
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Accelerating Cryptographic Applications Using
Dynamically Reconfigurable Functional Units

Trouvé, Antoine
Department of Informatics, ISEE, Kyushu University

Gauthier, Lovic
Department of Informatics, ISEE, Kyushu University

Kando, Takayuki
Department of Informatics, ISEE, Kyushu University

Ryder, Benoît

他

https://hdl.handle.net/2324/16768

出版情報：SLRC 論文データベース, 2009-12
バージョン：
権利関係：

Accelerating Cryptographic Applications
Using Dynamically Reconfigurable Functional Units

Antoine Trouvé †‡, Lovic Gauthier†, Takayuki Kando†‡, Benoı̂t Ryder‡, Sébastien Pouzols‡,
Pradeep Rao‡, Norifumi Yoshimatsu†‡ and Kazuaki Murakami†‡

†Department of Informatics, ISEE, Kyushu University, Japan.
‡Institute of Systems, Information Technologies and Nanotechnologies, Japan.

Abstract—In this paper we propose and evaluate our plat-
form to accelerate applications using custom instruction set
extensions. We use a dynamically reconfigurable functional
unit (DRFU) to execute the application specific custom in-
structions generated by our compiler framework. We explore
two architectures with different computational granularities for
the DRFU (look-up table and ALU based) and evaluate this
framework using security and cryptographic applications as
a case study. Our results indicate that the use of application
specific instruction set extensions reduce code size by 10% and
achieve a maximum speedup of 165% (41% on average).

Keywords-Dynamic reconfiguration, accelerator, compiler

I. INTRODUCTION

While application specific instruction set processors have
demonstrated performance benefits over general purpose
processors for a given application domain, they are associ-
ated with inherent risks. For instance, the constant evolution
of software and low processor production volume require-
ments may not always justify the cost of introducing new
instructions in the ISA. These concerns can be addressed
using reconfigurable hardware which can evolve with the
software and can be tuned to the application on demand
[1]. Furthermore, increasing on-chip resources provide the
means to achieve these objectives.

Our approach to the use of reconfigurable hardware for
application acceleration uses a dynamically reconfigurable
functional unit (DRFU). The DRFU is tightly coupled and
integrated close to the processor core to reduce communica-
tion overheads [2]. This is in contrast with loosely coupled,
reconfigurable application accelerators [1]. The DRFU is ca-
pable of executing application specific instruction extensions
referred to as custom instructions (CI) in this paper. The CIs
are automatically generated for each application (in C) using
our compiler toolchain.

We introduce and evaluate our framework to automatically
generate application specific instruction extensions and the
architectural support required to support these using DRFUs.
As a case study we consider several cryptographic applica-
tions for our experiments and we explore and evaluate two
DRFU architectures – one based on hardware look-up tables
(LUT) and the other based on arithmetic logic units (ALU).

Core pipeline
(5 stages)

DRFU

Register file

$0...$15 $16...$31

CacheConfiguration
memory

Main memory

Result bus

Memory bus

BypassBypass

Figure 1. Architecture Overview

PRCF CI_ID

0252631

CI OUT0

02631

OUT1 IN0 IN1 IN2 IN3

48121621

Figure 2. Additional instructions to support the DRFU

II. HARDWARE

A. Processor Architecture

The proposed platform (Fig. 1) for application accelera-
tion consists of a core RISC processor with an integrated
DRFU and a fully automatic toolchain used to generate
CIs to exploit the DRFU. The core processor is a simple 5
stage pipelined processor and executes instructions in order.
The processor instruction set architecture resembles the
32bit MIPS ISA. The processor implements two additional
instructions to support the DRFU as shown in Fig. 2.

The pcrf instruction configures the DRFU using the con-
figuration information stored in the configuration memory
indexed using CI_ID. The ci instruction corresponds to
the execution of the generated custom instruction on the
DRFU with IN0..IN3 as input registers and OUT0,OUT1
as the output registers.

