.

The efficiency of existing solvers for real algebraic systems allows to replace this usual rep-
resentation by a system of equations and inequalities which has exactly one solution, completed
by an interval approximation of the coordinates. This allows to implement every basic operation
on points using at most one call to a real solver. The operations, like sorting, which are effi-
cient without degenracies with floating point approximations remain possible with usual interval
arithmetic.

To illustrate the possibilities of this representation of points, it is shown how it may be used
for Cylindrical Algebraic Decomposition (CAD). A comparison with the usual implementation
of CAD is done on a classical difficult example of quantifier elimination.

1 Introduction
Usually, in computational geometry, points are represented by the vector of their coordinates. This
is fine when these coordinates are floating point numbers, which means that the points are approx-
imately defined. This is also fine when working only with linear objects (points, lines and planes):
in this case, if the input consists in points with rational coordinates, all the points which are com-
puted have also rational coordinates and the computation may proceed exactly without problem of
implementation.

On the other hand modern computational geometry has to compute with curved objects and re-
quires frequently to use exact computation when encountering degenerate situations, where floating
point computation may lead to wrong results. Unfortunately, the points which are constructed with
curved objects are generally not rational, but algebraic. The simplest example is the intersection of
the circle of equation x2 + y2 = 1 with the line x = y, which consists in two points of coordinates
±√

2. Thus exact computations with the usual model of points represented by their coordinates
need an arithmetic of real algebraic numbers. Such an arithmetic is very difficult to implement (I do
not know any which is available) and extremely slow. Moreover, efficiency implies to use floating
point computation or interval arithmetic as long as possible and to use exact arithmetic only when
needed.

It follows from above remarks that another model is needed to represent points in geometry.
Our proposal consists in representing a point by a record consisting in a system of equations and
inequalities which have a unique real solution and in completing this by approximate values (floating
point or interval) for the coordinates. Efficient software exist to solve polynomial systems (function
ROOTFINDING[ISOLATE] in Maple). They allow to do easily every usual operations on the points
and to provide exact answers. On other hand for most operations, like sorting, the usual floating
point representation remains available.

∗Correspondence to: LIP6, UPMC, F-75252, Paris, France and mailto: Daniel.Lazard@lip6.fr



This representation of points is not really new, as it appears (and is used), more or less implicitly,
in several papers (citations will be added in a final version). However, it is a tool which could be
used for many questions of computational geometry. It seems therefore useful to publish it for itself,
which is the object of the present paper.

In the following sections we describe first the specification which are needed for a solver and
precise our representation of the points; this includes a description of the implementation of the
main basic operations on points (Section 2). Then we describe how this may be used to compute
a CAD (Cylindrical Algebraic Decomposition) (Section 3). Finally we present how it applies to a
classical problem of quantifier elimination (Section 4).

2 Geometrical points
As said above, we represent a point in Rn by a record of three fields called EQS, INEQ and APPROX.
These fields have the following specification.

• EQS is a set of polynomials in Q[x1, . . . , xn] which have a finite number of common zeros in
Cn.

• EQS is a set of polynomials in Q[x1, . . . , xn] which have a INEQ is a set of polynomials in
Q[x1, . . . , xn] such that the system {f = 0 for f in EQS, g > 0 for g in INEQ} has exactly one real
solution which are the coordinates of the point.

• APPROX is a list of interval approximationsof the coordinates of the point whose elements
have, for example, the shape xi = [ai, bi]. For technical reasons, it is also required that ai and bi

are either both positive or both negative or both null. In other words, if an interval contains 0 then
it is [0, 0].

The fields of the representation of a point p will be denoted by EQS(p), INEQ(p) and APPROX(p).
For a point with rational coordinates this representation is not essentially different from the

usual one. In fact, for a point p with rational coordinates a1, . . . an, we have EQS(p) = {x1 −
a1, . . . , xn − an}, INEQ(p) = { } and APPROX(p) = [x1 = [a1, a1], . . . , xn = [an, an]].

Some functions are needed to allow working with this definition of a point, the first one being a
tool to verify that the specification of a point is satisfied, to compute the field APPROX and, if needed,
to refine this approximation. All these auxiliary functions are based on the function RSOLVE for
solving real systems of equations and inequalities, which we describe now.

The function RSOLVE(EQUATIONS, INEQUALITIES) has the following specification.
• EQUATIONS is a set of polynomials with rational coefficients which are interpreted as equa-

tions f = 0 for f in EQUATIONS.
• INEQUALITIES is a set of polynomials with rational coefficients which are interpreted as in-

equalities g > 0 for g in INEQUALITIES. Any variable appearing in INEQUALITIES should appear
also in EQUATIONS.

• If the system of equations defined by EQUATIONS has infinitely many complex solutions the
output in the text “non zero-dimensional system”.

• In the other case, the output is a list of the real solutions of the system of equations and
inequalities defined by EQUATIONS and INEQUALITIES, each solution being represented by a set of
equations of the form x = [a, b], where x is the name of a variable appearing in EQUATIONS and
[a, b] is an interval containing the value of x at the solution. Thus each each solution is represented
by a box containing it in Rn. There are two additional requirements in this output specification: The
boxes of two different solutions do not intersect and the end points of every interval have the same
sign. In other words, the boxes separate the solutions and any interval which contains 0 is equal to
[0, 0].



An optional parameter, called PREC, may be needed for the function RSOLVE (EQUATIONS,
INEQUALITIES): It is a upper bound for the length of the intervals in the output.

As far as we know, RSOLVE is not directly implemented in existing software. However, it is
easy to construct it from Maple function ROOTFINDING[ISOLATE] whose specification is exactly
the same as that of RSOLVE when INEQUALITIES is empty. When a bug of releases 10 to 12 of
MAPLE will be corrected, it will suffices, to implement RSOLVE, to select the desired solutions from
the output of ISOLATE(EQUATIONS, CONSTRAINTS=INEQUALITIES, OUTPUT=”INTERVAL”) or
ISOLATE(EQUATIONS, CONSTRAINTS=INEQUALITIES, OUTPUT=”INTERVAL”, DIGITS=D). To
avoid this bug, the easiest way consists presently in constructing the list INEQ2EQ:= [X [g] − g
FOR g IN INEQUALITIES] where X [g] is a new variable (one for each g). Then, if EQS2 is the
concatenation of EQUATIONS and INEQ2EQ the call of ISOLATE(EQS2, OUTPUT=”INTERVAL”)
allows to produce the desired output: it suffices to remove the solutions for which some X [g]
is not positive and the values of X [g] in the remaining solutions. The drawback of this patch is
to introduce a number of new variables which makes the computation slower than it should be.
However, in many cases, the interval evaluation of the elements INEQUALITIES on the output of
ISOLATE(EQUATIONS, OUTPUT=”INTERVAL”) produces non intersecting intervals and this allows
to avoid the introduction of the variables X [g].

Function RSOLVE, allows to implement the basic operations on points.
Testing correctness of a point and computing field APPROX to a desired precision. If p is

the point to test, it suffices to call RSOLVE(EQS(p), INEQ(p), PREC = SOMEVALUE): The point
is correct if the output is reduced to a single element and, in this case, the output gives the field
APPROX.

Equality of two points. The points p and q are equal if and only if the output of RSOLVE
(EQS(p) ∪ EQS(q), INEQ(p) ∪ INEQ(Q)) has a non empty output.

Inclusion of a point in an algebraic variety. Let p be a point and VAR be a set of implicit
equations of a variety. The point belongs to the variety if and only if RSOLVE(EQS(p) ∪ VAR,
INEQ(p)) has a non empty output.

Sign of a polynomial at a point. This operation is frequently needed, for example for convex
hull computation or for testing if a point is inside a conic. In most cases an interval evaluation
suffices (using the field APPROX). However, if the resulting interval contains zero, an exact com-
putation may be needed which is described now. Let p be the point and POL be the polynom. We
introduce a new variable X and run RSOLVE(EQS(p) ∪ X−POL, INEQ(p)). The specification of
RSOLVE asserts that the sign +, − or 0 of POL at the unique solution may be immediately deduced
from the interval of the values of X .

Comparing the values of a polynomial at two points. This operation is needed to sort a set of
points with respect to one of their coordinates. Let p and q be the points and POL be the polynomial.
As above, if the evaluation of POL at APPROX(p) and APPROX(q) provides non intersecting intervals,
the comparison is immediate. If it is not the case one may proceed as follows. Let q′ be the
data structure obtained by substituting x1, . . . , xn by y1, ..., yn in q and POL′ be the result of the
same substitution in POL; let X be an auxiliary new variable. Then the sign of X in the output of
RSOLVE(EQS(p) ∪ EQS(q′) ∪ X−(POL−POL′), INEQ(p) ∪ INEQ(q′)) gives the result. In fact, this
amounts to compute the sign of POL−POL′ at a the point in R2n defined by the pair (p, q).∗

The drawback of this operation is to apply RSOLVE with twice the number of variables than the
other operations on the points. This may be time consuming. However, in some specific context,
one may avoid this doubling of the number of variables.

This is the case when one knows that the equality of the values of POL implies the equality of
the points, for example if the points to be compared belong to a fixed line. This is especially the

∗It should be noted that this will be applied in next section to points which have not the same number of coordinates.



case in the lifting step of CAD (see Section 3), where the last coordinate has to be compared for
points having the same n − 1 first coordinates.

In this situation, one may proceed as follows. If comparison results of the interval evaluation of
POL, its OK. If not test the equality of the points. It there are equal, this is OK. Else increase the
precision of the approximation until interval evaluation gives the result.

Converting the output of RSOLVE to a list of points. The main way to construct points in
geometry is as the intersection of two curves in the plane or as the intersection of a surface and a
curve in the space. Thus almost all points are constructed from the output of RSOLVE.

More precisely, let us consider the output of a call to RSOLVE(EQUATIONS, INEQUALITIES),
which consists in a finite list [SOL1 , . . . , SOLk] of solutions. To convert these solutions into points
pi, we take APPROX(pi) = SOLi, EQS(pi) = EQUATIONS and INEQ(pi) = INEQUALITIES ∪ MOREi

where MOREi is a set of additional constraints, we define now.
If there is only one solution (k = 1) then MORE1 is empty. In the other case, MOREi is intended

to separate the i-th solution from the others. One could take the condition that each coordinate
belongs to the interval defining it in the solution. This is not a good idea: in the subsequent call of
RSOLVE, it will have to decide of the sign of quantities which are close to zero; this will make the
computation very slow and produce very small intervals in the output, whose bounds are rational
number with huge numerators and denominators or floating point numbers with very high precision.

This problem may be solved in the following way. Suppose that there is is a variable xi for
which the intervals xi = [ai,j , bi,j ] for j = 1, . . . , k are pairwise disjoint. By sorting and reindexing
the solutions one may suppose that bi,j < ai,j . Choosing a rational number rj with numerator and
denominator as small as possible in the interval ]bi,j , ai,j+1[ for i = 2, . . . , k−1, it suffices to choose
MOREj = {rj−xi, xi−rj−1} for j = 2, . . . , k, MORE1 = {r1−xi} and MOREk = {xi−rk−1}. If
there is no variable for which the intervals are pairwise disjoint, one may use, instead of a variable,
a random linear combination of the variables for which the intervals are pairwise disjoint; this is the
case (with probability one) after increasing, if needed, the precision PREC. One may also use the first
variable to separate, as much as possible the solutions, then use the second variable to separate more
solutions, and so on. The specification of RSOLVE implies that, eventually, this process separates
all the solutions.

Projection of a point on a subspace. Gröbner basis algorithm allows to compute the equations
of a projection. However these equations are of high degree (usually this degree is the i+1-th power
of the degree of the equations before projection, if the projection eliminates i variable). Moreover
the experience shows that the projected points are frequently very close, which implies that rational
numbers with large numerator and denominator may needed to separate projected points.

Therefore it is much better to not compute the projections explicitly. This implies that, when
applying the preceding operations to a projected point, one has more variables than if one would
have with an explicitly computed projection. Otherwise nothing is changed. This is applied in next
section to decide to which cell of a CAD belongs a given point.

The functions described above cover almost all the needs for point geometry. We emphasize
again that, when precision is not critical, one may use interval arithmetic for most computations.
Therefore our representation of the points could be the best compromise between exactness (or
robustness) and speed of computation.

3 Application to Cylindrical Algebraic Decomposition
Cylindrical algebraic decomposition (CAD) is a an algorithm introduced by G. Collins in 1975
[3] to implement Tarski quantifier elimination. Theoretically it may solve every problem of real



algebraic geometry which may be expressed by a formula of first order logic. Its large generality
makes it inefficient for many problems. Nevertheless it is among the most important algorithms
in geometry. It is also the most known algorithm which systematically uses points with algebraic
coordinates.

In this section, we show how above representation of the points may be used to compute a CAD.
For being understandable, it is useful to sketch a description of the algorithm.

The input of CAD is a set An of polynomials in [x1, . . . , xn] and the output is a decomposition
of the space n into connected sets called cells on which the polynomials in An have a constant
sign +, − or 0. The algorithm splits into two steps respectively called projection and lifting.

During the projection step a finite set Ai ⊂ [x1, . . . , xi] is recursively computed for i =
n − 1, . . . , 1. These Ai’s, called projection sets, are computed by purely rational algorithms, like
resultants. Their computation is thus not interesting here.

The elements in A1 define a partition of R in their real roots and the intervals between them.
The lifting step consists, for every cell in Ai to partition the cylinder above it in Ri+1 into sections
and sectors, which are the cells in Ri+1. A section is a root of some polynomial in Ai+1; more
precisely, the definition of Ai implies that the zeros above any cell of the polynomials in Ai+1

consist in a finite number of regular sheets which do not cross. The sectors are the parts delimited
by the sections of the cylinder above the cell under consideration.

In classical CAD, the cells are represented by a sample point and by the numbering of the
roots which define it. A semi-algebraic description of the cells may also be provided, but it may
dramatically increase the number of cells when polynomial of high degree are involved. In our
version, the cells are simply represented by their sample point and the list of variables for which
they are sections or sectors. A semi-algebraic description of the cells is not immediately available.
As such a description it is only useful, in practice, to decide to which cell belongs a given point, we
replace it by an algorithm for this decision.

With our representation of the points, the algorithm to lift to Ri+1 a cell in Ri represented by a
sample point p is the following.

• For f ∈ Ai+1 convert to points RSOLVE(EQS(p) ∪{f}, INEQ(p)). If the output of RSOLVE
is “non zero-dimensional system” this results in an empty set of points.

• Sort all these points (corresponding to all the f ’s) by the values of xi+1. For this, one may
take advantage that the equality of two values of xi+1 implies the equality of the corresponding
points (see preceding section). Output as sections the resulting set of points.

• Choose a rational number r in each interval defined by the xi+1 coordinates of these sections
and output as sector the point q defined by EQS(q)= {xi+1 − r}∪ EQS(p), INEQ(q) = INEQ(p) and
APPROX(q) = {xi+1 = [r, r]}∪ APPROX(p).

It clear that this algorithm is more efficient if one suppose the polynomials in Ai+1 irreducible:
RSOLVE is called with polynomials of smaller degrees and it is easier to separate the roots. On the
other hand, factoring is not very costly in the context of CAD.

To decide to which cell belongs a given point p, we proceed by induction on i, the dimension
of the space on which the configuration is projected. To start this induction, we have to compare
the first coordinate of p with the roots of the polynomials in A1. This is done by the algorithm of
preceding section and decides to which cell belongs the projection of p in R1.

Now, suppose, by induction hypothesis, that the projection of p into Ri belongs to a cell in
Ri whose sample point is q. The comparison of the xi+1 coordinate of p with the values of the
sections above p decides in which cell of Ri+1 belongs the projection of p on this space. In fact, the
arrangement of the sections is the same above q and the projection of p into Ri.

We have thus to compute the points which are zeros of a polynomial f ∈ Ai+1 and have the
same projection as p into Ri. When these points are known, the above described comparisons are



straightforward using the algorithms of the preceding section. To compute these points, let p′ be the
point obtained by substituting xj by a new variable yj in p, for j = i + 1, . . . , n. Then the desired
points are obtained by converting to points the output of RSOLVE({f}∪ EQS(p′), INEQ(p′)). The
fact that the desired points involve more variables than x1, . . . , xi+1 does cause any trouble.

4 An example
A challenging example of quantifier elimination appears in [4]. It consists in writing the condition
on a, b, c, d for an ellipse of equation (x−c)2

a + (x−d)2

b − 1 = 0 (with a > 0 and b > 0) being
contained in the disk of equation x2 + y2 < 1.

This is challenging problem because, although it has been solved in 1988 [4], it was impossible,
until recently, to get an automatic solution through CAD. The projection step of the CAD has been
completed by C. Brown in 1981 [1].

Let P be the discriminant with respect to y of the resultant with respect to x of the two equations.
It is easy to show that the ellipse is inside the disk if and only if the circle and the ellipse do not
intersect in the real space and the ellipse has a point inside the disk. By a result in [2], this implies
that, to solve this problem of quantifier elimination, it suffices to compute a CAD of P and to test,
for each sample point, if above condition is fulfilled.†

We have run on our laptop an experimental version (written in Maple) of our way of imple-
menting CAD on this polynomial P . The CAD computation took 37 seconds, essentially devoted
to lifting process and produced 1467 cells. Making the list of the 231 cells for which the ellipse is
inside the disk took 8.5 minutes more (1467 polynomial systems with 6 variables to solve). On the
other hand, C. Brown has run QEPCADB on the same problem. The CAD computation took 53 sec.
The description of the resulting cells do not allow to decide easily for which cells the circle and the
ellipse do not intersect.

This comparison is not really significant, as the computations have been done on different com-
puters, with very different software and different optimizations. However, it shows at least that
our method is promising and competitive, and allows further computation with the output, which
otherwise are not easy.
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1 Introduction and Problem

Solving a polynomial system with parametric coefficients theoretically reduces (at least)
to compute a (the minimal) discriminant variety. That is to understand the geometric
properties of the following canonical projection map ΠU

ΠU : C ⊂ Cs+d �→ Cd

ΠU(x1, · · · , xs, u1, · · · , ud) = (u1, · · · , ud).

