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Abstract

We investigate stock markets volatility spillovers in selected emerging and major devel-
oped markets using multivariate GARCH (MGARCH) models [namely; DVECH, CCC-
MGARCH, CCC-VARMA-(A)MGARCH, VAR-EGARCH, BEKK-(A)MGARCH, DCC-
MGARCH (with Gaussian and t distributions) and DCC-with-skew-t density]. The paper
analyses the impacts of recent global financial crisis (2007–2009) on stock market volatility
and examines their dynamic interactions using several MGARCH model variants. Struc-
tural break detection test (the ICSS algorithm) finds significant evidence of breaks in the
unconditional variance for all the stock market returns. Having fitted several MGARCH
models, we modify the BEKK-(A)MGARCH models by including financial crisis dum-
mies to assess their impact on stock market volatilities, spillovers and interactions. Major
findings reveal that correlations among emerging markets are lower compared with corre-
lations among developed markets and tend to increase during financial crises. Consistent
with extant literature, own-volatility spillovers are to a large extent higher than cross-
volatility spillovers especially for emerging markets. The DCC-with-skew-t density model
is found to have better diagnostics compared to all other fitted MGARCH models partly
due to its taking into account the skewed feature of the returns. Thus, we recommend
that in modelling stock market volatility dynamics, skewness, asymmetry and fat tails
(features frequently observed in financial time series) should be taken into account in the
modelling process.

Keywords: Stock Markets, Volatility, CCC-MGARCH, ICSS, Asymmetry, Spillover,
BEKK-MGARCH, VAR-EGARCH, DCC-with-skew-t, Financial Crises
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1 Introduction

The global financial crisis (GFC)(2007–2009) and its impact across financial markets have stim-
ulated considerable interest in the analysis of stock market volatility spillovers (see, Hemche et
al., 2016; Coudert et al., 2015; Li and Giles, 2015; Kenourgios and Dimitriou, 2015; Miralles-
Marcelo et al., 2013, among others). The financial crisis, initially a US incident, spread to
other major stock markets and subsequently emerging markets (EMs) causing huge losses for in-
vestors, leading to bankruptcies of many financial institutions and decline in investor confidence
with consequent negative impact on the global economy. Investor sell-off and uncertainties in
EMs eventually led to a period of high volatility in major stock markets. The ever-increasing
globalisation of financial markets and the recent incidence of large stock market fluctuations,
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financial crises and market crashes ranging from the Mexican crisis (1994), the Asian financial
crisis (AFC)(1997–98), the Russian debt crisis (1998), the Brazilian currency crisis (1999) to
the Greek debt crisis (2010 to date), have rekindled interest in how financial markets within
and across countries interact. With EMs’ increased important role, better understanding of the
nature of spillover effect could be of help to investors and regulators in identifying the nature
of interaction between EM and developed markets (DMs) and the implications of volatility
spillovers especially during periods of financial crises. Investors in DMs are often interested in
whether EMs offer portfolio diversification opportunities and vice versa. Engle (2011) argues
that financial market instability, business cycle downturns, rising volatilities and inflation are
all events that investors fear and are continuously seeking to hedge against these risks. Recent
studies argue that highly integrated financial markets tend to transmit shocks more rapidly
with the resulting portfolio shift often affecting interest rate, trade finance, exchange rate and
eventually real sector economic activity. Li and Giles (2015) argue that if EMs are only weakly
integrated with DMs, external shocks may have limited influence on EMs, while DM investors
can benefit by including EM stocks in their portfolio, as diversification would reduce risk. In
essence, modelling spillover between markets should help provide a better idea of what asset(s)
to include/exclude in the portfolio.

Modelling and forecasting volatility and correlations are now at the centre stage of financial
econometrics as accurate estimates of volatility and correlation are required in derivative pric-
ing, portfolio optimisation, risk management and hedging strategies (Sadorsky, 2012). Several
models of conditional volatility have been proposed in order to evaluate market risk, asym-
metric shocks, leverage effects and value-at-risk (VaR). Even prior to the GFC, studies such
as Lin et al. (1994), Fleming et al. (1998) and Tsutsui (2002) have shown how cross-market
hedging and common information sharing could lead to spillover of volatility across markets
over time. They often attribute the influence of trade and financial linkages as the key factors
influencing the transmission mechanism. Recent events in financial markets such as the August
2015 stock market turbulence in China have shown that emerging financial markets in Asia
can become a major source of financial shocks that may be transmitted widely, including to
advanced economies (see, Guimar̃aes-Filho and Hong, 2016). The inability of existing models
(especially those used in financial markets by practitioners) to fully take into account features
of skewness and excess kurtosis has been attributed by scholars to be the cause of the recent
GFC, along with over-emphasis on short-term risks rather than long-term risks. Engle (2011)
notes that long-term negative skewness increases the downside risk and failure to pay attention
to long-term risk is a potential explanation for the GFC. There is an ongoing attempt to incor-
porate key features of returns such as skewness and excess kurtosis into MGARCH estimation
and in the analysis of volatility spillover effects among financial markets (see, Bauwens and
Laurent, 2005; He et al., 2008; Engle, 2011 and Massaci, 2014).

For instance, when kurtosis is higher than normal, it implies that there is too much concen-
tration of observations around the mean to be consistent with a normal distribution. De Grauwe
(2012) reports that models with this feature tend to underestimate the probability of extremely
large asset price changes (i.e. such models underestimate the probability of large bubbles and
crashes). He et al. (2008) highlight interesting economic theories explaining skewness in the
marginal distribution of returns. Relevant to our analysis is Hong and Stein’s (2003) model (in
their analysis of the differences in opinion, short-sales constraints and market crashes), whereby
the flow of information among agents move more slowly when the information received is pos-
itive than when it is negative, which make the prices to fall more rapidly (on average) than
they increase leading to a return distribution with a skewed density (He et al., 2008). Volatility
feedback effect has also been offered as another possible explanation to negative skewness. A
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large expected future volatility tends to lower stock prices by increasing the required return and
when future volatility is perceived to be low, the stock prices increase (He et al., 2008). Thus,
the effects of small and large future volatility on prices are not symmetric thereby leading to a
negatively skewed returns.

Although the idea that financial markets do influence each other is well known (see, Engle
et al., 1990 and Koutmos, 1996), the growing integration of financial markets due to globalisa-
tion has led to increased attention on stock market interactions and the mechanisms by which
stock return movements are transmitted using several techniques [see, Guimar̃aes-Filho and
Hong (2016) and Tsutsui and Hirayama (2013) for their analysis of the interaction between
Japanese, Korean and Chinese stock markets using volatility and correlation models; Yang et
al. (2006) examine emerging market crisis and stock market linkages using vector autoregres-
sion (VAR) models while Salisu and Oloko (2015) investigate spillover effects between stock
and foreign-exchange (FX) markets in Nigeria using a variant of BEKK-vector autoregressive
moving average-asymmetric MGARCH (BEKK-VARMA-AMGARCH) model of McAleer et
al., 2009]. In addition, Hassan & Malik (2007) analyse the transmission of volatility among
different US sector indices with EMs while studies such as Miralles-Marcelo et al. (2013) re-
examine volatility relations among Spanish firms using MGARCH models. Earlier, McAleer et
al. (2009) point out that most MGARCH models are concerned with explaining conditional
covariance matrices which are required to determine VaR thresholds used for optimal portfolio
and risk management.

Figure 1: Emerging and Developed Stock Markets Weekly Indices (1994–2016)

 

 

 

(a)Emerging Markets Weekly Stock Indices (1994:1:03-2016:1:04)
With the Global Financial Crisis Period Interval
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(b)Developed Markets Weekly Stock Indices (1994:1:03-2016:1:04)
With the Global Financial Crisis Period Interval
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Figure 1 shows that stock markets in both emerging and developed economies all fell and
rose significantly and were simultaneously correlated particularly during the GFC (2007–2009)
with varying levels of volatility1. Until recently, emerging capital markets have been relatively
small compared to the sizes of their GDPs. As at mid-2014, EMs have a 39% share of global

1Ozer-Imer and Ozkan (2014) note that co-movements became stronger during crashes and crisis periods.
Citing Kole (2006) in an attempt to differentiate between a crash and crisis, he states that “while a crash
is specific to a single asset, sector or a single market, a crisis can be defined as a period of uncertainty with
prolonged effects on many assets and many markets”. The term contagion which emanates from the medical
field indicating the spread of disease, has been incorporated in the finance literature, defined as a significant
increase in correlation between stock returns in different markets/regions during a crisis period, beyond the
linkages in fundamentals (see, Kenourgios and Dimitriou, 2015). In addition, the use of copulas to analyse
crisis, co-movements and interactions is also been advocated by a small strand of recent literature (see, Kole,
2006; Fengler et al., 2012).
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output but 21.6% share of global equity market capitalisation and a 14.4% and 13.9% share
of global corporate and sovereign bond markets value respectively (Credit Suisse, 2014). The
troughs experienced by all the markets during the 2008–2009 period indicates increased inte-
gration among markets during recent financial crisis compared with previous crises periods in
our sample. Since early-2016, share prices fell persistently in both EMs and DMs. The reasons
advanced for this, include investor concerns due to US interest rate hike, slowdown in Chinese
economic growth and plummeting crude oil prices. New studies are focusing on the theoretical
basis of share price valuations to explain the share price declines. Falling share prices either
indicate that investors have become more pessimistic about future cashflows or that they have
raised the applicable discount rate.

To minimise the risk of volatility spillover emanating from China and other EMs, as well
as to chieve its other monetary policy objectives, the Bank of Japan (BOJ) recently adopted
a negative interest-rate policy. So and Tse (2009) point out that Asian markets are becoming
increasingly integrated and that evidence of their co-movements during periods of financial
distress is getting stronger. The Chinese stock markets for instance, have undergone significant
changes and growth since 1991. The Bovespa (BVSP) index showed trends which could partly
be associated with Brazil’s financial and currency crises of the early- to mid-1990s. Recently,
stock prices in Brazil became highly sensitive to economic data from Asia as China has replaced
the USA as its biggest buyer of commodities. A key feature of EMs is that their aggregate
equity skew towards resources (such as materials and energy), telecoms and information tech-
nology (IT) sectors while for DMs, IT, industrials, technology and healthcare sectors are the
most represented (Credit Suisse, 2014). For the European markets, the German DAX-30 index
experienced increased volatility even after the GFC largely connected to the EU debt crises
that severely affected Greece, Italy and Spain; and raised concerns about the future of the
Euro currency.

Several MGARCH models have been proposed and despite their extensive application in
the analysis of financial markets and assets in terms of co-movement, contagion, spillover and
asymmetric effects, not many studies have actually compared these models empirically. Addi-
tionally, the conditional density assumption should be consistent with common stylised facts
of asset returns that include conditional hetersocedasticity, skewness and excess kurtosis of
which most previous studies did not take into account. This has implications for risk measure-
ment, portfolio allocation and on the propagation of risk across different markets. This paper
intends to contribute to the literature in this regard as the methodological frameworks used
are relatively new. This study extends the works of Massaci (2014) and others who employs
a univariate two-regime threshold model with returns following a distinct skewed Student’s t
distribution. Accordingly, we will address the following questions: (1) How has correlations in
asset returns and volatilities in both EMs and DMs changed over time?(2) Are stock markets
more correlated during periods of significant financial crises?(3) Is the DCC-with-skew-t density
model superior to all other fitted MGARCH models that do not take into account the often
skewed feature of returns?

Recent studies now focus on the impact of shocks on third (skewness) and higher (e.g. kur-
tosis) moments of a distribution (see, Back, 2014 and Kim et al., 2014). Bauwens and Laurent
(2005) propose a flexible method to introduce skewness in multivariate symmetric distributions
and apply their procedure to the multivariate Student’s t density leading to a multivariate skew-
Student’s t density. In addition, Massacci (2014) proposes a two-regime threshold model for
the conditional distribution of stock returns whereby returns follow a distinct skewed-Student’s
t distribution within each regime, i.e. the model enables the capturing of time variation in the
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conditional distribution of returns and its higher order moments. He finds that the model esti-
mates conditional volatility more accurately and produces useful risk assessment as measured
by the term structure of VaR. In contrast with the massive literature on univariate GARCH
models, not much studies exist on robust estimation of MGARCH models in the presence of
large one-off jumps. Laurent et al. (2013) propose a multivariate volatility forecasting model,
known as the bounded innovation propagation-cDCC (BIP-cDCC) model. The model extends
the DCC specification, produces a reasonable out-of-sample covariance forecasts and leads to
portfolios with similar return characteristics but lower turnover to the DCC model.

This paper analyses stock market volatility spillovers and investigate the pattern of stock
return volatility and the impact of the GFC on stock market interactions by incorporating
variance shifts in MGARCH-type model estimations. Further, we seek to contribute to the
literature on the impact of financial crises on stock markets by analysing volatility spillovers
and cross-market linkages in EMs vis-à-vis DMs in the context of competing distributional
assumptions with emphasis on DCC-with-skew-t density models. This can help guide investors
and portfolio managers on potential gains from portfolio diversification and on the emerging
dynamics of spillover effects in financial markets. Accordingly, insights from the results can
provide additional information to policymakers, analysts and investors especially in a period
of increasing globalisation of the world economy and stock markets. The rest of the paper is
structured as follows: Section 2 reviews related literature while Section 3 outlines MGARCH
methodologies and their statistical properties, key distributional assumptions and the iterated
cumulative sum of squares (ICSS) algorithm. Section 4 describes the data and discusses results
and implications of the fitted MGARCH models while Section 5 concludes. Additional results
are presented in the Appendices.

2 Review of Related Literature

The pioneering articles on autoregressive conditional heteroscedasticity (ARCH) by Engle
(1982) and Bollerslev (1986) introduce univariate volatility models with subsequent extensions
aimed at greater flexibility proposed by Nelson (1991), Glosten et al. (1993) and Baillie et
al. (1996), among others. The “second generation” studies extend the univariate models to
multivariate models (MGARCH) starting with the VEC model of Bollerslev et al. (1988), diag-
onal vector conditional heteroscedasticity (DVECH) model and extensions such as Bollerslev’s
(1990) constant conditional correlation-GARCH (CCC-GARCH), Engle and Kroner’s (1995)
Baba-Engle-Kraft-Kroner (BEKK)-GARCH, Engle’s (2002) dynamic conditional correlation
(DCC)-GARCH (DCC-GARCH) and Tse and Tsui’s (2002) time-varying CC-GARCH (TVCC-
GARCH) models. Others are Ling and McAleer’s (2003) VARMA-GARCH, DCC-with-skew-t
model proposed by Bauwens and Laurent (2005), McAleer et al.’s (2009) VARMA-AGARCH
model, BIP-cDCC model proposed by Laurent et al. (2013), etc. It is now common to examine
large number of assets, e.g. bonds with different maturities, multiple currencies, diverse equi-
ties, etc. This influenced the development of several MGARCH model variants.

Influential studies on volatility interactions and spillovers include; Ling and McAleer (2003),
Cappiello et al. (2006), Bauwens et al. (2006, 2013 and references therein), Silvennoinen and
Teräsvirta (2009), Nakatani and Teräsvirta (2009), Conrad and Karanasos (2010) and Laurent
et al. (2012). Several empirical evidences were provided in the literature suggesting that finan-
cial markets do influence each other. During financial crises, currency volatility also becomes
an issue of concern particularly to monetary authorities and international investors. In a bid
to diversify, investors might pick an outperforming stock in another market, only to see their
gains evaporate due to excessive exchange-rate (FX) movements in another market. However,

5



Bae et al. (2003) note that “there does not seem to be strong evidence that stock returns in
one country are more highly correlated with returns in other countries during crisis period once
one takes into account the fact that correlation estimates are likely biased”.

Baumöhl and Lyocsa (2014) examine within the dynamic conditional correlation (DCC)
context, the relationship between time-varying correlations and conditional volatility among 32
emerging and frontier markets and the MSCI stock index from 2000 to late-2012. They find
that asymmetry is not a common phenomenon in EMs and that the relations between volatility
and correlations is positive and significant in most countries. Kenourgios and Dimitriou (2015)
investigate spillover effects during the GFC among 10 sectors in 6 developed and emerging re-
gions. They examine different channels of financial contagion using DCC from the multivariate
fractionally integrated asymmetric power-ARCH (FIAP-ARCH) model. They find that the
GFC can be characterised by spillover effects across stock markets and (non) financial sectors
and that developed Pacific region and sectors like consumer goods, healthcare and technology
seems to be less affected by the GFC while the most vulnerable sectors were in emerging Asian
and EU regions. Ozer-Imer and Ozkan (2014) investigate the impact of recent GFC on the
co-movement of 16 currencies using Engle’s (2002) DCC approach. They find that volatilities
increase atleast two-folds with the outbreak of crisis and that an inverse relationship between
volatility and duration of the crisis exists.

Although univariate GARCH models have been successful in capturing symmetric condi-
tional volatility features in financial returns, they assume independence between conditional
volatilities across markets and assets. That is, they do not examine the existence of cross-
asset, cross-market and cross-country effects nor test for non-zero conditional correlations use-
ful in optimal portfolio management. This paper empirically analyse and compare several
MGARCH specifications using stock returns data in order to examine spillover and asymmetric
effects across both EMs & DMs and interactions in conditional volatilities in the context of
the GFC. Koutmos (1996) investigates the dynamic interdependence of major European stock
markets with focus on first and second moment stock market interactions, by extending Nel-
son’s (1991) EGARCH specification to a multivariate model. We will revisit this specification
(VAR-EGARCH) in our analysis of spillover effects and compare with similar models to analyse
interactions in major stock markets.

Time-varying correlations are often estimated with MGARCH models that are linear in
squares and cross products of the series (see, Bollerslev, 1990; Kroner and Ng, 1998; Cappiello
et al., 2006, etc.). Engle (2002) proposes the DCC model which is nonlinear but can be fitted
with univariate or two-step based methods on the likelihood function (with a series of univariate
GARCH and correlation estimates). He states that the DCC model “can be viewed as a gen-
eralisation of the Bollerslev’s (1990) CCC estimator”. He finds that the bivariate DCC model
provides a very good approximation to a variety of time-varying correlation processes. Engle
and Shephard (2001) develop the theoretical and empirical properties of a DCC-MGARCH
model. They simplify the problem of multivariate conditional variance estimation by fitting
univariate GARCH models for each asset before using the transformed residuals arising from
that, to estimate a conditional correlation estimator. Similarly, Cappiello et al. (2006) propose
the asymmetric generalised-DCC (AG-DCC) model which extends previous specifications by
allowing for series-specific news impact/smoothing parameters and conditional asymmetries in
correlation dynamics among different asset classes. In addition, they investigate the presence
of asymmetric responses in conditional variances and correlations to negative returns.

