九州大学学術情報リポジトリ Kyushu University Institutional Repository

風波気液界面におけるガス交換係数の実験式に関す る研究

杉原,裕司 九州大学大学院総合理工学研究科大気海洋環境システム学専攻

津守, 博通 九州大学大学院総合理工学研究科大気海洋環境システム学専攻

古寺,大悟 九州大学工学部エネルギー科学科

https://doi.org/10.15017/16654

出版情報:九州大学大学院総合理工学報告. 24 (1), pp.15-21, 2002-06. Interdisciplinary Graduate School of Engineering Sciences, Kyushu University バージョン: 権利関係:

風波気液界面におけるガス交換係数の実験式に関する研究

杉原 裕司*^{1,†} · 津守 博通*² · 古寺 大悟*³

(平成14年3月25日 受理)

An Empirical Expression for Gas Transfer Velocity at the Surface of Wind Waves

Yuji SUGIHARA, Hiromichi TSUMORI and Daigo FURUTERA

[†]E-mail of corresponding author: *sugihara@esst.kyushu-u.ac.jp*

The relationship between the gas transfer velocity k_L and turbulent characteristics at the surface of wind waves was investigated theoretically and experimentally. A dimensional analysis for k_L was made by considering the surface renewal model and the similarity law for growing wind waves in local equilibrium state. Two dimensionless parameters, $R_B(\omega_p u_{*a}/g)^{1/2}$ and u_{*a}/c_m , were derived from the analysis, where R_B is defined by $u_{*a}^2/(\nu_a \omega_p)$, u_{*a} the air friction velocity, ω_p the spectral peak angular frequency of wind waves, ν_a the kinematic viscosity for the air and c_m the phase speed of the capillarygravity waves. The values of k_L for the oxygen were obtained through a reaeration experiment in a laboratory wind-wave tank. An empirical expression to estimate quantitatively k_L was proposed on the basis of theoretical and experimental results. The expression shows that k_L for wind waves under the local equilibrium condition decreases in proportion to -1/4 power of $R_B(\omega_p u_{*a}/g)^{1/2}$. This means that the gas transfer is dominated by turbulent eddies with the dissipation scale.

Key words : gas transfer, wind wave, surface renewal, turbulence, air-water interface

1. 緒 言

大気海洋間のガス交換機構を明らかにすることは、環 境変動の予測手法を確立する上で重要である.気液界面 を通してのガス交換現象は、界面での濃度差が推進力と なって起こり、その交換速度はガス交換係数で表される. O₂ や CO₂ などの低溶解性のガスは主に液側抵抗支配と なるので、これらの交換は液側のガス交換係数 k_L で規 定される.

実際の海洋ではその表面に風波が発生しているため、 従来から風波気液界面でのガス交換について様々な研究 が行われてきた.風波気液界面でのk_Lは風速の影響を 強く受けるため、海上風速あるいは気流の摩擦速度とk_L の関係がこれまで主に調べられてきた.提案されたk_Lの 実験式は研究者ごとに大きな差異があり、またこれらの 実験式のほとんどは無次元表示されていない.風波気液 界面におけるガス交換は風速だけではなく、波面の状態 にも依存するはずである.しかし、k_Lの実験式の多くは 単なる観測結果と風速の相関式であり、大気海洋間のガ スフラックスを見積もる上で問題がある.大循環モデル (General Circulation Model: GCM) で用いられている 代表的な実験式である Liss & Merlivat¹⁾のモデルも無次 元表示されておらず海上風速のみで表されている.また, この式は海面でのガス交換量を過小評価している可能性 が指摘されている.

このような背景から、風波特性量を用いて k_L を普遍 表示することは、実際の海洋においてガスフラックスを 正確に予測する上で重要である.しかし、現在において も、どのような風波パラメータにガス交換が規定されて いるのかについては明らかになっておらず、k_L のパラメ タリゼーションも海洋物理学の分野で議論されている海 面粗度のパラメタリゼーションと同じ状況にある.Toba & Koga²⁾は、風波の崩壊率、海水滴の生成、白波被覆 率などの砕波特性を規定する無次元量として、風波のス ケールの影響を考慮した砕波パラメータ、

$$R_B \equiv \frac{u_{\star a}^2}{\nu_a \omega_p} \tag{1}$$

を提唱した.ここで、 u_{*a} は気流側の摩擦速度、 ν_a は 空気の動粘性係数、 ω_p は風波のピーク角周波数である. R_B を用いた k_L の実験式として、Zhao et al.³⁾は $k_L = 0.072 R_B^{0.67}$ を提案しているが、これもまた無次元 表示されておらず、従来の問題を含んでいる.

