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Abstract

A Schröder category extends the category of all binary relations among sets,
that is, it realises a relatively huge part of predicate logic. On the other hand
Urysohn’s lemma asserts that every pair of disjoint closed subsets in a T4 topological
space can be separated by a continuous function into the reals. Usually the lemma
is demonstrated with calculus of elementary set theory. However the structure of
this lemma is very interesting from a view point of lattice theory and relational
method. This paper gives a relational proof for Urysohn’s lemma within Schröder
categories.
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1. Introduction

Relational methods (2006) have been developed a number of algebraic theories and
applications of (binary) relations in not only mathematics but also computer science,
e.g. graph theory (1993), program semantics (1986), (1986), network flows (2006)
and so on. Major algebraic frameworks for relations are relation algebras (1941), alle-
gories (1990), Schröder categories and Dedekind categories (1980). Relation algebras
due to Tarski founded the modern algebraic system summarising so far study on logic
of relations. Allegories serves a foundation for various relational categories including
Schröder and Dedekind categories. Schröder categories naturally extend the category
of all relations among sets, that is, it realises a relatively huge part of predicate logic.
Hom-sets in a Dedekind category are Heyting algebras, instead of boolean algebras in
Schröder categories. Though Dedekind categories are weaker than Schröder categories,
they give a formal model of fuzzy relations that are important to engineering applica-
tions. On the other hand Urysohn’s lemma shows that T4 topological spaces satisfy the
functional separation property and is a crux to prove Urysohn’s imbedding theorem.
Usually the lemma is demonstrated with a series of calculus in elementary set theory.
However the structure of this lemma is very interesting from a view point of lattice
theory and relational method. This paper gives a relational proof for Urysohn’s lemma
within Schröder categories.

We now review the fundamentals on Urysohn’s lemma. Let 〈X,OX 〉 be a topo-
logical space. A subset U of X is called open if U ∈ OX , and a subset C of X is called
closed if its complement C− is open. For a subset S of X its closure S• is the least
∗ Department of Informatics, Kyushu University, Fukuoka 819-0395 Japan. kawahara@i.kyushu-u.ac.jp



70 Y. Kawahara

closed subset of X containing S, that is, the intersection of all closed subsets containing
S.

The fourth separation axiom, so-called T4-axiom, for topological spaces was defined
as follows:

Definition 1.1 T4-axiom. For every pair of disjoint closed subsets C and D of X
there exists a pair of disjoint open subsets U and V of X such that C ⊆ U and D ⊆ V .

¤

It is well-known that the T4-axiom is equivalent to the following

(T ′4-axiom) For every pair of a closed subset C and an open subset U of X with C ⊆ U
there exists an open subsets V of X such that C ⊆ V ⊆ V • ⊆ U .

Urysohn’s lemma below shows that T4 spaces satisfy the functional separation
property and leads Urysohn’s imbedding theorem that normal spaces with countable
basis can be imbedded in the Hilbert cube.

Theorem 1.2 Urysohn’s lemma. Let X be a T4-space. For every pair of disjoint
closed subsets C and D of X there exists a continuous function f : X → [0, 1] such that
f(x) = 0 if x ∈ C and f(x) = 1 if x ∈ D.

Sketch of Proof. Let L = [0, 1] be the unit interval and let

T =
{ m

2n
| n,m ∈ N and 0 < m < 2n

}

be a dense subset of L with an injection j : T → L. Construct a T -indexed set {Ut | t ∈
T} of open sets in X such that

∀s, t ∈ T. t < s → C ⊆ Ut ⊆ U•
t ⊆ Us ⊆ D−. (*)

Define a function f : X → L by

f(x) =
{

inf {t ∈ T | x ∈ Ut} if x ∈ ∪t∈T Ut,
1 otherwise.

It is clear that 0 ≤ f(x) ≤ 1 for all x ∈ X, and f(x) = 0 on C, and f(x) = 1 on D.
Finally the continuity of f follows from a fact that

∀a, b ∈ L. f−1[0, a) = ∪t∈T,t<aUt ∧ f−1(b, 1] = ∪t∈T,b<tU
•−
t .

