
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Variable selection via the grouped weighted
lasso for factor analysis models

Hirose, Kei
Graduate School of Mathematics, Kyushu University

Konishi, Sadanori
Faculty of Mathematics, Kyushu University

https://hdl.handle.net/2324/16763

出版情報：MI Preprint Series. 2010-10, 2010-03-03. 九州大学大学院数理学研究院
バージョン：
権利関係：



MI Preprint Series
Kyushu University

The Global COE Program
Math-for-Industry Education & Research Hub

Variable selection via the

grouped weighted lasso for factor

analysis models

Kei Hirose & Sadanori Konishi

MI 2010-10

( Received March 3, 2010 )

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN



Variable selection via the grouped weighted lasso for

factor analysis models

Kei Hirose1 and Sadanori Konishi2

1 Graduate School of Mathematics, Kyushu University,

744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

2 Faculty of Mathematics, Kyushu University,

744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

E-mail: k-hirose@math.kyushu-u.ac.jp, konishi@math.kyushu-u.ac.jp.

Abstract

The L1 regularization such as the lasso has been widely used in regression anal-

ysis since it tends to produce some coefficients that are exactly zero, which leads to

variable selection. We consider the problem of variable selection for factor analysis

models via the L1 regularization procedure. In order to select variables each of

which is controlled by multiple parameters, we treat parameters as grouped param-

eters and then apply the grouped lasso. Crucial issues in this modeling procedure

include the selection of the number of factors and regularization parameters. Choos-

ing these parameters can be viewed as a model selection and evaluation problem.

We derive a model selection criterion for evaluating a factor analysis model via the

grouped lasso. The proposed procedure produces estimates that lead to variable

selection and also selects the number of factors objectively. Monte Carlo simula-

tions are conducted to investigate the effectiveness of the proposed procedure. A

real data example is also given to illustrate our procedure.

Key Words: Factor analysis, Grouped weighted lasso, L1 regularization, Model selection

criterion, Number of factors, Variable selection
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1 Introduction

Variable selection is an important topic in statistical analysis. In regression analysis,

traditional model selection procedures follow the stepwise deletion and subset selection.

However, as analyzed by Breiman (1996), the best subset variable selection often exhibits

high variance. To overcome this drawback of subset selection, Tibshirani (1996) proposed

a regularization procedure which imposes a L1 norm penalty on parameters, called the

lasso. The L1 regularization procedure reduces the variance of estimates by sacrificing a

little bit of bias, and also produces some coefficients that are exactly zero, which leads to

variable selection. Thus, the lasso performs the model selection and estimation simultane-

ously. Yuan & Lin (2006) proposed the grouped lasso which selects the grouped variables

by extending the basic idea of the lasso. Other various kinds of the lasso-type penalty

have been proposed (see, e.g., Fan & Li, 2001; Zou & Hastie, 2005; Zou, 2006).

In this paper, we consider the problem of variable selection for factor analysis models.

Some authors have discussed this problem and proposed various variable selection proce-

dures (see, e.g., Yanai, 1980; Tanaka, 1983; Gorsuch, 1988; Kano & Ihara, 1994; Ichikawa

& Konishi, 1999; Kano & Harada, 2000). Their selection processes are based on a subset

selection. Instead of using the subset selection, we focus on the L1 regularization method.

It is well-known that the maximum likelihood factor analysis often yields unstable esti-

mates because of the overparametrization (see, e.g., Akaike, 1987). The regularization

method may be useful for factor analysis models because it produces estimates that have

small variances. Since each observed variable is controlled by multiple parameters, the

ordinary lasso does not work for variable selection. We treat these parameters as grouped

parameters and then propose a regularization method via the grouped lasso. Further-

more, we adjust the weight of the grouped lasso penalty so that the proper penalties are

imposed on each variable.
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Crucial issues in this modeling procedure include the choice of the number of factors

and regularization parameters. Regarding the selection of the number of factors, the

AIC (Akaike, 1973) and the BIC (Schwarz, 1978) have been widely used. However, these

procedures cannot provide suitable values of regularization parameters since they only

evaluate models estimated by maximum likelihood procedure. In regression analysis, the

selection procedures of the regularization parameter for the lasso has been proposed by

Efron et al. (2004) and Zou et al. (2007), whereas their methods cannot be directly

applied to the factor analysis model. We treat a selection of parameters, that include the

number of factors and the regularization parameter, as a model selection and evaluation

problem, and derive a model selection criterion from a Bayesian viewpoint (Konishi et al.,

2004). The proposed method can produce estimates that lead to variable selection and

select the number of factors simultaneously.