^{*1} 大気海洋環境システム学専攻

^{*2} 大気海洋環境システム学専攻修士課程

^{*3} 工学部エネルギー科学科

本研究では、表面更新理論と風波の局所平衡仮説に基 づく次元解析によりガス交換係数 k_L を規定する風波パラ メータを導出する.また、風洞水槽実験を行い、 k_L と風 波乱流特性量の関係について検討する.さらに、理論解 析と実験結果に基づいて、風波気液界面における k_L の パラメタリゼーションを行う.

2. ガス交換係数の次元解析

風波気液界面におけるガス交換係数 k_L の次元解析を行う.風波気液界面では、水面に波が存在し、気流からも風応力を受けているため、複雑な乱流場が形成されている.しかし、乱流の統計平均量に着目すると風波下の乱流境界層は固体粗面上のそれとよく類似しているという実験結果が示されている(例えば、光易・草場⁴⁾, Cheung & Street⁵⁾, Yoshikawa et al.⁶⁾, Thais & Magnaudet⁷⁾). このことから、風波乱流場を特徴づける速度スケールや長さスケールを用いることで、風波気液界面でのガス交換モデルとして表面更新理論の適用が期待できる.実際,Komori et al.⁸⁾ は、表面更新理論に基づいて実験結果から風波気液界面での k_L の定式化を試みている。そこで本研究においても表面更新理論に基づく k_L の次元解析を行う.

ガス交換係数 k_L は次のような物理量に依存するものとする.

$$k_L = f(D, u_{*w}, c_m, l)$$
 (2)

ここで、D は溶存ガスの分子拡散係数、 u_{*w} は水側の摩 擦速度、 c_m は表面張力重力波の波速 $c_m = (4g\gamma)^{1/4}$ 、lは表面更新渦の長さスケールを示す. ただし、g は重力 加速度、 γ は表面張力係数であり、l と表面更新率 f_L の 間には次の関係があるものとする.

$$f_L = \frac{u_{*w}}{l} \tag{3}$$

なお、ここで表面張力重力波の波速を導入する理由は、 k_L が波面勾配の変動強度 $\overline{\nabla \eta^2}$ でよく相関でき、 $\overline{\nabla \eta^2}$ は 表面張力重力波の特性量で記述できるという実験事実に よる. 次元解析から、 k_L は次のような無次元パラメータ に支配されることがわかる.

$$\frac{k_L}{u_{*w}} = f\left(\frac{u_{*w}}{c_m}, \frac{D}{u_{*w}l}\right) \tag{4}$$

風波気液界面のガス交換が表面更新理論 ($k_L \propto \sqrt{D}$) に 従うものと仮定すると,式(4) は次式のようになる.

$$\frac{k_L}{u_{*w}} = F\left(\frac{u_{*w}}{c_m}\right)\sqrt{\frac{D}{u_{*w}l}} \tag{5}$$

シュミット数 $Sc = \nu_w / D(\nu_w: \pi o)$ あお性係数)を用いて式 (5) を書き換えると次式が得られる.

$$\frac{k_L S c^{\frac{1}{2}}}{u_{*w}} = F\left(\frac{u_{*w}}{c_m}\right) \sqrt{\frac{\nu_w}{u_{*w}l}} \tag{6}$$

ー般に高レイノルズ数の乱流場におけるガス交換では マイクロスケールの乱流渦(small eddy)が支配的であ ることから、十分発達した風波下の乱流も同様にマイク ロスケールの乱流渦に支配されるものと仮定する. この ことから small-eddy model を適用すると、表面更新率 f_L は次式のように表される.

$$f_L \propto \sqrt{\frac{\varepsilon_S}{\nu_w}}$$
 (7)

ここで、 ϵ_S は水表面近傍の乱れエネルギー散逸率である. 風波が存在する水表面近傍の乱れエネルギー散逸率 ϵ_S に ついて、Terray et al.⁹⁾, Drennan et al.¹⁰⁾ は、現地観 測データ等に基づいて次式のように定量化できることを 示した.

