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Abstract

This study is concerned with finite Markov decision processes (MDPs) whose
state are exactly observable but its transition matrix is unknown. We develop
a learning algorithm of the reward-penalty type for the communicating case of
multi-chain MDPs. An adaptively optimal policy and an asymptotic sequence of
adaptive policies with nearly optimal properties are constructed under the average
expected reward criterion. Also, a numerical experiment is given to show the
practical effectiveness of the algorithm.
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1. Introduction and notation

In the real world, there are many requests to solve uncertain models. Adaptive mod-
els for uncertain Markov decision processes (MDPs) have been considered by many au-
thors as Hernández (1989), Hernández/ Marcus (1985), Kurano (1972), Kurano (1983),
Mandl (1974), Martin (1967), van Hee (1978) and so on. The idea of Neuro dynamic
programming by Bertsekas/Tsitsiklis (1996) is powerful in treating the adaptive MDPs.

However, a simple learning algorithm of the reward-penalty type, investigated by
Lakshmivarahan (1981) and Meybodi/Lakshmivarahan (1982) are more comprehensible
and manageable. Kurano (1987) proposed a learning algorithms of the reward-penalty
type where all elements of the true transition matrices of finite MDPs are known to be
positive and constructed adaptively optimal policy under the average expected reward
criterion.

In this paper, applying the idea of Kurano (1987) to a wider class of uncertain
MDPs, we develop a learning algorithm for the communicating case of multi-chain MDPs
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and construct an adaptively average optimal policy for a class of perturbed communi-
cating MDPs. For general communicating MDPs, an asymptotic sequence of adaptive
policies with nearly optimal properties is constructed by using the results of perturbed
case.

In the reminder of this section, we will formulate finite MDPs whose transition
matrices are unknown but the state at each stage is observable exactly. Consider a
controlled dynamic system with finite state and action spaces, S and A, containing
N < ∞ and K < ∞ elements respectively. Let Q denote the parameter space of K
unknown stochastic matrices, that is

Q =
{

q = (qij(a))
∣∣∣ qij(a) = 0,

∑
j∈S

qij(a) = 1 for i, j ∈ S, a ∈ A
}

.

The sample space is the product space Ω = (S × A)∞ such that the projections
Xt,∆t on the t-th factors S,A describe the state and action at the t-th stage of the
process(t = 0). Let Π denote the set of all policies, i.e., for π = (π0, π1, . . .) ∈ Π, let
πt ∈ P (A|(S×A)t×S) for all t = 0, where, for any finite sets X and Y , P (X|Y ) denotes
the set of all conditional probability distribution on X given Y . A policy π = (π0, π1, . . .)
is called randomized stationary if a conditional probability γ = (γ(·|i) : i ∈ S) ∈ P (A|S)
such that πt(·|x0, a0, . . . , xt) = γ(·|xt) for all t = 0 and (x0, a0, . . . , xt) ∈ (S × A)t × S.
Such a policy is simply denoted by γ. We denote by F the set of functions on S with
f(i) ∈ A for all i ∈ S. A randomized stationary policy γ is called stationary if there
exists a function f ∈ F with γ({f(i)}|i) = 1 for all i ∈ S, which is denoted simply by f .

We will construct a probability space as follows: For any initial state X0 = i, π ∈ Π
and a transition law q = (qij(a)) ∈ Q, let P (Xt+1 = j|X0, ∆0, . . . , Xt = i,∆t = a) =
qij(a) and P (∆t = a|X0, ∆0, . . . , Xt = i) = πt(a|X0, ∆0, . . . , Xt = i) (t = 0). Then, we
can define the probability measure Pπ(·|X0 = i, q) on Ω. For a given reward function r
on S × A, we shall consider the long-run expected average reward:

