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Abstract

Nonlinear regression modeling based on basis expansions has been widely used to ex-
plore data with complex structure. There are various types of basis functions to capture
complex nonlinear phenomena. In this paper we introduce nonlinear regression models with
Gaussian basis functions, for which new Gaussian bases are constructed, taking advantages
of B-spline bases. In order to choose adjusted parameters, we derive model selection and
evaluation criteria from information-theoretic and Bayesian viewpoints. Monte Carlo sim-
ulations and real data analysis show that our proposed modeling strategy performs well in
various situations.

Key Words and PhrasesBasis expansion, Bayes approach, Information criterion, Nonlinear regression,
Regularization.

1. Introduction

Nonlinear regression models based on basis expansions provide a useful tool to analyze
data with complex structure. The essential idea behind basis expansions is to express a regres-
sion function as a linear combination of prescribed functions, called basis functions (etastie
al. (2001), Konishi and Kitagawa (2008)). In the model building process, the basis functions
are chosen according to data structure under consideration. The Fourier series is useful if ob-
served data are periodic. For non-periodic data, splines (Green and Silverman (B2gtnes
(de Boor (2001), Imoto and Konishi (2003)) and radial basis functions (Bishop (1995), Ripley
(1996)) have been widely used to construct nonlinear regression models. Especially Gaussian
basis function models with a hybrid learning method that combines self-organized and super-
vised learning have advantages over multilayer perceptrons, namely faster convergence, and
are free from identification problem (Moody and Darken (1989), Bishop (1995), Kosiistii
(2004), Andoet al. (2006)).

Gaussian basis functions have center and width parameters that have to be determined
from observed data. In particular, the width parameters adjust the amount of overlapping among
basis functions and play the essential role to capture the structure in the data over the region of
the input space. Moody and Darken (1989) usedckthgeans clustering algorithm to determine
the width parameters. Andet al. (2006) proposed Gaussian bases with hyper-parameter that
controls the amount of overlapping among basis functions and showed the efficiency of the
nonlinear regression modeling based on the proposed Gaussian bases.
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The problem, however, still remains in constructing Gaussian bases from a finite and noisy
data. First, th&k-means clustering algorithm depends on initial values and consequently yields
different Gaussian basis functions corresponding to each set of initial values. Second, the com-
putational time required becomes enormous, since the value of hyper-parameter has to be chosen
in addition to the number of basis functions and the value of a regularization parameter. In or-
der to overcome these problems, we introduce new Gaussian basis functions with a beneficial
property ofB-spline bases and present a nonlinear regression modeling strategy that captures the
structure in the data over the region of the input space. Our Gaussian basis function regression
models can be easily applied to analyze the continuous and also discontinuous data, and yield
stable estimated regression functions. We also note that adjusted parameters included in our
proposed regression models are only the number of basis functions and a regularization param-
eter. This provides the lower computational cost than that of the models proposed previously.
To choose these parameters, we derive model selection criteria from information-theoretic and
Bayesian viewpoints. The proposed nonlinear modeling procedure is investigated through the
analysis of real data and Monte Carlo simulations.

This paper is organized as follow. Section 2 describes a framework of basis expansions
and Gaussian basis functions proposed previously. In Section 3 we present new Gaussian basis
functions, taking advantages Bfspline bases. Section 4 provides nonlinear regression mod-
eling strategies based on proposed Gaussian basis functions and model selection criteria for
evaluating statistical models estimated by a regularization method. In Section 5 we investi-
gate the performance of the proposed nonlinear regression modeling techniques, using real data
example and Monte Carlo simulations. Some concluding remarks are described in Section 6.

2. Preliminaries

Suppose that we haveindependent observatio§$yq,Xs); 0 = 1,--- ,n}, wherey, are
random response variables axagdare vectors op-dimensional explanatory variables. We con-
sider a regression model

yU:u(XU)+EGa a:17"'7na (1)

whereu(-) is a true smooth function angy (o = 1,---,n) are error terms. It is assumed that
the functionu(-) is expressed as a linear combination of basis functigpg (i=1,--- ,m) in
the form

u(xw) = _iwm(x) W (x), @

where@(X) = (@1(X),---,@n(X))" is a vector of basis functions amd= (wy,---,wm)" is an
unknown coefficient parameter vector.