LVL0

LHL0SW
0_0

LV
L1

SW
1_0

LV
L2

SW
2_0

LV
L5

SW
5_0

LHL1SW
0_1

SW
1_1

SW
2_1

SW
5_1

LHL3SW
0_3

SW
1_3

SW
2_3

SW
5_3

LHL2SW
0_2

SW
1_2

SW
2_2

SW
5_2

LHL4SW
0_4

SW
1_4

SW
2_4

SW
5_4

Input 0

Input 1

Input 2

Input 3

Output 0

Output 1

LVLx 128 bit bus LHLx 64 bit bus

32

32

32

32

32

32

PE
0_0

PE
0_21

PE
1_0

PE
1_21

PE
5_0

PE
5_21

Figure 3. The DRFU-LUT

VB
(n

)

VB
((

n+
1)

%
6

)

128 128

LUT0
(64 bits)

6

612
8

to
 6

2
to

 1
28

LUT1
(64 bits)

Figure 4. A processing element (PE) in the DRFU (LUT based)

B. DRFU

We consider two DRFU architectures – one based on
hardware look-up tables (LUT) and the other based on
arithmetic logic units (ALU). The DRFU-LUT contains 132
processing elements (PE) organized in six rows as shown in
Fig. 3. The PE itself is implemented as a simple 6:2 lookup
table (LUT) as shown in Fig 4.

The PEs communicate with each other using either the
128bit vertical bus (VB) or the 64bit horizontal bus (HB). In-
ter PE communication using the HB involve slower switches
(SW) in the communication paths. The switch fabric is
essentially implemented using diodes to connect the hor-
izontal and vertical wires. The state of these diodes is a
part of the configuration. We synthesized the DRFU using
a 90nm technology and estimated the inter-PE propagation
delay when using the VB and HB to be 1.15ns and 5ns
respectively.

Each DRFU configuration corresponds to a CI and re-
quires 4033bytes (<4kB) each and the entire set of CIs are
stored in the configuration memory (Fig. 1). The memory
required for each CI configuration is much lower than the
hundreds of kilobytes of configuration required for typical

ALU *
(32 bits)

ALU *
(32 bits)

ALU *
(32 bits)

ALU *
(32 bits)

6 to 8 32-bit multiplexer

6 to 8 32-bit multiplexer

ALU
(32 bits)

ALU
(32 bits)

ALU
(32 bits)

ALU
(32 bits)

6 to 8 32-bit multiplexer

ALU
(32 bits)

ALU
(32 bits)

ALU
(32 bits)

ALU
(32 bits)

6 to 8 32-bit multiplexer

ALU
(32 bits)

ALU
(32 bits)

1 or 2 clocks

1 clock

1 clock

1 clock

ALU: +, -, logic, conversion (32 bits)
ALU *: includes multiplication (32 bits to 32 bits)

32 bit
constant

32 bit
constant

32 bit
constant

32 bit
constant

32 bit
constant

32 bit
constant

32 bit
constant

32 bit
constant

Figure 5. The DRFU-ALU

FPGAs. Large configurations prevent dynamic reconfigura-
tion due to the large reconfiguration time required [2]. Our
RTL level synthesis and simulation results show that it is
possible to reconfigure the DRFU using the configuration
stored in a 64 entry configuration memory in less than 10ns,
thus enabling single cycle reconfiguration on a processor
with a 100MHz clock.

The DRFU-ALU is organized as shown in Fig. 5 and
consists of 32bit ALUs and can accommodate four inputs
and two outputs (32bit each). The DRFU -ALU is fully
pipelined as indicated and features 8x32bit registers to
accommodate constants. We note that this work does not
aim at introducing new architectures, but at comparing the
efficiency of both ALU and LUT based approaches with
our development flow. In consequence, both the DRFUs are
over-provisioned to ease the place and route step in the
compilation flow (Sec. III) and the resource usage results
in Sec. V-B indeed indicate that the resources required are
far lower than those provided.

In summary, we note that exploiting custom instructions
requires changes to the instruction decoder in the processor
pipeline as well as an additional configuration memory as
indicated in Fig. 1. The register file also needs to accom-
modate the additional ports corresponding to the I/O ports
of the DRFU. However, our experiments indicate that the
performance benefit of additional I/O ports levels off at 4
input and 2 output ports for either DRFUs.

III. COMPILATION FLOW AND CI GENERATION

Since most high-level programming languages do not
support complex bit manipulation operations, either (1) the
compiler has to recognize it from classic Boolean functions
or (2) it should be programmed using assembly language.
If (2) is not satisfactory, (1) is a NP-problem that a typical
compiler cannot afford.