$$\varepsilon_S = \frac{\tau_a \overline{c}}{\rho_w H_s} \approx \frac{u_{*w}^2 \overline{c}}{H_s} \tag{8}$$

ここで、 τ_a , H_s はそれぞれ水表面に作用するせん断応 力、風波の有義波高である. c は、風から波へのエネル ギー入力と結びついた特性速度であり、ピーク波の波速 c_p の半分に等しい (Terray et al.⁹).

$$\bar{c} \approx \frac{c_p}{2} \tag{9}$$

また,式(8)では,次式のように気流側のせん断応力と 水側のせん断応力の連続性を仮定している.

$$\tau_a \equiv \rho_a u_{*a}^2 \approx \rho_w u_{*w}^2 \tag{10}$$

ただし, ρ_a , ρ_w はそれぞれ空気, 水の密度である. 式 (3), (7), (8) より, 式 (6) 中の $u_{*w}l/\nu_w$ は以下のように 表される.

$$\frac{u_{*w}l}{\nu_w} \approx \sqrt{\frac{u_{*w}^2}{\nu_w} \frac{H_s}{\overline{c}}} \approx \sqrt{2 \frac{u_{*w}^2}{\nu_w} \frac{H_s}{c_p}}$$
(11)

さらに、風波の局所平衡仮説を用いて式(11)を書き換え る.局所平衡仮説とは、実際には風波はfetchとともに 変化するが、その場、その場においては風と風波とが力 学的に平衡状態にあるという仮説である.局所平衡状態 の風波では、風波のエネルギー E が次のようなパラメー タで規定されていると考える.

$$E = f(u_{*a}, g, \omega_p) \tag{12}$$

次元解析から,式(12)は次式のように無次元表示される.

$$\frac{E\omega_p^4}{g^2} = f\left(\frac{\omega_p u_{*a}}{g}\right) \tag{13}$$

従来の研究から,水槽の風波から外洋の風波まで,幅広 いスケールの風波において,式(13)の相似則として次式 のような関係が支持されている(Toba¹¹⁾).

$$\frac{g\sqrt{E}}{u_{*a}^2} \propto \left(\frac{\omega_p u_{*a}}{g}\right)^{-\frac{3}{2}} \tag{14}$$

この式は,鳥羽の 3/2 乗則と呼ばれている。 $H_s \propto \sqrt{E}$ の関係があるため,式 (11) は,式 (14) を用いて次式のように変換できる.

$$\frac{u_{*w}l}{\nu_w} \propto \sqrt{2 \frac{u_{*w}^2}{\nu_w c_p} \frac{g}{\omega_p^2} \left(\frac{\omega_p u_{*a}}{g}\right)^{\frac{1}{2}}} \qquad (15)$$

ここで、重力波の分散関係式 $\omega_p^2 = gk_p (k_p : 風波のピーク波数)$ から、 c_p は次式のように表される.

$$c_p = \frac{g}{\omega_p} \tag{16}$$

これを式 (15) に代入すると、次式のようになる.

$$\frac{u_{*w}l}{\nu_w} \propto \sqrt{2\left(\frac{u_{*w}}{u_{*a}}\right)^2 \left(\frac{\nu_a}{\nu_w}\right) \frac{u_{*a}^2}{\nu_a \omega_p} \left(\frac{\omega_p u_{*a}}{g}\right)^{\frac{1}{2}}} \\ \propto \sqrt{R_B \left(\frac{\omega_p u_{*a}}{g}\right)^{\frac{1}{2}}}$$
(17)

ここで、 u_{*w}/u_{*a} および ν_a/ν_w は一定としている. R_B は 砕波パラメータである. また、 $\omega_p u_{*a}/g$ は波齢 ($\equiv c_p/u_{*a}$) の逆数であり、波風係数と呼ばれている. 式 (17) を式 (6) に代入し、 u_{*w} を u_{*a} に変換すれば、最終的に k_L の無 次元形として次式が得られる.

$$\frac{k_L S c^{\frac{1}{2}}}{u_{*a}} = \phi\left(\frac{u_{*a}}{c_m}\right) \left\{ R_B\left(\frac{\omega_p u_{*a}}{g}\right)^{\frac{1}{2}} \right\}^{-\frac{1}{4}}$$
(18)

したがって,式(18)中の関数 ¢ を決定すれば,ガス交換 係数の実験式を得ることができる.以下,風洞水槽の実 験結果からガス交換係数と風波乱流特性量の関係を明ら かにし,式(18)に基づくガス交換係数のパラメタリゼー ションを行う.