ψ(i, q|π) = lim inf
T→∞

1
T + 1

Eπ

( T∑
t=0

r(Xt,∆t)
∣∣∣ X0 = i, q

)
(1.1)

where Eπ(·|X0 = i, q) is the expectation operator with respect to Pπ(·|X0 = i, q).
Let D be a subset of Q. Then, the problem is to maximize ψ(i, q|π) over all π ∈ Π

for any i ∈ S and q ∈ D. Thus, denoting the optimal value function as

ψ(i, q) = sup
π∈Π

ψ(i, q|π), (1.2)

a policy π∗ ∈ Π will be called q-optimal if ψ(i, q|π∗) = ψ(i, q) for all i ∈ S and called
adaptively optimal for D if π∗ is q-optimal for all q ∈ D. A sequences of policies
{πn}∞n=1 ⊂ Π is called an asymptotic sequence of adaptive policies with nearly optimal
properties for D if

lim
n→∞

ψ(i, q|πn) = ψ(i, q) for all q ∈ D.

In Kurano (1987), an adaptively optimal policy for Q+ := {q = (qij(a)) ∈ Q
∣∣ qij(a) >

0 for all i, j ∈ S and a ∈ A} was constructed by applying the value iteration and the pol-
icy improvement algorithm (cf. Lakshmivarahan (1981), Federgruen/Schweitzer (1981),
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Hernández (1989), Hernández/ Marcus (1985)). In this paper, we treat with the com-
municating case of multi-chain MDPs applying the idea of Kurano (1987) extensively.

A transition matrix q = (qij(a)) ∈ Q is said communicating (cf. Bather (1973),
Puterman (1994)) if for any i, j ∈ S there exists a path from i to j with positive
probability, i.e., it holds that

qi1i2(a1)qi2i3(a2) · · · qil−1il
(al−1) > 0

for some {i1 = i, i2, . . . , il = j} ⊂ S and {a1, a2, . . . , al−1} ⊂ A and 2 5 l 5 N . It is
easily shown that q = (qij(a)) is communicating if and only if there is a randomized
stationary policy γ = (γ(·|i) : i ∈ S) satisfying that the transition matrix q(γ) =
(qij(γ)) induced by γ defines an irreducible Markov chain (cf. Kemeny/Snell (1960))
where qij(γ) =

∑
a∈A qij(a)γ(a|i) for i, j ∈ S.

Let B(S) be the set of all functions on S. The following fact is well-known (cf.
Puterman (1994), Ross (1970)).

Lemma 1.1 (Puterman (1994), Ross (1970)) Let q = (qij(a)) ∈ Q. Supposed that
there exists a constant g and a v ∈ B(S) such that, for all i ∈ S,

v(i) = max
a∈A

{
r(i, a) +

∑
j∈S

qij(a)v(j)
}
− g. (1.3)

Then, g is unique and g = ψ(i, q) = ψ(i, q|f) for i ∈ S, where f ∈ F is q-optimal and
f(i) is a maximizer in the right-hand side of (1.3) for all i ∈ S.

Let Q∗ be the set of all communicating transition matrices. In order to treat with
the communicating case with q ∈ Q∗, we use the so-called vanishing discount approach
which studies the average case by considering the corresponding (1− τ)-discounted one
as letting τ → 0. The expected total (1 − τ)-discounted reward is defined by

vτ (i, q|π) = Eπ

( ∞∑
t=0

(1 − τ)tr(Xt, ∆t)
∣∣∣ X0 = i, q

)
(1.4)

for i ∈ S, q ∈ Q and π ∈ Π, and vτ (i, q) = supπ∈Π vτ (i, q|π) is called a (1−τ)-discounted
value function, where (1 − τ) ∈ (0, 1) is a given discount factor.

For any q = (qij(a)) ∈ Q and τ ∈ (0, 1), we define the operator Uτ{q} : B(S) →
B(S) by

Uτ{q}u(i) = max
a∈A

{
r(i, a) + (1 − τ)

∑
j∈S

qij(a)u(j)
}

(1.5)

for all i ∈ S and u ∈ B(S). We have the following.

Lemma 1.2 (Puterman (1994), Ross (1970)) It holds that

(i) the operator Uτ{q} is a contraction with the modulus (1 − τ),

(ii) the (1 − τ)-discount value function vτ (i, q) is a unique fixed point of Uτ{q}, i.e.,

vτ = Uτ{q}vτ , (1.6)
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(iii) vτ (i, q) = vτ (i, q|fτ ) and lim
τ→0

τvτ (i, q) = ψ(i, q), where fτ is a maximizer of the

right-hand side in (1.6).