1.1 Discriminant variety

In [4], the authors proved that the complement of the union of all open subsets in ΠU(C)
with (ΠU, C)-covering property is a variety, and called it the minimal discriminant variety,
denoted by WD. They also proved that WD is in fact the union of following sets which
intuitively define “non-generic” parameter values:

• Osd, the projection of small dimensional components;

• O∞, the set of non properness of ΠU restrict on C;
• Osing, the singular points of ΠU(C);
• OF , the projection of the intersection of C with hypersurface Πk

i=1gi = 0.

Computing the minimal discriminant variety intrinsic object is harder than to compute a
larger discriminant variety, which includes the minimal one but with similar properties.

A large class of parametric systems are so called well-behaved systems, where there are
as many equations as unknowns and specialized to 0-dimensional and radical system for
almost all parameters’ values. For this kind of systems, Wsd = Wsing = ∅, and in [4], the
authors proposed an optimized/efficient algorithm to compute the minimal DV.

Besides well-behaved systems, there are lots of non well-behaved systems also. For such
kind of systems, major computational difficulties of computing even a large DV occur in:

• the computation of the singular and critical loci;

• the projection of the components of dimension less than d;

Other side effects such as the presence of embedded components may also disturb the
computation or at least prevent from computing the minimal discriminant variety.

∗Correspondence to: Fabrice.Rouillier@inria.fr, akelux@gmail.com



1.2 Motivations and contributions

One solution to deal with non-well-behaved systems is to decompose first the system to (at
least) equi-dimensional and radical components, some practical decompositions or compar-
isons can be find in [2, 5]. We thus focus on the use of triangular decomposition to solve
parametric system with following main objectives:

• to compute DV for general parametric systems;

• to measure the difference between computed large DV and the minimal DV.

• propose optimizations to speed up triangular decomposition adaptive to discriminant
variety computation.

For triangular systems, we find the correspondence (inclusion or equal) relation between
the intrinsic DV components and the natural parameter’s subsets vanishing on initials,
separants, or inequation polynomials. We show that these remarkable subsets form the
minimal discriminant variety of a triangular system. For general systems, we study some
proper but most general specifications of triangular decomposition and constructing DV
therefrom. We also discover that the computed DV is not minimal in general and analysis
the redundancy. We also propose several techniques to optimize triangular decompositions
for decomposing and solving parametric system more efficiently.

2 Computing DV from Triangular Decomposition

To simplify the discussion, we assume that ΠU(C) is the full parametric space, and ΠU

generically has finite fibers. We will take a component view in parametric system solving.
Let C be an irreducible component of variety V(C). Then C is called a basic main component

of C if dim(ΠU(C)) = dim(ΠU(C)); otherwise C is called a basic suspicious component.
The system defined as bellow is the most general triangular system we expect from

triangular decomposition.

Definition 1 A polynomial system [T,Q] is a regular separable triangular system (R.S.TS.)

if T is a square free regular chain [1, 3] and ∀q ∈ Q, q is regular w.r.t. T.

Note that an R.S.TS. is similar to a simple system [6] or a regular system [2] with square
free regular chains defining quasi-component, but differs by some details. In fact, R.S.TS. is
less restrictive compared to simple systems or regular systems defining quasi-components.
Thus R.S.TS. triangular decomposition should be more easy to compute in theory.

2.1 Basic case

Suppose that T = {f1, f2, · · · , fs}, and C = [T,Q] is a well-behaved parametric R.S.TS..
The following notations are introduced to denote some natural objects related to the trian-
gular structure of C.
• Bini denotes the product of ini(f1) and ires(ini(fi+1),T), ∀i = 1, · · · , s− 1;

• Bsep denotes the product of ires(discrim(fi,mv(fi)),T), ∀i = 1, · · · , s.
• Bie denotes the product of ires(q,T) ∀q ∈ Q if Q is not empty, else 1.



Hini, Hsep and Hie will denote the hypersurfaces in the parametric space defined by Bini =
0, Bsep = 0, and Bie = 0 respectively.

The product of Bini, Bsep, Bie is called a border polynomial of parametric system[T,Q]
by Yang and Xia in [7] for real root classification. Thought Bini, Bsep, Bie are algorithmi-
cally defined, they are close linked to intrinsic non-generic parametric sets, as in following
theorem.

Theorem 1 Let C = [T,Q] be a well-behaved parametric R.S.TS.. Then

• the projection of all suspicious components of C is included in Hini;

• W∞(C) ⊂ Hini(T) and if V(C) = V(T, e.g. Q = ∅, then W∞(C) = Hini(T);

• Wc(C) ⊂ Hsep(T);

• WF (C) ⊂ Hie(T).

So Hini ∪Hsep ∪Hie is a DV of C, since Wsd,Wsing are trivially empty. Indeed, Hini ∪
Hsep ∪Hie is minimal.

Theorem 2 Let C = [T,Q] be a well-behaved R.S.TS.. then Hsep ∪ Hini ∪ Hie is the

minimal discriminant variety of it.

2.2 General case

Suppose that C = [P,Q], D is an R-irredundant decomposition of C, [Tm,Qm] is a well-
behaved subsystem in D. The revised discriminant variety of [Tm,Qm] w.r.t. C is defined
to be the minimal DV of [Tm,Qm ∪Q]. The following theorem shows how to construct a
DV from an R-irredundant R.S.TS. decomposition.

Theorem 3 Suppose C = [P,Q], D is an R-irredundant decomposition of C. Then the

union of revised DVs of all well-behaved subsystems in D, projection of pairwise intersections

of all well-behaved subsystems, and projection of non well behaved subsystems, is a DV of

C.

2.3 Minimality and redundancies

For general systems, the DVs constructed from triangular decomposition as in Theorem 3
are not minimal in general.

Basically, the redundancy come from two aspects: one is that the regular chain T may
not be “reduced” when representing the ideal sat(T), this redundancy can be eliminated by
compute a canonical form of T, but still can not ensure Hini(T) = O∞ (sat(T)); another
redundancy comes from the case when there is a regular chain Ts with lower dimensional,
but sat(Ts) ⊃ sat(T).

3 Speed up techniques

3.1 Computing over parameters’ function field

Getting main components is very important for solving parametric systems. We will show
that one can compute main components by carrying out a triangular decomposition over the
function field Q(U), which is more easy/efficient to compute compared to other strategies
according to our experiments.



Theorem 4 Given a parametric system C with parameters U and unknowns X, suppose that

Ti (i = 1, · · · , o) is an R-irredundant decomposition w.r.t. ordX of C as a 0-dimensional

constructible set of X with coefficients from Q[U ] s.t.Ti ⊂ Q[X,U ]. Then viewing Ti

(i = 1, · · · , o) as regular chains in Q[X,U ], ∪o
i=1V(sat(Ti) is the main component of C.

3.2 Lazy decomposition

A full triangular decomposition contains all the sufficient information to compute a dis-
criminant variety therefrom, however it overdoes to decompose everything and make the
components triangular, but thus blocks often, in practice, the decomposition. By computing
a triangular decomposition over the function field of parameters, one can get directly the
main components efficiently but can not track all information about suspicious components.

For parametric systems, decomposing suspicious components whose projection is inside
the minimal DV is useless, and most of the time, time consuming. So we should avoid such
decomposition as much as we can, which we call a lazy decomposition.

4 Conclusion

A first conclusion is that decomposing a system into triangular sets is a competitive way for
solving general parametric systems, but a second part of the conclusion is that, up to our
knowledge of the current state of the art, there dos not currently exists any “universal” effi-
cient method. However, mix different strategies can solve more complicated problems. Our
further work will focus on developing more adaptive algorithms for decomposing paramet-
ric systems, integrating various speed up strategies for different purposes and at different
levels, mixing with Gröbner based strategies with an ultimate goal of providing efficient
solutions for computing (the minimal) DV in the general case (non well-behaved systems).
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Abstract

A numerically tractable condition is proposed for input-to-state stability (ISS)
analysis for a class of nonlinear systems in terms of sum of squares (SOS). The concept
of ISS has been explored in nonlinear control theory while computational approaches
including numeric and symbolic have been less attention. If class of the systems is
restricted to polynomial ones, then it is possible to use SOS relaxation for ISS analysis.
In this paper, a numerical method for nonlinear gain function is proposed by using SOS
relaxation and semidefinite programming. A numerical example is shown to illustrate
the proposed method in which some infeasibility check is performed by a symbolic
method, quantifier elimination.

1 Introduction

Input-to-state stability (ISS) is a standard concept of stability of nonlinear dynamical sys-
tems [1, 2]. The notion of ISS was first introduced by Sontag [3], which involves requirements
on zero-state response and zero-input response by a nonlinear gain function. An important
equivalent condition to ISS has been proposed using the ISS Lyapunov function [4]. On the
other hand, analysis and synthesis of nonlinear systems have been developed by a numer-
ical method, sum of squares (SOS)[5, 6] and semidefinite programming. In general, such
relaxation method can treat a several engineering problems but generates a conservative
result. To overcome the drawback, symbolic approaches should be paid attention.

In this paper, we give a SOS condition for ISS analysis. The condition originates from
a dissipation type ISS inequality. The nonlinear gain function can be constructed from a
feasible solution satisfying the condition. One of the keys of this formulations is to realize
class K∞ functions, which has inverse map on real nonnegative region, by polynomials. A
simple example is shown to illustrate the ISS stability analysis. Since the SOS approach can
not make decision exactly whether there exists a linear gain, we use a symbolic approach
to do this task.
Notation: ‖·‖ represents the Euclidean norm. Σ(x) represents the class of SOS polynomials
of variable vector x ∈ Rn.
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2 Nonlinear Gain Analysis

Consider the system

ẋ(t) = f(x(t), w(t)), x(0) = x0, t ≥ 0 (1)

where x(t) ∈ Rn is the state, w(t) ∈ Rp is an exogenous input, f : Rn × Rp → Rn is
a continuously differentiable function. Suppose that f(0, 0) = 0 and w(t) is a piecewise
continuous, bounded function in t for all t ≥ 0.

Definition 1 ([4]) The system (1) is said to be input-to-state stable if there exists a class
KL function β and a class K function γ, called a nonlinear gain function, such that for
any initial state x(0) and any bounded input w(t), the solution x(t) exists for all t ≥ 0 and
satisfies

‖x(t)‖ ≤ β(‖x0‖, t) + γ
(

sup
τ∈[0,t]

‖w(τ)‖
)
. (2)

Definition 2 ([4]) A continuously differentiable function V : Rn → R is called a ISS-
Lyapunov function for the system (1) if there exist class K∞ functions αi, i = 1, 2, 3, a
class K function ρ such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ Rn (3)
∂V

∂x
f(x, w) ≤ −α3(‖x‖), ∀‖x‖ ≥ ρ(‖w‖). (4)

Then γ(r) = α−1
1 ◦ α2 ◦ ρ(r).

Lemma 1 ([4]) The system (1) is input-to-state stable with γ if and only if there exist a
continuously differentiable function V : Rn → R, class K∞ functions αi, i = 1, . . . , 3, class
K function σ such that (3) and

∂V

∂x
f(x,w) ≤ σ(‖w‖) − α3(‖x‖) (5)

for all (x,w) ∈ Rn × Rp. Then γ(r) = α−1
1 ◦ α2 ◦ α−1

3 ◦ c σ(r) for some c > 1.

3 SOS Conditions for ISS Analysis

We assume that f in the system (1) is a polynomial. To rewrite the conditions in Lemma
1 as some numerically solvable one, it is required that class K and K∞ functions in the
lemma are realized by polynomials.

Lemma 2 Consider a univariate real even polynomial without constant term

α(r) =
∑N

κ=1 cκr2κ. (6)

Then α(r) belongs to class K∞ if and only if there exist scalars cκ, a SOS polynomial sα0(r)
such that

r · dα(r)/dr = sα0(r), ∀r ∈ R. (7)



Theorem 1 The system (1) is input-to-state stable with γ if there exist even polynomials
αi ∈ K∞, i = 1, . . . , 4, a polynomial V (x), sum of squares polynomials s10(x), s20(x) and
s30(x,w) such that

V (x) − α1(‖x‖) = s10(x), (8)
α2(‖x‖) − V (x) = s20(x), (9)
∂V

∂x
f(x,w) − α4(‖w‖) + α3(‖x‖) = −s30(x,w) (10)

for all (x,w) ∈ Rn × Rp. Then γ(r) = α−1
1 ◦ α2 ◦ α−1

3 ◦ c α4(r) for some c > 1.

Remark 1 One can set α3(‖x‖) = γ‖x‖2 and α4(‖w‖) = ‖w‖2 with γ > 0 in Theorem 1.
If there exists such γ, then it is a linear gain. However, it is not always true that there does
not exists a linear gain when the SOS problem is infeasible. The reason is a gap between
positive polynomials and SOS polynomials. To check the feasibility of the problem exactly,
we can use quantifier elimination (QE)[9].

4 Symbolical and Numerical Example

Consider
ẋ = −x3 + (x2 + 1)w.

We choose a candidate Lyapunov function as V (x) = x4/4 ∈ K∞. First we try to search a
liner gain for this system. That is, we would like to decide the feasibility of the problem

∃γ(> 0) s.t. x3
{−x3 + (x2 + 1)w

}− ‖w‖2 + γ‖x‖2 ≤ 0 ∀x ∀w.

Performing QE to this problem, we obtain the result “false”and thus the problem is infea-
sible for V (x). Next, we take the SOS approach by Theorem 1, in which we set α3(r) and
α4(r) as

α3(r) = b6r
6, α4(r) = c2r

2 + c4r
4 + c6r

6.

To solve the SOS problem, we use SOS parser YALMIP [10] and SDP solver SeDuMi [11].
By using the result in Theorem 1, our problem is

∃α3, α4 ∈ K∞, s30 ∈ Σ(x,w), s50 ∈ Σ(w), b6, c2, c4, c6 ∈ R

s.t. x3
{−x3 + (x2 + 1)w

}− α4(‖w‖) + α3(‖x‖) = −s30(x, w) ∀x ∀w,

b6 > 0,

(c2w + 2c4w
3 + 3c6w

5)w = s50(w) ∀w.

This SOS problem is feasible and a solution is α3(r) = 0.13085r6 and α4(r) = 1.8654r2 +
1.3828r4 + 1.1448r6,

S30 =

»
w2

xw

–T »
1.1422 −0.36102

−0.36102 0.70818

– »
w2

xw

–

+

2
66664

w
w3

xw2

x2w
x3

3
77775

T 2
66664

1.8654 0.12031 0.36102 −0.35409 −0.5
0.12031 1.1448 0.0 −0.63304 0.039198
0.36102 0.0 1.2661 −0.039198 −0.6655
−0.35409 −0.63304 −0.039198 1.331 −0.5
−0.5 0.039198 −0.6655 −0.5 0.86915

3
77775

2
66664

w
w3

xw2

x2w
x3

3
77775 ,

S50 = 3.6172w4 +

»
w
w3

–T »
3.7308 0.95699
0.95699 6.8687

– »
w
w3

–
.



The nonlinear gain is γ(r) = α−1
3 (c α4(r)) for some c > 1.

5 Summary

We have obtained SOS conditions for ISS analysis problems for polynomial systems, in which
class K∞ functions are realized computationally by means of polynomials. The proposed
SOS condition is convex so that one does not need any iterative algorithms or bilinear
solvers. QE approach is performed to confirm non-existence of a linear gain.
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Note: Definition of class K∞ function

Definition 3 ([1]) A continuous function α: [0, a) −→ [0,∞) is said to belong to class K
if it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if a = ∞ and
α(r) −→ ∞ as r −→ ∞.
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Abstract

When a given system contains unknown parameters, it is natural to deal with the
parameters symbolically. However, numerical computations, instead of symbolic ones,
have been used for the design/analysis of a control system, due to the heavy compu-
tational complexities of symbolic computations. Recently, the computational power
of a personal computer is increasing rapidly, which makes applications of symbolic
computations more practical. In [4] and [5], the current authors proposed an algo-
rithm to compute the optimal H∞ norm of a given parametric system achievable by a
static/output feedback controller. The algorithm computes the optimal H∞ norm as a
root of a polynomial. In other words, the algorithm computes the defining polynomial
of the optimal H∞ norm. As is remarked in the conclusion of [5], one drawback of the
algorithm is its heavy computational complexities, and more efficient algorithms were
left as future works. This paper presents a more efficient alternative to the algorithm
in [5]. The key for the algorithm is the techniques used in [6] and [7]. Utilizing the
techniques, we modified the algorithm in [5], which speeds up the algorithm signifi-
cantly.

1 Introduction

Conventionally, a control system design/analysis is often performed by numerical methods
with softwares such as MATLAB or SCILAB. Computer algebra system such as Maple or
Mathematica were not so popular as controller design tools, due to the heavy computational
complexities of symbolic computations. However, recent rapid increase of computational
power of personal computers has made applications of symbolic computations more practi-
cal. In fact, a lot of attempts have been made to apply symbolic computations to controller
designs. For example, [1]-[3] apply Quantifier elimination (QE), which is a new technique
of computer algebra, to the design of control systems. Another attempt is [4] and [5], which
is the basis of this paper. In [4] and [5], given a parametric system, the current authors
proposed an algorithm to compute the optimal H∞ norm of the system achievable by a
static/output feedback controller. The algorithm computes the optimal H∞ norm as a
root of a polynomial (in other words, the algorithm computes the defining polynomial of
the optimal H∞ norm). We note that, conventionally, the optimal H∞ norm is computed
with numerical methods, and those numerical methods can not be applied to a parametric
system. Although the algorithm in [5] has a such advantage over a conventional numerical
method, it also has a serious drawback. As is remarked in the conclusion of [5], the algo-
rithm in [5] has quite heavy computational complexities, and more efficient algorithms were
left as future works.

∗Correspondence to: Yamaguchi University, 1-1677 Yoshida, Yamaguchi, Japan Tel: +81-83-933-5336



This paper presents a more efficient alternative to the algorithm in [5]. The key for the
algorithm is the techniques used in [6] and [7], where efficient algorithms to compute the
defining polynomial of the solution of algebraic Riccati equation ([6]) and the determinant
of a generalized Vandermonde matrix ([7]) are presented.

This extended abstract is composed as follows: In Section 2, we describe basic algorithm
in [5]. Then, in Section 3, we describe how to improve the efficiency of the algorithm.