The solution presented in this paper addresses (2) by

providing a development flow from C language, and (1) with
ISAcc, which solves a far larger problem of bit permutation
recognition within a reasonable time (from 1 to 10 hours
in the case of DES, depending of the implementation of
the algorithm). We implement a fully automatic retargetable
compiler to exploit the DRFU using CIs and is implemented
in the COINS compiler framework [3]. The compilation flow
is shown in Fig. 6 and takes the C program as input and
automatically generates the assembly code as well as the CI
configuration to be loaded into the configuration memory.

The compiler front end, parses the C program, applies sev-
eral optimizations and finally outputs a dependence graph.
CIs are formed by assembling hardware components that
implement subsets of this dependence graph. Specifically,
we implement the following stages.

The annotater identifies and evaluates hardware templates
that can be used to implement subgraphs of the dependence
graph. Each hardware template corresponds to a pattern
available in the pattern library. A first pass does a pattern-
match on the graph. When a match occurs the corresponding
vertices in the graph are annotated with a reference to the
instance of the hardware template. The second pass evaluates
delay and size of for each instance of hardware template that
implements a sub-graph.

The CI partitioner partitions the dependence graph into CI
subgraphs and non-CI subgraphs to facilitate the generation
of CI. The partitioning is guided by a cost function computed
from the evaluations performed in the previous stage by the
annotater.

The synthesizer creates the configuration for each CI from
its corresponding subgraph. A first pass selects the template
to implement the CI from among the hardware templates
that cover the subgraph of the CI. In the case of identical CI
subgraphs, only one configuration is generated. The selected
hardware templates are then instantiated and assembled to
form a netlist describing the unmapped hardware for the
CI. This netlist is then optimized and mapped onto the
target DRFU to produce the resulting configuration. During
mapping, we use heuristics to determine a good initial
solution and our technique is an adaptation of the algorithm
proposed in [4] for routing. A failure at this stage updates the
placement using simulated annealing. While this technique
applied to FPGA is known to be slow, it has not been an
issue with the small size of our DRFU. Finally, a traditional
backend generates the assembly code.

Further details on each of the compiler stages, algorithms
used and the optimizations applied in each stage is described
elsewhere [5] to remain within the scope of this paper. The
compiler build and test status will be available online at
http://ngarch.isit.or.jp

!"#$$

!"#$%&$'(

)$%*+,-*.

/-#-*.-*0-"&$'#1

2**%+'+-$

!3"#'$+4+4%*-$

/-#-*.-*0-"&$'#1
54+1"!36

!3"678,&$'#16

9'0:,-*.;<*+1-64=-$

266-(8><"#$%&$'(!3"0%*?4&7$'+4%*6

!%(#4>-$"0%*?4&7$'+4%*

@AB;A"#'++-$*6
@A"-6+4('+%$6

266-(8><".-60$4#+4%*@A"+-(#>'+-6

Figure 6. Compilation Flow

IV. METHODOLOGY

A. Workload

As a case study, our workload consists of commonly used
checksum (CRC32, MD5 and SHA-1) algorithms as well
as block ciphers (DES and AES). We also investigate the
effectiveness of our approach on highly optimized code.
This is evaluated by optimizing the source code to employ
the following: (1) Packing: This refers to combining sub-
word operations and accessing memory at the word level
rather than bytes. (2) Constant Integration: The DRFU is
able to include constants directly inside the configuration,
thus reducing register pressure and the total number of
instructions. Integrating constant tables in the DRFU also
reduces memory accesses thus speeding up the application.
For this purpose the LUT in the DRFU-LUT doubles up as
memory with 6bit address (64 entries) while the DRFU-ALU
integrates 8x32bit registers. (3) Loop Unrolling/Rerolling:
Unrolling loops helps the algorithm identify larger CIs,
resulting in program speedup. However, unrolling may result
in increased register pressure leading to an increase in
memory accesses.

Brief notes on each algorithm and the nature of optimiza-
tions employed are described next.

CRC32: CRC-32 is used as a tool to detect data corrup-
tion on storage or transmission. The common way of com-
puting the CRC-32 in software uses a 8-bit pre-generated
table, and almost boils down to a XOR of the accumulator
with a value from this table depending on the next byte of
data. The optimized version used a reduced 4-bit precom-
puted table (16x32bit words) which can fit into the DRFU.
It also added a 32-bit packed read operation, which implied
loop unrolling.