The remainder of this paper is organized as follows: Section 2 describes the maximum

likelihood factor analysis. In Section 3, we introduce a variable selection procedure for

factor analysis models via the grouped lasso, and provide a model estimation using the EM

algorithms with quadratic approximation. Section 4 derives a model selection criterion

for evaluating a factor analysis model via the grouped lasso. Section 5 presents numerical

results for both artificial and real datasets. Some concluding remarks are given in Section

6.

2 Maximum likelihood factor analysis

Let X= (X1, · · · , Xp)
T be a p-dimensional observable random vector with mean vector

µ and variance-covariance matrix Σ. The factor analysis model is

X = µ + ΛF + ε, (1)
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where Λ = (λij) is a p × k matrix of factor loadings, and F = (F1, · · · , Fk)T and ε =

(ε1, · · · , εp)T are unobservable random vectors. The elements of F and ε are called

common factors and unique factors, respectively. It is assumed that E(F ) = 0, E(ε) = 0,

E(FF T ) = Ik, E(εεT ) = Ψ and E(FεT ) = 0, where Ik is the identity matrix of order

k and Ψ is a p× p diagonal matrix with i-th diagonal element ψi which is called unique

variance. Under these assumptions, the variance-covariance matrix of X can be expressed

as

Σ = ΛΛT + Ψ.

The i-th diagonal element of ΛΛT is called communality, which measures the percent of

variance in xi explained by all the factors. It is well-known that factor loadings have a

rotational indeterminacy since both Λ and ΛT generate the same covariance matrix Σ,

where T is an arbitrary orthogonal matrix.

Assume that the common factors F and the unique factors ε are, respectively, dis-

tributed according to multivariate normal distributions

F ∼ Nk(0, Ik) and ε ∼ Np(0,Ψ).

Suppose that we have a random sample ofN observations x1, · · · ,xN from the p-dimensional

normal population Np(µ,Σ) with Σ = ΛΛT+Ψ. Then the log-likelihood function is given

by

log f(XN |Λ,Ψ) = −N
2

{
p log(2π) + log |Σ| + tr(Σ−1S)

}
, (2)

where XN = (x1, · · · ,xN)T , f(XN |Λ,Ψ) is the likelihood function and S = (sij) is the

sample variance-covariance matrix

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T ,

with x̄ = (x̄1, . . . , x̄p)
T being the sample mean vector.
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The maximum likelihood estimates Λ̂ML and Ψ̂ML are given as the solutions of ∂q(Λ,Ψ)/∂Λ =

0 and ∂q(Λ,Ψ)/∂Ψ = 0. Since the solutions cannot be expressed in a closed form, we

require some iterative procedure. Some numerical algorithms have been proposed by ear-

lier authors (see, e.g., Jöreskog, 1967; Jennrich & Robinson, 1969; Clarke, 1970; Rubin &

Thayer, 1982).

3 Variable selection via the grouped lasso for factor

analysis models

In this section we consider the problem of variable selection for factor analysis models

via the grouped lasso. First, we provide an insight how a selection procedure works in

factor analysis models. From Equation (1), the i-th element of each variable can be

written as

Xi = λi1F1 + · · · + λikFk + εi = λT
i F + εi, i = 1, . . . , p,

where λi denotes the i-th row of factor loadings Λ. When all of coefficients on each factor

for r-th variable are zero, i.e. λr = 0, we have

Xr = εr. (3)

The Equation (3) indicates the r-th variable is no more explained by any common factors.

Figure 1 presents the path diagram of this situation, and it suggests that the r-th variable

could be removed for this model.

In order to implement the variable selection for factor analysis models, we construct

grouped parameters each of which consists of

{λi1, . . . , λik}, i = 1, . . . , p, (4)
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Table 1: The estimates of parameters based on the maximum likelihood procedures

(MLE), the regularization procedure with grouped lasso penalty given by (6) (PMLE)

and the regularization procedure with grouped weighted lasso penalty in (8) (PMLEw)

when ρ = 0.1, 0.15, 0.2 and 0.25.

λ̂11 λ̂21 λ̂31 λ̂41

True value 0.80 0.80 0.80 0.00

MLE 0.81 0.91 0.84 0.20

ρ = 0.1 PMLE 0.70 0.81 0.73 0.09

PMLEw 0.83 0.85 0.83 0.00

ρ = 0.15 PMLE 0.67 0.77 0.70 0.05

PMLEw 0.80 0.82 0.80 0.00

ρ = 0.2 PMLE 0.63 0.73 0.67 0.01

PMLEw 0.77 0.80 0.77 0.00

ρ = 0.25 PMLE 0.60 0.71 0.64 0.00

PMLEw 0.75 0.78 0.75 0.00

and propose a modeling procedure which tends to produce some of the grouped parameters

in (4) that all of its components are exactly zero. The grouped lasso (Yuan & Lin, 2006)

is one way to achieve this.