In Section 2, continuity of the value function for perturbed transition matrices is
proved, by which an adaptively optimal policy for the perturbed communicating MDPs
is constructed through a learning algorithm of reward-penalty type in Section 3. Also,
Section 3 is devoted to the construction of an asymptotic sequence of adaptive policies
with nearly optimal properties. In Section 4, a numerical experiment is implemented to
show the practical effectiveness of the learning algorithm given in Section 3.

2. Continuity of the value function

First we give a key lemma for guaranteeing the validity of the vanishing discount
approach to study the average case.

Lemma 2.1 Let q = (qij(a)) ∈ Q∗. Then, there exists a constant M such that

lim sup
τ→0

∣∣ vτ (i, q) − vτ (j, q)
∣∣5 M for all i, j ∈ S. (2.1)

Proof. We denote by Ht := (X0, ∆0, . . . , Xt) the history of states and actions until the
t-th step(t = 1) with H0 = (X0). For each j ∈ S, we define the stopping time σj by

σj = σj(Ht) = first t = 0 such that Xt = j.

That q ∈ Q∗ guarantees that there exists a randomized stationary policy γ = (γ(·|i) : i ∈
S) such that the Markov chain induced by q(γ) is irreducible. Here, using the stationary
policy fτ given in Lemma 1.2 the policy πj = (πj

0, π
j
1, . . .) will be defined by

πj
t (·|Ht) =

{
γ(·|Xt) if t < σj(Ht),
fτ (Xt) if t = σj(Ht).

for t = 0. Then we have the following: For i ∈ S,

vτ (i, q|πj) = Eγ

(σj−1∑
t=0

(1 − τ)tr(Xt, ∆t)
∣∣∣ X0 = i, q

)
+ Eγ

(
(1 − τ)σj

∣∣∣ X0 = i, q
)
vτ (j|q). (2.2)

From irreducibility of the Markov chain induced by q(γ), it holds (cf. Kemeny/Snell (1960))
that

Eγ

(
σj

∣∣ X0 = i, q
)

< ∞ for all i ∈ S. (2.3)
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Concerning with the second term of the right-hand side in (2.2), since limτ→0
(1−τ)n−1

τ =
−n (n = 1), we have that

lim inf
τ→0

1
τ

{
Eγ

(
(1 − τ)σj

∣∣∣ X0 = i, q
)
− 1

}
=

∞∑
n=0

lim inf
τ→0

(1 − τ)n − 1
τ

Pγ

(
σj = n

∣∣ X0 = i, q
)

= −
∞∑

n=1

nPγ

(
σj = n

∣∣ X0 = i, q
)

= −Eγ

(
σj

∣∣ X0 = i, q
)
. (2.4)

On the other hand, from (2.2) it holds that

vτ (i, q) − vτ (j, q) = vτ (i, q|πj) − vτ (j, q)

= −∥r∥Eγ

(
σj

∣∣ X0 = i, q
)

+
{

Eγ

(
(1 − τ)σj ∣∣ X0 = i, q

)
− 1

}
vτ (j, q)

where ∥r∥ = maxi∈S,a∈A|r(i, a)|. Thus, by (2.2), (2.4) and Lemma 1.2(iii) we have that

lim inf
τ→0

(
vτ (i, q) − vτ (j, q)

)
= − lim sup

τ→0

(
∥r∥ + |τvτ (j, q)|

)
Eγ

(
σj

∣∣ X0 = i, q
)

= −
(
∥r∥ + |ψ(j, q)|

)
Eγ

(
σj |X0 = i, q

)
> −∞.

Similarly, we get that

lim inf
τ→0

(
vτ (j, q) − vτ (i, q)

)
= −

(
∥r∥ + |ψ(i, q)|

)
Eγ

(
σi|X0 = j, q

)
> −∞,

and hence

lim sup
τ→0

∣∣∣vτ (i, q) − vτ (j, q)
∣∣∣ 5

(
∥r∥ + |ψ(i, q)|

)
Eγ

(
σi|X0 = j, q

)
< ∞.