For a p-dimensional vector of explanatory variables= (xy,- - ,xp)T, Gaussian basis
functions are given by

X— || :
m(x;”iahiz)eXp(|2h’;|||>v |:1,'~~,m, (3)
1

wherey; is a p-dimensional parameter vector determining the center of the basis furfetisn,
a parameter that determines the width gndl is the Euclidian norm.
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Unknown parameters contained in the nonlinear regression model based on Gaussian basis
functions are the coefficient parametes(i = 1,--- ,m), the centergt; and the width parame-
tersh?. These parameters are generally estimated by a two-stage procedure in order to avoid the
problem of local minimum and the identification problem (Moody and Darken (1989)). In the
first stage, we determine the centgsand widthsh?, for which we use thé&means clustering
algorithm. This algorithm divides the data set of explanatory variahtes- - ,X,} into mclus-
ters{Cy,---,Cm} that correspond to the number of basis functions. The cepteasd widths
h? are then determined by

1 ~ 1
f== Xa. h? == Xa — ;]2 4
Hi nixaéci a i ”ixaéqH a — Hi| (4)
wheren; is the number of observations which belongs toittfeclusterCi. Replacingy; andh?
in equation (3) by, andhiz, respectively, we have a setwfbasis functions

RIE
(ﬂ(xvﬂnﬁlz):exp(_p(z":]‘;”)a |:177m (5)
i
In the second stage, we estimate the coefficient paramaters= 1,--- ,m) by maximizing a
penalized log-likelihood function. The details are described in Section 4.

It is, however, noted that the basis functions constructed by the above procedure cannot
fully capture beneficial information from the data. The cause is the lack of the amount of
overlapping among basis functions. To overcome this problem, Amdd. (2006) proposed
Gaussian basis functions with hyper-parametér 0) in the form

I X— ;2 .
(ﬂ(xiui»hiz7v):e>(p<—||2‘/gi2|”>7 |:1,"' ,m, (6)

wheref; andﬁi2 are given by (4). Andet al. (2006) showed that nonlinear regression models
using these basis functions could capture the information from the data very well.

Basis functions in equations (5) and (6) constructed byktheeans clustering algorithm,
however, have some drawbacks. Figure 1 shows the comparison of the position of basis func-
tions based on the same data set of size 40 generated from a uniform distribuf@of]|ofhis
implies that the constructed basis functions depend on initial values iktheans clustering
algorithm and are not uniquely determined. In consequence, the estimated regression functions
vary according to initial values in the clustering algorithm. To overcome this difficulty, we pro-
pose new Gaussian basis function with the helB-spline bases in the next section. Namely we
introduce Gaussian bases with centers and width parameters determined by preassigned knots
without using the clustering algorithms.

3. Gaussian basis functions
3.1. Curve fitting

Suppose that we haveindependent observatiodgyqs,Xq);a = 1,--- ,n}, wherey, are
random response variables axdare univariate explanatory variables. It is assumed that the
observationgxy; a0 = 1,---,n} are arranged by magnitudexas< x; < --- < X,. We set up the
knotst; (i=1,---,m+4) as follows:

h<bhi<tza<ty=X1<ts < -+ <t <tmr1=%n <tmr2 <tme3 < tmea, 7
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00 02 04 06 08

Figure 1: Comparison of the position of Gaussian basis functions for the same data set.

where the knots are equally spaced. By setting the knots in this way tiservations are
divided into(m— 3) intervals:

[ta, 5], [ts,te], - , [tm, tm-a]. (8)

Next, we set up basis functions such that each interval is covered by four basis functions as
B-spline basis functions of degree 3. We therefore define each basis function which has a center
ti and a widthh= (tj —tj_»)/3fori = 3,--- ,m+ 2. Under this setting, Gaussian basis functions

are given by

ot h2 (x—t;)?
axt,h?) = em{— 2 [
t—ti2

h = 252 i=3-.mi2 )

It might be noticed that the width parametgris determined such that each interval is covered
by four Gaussian basis functions (see Figure 2). Hence we ofmt&aussian basis functions
for the knotdy, - -+ ,tmi4.