3.1 Grouped lasso penalty

In order to select variables in factor analysis models, we employ the L1 regularization

procedure. The basic idea of regularization method is to add a penalty term to the log-

likelihood, and estimate parameters by maximizing the following penalized log-likelihood

function:

lρ(Λ,Ψ) = log f(XN |Λ,Ψ) − pρ(Λ), (5)

where pρ(Λ) is a penalty term with regularization parameter ρ.
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In the regularization procedure, it is important to choose the penalty term pρ(Λ). The

lasso penalty (Tibshirani, 1996) is based on the sum of the absolute values of each coef-

ficients. Owing to the property of the lasso penalty it tends to produce some coefficient

that are exactly zero. However, the ordinary lasso does not implement the variable selec-

tion in factor analysis models since each observed variable consists of grouped parameters

in (4) and the lasso cannot produce some of the grouped variables in (4) that all of its

components are exactly zero.

Therefore, we apply the grouped lasso (Yuan & Lin, 2006) which selects the members

of a group that consists of multiple parameters by extending the basic idea of the lasso.

The penalty term based on the grouped lasso is given by

pρ(Λ) = Nρ

p∑
i=1

‖λi‖, (6)

where ‖λi‖ =
√

λT
i λi. However, we observed that the penalty term (6) does not often

work well since it selects variable only when the regularization parameter ρ is large.

Here is an example of this phenomena. Assume that Λ = (0.8, 0.8, 0.8, 0.0)T and

Ψ = diag(0.36, 0.36, 0.36, 1.00), and we have 50-observations from N4(0,Σ), where Σ is

given by

Σ = ΛΛT + Ψ =


1.00 0.64 0.64 0.00

0.64 1.00 0.64 0.00

0.64 0.64 1.00 0.00

0.00 0.00 0.00 1.00

 . (7)

Once the regularization-parameter ρ is determined we can obtain maximum penalized

likelihood estimates by EM algorithms (The algorithm will be described in the subsection

3.3). In this example, we investigated 4 variants of ρ: ρ = 0.1, 0.15, 0.2 and 0.25.

Table 1 shows the estimates of parameters based on the maximum likelihood procedures

(MLE), the regularization procedure with grouped lasso penalty given by (6) (PMLE)

and the regularization procedure with grouped weighted lasso penalty in (8) (PMLEw).
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The grouped weighted lasso penalty will be described in the next subsection.
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Figure 1: The path diagram of factor analysis model when λr = 0. ei, i = 1, . . . , p,

indicates the error for i-th variable.

When we use the maximum penalized likelihood procedure with grouped lasso penalty

in (6) (PMLE), λ̂41 is exactly zero only when ρ = 0.25, whereas λ̂11, λ̂21 and λ̂31 are too

small compared with true values because the regularization parameter is too large.

3.2 Grouped weighted lasso penalty

In order to overcome the drawback of ordinary grouped lasso method described in the

previous subsection, we propose a weighted grouped L1 penalty

pρ(Λ) = Nρ

p∑
i=1

ŵi‖λi‖, (8)

where ŵi is the weight of each group. The weighted lasso penalty has been proposed by Zou

(2006), Shimamura et al. (2007) and Tateishi et al. (2010) to improve the performance

of the ordinary lasso.

It is important to choose the weight ŵi. We propose weights given as follows

ŵi =

(
1∑p

h=1 1/shh

)
1

sii
, (9)

where sii is the ith diagonal elements of S−1.
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It is known that ŵi is large when the i-th variable has small correlation with other

variables. This can be confirmed by the example of the previous subsection. The correla-

tions between X4 and X1, X4 and X2, and X4 and X3 are zero (see the variance-covariance

matrix in (7)), and the weight based on (9) is given by

(ŵ1, ŵ2, ŵ3, ŵ4)
T = (0.61, 0.57, 0.61, 2.21)T .

It can be seen that ŵ4 is much larger than other weights. This means the grouped weighted

estimate λ̂41 tends to become zero even when ρ is small.

We also obtain estimates of factor loadings based on the grouped weighted lasso

(PMLEw) for that example, which is given in Table 1. We observe that λ̂41 is exactly zero

even when ρ = 0.1 with the grouped weighted lasso. Since the grouped weighted lasso

encourages some coefficients zero even if ρ is small, the estimates of non-zero parameters

are close to true values compared with the grouped lasso estimates with ρ = 0.25.