MD5: The MD5 algorithm operates on 64-byte data
blocks to produce 128-bit hashes and does not use a substitu-
tion box 1. The optimized version integrates the sine derived
constant table in CIs by using C defines. The reference

1Substitution box (S-box) is a function associating an m-bit input to an
n-bit output and are carefully chosen to resist known attacks. They are often
implemented using table lookups.

!"#

$"#

%"#

&''(!)*+',,-*. /012-*. 3'*450*5!-*56.+05-'*

$"#

%"#

7"#

8""#

!!
"#

$

/012-*. 3'*450*5!-*56.+05-'* &''(!)*+',,-*.

!"#$%&'()*"+# ,$-."#/ 0+#*1$#1&"#1(/2++3&4#)+%%"#/ 2++3&4#)+%,$-."#/ 0+#*1$#1&"#1(/)$1"+#

567 89:: ;98< =9> =9?? 567 ;@A ;>A ;@A

0B0:@ @9CD ;9: :9< = 0B0:@ =A ;CA 8DA

E67 @9=D = <9< = E67 =A =A C:A

FE< :9@< = @98; ;9> FE< @<A =A :@A

7G5; D9=? = = ;98? 7G5; @=A =A =A

5'()$/(:9D>D =9<< @98D =9?< 5'()$/(;;A CA ::A

"#

8"#

9"#

:"#

;"#

<"#

=>? 3@3:9 A>? BA< ?C=8 =D6+0.6

"#

8"#

9"#

:"#

;"#

<"#

!"#

$"#

=>? 3@3:9 A>? BA< ?C=8 =D6+0.6

%
$
&
'
(!
")
*
!"*
!$
+
$
('
!"
)
*

,(
-)
(.
!(
/
(-
$
01

Figure 7. Iterative speedup of programs compiled with CIs due to source-
level optimizations.

version used an array to store the values, which generated
memory accesses and used one register.

SHA1: SHA1 is a popular cryptographic hashing function
producing 160-bit hashes and is used in many security
applications (IPSec, TLS, SSL, etc.). Like MD5, it operates
on 64-byte blocks, features a message schedule (block
expansion) and does not use any substitution box. The
reference version implemented the first method described in
the SHA-1 specification [6], computing the 80×32-bit mes-
sage schedule at the beginning of each loop. The optimized
version implements the second method, which computes the
message schedule in-place between each operation.

DES: This paper uses the Triple DES implementation,
which uses three original DES passes with two or three
different keys. The algorithm consists of 16 applications of
Feistel functions, each of them consisting of four steps: (1)
key expansion, (2) key mixing (a XOR), (3) Substitution
(using s-boxes) and (4) permutation. Implementation of such
functions in a general purpose processor is highly inefficient
due to the lack of fine-grain bit-manipulation instructions.
For instance, a permutation of 32 bits requires around 128
instruction with a classic RISC ISA. The optimized version
was obtained by enabling the constant table integration for
the 8 substitution boxes of DES and the two bit-swap tables.

AES 128: This paper uses the 128bit key for the AES
block cipher algorithm. The key is first expanded, then
16-byte blocks of data are ciphered using a substitution
box, byte permutations and an XOR. The optimized version
integrates the substitution boxes and packed XOR operations
in the columns during key expansion and data ciphering,
considering each column as a 4-byte integer. This packing
reduces the number of instructions by a fourth. The opti-
mized version also unrolled the operations occurring on the
whole 4 × 4-byte state, which removed some instructions
needed to process the loop.

The baseline speedup due to the various source level
optimizations are shown in Fig. 7.