2 Basic Algorithm

Suppose that we are given a plant described by the linear differential equation

dx

dt
= Ax + B1w + B2u, z = C1x + D12u, y = C2x + D21w, (1)

where A,B1, B2, C1, C2, D12, D21 are matrices whose entries are polynomial in parameter
k (we assume that A is an n × n matrix). In [5], the following algorithm to compute
polynomial f(q, k) is presented:

〈1〉 Let matrices H1,H2 be

H1 =
[

A qB1B
T
1 − B2B

T
2

−CT
1 C1 −AT

]
, H2 =

[
AT qCT

1 C1 − CT
2 C2

−B1B
T
1 −A

]
, (2)

and let g1(x), g2(x) be the characteristic polynomials of H1 and H2, respectively.

〈2〉 By solving linear equations (H1 − λI)v1 = 0, (H2 − μI)v2 = 0, compute eigenvectors

v1(λ) = [v1,1(λ), · · · , v1,2n(λ)]T , v2(μ) = [v2,1(μ), · · · , v2,2n(μ)]T

of H1 and H2 corresponding to λ and μ, respectively (v1,i(λ) and v2,i(μ) are computed
as polynomials in λ, q, k and μ, q, k, respectively).

〈3〉 For i, j satisfying 1 ≤ i, j ≤ 2, define n × n matrices Λi,j(y1, · · · , yn) by[
Λ1,j(y1, · · · , yn)
Λ2,j(y1, · · · , yn)

]
=
[

vj(y1) · · · vj(yn)
]
, (3)

and compute polynomial ζi,j(y1, · · · , yn) defined by

ζi,j(y1, · · · , yn) =
Det (Λi,j(y1, · · · , yn))∏

l<m(yl − ym)
. (4)

〈4〉 For i, j satisfying 1 ≤ i, j ≤ 2, compute
∏

sl=±1 ζi,j(s1λ1, · · · , snλn) and remove
λ1, · · · , λn from the expression, using the relation

λ2
1 · · ·λ2

n = (−1)ngj,0(q, k), · · · , λ2
1 + · · · + λ2

n = −gj,2n−2(q, k),

and let ξi,j(q, k) be the result, where gj,m(q, k) denotes the coefficient of xm of gj(x).



〈5〉 Let τ(x1, · · · , xn, y1, · · · , yn) be

τ(x1, · · · , xn, y1, · · · , yn) =
Det

(
qΛT

21(x1, · · · , xn)Λ22(y1, · · · , yn) − ΛT
11(x1, · · · , xn)Λ12(y1, · · · , yn)

)∏
l<m(xl − xm)

∏
l<m(yl − ym)

, (5)

and compute
∏

tp=±1

∏
sr=±1 τ(s1λ1, · · · , snλn, t1μ1, · · · , tnμn). Then remove λ1,

· · · , λn, μ1, · · · , μn from the expression, using the relation{
λ2

1 · · ·λ2
n = (−1)ng1,0(q, k), · · · , λ2

1 + · · · + λ2
n = −g1,2n−2(q, k),

μ2
1 · · ·μ2

n = (−1)ng2,0(q, k), · · · , μ2
1 + · · · + μ2

n = −g2,2n−2(q, k), (6)

and let χ(q, k) be the result, where gj,m(q, k) denotes the coefficient of xm of gj(x).

〈6〉 Let f(q, k) be square-free part of

χ(q, k)
∏

1≤i≤2

Resx(gi(x), g′i(x))
∏

1≤i,j≤2

ξi,j(q, k) (7)

and output f(q, k).

Reference [5] shows that for any parameter value k ∈ Ω (Ω denotes valid range of the
parameter values), there exists a real root α of f(q, k) with respect to q such that 1/

√
α =

min ‖G(s)‖∞, where min ‖G(s)‖∞ denotes the optimal H∞ norm from w to z of system (1)
achievable by an output feedback controller.

3 Algorithm improvement

The techniques in [6] and [7] can be used to make the above algorithm more efficient in the
following way:

(i) Since matrix Λi,j(y1, · · · , ym) in (3) has a special form, the method in [7] computes
ζi,j(y1, · · · , yn) efficiently as a polynomial in σ1, · · · , σn where σ1, · · · , σn are fun-
damental symmetric polynomials of y1, · · · , yn, i.e. σ1 = y1 + · · · + yn, · · · , σn =
y1 · · · yn (note that ζi,j(y1, · · · , yn) is a symmetric polynomial of y1, · · · , yn). By
ζ̂i,j(σ1, . . . , σn), we denote the polynomial in σ1, · · · , σn computed (obviously, we
have ζ̂i,j(σ1, . . . , σn) = ζi,j(y1, · · · , yn)).

(ii) Using technique in [6], ξi,j(q, k) in step 〈4〉 can be computed as follows: Let k0 and
q0 be some integers, and compute Groebner basis of the system

{ηn(σ1, · · · , σn) − (−1)ngj,0(q0, k0), · · · , η1(σ1, · · · , σn) + gj,2n−2(q0, k0)} (8)

with lexicographic ordering σn � · · · � σ1 where ηi(σ1, · · · , σn) (i = 1, · · · , n) are
polynomials in σ1, · · · , σn satisfying

ηn(σ1, · · · , σn) = y2
1 · · · y2

n, · · · , η1(σ1, · · · , σn) = y2
1 + · · · + y2

n.

Let Groebner basis of (8) be {wj,1(σ1), wj,2(σ1, σ2), · · · , wj,n(σ1, σn)} where wj,1(σ1)
and wj,r(σ1, σr) are in the form of

wj,1(σ1) = σ2n

1 + wj,1,2n−1σ
2n−1
1 + · · · + wj,1,0,

wj,r(σ1, σr) = wj,r,2nσr + wj,r,2n−1σ
2n−1
1 + · · · + wj,r,0.



Then it can be shown that

ξi,j(q0, k0) = Resσ1

(
ζ̂i,j (σ1, ŵj,2(σ1), · · · , ŵj,n(σ1)) , wj,1(σ1)

)
(9)

where ŵj,r(σ1) (r = 1, · · · , n) is the function defined by

ŵj,r(σ1) = −(wj,r,2n−1σ
2n−1
1 + · · · + wj,r,0)/wj,r,2n .

Repeating the above procedure for sufficiently many integers q0 and k0, we can com-
pute polynomial ξi,j(q, k) by polynomial interpolations.

(iii) τ(x1, · · · , xn, y1, · · · , yn) in 〈5〉 is a symmetric polynomial in x1, · · · , xn and y1, · · · , yn,
and can be written as a polynomial in σ1, · · · , σn, θ1, · · · , θn, where θ1 = x1 +
· · · + xn, · · · , θn = x1 · · ·xn and σ1 = y1 + · · · + yn, · · · , σn = y1 · · · yn. In this
case, the method in [7] can not be applied directly. However, it is possible to use
the method recursively to compute polynomial τ̂(σ1, · · · , σn, θ1, · · · , θn) satisfying
τ̂(σ1, · · · , σn, θ1, · · · , θn) = τ(x1, · · · , xn, y1, · · · , yn) efficiently.

(iv) χ(q, k) in 〈5〉 can also be computed by polynomial interpolations as we did in the
above (ii). More concretely, we have

χ(q0, k0) = Resθ1 (Resσ1 (τ̂ (σ1, ŵ1,2(σ1), · · · , ŵ1,n(σ1), θ1, ŵ2,2(θ1), · · · , ŵ2,n(θ1)) ,

w1,1(σ1)) , w2,1(θ1)) .
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Abstract

This paper is concerned with the stability analysis of biological networks modeled
as discrete and finite dynamical systems. We show how to use algebraic methods to
detect steady states for such systems and to analyze the stability of each steady state
for discrete dynamical systems.

1 Introduction

There are two kinds of dynamical systems, continuous and discrete, that are widely used
for the modeling of biological phenomena. For biological networks modeled as continuous
dynamical systems, a general algebraic approach has been proposed in [15, 20] for the
detection and analysis of stability of real equilibria. This approach has also been applied
to the analysis of bifurcations and limit cycles for certain biological systems [14]. In this
paper, we adapt, extend, and apply the approach for stability analysis of discrete dynamical
systems. Such systems may involve less parameters, but can model more complicated
biological phenomena.

For discrete dynamical systems, the time domain is on fixed discrete intervals (not the
real axis R). As in the continuous case, for most nonlinear discrete dynamical systems, it
is difficult to find their analytical solutions (if such solutions exist at all), so studying the
qualitative behaviors of their solutions becomes an important issue. For this study, it is
necessary (but highly nontrivial) to detect the equilibria of the discrete dynamical systems
and analyze the stability of each equilibrium.

We consider systems of autonomous first-order discrete difference equations of the form⎧⎪⎨⎪⎩
x1(t + 1) = φ1(u, x1(t), . . . , xn(t)),

...
xn(t + 1) = φn(u, x1(t), . . . , xn(t)),

(1.1)

where x = (x1, . . . , xn) and u = (u1, . . . , um) are variables and parameters respectively, and
φi : Rm+n → R for i = 1, . . . , n. Our purpose is to detect the equilibria and analyze their
stability for such systems by means of symbolic computation.

We are interested in discrete time dynamical systems with state variables and param-
eters over the real field R or a finite field Fq. The former are often used to describe the
epidemic models and have been analyzed mainly by using purely mathematical methods
(see, e.g., [2]), while the latter are called finite dynamical systems and have been used to
model a variety of biological networks, such as metabolic, gene regulatory and signal trans-
duction networks. For such systems, most of the existing studies focus on random Boolean



networks [10]. Recently, methods based on Gröbner bases [11, 12] and SAT algorithms
[18] are applied to detecting equilibria for given Boolean networks. This paper reports our
current investigations on the use of algebraic methods based on triangular decomposition,
Gröbner bases, and real solution classification for stability analysis of discrete time and
finite dynamical systems from computational biology.

2 Discrete Dynamical Systems

We first explain how to detect the equilibria of discrete dynamical systems over R and
analyze the stability of each equilibrium. For any given values ū of the parameters u, a
point x̄ ∈ Rn is called a steady state (or an equilibrium, or a fixed point) of the discrete
system (1.1), if it is a value of the state variables x(t) that is invariant under further
iterations of the dynamical system, i.e. x̄ = φ(ū, x̄).

According to this definition, we may form the following system of equations:

φ1(u,x) − x1 = 0, . . . , φn(u,x) − xn = 0. (2.1)

Then the problem of determining the (number of) steady states of (1.1) is reduced to two
algebraic problems about the classification of real solutions of (2.1) for x, same as Problems
1 and 2 stated in [15, 20] for continuous dynamical systems.

For the continuous case, we may use the first method of Lyapunov with the technique
of linearization to analyze the stability of each steady state and to determine conditions on
the parameters for steady states to be stable. A similar procedure based on linearizing the
system around the steady states and determining the conditions on the eigenvalues of the
Jacobian matrix J(u,x) can be performed for a discrete system. The following theorem
tells us how to determine the stability of a steady state x̄ for given parametric values ū.

Theorem 2.1 ([6]) (a) If all the eigenvalues of the matrix J̄ = J(ū, x̄) lie in the open
unit disk |λ| < 1, then x̄ is asymptotically stable.

(b) If the matrix J̄ has at least one eigenvalue λ0 outside the open unit disk, i.e. |λ0| > 1,
then x̄ is unstable.

The eigenvalues of J̄ are the roots of its characteristic polynomial A, so the problem of
stability analysis can be reduced to the problem of determining whether all the roots of A lie
in the open unit disk |λ| < 1. Similar to the Routh-Hurwitz criterion which is applicable to
continuous systems, three criteria are available for discrete dynamical systems: generalized
Routh-Hurwitz criterion [16], Schur-Cohn criterion [8] and Jury criterion [9].

These three criteria further reduce the problem of determining whether all the eigenval-
ues of J̄ lie in the open unit disk to that of determining the signs of certain coefficients of A
and certain determinants, or the signs of certain expressions of the coefficients. This leads
to two algebraic problems for the stability analysis of system (1.1), similar to Problems 3
and 4 for continuous systems formulated in [15, 20].

As we have explained above, the problem of stability analysis of discrete dynamical
systems may be reduced to four algebraic problems, which are almost the same as those
for continuous dynamical systems. The differences lie in the expressions of the equation
system (2.1) and the polynomials derived from the criteria. Therefore, these problems may
also be solved by using the approach proposed in [15, 20].

In the process of the stability analysis of some discrete biological systems of high dimen-
sion (n > 4) by using the three stability criteria, the determinants or expressions (if they



are obtained after heavy computation) may be too complicated to be used in the algebraic
approach we mentioned before.

3 Finite Dynamical Systems

In this section, our attention is focused mainly on the simplest class of finite dynamical
systems, Boolean networks, whose form is similar to (1.1). The differences are that for
Boolean networks, φ = (φ1, . . . , φn) : {0, 1}m+n → {0, 1}n, are written in terms of the
Boolean operators ∨, ∧, ¬; the states of the variables x and parameters u are 0 and 1.

Boolean functions can be translated into polynomial functions by using the rules x∧y =
xy, x ∨ y = x + y + xy and ¬x = x + 1 (see, e.g., [12]). Then determining the (number
of) steady states of a Boolean network may be reduced to studying the solutions of the
equation system over F2 as follows:

g1(u,x) − x1 = 0, . . . , gn(u,x) − xn = 0, (3.1)

where gi is the polynomial transformed from φi for i = 1, . . . , n.
When involving no parameter, the system above can be effectively solved by means of

Gröbner bases [4] or triangular decomposition [13, 22]. For parametric systems, compre-
hensive Gröbner bases are introduced and developed to handle the problem that parametric
Gröbner bases may not remain stable under specialization [17, 21]. In addition, triangular
decomposition methods can also be modified to solve parametric systems [5, 7, 19].

These methods for parametric equations can well establish conditions on the parameters
for the classification of solutions. However, they are not very efficient without consideration
of the special structure of equations over F2. An alternative way is to specify the parameters
first and then solve the parameter-free system directly. This method is feasible because there
are only finitely many points in the parameter space and it may be efficient if the number
of parameters is relatively small.

As an example of the latter method, we consider a Boolean network studied in [1, 11],
which has 14 variables and 7 parameters. For solving the corrsponding parametric Boolean
equation system, we traverse all the possible 27 specifications of the parameters and compute
the Gröbner basis for each specification. From these Gröbner bases, all the solutions can
be easily obtained and thus we can completely determine the classification of the steady
states. The following table illustrates the number of specifications corresponding to different
numbers of steady states.

Number of Steady States 0 1 2 4
Number of Specifications 37 31 24 36

For example, for the specification [1, 1, 0, 1, 0, 1, 0], the Gröbner basis 〈1〉 indicates the sys-
tem has no steady state, while for [1, 1, 1, 1, 1, 1, 1] the system has four steady states.

This experiment was made in PolyBoRi 2.6.2 [3] running on Pentium(R) P8700 CPU
2.53GHz with 1.89G RAM under Ubuntu 9.04 OS. All the traversal computation of 27 cases
took 1.28 seconds. In spite of its efficiency, this traversal method cannot provide a good
representation of the solution classification but a list of all the 27 specifications.

4 Future Work

Our future work may include the analysis of stability for finite dynamical systems and
automated classification of steady states. Furthermore, improvement of the techniques



for analyzing high-dimensional discrete biological systems efficiently, the modification and
specialization of symbolic parametric methods, and the detection of good representation of
results from traversal computation for Boolean networks are also some of the problems that
remain for future research.
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Abstract

This paper applies a novel mechatronic system to vehicle suspensions. The pro-
posed mechatronic system consists of a ball-screw inerter and permanent magnet elec-
tric machinery (PMEM), such that the system impedance is a combination of me-
chanical and electrical networks. Then we apply linear matrix inequalities (LMI) to
optimize system performance, and discuss network synthesis of the obtained optimal
impedances. The results demonstrate the effectiveness of the mechatronic system and
newly introduced network synthesis methods

1 Introduction

A new mechanical element, called an inerter, was proposed in [1] to substitute for the mass
element in the mechanical/electrical analogy, to improve system performance. The inerter
has been applied to car suspensions [2], motorcycle steering [3], train suspensions [4, 5] and
building vibration control [6], and showed great performance improvements. Moreover, LMI
methods were applied in [7] to further increase the performance benefits, by allowing higher-
order positive real impedances. However, the synthesis of a high-order mechanical network
is difficult due to the limitation on the volume and weight of systems. Therefore, a novel
mechatronic system was proposed in [8], which consists of a ball-screw inerter and PMEM,
such that the system impedance can be realized through a combination of mechanical
structures and electrical circuits. Consequently, a high-order impedance function can be
synthesized by a basic mechanical layout and high-order electrical circuits. Applying the
mechatronic networks and LMI approaches to vehicle suspensions, significant performance
improvement can be achieved. In addition, the obtained optimal impedances can be realized
using the traditional [9] or newly-developed synthesis methods [10, 11]. This paper is
arranged as follows: Section 2 introduces the mechatronic system and represents it as a
network. Section 3 applies the mechatronic network to vehicle suspensions for performance
optimization using LMI approaches. Section 4 applies three synthesis methods to realize
the obtained optimal impedances. Finally, we draw some conclusions in Section 5.

2 The Mechatronic Network System

The mechatronic system was proposed in [8], which consists of a ball-screw inerter and a
coaxial PMEM. Therefore, suitable electrical circuits can be connected to the PMEM, such

∗Correspondence to: National Taiwan University, Taiwan, tel: +886 2 33662680, fax: +886 2 23631755.



that the overall system impedance Yms is a combination of the mechanical and electrical
impedances, as follows:

Yms =
F̂ (s)
v̂(s)

= bms + cm +
Km

Ra + sLa + Ze(s)
(1)

where bm, cm, and Km are the inertance, damping rate, and admittance gain of the mecha-
tronic strut, respectively, as in the following:

bm = (2π/P )2(Jm + J), cm = (2π/P )2Bm, Km = (2π/P )2ktke,

in which P is the pitch of the ball-screw, J is the mass moment of inertia of the ball-screw
inerter, Jm is the mass moment of inertia of the PMEM, Bm is the damping coefficient
of the PMEM, ke is the inductive voltage constant of the PMEM, and kt is the inductive
torque constant of the PMEM. Note that Yms can be divided into two parts. The first part,
bms+ cm, can be considered the mechanical inerter and damper of the mechatronic system.
The second part, Km/(Ra + sLa + Ze(s)), can be regarded as the electronic admittance
of the system. Using mechanical and electrical analogies, (1) can be represented by an
equivalent mechanical network, as shown in Figure 1(a).

(a) Network. (b)
A quarter-
car.

(c)
The LMIS3 strut.