Alper and Yilmaz (2004) examine stock market volatility spillover from EMs and financial
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centres to the Turkish stock market in the period 1992 to 2001 using GARCH models. They
find evidence of volatility spillover from the financial centers during the AFC to the Istan-
bul stock exchange. Bauwens et al. (2006) and Allen et al. (2011) point out that the most
appropriate use of MGARCH models is in modelling the volatility of certain markets in rela-
tion to the co-volatility of other markets. That is, these models should be used to determine
if the volatility of one market leads to the volatility of other markets (known as “spillover ef-
fects”). Bauwens et al. (2006) claim that these models are also efficient in determining whether
volatility is transmitted between financial markets through the conditional variance (directly)
or conditional covariances (indirectly), whether shocks to one market increase the volatility of
another market and the magnitude of that increase, and whether negative information has the
same impact as positive information of equal magnitude (Allen et al., 2011).

Similarly, Berben and Jansen (2005) employ TVCC-GARCH model to examine whether
stock markets have become more integrated in the sense that correlations between volatili-
ties in these markets have become stronger over time. Bauwens et al. (2013) propose a new
multiplicative multivariate DCC (mDCC) model that allows for both smooth changes in the
unconditional volatilities and correlations and for conditional volatility and correlations clus-
tering around the smoothly changing level. The volatility interactions literature is not limited
to only stock markets but extends to the FX market (see, West and Cho, 2005 and Rapach
and Strauss, 2008), equity and bond markets (see, Cappiello et al., 2006), energy markets (see,
Bauwens et al., 2013), oil and stock markets (see, Sadorsky, 2012; Salisu and Oloko, 2015);
stock and FX markets (see, Salisu and Oloko, 2015), and several others. Sadorsky (2012) em-
ploys MGARCH models (BEKK, DVECH, CCC and DCC specifications) to model conditional
correlations and to analyse the volatility spillovers between oil price and the stock prices of
clean energy and technology companies. By comparing and contrasting the models, Sadorsky
finds that the DCC model best fits the data with results showing that the stock prices of clean
energy companies correlate more strongly with technology stock prices than with oil prices.

An established stylised fact of financial returns is that they exhibit fat tails (kurtosis larger
than 3), asymmetry and skewness. To account for these features, new studies consider more
flexible distributions than both normal and Student’s-t density such as: multivariate skew-t and
the generalised hyperbolic (GH) skew-Student’s-t densities. Doan (2013) observes that most
MGARCH models are fitted using either multivariate normal or t densities for the residuals with
both belonging to a class of elliptically symmetrical densities. This is because the Student’s-t
cannot have fatter tails in some directions and is not permitted to be skewed. In Bauwens and
Laurent (2005) the skewed (univariate) distribution is constructed from a symmetrical distribu-
tion. They demonstrate this by converting symmetrical densities to skewed ones which can be
applied to any well behaved symmetrical univariate density to create a skewed multivariate one
(see, Bauwens and Laurent, 2005 and Doan, 2013). Combined with MGARCH model, they find
that this family of distributions is more useful than its symmetric cousin for modelling stock
returns and for forecasting the VaR of portfolios. In this paper we augment Engle’s (2002)
DCC model with multivariate skew-t density in order to give additional flexibility to the fitted
DCC model. Recent studies have emphasised the importance of modelling the skewness and
kurtosis properties of financial returns in asset pricing models (see, Aas and Haff, 2006; Engle,
2011 and Massacci, 2014, among others). Bauwens and Laurent (2005) stress that “although
GARCH model generates excess kurtosis when combined with a Gaussian conditional density,
it does not fully account for the excess kurtosis present in most return series”.

Narayan et al. (2014) examine the patterns and causes of stock market integration of se-
lected Asian EMs against the US, China, Australia and India using DCC model. Utilising
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daily, weekly and monthly data from 2001 to 2012, they find that opportunities in cross border
investment vary by frequency and that correlations were strongest during the GFC period. In
addition, they find that while the GFC may have amplified the integration process of stock mar-
kets, other factors such as globalisation and economic integration, trade linkages and domestic
stock market characteristics may also have contributed to the increased correlations. Further-
more, they note that financial liberalisation, foreign investment flows as well as the presence of
country funds and/or cross-listed securities also integrates national markets with global capital
markets (Narayan et al., 2014). Despite the attractive features of the original DCC which has
proven to be reliable in empirical studies, Hafner and Reznikova (2012) propose a more complex
version of the DCC model mainly to address some of its limitations as Engle’s (2002) DCC
model does not perform well when large number of assets are involved. Fengler et al. (2012)
examine the dynamic Copula based approach to recovering the index implied volatility skew
for the case of the German DAX-30 stock index. They show that moderate tail dependence
coupled with asymmetric correlation response to negative news is essential in explaining the
index implied volatility skew while the standard DCC models with zero tail dependence fail to
generate sufficiently steep implied volatility skew. The multivariate models they employ belong
to the class of Copula asymmetric-DCC (C-DCC) models.

Li and Giles (2015) examine volatility spillovers between developed (USA and Japan) and 6
Asian developing economies (China, India, Malaysia, Indonesia, the Philippines, and Thailand).
Using an asymmetric BEKK-MGARCH model earlier proposed by Engle and Kroner (1995)
and later extended by Kroner and Ng (1998), they find significant unidirectional shock and
volatility spillovers from the US market to both Japanese and the Asian EMs. They also find
that volatility spillovers between the US and the Asian markets are stronger and bidirectional
during the AFC. Coudert et al. (2015) examine financial integration (internationalisation ver-
sus regionalisation) in EMs using a rolling window OLS regression (to evaluate to what extent
shocks in regional and DMs are transmitted to EMs) and a trivariate BEKK-MGARCH model
(to assess the dynamics of integration and regionalisation in EMs). They find that the pattern
of financial shock to transmission vary substantially across economies and over time. Hemche
et al. (2016) investigate the contagion hypothesis for 10 developed and mostly second-level
EMs with respect to the US market in the context of the subprime crisis (2007), GFC (2008–
2009) and the great recession (2009) using a DCC-MGARCH model. They find using Forbes
and Rigobon’s (2002) contagion test, a significantly higher correlation between markets during
the crises. They note that their analysis provide insights into the investment and diversifica-
tion opportunities still possible in some EMs. In terms of diversification strategies, industry
and country diversification have been recommended in the literature. Recent research shows
that focus on industries rather than countries have gained more attention. Zhou and Nichol-
son (2015) recommend mixed-asset portfolio diversification. However, investors should consider
both industry and country diversification in building their portfolios and in hedging against risk.

Engle (2011) develops a test for long-term skewness in order to examine whether standard
volatility models are capable of modelling this characteristic of the data and the risk it generates.
Aas and Haff (2006) argue in favour of a special case of the generalised hyperbolic (GH) skew
Student’s t distribution in modelling financial data as it has the key property that one tail
has polynomial and the other exponential behaviour. They demonstrate the superiority of this
class of distribution compared with some of its competitors through VaR and expected shortfall
calculations. However, the GH skew-Student’s t distribution is not well known and its special
tail behaviour has not yet been addressed. Guimar̃aes-Filho and Hong (2016) examine the
connectedness of Asian equity markets within the region vis-à-vis other major global markets
using time-varying connectedness measures (based on dynamic variance decompositions from
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a VAR applied to asset returns and volatilities). They address a number of questions ranging
from: whether markets become more connected during crises period, which markets are major
sources and recipients of shocks, to how connectedness in asset returns and volatilities changed
over time. Finally, they investigate the connectedness between China’s equity markets and
other major equity markets since August, 2015 in order to highlight the growing importance of
EMs particularly China as a new source of shocks. The next section describes the econometric
methodologies to be employed in the study.

3 Econometric Methodologies

In this section, we describe the relevant models to be used in our analysis and their main
econometric properties as well as the overall estimation strategy. To determine the station-
arity of the returns data to be used, we conduct unit root tests, with and without structural
breaks. Furthermore, we employ Inclan and Tiao’s variance breaks detection test to detect
the number and position of break points in variance of the returns data. We then estimate
several variants of MGARCH models, namely; (a) DVECH, (b) CCC-MGARCH, (c) CCC-
VARMA-(A)MGARCH, (d) VAR-EGARCH, (e) BEKK-(A)MGARCH, (f) DCC-MGARCH
(with Gaussian and t distributions) and (g) DCC-with-skew-t density. In addition, we modify
the BEKK-(A)MGARCH models by including financial crisis dummies to assess their impact
on stock market volatilities and interactions. We use weekly stock market returns data from
1994 to 2016 for market indices in Nigeria, Hong Kong (China) and Brazil (EMs) and Japan,
USA, and UK (DMs). The respective models are specified below.

3.1 Unit Root Tests With and Without Structural Breaks

3.1.1 The Augmented Dickey-Fuller Test (Without Structural Breaks)

The augmented Dickey-Fuller (ADF) test is based on eqn.(1) below

∆yt = c0 + βt+ αyt−1 +
k∑
i=1

di∆yt−i + εt, (1)

where ∆yt is the first difference of yt series and εt is the residual with ∆yt−1 = yt−1 −
yt−2,∆yt−2 = yt−2 − yt−3, and so on. If the series is trend-stationary, α will be negative
thereby forcing the series to revert to trend from any deviation (Enders and Doan, 2014). The
∆yt−i is added to eliminate serial correlation in εt. Eqn.(1) tests the null (unit root) hypothesis
against the alternative (stationary) hypothesis.

3.1.2 Zivot and Andrews (ZA) Unit Root Test (With Structural Breaks)

The Zivot and Andrews (1992) test allows for a single break (at an unknown date) in the
intercept, trend and/or in both intercept and trend. ZA propose a data dependent algorithm
to determine breakpoints (i.e. allowing the break point to be determined from the data). The
ZA unit root tests with breaks in both intercept and trend are computed using eqn.(2) below

yt = c0 + βt+ θDUt + γDTt + αyt−1 +
k∑
i=1

di∆yt−i + εt, (2)

where DUt = 1 if t > TB, 0 otherwise; DTt = t − TB if t > TB, 0 otherwise. The TB is the
endogenously determined break date. The model (mixed model) allows for both a one-time
change in the trend function’s intercept under the alternative hypothesis and a single change in
the slope of the trend function without any change in the level taking place simultaneously. The
null hypothesis state that the series are integrated of order one (unit root) without structural
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breaks (α = 1). The test statistic is the minimum t over all possible break dates in the sample
(the point where the unit root t-test statistics is minimised).

3.2 Multivariate Generalised-ARCH (MGARCH) Models

Suppose εt = (ε1t, ..., εmt)
′ such that Eεt = 0 and E(εtε

′
t|Ft−1) = Ht, where Ht is positive

definite and εt = H0.5
t zt with zt ∼ i.i.d.(0, Im). The Ft−1 contains past market information up

to time t − 1. The conditional variance equation in the spirit of Bollerslev et al. (1988) is of
the form defined in eqn.(3) as

vech(Ht) = C +

q∑
k=1

Akvech(εt−kε
′
t−k) +

p∑
k=1

Bkvech(Ht−k), (3)

where vech denotes the half-vectorisation operator which stacks the columns of a square matrix
from the diagonal downwards in a vector. The Ak = [αkij] and Bk = [βkij] are coefficient
matrices with m(m + 1)/2 rows and columns, and C is an [m(m + 1)/2] × 1 intercept vector
with positive elements. The DVECH uses only the diagonal elements of Ak and Bk, and
sets all values of αij = βij = 0, for i 6= j. In Bollerslev’s (1990) model, Ht = DtRDt,
where Dt (is the diagonal matrix) and R (the correlation matrix) contains the conditional
correlations independent of t. Due to limitations of the CCC model which presumes that the
conditional variances are independent across returns, Ling and McAleer (2003) propose the
VARMA-MGARCH model (the CCC-MGARCH is a special case). The model assumes that
shocks (positive or negative), have identical impacts on conditional variance (i.e. it neglects
asymmetric behaviour). To address this shortcoming, McAleer et al. (2009) propose a VARMA-
AGARCH specification given in eqn.(4) below

Ht = C∗ + (A∗)ε2
t−1 + D∗It−1ε

2
t−1 + (B∗)Ht−1, (4)

with Ht = (h1t, ..., hmt)
′, where C∗,A∗ and B∗ are m × m matrices of constants, ARCH and

GARCH terms respectively. The D∗ is an m × m matrix. The It =diag(I1t, ..., Imt) captures
the asymmetric effect such that It = 0 if εit > 0 and It = 1 if otherwise. The It is an indicator
function. The VARMA-AMGARCH specification reduces to VARMA-MGARCH when D∗ = 0
(see, Allen et al., 2011). For the BEKK-MGARCH model, its main advantage is that its
variance-covariance matrices are always positive definite. The BEKK(1,1) model is given by

Ht = (C∗)′C∗ + (A∗)′(εt−1ε
′
t−1)A∗ + (B∗)′Ht−1B

∗, (5)

where C∗ = (c′1, ..., c
′
m)′ is an m × m triangular matrix, A∗jk = [α∗jk,il] and B∗jk = [β∗jk,il] are

m× m coefficient matrices. The (C∗)′C∗ is positive definite when C∗ is of full rank (Teräsvirta
et al., 2010). The elements of A∗ capture the effects of shocks on volatility while the elements
of B∗ capture the effects of past conditional variances measuring the diagonal parameters of the
effects of past own shocks and past volatility in both cases (see, Miralles-Marcelo et al., 2013).
Eqn.(6) present the decomposed version of eqn.(5) element by element. For the conditional
variance of eqn.(5), the total number of elements is 24.

Ht =

 c1,1

c2,1 c2,2

c3,1 c3,2 c3,3

 c1,1 c2,1 c3,1

c2,2 c2,3

c3,3

+

 α∗1,1 α∗1,2 α∗1,3
α∗2,1 α∗2,2 α∗2,3
α∗3,1 α∗3,2 α∗3,3

 εt−1ε
′
t−1

 α∗1,1 α∗2,1 α∗3,1
α∗1,2 α∗2,2 α∗3,2
α∗1,3 α∗2,3 α∗3,3

+

 β∗1,1 β∗1,2 β∗21,3

β∗2,1 β∗2,2 β∗2,3
β∗3,1 β∗3,2 β∗3,3

Ht−1

 β∗1,1 β∗2,1 β∗23,1

β∗1,2 β∗2,2 β∗3,2
β∗1,3 β∗2,3 β∗3,3

 , (6)
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where

εt−1ε
′
t−1 =

 ε2
1,t−1 ε1,t−1ε2,t−1 ε1,t−1ε3,t−1

ε2,t−1ε1,t−1 ε2
2,t−1 ε2,t−1ε3,t−1

ε3,t−1ε1,t−1 ε3,t−1ε2,t−1 ε2
3,t−1

 ,Ht =

 h11,t h12,t h13,t

h21,t h22,t h23,t

h31,t h32,t h33,t

 .

Considering the trivariate case, the elements of Ht in eqn. (5) are

h11,t = c2
1,1 + α∗211ε

2
1,t−1 + α∗221ε

2
2,t−1 + α∗231ε

2
3,t−1 + 2α∗11α

∗
21ε1,t−1ε2,t−1 + 2α∗11α

∗
31ε1,t−1ε3,t−1+

2α∗31α
∗
21ε2,t−1ε3,t−1 + β∗211h1,t−1 + β∗221h2,t−1 + β∗231h3,t−1 + 2β∗11β

∗
21h12,t−1 + 2β∗11β

∗
31h13,t−1

+2β∗31β
∗
21h23,t−1,

h22,t = c2
2,1 + c2

2,2 + α∗212ε
2
1,t−1 + α∗222ε

2
2,t−1 + α∗232ε

2
3,t−1 + 2α∗22α

∗
12ε1,t−1ε2,t−1 + 2α∗32α

∗
12ε1,t−1ε3,t−1+

2α∗32α
∗
22ε2,t−1ε3,t−1 + β∗211h1,t−1 + β∗222h2,t−1 + β∗232h3,t−1 + 2β∗22β

∗
12h12,t−1 + 2β∗32β

∗
12h13,t−1

+2β∗32β
∗
22h23,t−1,

h33,t = c2
3,1 + c2

3,2 + c2
3,3 + α∗213ε

2
1,t−1 + α∗223ε

2
2,t−1 + α∗233ε

2
3,t−1 + 2α∗23α

∗
13ε1,t−1ε2,t−1 + 2α∗33α

∗
13ε1,t−1ε3,t−1+

2α∗33α
∗
23ε2,t−1ε3,t−1 + β∗213h1,t−1 + β∗223h2,t−1 + β∗233h3,t−1 + 2β∗23β

∗
13h12,t−1 + 2β∗33β

∗
13h13,t−1

+2β∗33β
∗
23h23,t−1.