3. 実験方法およびデータ解析

Fig. 1 に本研究で用いた実験装置の概略図を示す. 実 験には、長さ 6.2 m、高さ 0.46 m、幅 0.15 m の矩形断面 を有する小型の風洞水槽を用いた.実験の全ケースにお いて水深を 0.20 m に固定し、送風により風波を発生させ た. Table 1 に実験条件を示す. ここで、 U_{∞} は境界層外 縁の風速, u_{*a} , u_{*w} はそれぞれ気流側および水側の摩擦 速度である. H_s , T_s はそれぞれ風波の有義波高,有義波 周期であり、 η は水面変動の rms 値である.風速の測定 にはベーン式風速計を使用し、波高および水中流速の測 定には容量式波高計と 2 次元のレーザー流速計(LDV) を用いた.また、本実験ではトレーサーガスとして O_2 を用い、表中の k_L は 20 °C に温度補正したガス交換係 数である.全ての測定は吹送距離 3.5 m の位置で行った.

風速分布は、ベーン式風速計を用いて、水面近傍から 0.15 m の範囲にわたって計測された.本研究においては、 水面から離れて平均風速がほぼ一定となった高さでの値 を境界層外縁の風速 U_{∞} としている. 摩擦速度の算定 にはプロファイル法を用いた.水面近傍の境界層内の風 速の鉛直分布が対数分布を示すと仮定して,最小二乗法 により,気流側の摩擦速度 u_{*a} を算出した.また,界面 において気流側と水側のせん断応力が連続すると仮定し て,式(10)を用いて水側の u_{*w} を算出した. 波高計の出 力信号は、サンプリング周波数 100 Hz で AD 変換され, 16,384 個のデータをデジタルレコーダーに記録した.ま た,水中での流速測定では、各実験条件ごとにレーザーが 空気中に出ないようできるだけ水面に近づけて計測し、水 深 8.0 cm までは水深方向に 0.5 cm 間隔で,水深 8.0 cm からは 1.0 cm 間隔で計測した.流速測定のサンプリング 周波数は 100 Hz で, 32,768 個のデータを取得した.

 k_L の測定には、トレーサーガスとして O_2 を用いた. 水中の溶存酸素濃度 (DO)の測定には、ガルバニ電極式 の DO メーターを用いた.あらかじめ窒素ガスを曝気す ることにより、水槽内の DO を 2 ~ 3 mg/l 程度まで低 下させて、DO の復元する時間変化をセンサーにより測 定した.サンプリング周波数 2 Hz で AD 変換され、デジ タルレコーダーにデータを記録した.また、DO メーター の値を検定するためにセンサー付近で採水を行い、ウィ ンクラー法による DO 滴定も行った. k_L は、濃度 C(t)の拡散方程式を水槽全体で積分して得られた次式から算 出された.

$$-\ln D_* = k_L \frac{A}{V} (t - t_0) \tag{19}$$

ここで, A は気液界面の面積, V は水の容積である.ま た, D_{*} は次のように表される規格化濃度である.

$$D_* = \frac{C(t) - C_S}{C(t_0) - C_S}$$
(20)

ここで、 C_S は飽和濃度、 $C(t_0)$ は計測開始時刻 t_0 の濃 度である.また、ガス交換係数は温度にも依存するため、 実験により求めた k_L は、次式を用いて 20°C の値 k_{L20} に補正した.

$$k_L = k_{L20} \, \alpha^{(T-20)}, \quad \alpha = 1.0241$$
 (21)

Fig. 2 に D_* の時間変化を示す. 図中の直線は最小二乗 法により求めた近似直線であり,この直線の勾配を用い て式 (19) から k_L を算定した.この図からわかるように, 時間とともに規格化濃度は増加しており,また風速が増 大するにつれてガス交換が促進されていることがわかる.

4. 実験結果および考察

Fig. 3 に $k_L \geq u_{*a}$ の関係を示す.本実験結果とともに, 図中には Komori et al.⁸⁾, Nakayama¹²⁾ および嶋田他 ¹³⁾ のデータもプロットされている. Komori et al.⁸⁾, 嶋 田他¹³⁾ はトレーサーガスとして CO₂ を, Nakayama¹²⁾ は O₂ を用いている.また,嶋田他¹³⁾ は塩水の実験結果 である. u_{*a} が小さいとき,すなわち水表面はまだ波立っ

Fig. 1 Schematic diagram of experimental apparatus.