If we put M := maxi,j∈S

(
∥r∥ + |ψ(j, q)|

)
Eγ

(
σj

∣∣ X0 = i, q
)
, (2.1) follows, which

completes the proof. ⊓⊔
Let P (S) be the set of all probability distributions on S, i.e.,

P (S) =
{

µ = (µ1, µ2, . . . , µN )
∣∣ µi = 0,

N∑
i=1

µi = 1 for all i ∈ S
}

.

Let q = (qij(a)) ∈ Q. For any τ ∈ (0, 1) and µ = (µ1, µ2, . . . , µN ) ∈ P (S), we perturb q
to qτ,µ = (qτ,µ

ij (a)) which is defined by

qτ,µ
ij (a) = τµj + (1 − τ)qij(a) for i, j ∈ S and a ∈ A. (2.5)

The matrix expression of (2.5) is qτ,µ = τeµ + (1 − τ)q, where e = (1, 1, . . . , 1)t is a
transpose of N -dimensional vector (1, 1, . . . , 1). Then, we find that (1.6) in Lemma 1.2
can be rewritten as follows: For all i ∈ S,

vτ (i, q) = max
a∈A

{
r(i, a) +

∑
j∈S

qµ,τ
ij (a)vτ (j, q)

}
− τ

∑
j∈S

µjvτ (j, q). (2.6)

Thus, applying Lemma 1.1, we have the following.
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Lemma 2.2 For any q ∈ Q, τ ∈ (0, 1) and µ ∈ P (S), it holds that

(i) ψ(i, qτ,µ) = τ
∑
j∈S

µjvτ (j, q) for all i ∈ S,

(ii) fτ is qτ,µ-optimal, where fτ is given in Lemma 1.2.

From Lemma 2.2, since ψ(i, qτ,µ) is independent of i ∈ S, we shall put ψ(qτ,µ) :=
ψ(i, qτ,µ). The τ -continuity of ψ(qτ,µ) is given in the following.

Theorem 2.1 Let q ∈ Q∗. Then, we have that

(i) ψ(i, q)(:= ψ(q)) is independent of i ∈ S and there exists a u ∈ B(S) satisfying the
average optimality equation:

u(i) = max
a∈A

{
r(i, a) +

∑
j∈S

qij(a)u(j)
}
− ψ(q) (i ∈ S), (2.7)

(ii) for any µ ∈ P (S), ψ(qµ,τ ) → ψ(q) as τ → 0.

Proof. For any fixed i0 ∈ S, let uτ (i) = vτ (i, q) − vτ (i0, q) for each i ∈ S. Then, from
(2.6) we get

uτ (i) = max
a∈A

{
r(i, a) +

∑
j∈S

qµ,τ
ij (a)uτ (j)

}
− τ

∑
j∈S

µjvτ (j, q) (i ∈ S). (2.8)

By Lemma 1.2, limτ→0 τvτ (j, q) = ψ(j, q). Also, from Lemma 2.1, there exists a sequence
{τl} with τl → 0 and uτl

(j) → u(j) as l → ∞ for some u ∈ B(S) and all j ∈ S. Thus,
letting l → ∞ in (2.8) with τ = τl, we get (2.7) with ψ(q) =

∑
j∈S µjψ(j, q). Applying

Lemma 1.1, we observe that ψ(q) is independent of µ ∈ P (S), so that (i) and (ii) follows.
⊓⊔

We note that (i) in Theorem 2.1 derives the single average optimality equation for
the communicating MDPs, which has been given first by Bather (1973). In general,
the value function ψ(i, q) is known to be continuous on each equivalent class of Q (cf.
Schweitzer (1968), Solan (2003)), but (ii) in Theorem 2.1 gives an example in which
ψ(i, q) is continuous in q across the equivalent classes.

3. Learning algorithms and analysis

In this section, we give a learning algorithm of reward-penalty type for MDPs with
the transition matrices q ∈ Q∗, by which the adaptive policy is constructed. For any
i ∈ S and a ∈ A, a sequence of stopping times {σn(i, a)}∞n=0 will be defined as follows.