(7)
We consider and estimate eqn.(8) which is a BEKK-AMGARCH (with asymmetry) model
proposed by Kroner and Ng (1998) in order to capture the asymmetric effects/property of the
time-varying variance-covariance matrix. This is expressed as

Ht = (C∗)′C∗ + (A∗)′(εt−1ε
′
t−1)A∗ + (B∗)′Ht−1B

∗ + (γ∗)′Gt−1G
′
t−1γ

∗, (8)

which adds the m×m matrix γ∗. Asymmetry is a common feature in stock market return data
due to the leverage effect phenomenon of equity markets (Teräsvirta et al., 2010). Koutmos
(1996) proposes a multivariate CCC-EGARCH model on a VAR equation. The EGARCH
specification takes the specialised form in eqns.(9) and (10) expressed as

log hit = ci + gi log hi,t−1 +
∑
j

αijzj,t−1, (9)

zjt =

(
|εjt|√
hjt
−
√

2

π

)
− dj

εjt√
hjt

, (10)

where ci, gi, α, and dj are variance intercepts in EGARCH, lagged variance coefficients, lagged z
term and the asymmetry coefficients respectively. The conditional variance of the return in each
market, given by eqn.(9) is a logarithmic function of past own and cross-market standardised
innovations. The functional form of zjt is given in eqn.(10) which permits standardised own and
cross-market innovations to influence the conditional variance in each market asymmetrically.
If αij is positive, the impact of zj,t−1 on log hit will be positive (negative) if the magnitude of
zj,t−1 is greater (smaller) than its expected value (2/π)0.5. Volatility spillovers across markets
are measured by αij. The persistence of volatility implied by eqn.(9) is measured by gi and the
unconditional variance is finite if gi < 1 (see, Nelson, 1991 and Koutmos, 1996). If

∑
j αijzj,t−1

were replaced by αiizi,t−1 it becomes a standard CCC-Asymmetric-EGARCH model. The
Koutmos model allows for a “spillover” effect from lagged ε to the variance of i. For the
correlations, we assume that the correlations evolve dynamically. We employ Engle’s (2002)
DCC model. The model can be represented by eqn.(11) below

Ht = DtRtDt,
Dt = diag(h0.5

11,t, ..., h
0.5
kk,t),

Qt = (1− α− β)Rt + α(εt−1ε
′
t−1) + βQt−1,

Rt = (diagQt)
−0.5Qt(diagQt)

−0.5,

(11)

where Ht is the conditional variance matrix and hii,t is a univariate GARCH equation. The Qt

is the covariance matrix with typical elements qij,t as a weighted average of a positive definite
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and a positive semidefinite matrix. The Rt is the m×m unconditional correlation matrix of εt
while α and β are positive scalar parameters satisfying α+β < 1 (Bauwens and Laurent, 2005).
To further examine time-varying nature of the relations we estimate a new class of MGARCH
model with multivariate skew-t densities that allows for skewness in multivariate symmetric
distributions. The standardised skew-Student’s t density as defined by Bauwens and Laurent
(2005) is given by

f(ε|ξ, ν) =

(
2√
π

)k(
Πk
i=1

ξisi
1 + ξ2

i

)
Γ((ν + k)/2)

Γ(ν/2)(ν − 2)k/2

(
1 +

ε∗′ε∗

ν − 2

)−(k+ν)/2

, (12)

where ε∗ = (ε∗1, ..., ε
∗
k)
′, ε∗i = (siεi+mi)ξ

Ii
i , mi = Γ((ν−1)/2)

√
ν−2√

πΓ(ν/2)

(
ξi− 1

ξi

)
and s2

i =
(
ξ2
i +

1
ξ2i
−1
)
−m2

i .

Furthermore, Ii = −1 if εi ≥ −mi

si
and Ii = 1 if εi < −mi

si
, where m and s denote the mean and

standard deviation respectively. The mi and s2
i are functions of ξ and ν. The ξ is the vector

of asymmetry parameters. Eqn.(12) allows for a heavier tail behaviour than is accommodated
by a multivariate skew normal distribution and yields a standardised symmetric multivariate
Student’s t density if ξi = 1, for i = 1, ..., k. Bauwens and Laurent (2005) argue that using a
more appropriate distribution may lead to improved empirical modelling and financial decision
making. The main drawback of Gaussian or Student’s-t distributions is that their density is
symmetric whereas the distribution of financial returns is mostly skewed. Other multivariate
asymmetric densities include the multivariate skew-normal density of Azzalini and Dalla Valle
(1996) and the generalised hyperbolic (GH) distributions used in Barndoff-Nielsen and Shephard
(2001).

3.3 Inclan and Tiao’s (IT) Variance Breaks Detection Test

The Inclan and Tiao’s (1994) iterated cumulative sum of squares (ICSS) algorithm endogenously
detects number and position of break points in variance of series. The algorithm assumes
that a given time series displays a stationary variance over an initial period, until various
events generate a break point, then the variance returns to stationarity until the next sudden
change. Inclan and Tiao (IT) propose a cumulative sum of squares (CSS) statistic to test the
null hypothesis of a constant unconditional variance against the alternative of a break in the
unconditional variance. The test statistic is defined as

IT = sup
k
|(T/2)0.5Dk|, (13)

where the centred CSS function is Dk = (Ck/CT ) − (k/T ); k = 1, ..., T and Ck =
∑k

t=1 r
2
t .

The value of k that maximises |(T/2)1/2Dk| is the estimate of the break date (see, Rapach and
Strauss, 2008). Although there are several tests for detecting breaks, we employ IT’s test since
our sample is of moderate size. An advantage of IT’s test is that it is capable of detecting
multiple breaks whereas the LM-type tests cannot. A disadvantage of the test is that it is only
capable of detecting breaks in the unconditional level of volatility and that the statistic can be
substantially oversized when the series follow dependent process such as GARCH process (see,
de Pooter and van Dijk, 2004). The empirical findings are reported in the next section.

4 Data, Results and Discussion

4.1 Data, Descriptive and Market Sensitivity Statistics

We use weekly stock market returns data from January, 1994 to January, 2016 for the Nigerian
stock exchange All-share index (NSEASI)(Nigeria), the Nikkei-225 (Japan), Dow Jones Indus-
trial Average (DJIA)(USA), Shanghai stock exchange composite index (SSECI)(China), DAX-
30 (Germany), Financial Times stock exchange (FTSE-100)(UK), Bovespa (BVSP)(Brazil),
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and Hang-Seng (Hong Kong) indices. We compute the continuously compounded return due
to its advantages and attractive statistical properties such as stationarity and ergodicity (see,
Campbell et al., 1997 and Tsay, 2005). Theoretically, for equally spaced values of an asset
price, the log-return process satisfy conditions that include mean zero, constant variance, se-
rially uncorrelated/i.i.d. and jointly normal. The weekly percentage returns are calculated as
rt = 100× (lnPt − lnPt−1) for t = 1, 2, ..., 1149; where rt is index return, Pt is the stock index
value at time t and Pt−1 is the stock index value at time t − 1. Each market’s return were
calculated in the local currency. The sample period coincides with major economic and finan-
cial episodes ranging from the AFC, the dot-com bubble in early-2000s, the September 11th
incident in 2001 to the GFC (2007–2009). We utilise weekly returns due to data availability, to
avoid the nonsynchronous trading and noisy events problems of using daily data (as the trading
days in some countries may coincide with public holidays in others) and to avoid time zone
differences. However, the use of weekly data may hide interactions lasting for only a few days.

Table 1: Summary Statistics for Weekly Stock Market Returns (1994–2016)

Indices NSEASI BVSP SSECI Hang-Seng Nikkei FTSE DJIA DAX
Mean 0.249 0.387 0.112 0.054 -0.002 0.047 0.127 0.130
Median 0.208 0.502 0.033 0.215 0.159 0.209 0.291 0.469
Maximum 13.356 24.772 71.565 13.917 11.449 12.583 10.698 14.942
Minimum -16.764 -25.059 -22.629 -19.922 -27.884 -23.632 -20.029 -24.347
Std. Dev. 2.751 4.821 4.516 3.403 3.024 2.399 2.337 3.220
Skewness -0.155∗ -0.017 3.802 -0.372∗∗ -0.833∗∗ -0.957∗∗ -0.880∗∗ -0.630∗∗

Kurtosis 8.767∗∗ 6.774 62.146 6.092∗∗ 9.861∗∗ 13.304∗∗ 10.255∗∗ 7.666∗∗

C.V. 11.048 12.457 40.321 63.019 -1512 51.043 18.402 24.769
Jarque-Bera 1612.22 689.06 170100 489.48 2407.85∗∗ 5303.68 2691.97 1128.82
Probability (0.00)∗∗ (0.00)∗∗ (0.00)∗∗ (0.00)∗∗ (0.00)∗∗ (0.00)∗∗ (0.00)∗∗ (0.00)∗∗

ARCH-LM(5) 29.39∗∗ 30.91∗∗ 1.310 10.85∗∗ 9.89∗∗ 15.63∗∗ 18.71∗∗ 29.22∗∗

ARCH-LM(10) 21.67∗∗ 16.69∗∗ 0.78 7.94∗∗ 5.53∗∗ 15.82∗∗ 11.08∗∗ 20.00∗∗

McLeod-Li (10) 408.29∗∗ 412.95∗∗ 9.11 144.58∗∗ 69.98∗∗ 205.57∗∗ 150.87∗∗ 315.12∗∗

Modified L-B(10) 30.60∗∗ 17.75 2.71 6.21 5.14 15.07 12.60 9.59
Modified L-B(20) 40.82∗∗ 33.11 9.41 16.64 12.27 15.07 24.02 14.22
Modified Q2(10) 91.52∗∗ 119.35∗∗ 20.29∗ 65.76∗∗ 14.38 34.20∗∗ 40.79∗∗ 71.37∗∗

Modified Q2(20) 132.29∗∗ 173.75∗∗ 30.34 129.04∗∗ 20.85 57.27∗∗ 76.88∗∗ 114.16∗∗

Observations 1149 1149 1149 1149 1149 1149 1149 1149

Note: Std. Dev., C.V., ARCH-LM and modified L-B represent the standard deviation, coefficient
of variation, ARCH-Lagrange multiplier test and modified Ljung-Box (LB) (West-Cho modified Q
test) respectively. The modified LB test is robust to heteroscedasticity. Superscripts **,* indicate
significance at 1% and 5% levels respectively.

Table 1 present summary statistics of the stock market returns, which partly reveals that
return volatilities are higher in EMs than in DMs in the sample period. The means of all the
returns with the exception of Japan’s Nikkei-225 index are positive and small compared to the
standard deviations. The return distributions are negatively skewed for both markets except
for China’s SSEC index. Negative skewness implies that negative returns are more common
than positive returns. Analysis on the third moment has been neglected in the literature until
recently. To account for both the skewness and excess kurtosis in returns, studies have shown
that MGARCH models can be combined with a multivariate density for the innovations which
are skewed and have fat tails [see, Bauwens and Laurent (2005) for the multivariate skew-
Student’s t density model]. The difference between the maximum and minimum returns for
the SSECI (71.565 to -22.629) is the highest among all the markets considered, which implies
that the SSECI experienced large fluctuations compared to the others. Using the coefficient of
variation (C.V.) (Std. Dev. divided by the mean return) the degree of risk in relation to the
mean return is lowest for Nikkei-225 and highest for Hang-Seng. The large Jarque Bera (JB),
kurtosis and skewness statistics for EMs indicate that the returns are not normally distributed.
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Figure 2: Emerging and Developed Markets Weekly Log-Returns (1994–2016)
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The kurtosis which measures the magnitude of extremes is very high for DMs as the value is
higher than that of EMs, except for the SSEC index (and to a lesser degree, the NSEASI) and
are much larger than 3. The West and Cho’s (1995) modified Q algorithm tests for 10th and
20th-order serial correlation in returns and reveal no evidence of returns autocorrelation for
most of the series with the exception of Nigeria’s NSEASI.

Table 2: Unit Root Tests With and Without Structural Break Results

Test NSEASI BVSP SSECI Hang-Seng Nikkei FTSE DJIA DAX
Tests Without Structural Break

ADF -10.2818∗∗ -10.9855∗∗ -12.2413∗∗ -12.5357∗∗ -12.8076∗∗ -14.1798∗∗ -13.7069∗∗ -12.6149∗∗

Test With Structural Break
ZA -11.4545∗∗ -12.4146∗∗ -13.5299∗∗ -13.3891∗∗ -13.7368∗∗ -14.3385∗∗ -14.6351∗∗ -13.1846∗∗

TB 2008:3:10 1998:9:14 2007:10:15 1997:8:11 2012:8:06 2009:3:09 2009:3:09 2003:3:17

Note: Superscripts **,* indicate significance levels at 1% and 5% respectively. The TB is the break
date. The tests for unit root are conducted in levels and the null hypothesis for ADF test is that the
time series has unit root (i.e. is not stationary).

Figure 2 shows return dynamics revealing significant movements during the GFC period
and previous financial cises. All the graphs show varying levels of fluctuation with several
large outliers (of both signs) mixed in. There are periods of relative calm (early-2000s) with
the period of much higher variability from 2007 to 2009. Volatility clustering of the return
series is also quite evident. Table 2 presents unit root test results with and without structural
breaks calculated using ADF and ZA’s (1992) test regressions. The ADF test results for both
EMs and DMs reveal that the returns are all stationary. Furthermore, the ZA’s unit root test
with breaks in both the intercept and trend focus on examining stationarity in the presence
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of structural breaks in mean rather than in the variance. Test results in Table 2 reveal that
all the return series are stationary. This is expected due to the well known characteristics and
properties of returns. The series are obviously not trending. Thus, the null hypothesis of unit
root in the presence of breaks is rejected and we conclude that there are no unit roots in the
returns. Usually if the variables cross their mean level, say twelve times, unit root tests will
find significant mean reversion and hence conclude that they are stationary. A stationary state
is one that is not changing with time even though it is not static.

4.2 Inclan and Tiao’s Variance Breaks Detection Test Result

The ICSS algorithm identifies variance breaks using a nested search procedure. By construction,
these identified break points in Table A1 (see, Appendices) are all significant at the 5% level.
With 7 breaks for Nigeria’s NSEASI and Brazil’s BVSP return, the ICSS statistic finds 8
segments with statistically significant different variances from their neighbours. Eleven (11)
breaks are identified for the Hang-Seng and DJIA returns, 12 breaks for SSECI return, 9
breaks for German DAX-30 return, 10 breaks for FTSE-100 return and 5 breaks for Nikkei-
225 return respectively. Kang et al. (2009) argue that breaks in financial returns could be
mainly due to global/domestic financial market and political events. Also, significant shifts in
market fundamentals often serve as key source of breaks in financial and economic time series.
From Table A1, a substantial number of breaks were identified in the period from 2007–2009
coinciding with the GFC and the 2001–2002 recession mainly experienced by industrialised
economies.

4.3 Discussion of Estimation Results

In deciding on a model for the mean, we employ the AIC (Akaike information) and SBC
(Schwarz Bayesian) VAR lag selection criteria. Even though these selection criteria assume
homoscedastic residuals, implying that they could only offer a rough guide to lag length, we
will estimate the mean model with 1 lag. Table 3 present estimates of fitted DVECH model for
both EMs, DMs and for combined markets, which assumes that A and B are diagonal. The
variances and covariances are estimated separately and the correlation coefficients are time
varying. According to Bollerslev et al. (1988) this assumes that agents update their estimates
of the means and covariances of returns each period using the newly revealed surprises in the
last period’s asset returns. All the ARCH and GARCH terms for DMs are highly statistically
significant and most of the ARCH terms for EMs are significant with the exception of α2,1, α3,1

and β3,1. The log-likelihood of the DVECH model for EMs of -8467.9255 is higher than that
of CCC-MGARCH model. Some drawbacks of the DVECH models include: (1) their parame-
terisation do not enforce positive-definiteness and (2) they do not allow for more complicated
interactions among variables; for instance, shocks in one market could have spillover effect on
another market (the main focus of this paper) which is precluded by the structure of the DVECH
model where the only determinant of the variance of one series are its own shocks (Doan, 2013).

The log-likelihood from the DVECH model in Table 3 for DMs of -7379.4109 is higher than
the CCC-MGARCH model’ in Table 4 suggesting that the CCC assumption of the conditional
variances can be rejected in modelling the interaction of the 3 DM returns. Table 3 (Column 4)
presents estimate of DVECH model for 2 EMs and 1 developed market. We alter the numbering
by letting i = 1, 2, 3 represent NSEASI, DJIA and Hang-Seng returns respectively. This is done
to link EMs to the USA’ DJIA. We select the DJIA to represent the DMs because the financial
crisis started as a US phenomenon before becoming a GFC and the US equity markets are the
largest in the world. Most of the ARCH and GARCH coefficients are statistically significant.
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The multivariate ARCH test is an LM test for ARCH effects in a set of series computed by
regressing the cross-products of the series on a constant and its lag(s) by testing the coefficients
on the lags. The result overwhelmingly rejects the lack of ARCH effect for both EMs and DMs.
However, the diagonal models such as DVECH model ignore the covariances and separately
model the variance using univariate estimation techniques. That is why the point estimates are
often almost identical estimates from separate univariate models except that the parameters are
jointly estimated to the extent that none are considered converged until all achieve convergence
which result in slight differences in the estimates.

Table 3: Diagonal VECH Estimates for Emerging & Developed Stock Markets

Parameter Emerging Markets Developed Markets Combined Markets
Constant 0.1443 (0.0433)∗∗ 0.2145 (0.0554)∗∗ 0.1466 (0.0392)∗∗

rt−1 0.3358 (0.0324)∗∗ -0.1423 (0.0243)∗∗ 0.3308 (0.0324)∗

Constant 0.3689 (0.1117)∗∗ 0.1773 (0.0817)∗ 0.3043 (0.0555)∗∗

rt−1 -0.1097(0.0291)∗∗ -0.0246 (0.0241) -0.1196(0.0317)∗∗

Constant 0.2352 (0.0821)∗∗ 0.3056 (0.0580)∗∗ 0.2206 (0.0959)∗

rt−1 -0.0463(0.0331) -0.1452 (0.0268)∗∗ -0.0264(0.0295)
c1,1 0.0314 (0.0314) 0.1112 (0.0414)∗∗ 0.0406 (0.0331)∗

c2,1 -0.3174(0.2432)∗ 0.1022 (0.0478)∗ 0.0007 (0.1134)
c2,2 0.6768 (0.3074)∗ 0.3906 (0.2284) 0.2073 (0.1257)
c3,1 0.0029 (0.1016) 0.0347 (0.0167)∗ 0.0466 (0.1170)
c3,2 0.1508 (0.0478)∗∗ 0.0352 (0.0215)∗ 0.0258 (0.0196)
c3,3 0.1356 (0.0516)∗∗ 0.1149 (0.0361)∗∗ 0.1532 (0.0458)∗∗

α1,1 0.3812 (0.0587)∗∗ 0.0617 (0.0129)∗∗ 0.3902 (0.0590)∗∗

α2,1 0.0298 (0.0197) 0.0402 (0.0113)∗∗ 0.0241 (0.0317)∗

α2,2 0.0974 (0.0234)∗∗ 0.0564 (0.0254)∗ 0.0898 (0.0446)∗

α3,1 0.0200 (0.0393) 0.0593 (0.0088)∗∗ 0.0569 (0.0497)
α3,2 0.0459 (0.0103)∗∗ 0.0439 (0.0115)∗∗ 0.0595 (0.0104)∗∗

α3,3 0.0592 (0.0122)∗∗ 0.0756 (0.0149)∗∗ 0.0661 (0.0151)
β1,1 0.7147 (0.0312)∗∗ 0.9139 (0.0158)∗∗ 0.7059 (0.0328)∗∗

β2,1 -0.8564(0.0471)∗∗ 0.9194 (0.0253)∗∗ -0.7820(0.3520)∗

β2,2 0.8739 (0.0342)∗∗ 0.8979 (0.0459)∗∗ 0.8734 (0.0631)∗∗

β3,1 -0.3482(1.1302) 0.9202 (0.0113)∗∗ -0.5918(0.3562)
β3,2 0.9338 (0.0089)∗∗ 0.9239 (0.0189)∗∗ 0.9208 (0.0141)∗∗

β3,3 0.9333 (0.0114)∗∗ 0.9002 (0.0177)∗∗ 0.9239 (0.0143)∗∗

t- shape 7.2873 (0.7557)∗∗ 7.8682 (1.0801)∗∗ 7.3778 (0.7281)∗∗

Log-likelihood -8467.9255 -7379.4109 -7740.7672
AIC 14.8090 12.9110 13.5410
SBC 14.9190 13.0210 13.6510
Multivariate 80.1987 99.8307 125.5789
Q(10) [0.7607] [0.2246] [0.0079]
Multivariate 146.100 274.450 93.140
ARCH (72) [0.0000] [0.0000] [0.0476]

Note: Numbers in parentheses indicate the standard errors while numbers in square brackets represent
significance levels. Superscripts **,* indicate significance at 1% and 5% levels. AIC and SBC denote Akaike

and Schwarz information criteria. The coefficients for the constant at the top belong to the mean model. The
DVECH model takes the form given by: Ht = C + A ◦ (εt−1ε

′
t−1) + B ◦Ht−1 with ◦ as the Hadamard

product. The equation can equally be specified as: hij,t = cij + aijεi,t−1εj,t−1 + bijhij,t−1. The i = 1, 2, 3 refer
to NSEASI, BVSP and Hang-Seng indices (emerging markets) and the same numbers for developed markets

representing: FTSE-100, Nikkei-225, and DJIA indices. For the combined markets, i = 1, 2, 3 denote NSEASI,
DJIA and Hang-Seng indices respectively. Estimation methods: Broyden-Fletcher-Goldfarb-Shannon (BFGS).