3.2. Surface fitting in two-dimensional case

Suppose that we haveobservationd (Yo, Xq ); o = 1,--- ,n}, whereXy = (X1q,%2q)" are
observed values of two-dimensional explanatory variables. First, alpagis, we set equi-
spaced knots as

th<th<ta<ts = min(X) <ts <---
<t <trp1=max(Xig) <tz <tryz <tria, (10)
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Figure 2: Spline-based Gaussian basis functions over the region of the inpu{Gghce

and alongk, axis the knots are equally set as
<< = Min(Xyy) <S5 <---
<§ <§41=mMaxXq) < S42 < 543 < 44 (11)

Secondly, by taking centers of basis functiongigs= (ti,s; W (i=3,--,r+2;j=3,--- 1+
2), we obtain the following two-dimensional Gaussian basis functions;

a6 i H) = expd = 300w TH e g | (12
wherek =1 x (i—3)+(j—2), andH is
| h oo
0] o

Herehy = (t —ti_2)/3 andh, = (sj —sj_2)/3, determined by the same argument as discussed
in Subsection 3.1. Thus we obtajn+ |) Gaussian basis functions for the preassigned knots
ta, ey trgg andS]_, 944

4. Estimation

For n independent observatioqgyq,Xs); 0 = 1,--- ,n}, a nonlinear regression model
based on spline-based Gaussian basis functidw$ (i = 1,--- ,m) given in Section 3 is

m
Yo = Wi (Xa) + €
a i; | a a

WT¢(XG)+$C!7 a=1,.--,n, (14)
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wherew = (wy,---,Wm)T, @(X) = (@ (X),---,@(X))" and &y are error terms. If the error
termse, are independently and normally distributed with mean 0 and variaca probability
density of responsg, is given by

{Ya - W @(Xa)}?
202 '

f (Yo |[Xa; W, 0%) = exp (15)

1
V21102
In estimating unknown parametefls= (W', 62)T, the maximum likelihood method yields un-
stable parameter estimates and leads to overfitting. In such cases the unknown parameters are
estimated by maximizing the penalized log-likelihood function

n nA
(1(8) = Y logf(ya|Xa; 8) — —-W'Kw, (16)
a=1

whereA (> 0) is a regularization parameter that controls the smoothness of the fitted model and
K is a knownm x m nonnegative definite matrix (for details, Imoto and Konishi (2003), Konishi
and Kitagawa (2008, Chapter 5)). The typical formkofs given byK = I, for the identity
matrix orK = Dg D, for a second-order difference matrix.

The maximum penalized likelihood estimatds= (W', 52)T are given by

W= (©T0 1M 6%K) toTy, 57 = (y— W) (y- o). 17)

where® = (¢(Xl)7 T 7¢(Xn>)T andy = (y17 e 7yn)T-
Then we obtain a statistical model by replacing the unknown param@teréw’ g2)"
with the corresponding estimatofis= (W', 62)7 in the form

_ {ya - WT ¢(x0)}2 (18)

Nerd 267 '

The estimators depend upon the number of basis functioaad a regularization parameter

A, and we need to select suitable values of these adjusted parameters. We give criteria for
evaluating constructed models from information-theoretic and Bayes approaches in order to
select the adjusted parameters.

Konishi and Kitagawa (1996) introduced evaluation criteria of statistical models that can
be applied to the evaluation of statistical models estimated by various types of estimation pro-
cedures such as the robust and penalized likelihood procedures. By using the result, the model
selection criterion for evaluating the statistical model constructed by spline-based Gaussian ba-
sis functions is given by

GIC = n{log(2m) + 1} + nlogé? + 2tr{Q" 'R}, (19)

f(Ya|Xa; W, 62) = exp

whereQ andR are(m+ 1) x (m+ 1) matrices and are, respectively, given by

. 1
1 | ®TP+nAG%K ?dJTAln

Q na,z ilT/\cD n ) (20)
627" 262
! OTA2D — AKWLT AD dTA%L ! ®TAL
R— 1] 52 —ARW 204 " 262 " (21)
T naZ | Lgtasg 1 gThe 1A%, — 1
264" - 262" 46670 TN 452
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with 1, = (1,1,---,1)T andA = diagys — W' @(X1),--- ,Yn — W' @(X,)].