Figure 1: The application of mechatronic struts to vehicle suspensions [8].

3 Performance Optimization of a Quarter-Car Model

A quarter-car model is illustrated in Figure 1(b), with the suspension force û(s) = Q(s)s(ẑs−
ẑu), which depends on the applied suspension layouts with admittance Q(s). To evaluate
the system performance, we optimized two performance measures J1 and J3 (defined in
[12]) using six suspension layouts, and further applied LMI approaches (see Theorem 1 of
[5]) for numerical optimization of these layouts.

Setting the system parameters ms = 250kg, mu = 35kg, kt = 150kN/m, V = 25m/s,
κ = 5 × 10−7m3cycle−1, Ra = 2.3Ω, La = 0.7mH, Km = 7056 VNs/A/m, we found that



the LMIS3 layout, as illustrated in Figure 1(c), provides the most performance benefits. In
addition, the mechatronic system can significantly improve the performance measures for
both soft and stiff systems, compared to the mechanical inerter layouts, which were useful
only for the stiff systems [2, 4, 5, 12]. Furthermore, setting stiffness k = 50kN/m, the
LMIS3 layout with the following electrical impedances [8]:

Z2nd
e,J1

=
1.665 × 105s2 + 5.776 × 105s + 5.466 × 107

s2 + 1.544 × 106s + 0.342
, (2)

Z2nd
e,J3

=
2.726 × 103s2 + 7.060 × 104s + 3.454 × 106

s2 + 1.235 × 105s + 0.676
, (3)

was shown to be optimal for the performance measures.

4 Network Synthesis for Mechatronic Systems

The obtained electrical impedances of (2-3) can be realized by the Brune or Bott-Duffin
methods [9]. However, these two methods are not ideal, in that Brune realization needs per-
fect transformers, and Bott-Duffin realization uses a large number of elements. Therefore,
Chen and Smith [10] proposed five efficient networks to synthesize certain second-order
passive networks with one capacitor, one inductor, and four resistors. The results were
improved in [11] with the recently introduced concept of regularity, such that only one
capacitor, one inductor, and three resistors are necessary.

To avoid the use of perfect transformers with the Brune realization, Bott and Duffin [9]
proposed to use nine elements to synthesize a second-order transfer function. The realization
procedures were summarized in (Figure A1 of [5]), such that the obtained impedances (2-3)
can be realized as in Figure 2(a). Note that these realizations not only use nine elements
for a second-order transfer function (with only five parameters), but also use unreasonable
component values. Therefore, it is necessary to develop better network synthesis for the
obtained system impedances.

(a) Bott-Duffin.

4
R

RR L

C

R
2

1 3

(b) Chen-
Smith.

1

RR

L

C

R
2

1 3

1

(c) Jiang-
Smith.

Figure 2: Network realizations.



To overcome the shortages of Bott-Duffin realization, Chen and Smith [10] proposed a
new network synthesis by which certain second-order passive networks can be realized with
one capacitor, one inductor, and four resistors (corresponding to one inerter, one spring
and four dampers in mechanical systems). Following the proposed procedures, the optimal
impedances (2-3) can be realized as in Figure 2(b), with the following parameters: (1) Z2nd

e,J1
:

with R1 = 2.303×109Ω, R2 = 0.374Ω, R3 = 1.666×105Ω, R4 = 1.711×108Ω, C = 0.0284F,
L = 0.1079H; (2) Z2nd

e,J3
: with R1 = 1.318 × 108Ω, R2 = 0.571Ω, R3 = 2.725 × 103Ω,

R4 = 5.312 × 106Ω, C = 0.0358F, L = 0.0221H. We note that this new realization is
better than Bott-Duffin in terms of using fewer elements with more reasonable values.
Nevertheless, it uses six elements for a second-order transfer function which has only five
parameters. Therefore, an interesting question to ask is whether an even simpler realization
exists? This question was answered in the following.

Jiang and Smith [11] proposed a simpler network synthesis method which uses only five
components for the second-order transfer functions which are regular (see Lemma 5 of [11]).
Applying the procedures, the impedances (2-3) can be realized as in Figure 2(c) with the
following parameters: (1) Z2nd

e,J1
: with R1 = 1.598×108Ω, R2 = 1.667×105Ω, R3 = 0.374Ω,

C = 0.0282F, L = 0.1078H; (2) Z2nd
e,J3

: with R1 = 5.109 × 106Ω, R2 = 2.727 × 105Ω,
R3 = 0.572Ω, C = 0.0358F, L = 0.0221H. It is interesting that the required network
elements are fewer than the Chen-Smith realization, and with similar component values.

5 Concluding Remarks

This paper has applied a novel mechatronic system to vehicle suspension control to illustrate
its performance benefits. In addition, the obtained optimal impedances were realized by the
Bott-Duffin and two newly-developed methods. From the results, the proposed mechatronic
system was deemed effective and the applied network synthesis was shown to be efficient.
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Abstract

It is difficult, but important, to analyze nonlinear chemical reactions away from equilibrium.
For accurate analysis of such chemical systems, we need to deal directly with the nonlinear
terms. This becomes more difficult when rate constants cannot be determined in a single ex-
periment; in other words, the system is underdetermined. To overcome this underdetermination,
we propose a method to combine the results of multiple experiments. Nevertheless, multiple
experiments usually pose another difficulty in that the solution to the system of equations has
multiple solutions. These two difficulties lead to confusion as to whether the rate constants can
be intrinsically determined by experiment or not. Here, to analyze such a system, we use prime
ideal decomposition, and discuss a scheme for generalized multiple experiments as well as an
efficient calculation using resultants.

1 Introduction
We often analyze nonlinear chemical reactions such as the Michaelis–Menten or Hill type enzymatic
reactions. These reactions are described as a system of differential equations including nonlinear
terms that make the analysis difficult. To overcome this difficulty, conventional numerical meth-
ods or analytical methods under various simplifying assumptions such as linearization or system
equilibrium are often used. Another difficulty is that the system is sometimes underdetermined.
A consequence of underdetermination is that insufficient data from a single experiment exist to
determine concrete values for rate constants. We proposed a method to overcome such underdeter-
mination by combining two experiments in a previous paper [3]. In this paper, we also propose an
approach for determining the rate constants by combining multiple experiments, each of which is
an underdetermined system.

The combination of multiple experiments, however, yields another difficulty in which the solu-
tion to the system of equations can be decomposed into multiple distinct solutions. For instance,
imagine that a system of equations describing some experiment yields the algebraic equations:
{z2 − 2, y2 + 2y− 1, xy+ xz− yz+ x− z− 2}. The solution to these equations can be decomposed into
the solutions of the following two systems: {z2 − 2, y+ z+ 1} and {z2 − 2, y− z+ 1, x− z}. We cannot
decide the variables, x, y and z, with the former, but we can decide with the latter. Further, under a
physiologically acceptable condition, x > 0, y > 0, & z > 0, this decomposition means the variables
are identifiable (x = z =

√
2, y =

√
2 − 1). Therefore, it is necessary to perform decomposition

to analyze the system because we cannot know beforehand whether the algebraic equations have a
unique solution. Such decomposition of algebraic equations is called prime ideal decomposition.

∗Correspondence to: H. Yoshida, (Kyushu Univ., Itou)
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Figure 1: The schematic illustration of procedure w.r.t. multiple experiments.

2 Theorem and method for many parameters and variables
To overcome underdetermination of a system, we combine multiple experiments. But, multiple
experiments yields many parameters and variables. Here we present a theorem and a procedure to
avoid increasing the number of variables, even when we need to combine multiple experiments.
From the viewpoint of ideal theory, the procedure w.r.t. two experiments A and B can be described
as the following theorem:

V
(
(IA + IB) ∩ k[C]

)
= V
((

IA ∩ k[C]
)
+
(
IB ∩ k[C]

))
, (1)

where V(J) denotes the affine variety with respect to the ideal J. In this theorem, IA and IB denote
the ideals associated with Experiments A and B, respectively; and k[X] designates the ring obtained
by adjoining the variables X to field k. Further, C denotes the set of the maximum common variables
between the experiments A and B, while A and B denote the distinct sets of intrinsic variables of the
experiments A and B, respectively.

By recursion, Theorem (1) can be extended to the theorem below:

V
((∑n

i=1
Ii
)
∩ k[C]

)
= V
(∑n

i=1

(
Ii ∩ k[C]

))
, (2)

where Ii denotes the ideal associated with Experiment i; and C the set of the maximum common
variables of all of the experiments i(1 ≤ i ≤ n). The generalized procedure w.r.t. multiple experi-
ments using Theorem (2) is illustrated in Fig. 1. Let Ii denote the ideal generated by polynomials
in k(Di)[Ai,C], where Di denotes the parameters determined with the corresponding experimental
data; and Ai denotes the sets of intrinsic variables of Experiment i. The procedure is summarized as
follows:

(i) For each experiment i, we substitute Di with rational approximations of the observed data.

(ii) For each experiment i, we calculate the Gröbner basis Gi in terms of the elimination order
Ai � C. Let Gci be Gi ∩ k[C], a Gröbner basis corresponding to the elimination ideal
Ii ∩ k[C].



BP
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Figure 2: Resultant-factorization technique for efficient calculation.

(iii) We perform prime ideal decomposition: 〈
∑

i Gci〉 =
⋂

i Pi.

(iv) For each prime ideal Pi obtained above, we calculate the dimension of Pi.

(v) If we find a zero-dimensional (prime) ideal, we can determine the rate constants in C; otherwise,
we design and add another experiment and start from step (i).

From the viewpoint of biological experiments, this procedure corresponds to a discovery of the
sets of experiments by which we can determine the rate constants in C from the observed data.
Therefore, once we discover such an appropriate set of experiments, we can determine the rate con-
stants for different observed data using the same set of experiments. Further, it is assured from
Theorem (2) that the rate constants thus obtained are identical to those in the original variety:
V
((∑

i Ii
)
∩ k[C]

)
.

2.1 Resultant-factorization technique
It is cumbersome to perform prime ideal decomposition each time we obtain observed data corre-
sponding to Di in Fig. 1. At the present time, however, it is impossible to perform straightforward
prime ideal decomposition without substituting concrete values for the parameters, one cannot per-
form prime ideal decomposition because of the large number of parameters and variables. That is
why we substituted the observed data before prime ideal decomposition. In addition, we think that
the larger the number of multiple experiments, the more difficult straightforward decomposition
becomes [2].

Therefore, based on [1], we developed a technique to arrive at the desired zero-dimensional
affine variety as illustrated in Fig. 2. Let BP = {BPi 1 ≤ i ≤ n} be the original set of polynomials.
Let F1 be the set of n− 1 resultants of polynomials BPj (1 ≤ j ≤ n, i � j), for some BPi (1 ≤ i ≤ n)
in a variable, say, r1. It is reasonable to select a variable r1 such that BPi has the smallest degree in
r1. If, for instance, some element f in F1 can be factorized into mutually disjoint polynomials f1, f2,
and f3, 〈F1〉 can be decomposed into 〈F1, f1〉 ∩ 〈F1, f2〉 ∩ 〈F1, f3〉. As a result of the factorization,
the next resultant set for 〈F1, f1〉 in r2, denoted by F21, can usually be described by a smaller set of



polynomials. Further, when one obtains a factorized term like (y1 + y2
2)(z − y2

3 + 3)3 with the rate
constants y1, y2, it is sufficient to take account only of (z − y2

3 + 3), because the rate constants are
physiologically assured to be positive (y1 > 0 ∧ y2 > 0 ⇒ y1 + y2

2 > 0) and the radical suffices. We
can also ignore a factor like (y1 − y2) when we adopt a presupposition y1 � y2 from biological or
physiological knowledge. These simplifications allow us to prune the branches during the resultant-
factorization process.

When we reach an appropriate set (F31, in the figure), we can efficiently determine all of the
rate constants by using the ideal 〈BP〉 + 〈F31〉 as illustrated in Fig. 2. This technique is given in
http://sites.google.com/site/codes86/.

In the presentation of MACIS-2009, we are going to show an example in which the proposed
theorem and technique methods here are used and to show the range of applicability of them.
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Abstract

Traditional software design and implementation of large computational models is a
difficult, tedious, and often error-prone task. Software engineers have to thoroughly an-
alyze high-level abstract specifications of solution methods, algorithms, and data struc-
tures and carefully lower them into efficient software implementations. This software
development process is iterative and repetitive as models and code are continuously
refined and errors are corrected. In the Ctadel project we explored new methods for
autocode generation for atmospheric models, where the designer describes the compu-
tational model in an abstract high-level specification language which is translated into
highly optimized sequential and parallel code. In this extended abstract we address
challenges and present solutions for auto-programming tools. We show how correctness
guarantees can be achieved by autocode generation using a model-driven framework.
Correctness is the primary concern. The systematic lowering of high-level specifica-
tions to executable code proceeds through the application of correctness-preserving
transformations performed within an algebraic framework of application-dependent
and independent program transformations. Efficiency of the target code is a sec-
ondary, but important, concern. Aggressive code optimization at the highest level is
achieved by algebraic program manipulation and restructuring-compiler optimizations
combined with a target machine architecture model that determines an optimal code
translation strategy.

1 Introduction

Scientific software can be subject to significant change over its lifetime. Computational
scientists continuously improve the accuracy and performance of numerical solution meth-
ods, algorithms, and data structures. Thus, large-scale projects that incorporate many
computational methods are frequently updated with the latest state-of-the-art in the com-
putational domain. Examples of large-scale projects include climate models, coupled ocean-
atmosphere models, and weather forecast systems. A typical weather forecast for the next
day, for example, requires at least a trillion (1012) arithmetic operations performed by var-
ious computational modules that model the limited-area atmosphere, including solving the
partial differential equations (PDEs) that govern the atmosphere, computing cloud layers,
calculating solar radiation, and modeling of other dynamical processes.

Time-constrained scientific models, such as weather forecast systems that run hourly-
updated weather forecasts, must make a trade-off between the accuracy of the numerical
solution and the maximum amount of computing time that can be alloted to produce
results. Fortunately, the rise of newer generations of ever more powerful parallel machines
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has provided opportunities to redevelop the scientific software for parallel execution. By
going parallel, ideally higher numerical accuracy can be achieved in the same compute
time. However, it is difficult and time consuming to redevelop scientific software for high-
performance machines or to port existing scientific software to these machines [2]. This
is mainly due to the shortage and weakness of available development tools. Therefore,
incorporating computational improvements can have a major implementation consequence.
Manual modification of a model’s code is a tedious and error-prone task.

In the Ctadel project [3, 4, 6] we explored new methods for autocode generation for
atmospheric models, where the designer describes the computational model at an abstract
high-level specification language atmol [6], which is translated into highly optimized se-
quential and parallel code [4]. We tested our approach on a large-scale weather forecast
system [1]. Code generation from a domain-specific abstract problem specification has great
advantages for correctness, efficiency, and portability.

Correctness Guarantees We defined a set of common rewrite rules to translate PDE-
based models into low-level Fortran code optimized by applying rewrite rules on a Fortran-
like symbolic intermediate code form. The rewrite rules defined at all levels only make
use of the local structural information of each symbolic term that is rewritten, thereby
ensuring that the correctness of each rule can be easily determined (most are simply di-
rected forms of algebraic identities). As each rule is verifiably correct, the application of
over hundred thousand rewrites on the atmospheric model yields a code that is correct,
assuming that the model’s specification is correct. In fact, when comparing our auto-coded
implementation to the manually-developed model implementation used in the production
weather forecast system, we found several programming errors in the manually developed
production-quality system. One error was a programming mistake related to updating the
values at the boundaries of certain array variables. Another error was found in the numer-
ical scheme: the forecast model can deal with spherical grids only, while the model was
originally intended to handle more general curvi-linear grids. A third problem was found
in the model description involving the wrong units of dimensionality. By coincidence, these
mistakes did not affect the quality of the weather forecast (a case of luck rather than wis-
dom). This illustrates the importance and usefulness of correctness guarantees in autocode
generation approaches.

Efficiency Guarantees When the first compilers for Fortran were developed, no one be-
lieved that compilers could produce more efficient code than assembly programmers could.
By contrast, the machine code running on today’s computers is so complex to optimize that
expert assembly programmers have a hard time to beat compiler-generated code. Likewise,
it is conceivable that autocode generators will produce code that outperforms hand-written
code. For example, parallel machines are complex to program and autocode generators can
be used to generate different codes for each parallel programming paradigm and paralleliza-
tion strategy. One can simply pick the best performing autocode. In fact, we observed
that our auto-generated codes outperformed the original hand-written codes on several
high-performance machines [4]. We used a crude model that models the target hardware
architecture characteristics to derive more efficient code.

Portability Guarantees Autocode generators can adopt a different back-end generator
to simplify porting. Code can be generated for new programming languages and platforms.



% Declare spatial and time dimensions:
space (x(i),y(j),z(k)) time t.

% Declare grid size variables n, m, and l:
n :: integer(1..infinity); m :: integer(1..infinity); l :: integer(2..infinity).

% For convenience, define macros for two grid domains spanning (i,j,k):
atmosphere := i=1..n by j=1..m by k=1..l; surface := i=1..n by j=1..m.

% Set coordinate system for symbolic derivation with chain-rule:
coordinates := [x, y]; coefficients := [h x, h y].

% Declare the model fields:
u :: float dim "m/s" field (x(half),y(grid),z(grid)) on atmosphere.

v :: float dim "m/s" field (x(grid),y(half),z(grid)) on atmosphere.

u_aux :: float dim "Pa m/s" field (x(half),y(grid),z(half)) on atmosphere.

v_aux :: float dim "Pa m/s" field (x(grid),y(half),z(half)) on atmosphere.

p :: float(0..107000) dim "Pa" field(x(grid),y(grid),z(grid)) monotonic k(+) on atmosphere.

p_s_t :: float dim "Pa/s" field (x(grid),y(grid)) on surface.

% Define the horizontal wind velocity vector components:
V := [u_aux, v_aux].

% Equations:
p_s_t = -int(nabla .* V, z=1..l).

V = [u, v] * d p/d z.

Figure 1: Specification of the surface pressure tendency

2 Model-Driven Autocode Generation with Ctadel

This section briefly describes the main concepts of the Ctadel model-driven autocode
generation. More details can be found in [4, 6].