Table 4 presents result of 3 variants of fitted CCC-MGARCH models (with and without
asymmetry). The CCC-MGARCH class of models assume that the covariances are generated
with a constant (but unknown) correlation and does not allow for interdependence of volatil-
ities across different markets or assets. Let i = 1, 2, 3 denote NSEASI, BVSP and Hang-Seng
returns (EMs) and i = 1, 2, 3 represent DMs: FTSE-100, Nikkei-225 and DJIA returns. The c,
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α, β and γ denote the constant, lagged squared residual, lagged variance and asymmetric terms
respectively. The ARCH and GARCH terms are all highly statistically significant at conven-
tional levels for EMs and satisfy the condition: α1 +β1 < 1. The significance of the coefficients
suggest that there is evidence of conditional volatility. The value of conditional correlations
among EM returns (ρ2,1, ρ3,1 and ρ3,2) although statistically significant is low with the highest
value of around 0.4325 for (Hang-Seng–BVSP correlation) compared with correlations among
DMs.

For DMs, ρ3,1 (Nikkei–FTSE correlation) is as high as 0.4955 and is statistically significant.
The constant conditional correlation (CCC) matrices of the 3 models do not differ substantially
from one another. It suffices to state that for DMs, the CCC-with-asymmetry model yields the
lowest conditional correlation compared with the 2 other models. Furthermore, the correlations
between the conditional shocks for all the 3 models are positive in the 3 cases. For EMs, only 2
out of 3 cases are positive. Both the ARCH and GARCH terms for DMs are highly statistically
significant for CCC-MGARCH and CCC-with-EGARCH models respectively. The α estimates
are generally smaller for DMs compared to EMs while the β tends to be smaller for EMs (short
memory). The fitted CCC-with E-GARCH variance model for both EMs and DMs also reveal
significant parameter estimates, albeit the log-likelihood statistics for EMs are higher than that
of the CCC-MGARCH model but lower for DMs. The CCC-with-asymmetry model for EMs
reveal insignificant asymmetric terms, although with a higher log-likelihood statistic than both
CCC-MGARCH and CCC-with-EGARCH variance models. For DMs however, the CCC-with-
asymmetry model suggests the presence of asymmetric impacts from the unconditional shocks
on the conditional volatilities in all 3 markets and reveal higher log-likelihood statistic than
both the CCC-with-EGARCH variance and the CCC-MGARCH models respectively.

The multivariate diagnostics in Table 4 point to the inadequacy of the fitted models, even
as it is well known that the CCC-MGARCH specification does not contain information on
cross-market effects. This points toward the need for a more sophisticated model than the
CCC-MGARCH specification. But Laurent et al. (2012) argue that over calm periods, as-
sumptions like the CCC and symmetry in the conditional variances often cannot be rejected.
Tse (2000) proposes an LM test for constant correlations against an alternative that the corre-
lation allows greater adaptation to the observed (lagged) outer product of the residuals. The
test statistic under the null hypothesis is asymptotically χ2(N(N − 1)/2) and requires the fit-
ting of a CCC-GARCH model first (Doan, 2013). From Table 4 (Columns 2 & 3), the Tse’s
CCC test produces a statistically insignificant result at 1% level with a χ2(3) value of 4.5749
and 4.6829 for EMs (for CCC-MGARCH and CCC-with-EGARCH models) and 23.0226 for
DMs (but significant at both 1% and 5% levels). This suggests that a more general model
could fit much better than the restrictive CCC-MGARCH for DMs. Thus, based on results in
Table 4, we find evidence in favour of constant correlations (CC) across selected EMs (using
CCC-MGARCH and CCC-with-EGARCH models) and evidence against CC in DMs.

Frank and Hesse (2009) note that given the high volatility during the recent GFC, the
assumption of CCC is often not quite realistic especially in times of stress where correlations
can rapidly change. This is due to the fact that investors’ risk appetite rapidly change during
financial crisis when suddenly non-related asset markets feel the impact by seemingly unrelated
financial shocks (Frank and Hesse, 2009). Hence, the appropriateness of the CC assumption
depends on the application and period of analysis. Based on the paper’s objectives, it is crucial
to employ models that admit time-varying correlations. Tse (2000) suggests that the hypothesis
of CC should be tested before the estimated MGARCH model can be used for inference and the
drawing of economic implications and conclusions. However, caution is advised in interpreting
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Table 4: CCC-MGARCH Estimates of Emerging & Developed Market Return

Emerging Stock Markets Developed Stock Markets
Parameter CCC- CCC-with CCC-with CCC- CCC-with CCC-with

MGARCH EGARCH asymmetry MGARCH EGARCH asymmetry
Constant 0.1584∗ 0.1449∗∗ 0.1834∗∗ 0.1840∗ 0.2019∗∗ 0.0544

(0.0806) (0.0065) (0.0584) (0.0698) (0.0584) (0.0598)
rt−1 0.2912∗∗ 0.3137∗∗ 0.3059∗∗ -0.1605∗∗ -0.1652∗∗ -0.1481∗∗

(0.0631) (0.0027) (0.0620) (0.0298) (0.0265) (0.0311)
Constant 0.3084 0.3773∗ 0.2261 0.1511 0.1706 0.0135

(0.1625) (0.1609) (0.1372) (0.1016) (0.0902) (0.0809)
rt−1 -0.0769∗ -0.0860∗ -0.0681 -0.0232 -0.0208 -0.0060

(0.0388) (0.0405) (0.0379) (0.0365) (0.0279) (0.0331)
Constant 0.1644 0.1792 0.0756 0.3095∗ 0.3328∗∗ 0.1806∗

(0.0929) (0.1092) (0.0897) (0.0724) (0.0681) (0.0579)
rt−1 -0.0348 0.0365 -0.0225 -0.2132∗∗ -0.2067∗∗ -0.2077∗

(0.0346) (0.0349) (0.0329) (0.0346) (0.0315) (0.0341)
c1 0.1851 -0.2722∗∗ 0.1825 0.321∗∗ -0.0639∗ 0.3894∗

(0.0978) (0.0595) (0.1411) (0.1096) (0.0303) (0.1810)
c2 0.5452∗ -0.1246∗∗ 0.5763 1.5812∗∗ 0.2174 1.9421∗∗

(0.2466) (0.0482) (0.3056) (1.3709) (0.2507) (0.5713)
c3 0.1166 -0.1055∗∗ 0.1920∗ 0.5942∗ -0.0705 0.6052∗∗

(0.0628) (0.0278) (0.0834) (0.2376) (0.0462) (0.1816)
α1 0.3779∗∗ 0.5734∗∗ 0.4514∗ 0.1052∗ 0.1956∗∗ 0.0041

(0.0848) (0.0754) (0.1228) (0.0393) (0.0587) (0.0199)
α2 0.1231∗ 0.2501∗ 0.1079 0.1114∗∗ 0.2585∗ -0.0269

(0.0238) (0.0640) (0.0290) (0.0719) (0.1030) (0.0178)
α3 0.0789∗∗ 0.1713∗∗ 0.0265∗ 0.1778∗∗ 0.3148∗∗ -0.0100

(0.0212) (0.0406) (0.0131) (0.0592) (0.0927) (0.0195)
β1 0.6892∗∗ 0.9140∗∗ 0.6916∗∗ 0.8355∗∗ 0.9466∗∗ 0.8243∗∗

(0.0532) (0.0284) (0.0542) (0.0426) (0.0173) (0.0606)
β2 0.8554∗ 0.9762∗∗ 0.8492∗∗ 0.7120∗ 0.8058∗∗ 0.6781∗∗

(0.0269) (0.0128) (0.0339) (0.2001) (0.1384) (0.0728)
β3 0.9127∗∗ 0.9868∗∗ 0.9067∗∗ 0.7096∗∗ 0.8895∗∗ 0.7332∗∗

(0.0201) (0.0077) (0.0215) (0.0872) (0.0540) (0.0596)
γ1 – – -0.1582 – – 0.1785∗∗

(0.1150) (0.0721)
γ2 – – 0.0392 – – 0.2369∗∗

(0.0407) (0.0603)
γ3 – – 0.0966∗ – – 0.2881∗∗

(0.0382) (0.0701)
ρ2,1 -0.0289 -0.0346 -0.0300 0.4955∗∗ 0.5008∗∗ 0.4741∗∗

(0.0332) (0.0285) (0.0305) (0.0298) (0.0285) (0.0249)
ρ3,1 0.0409 0.0349 0.0407 0.4291∗∗ 0.4351∗∗ 0.4106∗∗

(0.0371) (0.0288) (0.0321) (0.0362) (0.0364) (0.0328)
ρ3,2 0.4325∗∗ 0.4371∗∗ 0.4248∗∗ 0.2868∗∗ 0.2966∗∗ 0.2837∗∗

(0.0310) (0.0209) (0.0312) (0.0409) (0.0371) (0.0345)
Log-likelihood -8601.421 -8589.555 -8588.430 -7578.819 -7579.523 -7523.497
AIC 15.0300 15.0090 15.0120 13.2460 13.2480 13.1550
SBC 15.1090 15.0880 15.1040 13.3260 13.3270 13.2480
Tse’s CCC 4.5749 4.6829 9.8009 23.0226 46.6922 33.0357
test χ2(3) [0.2057] [0.1965] [0.0203] [0.0000] [0.0000] [0.0000]

Note: Numbers in parentheses indicate the standard errors while numbers in square brackets represent
significance levels. Superscripts **,* indicate significance at 1% and 5% levels. AIC and SBC denote Akaike
and Schwarz information criteria. The i = 1, 2, 3 refer to NSEASI, BVSP and Hang-Seng indices (emerging

markets) and i = 1, 2, 3 for developed markets represent: FTSE-100, Nikkei-225 and DJIA indices. The
CCC-MGARCH model is defined by hit = α0 +

∑q
j=1 αijε

2
i,t−j +

∑p
j=1 βijhi,t−j . In the CCC-MGARCH

model, Ht = DtRDt where Dt =diag(h0.511t, ..., h
0.5
mmt) and R = [ρij ] is the correlation matrix, so that

hij,t = ρij(hii,thjj,t)
0.5 for i, j = 1, ...,m. Each conditional variance hjj,t, j = 1, ...,m, follows a basic

univariate GARCH model. Estimation methods: Broyden-Fletcher-Goldfarb-Shannon (BFGS).
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the test result as it is sensitive to sample size. Tse’s Monte Carlo experiments show that the test
has the appropriate size for sample length of 1000 or above and is robust against nonnormality
but tends to over-reject the null hypothesis in smaller samples (the problem of over-rejection
diminishes with increase in the sample size).

Table 5: CCC-MGARCH(Spillover) Estimates (Emerging & Developed Markets)

Emerging Stock Markets Developed Stock Markets
Parameter CCC (spillover CCC (spillover CCC (spillover CCC (spillover

variances) variances) (t-dist) variances) variances) (t-dist)
Constant 0.1493 (0.9482) 0.1495∗∗(0.0516) 0.1804∗ (0.0749) 0.2017∗∗ (0.0494)
rt−1 0.2721 (1.1559) 0.3338∗∗(0.0353) -0.1622∗∗(0.0290) -0.1611∗∗(0.0247)
Constant 0.2727 (0.2652) 0.3597∗∗(0.1141) 0.1321 (0.1103) 0.1321 (0.0869)
rt−1 -0.0752∗(0.0096) -0.1028∗(0.0316) -0.0305 (0.0311) -0.0285 (0.0295)
Constant 0.1556 (4.7570) 0.1909∗ (0.0846) 0.3260∗∗(0.0687) 0.3155∗∗(0.0561)
rt−1 -0.0425 (3.3853) -0.0340 (0.0324) -0.2159∗∗(0.0308) -0.2011∗∗(0.0315)
c1 0.1524 (0.1254) 0.0346 (0.0338) 0.3312∗ (0.1578) 0.2088∗∗(0.0698)
c2 0.6454 (4.3537) 0.4933∗∗(0.1850) 1.3451 (0.9236) 0.5430∗ (0.2152)
c3 0.0900 (0.9363) 0.1245∗ (0.0544) 0.5773∗∗(0.2042) 0.2716∗ (0.1245)
α1,1 0.3828 (0.5192) 0.3829∗∗(0.0654) 0.1009∗∗(0.0242) 0.0719 (0.0175)
α1,2 0.0733 (0.0584) 0.0103 (0.0244) 0.0007 (0.0291) -0.0169 (0.0158)
α1,3 0.0018∗∗(0.0000) -0.0043 (0.0218) 0.0120 (0.0289) -0.0062∗(0.0134)
α2,1 -0.0613 (1.7897) -0.0495 (0.0418) -0.0578 (0.0398) -0.0437 (0.0237)
α2,2 0.1313 (0.2857) 0.1031∗∗(0.0214) 0.1004∗ (0.0477) 0.0597∗∗(0.0215)
α2,3 -0.0206 (0.1280) -0.0547∗∗(0.0215) 0.0791 (0.0474) 0.0382 (0.0248)
α3,1 0.0212 (0.9616) 0.0079 (0.0233) 0.0271 (0.0383) 0.0151 (0.0235)
α3,2 0.0019 (0.0396) -0.0036 (0.0132) -0.0268 (0.0383) -0.0409 (0.0211)
α3,3 0.0713 (0.5106) 0.0647∗∗(0.0151) 0.1748∗∗(0.0496) 0.0933∗∗(0.0295)
β1 0.6991∗∗(0.0314) 0.7138∗∗(0.0344) 0.8319∗∗(0.0528) 0.8955∗∗(0.0241)
β2 0.8458∗∗(0.0148) 0.8939∗∗(0.0238) 0.7512∗∗(0.1373) 0.8858∗∗(0.0362)
β3 0.9195∗∗(0.1082) 0.9302∗∗(0.0145) 0.7139∗∗(0.0737) 0.8565∗∗(0.0477)
ρ2,1 -0.0280 (0.4367) -0.0379 (0.0263) 0.4921∗∗(0.0292) 0.4779∗∗(0.0232)
ρ3,1 0.0402∗∗(0.0503) 0.0312 (0.0267) 0.4265∗∗(0.0332) 0.4176∗∗(0.0298)
ρ3,2 0.4328 (0.2273) 0.4364∗∗(0.0252) 0.2781∗∗(0.0363) 0.2524∗∗(0.0328)
t- shape – 7.1058∗∗(0.7789) – 7.1478∗ (0.8132)
Log-likelihood –8588.5138 –8487.4124 –7574.4624 –7466.3471
AIC 15.0170 14.8430 13.2490 13.0630
SBC 15.1230 14.9530 13.3550 13.1720
Tse’s CCC 9.9864 9.2576 14.6870 12.1740
χ2(3) test [0.0187] [0.0261] [0.0021] [0.0068]

Note: Numbers in parentheses indicate the standard errors while those in square brackets represent
significance levels. Superscripts **,* indicate significance at 1% and 5% levels respectively. AIC and SBC
denote Akaike and Schwarz information criteria. The i = 1, 2, 3 refer to NSEASI, BVSP and Hang-Seng

indices (emerging markets) and i = 1, 2, 3 for developed markets represent: FTSE-100, Nikkei-225 and DJIA
indices. The CCC-GARCH with spillover variances which allows for greater interactions by adding spillover

terms to the variance calculation can be expressed as hii,t = cii +
∑

j αijε
2
j,t−1 + βihii,t−1. Estimation

methods: Broyden-Fletcher-Goldfarb-Shannon (BFGS).

Table 5 presents result from fitted CCC-MGARCH-with-spillover model under 2 error
assumptions– Gaussian and Student’s-t. The model has the same number of free parame-
ters (21) with the DVECH model, provides greater flexibility in the variances but less so in
the covariances. The GARCH terms are all highly statistically significant at the 1% level.
The significance of the coefficients suggest evidence of conditional volatility. The correlations
among EM returns (ρ2,1, ρ3,1 and ρ3,2), although mostly significant, are often lower than that of
CCC-MGARCH model of Table 5, while significantly higher for DMs. The diagnostics in Table
5 reflect the model’s adequacy or otherwise. The CCC assumption can therefore be rejected
for both emerging and advanced markets. The Tse’s CCC test reveals a statistically significant
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result at the 5% level with a χ2(3) value of 9.9864 for the CCC-MGARCH-with-spillover effect
for EMs while Tse’s CCC test for model with spillover effect (with t-distribution) reveals a
χ2(3) value of 9.2576 for EMs and 14.6870 for DMs at 1% level (with Gaussian distribution).
The test further confirms that a more general model could fit better than the restrictive CCC-
MGARCH specification. Due to some shortcomings of Tse’s CCC test emanating from their
inability to generalise well to higher dimensions, Engle (2001) propose a test that only requires
consistent estimate of the CCC to be implemented using a VAR model.