¤

The T -indexed set {Ut | t ∈ T} of open sets in the above proof is regarded as a
(binary) relation µ ⊆ X × T by (x, t) ∈ µ ↔ x ∈ Ut, and another T -indexed set {U•−

t |
t ∈ T} of open sets corresponds with a relation ν ⊆ X × T by (x, t) ∈ ν ↔ x ∈ U•−

t .
The condition Ut ⊆ U•

t in (*) is simply written as µ v ν− using relational expression.
Also from the condition ∀s, t ∈ T. t < s → U•

t ⊆ Us we have

(x, t) ∈ ν− ↔ x ∈ U•
t

→ ∀s ∈ T. t < s → x ∈ Us { U•
t ⊆ Us }

↔ ∀s ∈ T. (x, s) ∈ µ− → s ≤ t.
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The last condition will be written as ν− v µ− Ä jξj], where j, µ− and Ä denote the
inclusion map of T ⊆ L, the complement of µ and the residual composition, respectively.
This is a motivation of the paper.

This paper is organised as follows. In section 2 we will review the definition and
some fundamentals on Schröder categories. In section 3 we will state the definition
of topologies and continuous functions in Schröder categories. In section 4 we will
demonstrate main results corresponding to Urysohn’s lemma in Schröder categories.

2. Schröder Categories

In this section we recall the definition of a kind of relation category which we will
call Schröder categories (2000), (1993). Schröder categories are Dedekind categories
whose hom-sets are complete boolean algebras.

Throughout this paper, a morphism α from an object X into an object Y in a
Schröder category (defined below) will be denoted by a half arrow α : X ⇁ Y , and the
composition of a morphism α : X ⇁ Y followed by a morphism β : Y ⇁ Z will be
written as αβ : X ⇁ Z. Also we will denote the identity morphism on X as idX .

Definition 2.1. A Schröder category S is a category satisfying the following four
conditions:
S1. [Complete Boolean Algebra] For all pairs of objects X and Y the hom-set S(X, Y )
consisting of all morphisms of X into Y is a complete Boolean algebra with the least
morphism 0XY and the greatest morphism ∇XY . Its algebraic structure will be denoted
by

S(X, Y ) = (S(X, Y ),v,t,u,−, 0XY ,∇XY ),

where v,t,u and − denote the inclusion order, the join, the meet and the complement
of morphisms, respectively.
S2. [Converse] There is given a converse operation ] : S(X, Y ) → S(Y, X). That is,
for all morphisms α, α′ : X ⇁ Y , β : Y ⇁ Z, the following converse laws hold: (a)
(αβ)] = β]α], (b) (α])] = α, (c) If α v α′, then α] v α′].
S3. [Dedekind Formula] For all morphisms α : X ⇁ Y , β : Y ⇁ Z and γ : X ⇁ Z the
Dedekind formula αβ u γ v α(β u α]γ) holds.
S4. [Zero Relation] The least morphism 0XY is a zero morphism, that is, α0Y Z = 0XZ .
¤

A Schröder category is an abstraction of the category of all relations among sets.
In what follows, the word relation is a synonym for morphism of Schröder categories.

In a Schröder category S the converse operation ] : S(X, Y ) → S(Y,X) is a
v -preserving involutive bijection and so it holds that 0]

XY = 0Y X , ∇]
XY = ∇Y X ,

(tjαj)] = tjα
]
j , (ujαj)] = ujα

]
j and α− ] = α]−. Consequently

S3]. αβ u γ v (α u γβ])β and S4]. 0XY β = 0XZ

are valid.
An object I of a Schröder category S is called a (strict) unit if 0II 6= idI = ∇II

and ∇XI∇IX = ∇XX for all objects X. A relation f : X ⇁ Y is called a function,
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denoted by f : X → Y , if it is univalent (f ]f v idY ) and total (idX v ff ]). A function
f : X → Y is called an injection if ff ] = idX . The universal relation ∇XI : X ⇁ I
and the identity relation idX : X ⇁ X are functions. An I-point x of X is a function
x : I → X.

In Schröder categoreis the residual composition α Ä β : X ⇁ Z of α : X ⇁ Y
followed by β : Y ⇁ Z can be defined as αÄβ = (αβ−)−. The residual composition will
be frequently used in the paper. For example, the supremum relation sup(ρ, ξ) : V ⇁ X
is defined by

sup(ρ, ξ) = (ρ Ä ξ) u ((ρ Ä ξ) Ä ξ])

for a pair of relations ρ : V ⇁ X and ξ : X ⇁ X. The following lemma shows four
logical equivalences in Schröder categories.