In section 5, we compare the performance of the ordinary grouped lasso penalty with

the grouped weighted lasso penalty, and we observed that the proposed grouped weighted

lasso performs well.

3.3 Estimation

In order to obtain the maximum penalized likelihood estimates in factor analysis

models, we employ an EM algorithm. Rubin & Thayer (1982) suggested an estimation

procedure via an EM algorithm in maximum likelihood factor analysis. The advantage of

the EM algorithms is that even if the likelihood function is not concave with respect to

the parameters, the algorithm leads to a maximization of the function.

We provide the expectation and maximization steps for estimating the factor analysis

model via the grouped lasso within a general framework of EM algorithms. We regard

the common factors as missing variables, and maximize the complete-data log-likelihood
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using a posterior distribution for the missing variables. For the L1 type regularization

method, it is difficult to obtain the analytical form of the updated λi (i = 1, . . . , p) since

the lasso estimate is non-differentiable when λi = 0. Hence we apply to the quadratic

approximation given by Fan & Li (2001). Then the iterative procedure is

λ̂i =
{
(B + ΛTΣ−1SΣ−1Λ)/ψ2

i + (ρŵi/‖λi‖)Ik
}−1

{
1

ψ2
i

ΛTΣ−1Si.

}
, (10)

Ψ̂ = Diag
[
S − 2SΣ−1ΛΛ̂T + Λ̂BΛ̂T + Λ̂ΛTΣ−1SΣ−1ΛΛ̂T

]
, (11)

where Si. is the i-th column of the matrix S and B = Ik − ΛTΣ−1Λ. The derivation of

the procedure is detailed in Appendix A.

In order to eliminate the rotational indeterminacy from Λ, we impose restrictions that

λij = 0 (i > j) (see, for example, Anderson & Rubin; 1956).

4 Model selection criterion

As described in the example in the previous section, the maximum penalized estimates

depend on the regularization parameter ρ. Hence, it is important to choose the appropriate

value of ρ. Moreover, the selection of the number of factors k is also an essential problem.

The selection of parameters ρ and k can be viewed as a model selection and evaluation

problem. In this section we derive a model selection criterion for evaluating a factor

analysis model via the grouped weighted lasso.

The generalized Bayesian information criterion (GBIC), proposed by Konishi et al.

(2004), enables us to choose adjusted parameters including the regularization-parameter

ρ and the number of factors k simultaneously by extending the Bayesian information

criterion (BIC) proposed by Schwarz (1978). BIC only deals with models estimated by

the maximum likelihood method, whereas the model selection criterion GBIC also applies

to models estimated by the maximum penalized likelihood method. For model selection

criteria we refer to Konishi & Kitagawa (2008) and references given therein.
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Suppose that θ is a parameter vector given by

θ = (λT
.1,λ

T
.2, · · · ,λT

.k,Diag(Ψ)T )T ,

where λ.i = (λi,i, λi+1,i, · · · , λp,i)T . We used the definition of λ.i which consists of only the

lower elements of Λ because it eliminates the rotational indeterminacy as described in the

previous section. Let f(XN |θ̂) be the estimated model by maximum penalized likelihood

methods. Then we have a statistical model

f(XN |θ̂) = (2π)−
Np
2 |Σ̂|−

N
2 exp

{
−N

2
tr

(
Σ̂−1S

)}
, (12)

where Σ̂ = Λ̂Λ̂T + Ψ̂.

It should be noted that the model selection criterion GBIC cannot be directly de-

rived for the L1 type regularization method, since we need a second order differential

∂2‖λ̂i‖/∂λij∂λij′ and it is difficult to derive it when λ̂i = 0. In order to overcome this

difficulty, we define an Active set

A = {j : θ̂j 6= 0} (13)

and derive a second order differential of the penalized log-likelihood of θA instead of θ,

where

θTA = (· · · θj · · · )j∈A.

The basic idea of the elimination of the non-zero parameter is given by Efron et al. (2004)

and Zou et al. (2007).

The model selection criterion GBIC for evaluating the factor analysis model via the

grouped wighted lasso is given by

GBIC = −p∗ log(2π) + p∗ logN + log |Jρ(θ̂A)| +N
{
p log(2π) + log |Σ̂| + tr(Σ̂−1S)

}
−2 logC + 2Nρ

p∑
i=1

ŵi‖λ̂i‖, (14)
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where C is given in (B2) in Appendix B, p∗ is the number of non-zero parameters and

Jρ(θ̂A) is a second order differential of the penalized log-likelihood function for the Active

set parameters. We choose optimum values of the hyper-parameter ρ and the number of

factors k which simultaneously minimize the value of the model selection criterion in (14).