To examine the interdependence of volatilities across different markets and to capture asym-
metric behaviour of unconditional shocks on the conditional volatility, 2 variants of CCC-
VARMA-MGARCH models (with and without asymmetry) are fitted and the result is presented
in Table 6. The CCC-VARMA-MGARCH specification is an extension of the CCC-MGARCH
(spillover) model and includes β coefficients on all lagged variances and not just the own vari-
ances as in CCC-MGARCH (spillover) model. For EMs, estimates of the constant, ARCH and
GARCH terms are all significant at conventional levels (for CCC-VARMA-MGARCH model).
Also, estimates of the effects of lagged own and cross innovations and lagged own and cross
volatility on the present own and cross volatility is also presented. Consistent with extant
literature, own-volatility spillovers are to a large extent higher than cross-volatility spillovers
especially for the selected EMs while these tend to be negative for DMs. Furthermore, for
DMs, past shocks to volatility and lagged GARCH terms are significant in all markets for
CCC-VARMA-MGARCH model.

Results from the CCC-VARMA-AMGARCH model are presented in Table 6 (Columns 3
& 5). This more sophisticated model incorporates asymmetric effects allowing for different
responses to past positive and negative shocks to volatility. The intercept terms of the model
for DMs are mostly highly statistically significant at 1% and 5% levels and the asymmetric
terms are equally significant except for γ3. The CCC-VARMA-AMGARCH model for DMs
detect significant positive asymmetric effect except for γ1 and γ2. This suggests that a positive
shock has a greater impact on conditional variance than a negative shock. The γ estimates are
mostly insignificant for EMs (with the exception of γ3) so that the CCC-VARMA-MGARCH
specification is preferred compared to the CCC-VARMA-AMGARCH model on the basis of
the log-likelihood value and smaller AIC and SBC. Both CCC-VARMA-MGARCH and CCC-
VARMA-AMGARCH models suggest existence of cross-market effects for DMs and weak effects
for EMs. Additionally, the CCC-VARMA-AMGARCH model did not detect substantial pres-
ence of asymmetric behaviour in EMs. For the conditional correlation estimates, results reveal
that DMs exhibit higher correlations compared with EMs while the CCC-VARMA-AMGARCH
model captures higher correlations compared with CCC-VARMA-MGARCH model. The con-
ditional correlations between Nikkei-225 and FTSE-100 markets is the highest while the DJIA–
Nikkei-225 conditional correlations is the lowest behind DJIA–FTSE-100 correlations. Our
finding on the DJIA–Nikkei relationship vary with many of the results presented in the liter-
ature that analyse these markets which find high correlation among the markets. The use of
different market indices, period of analysis and methodologies are largely responsible for the
difference in findings.

Table 7 presents estimate of a trivariate VAR-EGARCH model. The model allows for
spillover effect from the lagged εj to the variance of i. In the case of the mean equation, we
employ the same model form for each variable, but in the overall estimation we estimate both
the VAR and GARCH parameters simultaneously. The parameter vectors for the regression
coefficients are set up in β. Thus, β1 is the coefficient vector for the first VAR equation
(for Nigeria based on our ordering for EMs), with β1,1 the coefficient on the constant in that
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Table 6: CCC-VARMA and AGARCH Estimates (With & Without Asymmetry)

Emerging Stock Markets Developed Stock Markets
Parameter CCC-VARMA CCC-VARMA CCC-VARMA CCC-VARMA

MGARCH AMGARCH MGARCH AMGARCH
Constant 0.1602∗∗(0.0422) 0.2004∗∗(0.0539) 0.1819∗∗(0.0568) 0.0287 (0.0559)
rt−1 0.3239∗∗(0.0315) 0.3121∗∗(0.0288) -0.1760∗∗(0.0247) -0.1213∗∗(0.0286)
Constant 0.3671 (0.1041) 0.1747 (0.1153) 0.1411 (0.0777) -0.0244 (0.0830)
rt−1 -0.1067∗(0.0262) -0.0681∗(0.0312) -0.0324 (0.0263) -0.0041 (0.0297)
Constant 0.1841∗(0.0776) 0.0523 (0.0847) 0.3042∗∗(0.0567) 0.1869∗∗(0.0587)
rt−1 -0.0328 (0.0254) -0.0239 (0.0298) -0.2036 (0.0268) -0.1915∗∗(0.0327)
c1 0.0804 (0.0616) 0.3064 (0.0475)∗∗ -1.8693 (0.5097)∗∗ 0.1010 (0.1377)
c2 0.3053 (0.1817) 0.3589 (0.1595)∗ -0.0478 (0.5363) 1.7540 (0.5185)∗∗

c3 0.1345 (0.0603)∗ 0.2051 (0.0892)∗ 0.6694 (0.2295)∗∗ 0.5704 (0.2853)∗

α1,1 0.3664 (0.0473)∗∗ 0.3931 (0.0384)∗∗ -0.0173 (0.0173) 0.0173 (0.0176)
α1,2 0.0139 (0.0144) 0.0302 (0.0102)∗∗ 0.0128 (0.0139)∗∗ -0.0554(0.0149)∗∗

α1,3 0.0005 (0.0198) -0.0074 (0.0178) 0.0297 (0.0161) -0.0112 (0.0169)
α2,1 -0.0405 (0.0384) -0.0287 (0.0341) -0.0616 (0.0371) -0.1361 (0.0492)∗∗

α2,2 0.0989 (0.0212)∗∗ 0.1035 (0.0165)∗∗ 0.0636 (0.0255)∗ 0.0023 (0.0241)
α2,3 -0.0809 (0.0261)∗∗ -0.0612 (0.0155)∗∗ 0.0311 (0.0291)∗∗ 0.0687 (0.0329)∗

α3,1 0.0107 (0.0209) -0.0063 (0.0218) -0.0134 (0.0130) -0.0392 (0.0351)
α3,2 -0.0092(0.0149) 0.0004 (0.0131) -0.0034 (0.0091) -0.0540 (0.0287)∗∗

α3,3 0.0631 (0.0163)∗∗ 0.0327 (0.0205) 0.0686 (0.0141)∗∗ 0.0148 (0.0420)
β1,1 0.7072 (0.0332)∗∗ 0.7279 (0.0229)∗∗ -2.0569 (0.1179)∗∗ 0.8034 (0.1315)∗∗

β1,2 0.8339 (0.8186) 22.8714(10.3119)∗ -0.0755 (0.5991) 0.1645 (0.1163)
β1,3 1.1361 (1.0870) 1.0428 (0.7248)∗∗ 8.1791 (1.0189)∗∗ 0.0327 (0.2489)∗∗

β2,1 0.4181 (0.4669) 5.3056 (3.9327) -0.9794(1.1459) 0.4627 (0.4255)
β2,2 0.8668 (0.0302)∗∗ 0.8505 (0.0228)∗∗ 0.7894 (0.1054)∗∗ 0.6017 (0.1237)∗∗

β2,3 0.1765 (0.0783)∗ 0.1430 (0.0714)∗ 2.7769 (2.8988) -0.3100(0.5706)
β3,1 -0.2368 (0.2852) -0.0560 (0.1833) 1.6937 (0.2989)∗∗ 1.2961 (0.3812)∗∗

β3,2 0.0071 (0.0226) 0.0549 (0.0290) 0.0211 (0.3604) -0.3559 (0.4011)
β3,3 0.9349 (0.0210)∗∗ 0.8689 (0.0257)∗∗ 0.0096 (0.0897) 0.3175 (0.1375)∗

γ1 – -0.1284 (0.0472) – 0.1670 (0.0313)∗∗

γ2 – 0.0307 (0.0177) – 0.2362 (0.0497)∗∗

γ3 – 0.0977 (0.0225)∗∗ – 0.3171 (0.0504)
ρ2,1 -0.0351(0.0298) -0.0027 (0.0013)∗ 0.4877 (0.0259)∗∗ 0.4766 (0.0227)∗∗

ρ3,1 0.0348 (0.0259) 0.0546 (0.0273)∗ 0.4445 (0.0268)∗∗ 0.4146 (0.0265)∗∗

ρ3,2 0.4410 (0.0256)∗∗ 0.4339 (0.0242)∗∗ 0.2608 (0.0306)∗∗ 0.2748 (0.0264)∗∗

t- shape 7.3883 (0.7416)∗∗ – – –
Log-likelihood –8479.4911 –8566.1028 –7453.0968 –7499.8059
AIC 14.8400 14.9940 13.0500 13.1350
SBC 14.9760 15.1390 13.1860 13.2800
Tse’s CCC 9.8731 10.4274 12.4569 14.8466
test χ2(3) [0.0196] [0.0153] [0.0059] [0.0019]

Note: Numbers in parentheses indicate the standard errors while numbers in brackets represent significance
levels. Superscripts **,* indicate significance levels at 1% and 5%. AIC and SBC stand for Akaike and
Schwarz information criteria. The i = 1, 2, 3 refer to NSEASI, BVSP and Hang-Seng Indices (emerging
markets) and the same numbers for developed markets representing: FTSE-100, Nikkei-225, and DJIA

Indices. Estimation methods: Broyden-Fletcher-Goldfarb-Shannon (BFGS).
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equation. In terms of guess values, the lagged log-variance coefficient is initialised to 0.8 with
the variance intercept set to give almost the observed variance when combined with that.
The α’s are initialised to zero on all but the own effect (which is set equal to 0.25) and the
asymmetry coefficients are zeroed out. The conditional variance of the return in each market is
a logarithmic function of past own and cross-market standardised innovations. If αij is positive,
the impact of zj,t−1 on log hit will be positive (negative) if the magnitude of zj,t−1 is greater
(smaller) than its expected value (2/π)0.5. Volatility spillovers across markets are measured by
αij. A significant positive αij coupled with a negative dj implies that negative innovations in
market j have a higher impact on the volatility of market i than positive innovations.

Table 7: VAR-EGARCH Model with Spillover and Asymmetry

Parameter Emerging Markets Developed Markets Combined Markets
β1,1 0.1490 (0.0306)∗∗ -0.0304 (0.0600) 0.1278 (0.028)∗∗

β1,2 0.3332 (0.0238)∗∗ -0.1394(0.0327)∗∗ 0.3290 (0.0231)∗∗

β1,3 0.0067 (0.0057) -0.0294 (0.0218) 0.0103 (0.0095)
β1,4 0.0112 (0.0067) 0.3644 (0.0296)∗∗ 0.0104 (0.0058)∗∗

β2,1 0.1861 (0.0889)∗ -0.0653(0.0856) 0.1033 (0.0356)∗∗

β2,2 -0.0017 (0.0321) 0.1006 (0.0458)∗ 0.0109 (0.0176)
β2,3 -0.0657 (0.0244)∗∗ -0.0764(0.0352)∗ -0.0666(0.0243)∗∗

β2,4 0.0788 (0.0346)∗ 0.3317 (0.0409)∗ 0.0653 (0.0171)∗∗

β3,1 -0.0054 (0.0662) 0.1501 (0.0607)∗ -0.0421 (0.0667)
β3,2 0.0321 (0.0266)∗∗ 0.1297 (0.0349)∗∗ 0.0276 (0.0260)
β3,3 0.0714 (0.0178)∗∗ -0.0163(0.0224) 0.3640 (0.0332)∗∗

β3,4 -0.0331(0.0272) -0.0945(0.0315)∗∗ -0.0539 (0.0281)
c1 0.1884 (0.0058)∗∗ 0.0868 (0.0155)∗∗ 0.1645 (0.0061)∗∗

c2 0.0709 (0.0024)∗∗ 0.2974 (0.0636)∗∗ 0.1267 (0.0039)∗∗

c3 0.0596 (0.0022)∗∗ 0.1489 (0.0263)∗∗ 0.0836 (0.0037)∗∗

g1 0.9107 (0.0041)∗∗ 0.9403 (0.0103)∗∗ 0.9252 (0.0041)∗∗

g2 0.9748 (0.0008)∗∗ 0.8559 (0.0312)∗∗ 0.9130 (0.0027)∗∗

g3 0.9738 (0.0009)∗∗ 0.8966 (0.0180)∗∗ 0.9607 (0.0016)∗∗

α1,1 0.5868 (0.0180)∗∗ 0.1141 (0.0267)∗∗ 0.6139 (0.0200)∗∗

α1,2 0.1141 (0.0168)∗∗ 0.0071 (0.0187) -0.0388 (0.0036)∗∗

α1,3 -0.0125 (0.0153) 0.0551 (0.0159)∗∗ 0.0882 (0.0134)∗∗

α2,1 -0.0402 (0.0125)∗ 0.0561 (0.0197)∗∗ -0.0098 (0.0192)
α2,2 0.1912 (0.0181)∗∗ 0.1685 (0.0439)∗∗ 0.0649 (0.0043)∗∗

α2,3 0.1019 (0.0114) -0.0013(0.0205) 0.1161 (0.0198)∗∗

α3,1 -0.0111 (0.0124) 0.1086 (0.0265)∗∗ -0.0458 (0.0178)∗

α3,2 0.0904 (0.0221)∗∗ -0.0141(0.0265) 0.0057 (0.0043)
α3,3 0.1422 (0.0121)∗∗ 0.1254 (0.0369)∗∗ 0.1725 (0.0167)∗∗

d1 0.0928 (0.0263)∗∗ -0.9255(0.2556)∗∗ 0.0797 (0.0244)∗∗

d2 0.0349 (0.0416) -0.6628(0.1891)∗∗ -2.8803 (0.1528)∗∗

d3 -0.6446 (0.0790)∗∗ -1.0387(0.3703)∗∗ -0.4580 (0.0667)∗∗

ρ2,1 -0.0413 (0.0274) 0.4499 (0.0241)∗∗ 0.0206 (0.0304)
ρ3,1 0.0317 (0.0268) 0.3816 (0.0231)∗∗ 0.0405 (0.0280)
ρ3,2 0.4364 (0.0184)∗∗ 0.2466 (0.0263)∗∗ 0.2706 (0.0235)∗∗

Log-likelihood -8548.7911 -7402.2864 -7760.6967
AIC 14.9640 12.9650 13.5900
SBC 15.1090 13.1100 13.7350

Note: Numbers in parentheses indicate the standard errors. Superscripts **,* indicate significance levels at
1% and 5%. AIC and SBC stand for Akaike and Schwarz information criteria. The i = 1, 2, 3 refer to NSEASI,

BVSP and Hang-Seng indices (emerging markets) and the same numbers for developed markets represent
FTSE-100, Nikkei-225, and DJIA indices. For combined markets i = 1, 2, 3 refer to NSEASI, DJIA and
Hang-Seng indices. For the combined markets, i = 1, 2, 3 denote NSEASI, DJIA and Hang Seng indices

respectively. The mean specification for the VAR-EGARCH model is: ri,t = βi,1 +
∑3

j=1 βijrj,t−1 + εi,t for
i, j = 1, 2, 3. Estimation methods: Broyden-Fletcher-Goldfarb-Shannon (BFGS).

Volatility persistence measured by gi is in all cases high and close to unity. However, the
degree of persistence is higher in EMs compared with DMs. The contemporaneous relation-
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ship between returns of the markets is captured by the conditional covariance. The correlation
structure is often the most important feature and characteristic for analysing the potential for
diversification for investors and portfolio managers. Koutmos’ covariance specification implies
that the correlation of the returns of markets is constant. For DMs, all the asymmetry terms
(the d’s) are highly significant and the off-diagonal α’s are of the expected sign and equally
highly significant. The estimated conditional pairwise correlations are substantially lower in
EMs compared with DMs. For example, for EMs, Hang-Seng–NSEASI correlation is 0.0317
while correlation between BVSP and NSEASI is negative (-0.0413). For DMs, the Nikkei-225–
FTSE-100 correlation is the highest (0.4499) followed by the DJIA–FTSE-100 correlation. This
implies that there is less potential for diversification among DMs and that EMs can offer port-
folio diversification opportunities both among them and for DM investors.

For the fitted VAR-EGARCH model (for EMs), the log-likelihood is -8548.7911 which is
larger than that of CCC-MGARCH-with-spillover variance model (-8588.5138), CCC-MGARCH
(-8601.421), CCC-with-EGARCH (-8589.555) and CCC-with-asymmetry (-8588.430) models.
For DMs, the corresponding log-likelihood is -7402.2864 which is larger than the CCC-with-
spillover variance’ (-7574.4624), CCC-MGARCH (-7578.819), CCC-with-EGARCH (-7579.523)
and CCC-with-asymmetry (-7523.497) models. Among all the fitted MGARCH models, the
closest model type to the VAR-EGARCH specification is the aymmetric-CCC-with-spillover
variances model. It has the same number of free parameters with the VAR-EGARCH but the
variances are specified in the standard additive form and the asymmetry term does not enter
the spillover terms. There is still no consensus in the literature about whether the superior fit
in VAR-EGARCH models is as a result of the exponential specification or due to the incorpo-
ration of asymmetric terms into the spillover.

Table A2 (see Appendices) present estimates of trivariate BEKK-MGARCH and BEKK-
AMGARCH models (with and without asymmetry) for the selected EMs and DMs. For the
results in Table A2 (Columns 6 & 7), i = 1, 2, 3 refer to NSEASI, DJIA and Hang-Seng re-
turns. The BEKK-MGARCH model proposed by Engle and Kroner (1995) allows for greater
interactions. Studies have shown that this model sometimes encounter the challenge of nega-
tive parameters. For the ci coefficients, the estimated parameters for EMs are all positive while
some coefficients in the case of DMs are negative. For results in Columns 6 & 7 while c2,1 is neg-
ative (for both BEKK-MGARCH and BEKK-AMGARCH), c2,2 is equally negative for DMs
(NSEASI, DJIA and Hang-Seng indices). Conversely c3,2 is positive for BEKK-AMGARCH
model (Table A2, Column 5). This is because it is a factor of the variance intercept, rather
than the variance itself, the coefficients other than 1,1 do not have simple interpretations (Doan,
2013).

