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Abstract

We propose Visualized IEC as an interactive evolu-
tionary computation (IEC) with visualizing individuals
in a multidimensional searching space in a 2-D space.
This visualization helps us envision the landscape of an
n-D searching space, so that it is easier for us to join
an EC search by indicating the possible global optimum
estimated in the 2-D mapped space. We experimentally
evaluate the effect of visualization using a benchmark
function. We use self-organizing maps for the projec-
tion of individuals onto a 2-D space. The experimental
result shows that the convergence speed of GA with hu-
man search on the visualized space is at least five times
faster than a conventional GA.

1 Introduction

Interactive evolutionary computation (IEC) has been
used for several application tasks, for example, hear-
ing aid fitting, speech processing, and 3-D CG light-
ing [9, 10, 11]. In spite of the increasing interest, this
technology still has a common problem with these ap-
plications: the fatigue of IEC users. To make this IEC
technology practical, we must improve the user inter-
face.

In a conventional IEC, the roles of EC and a hu-
man user are completely separated; the EC performs
the searches while the human user evaluates the result.
The user plays a passive role in the search which con-
tributes to the slow convergence and human fatigue.

We propose a method that allows an IEC user to
directly participate in EC searches to ease psychologi-
cal and physical fatigue. The active user intervention
leads to a faster convergence of the EC search, and the
faster convergence results in less user fatigue. On-line
knowledge embedding is one based on this idea. This
method provides a mechanism to accept the searching
idea, hints, or intentions of an IEC user during the IEC
operation [2, 12]. For example, when a user feels that
a certain part image of a montage face is acceptable,
we fix the partial face image in subsequent searches,
which limits the searching space and, therefore, con-

verges faster. The effect of this method was shown
through subjective tests [12]. Directly editing the tree
of genetic programming for CG is another method of
active user intervention to EC search [14].

Our proposed Visualized IEC is another method based
on the same idea of active user intervention. The Vi-
sualized TEC allows an IEC user to actively participate
in EC searches by providing the user the distribution
image of past individuals mapped from a n-D searching
space to a 2-D space. We first propose the Visualized
IEC and preliminarily evaluate its convergence perfor-
mance using a benchmark function.

2 Visualized IEC
2.1 Why Visualized IEC ?

Visualized IEC is a method that combines the dif-
ferent capabilities of EC and humans to search for a
global optimum. The EC directly and systematically
searches the original n-D space using EC operators,
which is much better than the human searching capa-
bility. However, humans have an excellent capacity to
grasp an entire distribution of individuals in the 2-D
space at a macroscopic level that cannot be interpreted
by the EC. This is why the Visualized IEC combines
the algorithmic EC search in an n-D space and the
human global search in a mapped 2-D space.

Since a human TEC user and the EC cooperate with
each other and optimize their own searching advan-
tages in the Visualized TEC, we can expect a faster
convergence. This searching cooperation feature is dif-
ferent from a conventional IEC or previously proposed
visualization-based searches. The roles of the EC and
the human are separated in conventional IEC; the EC
performs the search and an IEC user evaluates the
searched individuals, independently. For example, the
visualization-based searches used in a 3-D CG design
support system [7] and a violin sound estimator [6] re-
quest human users to both search for the global op-
timum on the mapped 2-D searching space without
the help of optimization algorithms and evaluate the
searched individuals.



2.2 Multidimensional Data Projection

Since it is difficult for humans to grasp the geomet-
ric relationship among individuals that have multidi-
mensional parameters, it is difficult to directly obtain
information from an n-D searching space. However, it
becomes easier for humans to grasp the approximate
relationships among individuals by mapping the indi-
viduals from the n-D searching space to a 2-D space.
Although the 2-D space does not keep all the informa-
tion about the original n-D space, humans can grasp
the state of the whole of the searching space when the
topological relationships among individuals in the 2-D
space are about the same as those in the original n-D
space, which helps humans to cooperate with the EC
on search and indicate the direction to the global op-
timum. The indication of the search is based on the
geometric relationships kept which shows that individ-
uals with high fitness values tend to concentrate on the
same points in the 2-D space (see Figure 1.)
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Figure 1: Projection image from an n-D space to a
2-D space while keeping the topological relationships
among data samples.