The derivation of GBIC is detailed in Appendix B.

Other traditional model selection criteria include the AIC (Akaike, 1973) and BIC

(Schwarz, 1978). These model selection criteria are given by

AIC = −2 log f(XN |Λ̂ML, Ψ̂ML) + 2p∗,

BIC = −2 log f(XN |Λ̂ML, Ψ̂ML) + p∗ logN.

However, these procedures cannot provide suitable values of regularization parameter

ρ since these approaches cannot evaluate models estimated by the maximum penalized

likelihood method including the L1 regularization procedure.

5 Numerical Examples

In this section, we present Monte Carlo simulations to investigate the effectiveness

of our modeling strategies. The proposed procedure is also applied to a job application

dataset.

5.1 Numerical comparison

In the simulation study, the following two models are used:

Model (A):

Λ =


0

ΛT
0 0

0


T

, Ψ =

0.0975I12 012

0T12 1

 ,
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Model (B):

Λ =


0 0

ΛT
0 0 0

0 0


T

, Ψ =

0.0975I12 O12,2

O2,12 I2

 ,

where Λ0 is the 12 × 3 matrix

ΛT
0 =


0.95 0.00 0.00 0.95 0.00 0.00 0.95 0.00 0.00 0.95 0.00 0.00

0.00 0.95 0.00 0.00 0.95 0.00 0.00 0.95 0.00 0.00 0.95 0.00

0.00 0.00 0.95 0.00 0.00 0.95 0.00 0.00 0.95 0.00 0.00 0.95


T

and Oa,b is a × b 0-matrix. The number of observations were N = 50 and N = 100 for

each Model, and 100 datasets were generated for each setting. For Model (A), X13 is not

explained by any common factors, whereas X13 and X14 are unimportant variables for

Model (B).

To investiate the performance of the proposed method, the following three points were

examined:

(a) the grouped weighted lasso often yields estimates that can lead to variable selection,

(b) penalized maximum likelihood estimates have smaller mean squared error than max-

imum likelihood estimates,

(c) the model selection criterion selects the true number of factors frequently.

Firstly, (a) and (b) are investigated. We fixed k = 3 and selected the best model by

varying the regularization parameter ρ. To investigate (a), we show that how many

times the proposed procedures estimated the grouped parameters correctly zero out of

100 datasets. Regarding (b), the sum of squared error of Λ and Ψ were calculated for

each dataset, and these values were averaged over the 100 simulations, which are given

by

MSEΛ =
1

100

100∑
t=1

‖Λ̂(t) − Λ‖2, MSEΨ =
1

100

100∑
t=1

‖Ψ̂(t) − Ψ‖2,
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Table 2: The MSE for parameters Λ and Ψ and the number of correctly selected models

when the number of factors is fixed.

ML PML PMLw

Model(A) N = 50 MSEΛ 0.388 0.376 0.331

MSEΨ 0.021 0.021 0.014

Correct 0 0 80

N = 100 MSEΛ 0.208 0.198 0.177

MSEΨ 0.008 0.008 0.007

Correct 0 1 78

Model(B) N = 50 MSEΛ 0.443 0.414 0.323

MSEΨ 0.027 0.026 0.014

Correct 0 0 73

N = 100 MSEΛ 0.238 0.221 0.180

MSEΨ 0.009 0.009 0.007

Correct 0 0 71

where Λ̂(t) and Ψ̂(t) are t-th estimates and ‖A‖ is the square-root of sum of squares of

each element of A.

Table 2 shows the MSE for parameters Λ and Ψ and the number of correctly selected

models, in which the column labeled “Correct” presents the number of correctly selected

models. The procedures “ML”, “PML” and “PMLw” are as follows:

ML: Maximum likelihood procedure

PML: Penalized maximum likelihood procedure with ordinary grouped lasso

PMLw: Penalized maximum likelihood procedure with weighted grouped lasso

For example, for Model (A), the ML procedure selected the correct variables 0 times

because it cannot shrink communality exactly zero. In other words, the estimates of λ13

did not become zero with ML procedure. The PML also selected the correct variables 0

times when N = 50 since the hyper-parameter selected by the GBIC was too small. On

14



Table 3: The number of correctly selected the true number of factors.