Steps RDPL RDPFU baseline Clocks RDPL RDPFU baseline Gain (#) RDPL RDPFU Gain (T) RDPL RDPFU

CRC32 15421 13373 17468 CRC32 20565 18517 22612 CRC32 1.69 1.31 CRC32 1.65 1.22

CRC32opt 10333 17242 27480 CRC32opt 13681 31354 34421 MD5 MD5

MD5 MD5 SHA1 1.73 SHA1 1.42

MD5opt MD5opt DES 2.24 1.20 DES 2.10 1.05

SHA1 154006 148551 178690 SHA1 223087 234513 254027 AES 1.21 1.24 AES 1.14 1.15

SHA1opt 42269 73076 73076 hill SHA1opt 73623 104630 104630 hill SAD 1.54 1.86 SAD 1.37 1.37

DES DES FFT 1.02 1.67 FFT 1.03 1.78

DESopt 75282 140361 168876 hill DESopt 108037 215379 226461 hill

AES 880253 832889 886719 AES 1289330 1283398 1305716

AESopt 274198 267686 331212 AESopt 439203 437092 500898

SAD 283014 233484 434650 SAD 409145 409595 560771

FFT 648791 395550 659834 FFT 1404981 815548 1447796

opt speedup DRFU-LUTDRFU-ALUAvegrage opt speedup DRFU-LUTDRFU-ALUAverage

CRC32 1.13 1.31 1.22 CRC32 1.10 1.22 1.16

CRC32opt 2.66 1.59 2.13 CRC32opt 2.52 1.10 1.81

SHA1 1.16 1.20 1.18 SHA1 1.14 1.08 1.11 hill

SHA1opt 1.73 1.00 1.36 SHA1opt 1.42 1.00 1.21

DESopt 2.24 1.20 1.72 hill DESopt 2.10 1.05 1.57

AES 1.01 1.06 1.04 AES 1.01 1.02 1.02

AESopt 1.21 1.24 1.22 AESopt 1.14 1.15 1.14

Average 1.49 1.22 Average 1.41 1.09

!"!!##

!"$%##

!"%!##

!"&%##

'"!!##

'"$%##

'"%!##

'"&%##

$"!!##

$"$%##

$"%!##

$"&%##

()(*$# ()(*$+,-# ./0'# ./0'+,-# 12.+,-# 02.# 02.+,-# 0345674#

)4
89

:;
+<

#=<
#8
><
6?

=:
#=<
@-
59
:;
+<

@#
89

4#
-+
#(
A@
#

1)BCDECF# 1)BCD0EC#

!"!!##

!"$%##

!"%!##

!"&%##

'"!!##

'"$%##

'"%!##

'"&%##

$"!!##

$"$%##

$"%!##

$"&%##

()(*$# ()(*$+,-# ./0'# ./0'+,-# 12.+,-# 02.# 02.+,-# 0345674#

2G
4:
9;

+<
#@
,4

48
9,

#8
94

#-+
#(
A@
#

1)BCDECF# 1)BCD0EC#

0.00

0.50

1.00

1.50

2.00

2.50

CRC32 MD5 SHA1 DES AES SAD FFT

RDPL RDPFU

0.00

0.50

1.00

1.50

2.00

2.50

CRC32 MD5 SHA1 DES AES SAD FFT

RDPL RDPFU

Figure 8. Reduction in the number of instructions executed

B. Processor Simulator

We have implemented a cycle accurate, execution driven
instruction set simulator to drive performance evaluations.
The simulator accepts the assembly code and the instruction
description as input and enables the determination of the
state of the DRFU and the processor pipeline at each
clock cycle. The simulator assumes a simple memory model
with each memory access requiring two cycles. This is a
reasonable assumption for embedded processors driven at
100MHz and using SRAM memory.

V. RESULTS

We first analyze the quality of the CIs generated and then
evaluate the improvement in performance due to the use of
custom instructions.

A. CI Generation and Application Speedup

We observe that the reduction in static code size averages
11% for the LUT based DRFU across the applications
considered with the maximum code size reduction of 40%
achieved for the source optimized version of DES. The static
code size reduction for the ALU based DRFU averages 10%
with the maximum reduction in code size of 22% for the
optimized version of CRC.

Improvements to static code size reduces ROM require-
ments in embedded systems and consequently affects system
costs. Reducing the dynamic number of instructions without
increasing overall execution time is equally important as they
impact the energy consumption in embedded systems and
consequently impact battery life. The average reduction in
the number of dynamic instructions, despite the addition of
prcf and ci instructions required to support the DRFU, is
shown in Fig. 8.

The dynamic number of instructions executed under each
class of instruction (arithmetic, boolean, control, load/store
and CI) is shown in Fig. 9. These plots indicate that the LUT
based DRFU is better suited for cryptographic applications
as they reduce the total instructions executed by 33% while

!!!!!!
"

!"""