Lemma 2.2. Let α : X ⇁ Y , β : Y ⇁ Z and γ : X ⇁ Z be relations in a Schröder
category S. Then the following holds.

(a) αβ v γ ↔ α]γ− v β− ↔ γ−β] v α−, (Schröder equivalence)

(b) γ v α Ä β ↔ α]γ v β, (Residual equivalence)

(c) γ v α Ä β ↔ α v γ Ä β], (Galois connection)

Proof. (a) First we will prove the implication αβ v γ → α]γ− v β−. Assume αβ v γ,
which is equivalent to αβ u γ− = 0XZ . Then

α]γ− u β v α](γ− u αβ) { Dedekind Formula S3 }
= α]0XZ { αβ u γ− = 0XZ }
= 0Y Z , { Zero Relation S4 }

which implies α]γ− v β−. The converse implication αβ v γ → α]γ− v β− is a variant
of the first implication. The proof of another equivalence αβ v γ ↔ γ−β] v α− is
analogous.
(b) The residual equivalence is direct from

γ v α Ä β ↔ αβ− v γ− { Complement }
↔ α]γ v β. { Schröder equiv. (a) }

(c) The Galois connection is clear from the following

γ v α Ä β ↔ α]γ v β { Residual equiv. (b) }
↔ γ]α v β] { Converse }
↔ α v γ Ä β]. { Residual equiv. (b) }

¤

The residual equivalence proved above indicates a fact that a Schröder category
is a Dedekind category. The basic properties of Schröder categories are listed in the
following proposition, which will be demonstrated in the appendix at the end of the
paper.
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Proposition 2.3. Let α, α′ : X ⇁ Y , β, β′ : Y ⇁ Z, γ : Z ⇁ U , δ : U → Z,
ρ : V ⇁ X and ξ : X ⇁ X relations in a Schröder category S. Then the following holds.

(a) If α v α′ and β v β′ then αβ v α′β′,

(b) If α v α′ and β v β′ then α′ Ä β v α Ä β′,

(c) α(tjβj) = tjαβj and (tjαj)β = tjαjβ,

(d) If α and δ are univalent then α(β u β′)δ] = αβδ] u αβ′δ],

(e) If α is total, α′ is univalent and α v α′ then α = α′,

(f) α Ä (β Ä γ) = αβ Ä γ and (α Ä β)γ v α Ä βγ,

(g) α v (α Ä β) Ä β],

(h) α Ä β = ((α Ä β) Ä β]) Ä β,

(i) If α is a function then α Ä β = αβ and α(β Ä γ) = αβ Ä γ,

(j) If β is a function then αβ Ä γ = α Ä βγ,

(k) If δ is a function then (α Ä β)δ] = α Ä βδ],

(l) sup(ρ, ξ]) = sup(ρ Ä ξ], ξ),

(m) sup(ρ, ξ) v ρ Ä ξ v sup(ρ, ξ) Ä ξ,

(n) If ξξ v ξ and sup(ρ, ξ) is total then sup(ρ, ξ)ξ = ρ Ä ξ,

(o) If f : W → V is a function then f sup(ρ, ξ) = sup(fρ, ξ),

(p) If ξ u ξ] v idX then sup(ρ, ξ) is univalent.

(q) If α and δ are functions then (αβδ])− = αβ−δ],

(r) (α Ä β)] = β− ] Ä α− ]. ¤

A relation ξ : L ⇁ L in a Schröder category S is called an order if it is reflexive
(idL v ξ), transitive (ξξ v ξ) and antisymmetric (ξ u ξ] v idL). Then inclusions
ξ−ξ] v ξ− and ξ]ξ− v ξ− hold by applying the Schröder equivalence to ξξ v ξ. Also
note that ξ] Ä ξ = ξ iff idX v ξ and ξξ v ξ. An order ξ is complete if sup(ρ, ξ) is total
(consequently, a function by 2.3(p)) for all relations ρ : V ⇁ L. For each complete order
ξ : L ⇁ L we can define two I-points ⊥L and >L by

⊥L = sup(0IL, ξ) and >L = sup(∇IL, ξ).