σ0(i, a) = 0, σn(i, a) = inf{t|t > σn−1(i, a), Xt = i,∆t = a} (n = 1). (3.1)

Let W :=
∩

(i,a)∈S×A W (i, a), where W (i, a) =
∩∞

n=1{σn(i, a) < ∞}. We note that
ω ∈ W means that for any (i, a) ∈ S × A the event {Xt(ω) = i,∆t(ω) = a} happens in
infinitely many stages.

The following is an extension of Lemma 1 in Kurano (1983) to the communicating
case.
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Lemma 3.1 Let a policy π = (π0, π1, . . .) and a decreasing sequence of positive numbers
{εt}∞t=0 satisfy that

(i) for each t = 0, πt(a|ht) = εt with a ∈ A and ht = (x0, a0, . . . , xt) ∈ Ht,

(ii)
∞∑

t=0

εN
t = ∞.

Then, Pπ(W
∣∣ X0 = i, q) = 1 for all q ∈ Q∗ and i ∈ S.

Proof. For notation simplicity, for any fixed q ∈ Q∗ we put P (·) = Pπ(·|X0 = i, q). From
the definition of the communicating MDPs and (i) in Lemma 3.1, we have that there
exists δ > 0 such that

P (Xt = i,∆t = a for some t with n 5 t 5 n + N |Hn) = δεN
n+N (3.2)

for any n = 0 and i ∈ S, a ∈ A. For any fixed i ∈ S, a ∈ A, let Bt := Bt(i, a) :=
{σn(i, a) = t for some n = 1}. Then, we observe that W (i, a) = lim supt→∞ Bt(i, a) =(
lim inft→∞ Bc

t (i, a)
)c

, so that it holds that

P (W (i, a)) = 1 − P (lim inf
t→∞

Bc
t (i, a)). (3.3)

For any positive integer L with L > n, let l :=
[
(L − n + 1)/N

]
− 1, where for a real

number z, [z] is the largest integer equal to or less than z. Then, we have from (3.3)
and (ii) in Lemma 3.1 that

P
( L∩

t=n

Bc
t (i, a)

)

5 P
( l∩

α=0

n+(α+1)N−1∩
t=n+αN

Bc
t (i, a)

)

5
{

1 − P
(n+N−1∪

t=n

Bt(i, a)
)}

· · ·
{

1 − P
(n+(l+1)N−1∪

t=n+lN

Bt(i, a)

∣∣∣∣∣
n+lN−1∩

t=n

Bc
t (i, a)

)}
5

(
1 − δεN

n+N−1

)
· · ·

(
1 − δεN

n+(l+1)N−1

)
5 exp{−δ

l+1∑
i=1

εN
n+iN−1} → 0 as L → ∞,

which implies that limL→∞ P
(∩L

t=n Bc
t (i, a)

)
= P

(∩∞
t=n Bc

t (i, a)
)

= 0 for all n = 1.
Thus, from (3.3) P (W (i, a)) = 1, which implies P (W ) = 1. ⊓⊔

We note that a sequence {1/(t+1)1/N}∞t=0 satisfies (ii) of Lemma 3.1 as an example.
For each i, j ∈ S and a ∈ A, let Nn(i, j|a) =

∑n
t=0 I{Xt=i,∆t=a,Xt+1=j} and

Nn(i|a) =
∑n

t=0 I{Xt=i,∆t=a}, where ID is the indicator function of a set D. Let

qn
ij(a) =


Nn(i, j|a)
Nn(i|a)

if Nn(i|a) > 0,

0 otherwise.
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Then, qn
ij = (qn

ij(a)) is the maximum likelihood estimator of the unknown transition
matrices. For any given q0 = (q0

ij(a)) ∈ Q, we define q̃n = (q̃n
ij(a)) ∈ Q by

q̃n
ij(a) =

{
qn
ij(a) if Nn(i|a) > 0,

q0
ij(a) otherwise.