Table 1 Experimental parameters.

Run	<i>U</i> ∞ (m/s)	<i>u</i> _{*a} (m/s)	<i>u</i> _{*w} (m/s)	H _s (cm)	T_s (s)	η (cm)	$\omega_p (s^{-1})$	R _B	ω _p u _{•a} /g	<i>k</i> _L (m/s)
1	6.71	0.253	8.80×10 ⁻³	0.989	0.246	0.279	25.4	1.78×10^{2}	0.656	6.53×10 ⁻⁵
2	7.68	0.316	1.10×10 ⁻²	1.29	0.271	0.369	22.8	2.95×10^{2}	0.735	9.36×10 ⁻⁵
3	8.35	0.368	1.28×10 ⁻²	1.73	0.302	0.484	20.4	4.51×10^{2}	0.767	9.74×10 ⁻⁵
4	9.20	0.377	1.31×10 ⁻²	2.07	0.321	0.575	19.6	4.94×10 ²	0.752	1.30×10 ⁻⁴
5	10.4	0.492	1.71×10 ⁻²	2.23	0.335	0.629	18.3	8.92×10 ²	0.919	1.56×10 ⁻⁴
6	11.3	0.605	2.10×10 ⁻²	2.71	0.365	0.759	17.5	1.45×10^{3}	1.08	1.76×10 ⁻⁴
7	12.0	0.658	2.28×10 ⁻²	3.27	0.373	0.915	16.4	1.81×10^{3}	1.10	1.89×10 ⁻⁴
8	13.0	0.819	2.84×10 ⁻²	3.64	0.407	0.997	15.4	2.95×10 ³	1.29	2.58×10 ⁻⁴
9	14.1	0.943	3.27×10 ⁻²	3.99	0.419	1.10	14.7	4.12×10 ³	1.42	2.35×10 ⁻⁴

ておらず界面が滑面状態であるときは、 k_L/u_{*a} はほとん ど変化しないと考えられる.しかし、 u_{*a} が徐々に大きく なるにつれ、表面張力波が発生し、さらに風波が発達し てくるとそれに伴い k_L も増加していく.図中で言うと、 $u_{*a} \approx 0.3 \text{ m/s}$ 付近までの現象が、これに相当すると考 えられる.しかし、ある程度風波が発達すると、 k_L の増 加率は小さくなり飽和する傾向にある.さらに u_{*a} が大 きくなると、 k_L は再び増加する傾向がある. k_L の再増 加は、砕波による界面の崩壊、気泡の発生等によってガ ス交換が再促進されるためと考えられる.これらの挙動 はトレーサーガスや流体の種類によらないことがわかる.

次に, k_L を規定している乱流の特性長について考察す る. 平均せん断流が存在しない振動格子乱流場の表面更 新渦の長さスケールはテイラーの微分長さスケールを用 いて表すことができた¹⁴⁾. 同様に, 十分に発達した風波 乱流場においても, 界面の表面更新渦は微分長さスケー ルで特徴づけられるものと考える. しかし本実験の流速 測定は点計測であるため, 微分長さスケールを直接算出 することはできない. そこでテイラーの凍結仮説に基づ いて,乱れによる変動は水表面近傍の水平平均流速 U。 に乗って流されていると見なし,水平方向の微分長さス ケール λ を次式から算出した.

$$\lambda = U_s \tau_E \tag{22}$$

ここで、 τ_E は水表面近傍の水平方向の微分時間スケール であり、 u'_t の時系列データから次式を用いて算定した.

$$\tau_E = \left\{ \frac{2\overline{u_t'^2}}{\overline{(\partial u_t'/\partial t)^2}} \right\}^{\frac{1}{2}}$$
(23)

ここで、 u'_t は水平方向の流速変動 u' にバンドパスフィル ターをかけ、それを通過した成分を風波の波動成分 u'_w と し、u' と u'_w の差を u'_t とした乱れの成分である. さて、 等方性乱流の場合、エネルギー散逸率 ε_S と微分長さス ケール λ の間には次のような関係がある.

$$\varepsilon_S = 15\nu_w \frac{u_{rms}^2}{\lambda^2} \tag{24}$$

また, 流速計測の結果から水表面近傍では, ほぼ次のよ

Fig. 2 Time variation of normalized DO.