Konishiet al. (2004) extended Schwarz’s (Schwarz (1978)) Bayesian information criterion
(BIC) to evaluate statistical models estimated by the maximum penalized likelihood method. By
using the result, the model selection criterion for evaluating the statistical model in equation (18)
is given by

GBIC = nlog6?+ W' KW+ n+ nlog(2m) + (d 4 1)logn
+log|R| — log|K|; — (m—2)logA — (d + 1)log(2m), (22)

where|K | is the product of the positive eigenvaluesofvith rankd andRis anmx m matrix
given by

R 1
1 | PTo+mMeK S oTe
R=— g (23)
ng?2 1ar n
—e'® 552

with e= (y1 — W' @(X1),---,yn— W' @(X))T being am-dimensional residual vector.
We select the optimal value of the number of basis functions and a regularization parameter
that minimize either GIC or GBIC.

5. Numerical examples
5.1. Curve fitting

We investigate the performance of our proposed method through the analysis of the motor-
cycle impact data (Silverman (198%)ardle(1990)). The motorcycle impact data are a series
of measurements of head acceleration in units of gravity and times in millisecond after impact.
The data have been widely used in order to illustrate smoothing techniques.

A nonlinear regression model with spline-based Gaussian basis functions was applied to
the motorcycle impact data, in which the model is estimated by maximizing the penalized log-
likelihood function in equation (16) with second-order difference mag©,. The number of
basis functionsn and a regularization paramet&rwere selected by using the criteria GIC in
equation (19) and GBIC in equation (22). The criterion GIC selenied 17 andA = 3.98 x
1076, while GBICm= 17 andA = 3.16x 10°. The left panel of Figure 3 shows the fitted
curve by GBIC.

Next we show an instability of nonlinear regression models based on Gaussian basis func-
tions with hyper-parameter, constructed by using¢hgeans clustering algorithm. Constructing
the models was implemented for 10 times against the same motorcycle impact data, where the
number of basis functiomawas fixed as 12, and a regularization parameter and hyper-parameter
v were chosen by minimizing GBIC. The right panel in Figure 3 shows 10 estimated smooth
curves. We observe that the models constructed by using-theans clustering method are
unstable because tlkemeans clustering method estimates difference centers of basis functions
depending on a set of initial values.

Furthermore, to investigate the stability of our nonlinear regression models with spline-
based Gaussian basis functions, 100 sets of bootstrap samples were generated from the motor-
cycle impact data, and the models with spline-based Gaussian basis functions and with basis
functions using thé&-means method were fitted to each bootstrap sample. Figure 4 shows the
curves estimated by 100 bootstrap replications, where the number of basis fungt@nsgu-
larization parametekx and hyper-parameterin the models based on tlkemeans method were
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Figure 3: The motorcycle impact data and estimated curves using our proposed procedure (left).
Smoothed curves based on nonlinear regression models constructedkoméams clustering
algorithm for the same data set (right).

selected by GBIC. It might be seen from Figure 4 that our proposed modeling procedure yields
stable estimated curves, and decreases the boundary bias considerably because spline-based
Gaussian basis functions are appropriately allocated in the boundary regions.

5.2. Surface fitting

We applied a nonlinear regression modeling with spline-based Gaussian basis functions to
data{(Ya,Xqs); 00 =1,--- ,400} generated from

Ya = SiN(2TX1q ) + 2C08 2T1X2q ) + €q s &a ~N(0,1), (24)

wherexiq andxy, were generated independently from a uniform distributio®8] respec-

tively. The model was estimated by maximizing penalized log-likelihood functions given by
(16), and the number of basis functiomsand a regularization parametgérwere chosen by

using GIC and GBIC. The criterion GIC gane= 56 andA = 7.94 x 10~°, while GBIC gave
m=63andA =7.94x 10~%. In Figure 5 the left panel shows the true surface, and the right panel
the estimated surface evaluated by GBIC. We observe that our modeling procedure captures the
true structure effectively.