#"""

$"""

%"""

&"""

'"""

() *+(, -+)./01.)(2334156 736.+34 8359 :.3+1

!
!"
#
$
%
&
'(
!'$
)*
+,
(*
'-
$
)

.%/!01023

25;14)61 <=>?!8?@ <=>?!-8?

!"&#$!$&AB

"

!""""

#""""

$""""

%""""

&""""

'""""

C""""

() *+(, -+)./01.)(2334156 736.+34 8359 :.3+1

!
!"
#
$
%
&
'(
!'$
)*
+,
(*
'-
$
)

.4/!5678

25;14)61 <=>?!8?@ <=>?!-8?

%C!
%C!
%C!

"

!""""

#""""

$""""

%""""

&""""

() *+(, -+)./01.)(2334156 736.+34 8359 :.3+1

!
!"
#
$
%
&
'(
!'$
)*
+,
(*
'-
$
)

.(/!9:5

25;14)61 <=>?!8?@ <=>?!-8?

&AB'C B&#!&

"

!""""

#""""

$""""

%""""

&""""

'""""

C""""

B""""

() *+(, -+)./01.)(2334156 736.+34 8359 :.3+1
!
!"
#
$
%
&
'(
!'$
)*
+,
(*
'-
$
)

."/!7:5

25;14)61 <=>?!8?@ <=>?!-8?

ABBAA !"C!'C

Figure 9. Reduction in the number of instructions executed classified by instruction type

achieving an average speedup of 1.41 as seen in the speedup
plots in Fig. 10. This is expected since the DRFU-LUT
is optimized for bit manipulation. Customizing boolean
instructions is especially effective for CRC32 and DES as
seen in Fig. 9 (a) and (c). The same plots also show an
effective reduction in the number of load instructions and
are attributed to hardcoding the lookup operations in the CI.

B. DRFU Resource Usage

Since we over-provision resources in the DRFU to ease
place and route, we assess the use of resources in this
section. Several hardware parameters may prevent code from
being mapped onto the DRFU – (1) the number of PEs, since
it is directly related the maximum size of the dataflow graph
that can be mapped on the RDP, (2) communication between
PEs, since the bus and switches may become saturated and
restrict PE usage and (3) the number of input/output ports.
If successive instructions depend on too many variables,
the DRFU will not have enough I/Os to map all these
instructions.

Fig. 11 shows the cumulative distribution of PEs usage
against the number of CIs mapped on the DRFU-LUT for
our workload. We observe that, on an average, over 90% of
all CIs mapped use less than half the number of available
PEs and only 1% of the the CIs require more than 60%
of the PEs. Similar plots for the DRFU-ALU show that
85% of the CIs require less than 30% of the available
PEs (ALU). Hence, it should be possible to reduce the

Steps RDPL RDPFU baseline Clocks RDPL RDPFU baseline Gain (#) RDPL RDPFU Gain (T) RDPL RDPFU

CRC32 15421 13373 17468 CRC32 20565 18517 22612 CRC32 1.69 1.31 CRC32 1.65 1.22

CRC32opt 10333 17242 27480 CRC32opt 13681 31354 34421 MD5 MD5

MD5 MD5 SHA1 1.73 SHA1 1.42

MD5opt MD5opt DES 2.24 1.20 DES 2.10 1.05

SHA1 154006 148551 178690 SHA1 223087 234513 254027 AES 1.21 1.24 AES 1.14 1.15

SHA1opt 42269 73076 73076 hill SHA1opt 73623 104630 104630 hill SAD 1.54 1.86 SAD 1.37 1.37