AIC BIC GBIC (PML) GBIC (PMLw)

Model (A) N = 50 73 100 100 100

N = 100 83 100 100 100

Model (B) N = 50 80 100 100 100

N = 100 72 100 100 100

the other hand, the PMLw procedure selected the correct variable 80 times when N = 50.

When N = 100, the PMLw procedure also often selected correct variables, whereas the

ordinary lasso selected them only once. Similarly, for Model (B), the PMLw selected

the correct variables more than 70 times but the ML and PML never selected correctly.

Moreover, the MSE of the PMLw procedure was smaller than that of the ML and PML

for both Model (A) and Model (B).

Secondly, we examine (c): selection of the number of factors. For investigating (a)

and (b) we fixed the number of factors. On the other hand, for investigating (c), the

number of factors is not fixed and we choose k and ρ using the model selection criterion

GBIC given by (14). We also selected the number of factors using AIC and BIC, which

only deal with the models estimated by the maximum likelihood method, to compare the

performance of AIC and BIC with that of GBIC.

Table 3 shows that how many times the model selection criteria selected the true

number number of factors out of 100 datasets. For example, the AIC selected the three

factor model 73 times out of 100 datasets in model (A) when N = 50. For models (A)

and (B), the AIC did not always select the true number of factors, whereas the BIC and

GBIC chose the true number of factors 100 times, which means BIC-type criteria perform

well.
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We observed that the proposed procedure of PMLw performed well in the sense that

it most often selects the correct variables, and mean squared errors of PMLw was smaller

than that of ML and PML. Furthermore, the PMLw selected the number of factors cor-

rectly.

5.2 Job application dataset

We illustrate our modeling procedure through a job application dataset in Kendall

(1980). This dataset contains 48 applicants for a certain job, who have been scored on

p = 15 variables regarding their acceptability. The variables are

(1) Form of letter application, (2) Appearance, (3) Academic ability,

(4) Likeability, (5) Self confidence, (6) Lucidity,

(7) Honesty, (8) Salesmanship, (9) Experience,

(10) Drive, (11) Ambition, (12) Grasp,

(13) Potential, (14) Keenness to join, (15) Suitability.

First, we focus on the selection of the number of factors. The result of AIC, BIC and

GBIC are shown in Table 4. The minimum GBIC was selected for varying values of k

and ρ.

The model selection criterion AIC and BIC selected 4 factor model and 7 factor model,

respectively. Note that the maximum likelihood estimates of some unique variances turned

out to be zero or negative for k ≥ 4. This problem is called improper solutions (see,

e.g., van Driel, 1978). The AIC and the BIC selected models that resulted in improper

solutions.

Table 5 shows the estimates of Λ and Ψ obtained by maximum likelihood procedure

for 4 factor model. The estimates of factor loadings Λ are rotated by varimax method

(Kaiser, 1958). We obtained the improper solutions since the estimates of ψ14 turned out

to be zero.

16



Table 4: The number of factors selected by the AIC, BIC and the GBIC, and the variables

not selected for each procedure.

AIC BIC GBIC (PML) GBIC (PMLw)

k 7 4 4 3

variables not selected – – – X3

Table 5: The estimates of Λ and Ψ obtained by maximum likelihood procedure for 4

factor model.

Factor1 Factor2 Factor3 Factor4 uniqueness

Form of letter application 0.13 0.72 0.11 −0.12 0.44

Appearance 0.45 0.14 0.24 0.16 0.69

Academic ability 0.07 0.12 0.00 0.68 0.52

Likeability 0.23 0.24 0.83 −0.05 0.20

Self confidence 0.92 −0.10 0.15 −0.09 0.11

Lucidity 0.84 0.12 0.30 0.06 0.19

Honesty 0.25 −0.22 0.74 −0.02 0.34

Salesmanship 0.89 0.24 0.08 −0.07 0.13

Experience 0.09 0.78 −0.05 0.17 0.36

Drive 0.77 0.39 0.18 −0.06 0.22

Ambition 0.90 0.18 0.11 −0.06 0.14

Grasp 0.78 0.28 0.36 0.16 0.15

Potential 0.73 0.35 0.44 0.25 0.09

Keenness to join 0.42 0.39 0.56 −0.59 0.00

Suitability 0.36 0.77 0.05 0.14 0.25
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Table 6: The estimates of Λ and Ψ obtained by PMLEw.