We find that the conditional variances for EMs (Table A2, Column 2) are directly affected
by their past news and volatility only with respect to coefficients α1,1, α2,1, α2,2 and α3,3 which
are statistically significant at 1% and 5% levels. On the effects of past conditional variances on
conditional variances, β1,1, β2,1, β2,2 and β3,3 are statistically significant while only γ3,2 and γ3,3

are significant for BEKK-AMGARCH specification. The log-likelihood value for the BEKK-
AMGARCH model is higher (-8561.906) than that of BEKK-MGARCH model (-8607.514).
On the BEKK-AMGARCH model results for DMs, we find that not only are their conditional
variances directly affected by their own volatility and news, but also by bi-directional transmis-
sion of volatility and shock between each other (except for insignificant α2,1, α2,2, α2,3 and α3,1

coefficients). For the β coefficients (which measure the effects of past conditional variances on
conditional variances) it is only β2,3 and β3,1 that are insignificant.
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On the results in Table A2 (Columns 6 & 7) (NSEASI, DJIA and Hang-Seng), their con-
ditional variances are directly affected by their past news and volatility except with respect
to coefficients α1,2, α1,3, α2,1, α2,3 and α3,1 respectively which are statistically insignificant.
Relative to Nigeria’s NSEASI, we find that it is now affected by its own volatilities and shocks
lagged one period and indirectly by Hang-Seng and DJIA return shocks. The β coefficients
(Table A2, Column 7) i.e. for BEKK-AMGARCH models are mostly insignificant except for
β2,2 and β3,3. The asymmetric terms with the exception of γ1,2 and γ3,3 are highly significant.
The log-likelihood for the BEKK-AMGARCH specification for combined markets is higher (-
7798.384) than BEKK-MGARCH’s (-7878.433) while the relevant information criteria are lower
in the BEKK-AMGARCH specification than in the corresponding BEKK-MGARCH equation.
Figure 5 (see Appendices) shows the variances (diagonal) and correlations (off-diagonal) es-
timates for 3 EMs: NSEASI, BVSP and Hang-Seng and 3 DMs: FTSE-100, Nikkei-225 and
DJIA returns from fitted BEKK-MGARCH model. The BVSP–Hang-Seng correlation estimate
increase consistently (above 0.75 in some periods) from 1994 to 2008 while NSEASI–BVSP cor-
relation is significantly lower hovering around 0.25, with large spikes particularly during the
2001 recession and the GFC periods. This reflect the linkages between the two markets which
are modest during normal periods, but tend to be greater during periods of major global market
instability. Also, the variances tend to increase during significant market events such as the
GFC as can be observed in Figure A (see, diagonals chart). It suffices to state that the trend
for sustained gross portfolio inflows (equity and debt) into EM averages 1.2% of EM GDP (or
a cumulative total of $1.6 trillion comprising $989 billion for debt securities and $590 billion
for equity securities) over the past decade (Credit Suisse, 2014).

The diagonal elements of the matrix A∗ (namely α1,1, α2,2 & α3,3) measure the effects of
own past shocks on that series’ own conditional variance. From Table A2 (Column 2), all
estimated diagonal elements of A∗ are statistically significant. Comparing the magnitude of
the estimates of the combined markets in BEKK-MGARCH model (Table A2, Column 6), the
shock of an EM (NSEASI) has the largest effect (0.6121), followed by another EM (Hang-Seng)
(0.2475) on their own variance, with DM (DJIA) having the smallest own shock effect (0.2085).
This suggest that past shocks play more crucial role in the volatility of EMs than those in the
volatility of the DMs. This according to Li and Giles (2015) can be explained by the fact that
the more advanced a market is, the less affected it is by its own past shocks. It can also imply
that the EMs exhibit less market efficiency than the DMs as the effects of the shock takes a
longer time to dissipate. The diagonals of the matrix B∗ (namely β1,1, β2,2 & β3,3) measure the
effects of past volatility of a market on its conditional variance. All the estimated parameters
on the diagonal of B∗ are statistically significant at 1% level. Also, the magnitude of these
estimates are very close to unity, indicating a common stylised fact of financial return data
(i.e. a degree of volatility persistence). The volatility persistence tends to be lower for the EMs
compared to DMs, indicating that the EMs derive less of their volatility persistence from own
past volatility than do DMs.

On the asymmetric response of volatility, the diagonal elements of the matrix γ∗ capture
the asymmetric response of a given market to its own past negative shocks or bad news. From
Table A2 (Columns 3, 5 & 7), the diagonal elements of the matrix γ∗ (namely γ1,1, γ2,2 & γ3,3)
for DMs are highly significant, indicating that DMs have a more evident response to negative
shocks than do EMs. The magnitude of the FTSE-100, Nikkei-225 and DJIA stock market
reaction to their own negative shock is -0.2663, -0.3041 and -0.3058 respectively. For EMs with
the exception of Hang-Seng, all the magnitude values are insignificant. A key objective of this
paper is to uncover the extent of volatility spillovers across selected stock markets, that can
be captured by the off-diagonal parameters of the matrices A∗, B∗ and γ∗. First, we look at
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the off-diagonal elements of the matrix A∗ for EMs (Table A2, Column 2) which indicates the
overall shock spillover among NSEASI, BVSP and Hang-Seng indices. Accordingly, there are no
significant shock spillovers from the NSEASI to the BVSP and Hang-Seng as both α1,2 (-0.0059)
and α1,3 (0.0380) are not significant. For DMs (Table A2, Column 4) there are significant shock
spillovers from the FTSE-100 to the Nikkei-225 and DJIA indices as both α1,2 (0.2727) and α1,3

(0.1592) are significantly different from zero. This indicates that the transmissions are stronger
between DMs than among EMs and between DMs and EMs. Additionally, there is no sufficient
evidence to show that the shocks of the Nikkei-225 index affects the volatility of the FTSE-100
and DJIA indices. This implies that there is only a weak past shock spillover between the
Nikkei-225, FTSE-100 and DJIA indices. Also, there is only a weak past shock spillover from
some EMs to the USA’ DJIA index. This result is in line with findings from extant literature
that volatility spillover effects emanate from DMs to emerging/frontier markets.

Table A3 presents estimate of trivariate BEKK-MGARCH and BEKK-AMGARCH models
(with financial crisis dummies) for the selected EM and DM returns as well as for combined
markets. Typically, the addition of dummies to BEKK-MGARCH specifications adjusts the C
term in the GARCH recursion. This adds a coefficient for each variance equation for each of the
added variables. This paper considers 18th August, 2008 as the starting point of the financial
crisis and 28th September, 2009 as the ending point of the crisis. The rationale behind the
selection is that even though the financial crisis became sharply out of control in the wake of
the Lehman Brothers bankruptcy on 15th September, 2008, the impact had already manifested
in advanced financial markets with increased delinquencies on subprime mortgages, driven by
rising interest rates for refinancing and falling house prices in the USA, resulting in uncertainty
in the value of many structured credit products (Frank and Hesse, 2009). For the results in
Table A3 (Columns 6 & 7), the ci coefficients, the estimated parameters for EMs are all positive
while some coefficients for DMs are negative. For results in Column 7, while c2,1 is negative,
c3,3 is positive for a mixture of selected EMs and DMs (NSEASI, Hang-Seng and DJIA indices).
Conversely, c3,2 is barely positive for BEKK-AMGARCH model.

We find that the conditional variances for EMs are directly affected by their past news and
volatility only with respect to coefficients α1,1, α3,1 and α3,3 which are statistically significant
at 1% level. On the effects of past conditional variances on the conditional variances, β2,2 and
β3,3 are significant while only γ1,1 and γ3,3 are significant for BEKK-AMGARCH specification.
The log-likelihood value for the BEKK-AMGARCH specification is higher (-7714.518) than
that of BEKK-MGARCH model (-7768.775). On the BEKK-AMGARCH results for DMs, we
find that, not only are conditional variances directly affected by own-volatility and news in
most cases, but also by bi-directional transmission of volatility and shock between each other
(except for an insignificant α2,1 coefficient). For the β coefficients (which measure the effects of
past conditional variances on conditional variances) only β3,1 and β3,2 are significant. For EMs,
most of the included dummies (August, 2008 to September, 2009) are not significant while for
DM returns, most are significant. On the results in Table A2 (Column 7) comprising a mixture
of EMs and DMs, all the financial crisis dummies were statistically significant.

On the results in Table A3 (Column 7) for combined markets (NSEASI, DJIA and Hang-
Seng), their conditional variances are directly affected by their past news and volatility except
with respect to coefficients α1,2, α1,3 and α2,3 that are not significant. Relative to Nigeria’s
NSEASI, we find that it is now affected by its own volatilities and previous shocks and indi-
rectly by Hang-Seng and DJIA return shocks. The β coefficients (in Column 7) as in BEKK-
MGARCH (in Column 6) are mostly insignificant with the exception of β2,2 and β3,3. The
asymmetric terms with the exception of γ1,1 and γ1,3 are all highly statistically significant.
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The log-likelihood for the BEKK-AMGARCH model with dummies is higher (-8462.962) than
BEKK-MGARCH model with dummies (-8491.712). However, the dummy variable coefficients
for the GFC in the variance and covariance equations are all insignificant for the 3 EMs (see,
Table A3, Columns 2 & 3) with the exception of (DGFC(1,1)) which is significant at 1% level.
This suggests that the GFC did not influence cross-market volatility among EMs, but had
slight influence on own-volatility, as in the case of (DGFC(1,1)) which is positive. Of note is
that although the GFC eventually spread to EMs, it probably did not impact significantly on
cross-market volatility among these selected markets for the entire period of the inclusion of
dummy variable (August, 2008 to September, 2009). In addition, such impacts contributing to
rising co-volatility have probably occurred for a much longer period than the one proposed by
the length of the sustained 2008 to 2009 dummy variable.

For DMs (see, Table A3, Columns 4 & 5) some of the dummy variable coefficients for the
GFC in the variance and covariance equations are significant with the exception of (DGFC(2,2)),
(DGFC(3,2)) and (DGFC(3,3)) (From Column 5). This implies that the GFC influence cross-
market volatility among DMs more than own-volatility, providing justification for the claim of
the existence of spillover effect during the GFC. That is, the GFC impacts significantly on cross-
market volatility among DMs and such impacts have contributed to rising positive co-volatility
during the period while the negatively signed coefficients are not significant (Own-volatility
spillovers indicates a one way causal relation between past volatility shocks and current volatil-
ity in the same market while cross-volatility spillovers refer to a one-way causal link between
past volatility shocks in one market and current volatility in another market). Karunanayake et
al. (2010) note that “apart from over-leveraging, a loss of confidence by investors in the value
of sub-prime mortgages, a rise in defaults and under-provision for non-performing loans by the
banking system and the failure of banks to manage risks can also be regarded as other rele-
vant causes of the volatility of stock markets during the recent global crisis”. Similar dummy
variable specifications to the one used in this paper have been proposed in the literature by
Karunanayake et al. (2010), among others. Finally, all the fitted BEKK specifications are
stable as the sum of all the relevant matrices have eigenvalues less than unity.

In terms of estimation strategy for MGARCH models, we find that inclusion of additional
flexibility in this class of models tend to substantially decrease the chance of convergence to a
global maximum on carrying out the maximum likelihood procedure. The DVECH and CCC-
MGARCH models are the most restrictive MGARCH models analysed in this paper, as the
CCC-MGARCH for example, assumes that the correlation coefficient is constant over time.
However, the relative ease with which these models were fitted compared to the more flexible
BEKK-AMGARCH model provides a reasonable starting point for our multivariate volatility
analysis. Furthermore, the inclusion of dummy variables impact not only the coefficients but
equally adjusts the ci term in the GARCH recursion as well. There still are concerns in the
literature on the handling of dummy regressors in BEKK models due to the desire to enforce
positive-definiteness and the choice of representation for the dummy to be included, but recent
empirical findings have shown that the model is insensitive to the choice of dummy represen-
tation. The effects of sudden influential events on the development of a time series, can be
evaluated by adding intervention (pulse) variables to the model. Incorporation of intervention
variables has a number of effects that include; level shift, slope shift and pulse. Level shift is
where time series level changes suddenly at the time point where the intervention took place.
Slope shift is where the slope exhibits significant and permanent change after the intervention,
while pulse is when the level value changes suddenly at the point of intervention and then
immediately returns to its usual value before the occurrence of an influential event.
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From Table 8, we report results of the trivariate DCC-MGARCH model under three distri-
butional assumptions: Gaussian, Student’s-t and skew-Student’s-t with corresponding results
given in Columns 2 to 10 respectively. We estimate the model with a Gaussian density in order
to compare with other more complicated models such as the non-skewed-t and skewed-t. We fit
a non-skewed-t density model with the ξ pegged to 1.0, although the ν is estimated, the log ξ is
set to zero. For the skewed-t density model, the ν and the log ξ are all estimated. Engle (2011)
states that a distribution is symmetric if an x% decline is just as likely as an x% increase for
any x% change and defines skewness as a systematic deviation from symmetry with negative
skewness indicating that large declines are more likely than similar sized increases. However, of
note is that the β’s in Table 8 correspond to the mean parameters while the g’s correspond to
the GARCH parameters. On close inspection of Table 8, the move from Gaussian to Student’s-
t, with the ν’s hovering around 7 indicates that the tails are quite fat. The two parameters
governing the DCC recursion are DCC(α) and DCC(β). The ν and the log-likelihood improve-
ment achieved by the DCC-MGARCH with t distribution show strong evidence against the
Gaussian DCC-MGARCH model.

The parameters governing the dynamics of correlations in Table 8 are all significant for all
models and the persistence parameters for the volatilities are all high > 0.9 with all stationarity
conditions being satisfied. Changing the DCC specification to a DCC-MGARCH with skew-t
model yields several effects.(1) the log-likelihood value increased substantially by the addition
of four parameters,(2) the ν parameter also increased in all stock market return series combi-
nations. The main reason for the increase in the log-likelihood is probably due to the effects
of tails and skewed distribution on the volatility and correlation dynamics of the time series.
The skewness parameters of the DCC-MGARCH with t density are mostly significant with the
exception of log ξ2 for DMs model and log ξ3 for the combined markets model. Furthermore,
the signs of the skewness coefficients in Table 8 are in line with the summary statistics in Table
1. All the model selection criteria (AIC and SBC) are more favourable for the DCC-MGARCH
with skew-t specification than with other models.

Thus, the results reveal that the trivariate GARCH model with skew-Student’s-t distribu-
tion for the innovation improves the models’ quality compared with models with Gaussian and
Student’s-t distributions as well as providing a better fit to the returns data. Studies such as
Giot and Laurent (2003) have shown the superiority of the univariate skew-Student’s-t density
over the Gaussian and Student’s t densities when forecasting the 1-day-ahead VaR of many as-
sets for long and short trading positions (i.e. both in-sample and out-of-sample). Bauwens and
Laurent (2005) highlight the use of the multivariate skew-Student’s-t density using a VaR appli-
cation on several portfolio of assets and exchange rates and shows that in several cases this den-
sity improves the quality of out-of-sample VaR forecast in comparison with a symmetric model,
and that in no case is the performance deteriorated. The likelihood ratio (LR) test favours
the skew-Student’s-t density model. Indeed all the 3 developed market returns are negatively
skewed. The LR test of significance of skewness calculated by logχ2(3) = 27.8301 and is signif-
icant. For EMs, the LR test of significance of skewness logχ2(3) = 27.8259 and are all highly
significant. For combined markets, the LR test of significance of skewness logχ2(3) = 30.8915
and is also significant.

Figures 3 & 4 present a comparison of correlation estimates for fitted DVECH, BEKK
and DCC-MGARCH models respectively. The correlation estimates were computed using the
volatilities in Figure A. For the BVSP–Hang-Seng correlation estimates, the correlations were
between 0.2 and 0.8 from 2000 to 2016. There was a notable increase in correlation among
these 2 EMs during the GFC and consistent decline afterwards. Additionally, this provides an
interesting scenario whereby we can observe the BVSP–Hang-Seng correlation experiencing an
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Table 8: DCC with Gaussian, Student’s t & Skew-Student’s t Residual Estimates

Emerging Stock Markets Developed Stock Markets Combined Stock Markets

Parameter Normal Std’s -t Skew-t Normal Std’s -t Skew-t Normal Std’s -t Skew-t

β1,1 0.1562∗∗ 0.1416∗∗ 0.1983∗∗ 0.1626∗∗ 0.1920∗∗ 0.1362∗∗ 0.1617∗∗ 0.1486∗∗ 0.2032∗∗

(0.0516) (0.0415) (0.0450) (0.0559) (0.0515) (0.0517) (0.0481) (0.0376) (0.0351)
β1,2 0.2924∗∗ 0.3291∗∗ 0.3164∗∗ -0.1001∗∗ -0.0979∗∗ -0.1035∗∗ 0.2925∗∗ 0.3298∗∗ 0.3168∗∗

(0.0350) (0.0315) (0.0311) (0.0221) (0.0248) (0.0221) (0.0345) (0.0314) (0.0268)
β2,1 0.2983∗∗ 0.3468∗∗ 0.2352∗ 0.1434 0.1509 0.1020 0.2418∗∗ 0.2710∗∗ 0.2119∗∗

(0.1065) (0.1073) (0.1059) (0.0794) (0.0779) (0.0751) (0.0578) (0.0532) 0.0491
β3,1 0.2114∗∗ 0.2370∗∗ 0.1701∗ 0.2425∗∗ 0.2638∗∗ 0.2154∗∗ 0.2229∗∗ 0.2187∗∗ 0.1859∗

(0.0810) (0.0795) (0.0782) (0.0521) (0.0520) (0.0490) (0.0855) (0.0729) 0.0723
g1,1 0.1907∗∗ 0.0354 0.0396∗ 0.1887∗∗ 0.1387∗∗ 0.1459 0.1977∗∗ 0.0436∗ 0.0458∗∗

0.0417 (0.0181) (0.0168) (0.0584) (0.0485) (0.0430) (0.0420) (0.0196) (0.0098)
g1,2 0.3815∗∗ 0.3791∗∗ 0.3698∗ 0.0966∗∗ 0.0696∗∗ 0.0749∗∗ 0.3916∗∗ 0.3987∗∗ 0.3881∗∗

(0.0443) (0.0476) (0.0437) (0.0159) (0.0137) (0.0131) (0.0466) (0.0516) (0.0175)
g1,3 0.6879∗∗ 0.7148∗∗ 0.7154∗∗ 0.8709∗∗ 0.9031∗∗ 0.8967∗∗ 0.6823∗∗ 0.7037∗∗ 0.7051∗∗

(0.0257) (0.0248) (0.0238) (0.0229) (0.0189) (0.0174) (0.0269) (0.0266) (0.0084)
g2,1 0.7376∗∗ 0.6598∗∗ 0.5592∗∗ 1.0248∗∗ 0.4013∗ 0.3886∗∗ 0.4609∗∗ 0.3053∗ 0.2715∗∗

(0.2108) (0.2264) (0.1715) (0.3535) (0.1862) (0.1482) (0.1336) (0.1250) 0.0290**
g2,2 0.1157∗∗ 0.0984∗∗ 0.1030∗ 0.1075∗∗ 0.0665∗∗ 0.0644∗∗ 0.1892∗∗ 0.1201∗∗ 0.1221∗∗