うな関係が成立した.

$$\frac{\sqrt{u_t'^2}}{u_{*w}} \approx 3.0, \quad \frac{\sqrt{w_t'^2}}{u_{*w}} \approx 2.0 \tag{25}$$

ここで、 w'_t は鉛直方向の乱れの成分である.ここで、両者の中間をとって、乱れ強度 $u_{rms} \approx 2.5 u_{*w}$ とすると、式 (24) は次式のようになる.

$$\varepsilon_S \approx 15\nu_w \frac{(2.5u_{*w})^2}{\lambda^2}$$
(26)

また、式(3)、式(7)から次の関係があるものとする.

$$\frac{u_{*w}}{l} \approx \sqrt{\frac{\varepsilon_S}{\nu_w}} \tag{27}$$

式 (27) に式 (26) を代入すると、 *l* と λ の間には次式のような関係が成り立つことがわかる.

$$l \approx 0.1\lambda \tag{28}$$

以上のように、 λ からlを算出することができる.式(28) の係数 0.1 はある程度の目安であり、実際には Komori et al.⁸⁾の表面更新渦のスケールと λ がよく一致する係数値 を用いた.その値は 0.105 であった.このようにして求 めたlを用いて、2節で導いた式(17)の関係を確認する. Fig. 4 に $u_{*w}l/\nu_w$ と $R_B(\omega_p u_{*a}/g)^{1/2}$ の関係を示す.こ の図より、比較的高風速の条件では両者の間に式(17)の 関係が成立していることがわかる.このことは、本研究 のパラメタリゼーションが妥当であることを示唆してい る.本来、式(17)は局所平衡が成立する領域で有効であ るが、ここでは $u_{*w}l/\nu_w$ を広範囲の $R_B(\omega_p u_{*a}/g)^{1/2}$ に 対して次式のように近似する.

$$\frac{u_{*w}l}{\nu_w} = \left\{ 1 + 0.021 R_B \left(\frac{\omega_p u_{*a}}{g}\right)^{\frac{1}{2}} \right\}^{\frac{1}{2}}$$
(29)

式 (29) は $R_B(\omega_p u_{*a}/g)^{1/2} \rightarrow 0$ の時,つまり風波が無 視できるような滑面的な吹送流場では $l \sim \nu_w/u_{*w}$ で表

Fig. 3 Dependence of k_L on u_{*a} .

され、これはもっともらしい結果となっている.式 (3)の 定義より、表面更新率 f_L は式 (29)を用いて次式のよう に表される.

$$\frac{f_L \nu_w}{u_{*w}^2} = \left\{ 1 + 0.021 R_B \left(\frac{\omega_p u_{*a}}{g} \right)^{\frac{1}{2}} \right\}^{-\frac{1}{2}}$$
(30)

Fig. 5 に $f_L \nu_w / u_{*w}^2 \gtrsim R_B (\omega_p u_{*a}/g)^{1/2}$ の関係を示す. 当然のことながら, Fig. 4 と同様に実験結果は式 (30) で よく近似できている.

Fig. 6 は、次元解析に基づいて規格化された kL と風波気 液界面のガス交換を規定するパラメータ $R_B(\omega_p u_{*a}/g)^{1/2}$ の関係を示す. 図中の破線は、実験結果に適合するよう に描かれた fitting curve である. この図から, 無次元化 されたガス交換係数の挙動は、まず単調に増加してピー クに達し、それを過ぎると減少していき、また再び増加 する傾向にあることがわかる. 次元量で見た Fig. 3 で言 うと、波の発達段階に当たる領域が Fig. 6 の単調増加部 分に相当し、飽和して kL が一定となる領域が、Fig. 6 の 減少領域に相当する.また、この段階の規格化では、各 データのピークに対応する $R_B(\omega_p u_{*a}/g)^{1/2}$ の値が一致 していないことがわかる.また、ピークを過ぎた後は、kr は $R_B(\omega_p u_{*a}/g)^{1/2}$ の -1/4 乗に比例しているように見 える. これは,式(18)の挙動と一致しており,このこと は、風波気液界面でのガス交換が small-eddy model に 従うことを示唆している.