There are several mapping methods for 2-D visual-
ization, for example, the principle component analy-
sis, Sammon’s non-linear mapping [8], self-organizing
maps [3], Visor [4], TOPAS [5], and the method using
Genetic Programming [13]. Any visualization methods
are usable in the Visualized IEC, but some methods are
more suitable for the Visualized IEC than others. We
need to evaluate the differences in their performance
as our next research topic.

2.3 Construction of a Visualized IEC system

In the IEC, EC optimizes the parameters of an appli-
cation task, and the task system outputs sound, speech,
graphics, or other outputs which deals with the human
senses. The human IEC user observes the output, eval-
uates them based on his or her sense of value, and re-
turns his or her subjective fitness value to the EC (see
Figure 2 upper.)
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Figure 2: Diagrams of IEC (upper) and Visualized IEC
(lower).

Visualized TEC systems display not only sound or
graphics to the user, but also the distribution image of
past EC searched individuals by mapping them from
an n-D searching space to a 2-D space (see Figure 2
lower.) Fitness values of individuals in the 2-D space
are displayed with different colors, the depth of color,
size, or numerical characters to view, for example, the
landscape shape of a searching space. An IEC user
selects points in the 2-D space that look to have high
fitness values from the fitness value distribution point
of view, and the individual with the lowest fitness value
in the EC population is replaced with the selected best
point. Since neighboring individuals in an n-D space
becomes neighbors in a 2-D space too, the topological
relation of the n-D space is kept in the mapped 2-D
space and the additional selected individual in the 2-D
space can be expected to be located near the global
optimum in the n-D space. The EC mates and creates
offspring using the parent population that includes the
newly added individual.

Since the possibility that an excellent individual is
added to the EC population in each generation by the
TEC user is high, the acceleration of EC convergence is
expected.

3 Evaluation of Convergence
3.1 Experimental System

We evaluate how human intervention accelerates the
convergence of the EC search. The final evaluation
should be conducted using the Visualized IEC and sub-
jective tests. Since the IEC deals with subjective fit-
ness values that depend on the application task and the
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Figure 3: Experimental system of the Visualized GA.
GA determines the coordinate of the minimum value
of the Schaffer’s second function, and the difference of
the function output and the minimum value is fed-back
into the GA as a fitness value. The human operator vi-
sually selects a possible global optimum in the mapped
2-D space and sends it to the GA as a new possible
parent. Self-organizing map is used to map individuals
from an n-D space to a 2-D space.

subject’s perceived value of the task, we preliminarily
evaluate the effect of the human intervention without
subjective evaluation to the given tasks in this section.

We do not compare the convergence performance of
the Visualized IEC and IEC but that of the Visualized
EC and EC in reality; since we use genetic algorithms
(GA) as one of the EC technologies in this section, the
actual comparison is the Visualized GA versus a nor-
mal GA. This experimental evaluation needs no human
interactive evaluation of the given task but only the
human selection of better individuals in the 2-D space.

Figure 3 shows an experimental system. Since this
system has a fitness function, the role of the human
user is only to select better candidates in the 2-D vi-
sualized space, while a Visualized IEC user plays both
roles of a fitness function and a selector of the better
candidates (compare Figures 2 and 3.)

Two modified Schaffer’s second functions illustrated
in Figure 4 in 3-D and 5-D are used as the experimen-
tal tasks of the Visualized GA and GA. The task is
to determine the coordinate that results in the mini-
mum value of the Schaffer’s function, i.e. 0. Distance,
[function( GA individual ) — 0|, is fed-back into the
GA as a fitness value.

Figure 5 is the interface design of the mapped 2-
D space used in our experiment. The fitness values
of individuals, including those from past generations,
are displayed with different depths of color. A human
user finds an area where individuals with higher fitness
values gather, selects a maximum of three individuals
that seem to have the highest fitness values, and re-
places one of the 20 individuals with the selected one.
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Figure 4: Modified Schaffer’s second function given

1 1
by (3i 2?)? « {sin2(50 « (Y0 x2) + 1}, where
—100 < z; <100 and n = 3 and 5.