Factor1 Factor2 Factor3 uniqueness

Form of letter application 0.08 0.45 0.10 0.57

Appearance 0.27 0.12 0.17 0.72

Academic ability 0.00 0.00 0.00 1.00

Likeability 0.10 0.17 0.86 0.01

Self confidence 0.79 −0.12 0.11 0.11

Lucidity 0.69 0.08 0.25 0.19

Honesty 0.18 −0.17 0.56 0.45

Salesmanship 0.74 0.18 0.08 0.14

Experience 0.05 0.60 −0.05 0.41

Drive 0.63 0.30 0.12 0.23

Ambition 0.75 0.10 0.10 0.16

Grasp 0.65 0.21 0.24 0.21

Potential 0.58 0.28 0.34 0.19

Keenness to join 0.32 0.19 0.48 0.42

Suitability 0.26 0.70 0.05 0.16

On the other hand, the GBIC for the grouped weighted lasso selected 3 factor model.

The estimates of Λ and Ψ obtained by PMLEw are given in Table 6. The estimates of

factor loadings are rotated by varimax method. We observe that λ̂3 = 0 which means

we can interpret that the variable X3 (Academic Ability) is unimportant in constructing

the 3 factor model. Moreover, we can obtain the interpretable common factors in the

following: Motivation and Ability, Career and Adequacy and Character.

6 Concluding Remarks

We proposed a procedure for variable selection via the L1 regularization for factor

analysis models. Since there are multiple parameters in each variable we treated them
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as grouped parameters, then applied the group weighted lasso regularization. In order to

select regularization parameters we derived a model selection criterion for evaluating mod-

els estimated by the maximum penalized likelihood procedure. The proposed modeling

strategy is applied to the analysis of a simulation example, and the proposed procedure

selects appropriate variables, produces estimates that have small mean squared error and

selects the true number of factors simultaneously. The modeling process is also applied to

the Kendall’s dataset, and obtained a different interpretation which cannot be obtained

by maximum likelihood procedure.

Crucial issues in this modeling procedure include the selection of the weight of the

penalty. The proposed weighted penalty performed better than the ordinary lasso, but

derived heuristically. As a future research topic, it is interest to propose a new weighted

lasso penalty which is derived theoretically.

Appendix A: The derivation of EM algorithm for fac-

tor analysis model via the grouped lasso

To apply the EM algorithm into factor analysis model, we consider the common factors

fn to be missing data and maximize the complete-data penalized log-likelihood given by

lCρ (θ) =
N∑
n=1

log f(xn,fn) − pρ(Λ),

where f(xn,fn) is the density of the complete-data distribution and pρ(Λ) is the penalty

term in (8).

To derive the posterior mean of the log-likelihood, we use the conditional distribution

of common factors F n given the observed xn. It is well-known that the conditional

distribution is given (see, e.g., Anderson, 2003) by

F n|xn ∼ Nk(Λ
TΣ−1(xn − x̄),B), (A1)
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where B = Ik − ΛTΣ−1Λ. Then the values for E[F n|xn] and E[F nF
T
n |xn] in the E-step

are

E[F n|xn] = ΛTΣ−1(xn − x̄), (A2)

E[F nF
T
n |xn] = B + E[F n|xn]E[F n|xn]T . (A3)

The expectation of the complete log-likelihood with respect to the distributions of (A1)

is

E[lCρ (θ)] = −
N∑
n=1

[
p

2
log(2π) +

p

2
log |Ψ| + 1

2
tr

(
E[F nF

T
n ]

)
+

1

2
tr

{
Ψ−1(xn − x̄)(xn − x̄)T

}
−E[F n]

TΛTΨ−1(xn − x̄) +
1

2
tr(ΛTΨ−1ΛE[F nF

T
n ]) + ρ

p∑
i=1

ŵi‖λi‖
]
,

where E[F n] = E[F n|xn] and E[F nF
T
n ] = E[F nF

T
n |xn].

Since we use the L1 type penalty, it is difficult to update parameters in the M-step

analytically. Therefore, we use the quadratic approximation proposed by Fan & Li (2001).

Suppose that λi0 is the current step of λi. If λi0 is very close to 0, then set λi0 = 0.

Otherwise they can be locally approximated by a quadratic functions given by

‖λi‖ ≈ ‖λi0‖ +
1

2‖λi0‖
(λT

i λi − λT
i0
λi0) for λi0 6= 0. (A4)

The new parameter estimates in the M-step are obtained by maximizing E[lCρ (θ)] with

the approximation in (A4) with respect to Λ and Ψ, resulting in

λ̂i =

{
N∑
n=1

{
E[F nF

T
n ] + (ρŵi/‖λi‖)Ik

}}−1 {
N∑
n=1

(xnj − x̄j)E[F n]
T

}
, (A5)

Ψ̂ =
1

N
Diag

[
N∑
n=1

{
(xn − x̄)(xn − x̄)T − 2(xn − x̄)E[F n]

T Λ̂T + Λ̂E[F nF
T
n ]Λ̂T

}]
.