2.1 Domain Specific Modeling

Consider the surface pressure tendency equation and the equation for the auxiliary horizontal
wind velocity vector field [1]:

∂ps

∂t
= −

∫ 1

0

∇ · V dz ; V =
(

u
v

)
∂p

∂z

The specification in atmol is shown in Fig. 1. The full specification of the weather forecast
model dynamics is available from www.cs.fsu.edu/~engelen/ctadel/dyn/report.html.

2.2 User-Definable Type Systems

We implemented a generic type inference algorithm with a modular type system that sup-
ports overloading and subtyping. Three user-definable type systems are used to automati-
cally infer Arakawa-style computational grid information (the grid type system), dimension
and units (the unit type system), and value types (the basic type system). Inference on
type-overloaded operators leads to the selection of an appropriate operator such as a finite
difference operator on a grid half point for a centered difference. The type inference algo-
rithm uses a forward-backward scheme and iterative deepening to compute the least number
of conversion operations for a type-mismatched operator, when possible.

2.3 From Specification to Executable Parallel Code

We used a classification mechanism to define a hierarchy of properties of objects and oper-
ators. Fig. 2 depicts the hierarchy of operator classes. The idea is that rewrite rules can be
applied to operators based on operator classification, rather than hardcoding each rule for
each operator.



associative_op commutative_op commuting_op linear_op

abelian_op self_commuting_op

abstract_op

operator

elemental_op

unit_element
zero_element commute_over choices

differentiation_op integration_opreduction_op

invert_element

Figure 2: Operator property hierarchy

The highest level translations are performed by a rewrite rule system. A template-
based code generation approach is used to lower abstract high-level operations into code for
operations that are not handled easily by rewrite rules, such as lowering of reductions, scans,
and search functions. The type system plays an important role in template instantiation, as
templates are picked based on type. For example, a reduction over an associative operator
can be parallelized using a template instantiation of a parallel reduction loop:

reduce(Expr :: _T, Iter :: domain(index), Op :: associative(_T->_T->_T)) :: _T function

{ reduce := unit_element(Op);

(reduce := apply_op(Op, reduce, Expr)) forall Iter

}.

Instantiating this template leads to low-level assignments and a forall-loop to reduce the
value of the expression over a domain, e.g. for summing a quadrature. Various strategies
to automatically parallelize reductions and scans (prefix sums) were explored [5].

3 Conclusions

Auto-programming tools are increasingly more important to help develop certified software
and mission-critical systems. We used a model-driven approach that utilizes verifiably
correct translations of an atmospheric model into an efficient parallel code.
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Abstract

The SPIRAL system (www.spiral.net) is a tool for automatically deriving, imple-
menting and optimizing digital signal processing (DSP) algorithms, in particular fast
transform algorithms such as the fast Fourier transform (FFT). SPIRAL is capable of
generating optimized implementations on a variety of platforms including SSE, multi-
core, Cell, GPU, distributed memory parallel processors, and FPGA, and has produced
some of the fastest implementations of these algorithms on these platforms (SPIRAL
is used by Intel in the implementation of their MKL and IPP libraries). SPIRAL
uses a domain specific language, based on an algebraic formulation of DSP algorithms,
and rewrite rules to generate a large number of implementations and uses intelligent
search to find fast implementations. This talk provides an overview of automated
generation of DSP algorithms using the SPIRAL system, briefly discusses the use of
algebraic techniques in the generation of DSP algorithms, and ends with a discussion
of extensions of SPIRAL that can be used for more general algorithms.

1 Introduction

Tuning high-performance libraries for important mathematical kernels such as matrix mul-
tiplication and the fast Fourier transform is a time consuming process. Algorithms need
to be modified and restructured to adapt to architectural features of the platform the code
will run on and the code has to be carefully tuned to fully utilize these features and max-
imize performance. The code tuning requires extensive experimentation and tweaking to
optimize performance since it is very difficult to predict the optimal implementation on a
given platform. Since the code tuning process must be reapplied for each new platform,
performing it by hand requires extensive manpower, and automated techniques are strongly
suggested. A general approach to automating this process is to provide a set of parameter-
ized code generators, capable of generating a large number of alternative implementations,
and tools for intelligently searching for the parameter settings that optimize performance
on a given platform. The search process can be driven by empirical run times, assuming
the desired platform is available, or estimates of runtime obtained through a performance
model. Examples of such automated tools are ATLAS [1, 3] for dense matrix multiplica-
tion, SPARSITY [2, 3] for sparse-matrix product, and FFTW [4, 5, 6] for the fast Fourier
transform.

These systems are hard wired to specific algorithms and a specific set of tuning pa-
rameters. Consequently they are difficult to extend and adapt to new platforms and new
algorithms. In contrast the SPIRAL system provides a language based framework for tuning
a large number of DSP algorithms on a wide variety of computing platforms.

∗Department of Computer Science, Drexel University, Philadelphia, PA 19104, USA.



2 The SPIRAL system

The SPIRAL system [7, 8] begins with the observation that many fast transform algorithms
can be represented as structured sparse matrix factorizations of the corresponding transform
matrix. For example, let

DFTn =
[
ωk�

n | k, � = 0, . . . , n− 1
]
,

where ωn = e2πi/n denotes a primitive root of unity, denote the n-point discrete Fourier
transform (DFT) matrix. Let n = rs, then the divide and conquer step in the FFT [9], can
be represented as the matrix factorization

DFTn = (DFTr ⊗ Is) · Tn
s ·(Ir ⊗DFTs) · Ln

r , (1)

where ⊗ denotes the Kronecker or tensor product, T is a diagonal matrix called the twiddle
matrix, and L is a special permutation matrix called stride permutation [10]. When r =
s = 2,

DFT4 = (DFT2⊗ I2) · T4
2 · (I2⊗DFT2) · L4

2

=

⎡⎢⎢⎣
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤⎥⎥⎦

=

⎡⎢⎢⎣
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

⎤⎥⎥⎦
⎡⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ .
The Cooley-Tukey factorization 1, can be interpreted as a rewrite rule that can be applied
repeatedly to a DFT of a specified size to derive an algorithm - a particular breakdown
strategy - for computing the given DFT. The sequence of applications of the rule is encoded
as a ruletree which can be translated into a formula in the domain specific language SPL
[11] and compiled with a special-purpose compiler into efficient code for computing the
DFT. Since many important DSP transforms can be derived by similar breakdown rules
and encoded by similar matrix formulas, the SPIRAL system can be used to derive and
implement a large number of important DSP transforms.

3 Evolution of the SPIRAL system

A key observation in [10] is that the mathematical constructs, such as the tensor product
and stride permutations, occuring in the matrix formulas in DSP algorithms and encoded
in SPL have interpretations related to different architectural features such as indexing
and memory operations, vectorization and parallelism. This observation allows indexing
operations to be simplified and loops merged [12], code to be vectorized with different vector
sizes and automatic parallelization with perfect load balance, no false sharing, and varying
granularity to be obtained mathematically through formula manipulation. Thus the same
SPIRAL framework can be used to obtain optimized code in a wide variety of computing
platforms such as SSE [14], multicore [13], distributed memory parallel computers [15], and
FPGA [16].



SPIRAL was originally created to generate and optimize code for linear transforms of a
fixed size. The restriction to fixed size transforms is fine for applications that use transforms
of a specific size (e.g. JPEG, MPEG, HDTV); however, this can pose substantial problems
when generating code for general libraries such as FFTW. This restriction has been recently
removed through work in [17] where starting with rewrite rules such as 1 an entire library
like FFTW can be automatically generated and tuned.

The restriction to linear transforms has also been recently removed, allowing algorithms
with both multiple inputs and outputs and non-linear computation (e.g. matrix multi-
plication, convolution, Viterbi decoding, Synthetic Aperture Radar, sorting networks)[19].
The importance of the tensor product and the utility of formula manipulation techniques
used by SPIRAL in multilinear computations was suggested earlier in [18] where a tensor
product formulation of Strassen’s matrix multiplication algorithm was presented. These
ideas were used in the automatic derivation and optimization of convolution algorithms
[20]. Additional papers on the use of symbolic algebra in the derivation of signal process-
ing algorithms can be found in the special issue of the Journal of Symbolic Computation
Volume 37 Issue 2.
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Ueberhuber, “Automatic Performance Optimization of the Discrete Fourier Transform
on Distributed Memory Computers,” Proc. International Symposium on Parallel and
Distributed Processing and Application (ISPA), Lecture Notes In Computer Science,
Springer, Vol. 4330, pp. 818-832, 2006.

[16] Peter A. Milder, Franz Franchetti, James C. Hoe and Markus P”uschel, “Formal Dat-
apath Representation and Manipulation for Implementing DSP Transforms,” Proc.
Design Automation Conference (DAC), 2008.

[17] Yevgen Voronenko, “Library Generation for Linear Transforms,” PhD. thesis, Elec-
trical and Computer Engineering, Carnegie Mellon University, 2008.

[18] R. W. Johnson, C. H. Huang and J. R. Johnson, “Multilinear algebra and parallel
programming,” The Journal of Supercomputing, Vol. 5, Oct. 1991.

[19] Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin and Markus Püschel, “Op-
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Abstract
Medical knowledge mining is a recently emerging area of research that provides 

applied scientists and practitioners with tools for processing and analysis of massive data sets 
in medical domains. The ultimate goal of applying data mining technology to medicine and 
life science is to discover effective knowledge. Induced knowledge such as cancer implication 
is important not only to increase accurate diagnosis and successful treatment, but also to 
enhance safety and reduce medication-related errors. Such implicit knowledge can be achieved 
through the availability of the knowledge-mining system. In this paper, we present the design 
and implementation of a medical knowledge-mining system. Our system implementation is 
based on a solid foundation of mathematical logic. The expressive power of logic-based 
language and the effective pattern-matching feature are essential functions for the 
development of knowledge-intensive tasks. We demonstrate the design framework of our 
proposed system, the program coding, and also the running results on the discharge-decision 
data of patients after operation. The high-level abstraction of logic-based language results in 
the concise coding. Moreover, the first-order logic formalism facilitates the automatic reuse of 
induced knowledge as conditional clauses in other applications.

1  Introduction 
Modern healthcare organizations generate huge amount of electronic data stored in 
heterogeneous databases. These data are a valuable resource for mining useful knowledge to 
support scientific decision-making in order to improve efficiency in diagnosis and treatment of 
diseases. Medical knowledge mining is an emerging area of computational intelligence applied 
to automatically analyze electronic medical records and health databases. The non-hypothesis 
driven analysis approach of data mining technology can induce knowledge from clinical data 
repositories and health databases. Various data mining methods have been proposed [2, 3, 4, 7] 
to learn useful knowledge from medical data. Major techniques adopted by many researchers are 
rule induction and classification tree generation with the main purpose to support medical 
diagnosis [1, 5, 6].  

Our work is also in the main stream of medical decision support system, but our 
methodology is different from those appeared in the literature. The knowledge-mining system 
proposed in this paper is based on logic programming paradigm. The justification of our logic-
based system is that the closed form of Horn clauses that treats program in the same way as data 
facilitates fusion of knowledge learned from different sources, which is a normal setting in 
medical domain. Knowledge reuse can easily practice in this framework.  

2  Medical knowledge-mining system: Its framework and implementation 
Health information is normally distributive and heterogeneous. Hence, we design the medical 
knowledge-mining system (Figure 1) to include data integration component at the top level to 



collect data from distributed databases and also from documents in text format. This component 
has been designed to input and select data with natural language processing and currently under 
construction. Knowledge base in our design stores both induced knowledge, in which its 
significance has to be evaluated by the domain expert, and background knowledge encoded from 
human experts. Knowledge inferring and reasoning is the module interfacing with medical 
practitioners and physicians at the front-end and accessing knowledge base at the back-end. 
 
                                        Medical Knowledge-Mining System 
 
                                         Data Integration 
                                            
Patient records                                 
 Clinical data   &                                                                                       
Other documents            Knowledge Mining                    Data                       

                                                         
                                                                                 Knowledge 
                                   Knowledge Evaluation             

                                                                                                             Knowledge Base                            
                                                                                                                                   
            

                                    
                Request/query                 
                                    Knowledge inferring and reasoning   
               Response                  
 
Medical                               

practitioner 
Figure 1. The framework of medical knowledge-mining system 

The implementation of knowledge-mining component is based on decision-tree induction 
algorithm [8]. Program coding adopts the syntax of SWI prolog (www.swi-prolog.org). The 
main module calls initialization procedure and starts creating edges and nodes of the decision 
tree. The data to be used by main module to create decision tree is in another Prolog file 
(data.pl). It can be noticed that program and data take the same format; that is, all are in Prolog 
clausal form.  
 :- include('data.pl'). 
 :- dynamic current_node/1,node/2,edge/3. 

 main :-  init(AllAttr,EdgeList),  getNode(N), create_edge(N,AllAttr,EdgeList), print_model.     

 init(AllAttr,[root-nil/PB-NB]) :-  retractall(node(_,_)), retractall(current_node(_)), 
              retractall(edge(_,_,_)), assert(current_node(0)) , 
               findall(X, attribute(X,_), AllAttr1), delete(AllAttr1, class, AllAttr), 
               findall(X2,instance(X2,class=home,_),PB), findall(X3,instance(X3,class=ward,_),NB). 
 getNode(X) :- current_node(X), X1 is X+1, retractall(current_node(_)),assert(current_node(X1)).      

 create_edge(_,_,[]) :- !.     create_edge(_,[],_) :- !.  
 create_edge(N, AllAttr, EdgeList) :-   create_nodes(N, AllAttr, EdgeList). 

 create_nodes(_,_,[]) :- !.    create_nodes(_,[],_) :- !. 



 create_nodes(N, AllAttr, [H1-H2/PB-NB|T]) :-   getNode(N1), assert(edge(N,H1-H2,N1)), 
                         assert(node(N1,PB-NB)),  append(PB, NB, AllInst),   
                         ( (PB \== [], NB \== []) ->   (cand_node(AllAttr, AllInst, AllSplit),  
                         best_attribute(AllSplit,[V, MinAttr, Split]),  
                         delete(AllAttr, MinAttr, Attr2),  create_edge( N1, Attr2, Split)) ; true ), 

                  create_nodes(N, AllAttr, T). 
best_attribute([], Min, Min). 
best_attribute([H|T], Min) :- best_attribute(T, H, Min). 
best_attribute([H|T], Min0, Min) :-  H=[V,_, _ ], Min0 = [V0, _, _ ], 
            ( V<V0 -> Min1 = H; Min1 = Min0), best_attribute(T, Min1, Min). 

cand_node([],_,[]) :- !.   cand_node(_,[],[]).   % generate candidate decision node 
cand_node([H|T],CurInstL,[[Val,H,SplitL]|OtherAttr]) :-  info(H, CurInstL, Val, SplitL), 
            cand_node(T,CurInstL,OtherAttr). 
info(A,CurInsL,R,Split) :- attribute(A,L), maplist(concat3(A,=),L,L1), suminfo(L1,CurInsL,R,Split).  
concat3(A,B,C,R) :- atom_concat(A,B,R1),  atom_concat(R1,C,R). 
suminfo([],_,0,[]).  
suminfo([H|T], CurInstL, R, [Split | ST]) :-  AllBag=CurInstL, term_to_atom(H1,H), 
          findall(X1, (instance(X1,_,L1), member(X1, CurInstL), member(H1,L1)), BagGro), 
          findall(X2,(instance(X2,class=home,L2), member(X2,CurInstL), member(H1,L2)), BagPos), 
          findall(X3,(instance(X3,class=ward,L3), member(X3,CurInstL), member(H1,L3)), BagNeg),  
         (H11=H22) =H1, length(AllBag, Nall), length(BagGro, NGro), length(BagPos, NPos),  
         length(BagNeg, NNeg), Split = H11-H22/BagPos-BagNeg,  suminfo(T, CurInstL, R1,ST),       
         ( NPos is 0 *->L1 = 0;  L1 is (log(NPos/NGro)/log(2)) ), 
         ( 0 is NNeg *->L2 = 0; L2 is (log(NNeg/NGro)/log(2)) ), 
         ( NGro is 0 -> R= 999; R is (NGro/Nall)*(-(NPos/NGro)*L1-(NNeg/NGro)*L2)+R1 ).    

 
3  Experimental results and conclusion 
The proposed system was tested with the discharge-decision data of 86 patients after their 
operations.  The decisions are either the patient is in good condition and ready to go home, or the 
patient seems to be fine but should be sent to the general ward for further observation and 
follow-up check. From the data set containing eight observed attributes, the knowledge-mining 
system discovers that final decision making are based on two main conditions: the stability of 
core temperature and the degree of patient’s comfort. The running result on this data set is 
shown graphically as a tree (left column) and also as decision rules (right column) in Figure 2. 
 
coreTempStability = stable 
|   comfort = 5  home  
|   comfort = 7  home  
|   comfort = 10  ward  
|   comfort = 15  ward  
coreTempStability = mod-stable  ward 
coreTempStability = unstable  home  

If coreTempStability=stable and comfort=(5 or 7), 
then prepare to go home. 

If coreTempStability=stable and comfort=(10 or 
15), then send to general ward. 

If coreTempStability=mod-stable, then send to 
general ward. 

If coreTempStability=unstable, then prepare to go 
home. 

Figure 2. Decision tree and rules as the results obtain from the execution of medical knowledge-
mining system 



 In conclusion, we propose the design and implementation of an automatic knowledge-
mining tool to discover knowledge from medical data. Our design includes a complete set of 
tools necessary for the integration, induction, and application of the knowledge discovery 
process. A rapid prototyping of knowledge-mining component is based on the concept of logic 
programming. The logic-based programming language paradigm benefits code reuse and a high 
level of program abstraction. The plausible extension of our current work is to add constraints 
into the knowledge-mining method in order to limit the search space and respond with the most 
relevant knowledge to the specific application.  
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Abstract

We present a systematic representation of C++, called IPR, for complete seman-
tic analysis and semantics-based transformations. We describe the ideas and design
principles that shaped the IPR. In particular, we describe how general type-based
unification is key to minimal compact representation, fast type-safe traversal, and
scalability. The IPR is general enough to handle real-world programs involving many
translation units, archaic programming styles, and generic programming using likely
C++0x extensions that affect the type system. The difficult issue of how to represent
irregular (ad hoc) features in a systematic (non ad hoc) manner is among key contri-
butions of this paper. The IPR can represent all of C++ with just slightly less than
200 node types; to compare the ISO C++ grammar has over 700 productions. Finally,
we report impacts of this work on existing C++ compilers.