(0.0194) (0.0202) (0.0174) (0.0256) (0.0201) (0.0166) (0.0316) (0.0334) (0.0084)
g2,3 0.8484∗∗ 0.8733∗∗ 0.8755∗∗ 0.7870∗∗ 0.8926∗∗ 0.8946∗∗ 0.7334∗∗ 0.8283∗∗ 0.8322∗∗

(0.0236) (0.0248) (0.0182) (0.0567) (0.0344) (0.0263) (0.0479) (0.0486) (0.0067)
g3,1 0.1318∗ 0.1369∗∗ 0.1299∗∗ 0.2172∗ 0.1861∗∗ 0.1825∗∗ 0.1472∗∗ 0.1817∗∗ 0.1709∗∗

(0.0533) (0.0526) (0.0432) (0.0845) (0.0678) (0.0597) (0.0546) (0.0517) (0.0309)
g3,2 0.0736∗∗ 0.0622∗∗ 0.0613∗∗ 0.1128∗∗ 0.0871∗∗ 0.0887∗∗ 0.0791∗∗ 0.0686∗∗ 0.0679∗∗

(0.0138) (0.0123) (0.0085) (0.0244) (0.0198) (0.0176) (0.0152) (0.0078) (0.0043)
g3,3 0.9163∗∗ 0.9296∗∗ 0.9303∗∗ 0.8469∗∗ 0.8747∗∗ 0.8729∗∗ 0.9081∗∗ 0.9187∗∗ 0.9192∗∗

(0.0146) (0.0127) (0.0087) (0.0374) (0.0289) (0.0258) (0.0161) (0.0061) (0.0037)
DCC(α) 0.0116∗∗ 0.0100∗∗ 0.0097∗∗ 0.0436∗∗ 0.0429∗∗ 0.0432∗∗ 0.0255∗∗ 0.0237∗∗ 0.0232∗∗

(0.0024) (0.0024) (0.0022) (0.0053) (0.0061) (0.0059) (0.0053) (0.0052) (0.0034)
DCC(β) 0.9877∗∗ 0.9888∗∗ 0.9890∗∗ 0.9403∗∗ 0.9430∗∗ 0.9433∗∗ 0.9559∗∗ 0.9627∗∗ 0.9637∗∗

(0.0027) (0.0029) (0.0026) (0.0079) (0.0086) (0.0083) (0.0097) (0.0090) (0.0060)
ν – 7.3722 7.7064∗∗ – 7.8669∗∗ 8.3643∗∗ – 7.4254∗∗ 7.8677∗∗

(0.7739) (0.7597) – (0.6971) (0.8436) – (0.8245) (0.6670)
log ξ1 – – 0.1060∗∗ – – -0.1945∗∗ – – 0.1033∗∗

– – (0.0369) – – (0.0423) – – (0.0323)
log ξ2 – – -0.1739∗∗ – – -0.0449 – – -0.2012∗∗

– – (0.0396) – – (0.0395) – – (0.0424)
log ξ3 – – -0.0982∗ – – -0.1029∗∗ – – -0.0604

– – (0.0411) – – (0.0398) – – 0.0405
Log Lik. -8580.77 -8480.38 -8466.47 -7507.07 -7406.23 -7392.31 -7860.39 -7759.67 -7744.22
AIC 14.988 14.815 14.796 13.116 12.942 12.923 13.732 13.558 13.537
SBC 15.054 14.885 14.879 13.182 13.012 13.007 13.798 13.629 13.620
LR(Skew) 27.8259 27.8301 30.8915

(0.0000) (0.0000) (0.0000)

Note: Numbers in parentheses indicate the standard errors. Superscripts **,* indicates significance at 1% and
5% levels. Log Lik., LR, AIC and SBC stand for Log likelihood, likelihood ratio, Akaike and Schwarz

information criteria. The i = 1, 2, 3 refer to NSEASI, BVSP and Hang-Seng indices (emerging markets) and
the same numbers for developed markets represent FTSE-100, Nikkei-225 and DJIA indices. For the combined

markets, i = 1, 2, 3 denote NSEASI, DJIA and Hang Seng indices respectively. Estimation methods:
Broyden-Fletcher-Goldfarb-Shannon (BFGS).
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Figure 3: Correlation Estimates Comparison (DVECH, BEKK & DCC Models)
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upward trend. It shows strong empirical evidence that the correlations are time varying. The
Nikkei–DJIA correlation is even higher particularly during major financial crises. This empir-
ical evidence has vital implications for equity portfolio diversification among markets as the
increasing and time-varying correlation implies that the two markets (BVSP and Hang-Seng)
are becoming increasingly integrated which suggests the possibility of reduced benefits due to
international portfolio diversification even among EMs.

In terms of comparison of correlation estimates between the three models (DVECH, BEKK
and DCC), the BEKK-MGARCH model correlation estimates tend to be higher than the corre-
sponding correlation estimates of DVECH and DCC models (i.e. it exhibits larger variability).
The NSEASI–DJIA correlation estimates are quite low in comparison with correlation among
other markets. The DJIA–FTSE-100 correlation estimates are the highest among all the mar-
kets considered with the estimates very close to 1 around 1999, 2002–2003 and 2008–2010 which
coincides with periods of economic recessions and large fluctuations in financial markets. For
the BVSP–DJIA correlations, there were four noticeable declines (i.e. 1994–1998, 2000–2001,
2005–2007 and 2011–2014). The most significant increase is in the period 2008–2010. It suffice
to state that volatility and correlation are two major constituents of covariance while correla-
tion is standardised covariance.

Engle’s (2001) DCC-MGARCH model is a considerable improvement over the DVECH and
BEKK specifications and allows for time-varying correlations. Earlier, Tse and Tsui (1998)
proposed a DCC-MGARCH model, but no attempt was made to allow for seperate estimation
of the univariate GARCH equations and DCC estimator. The DCC-MGARCH model is ca-
pable of capturing the volatility correlations between markets or assets either directly through
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Figure 4: Correlation Estimates Comparison (DVECH, BEKK & DCC Models)
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its conditional variance or indirectly through its conditional covariances as well as the ability
to uncover volatility spillover from one market or asset to another. The model also generates
fewer parameters compared to other MGARCH models and overcome some of their weaknesses.
Additionally, the model possesses the flexibility of univariate GARCH models with its two-step
estimation procedure. Because economic activities change over time, the dynamic model be-
comes practically more attractive. We analyse the DCC-MGARCH model of stock market
return pairs in order to uncover the correlation structure between the stock markets over the
sample period. Engle and Shephard (2001) note that the DCC evolution process is a nonlinear
process and equally presents a natural method to examine the relationship between volatility
and correlation. Frank and Hesse (2009) note that given the high volatility during financial
crises, the assumption of CCC is often not quite realistic especially in times of stress where
correlations can change rapidly. They recommend the DCC-MGARCH model as a better choice
since correlations are time varying. In addition, Zhou and Nicholson (2015) assess the economic
value of modelling covariance asymmetry (i.e. when conditional volatility and correlation of
returns rise more after negative return shocks than after positive shocks of the same size) for fi-
nancial assets. They investigate whether investors could gain significant economic benefits from
incorporating the feature into mixed-asset portfolio diversification. They find that covariance
asymmetry is a value-added feature for mixed-asset diversifications.

4.4 Implications of Estimation Results

In this subsection, we examine the economic and financial implications of the results from the
fitted MGARCH models considered in the paper. A major finding in line with extant studies
such as Ozer-Imer and Ozkan (2014) among others, is that variances tend to increase during
significant global market events such as the GFC and that correlations among EMs are lower
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compared with correlations among DMs in the sample period. This implies that there is less
potential for diversification among DMs and that EMs can offer portfolio diversification oppor-
tunities both among EMs and for advanced market investors. In addition, the GFC of 2008–2009
impacted more on DMs than on EMs. The paper also find that the correlation estimates from
the fitted BEKK-MGARCH models are often higher than the estimates from DVECH and DCC
(including all the estimated variants) models. Additionally, the BEKK-MGARCH model (see
Table A2, in Appendices) often exaggerate volatility persistence in stock markets compared
with the BEKK-AMGARCH class model. The BEKK-MGARCH specification by construction
assumes symmetric effects between positive and negative shocks. This result is consistent with
the findings of Salisu and Oloko (2015). However, The CCC-VARMA-AMGARCH model did
not detect substantial presence of asymmetric behaviour in emerging markets which is also in
line with findings from recent studies.

Comparing the magnitude of estimates of the combined markets in BEKK-MGARCH model
(Table A2, Column 6), the shock of an emerging market (NSEASI) has the largest effect
(0.6121), followed by another emerging market (Hang-Seng) (0.2475) on their own variance,
with a developed market (DJIA) having the smallest own shock effect (0.2085). This suggests
that past shocks play more crucial role in the volatility of EMs than those in the volatility of
the DMs. This according to Li and Giles (2015) can be explained by the fact that the more
advanced a market is, the less affected it is by its own past shocks. It can also imply that
the EMs exhibit less market efficiency than the DMs as the effects of the shock takes a longer
time to dissipate. This finding can help guide investors in their investment decisions. We also
find that the dummy variable coefficients for the GFC in the variance and covariance equations
are all insignificant for the three EMs (see, Table A3, Columns 2 & 3) with the exception
of DGFC(1,1) which is significant at 1% level. This suggests that the GFC did not influence
cross-market volatility among EMs, but had slight influence on own-volatility, as in the case
of DGFC(1,1) which is positive. For DMs (see, Table A3, Columns 4 & 5) some of the dummy
variable coefficients for the GFC in the variance and covariance equations are significant except
for DGFC(2,2), DGFC(3,2) and DGFC(3,3) (From Column 5). This implies that the GFC influenced
cross-market volatility among DMs more than own-volatility, providing justification for the ex-
istence of spillover effect during the GFC.

Results further reveal that the trivariate-MGARCH model with skew-Student’s-t distribu-
tion for the innovation improves the models’ quality compared with models with Gaussian and
Student’s-t distributions and provides a better fit to the returns data which is partly due to
its taking into account the skewed feature of the returns. We equally find that based on all
the estimated models, their performance can be improved by avoiding/relaxing the normality
assumption. The paper recommends that in modelling stock market volatility dynamics and
spillovers; skewness, asymmetry and fat tails when they exist should be taken into account in the
modelling process. Overall, the above empirical evidences have strong implications for equity
portfolio diversification among markets as the increasing and time-varying correlation implies
that emerging markets are becoming increasingly integrated which suggests the possibility of
reduced benefits due to international portfolio diversification even among EMs.

5 Concluding Remarks

In this paper, we investigate stock markets volatility spillovers in selected emerging and de-
veloped markets using several MGARCH model variants. To determine the stationarity of
the returns data employed, we conduct unit root tests (with and without structural breaks)
and establish the existence of stationarity of the returns. Furthermore, we employ Inclan and
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Tiao’s variance breaks detection test and uncover significant evidence of structural breaks in
the unconditional variance in all the market returns. The comparison of MGARCH models
carried out for the selected markets is to enable analysis of their dynamic interactions and
spillover effects in different stock markets which is of considerable interest to investors with a
portfolio of assets especially during financial crises. This paper primarily focuses on modelling
of volatility spillovers and interdependence among EM and DM returns by comparing and con-
trasting several MGARCH models of volatility. Apart from using the conventional modelling
strategies, we consider a class of flexible multivariate densities that can model both skewness
and heavy tails in the distribution of the errors. It has been shown by many recent studies that
ignoring the skewed feature of returns in the modelling process could lead to overestimation (or
underestimation) of risk and could consequently lead to wrong decisions on portfolio or hedging
strategies.

Major findings reveal that correlations among EMs tend to be lower compared with corre-
lations among DMs suggesting greater degree of interaction between DMs than among EMs.
Thus, the hypothesis that stock market correlation is higher during periods of excessive volatil-
ity in markets (and tends to have strengthening effect on stock market linkages) is now estab-
lished and has been further validated from our findings. Consistent with extant literature, the
conditional volatility of each stock market due to its previous short and long-run shocks are
to a large extent higher than cross-volatility shocks particularly for EMs with similar trend
for DMs. In addition, we find that both the correlations and the unconditional covariance
matrix of stock returns are time varying. This implies that when time variation is neglected,
the persistence of conditional variance and correlations tends to be high. We also find that
past shocks play more crucial role in the volatility of EMs than those in the volatility of DMs.
This implies that the more advanced a market is, the less affected it is by its own past shocks.
It can also suggest that the EMs are less efficienct than the DMs as the effects of the shock
takes a longer time to dissipate. This finding has significant financial implications and can
help guide investors in their investment decisions. We also find that the GFC did not signifi-
cantly influence cross-market volatility among EMs, but had slight influence on own-volatility.
For DMs some of the dummy variable coefficients for the GFC in the variance and covari-
ance equations are significant suggesting that the GFC influence cross-market volatility among
DMs more than own-volatility, justifying the existence of spillover effect during the recent GFC.

In terms of selecting the best MGARCH model for the analysis of volatility interactions
and spillover effects in the context of recent financial crises, our paper recommends the use
of the DCC-MGARCH-with-Skew-t model which is more suited than its close competitors if
skewness and excess kurtosis are present in the data. Several other models have been proposed
including the regime-switching DCC model, the component-DCC model, the smooth-transition
CC model, the factor-spline-GARCH DCC model and the mDCC model (see, Silvennoinen and
Teräsvirta, 2005 and Bauwens et al., 2013 ). These recent extensions are due to the need for
more flexibility in the modelling process. Taking into account the skewed feature of returns
could lead to an important outcome in the quest for the development of effective long-term risk
measure in financial markets. These results of the analysis of spillover effects between stock
markets could further shed light on the impact of financial crises on stock market volatility
spillover.
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Appendices

Table A1: Sudden Changes in Volatility: Breakpoints Detection Using Iterated Cumulative
Sum of Squares (ICSS) Test for Emerging and Developed Stock Markets

Indices Period Major Events
Emerging Stock Markets

1995:03:27
1995:08:28 Nig. investment promotion Act enacted to guarantee the ease of transfer of funds

NSEASI 1999:05:03 Introduction of automated trading system replacing the open outcry method.
(Nigeria) 2008:05:05 NSE market near crash partly due to spillover effects from subprime crisis.

2009:09:21 Global financial crisis, Banking crisis, second wave of banking reforms.
2014:10:06
2015:04:06 Impact of the 2015 national general elections.
1994:07:04
1995:04:24

BVSP 1997:07:07 Asian financial crisis and its impact on investor confidence,
(Brazil) 1999:03:15 Introduced an internet-based trading system; Brazilian currency crisis

2003:01:20
2008:09:15 Global financial crisis
2009:05:25 Global financial crisis
1994:07:25
1994:08:01 Companies began launch of their A-share IPOs by competitive bidding

through the trading system.
1995:05:08
1995:05:22 Suspension of T-bond futures trading.
1996:04:08

SSECI 1996:11:18 The SSE changed the constituents of SSE-30 index for the first time.
(China) 1996:12:16 Effects of SSE’s imposition of a 10% daily up/down limits on trading prices of

shares and funds.
2000:05:22 Effects of the decision to allow transferred rights shares to be traded in market
2006:12:04
2009:03:16 Global financial crisis
2010:11:15 Implementation of T-bond bilateral quotations
2014:11:17 Launch of Shanghai-Hong Kong Stock Connect on 17th November
1995:05:08
1997:01:06
1997:09:29 Transfer of sovereignty to China, Asian currency crises

HANG SENG 1998:10:12 Russian crisis & Ruble devaluation; DJIA, S&P500 & NASDAQ fell by >20%
(Hong Kong, 2001:11:12 Economic effects due to 9/11 attacks.
China) 2004:06:21 Introduction of the H-shares index options.

2007:08:06
2009:07:20 Global financial crisis
2011:07:25 Implemented the T+2 finality arrangement for securities market money settlement

in the central clearing and settlement system.
2012:01:16
2015:03:23 Launch of short-selling of eligible Shanghai-listed A shares under Shanghai-Hong

Kong Stock Connect.
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Indices Period Major Events
Developed Stock Markets

1997:10:20 Asian financial crisis
2002:12:09

NIKKEI-225 2008:08:18 Lehman shock, Global financial crisis, economic recession.
(Japan) 2008:10:27 GFC; Appreciation of the yen; Nikkei hitting its lowest point since the bubble.