We consider the following iterative scheme which is a variant of the non-stationary
value iteration scheme proposed by Federgruen/Schweitzer (1981):

ṽ0 = 0, ṽn+1 = Uτ{q̃n}ṽn (n = 0) (3.4)

for any τ ∈ (0, 1). For each i ∈ S and n(n = 0), let ãn+1(i) denote an action which
maximizes the right-hand side of the second equation in (3.4). For any sequence {bn}∞n=0

of positive numbers with b0 = 1, 0 < bn+1 < 1 and bn > bn+1 for all n = 0, let ϕ be any
strictly increasing function such that ϕ : [0, 1] → [0, 1] and ϕ(bn) = bn+1 for all n = 0.

Here, we define a learning algorithm based on ãn+1 and ϕ. For each n(n = 0),
letting π̃τ

n(a|i) = P (∆n = a|X0, ∆0, . . . , Xn = i) we propose to update π̃τ
n as follows:

if ãn+1(i) = ai for each i ∈ S,

π̃τ
n+1(ai|i) = 1 −

∑
a̸=ai

ϕ(π̃τ
n(a|i)),

π̃τ
n+1(a|i) = ϕ(π̃τ

n(a|i)) (a ̸= ai).
(3.5)

In (3.5), the probability of choosing the action ai at the next stage increases and
that of choosing one of the other actions decreases, such that the algorithm (3.5) is
a learning algorithm of the reward-penalty type (cf. Lakshmivarahan (1981), Mey-
bodi/Lakshmivarahan (1982), Sutton and Barto (1998)). Note that given π̃τ

0 , π̃τ =
(π̃τ

0 , π̃τ
1 , . . .) ∈ Π and π̃τ

n (n = 1) is successively determined by (3.4) and (3.5).
We need the following condition.

Condition A.

(i) bn → 0 as n → ∞ and
∑∞

n=0 bN
n = ∞,

(ii) π̃τ
0 (a|i) > 0 for all i ∈ S, a ∈ A.

Under this condition, the following lemma is proved similarly as Lemma 3 and 4 in
Kurano (1987), so the proof is omitted.

Lemma 3.2 Let q ∈ Q∗. Then, under Condition A, the following (i)–(iii) holds with
Pπ̃τ (·|X0 = i, q)-a.s.:

(i) q̃n → q as n → ∞,
(ii) ṽn(i) → vτ (i, q) as n → ∞,
(iii) π̃τ

n(A∗
τ (i|q)|Hn, Xn = i) → 1 as n → ∞,

where A∗
τ (i|q) is the set of all actions which maximize the right-hand side of (1.6).

Let τQ∗ := {qτ,µ|µ ∈ P (S) and q ∈ Q∗}, where qτ,µ is defined in (2.5). Then,
observing the discussion in Section 2 and τQ∗ ⊂ Q∗, from Lemma 3.2 we find that the
results in Kurano (1987) can be applicable to the class of perturbed transition matrices
τQ∗ . So, we have the following.
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Theorem 3.1 Under Condition A, π̃τ is adaptively optimal for τQ∗ .

Here we can state the following theorem for the communicating case.

Theorem 3.2 Under Condition A, a sequence {π̃τn}∞n=1 with τn → 0 as n → ∞ is an
asymptotic sequence of adaptive policies with nearly optimal properties for Q∗.

Proof. Let q ∈ Q∗. For each t = 0, let

δ̃t := (1 − τ)ṽt(Xt) − {r(Xt,∆t) + (1 − τ)ṽt(Xt+1)} and

δt(j) := Eπ̃τ (δ̃t|Ht, Xt = j, q).

Then, by the stability theorem (cf. Loève (1963)), we get

lim
T→∞

1
T + 1

T∑
t=0

{δ̃t − δt(Xt)} = 0, Pπ̃τ (·|X0 = i, q)-a.s. (3.6)

On the other hand, it holds that

δt(j) = ṽt(j) −
∑
a∈A

{
r(j, a) + (1 − τ)

∑
k∈S

qjk(a)ṽt(k)
}

π̃τ
t (a|j) − τ ṽt(j).

So, by (ii) and (iii) of Lemma 3.2,

lim
t→∞

δt(j) = −τvτ (j, q), Pπ̃τ (·|X0 = i, q)-a.s.