1 Introduction

The C++ programming language [11] is a general-purpose programming language, with bias
toward system programming. It has, for the last two decades, been widely used in diverse
application areas [20]. Beside traditional applications of general-purpose programming lan-
guages, it is being used in high-performance computing, embedded systems, safety-critical
systems (such as, airplane controls), space explorations, etc. Consequently, the demand for
static analysis and advanced semantics-based transformations of C++ programs is pressing.
Dozens of analysis frameworks for C++ and for combination of C++ and code in other
languages (typically C and Fortran) exist [1, 15, 16], but none handles the complete C++
language. Most are specialized to particular applications, and few (if any) can claim to
both handle types and be portable across compilers.

This paper discusses a complete, efficient and direct representation of C++ implemented
in C++, designed as part of a general analysis and transformation infrastructure, called
The Pivot, being developed at Texas A&M University.

The IPR does not handle macros before their expansion in the preprocessor. With
that caveat, we currently represent every C++ construct completely and directly. Note
that by “completely” we mean that we capture all the type information, all the scope and
overload information, and are able to reproduce input line-for-line. We capture templates
(specializations and all) before instantiation — as is necessary to utilize the information
represented by “concepts” [5, 10]. To be able to do this for real-world programs, we also
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handle implementation-specific extensions. We generate IPR from two compiler front ends
[6, 9].

Our emphasis on completeness stems from a desire to provide a shared tool infrastruc-
ture. Complete representation of C++ is difficult, especially if one does not want to expose
every irregular detail to every user. Some complexity is inherent, stemming from C++’s
support of a wide range of programming styles; some is incidental, stemming from a long
history of evolution under a wide range of real-world pressures; some originated in the ear-
liest days of C. Independently of the sources of the complexity, a representation that aims
to be general — aims to be a starting point for essentially every type of analysis and trans-
formation — must cope with it. Each language feature — however obscure or advanced —
not handled implies lack of support for some sub-community.

Our contribution is to engineer a small and efficient library with a regular and the-
oretically well-founded structure for completely representing a large irregular, real-world
language. The IPR library has been developed side by side with a formalism to express the
static semantics of C++.

2 Design Rules

The goals of generality directly guide the design criteria of IPR:

1. Complete — represents all Standard C++ constructs, but not macros before expan-
sions, not other programming languages.

2. General — suitable for every kind of application, rather than targeted to a particular
application area.

3. Regular — does not mimic C++ language irregularities; general rules are used, rather
than long lists of special cases.

4. Fully typed — every IPR node has a type.

5. Minimal — its representation has no redundandent values and traversal involves no
redundant dynamic indirections.

6. Compiler neutral — not tied to a particular compiler.

7. Scalable — able to handle hundreds of thousands of lines of code on common machines
(such as our laptops).

Obviously, we wouldn’t mind supporting languages other than C++, and a framework
capable of handling systems composed out of parts written in (say) C++, C, Fortran, Java,
and Python would be very useful to many. However, we do not have the resources to do
that well, nor do we know if that can be done well. That is, we do not know whether it can
be done without limiting the language features used in the various languages, limiting the
kinds of analysis supported by the complete system, and without replicating essentially all
representation node and analysis facilities for each language. These questions are beyond
the scope of this paper. It should be easy to handle at least large subsets of dialects. In
this context, C is a set of dialects. Most C++ implementations are de facto dialects.

Within IPR, C++ programs are represented as sets of graphs. For example, consider
the declaration a function copy:



int∗ copy(const int∗ b, const int∗ e, int∗ out);
To represent this, we must create nodes for the various entities involved, such as types,
identifiers, the function, and function parameters. parameters. Some information is implicit
in the C++ syntax. For example, that declaration will occur in a scope, may overload other
copy functions, and this copy may throw exceptions. The IPR makes all such information
easily accessible to a user. For example, the IPR representation of copy contains the
exception specification throw(...), a link to the enclosing scope, and links to other entities
called copy in that scope.

The types int∗ and const int∗ are both mentioned twice. The IPR library unifies
nodes, so that a single node represents all ints in a program, and another node represents
all const ints in a program, referring to the int node for its int part. The implication of
this is that we can make claims of minimality of the size of the representation and of the
number of nodes we have to traverse to gather information. It also implies that the IPR
is not “just a dumb data structure”: it is a program that performs several fundamental
services as it creates the representation of a program. Such services would otherwise have
had to be done by each user or by other services. For example, the IPR implements simple
and efficient automatic garbage collection.

The design of IPR is not derived from a compiler’s internal data structures. In fact, a
major aim of the IPR is to be compiler independent. The representation within compilers
have evolved over years to serve diverse requirements, such as error detection and reporting,
code generation, providing information for debuggers and browsers, etc. The IPR has only
one aim: to allow simple traversals with access to all information as needed and in a uniform
way. By simple traversal, we mean that the complexity of a traversal is proportional to the
analysis or transform performed, rather than proportional to the complexity of the source
language. Because the IPR includes full type information, full overload resolution, and full
understanding of template specialization, it can be generated only by a full C++ compiler.
That is, the popular techniques relying on just a parser (syntax analyser or slightly enhanced
syntax analyser) are insufficiently general: They don’t generate sufficient information for
complete representation. The IPR is designed so as to require only minimal invasion into a
compiler to extract the information it needs.

The IPR is a fully-typed abstract-syntax tree. This is not the optimal data structure
for every kind of analysis and transformation. It is, however, a representation from which
a specialized representation (e.g. a flow graph or an linkage specification) can be generated
far more easily than through conventional parsing or major surgery to compiler internals.
In particular, we are developing a high-level flow graph representation that can be held in
memory together with the AST and share type, scope, and variable information.

3 Representation

Representing C++ completely is equivalent to formalizing its static semantics. Basically,
there is a one-to-one correspondence between a semantic equation and an IPR node. The
IPR does not just represent the syntax of C++ entities. The IPR essentially represents a
superset of C++ that is far more regular than C++. Semantic notions such as overload-sets
and scopes are fundamental parts of the library and types play a central role. In fact every

IPR entity has a type, even types. Thus, in addition to supporting type-based analysis and
transformation, the IPR supports concept-based analysis and transformation.



3.1 Nodes

Here, we do not attempt to present every IPR node. Instead, we present only as much
of IPR as is needed to understand the key ideas and underlying principles. Each node
represents a fundamental part of C++ so that each piece of C++ code can be represented
by a minimal number of nodes (and not, for example, by a number of nodes determined by
a parsing strategy).

3.2 Node design

The IPR library provides users with classes to cover all aspects of Standard C++. Those
classes are designed as a set of hierarchies, and can be divided into two major groups:

1. abstract classes, providing interfaces to representations

2. concrete classes, providing implementations.

The interface classes support non-mutating operations only; these operations are pre-
sented as virtual functions. Currently, traversals use the Visitor Design Pattern [8] or an
iterator approach.

IPR is designed to yield information in the minimum number of indirections. Conse-
quently, every indirection in IPR is semantically significant. That is, an indirection refers
to 0, 2 or more possibilities of different kinds of information, but not 1. For if there was
only 1 kind of information, that kind of information would be accessed directly. Therefore
an if-statement, a switch, or an indirect function call is needed for each indirection. We
use virtual function calls to implement indirections. In performance, that is equivalent to a
switch plus a function call [12]. Virtual functions are preferable for simplicity, code clarity,
and maintenance.

The obvious design of such class hierarchies is an elaborate lattice relying on interfaces
presented as abstract virtual base classes, and implementation class hierarchies, with nice
symmetry between them. This was indeed our first design. However, that led to hard-to
maintain code (prone to lookup errors and problems with older compilers), overly large
objects (containing the internal links needed to implement virtual base classes), and slow
(due to overuse of virtual functions).

The current design (described below) relies on composition of class hierarchies from
templates, minimizing the number of indirections (and thus object size), and the number
of virtual function calls. To minimize the number of objects and to avoid logically unneces-
sary indirections, we use member variables, rather than separate objects accessed through
pointers, whenever possible.

Interfaces Type expressions and classic expressions can be seen as the result of unary,
or binary, or ternary node constructors. So, given suitable arguments, we need just three
templates to generate every IPR node for “pure C++”. In addition, we occasionally need
a fourth argument to handle linkage to non-C++ code, requiring a quaternary node. For
example, every binary node can be generated from this template:

template<class Cat = Expr, // kind (category) of node
class First = const Expr&,
class Second = const Expr&>

struct Binary : Cat {
typedef Cat Category;



typedef First Arg1_type;
typedef Second Arg2_type;
virtual Arg1_type first() const = 0;
virtual Arg2_type second() const = 0;

};

Binary is the base class for all nodes constructed with two arguments, such as an array
type (node) or an addition expression (node). The first template parameter Cat specifies the
kind (category) of the node: (classic) expression, type, statement, or declaration. The other
two template parameters specify the type of arguments expected by the node constructor.
Most node constructors take expression arguments, so we provide the default value Expr.
The functions first() and second() provide generic access to data.

Note how Binary is derived from its first argument (Cat). That’s how Binary gets its
set of operations and its data members: It inherits them from its argument. This technique
is called “the curiously recurring template pattern” [4] or “the Barton-Nackman trick”; it
has been common for avoiding tedious repetition and unpleasant loopholes in type systems
for more than a decade (it is mentioned in the ARM [7], but rarely fails to surprise). The
strategy is systematically applied in the IPR library, leading to linearization of the class
hierarchy (see Figure 1).
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Figure 1: Current design of the IPR library

A specific interface class is then derived from the appropriate base (Unary, Binary, or
Tertiary). For example:

struct Array
: Binary<Category<array_cat,Type>, const Type&> {

Arg1_type element_type() const { return first(); }
Arg2_type bound() const { return second(); }

};

That is, an Array is a Type taking two arguments (a Type and an Expr) and a return type
(a Type). Array’s two member functions provide the obvious interface: element type()
returns the type of an element and bound() returns the number of elements. Please note
that the functions element type() and bound() are themselves not virtual functions; they
are simple “forwarding” inline functions, therefore induce no overhead.

The category argument Category<array cat,Type> exposes an implementation detail.
The category is Type (i.e., an array is a type), but to optimize comparisons of types, we



associate an integer array cat with the Array type. Logically, it would be better not to
expose this implementation detail, but avoiding that would involve either a per-node mem-
ory overhead storing the array cat value or a double dispatch in every node comparison.
We introduced array cat after finding node comparison to be our main performance bot-
tleneck. So far, we have found no systematic technique for hiding array cat that doesn’t
compromise our aim to keep the IPR minimal.

Concrete Representations Each interface class has a matching implementation class.
Like the interface classes, the (concrete) implementation classes are generated from tem-
plates. In particular, impl::Binary is the concrete implementation corresponding to the
interface ipr::Binary:

template<class Interface>
struct impl::Binary : Interface {
typedef typename Interface::Arg1_type Arg1_type;
typedef typename Interface::Arg2_type Arg2_type;
struct Rep {
Arg1_type first;
Arg2_type second;
Rep(Arg1_type f, Arg2_type s)
: first(f), second(s) { }

};
Rep rep;

Binary(const Rep& r) : rep(r) { }
Binary(Arg1_type f, Arg2_type s) : rep(f, s) { }

// Override ipr::Binary<>::first.
Arg1_type first() const { return rep.first; }

// Override ipr::Binary<>::second.
Arg2_type second() const { return rep.second; }

};

The impl::Binary implementation template specifies a representation, constructors,
and access functions (first() and second()) for the Interface. Given impl::Binary,
we simply define Array as a typedef for the implementation type:

typedef impl::Binary<impl::Type<ipr::Array> > Array;

The Array type is generated as an instantiation of the Binary template.

3.3 Sharing

By node sharing, we mean that two nodes that represent the same entity shall have the same
address. In particular, node sharing implies that if a node constructor is presented twice
with equal lists of arguments, it will yield the same node. If node sharing is implemented
for a class, that class is said to be unified. Since a user-defined type (classes or enums)
can be defined only once in a given translation unit, sharing of nodes is suggested by C++
language rules. Every IPR node can be unified; exactly which are unified is a design choice
related to performance (of the IPR itself and of applications). This can be used to tune
IPR.



Implementing node sharing is easy for named types, but less straightforward for built-
in types and types constructed out of other types using composition operators (e.g., int,
double (*)(double), and vector<Shape*>). The problem arise because such types are
not introduced by declarations. They can be referred to without being explicitly introduced
into a program. For example, we can say int* or take the address of a double and implicitly
introduce double* into our set of types. Node sharing for such types implies maintenance
of tables that translate arguments to constructed nodes. Since an expression does not have
a name, unifying expression nodes share this problem (and its solution) with nodes for
unnamed types.

We can define node sharing based on at least two distinct criteria: syntactic equivalence,
or semantic equivalence. Node sharing based on syntactic equivalence has implications on
the meaning of overloaded declarations; two declarations might appear overloaded even
though only the spelling of their types differs. For example, the following function template
declarations are possibly overloads whereas Standard C++ rules state they declare the same
function.

template<typename T, typename U>
void bhar(T, U);

template<typename U, typename T>
void bhar(U, T);

The reason is that for templates, only the positions of template-parameters (and their kinds)
are relevant. Normally, we do not care whether the name of a template-parameter is T or U;
however, in real programs, people often use meaningful names, such as ForwardIterator
instead of T.

3.4 Effects of unification

Space is time. It should be obvious that, because nodes are not repeatedly created to
represent the same type, node sharing leads to reduced memory usage and less scattering
in the address space (and therefore few cache misses.) Experiments with the classic first
program

#include <iostream>
int main()
{
std::cout << "Hello, World" << std::endl;

}

based on GCC-3.4.2 — at the time we started the IPR project — reveal that, in non-sharing
mode, there are 60855 calls to type constructors; out of which we have

1. 60% for named types (only less than 1% are syntactically distinct),

2. 17% for pointer types,

3. 11% for const-qualified types,

Due to curiosities in the GCC compiler infrastructure, we cannot get precise counting of
nodes, so the above are approximates (±5%). However, the GCC representation was about
32 times the size of the IPR representation. The “Hello, World!” program is useful be-
cause it drags in so much relatively advanced code though its #include. However, even



for medium-sized programs we must multiply the figures by at least 100 to get realistic
measures, and then our savings in time and space begin to appear significant. Once we
start to represent multiple translation units simultaneously, unification becomes a critical
component of scalability.

Inspired by our design and our measurements, GCC has switched to a unified internal
representation of types.

For program analysis that requires type comparison, node sharing offers time efficiency
because type comparison is reduced to pointer comparison. This is significant because
many forms of analysis (as well as the IPR itself) basically boil down to “traverse the
program representation doing a lot of comparisons along the way to decide which nodes
need attention”. With node sharing, those comparisons are simple pointer comparisons.
Without node sharing they are recursive double dispatch operations. Obviously, the time
gained sharing nodes should be weighted against the overhead of building and using hash
tables to be able to find existing nodes when you make a new node.

In the context of program transformation, another advantage of node sharing is con-
sistency. Since there can be only one node for a type named Foo, we never need to walk
through the whole graph to modify the properties of all Foos. That is an important prop-
erty when merging separately compiled translation units, doing whole-program analysis,
and doing systematic substitutions. For example, with a single substitution, we can replace
all uses of a type, say int[], with another type, say vector<int>, in a whole translation
unit.

4 Details

“The devil is in the details.” If C++ had been designed yesterday with “simple complete
representation” as a major goal, representing it would have relatively been easy. Basically,
the previous section would have been the end of the story. However, elements of C++
were designed more than 30 years ago (for pre-K&R C) and much (both standard and
non-standard) have been added since. This seriously complicates the design of a complete
representation for C++. However, these “details” must be dealt with to produce a tool,
rather than a toy. If you feel like commenting “C++ is just too complicated, let’s work on
tools for another language” then think what our favorite language might look like after 20
years of serious industrial use and also consider the number of people that will benefit from
extra work required for a mature language.

Dealing with “details” has been much more than 50% of the total design effort. The
“details” are plentiful and irregular. However, we must fit them into a more general frame-
work so that the IPR user do not need to remember (and handle) a long list of special
cases. In other words, we cannot take an ad hoc approach to dealing with ad hoc language
features. We must abstract the many “details” into a few IPR constructs.

4.1 Lexical and home scopes

A name can simultaneously belong to more than one scope. For example:

int f(int i) {
extern int g(int); // g is global
return g(i);

}



class A {
friend void f(A) { } // f is in enclosing scope; visible

// only through ‘‘argument dependent’’
// name lookup

};

namespace N {
extern "C" void bar(); // bar is global

}

In the function f(int), the locally declared function g(int) is visible only in the local
block established by the body of f(int). However, it really belongs to the global scope;
that is, there is no nested or local functions in C or C++. The function f(A) defined in
the class A really belongs to the enclosing namespace scope of A. However, an ordinary
name lookup will not find it (unless a matching declaration is also available in that scope,
which is not the case here). That function is visible only through a special name lookup
(argument dependent name lookup) that considers the syntactic form of a call and the type
of the arguments. The third example declares the function bar() as having a “C” language
calling convention, consequently it really belongs to the global scope. However name lookup
will not find it in the global scope – it is visible only the scope of N. Note also that there
can be only one such function in the whole program named bar with that same type and
“C” calling convention.

Note that the first example is also C and fairly common in C-style C++ code.
The general solution to all of these problems (and more) is that every declaration has

a lexical scope and some also have a home scope. All information relating to the entity
declared can be found though its entry in its home scope.

struct Decl : Stmt {
// ...
virtual const Name& name() const = 0;
virtual const Region& home_region() const = 0;
virtual const Region& lexical_region() const = 0;
// ...

};

The lexical region is the scope in which the declaration appear in the source text. The
home region the scope in which the declaration really belongs to according to the C++
rules. For most cases, those two regions are the same. However, for each of the examples
above the home region and lexical region differ.

4.2 Overloading, specialization, etc.

Often, several declarations are related. For example, a function can have several declarations
(which must match) and several functions in a scope can have the same name (so that
they must be considered together for overload resolution). Of course, IPR must keep the
information that the programmer provided (the many declarations), but it must also present
a single entity (the function, the variable, the template) to the user unless the user express
an interest in “the details”. Consider:

void print(double);

void f(int i) { print(i); }



void print(int);

void g(int i) { print(i); }

void print(double d) { cout << d; }

The IPR represents different functions with the same name in the same scope as overload
sets, but different declarations of the same function are linked to the first declaration of
that function: The Decl class handles all linked declarations with just three functions:

struct Decl : Stmt {
// ...
virtual const Decl& master() const = 0;
virtual const Sequence<Decl>& decl_set() const = 0;
virtual const Decl& defining_decl() const = 0;
// ...