(A6)

The updated parameters given by (10) and (11) can be obtained by substituting (A2) and

(A3) into (A5) and (A6).
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Appendix B: The derivation of the GBIC

Let us consider the problem of selecting a model from a set of candidate models

M1, · · · ,Mr. The model Mt (t = 1, · · · , r) has a probability density ft(x|θt), and θt

has a prior density πt(θt|ρt), where ρt is a hyper-parameter. The Bayesian procedure for

selecting a model is to choose the model with the largest posterior probability given by

Pr(Mt|x) ∝ Pr(Mt)

∫
ft(x|θt)πt(θt|ρt)dθt

=: Pr(Mt)pt(x|ρt),

where Pr(Mt) is the prior probability for model Mt and pt(x|ρt) is the marginal likelihood.

If it is assumed that the prior probability Pr(Mt) is the same for all models, it follows that

the model that maximizes the marginal likelihood pt(x|ρt) of the data must be selected.

In the factor analysis model via the grouped weighted lasso, the prior distribution

π(θ|ρ) is given by

πρ(Λ) = C

p∏
i=1

exp (−Nρŵi‖λi‖) , (B1)

where C is the normalizing constant given by

C = (Ck)
p−k

k−1∏
j=1

Cj, Cj =
(Nρŵj)

j

2jπ
j−1
2 Γ

(
j+1
2

) (B2)

with Γ(·) being the Gamma function.

The posterior distribution is then given by

π(Λ,Ψ|XN) =
f(XN |Λ,Ψ)πρ(Λ)∫ ∫
f(XN |Λ,Ψ)πρ(Λ)dΛdΨ

∝ f(XN |Λ,Ψ)πρ(Λ). (B3)

In a Bayesian framework the parameters Λ and Ψ are estimated through mode of the

posterior distribution. It is equivalent to obtain estimates by maximizing the penalized

log-likelihood function in (5) with the hyper-parameter ρ which can be considered as a

regularization parameter.
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The model selection criterion GBIC (Konishi et al., 2004) is obtained by minimizing

−2 log pt(x|ρt) with the use of Laplace approximation (Tierney & Kadane, 1986). Since

the model selection criterion GBIC cannot be directly derived for the L1 type regulariza-

tion method, we define an Active set in (13) and derive a second order differential of the

penalized log-likelihood of the Active set θA instead of θ. Then the GBIC is written as

follows (see Equation (10) in Konishi et al., 2004):

GBIC = −p∗ log(2π) + p∗ logN + log |Jρ(θ̂A)| − 2
{

log f(XN |θ̂) + log πρ(Λ̂)
}
. (B4)

By substituting (12) and (B1) into (B4), we obtain a model selection criterion for eval-

uating the factor analysis model via the grouped lasso given by (14). The matrix Jρ(θ)

consists of the elements of ∂2lρ(θ)

∂λab∂λcd
, ∂2lρ(θ)

∂ψi∂λcd
and ∂2lρ(θ)

∂ψi∂ψj
, which are given by

∂2lρ(θ)

∂λab∂λcd
= N

{
(Σ−1)ac(Λ

TΣ−1Λ)bd + (Σ−1Λ)ad(Σ
−1Λ)cb

−(Σ−1SΣ−1)ac(Λ
TΣ−1Λ)bd − (Σ−1Λ)ad(Σ

−1SΣ−1Λ)cb

−(Σ−1)ac(Λ
TΣ−1SΣ−1Λ)bd − (Σ−1SΣ−1Λ)ad(Σ

−1Λ)cb

−(Σ−1)ac(Ik)bd + (Σ−1SΣ−1)ac(Ik)bd

}
+ρŵc

(Λ)(a,b)(Λ)(c,d)(Ip)(a,c)√
(ΛΛ′)(c,c)

3 − ρŵc
(Ip)(a,c)(Ik)(b,d)√

(ΛΛ′)(c,c)

}
,

∂2lρ(θ)

∂ψi∂λcd
= N

{
(Σ−1)ci(Σ

−1Λ)id − (Σ−1SΣ−1)ci(Σ
−1Λ)id

−(Σ−1)ci(Σ
−1SΣ−1Λ)id

}
,

∂2lρ(θ)

∂ψi∂ψj
=
N

2

{
(Σ−1)2

ij − 2(Σ−1)ij(Σ
−1SΣ−1)ij

}
,

where (A)αβ is a (α, β)-th element of a matrix A.
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