2009:11:30
1997:03:17
2001:03:12 The Dow plunges sharply prompted by econ. slowdown & losses in tech. mrkts
2001:09:24 Impact of September 11th attack caused global stock markets to drop sharply,
2002:07:01 Enron & WorldCom accounting scandals shaking investor confidence

DJIA 2003:03:24
(USA) 2007:02:12 The impact of the initial signs of the sub-prime mortgage crisis

2009:03:23 Global financial crisis; the Dow fell to its lowest level since 1997.
2010:08:02
2011:06:13
2011:12:12
2014:09:29
1997:07:14
2001:07:30 dot-com (technology) bubble aftermath
2003:06:02

DAX-30 2008:09:22 Sub-prime mortgage crisis aftermath; Global financial crisis
(Germany) 2009:03:09 Global financial crisis

2010:07:05 S&P downgrades Greece’s sovereign credit rating to junk
2011:07:25 Stock markets globally plummet and remain volatile till year-end.
2011:12:19
2014:09:15
1994:11:21
1997:08:25
2003:03:31
2006:05:01

FTSE-100 2008:08:25 Global financial crisis
(UK) 2009:03:09 Global financial crisis

2010:07:05 S&P’s downgrade of Greece’s sovereign credit rating to junk
2011:06:20
2011:11:28
2014:12:01

Note: The identified break points are all significant at the 5% level. Dates in boldface indicate break
points that occur during the Global financial crisis (GFC) period.
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Table A2: BEKK-MGARCH Estimates (Emerging & Developed Stock Markets)

Emerging Markets Developed Markets Combined Markets

Parameter BEKK– BEKK– BEKK– BEKK– BEKK– BEKK–
MGARCH AMGARCH MGARCH AMGARCH MGARCH AMGARCH

Constant 0.1491 0.1410∗∗ 0.2408∗∗ 0.1230∗ 0.1694∗∗ 0.1562∗∗

(0.0786) (0.0477) (0.0561) (0.0484) (0.0507) (0.0472)
rt−1 0.2925∗∗ 0.3029∗∗ -0.1582∗∗ -0.1325∗∗ 0.2999∗∗ 0.2989

(0.0397) (0.0337) (0.0265) (0.0235) (0.0385) (0.0322)
Constant 0.2278∗ 0.1629 0.1322 0.0408 0.2453∗∗ 0.1893∗∗

(0.1091) (0.1043) (0.0850) (0.0759) (0.0649) (0.0541)
rt−1 -0.0888∗∗ -0.0842∗∗ -0.0493 -0.0216 -0.1190∗∗ -0.1223∗∗

(0.0268) (0.0239) (0.0275) (0.0266) (0.0234) (0.0271)
Constant 0.1915 0.1299 0.3008∗∗ 0.2570∗∗ 0.2533∗ 0.1551∗

(0.0930) (0.0771) (0.0579) (0.0491) (0.0963) (0.0774)
rt−1 -0.0378 -0.0243 -0.1549∗∗ -0.1101∗∗ -0.0178 -0.0083

(0.0261) (0.0227) (0.0281) (0.0258) (0.0265) (0.0259)
c1,1 0.4364∗∗ 0.4192∗∗ 0.4076∗∗ 0.3898∗∗ 0.4745∗∗ 0.4454∗∗

(0.1177) (0.0534) (0.0657) (0.0625) (0.1530) (0.0447)
c2,1 0.0236 -0.0604 0.2298 0.9811∗∗ -0.0858 -0.0536

(0.1103) (0.1215) (0.1469) (0.1431) (0.1740) (0.0809)
c2,2 0.6363∗∗ 0.5456∗∗ -0.1302 -0.0244 0.2851∗ 0.5860∗∗

(0.1091) (0.0895) (0.1293) (0.2674) (0.1306) (0.0633)
c3,1 0.0504 -0.0017 0.1588 0.0311 0.0160 0.0848

(0.0803) (0.0942) (0.0931) (0.0963) (0.0850) (0.0901)
c3,2 0.3476∗∗ 0.3533∗∗ -0.2186 0.4233 0.1330 -0.0061

(0.0932) (0.0891) (0.2076) (0.4901) (0.1015) (0.0820)
c3,3 0.2247∗∗ 0.2649∗∗ -0.2032∗ 0.1203 0.2733∗∗ 0.0000

(0.0464) (0.0689) (0.1003) (1.6087) (0.0797) (0.3439)
α1,1 0.6363∗∗ 0.6157∗∗ 0.3651∗∗ -0.0043 0.6121∗∗ 0.6107∗∗

(0.0572) (0.0355) (0.0401) (0.0422) (0.0591) (0.0352)
α1,2 -0.0059 0.0249 0.2727∗∗ -0.1003 0.0341 0.0343

(0.0454) (0.0349) (0.0627) (0.0812) (0.0306) (0.0205)
α1,3 0.0380 0.0789∗∗ 0.1592∗∗ -0.3590∗∗ 0.0505 0.0823∗∗

(0.0407) (0.0268) (0.0422) (0.0398) (0.0392) (0.0292)
α2,1 0.0132∗ 0.0128 0.0279 0.0132 0.0167 0.0276

(0.0059) (0.0065) (0.0277) (0.0245) (0.0398) (0.0285)
α2,2 0.2069∗∗ 0.1896∗∗ -0.0002 0.0877 0.2085∗∗ -0.0368

(0.0289) (0.0222) (0.0544) (0.0518) (0.0621) (0.0394)
α2,3 -0.0085 -0.0317 -0.0082 -0.0142 0.0087 -0.1708∗∗

(0.0248) (0.0178) (0.0244) (0.0222) (0.0524) (0.0414)
α3,1 -0.0093 -0.0151 0.0109 -0.3324∗∗ -0.0055 -0.0021

(0.0130) (0.0128) (0.0718) (0.0371) (0.0087) (0.0126)
α3,2 0.0515 -0.1755∗∗ 0.1604∗ -0.2552∗∗ 0.0647∗ -0.0846∗∗

(0.0600) (0.0403) (0.0668) (0.0653) (0.0314) (0.0244)
α3,3 0.2338∗∗ 0.0257 0.2967∗∗ 0.1031∗ 0.2475∗∗ 0.0943∗

(0.0400) (0.0411) (0.0310) (0.0411) (0.0292) (0.0386)
β1,1 0.8271∗∗ 0.8340∗∗ 0.9173∗∗ 0.9208∗∗ 0.8326∗∗ 0.8305∗∗

(0.0278) (0.0154) (0.0135) (0.0174) (0.0325) (0.0154)
β1,2 0.0033 -0.0092 -0.0439∗∗ -0.0478 -0.0133 -0.0123

(0.0178) (0.0147) (0.0102) (0.0435) (0.0153) (0.0109)
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β1,3 -0.0139 -0.0304 -0.0456∗∗ 0.0084 -0.0207 -0.0339∗

(0.0178) (0.0125) (0.0111) (0.0175) (0.0201) (0.0136)
β2,1 -0.0045∗ -0.0031 -0.0021 -0.0592∗∗ 0.0052 0.0119

(0.0018) (0.0027) (0.0066) (0.0144) (0.0271) (0.0147)
β2,2 0.9695∗∗ 0.9666∗∗ 0.9911∗∗ 0.8915∗∗ 0.9657∗∗ 0.8690∗∗

(0.0065) (0.0064) (0.0025) (0.0301) (0.0209) (0.0201)
β2,3 -0.0003 0.0029 0.0032 -0.0019 -0.0064 -0.0457∗

(0.0057) (0.0059) (0.0021) (0.0188) (0.0184) (0.0180)
β3,1 0.0012 0.0037 -0.0048 0.0091 -0.0015 -0.0031

(0.0039) (0.0046) (0.0273) (0.0198) (0.0039) (0.0051)
β3,2 -0.0196 -0.0276∗∗ -0.0660∗∗ -0.0011 -0.0124 0.0051

(0.0154) (0.0098) (0.0213) (0.0425) (0.0089) (0.0080)
β3,3 0.9659∗∗ 0.9545∗∗ 0.9362∗∗ 0.8635∗∗ 0.9666∗∗ 0.9676∗∗

(0.0099) (0.0074) (0.0140) (0.0191) (0.0076) (0.0059)
γ1,1 – -0.0167 – -0.2663∗∗ – -0.0186

(0.1088) (0.0686) (0.0729)
γ1,2 – -0.0158 – -0.0026 – -0.0821∗∗

(0.0529) (0.1091) (0.0306)
γ1,3 – 0.0210 – -0.2467∗∗ – -0.0359

(0.0429) (0.0787) (0.0348)
γ2,1 – -0.0003 – -0.0532 – -0.0111

(0.0150) (0.0328) (0.0369)
γ2,2 – -0.0891 – -0.3041∗∗ – -0.4522

(0.0528) (0.0620) (0.0462)
γ2,3 – 0.0594 – 0.0727∗ – -0.0918

(0.0384) (0.0351) (0.0572)
γ3,1 – -0.0027 – -0.1238 – 0.0023

(0.0234) (0.0648) (0.0192)
γ3,2 – -0.2574∗∗ – -0.1856∗ – -0.0669

(0.0587) (0.0836) (0.0342)
γ3,3 – -0.3946∗∗ – -0.3058∗∗ – -0.3106∗∗

(0.0399) (0.0606) (0.0359)

Log-likelihood -8607.514 -8561.906 -7462.039 -7366.101 -7878.433 -7798.384
AIC 15.0610 14.9970 13.0640 12.9120 13.7900 13.6660
SBC 15.1930 15.1690 13.1960 13.0840 13.9220 13.8370

Note: Numbers in parentheses indicate the standard errors. Superscripts **,* indicate significance at 1% and

5% levels. AIC and SBC stand for Akaike and Schwarz information criteria. The i = 1, 2, 3 refer to NSEASI,

BVSP and Hang-Seng indices (emerging markets) and i = 1, 2, 3 for developed markets represent FTSE-100,

Nikkei-225 and DJIA indices respectively. For the combined markets, i = 1, 2, 3 denote NSEASI, DJIA and

Hang Seng indices respectively. Estimation methods: Broyden-Fletcher-Goldfarb-Shannon (BFGS).
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Table A3: BEKK-MGARCH Estimates (With Financial Crisis Period Dummies)

Emerging Stock Markets Developed Stock Markets Combined Stock Markets

Parameter BEKK– BEKK– BEKK– BEKK– BEKK– BEKK–
MGARCH AMGARCH MGARCH AMGARCH MGARCH AMGARCH

Constant 0.1482∗∗ 0.1348∗∗ 0.2358∗∗ 0.1809∗ 0.1206∗∗ 0.1509∗∗

(0.0371) (0.0324) (0.0482) (0.0454) (0.0384) (0.0358)
rt−1 0.3232∗∗ 0.3353∗∗ -0.1363∗∗ -0.1446∗∗ 0.3495∗ 0.3358∗∗

(0.0272) (0.0323) (0.0231) (0.0227) (0.0309) (0.0346)
Constant 0.3394∗∗ 0.3020∗∗ 0.1598∗ 0.1065 0.2741∗∗ 0.2615∗∗

(0.0978) (0.0988) (0.0721) (0.0719) (0.0563) (0.0577)
rt−1 -0.1165∗∗ -0.1068∗∗ -0.0342 -0.0169 -0.1227∗∗ -0.1245∗∗

(0.0259) (0.0237) (0.0244) (0.0245) (0.0265) (0.0263)
Constant 0.2328∗∗ 0.1955∗∗ 0.3111∗∗ 0.2849∗∗ 0.1840∗ 0.1820∗∗

(0.0753) (0.0746) (0.0487) (0.0494) (0.0824) (0.0836)
rt−1 -0.0450∗ -0.0262 -0.1391∗∗ -0.1288∗∗ 0.0072 -0.0068

(0.0225) (0.0238) (0.0256) (0.0251) (0.0263) (0.0262)
c1,1 -0.2425∗∗ 0.2238∗∗ 0.3583∗∗ 0.4146∗∗ 0.2605∗∗ 0.2467∗∗

(0.0504) (0.0473) (0.0560) (0.0741) (0.0509) (0.0457)
c2,1 -0.0894 -0.0602 0.1485 0.8628∗∗ -0.1510 -0.0759

(0.2399) (0.2095) (0.0997) (0.2787) (0.2108) (0.1838)
c2,2 0.4847∗∗ 0.5869∗∗ -0.0022 0.2447 0.3996∗∗ 0.6272∗∗

(0.1086) (0.0985) (0.1623) (0.5620) (0.0935) (0.0826)
c3,1 -0.0311 -0.1106 0.0509 0.1521 -0.0931 -0.0648

(0.1900) (0.1696) (0.0915) (0.0977) (0.3283) (0.1757)
c3,2 0.2073∗ 0.3434∗ 0.0199 -0.0703 0.0439 0.0117

(0.0983) (0.1048) (0.0489) (0.3793) (0.1148) (0.1099)
c3,3 0.2466 0.2966∗∗ 0.3136∗∗ 0.4237∗∗ 0.0000 0.2472

(0.0591) (0.0822) (0.0509) (0.0793) (0.3741) (0.1991)
α1,1 0.6504∗∗ 0.6236∗∗ 0.3156∗∗ 0.0422 0.6321∗∗ 0.6267∗∗

(0.0391) (0.0378) (0.0314) (0.0459) (0.0412) (0.0379)
α1,2 -0.0519 -0.0100 0.1969∗∗ 0.1090 0.0505∗ 0.0349

(0.0391) (0.0358) (0.0391) (0.0605) (0.0239) (0.0233)
α1,3 0.0071 0.0479 0.0350 -0.2928∗∗ 0.0473 0.0437

(0.0302) (0.0301) (0.0374) (0.0444) (0.0318) (0.0319)
α2,1 0.0067 0.0032 0.0190 0.0130 -0.0111 0.0164

(0.0059) (0.0061) (0.0205) (0.0256) (0.0236) (0.0214)
α2,2 0.1840∗∗ 0.1709∗∗ -0.0120 0.0310 -0.1242∗∗ -0.0630

(0.0223) (0.0243) (0.0300) (0.0522) (0.0340) (0.0414)
α2,3 -0.0109 -0.0370 -0.0161 -0.0245 -0.2798∗∗ -0.1638∗∗

(0.0172) (0.0191) (0.0198) (0.0269) (0.0371) (0.0470)
α3,1 -0.0056 -0.0015 -0.0913∗ -0.3561∗∗ 0.0072 -0.0004

(0.0116) (0.0114) (0.0355) (0.0421) (0.0125) (0.0124)
α3,2 -0.0011 -0.1796∗∗ 0.0397 -0.2286∗∗ -0.1223∗ -0.0723∗

(0.0327) (0.0400) (0.0333) (0.0488) (0.0210) (0.0256)
α3,3 0.1909∗∗ -0.0090 0.2765∗∗ 0.0784 0.0603 0.0719

(0.0230) (0.0392) (0.0265) (0.0458) (0.0329) (0.0445)
β1,1 0.8274∗∗ 0.8360∗∗ 0.9237∗∗ 0.9115∗∗ 0.8323∗∗ 0.8295∗∗

(0.0159) (0.0156) (0.0129) (0.0254) (0.0172) (0.0168)
β1,2 0.0248 0.0104 -0.0287∗ -0.0479 -0.0049 -0.0025

(0.0147) (0.0149) (0.0135) (0.0307) (0.0184) (0.0105)
β1,3 0.0046 -0.0081 -0.0175 0.0014∗ -0.0210 -0.0046

(0.0124) (0.0133) (0.0138) (0.0263) (0.0483) (0.0154)
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β2,1 -0.0031 -0.0023 0.0041 -0.0534∗∗ 0.0098 0.0014
(0.0021) (0.0021) (0.0063) (0.0242) (0.0213) (0.0184)

β2,2 0.9775∗∗ 0.9704∗∗ 1.0002∗∗ 0.9052∗∗ 0.4705∗∗ 0.8727∗∗

(0.0046) (0.0063) (0.0033) (0.0323) (0.0963) (0.0241)
β2,3 0.0010 0.0050 0.0123 -0.0228 1.4777∗∗ -0.0469

(0.0039) (0.0065) (0.0035) (0.0297) (0.0571) (0.0253)
β3,1 -0.0003 0.0032 0.0341∗ 0.0141 -0.0034 -0.0013

(0.0043) (0.0039) (0.0145) (0.0213) (0.0227) (0.0049)
β3,2 -0.0023 -0.0219 -0.0261∗ 0.0519 0.4769∗∗ 0.0043

(0.0073) (0.0115) (0.0106) (0.0269) (0.0577) (0.0101)
β3,3 0.9780∗∗ 0.9568∗∗ 0.9498∗∗ 0.8811∗∗ -0.4930∗∗ 0.9708∗∗

(0.0051) (0.0093) (0.0094) (0.0197) (0.0982) (0.0104)
γ1,1 – 0.0322 – 0.3999∗∗ – 0.0464

(0.1095) (0.0699) (0.0881)
γ1,2 – 0.0281 – 0.5206 – 0.0694

(0.0586) (0.0775) (0.0414)
γ1,3 – -0.0300 – 0.2426∗∗ – -0.0044

(0.0460) (0.0670) (0.0435)
γ2,1 – 0.0154 – -0.1042∗ – 0.0037

(0.0159) (0.0442) (0.0371)
γ2,2 – 0.1188∗ – -0.3526∗∗ – 0.4334∗∗

(0.0547) (0.0687) (0.0567)
γ2,3 – -0.0639 – -0.0674 – 0.0839

(0.0406) (0.0455) (0.0784)
γ3,1 – -0.0185 – 0.0504 – 0.0015

(0.0236) (0.0779) (0.0165)
γ3,2 – 0.1748∗ – 0.0618 – 0.0546

(0.0721) (0.0797) (0.0428)
γ3,3 – 0.3760∗ – 0.3134∗∗ – 0.2996∗∗

(0.0486) (0.0584) (0.0515)
DGFC(1,1) 2.6638∗∗ -2.5295∗∗ 0.2588 0.9272∗∗ 1.8057∗∗ -2.4903∗∗

(0.6895) (0.7027) (0.2490) (0.2865) (0.6628) (0.6751)
DGFC(2,1) -0.4830 0.8489 0.7301∗∗ 0.7195∗ -0.4109 0.9085

(0.5031) (0.4510) (0.2355) (0.3348) (0.3279) (0.5163)
DGFC(2,2) -0.4126 -0.5870 0.0010 0.0049 -0.3995 -0.2646

(1.61036) (0.6103) (0.4968) (0.6241) (0.8054) (1.3765)
DGFC(3,1) -0.4642 0.7481 0.6853∗∗ 1.0362∗∗ -0.6601 0.9594

(0.4596) (0.4005) (0.2175) (0.2885) (0.5287) (0.5083)
DGFC(3,2) -0.1074 -0.3434 -0.0213 -0.0304 -0.0439 0.3264

(2.0919) (0.5101) (0.4688) (0.3690) (1.1068) (1.2998)
DGFC(3,3) -0.2466 -0.2966 -0.3137 -0.4236 0.0000 -0.2472

(0.9215) (0.2929) (0.2193) (0.3431) (0.8451) (0.3822)
t shape 7.0451∗∗ 7.6374∗∗ 8.2633∗∗ 10.7538 6.8885∗∗ 8.5247∗∗

(0.7135) (0.7523) (0.8283) (1.4973) (0.5886) (0.9302)

Log-likelihood -8491.712 -8462.962 -7372.318 -7312.405 -7768.775 -7714.518
AIC 14.8710 14.8370 13.0820 12.8310 13.6110 13.5320
SBC 15.0340 15.0390 13.0820 13.0330 13.7740 13.7340

Note: Numbers in parentheses indicate the standard errors. Superscripts **,* indicate significance at 1% and

5% levels. AIC, and SBC stand for Akaike and Schwarz information criteria. The i = 1, 2, 3 refer to NSEASI,

BVSP and Hang-Seng indices (emerging markets) and the same numbers for developed markets represent

FTSE-100, Nikkei-225 and DJIA indices. For the combined markets, i = 1, 2, 3 denote NSEASI, DJIA and

Hang Seng indices respectively. The BEKK-MGARCH model augmented with shift dummies is expressed as

Ht = (C∗ + Edt)
′(C∗ + Edt) + (A∗)′(εt−1ε

′
t−1)A∗ + (B∗)′Ht−1B

∗ + (γ∗)′Gt−1G
′
t−1γ

∗,, where E is (like C∗)

a lower triangular matrix. Estimation methods: Broyden-Fletcher-Goldfarb-Shannon (BFGS).
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Figure A: Variances (diagonal) and Correlation (off-diagonal) (Emerging and De-
veloped Markets Return) from fitted Standard BEKK-GARCH Model (1994–2016)
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