The next proposition claims the basic property of I-points ⊥L and >L for complete
orders.

Proposition 2.4. Let ξ : L ⇁ L be a complete order. The the following holds.

(a) ⊥L = ∇IL Ä ξ] and ⊥Lξ = ∇IL,
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(b) >L = ∇IL Ä ξ and >Lξ] = ∇IL.

Proof. (a) The first identity is direct by 0IL Ä ξ = ∇IL. The second identity simply
follows from sup(0IL, ξ)ξ = 0IL Ä ξ = ∇IL using 2.3(n).
(b) Note that sup(∇IL, ξ) = sup(0IL Ä ξ], ξ) = sup(0IL, ξ]) by 2.3(l). Hence the state-
ment is a dual of (a). ¤

3. Topologies

Let X be an object and S(I, X) the set of all relations from I into X in a Schröder
category S with a unit I. For a subset X of S(I, X) we define two subsets J(X ) and
M(X ) of S(I,X) by

ρ ∈ J(X ) ↔ ρ = tA for some subset A ⊆ X ,

ρ ∈ M(X ) ↔ ρ = uA for some finite subset A ⊆ X .

The two operators J and M are closure operators, that is, they are expanding (X ⊆
M(X ) and X ⊆ J(X )), idempotent (MM(X ) = M(X ) and JJ(X ) = J(X )) and mono-
tonic (if X ⊆ X ′ then M(X ) ⊆ M(X ′) and J(X ) ⊆ J(X ′)). Since S(I, X) is a complete
boolean algebra, a distributive law

(tj1∈K1µj1) u · · · u (tjn∈Knµjn) = t(j1,...,jn)∈K1×···×Kn
(µj1 u · · · u µjn)

holds and so does the inclusion MJ(X ) ⊆ JM(X ).

Definition 3.1. A subset O of S(I,X) is a topology on X if J(O) = O and
M(O) = O. ¤

A topological object 〈X,O 〉 is a pair of an object X and a topology O on X. In
a topological object 〈X,O 〉 a relation ρ : I ⇁ X is called open if ρ ∈ O, and the
complement of an open relation is called closed.

For every subset X of S(I, X), JM(X ) is always a topology on X, because MJM(X )
⊆ JMM(X ) = JM(X ) and JJM(X ) = JM(X ).

Definition 3.2. Let 〈X,OX 〉 and 〈Y,OY 〉 be topological objects.

(a) A function f : 〈X,OX 〉 → 〈Y,OY 〉 simply denotes a function f : X → Y ,

(b) A function f : 〈X,OX 〉 → 〈Y,OY 〉 is continuous if σf ] ∈ OX for all relations
σ ∈ OY . ¤

Now we recall a simpler way to show the continuity of functions with a subbasis of
topology.

Proposition 3.3. Let f : X → Y be a function and OY = JM(Y) for some
Y ⊆ S(I, Y ). Then a function f : 〈X,OX 〉 → 〈Y,OY 〉 is continuous if σf ] ∈ OX for
all relations σ ∈ Y.
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Proof. First let τ ∈ M(Y). Then there is a finite subset {ν1, . . . , νn} of Y such that
τ = un

k=1νk. It follows from

τf ] = (un
k=1νk)f ] = un

k=1νkf ] { 2.3(d) }

that τf ] ∈ OX by the assumption. Next let σ ∈ OX = JM(Y). Then there is a subset
{τj}j∈J of M(Y) such that σ = tj∈Jτj . It follows from

σf ] = (tj∈Jτj)f ] = tj∈Jτjf
] { 2.3(c) }

that σf ] ∈ OX by the first result. Therefore f is continuous. ¤

4. Main Results

In what follows we assume the following setting in a Schröder category S with a
unit I:

Assumption A complete order ξ : L ⇁ L, an injection j : T → L and a set I(T ) of
I-points a : I → T satisfy the following conditions:

(A1) ξ−j]j Ä ξ v ξ,

(A2) ta∈I(T )a
]a = idT .

(A3) ajξj]b] ∈ {0II , idI} for all a, b ∈ I(T ). ¤

The condition (A1) means that T is dense in L, and (A2) and (A3) are special
point axioms. Note that (A1) is equivalent to (A1]) ξ]−j]j Ä ξ] v ξ] by 2.3(j) and (r).