Besides the classification by the five levels of depth of
blue color, our experimental system can display the ex-
act fitness value of the selected point so it is easier for
users to compare individuals. The best individual in
each generation is displayed with an orange color, and
if the fitness value of a new individual created by the
user is better than these best individuals, the new one
is displayed in pink.
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Figure 5: The example image of the mapped 2-D space
of 40 individuals (= 20 individuals x 2 generations) in
the second generation and some individuals created by
a user. Original interface distinguishes individuals with
color.

We adopt self-organizing maps (SOM) to map indi-
viduals from an n-D space to a 2-D space. Figure 5
is the example of mapped distribution of individuals.
The population size is 20. As the amount of data in-
creases, we re-train the SOM in every generation, so
that the number of displayed individuals in the 2-D
space increases 20 by 20 in each generation. The pos-
sible mapped points in the 2-D space are 200 x 200.

The experimental conditions of GA and SOM are
showed in Table 1. The evaluating subjects in our
experiment are five graduate and undergraduate stu-
dents.



Table 1: Experimental conditions of GA and SOM.

(a) GA parameters

population size 20
crossover rate 0.9
mutation rate 1/80
# of generations 10
bit length 16
(b) SOM parameters
# of learning 1,000
neighborhood function | step function
shape of neighborhood hexagon
neighborhood radius 5
learning rate factor 0.4
# of units 200200

3.2 Experimental Results

Figure 6 shows the experimental results for the tasks
whose complexity is different, where the dimensional
number, n, is 3 and 5. These graphs clearly show that
the visualized GA converges much faster than a normal
GA; the convergence speed of the Visualized GA with
a population size of 20 is similar to that of normal GA
with a population size of 100 and 1,000. This means
we can expect that the Visualized GA to converge five
time faster or more than the normal GA.

3.3 Discussion

Although the convergence characteristics of our pro-
posed method depends on the subjects, the average
convergence characteristics of the five subjects was much
faster than that of normal GA. Due to human fatigue,
the number of EC generations and the number of indi-
viduals displayed to an IEC user was usually limited to
20 generations and 20 individuals at most. Therefore,
the experimental result that the proposed method with
a few individuals converges faster than the normal GA
with many individuals implies that the Visualized IEC
is expected to be a powerful tool for difficult IEC tasks.

Generally, the higher the dimensional number of a
searching space, the more slowly the GA converges. In
our experimental evaluation, the convergence perfor-
mances of some experimental subjects did not depend
on the dimensional number, 3 and 5. There was even
a case that convergence in a 5-D space was better than
that in 3-D space. We can expect that the convergence
of the Visualized TEC is tolerant about the complexity
of tasks and that the Visualized IEC becomes much
more powerful for complex tasks.

In early generations, when the individuals are sparsely
displayed in the 2-D space, it is often difficult to ob-
serve the landscape of the searching space, which makes
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Figure 6: Convergence characteristics of normal GAs
with population sizes of 20, 100, and 1,000 and the
Visualized GA with a population size of 20 for a mod-
ified Schaffer’s function of 3-D and 5-D, are shown in
the upper and lower graphs, respectively. Solid lines
represent the five experimental subjects for the Visu-
alized GA.

it difficult for human subjects to estimate the location
of the global optimum in the 2-D space. For such a
case, they choose points near the best individuals in
the 2-D space. As these points are expected to have
higher fitness values as well as the best individuals,
the sparse distribution in the early generation may not
been a serious problem.

Even if TEC users select and create a worst individ-
ual, it mean that only one bad individual is added to
many in a population, and it is weeded out by the nat-
ural selection in the next generation, which is not a
serious problem.

In our experiment, we found that the training time
of SOM to map 40,000 points (= 200x200, see Ta-
ble 1 (b)) in every generation would be too long for a
smooth human interaction with the computer. There
are two solutions: reducing the number of SOM units



and adopting a better mapping method. After the ex-
periment described in this section, we confirmed that
the SOM calculation time could be decreased within
an allowable range without reducing its performance
by reducing the number of SOM units. In our sec-
ond experiment, we used the SOM as the first step.
There are several projection methods as mentioned in
section 2.2 that have different visualization and calcu-
lated time characteristics. We are going to compare
these methods in our next step.