式 (29) を式 (18) に代入すると次式となる.

$$\frac{k_L S c^{\frac{1}{2}}}{u_{*a}} = \phi\left(\frac{u_{*a}}{c_m}\right) \left\{ 1 + 0.021 R_B \left(\frac{\omega_p u_{*a}}{g}\right)^{\frac{1}{2}} \right\}^{-\frac{1}{4}}$$
(31)

関数 $\phi(u_{*a}/c_m)$ の具体的な形がわからなければ、 k_L の 実験式を示すことはできない、よって、式 (31) において、 両辺を $\{1+0.021R_B(\omega_p u_{*a}/g)^{1/2}\}^{-1/4}$ で割って、右辺 を $\phi(u_{*a}/c_m)$ のみの式にし、 ϕ の関数形を明らかにする. Fig. 7 に $k_L S c^{1/2} / [u_{*a} \{1+0.021R_B(\omega_p u_{*a}/g)^{1/2}\}^{-1/4}]$

Fig. 4 Relation between $u_{*w}l/\nu_w$ and $R_B(\omega_p u_{*a}/g)^{1/2}$.

Fig. 6 Dependence of $k_L S c^{1/2} / u_{*a}$ on $R_B (\omega_p u_{*a} / g)^{1/2}$.

と u_{*a}/c_m の関係を示す. ここで, u_{*a}/c_m は表面張力 重力波の波風係数に相当する. この無次元化によって, Fig. 6 で見たピークが $u_{*a}/c_m \approx 1$ の位置でほぼ一つに 普遍表示されることがわかる. このことから, Fig. 6 で 見られた無次元 k_L のピークは, 表面張力重力波に関係 するものと結論づけられる. つまり $u_{*a}/c_m \approx 1$ を境に して, $u_{*a}/c_m < 1$ の領域では, 表面張力波が卓越し, $u_{*a}/c_m > 1$ の領域では重力波の作用が卓越するものと 考えられる. 図中の実線は, 実験結果に合うように決め た実験式で,本研究では ϕ を次式のような関数で表した.

$$\phi = a \left[1 - b \exp\left\{ -c \left(\frac{u_{*a}}{c_m} \right)^2 \right\} \right]$$
(32)

ここで, a, bおよび c は定数である. 実験値に最もよく 適合する値は, a = 0.01, b = 0.95, c = 1.8 であった. ϕ の関数形が確定したことにより, 無次元表示された

Fig. 5 Relation between $f_L \nu_w / u_{*w}^2$ and $R_B (\omega_p u_{*a}/g)^{1/2}$.

Fig. 7 Relation between ϕ and u_{*a}/c_m .

ガス交換係数 kL の実験式は以下のようになる.

$$\frac{k_L S c^{\frac{1}{2}}}{u_{*a} \phi} = \left\{ 1 + 0.021 R_B \left(\frac{\omega_p u_{*a}}{g} \right)^{\frac{1}{2}} \right\}^{-\frac{1}{4}} \\ \phi = 0.01 \left[1 - 0.95 \exp\left\{ -1.8 \left(\frac{u_{*a}}{c_m} \right)^2 \right\} \right]$$
(33)

Fig. 8 に $k_L S c^{1/2} / u_{*a} \phi \geq R_B (\omega_p u_{*a} / g)^{1/2}$ の関係を示 す. 図中の実験データは,式 (33)の ϕ の実験式を用いて 再規格化されている.また,図中の実線は式 (33)を表し ている.この図から,本研究の理論解析から求めた実験 式 (33)は,実験結果とよく一致していることがわかる. また,この実験式は高風速側では, $R_B (\omega_p u_{*a} / g)^{1/2}$ の -1/4乗に比例して減衰していることがわかる.-1/4乗 に比例して減衰する領域は,Fig.7において $u_{*a} / c_m \ge 1$ ($\phi \approx 0.01$)となる領域である.このことから,風速が 増大し,表面張力波から重力波へと変化し水面近傍の乱 流が強化されると,風波気液界面ではマイクロスケール

Fig. 8 Relation between $k_L S c^{1/2} / u_{*a} \phi$ and $R_B (\omega_p u_{*a}/g)^{1/2}$.

の small eddy が支配的となり、この渦に界面でのガス交換が支配されものと思われる.また、風波気液界面での ガス交換係数を規定している $R_B(\omega_p u_{*a}/g)^{1/2}$ というパ ラメータは、砕波パラメータ R_B を波風係数 $\omega_p u_{*a}/g$ で 補正したものである.この $R_B(\omega_p u_{*a}/g)^{1/2}$ は、風波に よって引き起こされる他の現象、例えば白波被覆率など にも適用可能であると考えられる.