We choose a topology JM(T ) on L, where

T = {ajξ− ] | a ∈ I(T )} ∪ {ajξ− | a ∈ I(T )}.

This topology is an analogy to the usual topology on the unit interval [0, 1] generated
by open intervals with rational ends.

To define topological objects similar to T4-spaces we make use of the existence of
two relations which correspond to the T -indexed sets with the condition (*) stated in
the introduction.

Definition 4.1 T4-objects. A topological object 〈X,O 〉 (in a Schröder category
S) is called a T4-object if for every pair of closed relations ρ, σ : I ⇁ X with ρuσ = 0IX

there exists a pair of relations µ, ν : X ⇁ T satisfying the following conditions:

(a) ρµ = 0IT and σν = 0IT ,

(b) µ v ν− v µ− Ä jξ]j],

(c) aµ] ∈ O and aν] ∈ O for all a ∈ I(T ). ¤

Now we state the main theorem asserting a relational version of Urysohn’s lemma
for ordinary T4-spaces.
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Theorem 4.2 Urysohn’s Lemma. Let 〈X,O 〉 be a T4-object. For every pair of
closed relations ρ : I ⇁ X and σ : I ⇁ X with ρ u σ = 0IX there exists a continuous
function f : 〈X,O 〉 → 〈L, JM(T ) 〉 such that xf = ⊥L for all I-points x : I → X with
x v ρ and yf = >L for all I-points y : I → X with y v σ.

I
ρ /
σ

/ X
µ /
ν

/

f ÃÃ@
@@

@@
@@

T

j

²²
L

ξ / L

Proof. By the definition 4.1 there exists a pair of relations µ, ν : X ⇁ T satsfying the
conditions 4.1 (a), (b) and (c). Define two relations f, g : X ⇁ L by f = sup(µj, ξ)
and g = sup(νj, ξ]). As the order ξ is complete, f and g are functions. Also note that
fξ = µj Ä ξ and gξ] = νj Ä ξ] by 2.3(n). Now the identity f = g will follow from (U1)
– (U4) below:
(U1) f v gξ] : By 4.1(b) we have

µ v ν− v µ− Ä jξ]j] v ν Ä jξ]j] = gξ]j],

which is equivalent to µj v gξ], because j is a function. Hence

f v (µj Ä ξ) Ä ξ] { f = sup(µj, ξ) }
v (gξ] Ä ξ) Ä ξ] { µj v gξ], 2.3(b) }
= gξ]. { g : function and ξ] Ä ξ = ξ }

(U2) gξ−j] v µ :

µ− v ν− Ä jξj] { 4.1(b), Galois conn. }
v gξ−j] Ä jξj] { ν v gξj] by g v νj Ä ξ] }
= g(ξ−j]j Ä ξ)j] { g, j : function }
v gξj]. { (A1) }

Thus taking complements of both sides we have gξ−j] v µ.
(U3) f v gξ :

f v µj Ä ξ { f = sup(µj, ξ) }
v gξ−j]j Ä ξ { (U2) }
= g(ξ−j]j Ä ξ) { g : function }
v gξ. { (A1) }

(U4) f = g : By (U1), (U3) and the antisymmetry of ξ it holds that

f v gξ u gξ] = g(ξ u ξ]) v g.

Therefore we have f = g by 2.3(e). Next we will show that f : 〈X,O 〉 → 〈L, JM(T ) 〉 is
continuous. By 3.3 it suffices to see that ajξ− ]f ] ∈ O and ajξ−f ] ∈ O for all a ∈ I(T ).
Let a ∈ I(T ) and set Ia = {b ∈ I(T ) | ajξ]j]b] = 0II}. Then

ajξ− ]f ] = aj(fξ)− ] { (fξ)− = fξ−, 2.3(q) }
= ajξ− ]j]µ] { fξ = µj Ä ξ = (µjξ−)− }
= tb∈I(T )ajξ− ]j]b]bµ] { (A2) tb∈I(T ) b]b = idT }
= tb∈Iabµ]. { b ∈ Ia ↔ ajξ− ]j]b] = idI , (A3) }
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Hence ajξ− ]f ] ∈ O by the definition of topologies. Analogously ajξ−f ] ∈ O follows
from