Thus, from (3.6) it holds that

min
i∈S

{−τvτ (i, q)} 5 lim inf
T→∞

1
T + 1

T∑
t=0

δ̃t

5 lim sup
T→∞

1
T + 1

T∑
t=0

δ̃t 5 max
i∈S

{−τvτ (i, q)}.

(3.7)

However, we have

T∑
t=0

δ̃t = −
T∑

t=0

r(Xt,∆t) + (1 − τ)
T∑

t=0

(ṽt(Xt) − ṽt(Xt+1))

by the definition. The second term in the right-hand-side is rewritten as

(1 − τ)
{

ṽ0(X0) +
T∑

t=1

(ṽt(Xt) − ṽt−1(Xt)) − ṽT (XT+1)
}

so by (ii) of Lemma 3.2,

lim sup
T→∞

(
lim inf
T→∞

) 1
T + 1

T∑
t=0

δ̃t = lim sup
T→∞

(
lim inf
T→∞

){
− 1

T + 1

T∑
t=0

r(Xt, ∆t)
}
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respectively. Thus, applying Fatou’s Lemma, from (3.7) we get

min
i∈S

τvτ (i, q) 5 ψ(i, q|π̃τ ) 5 max
i∈S

τvτ (i, q). (3.8)

By Lemma 1.2 and Theorem 2.1 (i), limτ→0 τvτ (i, q) = ψ(q), which implies from (3.8)
that ψ(i, q|π̃τ ) → ψ(q) as τ → 0. This completes the proof. ⊓⊔

We summarize our learning algorithm for constructing adaptive policy π̃τ as follows:

Step 1. Set n = 0. Specify τ (0 < τ < 1). Choose π̃τ
0 (a|i) which satisfies (ii) in

Condition A. Select q0
ij(a) arbitrarily and define ṽ0(i) = 0 (i ∈ S).

Step 2. If Xn = i, choose an action ai ∈ A(i) from the decision rule π̃τ
n.

Observe the next state Xn+1 = j and calculate Nn(i, j|a) and Nn(i|a).

Step 3. Set

q̃n
ij(a) =

{
Nn(i, j|a)/Nn(i|a) if Nn(i|a) > 0
q0
ij(a) otherwise.

Step 4. Choose ãn+1(i) which satisfies
ãi := ãn+1(i) ∈ arg max

a∈A

{
r(i, a) + (1 − τ)

∑
j∈S

q̃n
ij(a)ṽn(j)

}
.

Step 5. Update π̃τ
n+1(i) (i ∈ S) by

π̃τ
n+1(α|i) = ϕ (π̃τ

n(α|i)) (α ̸= ãi), and π̃τ
n+1(ãi|i) = 1 −

∑
α̸=ãi

ϕ (π̃τ
n(α|i)) .

Step 6. Set n = n + 1 and return to Step 2.

Figure 3.1: Learning Algorithm for vanishing rate τ .

4. A numerical experiment

In this section, we give a simulation result for learning algorithm in Section 3.
Consider the three state MDPs with S = {1, 2, 3} and A = {1, 2}, whose transition

matrices are parameterized with 0 < p1, q1, p2, q2 < 1 and reward function r(i, a) (i ∈
S, a ∈ A) are given in Table 4.1 and Figure 4.1.

state action parameterized transition matrices reward

i a j = 1 j = 2 j = 3 r(i, a)

1
1 p1 1 − p1 0 3 0
2 1 − p2 p2 0 2.5

2
1 0 q1 1 − q1 2 0
2 1 − q2 q2 0 1.5

3
1 0 0 1 1 0
2 0 1 0 0.5

Table 4.1: Data of simulated MDPs.

From this table and figure, we observe that the transition matrix q has a property
of communicating provided that 0 < p1, q1, p2, q2 < 1. We denote by ψ̃n the average
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1 2

3

1 − p1

p1

q1

1 − q1

1

action 1

1 2

3

p2

1 − p2

q2

1 − q2 1

action 2

Figure 4.1: Transition diagrams parameterized with 0 < p1, q1, p2, q2 < 1.

present value until n-th time, which is defined by

ψ̃n =
1
n

n−1∑
t=0

r(Xt,∆t) (n = 1).