};

The master() is the first declaration of a given name encountered. The decl set() is
the set of all declarations of that name. The defining decl() is the defining declaration.

Both the primary declaration and all the secondary declarations are placed in their
proper scopes and their proper places in that scope. This is essential: Note how you can
change the meaning of the program fragment above by reordering the declarations. This is
unfortunate, but follows directly from the C++ standard and is used in real code.

The distinction between an overload set and a linked set of declarations of the same
entity also directly reflects the C++ distinction between overloading and specialization.

4.3 Lowering

Even at the level of an AST, different users want different levels of representation. We have
already “lowered” the representation of the program by expanding macros, so that the IPR
represents a compiler’s view of a program, rather than the view of a programmer looking
at a screen. This is an important design decision for IPR and not one that’s always ideal.
However, we don’t think we had much choice. Macros are inherently irregular, so that
distinctions among fundamental notions — such as, declaration, statement, and expression
— are often blurred by macros.

The next major design choice is whether to retain typedef names. For example:

typedef int Length;
Length x;

Is x a Length or an int. According to C++, it’s an int because a typedef name is only
an alias. However, Length has a meaning to some programmer and some forms of analysis
assign meaning to typedef names (and to other aliases). “Other aliases” include namespace
aliases, using declarations, and (in C++0x) template aliases. It is important that the IPR
implement a uniform policy vis a vis aliases.

Finally, there is the issue of how to represent member access and uses of overloaded
operators. Consider:

void f(T x, TT p) {
++x;
T(x) = 5;
p->f();

}



We could represent ++x as a use of operator ++ or as call node for the function operator++().
The first alternative is the user’s view, the syntactic view. The latter view is “lowered” to
reflect a semantic view. For example, lowering to a uniform function call notation simplifies
programs concerned with program execution.

It is important to have a uniform policy on this kind of examples. Several times we
(as have others) thought we had a free choice in such decisions for a specific operator,
language construct, or type. In fact, we do not. Consider the case where the example above
is a template function with T as an unconstrained template parameter. In that case, we
cannot even know whether T(x) is a cast or a declaration of a variable x with redundant
parentheses! Any uniform policy in a system that fully handles templates must retain the
syntactic view – any lowering will be premature. Also, the syntactic view is the only one
that allows re-generation of the user’s code without risk of subtle semantic changes. For
example, if we transformed ++x to a uniform call syntax (say) operator++(&x), we would
not (without additional information) know whether the user wrote ++x or x.operator++()
or operator++(&x).

So, to preserve information and thereby support a larger set of applications, the IPR
doesn’t lower by default. If you want lowering, you can ask IPR to do so at creation time.
This works well, but even that may be a premature optimization and we are considering
replacing the option to lower by a lowering IPR-to-IPR tool.

Note that before lowering, IPR will take a purely syntactic view of aliases. For example:

typedef int Length;
// ...
void f(Length);
void f(int);

Before lowering, the IPR – like a naive human reader – will think that there are two functions
(syntactic equivalence) whereas after lowering it will realize that there really (according to
C++) is only one. The distinction can be useful for some forms of analysis.

4.4 Proprietary extensions

Most compiler providers have a host of proprietary language extensions that the average
end user doesn’t see. However, the deep internals of most standard libraries are littered
with them. Try representing the innocent-looking ”Hello, world!” program:

#include<iostream>

int main()
{

std::cout << "Hello, world!";
}

To do this, we have to handle dozens of proprietary extensions. Such extensions (of course)
differ from provider to provider and it is not unusual that they vary from release to release.
They tend to be plentiful in the lowest levels of code (OS interfaces, I/O, memory man-
agement, etc.), so the standard headers included to compile ”Hello, world!” is a good place
to look for them. For example, in <iostream> from GCC-4.3.0, we find five extensions in
what should have been a simple one-line function declaration:

extern int
snprintf (char *__restrict __s, size_t __maxlen,



__const char *__restrict __format, ...)
throw () __attribute__ ((__format__ (__printf__, 3, 4)));

Often, such extensions are hidden from the programmers by wrapping them in macros, but
the IPR sees through that. To deal with this, we have temporarily been reduced to the “ad
hockery” of simply adding IPR nodes to represent the proprietary extensions, usually one
new node per extension. Given the rate of change in these extensions, this approach is not
sustainable. The ”Hello, world!” program is portable and by default the IPR for it should
also be. The solution is to modularize the program so that we don’t represent “details”
of <iostream> in the IPR unless the user explicitly requests it. Such requests may be
non-portable in the sense that an IPR implementation for a given compiler (or version of a
compiler) may not be configured to precisely handle all proprietary extensions.

Please note that not handling proprietary extensions is not an option for a general
representation, such as IPR, even though it can be for a specialized representation (say)
aimed at the specific task of parallelizing array computations.

4.5 Separate compilation and whole-program analysis

Real-world C++ programs consist of many separately-compiled translation units. Each
translation unit often consists of many hundreds of header files recursively #included by
a single source code file. As described so far, the IPR represents a C++ translation unit
as it appears after preprocessing; that is, as a single source file with the information from
the header files included and macros expanded. We can handle multiple translation units
by storing the IPR for many units and then reading them back in. The ability to store the
IPR in what we call XPR (“eXternal Program Representation”) format is essential because
most C++ compilers cannot compile two translation units in a single invocation.

The fact that IPR is unified is most useful here because that way every inconsistency
between translation units is automatically caught. For example, we could try to generate
IPR for a program with the two source files

// x.cpp
int glob;
int gfct();

and

// y.cpp
double glob;
void gfct();

The IPR will detect the two errors.
So, the IPR (supported by XPR) trivially supports whole-program analysis: Just add as

many source files as you want and run traversals and transforms as usual. This is also the
point where the compactness of nodes and the space savings from unification really pays
off.

However, the situation is still not quite ideal. Considering the problems with proprietary
extensions deep in implementations, we must consider an explicit approach to modularity.
The IPR knows the source of every declaration (to the line number), so it is easy to tell
what interface to a “module”, such as <iostream> was really used by user code. This
implies that we could represent a use of a module as the name of its header file plus the set
of declaration nodes used to access it. That is, we can treat a header file as a parameterized



module. Generating that is a fairly simple IPR program, but the need to abstract from
details of header files is so common that we are considering integrating it into the IPR itself.

Note that in general two uses of a “module” represented as a header file are not equivalent
because macros, typedef, etc. can affect the set of definitions in the header and meaning of
those definitions. We can trivially use the IPR to detect any differences or to detect any
differences that matter for a given use, though.

4.6 Simplicity

One measure of simplicity is that the complete source code for IPR (excluding compiler-
to-IPR generators) is just 2,500 lines of C++ (excluding comments). The code for IPR is
available from the author.

5 Related and Future Work

The IPR was inspired by the eXtented Type Information library designed by the second
author. XTI focused on the representation of the C++ type system, whereas IPR aims at
the full C++ language. There are many projects [1, 2, 14, 15, 17, 18, 19] targeting static
analysis and transformations of C++ programs. For example, CodeBoost [2, 3, 13] focuses
on transformations of C++ programs, for numerical PDE solvers, written in the Sophus
style. Simplicissimus [18, 19] and ROSE [17] are other projects for transforming C++
programs. Many of these systems are commercial and not documented in the literature.
Few aim to handle full Standard C++, few aims at generality (as opposed to specific
applications), and few aims at compiler independence. None — to our knowledge — aims
at all three.

Obviously, our immediate aims include applications that test the generality and portabil-
ity of the IPR and its associated tools. For example, conventional style analyzers, statistics
gathering, and visualization tools. We have been able to represent the full source code
FireFox. We will experiment with the use of concepts and library-specific validations, op-
timizations, and transformations in the domains of parallel, distributed, and embedded
systems.

We plan to provide more ways of specifying traversals and transforms (such as ROSE
and CodeBoost) and to work on better ways of specifying type-sensitive (incl. concept
sensitive) traversals and transformations.

From the standpoint of the structure of the IPR, the most important direction of work
is to get a better handle on modularity.

We will work to make the compiler to IPR generation more complete; it is already more
complete that some popular compilers, but every lacking feature will cause a problem for
someone. In addition we will try to interface the IPR to more compilers and handle more
dialects.

6 Conclusion

Current frameworks for representing C++ are not general, complete, accessible and efficient.
In this paper, we have shown how general, systematic, and simple design rules can lead to
a complete, direct, and efficient representation of ISO Standard C++. In particular, we
don’t have to resort to ad hoc rules for program representation or low-level techniques



for completeness or efficiency. Unification helps maintain consistency, keeps our program
representation compact (as required for scalability), and minimizes the cost of comparisons.
To serve the widest range of applications, we use syntactic unification. Given syntactic
unification, we can implement semantic unification by a simple transformation, whereas
the other way around is impossible without referring back to the program source text. In
addition to unification, careful and systematic node class and node class hierarchy design
is necessary to minimize overhead and enable scaling.
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Abstract

This paper discusses ways in which software systems for computer algebra could be
improved if designed from scratch today rather than evolving designs from the 1980s.

1 Introduction

The prospect of building a general purpose computer algebra system from scratch is both
daunting and exciting. On one hand, the sheer magnitude of the effort compared to the
expected tangible reward is a tremendous barrier that few are able or willing to tackle. On
the other hand, a blank slate entices us to consider what new generation of problems could
be solved that would be difficult to address by incremental evolution of existing systems.

Computer algebra systems incorporate substantial amounts of code embodying sophis-
ticated mathematical algorithms. Building a general purpose computer algebra system is
a large effort requiring specialized human resources. Not only must the developers of a
system be judicious software architects and skilled programmers, they must also have a
high degree of mathematical expertise. Even if a group could build a new system, there
is the question of whether another system should be built. There is considerable benefit
in having a community where individuals can build on each other’s efforts. Dividing the
existing, relatively small community can lower this synergistic effect.

Setting aside for the moment whether we actually can or should build another major
computer algebra system, we can consider the question of how a system built in 2010
would be different from the current systems, whose basic structures were for the most part
established decades ago. This is the question addressed in the present article.

2 What is Different Today

Let us first take stock of the environmental factors that are different today than when the
current generation of established systems were conceived. Some of these factors would affect
any new design effort and are not specific to computer algebra.

Model of Interaction

The currently pervasive model of computer algebra is that of a dialogue between a user
and a computer in an interactive session. In contrast to the previous batch systems, the
direction of the computation can be decided by the user based on the results of each step.
While this has been sufficient for many uses, we should ask what other models of interaction
have proven useful in other applications.



Collaboration Today we see the emergence of social media as a common model of com-
puter interaction. Groups collaborate or whole communities interact using a networked
computing system as an intermediary, where the computational power is almost incidental.
Today both pure and applied mathematics is much more collaborative endeavour than in
the past decades. Natural support for technical collaboration is a new area of opportunity
for our systems.

Exploration The worksheet/notebook model of interaction forces us to think in a linear
fashion about a single line of computation. In solving problems, however, it is very often
desirable to try several avenues of approach at the same time. In this situation one wishes
to switch among cases, advancing a tree of exploration until one solution is found or perhaps
all cases are completely explored. Although some earlier systems supported this [1], the
popular computer algebra systems today offer essentially no assistance at case management
or switching back and forth among contexts in which different assumptions hold.

Presentation Much work has been done in other areas on summarizing data usefully.
Our systems for symbolic mathematical computation, however, for the most part present
mathematical objects either as fully explicit expressions, sometimes taking thousands of
lines, or as graphs of one sort or another. What has been discussed early on [10], but never
well realized, is the presentation of values more succinctly while highlighting the aspects
of interest. This direction can be developed quite a bit using programmatically identified
features of interest that vary from application to application. Once we start thinking in
this direction, it quickly follows that we should not see these graphical and expression
presentations as different derived values, but rather as different simultaneous views of the
same object.

Manipulation Users today are used to manipulating objects directly in a visual setting.
Direct manipulation is a natural paradigm for mathematical expression transformation, but
little has been done in this area. Our current systems provide many operations for trans-
forming expressions by applying various identities or sophisticated algorithms. What has
been lacking, however, in most of our systems is the ability to work on subexpressions in a
similar manner. Direct manipulation of subexpressions, applying identities or transforma-
tions in place, can give a qualitatively different style of interaction. Being able to perform
direct manipulation through multiple views leads to many interesting possibilities.

Input modalities Modern user interfaces are making use of a broad range of modalities,
from the usual keyboard and mouse, to voice, cameras and various motion capture devices.
It is tempting to let the imagination run wild here, but there are some very practical and
obvious next steps. One is the digital pen that is now commonly available on Tablet PCs,
digital white boards and PDAs [6]. Not only would it be natural to enter equations using
handwritten two-dimensional notation, but there are a number of gestures commonly used in
simplification. These include canceling or combining terms in a sum or factors in a quotient.
A second use of the digital pen would be for sketching or making annotations. Personally,
I find that when I am working on a problem I almost always make use of various informal
ad hoc notations as tool for thought. Using a digital pen here would allow this thought
process to flow naturally, without the distracting mechanics of some drawing program, plus
it would be useful to keep these notes together with the computation.



Locus

Related to the model of interaction is the question of locus of code and data, not only
in support of collaboration but also in support of individuals with multiple computing
resources.

Data It is increasingly uncommon for applications or data to be confined to a single
device. It has been commonplace for more than a decade to access information via various
network protocols, but more recently it has become usual to update data in a universal
store this way. This is one of the principal ingredients of cloud computing and opens
many opportunities for symbolic mathematical computing, for example evolving shared
databases of mathematical definitions, facts, proofs and constructions as well as objectives
and conjectures. As these build on each other, interface mechanisms will be required to
ensure the correctness of the compositions.

Programs Mathematical software has the fortunate property that, compared to other ap-
plications, it is relatively easy to specify cleanly what a program is supposed to do. There
is therefore the possibility to have a variety of components to solve the same problem. This
could include versions of code maintained by experts deploying from their own servers. It
also allows, for example, simple versions that can be deployed freely and rapidly, sophisti-
cated versions using different algorithms for higher performance, versions generating results
carrying correctness certificates or domains of applicability, and so on.

Access Universal store need not be shared among different users — it may also be used by
a single user to provide access to his or her data and computations from various locations and
devices. User interface issues arise in how to create, explore and manipulate mathematical
objects from a wide variety of devices, including personal workstations, tablet PCs, smart
phones and digital whiteboards.

Computation Modern server farms use virtualization extensively to deploy computa-
tional resources flexibly, and grid computing has become a practice to solve scientific and
technical problems, principally so far of a numerical nature. Locus of computation may
also be determined by the location of specialized web services, where the application code
must run at a specific location for technical or economic reasons.

Embedding At the other end of the spectrum, we have increased opportunity for em-
bedded computer algebra in a wider range of applications than ever before. For example,
document processing software was earlier dwarfed by the size of computer algebra systems.
But now these systems can be very sophisticated, with lexical and grammatical knowledge
of many languages, advanced multilingual formatting and so on. Computer algebra software
for reformatting mathematical expressions intelligently can now exist as a small component
of such document editors. Optimizing compilers are another example where an embedded
computer algebra component would be relatively small compared to the overall system.
Such a component would be useful in reformulating code to make use of identities, to share
non-obvious common sub-expressions or to solve optimization sub-problems. At a lower
level, computer algebra has long been used in the design of devices (such as error-correcting
disk controllers), but we now have the possibility to compute symbolic or symbolic-numeric
values on the fly.



Computing Power

Present computer algebra systems had their basic design decided in an era when it was
envisaged they would run in an environment with orders of magnitude less memory and
processor cycles. This changes several design points.

We have more computing power than ever before... Today’s computers have more
cache memory than there was primary memory in the design for today’s most used com-
puter algebra systems. The speed of single processors has likewise scaled up. We must
therefore review all the underlying assumptions in our system designs, from data structures
to patterns of memory access. In some situations we have overly complicated approaches to
problems that can be greatly simplified in today’s more powerful computing environments.
In others, we have methods that were perfectly acceptable for smaller systems, but cause
significant inefficiencies with today’s architectures. For example, the order in which mem-
ory should be traversed in garbage collection is greatly dependent on the specifics of the
memory hierarchy.

... and it is still not enough In the initial design of our current computer algebra
systems, it was possible to consider that problems of a size that would fit in memory were
of a size suitable for classical algorithms. Now, any general purpose system must consider
that problems that can be handled by classical methods are not the principal bottleneck. At
the same time, multi-core processors with highly parallel graphical processing units are the
norm for personal computers. We are at a stage where high performance computer algebra
requires both asymptotically fast algorithms and taking proper advantage of modern parallel
hardware.

3 Aspects of Computer Mathematics

There has always been the need to consider how computer algebra systems should interact
with traditional numerical computing and graphics software. Today additional interactions
should be considered.

Symbolic-numeric computation The past decade and a half has seen significant ad-
vance in our understanding of symbolic-numeric algorithms, particularly for polynomials.
However neither the data structures nor the overall logic of present computer algebra li-
braries are organized to have symbolic-numeric objects as first-class objects that are perva-
sively understood. Pervasive incorporation of symbolic-numeric structures and algorithms
is an important direction in providing consistent handling of algebraic objects with approx-
imate coefficients or partially evaluated expressions on floating point data.

Specialized kernels While considering interfaces that generalize the interactions of our
systems, we must also make them work well in important specialized settings. There are a
variety of settings where particularly efficient special-purpose software packages are or will
become available. Notably, efficient specialized packages exist for linear algebra over various
fields, semi-algebraic geometry, polynomial system solving and computational group theory
(e.g. [3, 4, 9]).



Symbolic mathematical computation The past decades have seen an increasing sep-
aration between “symbolic mathematical computation”, by which I mean computation on
expressions in term algebras, and “computer algebra”, by which I mean algebraic algorithms
in specific domains (that might involve symbols). With a few exceptions, there has been
little attention to solving problems where symbols are other than variables or coefficient
parameters in rational functions. The problems of polynomials with symbolic exponents
or matrices with internal structure of symbolic size have been considered elsewhere [5, 7].
But this is a much more general problem. A systematic approach is required to handle ex-
pressions involving symbols representing unspecified objects of different types. A common
conceptual framework should provide, for example, simplification of expressions involving
symbolic matrices (e.g. AAT /det A), polynomials with symbolic exponents, expressions
involving Bessel functions of symbolic complex index, etc. This should be determined au-
tomatically by the algebraic specification of the domain of concrete values and should allow
for partial evaluation of symbols to these values. In most cases algorithms on the symbolic
values will be different than algorithms on the concrete values, completely analogously to
the case with symbolic-numeric computation.