ajξ−f ] = aj(fξ])− ] { (fξ)− = fξ−, 2.3(q) }
= ajξ−j]ν] { fξ] = νj Ä ξ] = (νjξ− ])− }
= tb∈I(T )ajξ−j]b]bν] { (A2) tb∈I(T ) b]b = idT }
= tb∈I]

a
bν], { b ∈ I]

a ↔ ajξ−j]b] = idI , (A3) }

where I]
a = {b ∈ I(T ) | ajξj]b] = 0II}. Finally let x, y : I → X be I-points with x v ρ

and y v σ, respectively. Then

xf = sup(xµj, ξ) { x : function, 2.3(o) }
= sup(0IL, ξ) { xµ v ρµ = 0IT }
= ⊥L,

and
yf = sup(yνj, ξ]) { f = g and y : function, 2.3(o) }

= sup(0IL, ξ]) { yν v σν = 0IT }
= >L. { 2.4 }

This completes the proof of the theorem. ¤

The topology JM(T ) on L coincides with a more natural topology under stronger
conditions.

Proposition 4.3. Let I(L) be a set of I-points x : I → L and set T0 = {xξ− |
x ∈ I(L)} ∪ {xξ− ] | x ∈ I(L)}. If (B1) aj ∈ I(L) for all a ∈ I(T ) and (B2) xξj]a] ∈
{0II , idI} and xξ]j]a] ∈ {0II , idI} for all x ∈ I(L) and a ∈ I(T ), then JM(T0) =
JM(T ).

Proof. By (B1) it is trivial that T ⊆ T0. We will see T0 ⊆ J(T ). Let x ∈ I(L) and set
Ix = {a ∈ I(T ) | xξj]a] = 0II}. Then it holds that

xξ− = xξ−j]jξ− { (A1) ξ− = ξ−j]jξ− }
= ta∈I(T )xξ−j]a]ajξ− { (A2) ta∈I(T ) a]a = idT }
= ta∈Ixajξ−, { a ∈ Ix ↔ xξ−j]a] = idI , (B2) }

which proves xξ− ∈ J(T ). Analogously xξ− ] ∈ J(T ) follows from

xξ− ] = xξ− ]j]jξ− ] { (A1]) ξ− ] = ξ− ]j]jξ− ] }
= ta∈I(T )xξ− ]j]a]ajξ− ] { (A2) ta∈I(T ) a]a = idT }
= ta∈I]

x
ajξ− ], { a ∈ I]

x ↔ xξ− ]j]a] = idI , (B2) }

where I]
x = {a ∈ I(T ) | xξ]j]a] = 0II}. Hence we have JM(T ) ⊆ JM(T0) ⊆ JMJ(T ) ⊆

JM(T ). ¤

Remark. The conditions (A3) and (B2) are trivial if there is no relations in S(I, I)
except for 0II and idI .
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5. Conclusion

The paper demonstrated Urysohn’s Lemma in Schröder categories by regarding a
series of open subsets as a binary relation. The results of the paper shows the capability
of relational methods in application to mathematical analysis. On the other hand the
author encountered some difficulties to apply theory of relations to even a part of general
topology, because usual mathematics unconsciously uses the essential property of points.
The notion of I-points contains not only crisp (or standard) I-points but also non crisp
ones. To avoid the disadvantage caused by the fact, the author assumed the sets I(T )
and I(X) with some strong properties.
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Catégories de Schröder, C. R. Acad. Sci. Paris 260, 939–941.
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6. Appendix

In the appendix we give the proof of Proposition 2.3.

(a) Assume α v α′ and β v β′. Then

β v β′

v α] Ä αβ′, { αβ′ v αβ′ and 2.2(b) }
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which proves αβ v αβ′ again by 2.2(b). Another inclusion αβ v α′β is obtained by
applying the converse.
(b) Assume α v α′ and β v β′. Then

α](α′ Ä β) v α′ ](α′ Ä β) { α v α′, S2(c) and (a) }
v β { α′ Ä β v α′ Ä β and 2.2(b) }
v β′,

which shows α′ Ä β v α Ä β′ again by 2.2(b).
(c) The first identity follows from

α(tjβj) v γ ↔ tjβj v α] Ä γ { Res. equiv. 2.2(b) }
↔ ∀j. βj v α] Ä γ
↔ ∀j. αβj v γ { Res. equiv. 2.2(b) }
↔ tjαβj v γ.