To calculate the quantity explicitly, we set π̃τ
0 (·|i) = ( 1

2 , 1
2 ) for each i ∈ S and q0 with

p1 = 2
5 , q1 = 1

2 , p2 = 3
10 , q2 = 3

10 , i.e.,

q0 = (q0
ij(a)) =

{
(q0

ij(1)) =


2
5

3
5 0

0 1
2

1
2

0 0 1

 , (q0
ij(2)) =


7
10

3
10 0

7
10

3
10 0

0 1 0

}
.

We use a strictly increasing function ϕ such that

ϕ(x) =
( xN

1 + xN

)1/N

where N denotes the number of states in S. Let {bn} be such that b0 = 1 and bn =
n−1/N (n ≥ 1). It is easily checked that the property (i) in Condition A is satisfied with
bn+1 = ϕ(bn) (n = 0).

Now, we make numerical experiments with the true transition matrices whose pa-
rameters are given by p1 = p2 = 1

3 , q1 = q2 = 2
5 , i.e.,

q = (qij(a)) =
{

(qij(1)) =


1
3

2
3 0

0 2
5

3
5

0 0 1

 , (qij(2)) =


2
3

1
3 0

3
5

2
5 0

0 1 0

}
.
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values
HHHHHτ

n
103 5 × 103 104 5 × 104 105 106

ψ̃n

0.5 2.1104 2.1437 2.1569 2.1801 2.1876 2.2002
0.2 2.1214 2.1468 2.1585 2.1805 2.1878 2.2002
0.1 2.1224 2.1470 2.1586 2.1805 2.1878 2.2002
0.01 2.1184 2.1462 2.1581 2.1804 2.1878 2.2002

decision rules
HHHHHτ

n
103 5 × 103 104 5 × 104 105 106

π̃τ
n(1|1)

0.5 0.9003 0.9416 0.9536 0.9729 0.9785 0.9900
0.2 0.8980 0.9413 0.9535 0.9728 0.9785 0.9900
0.1 0.8983 0.9413 0.9535 0.9728 0.9785 0.9900
0.01 0.8937 0.9409 0.9533 0.9728 0.9784 0.9900

π̃τ
n(2|2)

0.5 0.8996 0.9415 0.9536 0.9729 0.9785 0.9900
0.2 0.9002 0.9415 0.9536 0.9729 0.9785 0.9900
0.1 0.9002 0.9415 0.9536 0.9729 0.9785 0.9900
0.01 0.9002 0.9415 0.9536 0.9729 0.9785 0.9900

π̃τ
n(2|3)

0.5 0.9002 0.9415 0.9536 0.9729 0.9785 0.9900
0.2 0.9002 0.9415 0.9536 0.9729 0.9785 0.9900
0.1 0.9002 0.9415 0.9536 0.9729 0.9785 0.9900
0.01 0.9002 0.9415 0.9536 0.9729 0.9785 0.9900

Table 4.2: The simulation value of ψ̃n and π̃τ
n for each τ = 0.5, 0.2, 0.1, 0.01.

steps of learning algorithm

a
v
er

a
g
e

p
re

se
n
t

v
a
lu

e
ψ̃

n

0 1/6 1/3 1/2 2/3 5/6 1
×106

2.1

2.14

2.18

2.22

Figure 4.2: The trajectories of ψ̃n(τ = 0.01). The dotted line means the optimal value
of average reward.

Considering the optimal average reward ψ(q) = 42/19 ≈ 2.2105 and the q-optimal
stationary policy f∗ with f∗(1) = 1, f∗(2) = f∗(3) = 2, it is seen that ψ̃n → ψ(q) =
42/19 and π̃τ

n(1|1), π̃τ
n(2|2), π̃τ

n(2|3) → 1 as n → ∞ hold from the above Table 4.2 and
Figure 4.2. The results of the above simulation show that the learning algorithm is
practically effective for the communicating class of transition matrices.
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