DES DES FFT 1.02 1.67 FFT 1.03 1.78

DESopt 75282 140361 168876 hill DESopt 108037 215379 226461 hill

AES 880253 832889 886719 AES 1289330 1283398 1305716

AESopt 274198 267686 331212 AESopt 439203 437092 500898

SAD 283014 233484 434650 SAD 409145 409595 560771

FFT 648791 395550 659834 FFT 1404981 815548 1447796

opt speedup DRFU-LUTDRFU-ALUAvegrage opt speedup DRFU-LUTDRFU-ALUAverage

CRC32 1.13 1.31 1.22 CRC32 1.10 1.22 1.16

CRC32opt 2.66 1.59 2.13 CRC32opt 2.52 1.10 1.81

SHA1 1.16 1.20 1.18 SHA1 1.14 1.08 1.11 hill

SHA1opt 1.73 1.00 1.36 SHA1opt 1.42 1.00 1.21

DESopt 2.24 1.20 1.72 hill DESopt 2.10 1.05 1.57

AES 1.01 1.06 1.04 AES 1.01 1.02 1.02

AESopt 1.21 1.24 1.22 AESopt 1.14 1.15 1.14

Average 1.49 1.22 Average 1.41 1.09

!"!!##

!"$%##

!"%!##

!"&%##

'"!!##

'"$%##

'"%!##

'"&%##

$"!!##

$"$%##

$"%!##

$"&%##

()(*$# ()(*$+,-# ./0'# ./0'+,-# 12.+,-# 02.# 02.+,-# 0345674#

)4
89

:;
+<

#=<
#8
><
6?

=:
#=<
@-
59
:;
+<

@#
89

4#
-+
#(
A@
#

1)BCDECF# 1)BCD0EC#

!"!!##

!"$%##

!"%!##

!"&%##

'"!!##

'"$%##

'"%!##

'"&%##

$"!!##

$"$%##

$"%!##

$"&%##

()(*$# ()(*$+,-# ./0'# ./0'+,-# 12.+,-# 02.# 02.+,-# 0345674#

2G
4:
9;

+<
#@
,4

48
9,

#8
94

#-+
#(
A@
#

1)BCDECF# 1)BCD0EC#

0.00

0.50

1.00

1.50

2.00

2.50

CRC32 MD5 SHA1 DES AES SAD FFT

RDPL RDPFU

0.00

0.50

1.00

1.50

2.00

2.50

CRC32 MD5 SHA1 DES AES SAD FFT

RDPL RDPFU

Figure 10. Speedup due to use of CI and DRFU

number of PEs without impacting the generation of CIs
(and consequently without adversely affecting performance).
These observations can be used to device mechanisms to
split the resources into large virtual and few real resources.
The virtual resources can then be used for place and route
while the real resources only need to be implemented in
hardware.

We monitored simulations to check if the low PE usage
was due to communication bottlenecks. Our results (not
shown here) indicate that that the bus usage never exceeds
58% with the average bus usage at 19%. We also ran
experiments to examine the impact of DRFU IO ports on

!"#$" %!"#%$" &!"#&$" '!"#'$" (!"#($")!"#)$" *!"#*$" +!"#+$" ,!"#,$" $!"#%!!"

-.-'& ! % ! ! ! ! ! ! ! !

-.-'&/01 $" %," '*" &+" !" %!" !" !" !" !"

234% !" ,!" %!" %!" !" !" !" !" !" !"

234%/01 % ! ! ! ! ! ! ! ! !

562/01 %" +'" &%")" !" !" !" !" !" !"

462 !7&& !7*+ ! !7%% ! ! ! ! ! !

462/01 !" *'" &)" %&" !" !" !" !" !" !"

489:;<9 %$")+" %'" $" !" %" !" !" !" !"

%!" &!" '!" (!")!" *!" %!!"

-.-'& !" %!!" %!!" %!!" %!!" %!!" %!!"

-.-'&/01 $" &+" *'" $!" $!" %!!" %!!"

234% !" ,!" $!" %!!" %!!" %!!" %!!"

234%/01 %!!" %!!" %!!" %!!" %!!" %!!" %!!"

562/01 %" +(" $)" %!!" %!!" %!!" %!!"

462 &&" ,$" ,$" %!!" %!!" %!!" %!!"

462/01 !" *'" ,," %!!" %!!" %!!" %!!"

489:;<9 %$" +*" ,$" $$" $$" %!!" %!!"

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

#!" $!" %!" &!" '!" (!" #!!"

!
!"
#!
$%
&&
'
$$
#%
((
)
!*

+
,
,
'
-
!.
/$

0123!%$+4'!5,'6&'78+4'!"#!9!:;<

,-,%$

,-,%$./0

123#

123#./0

451./0

351

351./0

36789:7

Figure 11. Cumulative distribution of DRFU usage (#PEs) against mapped
CIs (as % of total CIs)

performance. We note that increasing the number of IO
ports beyond 4 do not significantly increase PE usage. This
observation is consistent with other studies [7] that arrive at
similar conclusions regarding the impact of IO ports.