Inter-operation with proof assistants With a few notable exceptions, computer al-
gebra systems and automated proof assistants have existed in separate circles so far. The
present generation of widely used computer algebra systems has little ability to make use of
mathematical facts provided by proof assistants. In the 1980s, it was arguably reasonable
to take this direction based on the state of proof systems then. For example, in the design
of Axiom, it was considered whether to require a complete set of axiomatic properties in
the signatures of domains. This idea was rejected because, at the time, the state of the
art would allow little use to be made of these properties, even to the extend of verifying
their consistency. Today we should consider as a standard feature much closer interaction
between proof assistance and computer algebra software. Several areas can benefit from
this, including specification of interfaces among components, certification of results and
domains of applicability, justification of optimizations and, in the other direction, use of
efficient algebra in proofs.

Knowledge management In addition to each system managing knowledge about its
own library, we can foresee that mathematical knowledge will more generally be indexed
and searchable in various ways. At the moment, some systems provide rudimentary access
to a mathematical dictionary. In the future, when working on mathematical objects, it
should be possible to search for known facts about these objects. Initially, these facts will
not be in a form that can be used directly by the software system, but rather will be
for the user’s benefit. So how our mathematical software system organizes and represents
knowledge becomes important not only for self-organization, but also for pulling in useful
information from external sources.

Longitudinal inter-operation We need to plan for longevity of our mathematical soft-
ware systems. All of our currently popular systems contain code older than many of their
users. (Some of the code I have written in Maple is now almost 30 years old.) This longevity
has many implications, foremost among them relating to the overall system architecture.
Code will be written at different times and in different places, yet still be related in terms
of the objects handled. Old and new code will need to be used together in some composable
manner. Old code will need to be used in unanticipated new ways.



4 Elements of a Computer Algebra System

What do these desiderata imply for the structure of future computer algebra systems? While
there are many possible directions, a few things seem to be clear in any future scenario.

Modular architecture All successful computer algebra systems have a significant code
base, including the core system and additional libraries. To be scalable, well-defined and
well-structured interactions among the parts is important. How these interactions are struc-
tured can be designed around the criteria discussed. Systems such as Axiom and Magma
have used modern algebra together with data abstraction for modularity. These algebraic
ideas remain useful, but must be augmented with systematic interfaces to dovetail expres-
sion (term algebra) views of component objects. Supporting these interfaces pervasively
across modules will be required to support composite mathematical types well.

Interfaces as mathematical objects In a system for symbolic mathematical compu-
tation the interface specifications can themselves be mathematical objects. These can be
reasoned with to perform module selection, to form simplification rules over the appropriate
equational theories, etc. In particular, it would be desirable to have symbolic expression
algebra views generated automatically from the signatures of the algebraic interfaces.

Federation We should strive to have sufficient precision in the interfaces to mathematical
modules to allow correct inter-operation of components from a variety of sources, both free
and proprietary, local and remote. There should be no technological impediment to making
components as low-level/efficient or high-level/abstract as desired. As discussed elsewhere,
the programming languages for library development and for top-level scripting have different
requirements and should therefore probably be different [8].

Library reflection A large, mature system or federation of systems will work on a vast
selection of objects with a plethora of available functionality, applicable in a variety of
different contexts. No single person will be able to keep track of everything offered. In
our setting, the majority of the functionality will be of a mathematical nature, so the
properties of the modules can themselves mathematical objects that can be manipulated,
reasoned with, organized and searched. At the very least, it should be possible to provide
intelligent library browsing tools based on this mathematical structure, and it is not too
much to imagine that object composition and algorithm selection could be at least partially
automated.

Levels of abstraction Much of mathematics is about abstraction. We may wish to work
at one level of abstraction, or at several levels. Some would argue that computer algebra
works precisely because we have theorems and constructions that relate these different
levels. In any case, we must be able to express ideas and compute with objects at the
various levels and move among them. A framework for smooth movement between elements
of symbolic domains and value domains is important to allow modular development of
systems. Being able to view terms as values in domains and domain elements as parts
of terms should allow composition of abstractions without special extra machinery. For
example, we should be able to use the same mechanisms to work with matrices of numbers,
matrices of parameterized rational functions, symbolic matrix expressions and expressions
involving the rings and fields themselves.



Certification Our systems will need to make some sort of statements about the cor-
rectness of their results. This arises from two directions: First, if an engineer relies on a
calculation performed by a computer algebra system as part of a design, then in signing
off on that design it is required to record the justification. This is jurisdiction-dependent
legal issue. From a systems software point of view, the minimum requirement would be
for the computation to keep track of the conditions under which it is valid (for example,
which quantities have appeared as denominators and so must be non-zero). Secondly, as
computer algebra systems and proof systems interact more closely, there is an increasing
set of libraries that are proven correct. A different kind of correctness certificate comes
from using only libraries that have been formally proven.

Computational interfaces We have discussed the need to express well-defined interfaces
among components, and the need to manipulate those interfaces themselves as mathemat-
ical objects. More work is needed in this area. We will also need to transmit data between
components, including a variety of modules from different sources, services at different lo-
cations and displays with different views. It may be that specific subsets of OpenMath
and MathML will be sufficient for these purposes. Or it may be that some other specifi-
cation language will be required. In any case, attention to these computational interfaces
is required. It is here that the design will either succeed or fail in supporting separately
developed modules to hang together nicely.

Human interfaces We have also discussed at length above how users’ interactions with
systems can evolve. Ideally, our interfaces should support all of the ideas discussed: collab-
oration, exploration, presentation, manipulation and input modalities. Most immediately,
however, an interface that supports collaborative exploration might have the highest impact.

5 The Great Unknown

Much of the success of modern symbolic computing systems is based on powerful algebraic
constructions. But this captures only a small part of what mathematicians do, and an even
smaller part of how mathematics is applied in its various settings. If we are to compose a
next generation system based solely on some elegant ideas of modularity, composability and
reflection, we run the risk of building a system exclusively for a small set of constructive
pure mathematicians.

A lot of what a symbolic computing system must do cannot be expressed readily in
terms of abstract algebra alone. We must acknowledge, and provide support for, exploratory
procedures where the mathematical computing is done as part of an investigation and the
form the answer should take, or even the precise nature of the question, is not known in
advance. Hypotheses may be made and discarded, ad hoc approximations may be used
without justification, and a result may depend on some analytic or numeric properties. At
the same time, the backbone of the system and the majority of its components must work
in precisely defined ways.

There has been much discussion about symbols and unknowns in computer algebra (e.g.
[2]). Previous systems have confounded the notions of programming variables, indetermi-
nates and parameters in algebraic structures, universally or existentially quantified symbols,
unification variables and other ideas. We really must be clearer in what is meant by sym-



bols. Our hypothetical future system must be able to deal with unknowns that arise in
these and other ways.

As well as using symbols to represent values quantified over given types, we must be
able to work with symbols representing values from unknown types. That is, where we do
not yet know the structure for which they represent elements. Not only must we be able
to compose well-defined structures that are fully understood, we must also be able to work
with partially defined structures and partially thought out ideas in a contained way.

6 Conclusions

This article has given a personal view of some desirable directions for the evolution of
computer algebra systems. We have not concentrated on current concerns of identifying
important algebraic algorithms or high performance computing issues. These are already
the subject of much fruitful work. Instead, we have focused on how computer algebra
systems might be organized in the future. Certain of the points may by obvious to a
practitioner in the field and others may be seen as controversial. Some of these ideas can
be retro-fit to existing systems and others may have to await a new generation of systems
cut from whole cloth.
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Abstract
Frequent patterns refer to the occurrences of some data items frequently found together 

in the database. Automated induction of frequent patterns, also known as frequent pattern 
mining, is among major research topics in the area of data mining for which the efficient and 
effective mining techniques have been sought. In this paper, we study the problem of frequent 
pattern mining within the context of knowledge-based software engineering. The term 
knowledge-based software engineering has emerged as a cross discipline of software 
engineering and artificial intelligence to solve a crisis of software productivity due to 
difficulties associated with the engineering of complex software systems. We propose a 
knowledge discovery tool to capture frequent patterns in the educational data sets. Our 
automated tool was implemented with a higher-order logic-programming scheme so that the 
knowledge-intensive tasks can be efficiently coded. The implementation demonstrated in this 
paper can also be extended without much effort to support knowledge caption and 
representation in order to automatically generate knowledge content in the knowledge-base 
system.  

1  Introduction 
Frequent-pattern mining is the discovery of relationships or correlations between items in a 
database. Let I = {i1, i2, i3, ..., im} be a set of m items and DB = {C1, C2, C3, ..., C n} be a database 
of n instances and each data instance contains items in the set I. A pattern is a set of items that 
occur in a data instance. The number of items in a pattern is called the length of the pattern. To 
search for all valid patterns of length 1 up to m in large database is computational expensive. For 
a set I of m different items, the search space for all distinct patterns can be as huge as 2m-1. To 
reduce the size of the search space, the support measurement has been introduced [1]. The 
function support(P) of a pattern P is defined as a number of instances in DB containing P. Thus, 
support(P) = |{T | T  DB,  P T }|. A pattern P is called frequent pattern if the support value 
of P is not less than a predefined minimum support threshold minS. It is the minS constraints that 
help reducing the computational complexity of frequent pattern generation. The minS metric has 
an anti-monotone property and is applied as a basis for reducing search space of mining frequent 
patterns in the well-known algorithm Apriori [1]. 

A logic-based approach to the development of knowledge discovery system has long been 
an interesting research topic among data mining and machine learning researchers. For the 
classification task, tree-based concept induction [4, 8] and rule induction [5] are major 
approaches normally adopted. Frequent-pattern mining task was mostly based on the well-
known APRIORI algorithm [1]. WARMR system [2] upgraded APRIORI algorithm to discover 
frequent patterns. Its extension [3] was developed to discover frequent Datalog patterns and 
relational association rules. Our implementation approach is also based on the mathematical 
logic concepts, but we extend the predicate terms to the level of higher-order logic. 



2  Higher-order logic programming 
In logic programming, a clause is a disjunction of literals (atomic symbols or their negations) 
such as p q and p  r. A statement is in clausal form if it is a conjunction of clauses such as 
(p  q) (  p  r). Logic programming is a subset of first order logic in which clauses are 
restricted to Horn clauses. A Horn clause, named after the logician Alfred Horn [7], is a clause 
that contains at most one positive literal such as  p  q  r. Horn clauses are widely used in 
logic programming because their satisfiability property can be solved by resolution algorithm 
(an inference method for checking whether the formula can be evaluated to true). 

A Horn clause with no positive literal, such as p q, which is equivalent to ( p q ), is 
called query in Prolog and can be interpreted as ‘:- p, q’ in which its value (true/false) to be 
proven by resolution method. A clause that contains exactly one positive literal such as r is 
called a fact representing a true statement, written in clausal form as ‘r :-’ in which the condition 
part is empty and that means r is unconditionally true. Therefore, facts are used to represent 
data. A Horn clause that contains one positive literal and one or more negative literals such as 
p  q  r is called a definite clause and such clause can equivalently written as (p  q)  r which
in turn can be represented as a Prolog rule as r :- p, q. The symbol ‘:-’ is intended to mean ‘ ’,
which is implication in first-order logic, and the symbol ‘,’ represents the operator (or ‘AND’). 
In Prolog, rules are used to define procedures and a Prolog program is normally composed of 
facts and rules. Running a Prolog program is nothing more than posing queries to obtain 
true/false answers. The symbols p, q, r are called predicates in first-order logic programming 
and they can be quantified over variables such as r(X) :- p(X,Y), q(Y). This clause has the same 
meaning as X ( p(X,Y)  q(Y)  r(X) ).The scope of variables is within a clause. Horn clauses 
are thus the fundamental concept of logic programming. 

Higher-order predicate is a predicate that can quantify over other predicate symbols [6]. As 
an example, besides the rule r(X):- p(X,Y), q(Y), if we are also given the following five Horn 
clauses (or facts): p(1, 2).    p(1, 3).    p(5, 4).   q(2).  q(4). Then by asking the query: ?- r(X), we 
will get the response as ‘true’ and also the first instantiation as X=1. If we want to know all 
instantiations that make r(X) true, we may ask the query: ?- findall(X, r(X), Answer). We will get 
the response: Answer = [1, 5], which is a set of all answers obtained from the predicate r(X)
according to the given facts. The predicate symbol findall quantifies over the variables X,
Answer, and the predicate r. The predicate findall is thus called a higher-order predicate. 

3  Frequent pattern mining with higher-order logic 
We implemented the frequent-pattern mining program (Figure 1) based on the APRIORI 
algorithm [1]. Main predicate of this program is frequent_pattern_mining. Upon invocation, this 
predicate will obtain input data, also in the format of Prolog program, from the predicate 
input(Data). The predicate minS(V) specifies the minimum value of support metric. Then the 
main predicate starts the automated induction process by searching candidate item sets and large 
item sets of length one, two, three, and so forth (through the predicates makeC1, makeL, and 
apriori_loop, respectively. All highlighted terms in Figure 1 are higher-order predicates. These 
predicates are maplist, include, and setof.

The program execution results on educational data sets are shown in Figure 2 (only the five 
patterns with highest support values are shown). These data sets are the dropout data at the 
secondary level  (7th grade – 12th grade) in the school year 2002-04 reported by California state 
education agencies [9]. Each data instance is a report from each school district containing 15 
attributes: Locale (location of the school), LO-offered (the lowest grade of the school), HI-
offered (the highest grade offered by the school), the total number of student enrollments in 
grade 7th through 12th, and the total number of dropouts at grade 7th through 12th.



 
frequent_pattern__mining :-   input(Data), minS(V),  makeC1(C),  makeL(C,L), 
apriori_loop(L,1). 
apriori_loop(L,N) :- length(L) is 1,!. 
apriori_loop(L,N) :- N1 is N+1, makeC(N1,L,C), makeL(C, Res), apriori_loop(Res, N1). 
makeC1(Ans) :- input(D), allComb(1, ItemSet, Ans2),  maplist( countSS(D), Ans2, Ans).   
makeC(N, ItemSet, Ans) :- input(D),  allComb(2, ItemSet, Ans1), 
              maplist(flatten, Ans1, Ans2),  maplist(list_to_ord_set, Ans2, Ans3) ,   
              list_to_set(Ans3,Ans4),  include(len(N),Ans4,Ans5), maplist(countSS(D),Ans5,Ans).   
    %scan database to find: List+N 
makeL(C, Res) :- include(filter, C, Ans), maplist(head, Ans, Res). 
filter(_+N) :-  input(A), length(A, I),  min_support(V), N>=(V/100)*I. 
head(H+_, H). 
     % arbitrary subset of the set containing given number of elements 
comb(0, _, []). 
comb(N, [X|T], [X|Comb]) :- N> 0, N1 is N-1,  comb(N1, T, Comb). 
comb(N, [_|T], Comb) :- N> 0, comb(N, T, Comb). 
allComb(N, I, Ans) :- setof( L, comb(N, I, L), Ans). 
countSubset(A, [], 0). 
countSubset(A, [B|X], N) :- not(subset(A, B)),  countSubset(A, X, N). 
countSubset(A, [B|X], N) :- subset(A, B),  countSubset(A, X, N1), N is N1+1. 
countSS(SL, S, S+N) :- countSubset(S, SL, N). 
len(N, X) :- length(X, N1), N is N1. 

Figure 1. Frequent-pattern mining logic program implemented with higher-order predicates 
 

School year 
2002 

(390 data 
instances) 

 

LO-offered=KG & HI-offered=12 
HI-offered=12 & Grade-7-dropouts=0 
HI-offered=12 & Grade-8-dropouts=0 
LO-offered=KG & Grade-7-dropouts=0 
Grade-7-dropouts=0 & Grade-8-dropouts=0  

support=0.84 
support=0.76 
support=0.74 
support=0.74 
support=0.71 

School year 
2003 

(565 data 
instances) 

LO-offered=KG & Grade-7-enrollment=[1-1000] 
LO-offered=KG & Grade-8-enrollment=[1-1000] 
Grade-7-enrollment=[1-1000] & Grade-8-enrollment=[1-1000] 
Grade-7-dropouts=0 & Grade-8-dropouts=0  
LO-offered=KG & Grade-7-dropouts=0 

support=0.67 
support=0.67 
support=0.66 
support=0.65 
support=0.63 

School year 
2004 

(555 data 
instances) 

LO-offered=KG & Grade-7-enrollment=[1-1000] 
Grade-7-enrollment=[1-1000] & Grade-8-enrollment=[1-1000] 
LO-offered=KG & Grade-8-enrollment=[1-1000] 
LO-offered=KG & HI-offered=12 
Grade-7-dropouts=0 & Grade-8-dropouts=0  

support=0.67 
support=0.67 
support=0.66 
support=0.59 
support=0.59 

Figure 2. Running results of frequent-pattern mining program on data sets of California school 
dropouts during the school years 2002-04 



4  Conclusions 
Logic programming is a declarative style of writing programs. It is a very high-level language in 
the sense that it focuses on the computation’s logic rather than the mechanics. Logic 
programming languages such as Prolog are admittedly suitable for rapid prototyping of new 
ideas or new program architecture. This programming paradigm is based on a solid foundation 
of first-order logic in which the logical properties of a computation and the coverage of 
predicates and quantification are emphasized. First-order logic, however, poses a restriction on 
the type of variables appearing in quantification not to include predicates. Higher-order logic, on 
the contrary, allows variables to quantify over predicates. With such relaxation, higher-order 
logic facilitates the implementation of a knowledge-intensive application such as frequent 
pattern mining, which is the discovery of frequent recurring correlations between data items in 
the database. 

In this paper, we demonstrated a technique to implement frequent-pattern mining algorithm 
with the higher-order logic concept. The running examples were also illustrated through the 
educational data sets in which strong patterns of California state school dropout students during 
the year 2002-04 had been discovered. The pattern-mining program presented in this paper can 
also be applied to data sets in other domains.   
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