5.3. Monte Carlo simulation

In this section, Monte Carlo simulations are conducted to investigate the effectiveness of
our proposed nonlinear regression modeling. We consider two simulation examples to illustrate
the properties of our proposed method. For the first simulation study, we repeatedly generated
random sample$(yq,Xq); 0 = 1,---,100} using the true regression model = u(Xy) + &q.

The design points are uniformly distributed[® 1] and the noises, are independently, nor-
mally distributed with mean 0 and standard deviatiprwhere the standard deviation is taken
aso = 0.1R, or 0.2R, with R, being the range ai(x) overx € [0, 1]. We consider the following
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Figure 4: Estimated smoothed curves for 100 bootstrap replications. The left panel shows the
result for our proposed method. The right panel shows the result for the models constructed by

thek-means clustering method.
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Figure 5: Comparison of the true surface and the smoothed surface. The left panel shows the
true surface while the right panel the estimated surface evaluated by GBIC.
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functions as true regression model.

(a8 u(x) = 10exg—10x),
(b) u(x) = sin2mcd), (25)
() u(x) = sin(2mx)exp(—5x).

We compare the performance of nonlinear regression models based on spline-based Gaussian
basis functions (SGB) with that of various models based on basis functions determined by an-
other five methods anB-spline basis functions (BS). As another methods, we used basis func-
tions with hyper-parameter given by (6) (HGB), those proposed by Moody and Darken (1989)

and those based oP*nearest neighbor” heuristic. Moody and Darken (1989) constructed basis
functions based on the centers defined by (4) and the width parameters determined by the aver-
aged Euclidian distance of iBsnearest neighbor of each basis function. We especially consider
two procedures that use the first nearest neighbor of each center (MD1) and the second nearest
neighbor of each center (MD2)P:nearest neighbor” method replaces the averaged Euclidian
distance by the Euclidian distance in determining the width parameters. We coRsidér

(PN1) andP = 2 (PN2) in our simulation settings.

We fitted regression models based on Gaussian basis functions to the simulated data. The
number of basis functions1 and the regularization parametgrwere selected by using the
criteria, GIC and GBIC. Furthermore in the models based on the basis functions given by (6),
the hyper-parameter was also chosen as minimizers of the criteria.

We calculated the average squared error (ASE) definedB~= 1% {u(xq) — Yo }2/100
in order to assess the goodness of fit. Table 1 shows the summaries for the simulation results
in the case of using the GBIC, while Table 2 shows those in the case of using the GIC. The
values of SD indicate standard deviations for the ASE. The simulation results were obtained by
averaging over 100 Monte Carlo trials. It might be seen from Tables 1 and 2 that our proposed
models are superior to the others in almost all cases in the sense that our models have a minimum
of ASE and SD.

In the second experiment we created random sam&sxiq, Xoq ); @ = 1,- -+, 100} from
the true modeYyy = u(X1q,X2q) + €a, Where

(1) u(xq,%2) =sin(21mxy) + cog21xp),
(26)
(2)  u(x1,%2) = 3sin(1xax2) + 2sin(11X1 + X2)

and the design points are uniformly distributed+1,1] x [-1,1]. The noiseg, are assumed

to be independently distributed according to the normal distributions with mean 0 and standard
deviationg, where the standard deviation is takenas- 0.2R, with R, being the range of
u(xg,X2) over(xg,X2) € [—1,1] x [-1,1].