VI. RELATED WORK

Several reconfigurable solutions exist [1], [8] and can
be classified broadly as coarse-grained [9], [10], [11] or
fine-grained [12], [13], [14] reconfigurable architectures.
Since this study focuses on the DRFU architecture and
its evaluation we defer the comparison of our compiler
framework to CI synthesis studies to a separate paper [5].

Our work resembles fine-grained, instruction-level ar-
chitectures [2] but seek to significantly improve the
performance-energy ratio by addressing the DRFU complex-
ity (for instance, we do away with large multi-ported shadow
registers [15]). We also seek to improve the ability of the
compiler to automatically find critical instructions that may
be implemented as CIs directly from C code (as in [14],
[16]), with minimal source level modifications.

Furthermore, we seek to explore and evaluate various
design alternatives for the DRFU design to achieve the above
stated objectives.

VII. CONCLUSIONS

We propose and describe a hardware/software framework
to accelerate applications using application specific instruc-
tion set extensions. This paper evaluates our framework
using cryptographic applications as a case study. We use a
reconfigurable processor which includes a small fine-grained
dynamically reconfigurable datapath in order to accelerate
bitwise operations. This architecture is completely supported
by a full software compilation flow, which automatically
generates the DRFU configurations for the accelerator.
Moreover, all CI synthesis tools and the processor simu-
lator (with DRFU) were developed from scratch to acheive
better integration of our toolset. This versatility enables the
designer to quickly explore the DRFU design space for any
given application domain.

We evaluate two designs for the DRFU with different
computational granularities – based on LUTs and ALUs, to
illustrate the variety of designs that can be explored within
our framework. We show that our platform significantly
improves code size (by 10%), performance (by 41%) and
has significant potential to improve power since dynamic in-
struction count is reduced by 33%, all of which pose design
constraints in embedded systems. As part of current research,
we are investigating DRFU implementation overheads (die
area) and looking at ways to improve DRFU utilization to
reduce hardware costs.

REFERENCES

[1] K. Compton and S. Hauck, “Reconfigurable computing: a
survey of systems and software,” ACM Computing Surveys,
vol. 34, no. 2, pp. 171–210, 2002.

[2] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaera
reconfigurable functional unit,” IEEE Transactions on VLSI
Systems, vol. 12, no. 2, pp. 206–217, 2004.

[3] COINS, www.coins-project.org/international/index.html.

[4] A. Sharma, S. Hauck, and C. Ebeling, “Architecture-adaptive
routability-driven placement for FPGAs,” in FPL, 2005.

[5] Lovic Gauthier et.al., Reconfigurable processor with near
optimal custom instruction generation. Technical Report,
System LSI Laboratory, Kyushu University, 2008.

[6] Official annoucment of sha1 by nist, 2002, http://csrc.nist.gov/
publications/fips/fips180-2/fips180-2withchangenotice.pdf.

[7] P. Ienne and R. Leupers, Customizable Embedded Processors:
Design Technologies and Applications. Morgan Kaufmann
Publishers Inc., 2007.

[8] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Re-
configurable Computing. Springer, 2007.

[9] J. Carrillo and P. Chow, “The effect of reconfigurable units
in superscalar processors,” in FPGA, 2001, pp. 141–150.

[10] S6000, http://www.stretchinc.com/products/s6000.php.

[11] IPFlex, Architecture of dap/dna-2 processor, http://www.
ipflex.com/en/E1-products/dd2Arch.html.

[12] R. Razdan and M. Smith, “A high-performance microar-
chitecture with hardware-programmable functional units,” in
MICRO, 1994, pp. 172–180.

[13] M. Wirthlin and B. Hutchings, “A dynamic instruction set
computer,” in IEEE FCCM, 1995, pp. 99–107.

[14] Mei, B. et.al., “ADRES & DRESC: Architecture and Com-
piler for Coarse-Grain Reconfigurable Processors,” Fine-and
Coarse-Grain Reconfigurable Computing, 2007.

[15] V. Zyuban and P. Kogge, “The energy complexity of register
files,” in ISLPED, 1998, pp. 305–310.

[16] Tensilica White Paper, “Rapid SOC Development Using Au-
tomatically Generated Processors.”