The second identity (tjαj)β = tjαjβ is obtained by applying the converse.
(d) It follows from

f(α u α′)g] v fαg] u fα′g] { (a) }
v f(α u f ]fα′g]g)g] { Dedekind formula S3 and S3] }
v f(α u α′)g]. { f, g : univalent and (a) }

(e) Assume that α is total, α′ is univalent and α v α′. Then

α′ v αα]α′ { α : total }
v αα′ ]α′ { α v α′, (a), S2(c) }
v α, { α′ : univalent }

which proves α = α′.
(f) The first identity follows from the following equivalences.

η v α Ä (β Ä γ) ↔ α]η v β Ä γ { Res. equiv. 2.2(b) }
↔ β]α]η v γ { Res. equiv. 2.2(b) }
↔ η v αβ Ä γ. { Res. equiv. 2.2(b) }

The second inclusion is direct from

α](α Ä β)γ v βγ. { α](α Ä β) v β }

(g) It is simply obtained by applying the Galois connection 2.2(c) to an inclusion αÄβ v
α Ä β.
(h) An inclusion α Ä β v ((α Ä β) Ä β]) Ä β is a corollary of (g). The converse inclusion
follows from (g) and (b).
(i) Let α be a function. Then

α Ä β v αα](α Ä β) { α : total }
v αβ { α](α Ä β) v β, }
v α Ä α]αβ { α]αβ v α]αβ }
v α Ä β. { α : univalent, (b) }
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The second identity holds from

α(β Ä γ) = α Ä (β Ä γ) = αβ Ä γ

using the first identity and (f).
(j) Let β be a function. Then αβ Ä γ = α Ä (β Ä γ) = α Ä βγ by (f) and (i).
(k) Let δ be a function. Then

(α Ä β)δ] v α Ä βδ] { (f) }
v (α Ä βδ])δδ] { δ : total }
v α Ä βδ]δδ] { (f) }
= α Ä βδ]. { δ : univalent }

(l)
sup(ρ Ä ξ], ξ) = ((ρ Ä ξ]) Ä ξ) u (((ρ Ä ξ]) Ä ξ) Ä ξ])

= ((ρ Ä ξ]) Ä ξ) u (ρ Ä ξ]) { (h) }
= sup(ρ, ξ]).

(m) The first inclusion is trivial. The second inclusion is deduced by applying the Galois
connection to the trivial inclusion sup(ρ, ξ) v (ρ Ä ξ) Ä ξ].
(n) Assume that sup(ρ, ξ) is total and ξξ v ξ. Then

sup(ρ, ξ)ξ v ρ Ä ξ { (f) and ξξ v ξ }
v sup(ρ, ξ) Ä ξ { (l) }
v sup(ρ, ξ)ξ. { sup(ρ, ξ) : total }

(o) Let f be a function. Then

f sup(ρ, ξ) = f((ρ Ä ξ) u ((ρ Ä ξ) Ä ξ]))
= f(ρ Ä ξ) u f((ρ Ä ξ) Ä ξ]) { (d) }
= (fρ Ä ξ) u ((fρ Ä ξ) Ä ξ]) { (i) }
= sup(fρ, ξ).

(p) Let ξ u ξ v idX and set τ = ρ Ä ξ. Then the univalency of sup(ρ, ξ) follows from

(sup(ρ, ξ))] sup(ρ, ξ) = (τ u (τ Ä ξ]))](τ u (τ Ä ξ]))
v τ ](τ Ä ξ]) u (τ Ä ξ])]τ
v ξ] u ξ] ] { τ ](τ Ä ξ]) v ξ] }
v idX . { ξ u ξ] v idX }

(q) Let α and δ be functions. Then

αβδ] u αβ−δ] = α(β u β−)δ] { (d) }
= 0XU , { β u β− = 0Y Z , S4 }

and
∇XU v αα]∇XUδδ] { α, δ : total }

v α∇Y Zδ] { α]∇XUδ v ∇Y Z }
= α(β t β−)δ] { ∇Y Z = β t β− }
= αβδ] t αβ−δ]. { (c) }
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(r)
(α Ä β)] = (αβ−)− ]

= (αβ−)]−

= (β− ]α− ]−)− { α− ] = α]− and S2(a) }
= β− ] Ä α− ].
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