We compare the performance of our proposed modeling procedure with that of six models
used in the first simulation. The model selection criteria GIC and GBIC were used by choosing
the number of basis functioms and a regularization parametey and hyper-parameter only
if the models given by (6) were used. To evaluate the performance of each model we calculated
the average squared erdBE = z;(fl{ya —U(X1a, X2q ) }2/100, and described boxplots of these
values for the 100 trials of Monte Carlo simulations. Figures 6 and 7 show the boxplots of the
average squared errors. In almost all situations, it might be seen that our proposed modeling
procedure performs well; it yields a relatively small median with small variance.
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Table 1: Comparison of the average squared errors for GBIC.

function d/R, SGB BS HGB MD1 MD2 PN1 PN2
() 0.1 ASE(x10%) 0.800 0.797 1.400 1.774 1.667 1.613 1.271
SD (x10?) 2.738 2.728 4.928 5.970 6.137 4.569 4.490
0.2 ASE(x10') 2.880 2927 5427 6.353 b5.613 6.326 5.545
SD (x10Y) 1.316 1.354 2538 2.399 2.396 2.960 2.238
(b) 0.1 ASE(x10°) 3.868 2.927 4576 5.617 5.659 4.883 4.652
SD (x10%) 1.604 1.624 1969 2.278 2490 2.255 2.100
0.2 ASE(x10%) 1.491 1568 1.690 1.771 1.782 1.775 1.663
SD (x10°%) 7.472 7568 8.599 8.784 8577 8.552 7.965
(c) 0.1 ASE(x10% 1730 1.803 2620 2655 2.672 2.855 2.595
SD(x10%)  0.746 0.773 1.113 1.002 0.982 1.061 1.059
0.2 ASE(x10%) 5.872 6.191 8.938 8.101 7.762 9.344 8.262
SD (x10%) 2,539 2.655 3.993 3.443 3.256 4.201 3.737

Table 2: Comparison of the average squared errors for GIC.

function o/R, SGB BS HGB MD1 MD2 PN1 PN2
(@) 0.1 ASE(x10') 0.865 0.879 1.337 1.605 1.514 1566 1.150
SD (x 102) 3.925 4.066 4.958 4.454 5.014 5.371 4.893
0.2 ASE(x10Y) 2815 2757 4.095 4.279 3.797 4.628 3.724
SD (x10%) 1.217 1.177 1.608 1.333 1.433 1.487 1.420
(b) 0.1 ASE(x10°) 4.214 4353 5704 5584 5255 5841 5.359
SD (x10°%) 2.154 2257 2796 2.328 2.300 2593 2417
0.2 ASE(x10%) 1.725 1760 2.221 1.888 1.750 2.133 1.851
SD(x1(?) 0.760 0.728 1.077 0.765 0.686 0.954 0.811
(c) 0.1 ASE(x10% 1.873 1.903 2510 2395 2103 2567 2.312
SD(x10%) 0.892 0.897 1.060 0.988 0.828 1.093 0.991
0.2 ASE(x10% 7.441 7.483 9.753 8.669 8.104 9.132 8.852
SD(x10%) 3.851 3.798 4.614 3.974 3.485 3.875 4.195
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Figure 6: Boxplots of the average squared errors. The left panel shows the result for the function
(1) while the right panel shows the result for the function (2). The models were evaluated by
using GBIC.

6. Concluding remarks

In this paper we proposed nonlinear regression modeling procedures with the method of
regularization, using Gaussian basis functions whose construction method is based oB-+that of
spline bases. In order to choose optimal values of adjusted parameters, we presented the model
selection criteria from the information-theoretic and Bayes approaches. The Gaussian basis
function regression model constructed by the hybrid learning method has been widely used
to draw information from data with complex structure. Gaussian bases produced previously,
however, have some drawbacks. Our Gaussian bases yield the suitable amount of overlapping
among basis functions so that the estimated regression function capture the complex structure in
the data over the region of the input space.

In recent years, functional data analysis has received considerable attention in various
fields of application (Ramsay and Silverman (2002, 2005)). A crucial point in the functional
data analysis is to transfer the vector-valued observations to a set of functions. Kayano
(2006) and Araket al. (2007) have reported that a functionalization by Gaussian basis functions
has several advantages compared to using the others such as Fourier serie®-spline, We
believe that our proposed nonlinear modeling strategy provides the useful tools in several fields
of research including the functional data analysis, since it can be easily applied to analyze time-
course data with complex structure, and yields stable estimated functions.
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