5. 結 言

本研究では、シアーが作用する風波気液界面でのガス 交換機構を明らかにするために、LDV を用いた水表面 近傍の流速計測、風波の波浪計測、そして O_2 をトレー サーガスとする k_L の測定を行った。風波気液界面の k_L が small-eddy model に従うものと考え、得られた実験結 果を用いて k_L のパラメタリゼーションを行った。風波気 液界面の k_L は、砕波パラメータと波風係数の平方根の積 でつくられる無次元量 $R_B(\omega_p u_{*a}/g)^{1/2}$ と摩擦速度と表 面張力重力波の波速の比で表される無次元量 u_{*a}/c_m に 規定されていることを示した。また、風波がある程度成 長した領域においては、 k_L は $R_B(\omega_p u_{*a}/g)^{1/2}$ の -1/4乗に比例して減衰することがわかった。このことは、こ の領域でのガス交換が small-eddy model で表されるこ とを示している.

謝 辞

本研究を行うにあたり,九州大学助教授松永信博先生 にご助言を頂きました.本研究の一部は,平成12年度総 理工奨励研究費および平成13年度科学研究費補助金の 援助の下で行われたものです.ここに記して謝意を表し ます.

参考文献

- Liss, P. S. and Merlivat, L.: Air-sea gas exchange rates: introduction and synthesis, *The Role of Air-Sea Exchange in Geochemical Cycling*, pp. 113-127, D. Raidel, 1986.
- Toba, Y. and Koga, M.: A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress, *Oceanic Whitecaps*, pp. 37-47, D. Raidel, 1986.
- 3) Zhao, D., Toba, Y., Suzuki, Y. and Komori, S.: Effect of wind waves on air-sea gas exchange: Proposal of an overall CO₂ transfer velocity formula as a function of breaking-wave parameter, *Proc. of 6th International Carbon Dioxide Conference*, 2001.
- 4) 光易恒, 草場忠夫: 大気海洋間の運動量交換(2),九州大
 学応用力学研究所所報,第 66 号, pp. 21-35, 1988.
- Cheung, T. K. and Street, R. L.: The turbulent layer in the water at an air-water interface, J. Fluid Mech., Vol. 194, pp. 133-151, 1988.
- 6) Yoshikawa, I., Kawamura, H., Okuda, K. and Toba, Y.: Turbulent structure in water under laboratory wind waves, J. Oceanogr. Soc. Japan, Vol. 44, pp. 143-156, 1988.
- Thais, L. and Magnaudet, J.: Turbulent structure beneath surface gravity waves sheared by the wind, J. Fluid Mech., Vol. 328, pp. 313-344, 1996.
- Komori, S., Nagaosa, R., and Murakami, Y.: Turbulence structure and mass transfer across a sheared air-water interface in wind-driven turbulence, *J. Fluid Mech.*, Vol. 249, pp. 161-183, 1993.
- 9) Terray, E. A., Donelan, M. A., Agrawal, Y. C., Drennan W. M., Kahma, K. K., Williams III, A. J., Hwang, P. A. and Kitaigorodskii, S. A.: Estimates of kinetic energy dissipation under breaking waves, J. Phys. Oceanogr., Vol. 26, pp. 792-807, 1996.
- 10) Drennan W. M., Donelan, M. A., Terray, E. A. and Katsaros, K. B.: Oceanic turbulence dissipation mesurements in SWADE, J. Phys. Oceanogr., Vol. 26, pp. 808-815, 1996.
- Toba, Y.: Local balance in the air-sea boundary processes I. On the growth process of wind waves, J. Oceanogr. Soc. Japan, Vol. 28, pp.109-120, 1972.
- 12) Nakayama, T.: Turbulence and coherent structures across air-water interface and relationship with gas transfer, Ph.D thesis, Kyoto University, 2000.
- 13) 嶋田隆司,三角隆太,小森悟:気液界面を通しての炭酸ガスの物質移動係数に及ぼす海水の効果,日本機械学会論文集 (B編),64巻,621号,pp.1470-1477,1998.
- 14) 杉原裕司,津守博通:気液界面における表面更新乱流の特 性,水工学論文集,第46巻,pp.529-534,2002.