4 Applications of Visualized IEC

The experimental evaluation in the previous sec-
tion has shown the effectiveness of visualization for GA
search, and we can expect the Visualized IEC is a prac-
tical solution for several applications. In this section,
we show two examples of Visualized IEC systems.

4.1 Application to Speech Processing
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Figure 7: User interface of the Visualized IEC for
speech processing.

Figure 7 is a user interface of the Visualized IEC ap-
plied to a speech processing system. The IEC speech
processing system is a system that improves the quality
of speech sound [15]. The frequency characteristics of
a filter is specified by 6 parameters of the amplification
levels at 125Hz, 250Hz, 500Hz, 1kHz, 2kHz, and 4kHz.
These parameters are modified to improve the speech
quality based on user’s hearing and GA search. The
processed speech sounds are presented when play but-
tons on the IEC user interface are pressed. An IEC user
evaluates each processed sound, and the GA searches
better filter parameters based on user’s subjective eval-
uation as fitness values.

Besides the user interface of the IEC consisting of
play buttons and rating buttons for 20 individuals, the
interface of the Visualized IEC has a window for data

visualization located on the right side of Figure 7. Six
dimensional filter parameter vectors are mapped by
SOM on the 2-D window and displayed at once. Darker
colors are assigned to higher rating buttons, and the
same depth of color on the 2-D windows indicates a
similar human evaluation of filters in past generations.
A Visualized IEC user clicks points where he or she
guesses that there are better parameter vectors of fil-
ters from the distribution of rated past ones on the 2-D
space. Then, a new filter is created from the location
information of the clicked point, and the speech sound
processed by the filter is displayed to the user. The
user evaluates the filter in the same way. The user can
repeat to create a better filter until he or she is satis-
fied, and final created best filter is used as a new parent
when the next generation button at the bottom of the
figure is pushed.

Figure 7 shows the distribution of the fifth genera-
tion of the Visualized IEC for speech processing, and
20 individuals x 5 generations and some individuals
newly created by a user are displayed on the 2-D win-
dows. Observing the distribution of fitness values in
this figure, it looks like many better individuals are lo-
cated within the same narrow area on the 2-D window.
It seems helpful for the user to quickly find the filter
that minimally distorted the speech sound by searching
near that place.

4.2 Application to Room Lighting Design

We are expanding our previous work of a 3-D CG
lighting design support system [1] to a room lighting
design. The task of 3-D CG lighting is to determine
the best positions and brightness of multiple lights and
create a lighting expression by matching the effect to
the given motif or personal preference.

Figure 8 is the distribution of 10 room lighting pa-
rameter vectors mapped from a 7-D parameter space
to a 2-D space. Lighting CG scenes created by 10 light-
ing parameter vectors are posted in the same figure like
as Marks et al.’s Design Galleries [7] for the readers’
convenience. Since similar CG scenes tend to gather in
the similar location in the 2-D space, it expected that
the users could easily and quickly find an ideal lighting
for them.

We are going to evaluate the convergence charac-
teristics of the Visualized IEC approach by comparing
it with a purely manual searching approach like the
Design Galleries [7] or an acoustic data navigator [6].

5 Conclusion

We proposed the Visualized IEC that provides the
visual landscape of searching space to IEC users and
lets them actively participate in EC searching with less
fatigue, which results in a faster EC convergence. The
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Figure 8: Distribution of room lighting parameters
mapped on 2-D space and corresponding CG lighting
expression for night scenes.

experimental evaluation implied that the Visualized
TEC converges five times faster or more than a normal
TIEC.

We then showed two example applications of the
Visualized IEC, observed the distribution of data in
the mapped 2-D space, and found that the individu-
als whose phenotypes are similar gather and become
neighbors in the mapped 2-D space. We are going to
continue further evaluation whether a good individual,
i.e. a solution of these concrete application tasks, can
be found quickly through subjective tests.

Our next step is to compare 2-D visualization meth-
ods and find suitable methods for the Visualized TEC
to shorten the calculation time, apply the proposed
method to several tasks, and evaluate its usefulness.
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