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When using the convex hull approach in the boundary modeling process, Model-
Based Calibration (MBC) software suites – such as Model-Based Calibration Tool-
box from MathWorks – can be computationally intensive depending on the amount
of data modeled. The reason for this is that the half-space representation of the
convex hull is used. We discuss here another representation of the convex hull,
the vertex representation, which proves capable to reduce the computational cost.
Numerical comparisons in this article are executed in MATLAB by using MBC
Toolbox commands, and show that for certain conditions, the vertex representa-
tion outperforms the half-space representation.

1 Introduction

Model-Based Calibration (abbr. MBC) is a systematic approach for more cost-effective and
short-term development of automotive engines, that enables engineers to design more efficient
automotive engines, e.g., more fuel-efficient and/or eco-friendly engines. For efficient design
of automotive engines, mathematical models for automotive engines are created in MBC, and
statistics and optimization are applied to the model by using MBC software, such as [9].

Boundary modeling is one of the processes in MBC used to represent/approximate a region
where the automotive engine works normally, e.g., without misfire and knock of the engine.
We call the region the admissible operation domain (abbr. AOD). In general, as it is assumed
that internal-combustion engines are highly nonlinear systems, it is impossible to exactly rep-
resent the AOD of the automotive engine from a finite number of acquired data. Thus one
approximates the AOD instead of representing it exactly. One of the approximations of AOD
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is to use the convex hull of a set of data. This is a simple way to approximate AOD from data
and is implemented in MBC software, such as [9]. In addition to the convex hull, the use of
support vector machine for the approximation of AOD is also proposed in [6].

An AOD is used as a constraint in constrained optimization problems. One can assume
that some of optimal solutions will lie on the boundary of the feasible region, otherwise the
constraints would be irrelevant. That is why a proper handling of AODs is important in engine
optimization problems.

The motivation of this article comes from the comment in [4] that some of the MBC software
suites spend much computational time constructing a convex hull boundary model. In general,
two representations for the convex hull of a set of points are possible, the half-space repre-
sentation and the vertex representation. The reason for the comment was that the half-space
representation for the convex hull of a set of points is typically used by software like MBC
Toolbox, instead of the vertex representation.

The contribution of this article is to propose the use of the convex hull in the vertex repre-
sentation instead of the half-space representation. In practice, the former representation seems
to perform better than the latter. In fact, the numerical comparison in this article shows that
the vertex representation is less computationally intensive than the hyperplane representation
in the case when the dimension of inputs for engine models is more than five.

The organization of this article is as follows: convex hull modeling theory is discussed in
Section 2. Section 3 provides an application of the vertex representation of the convex hull
and numerical experiments. Conclusion is given in Section 4. Throughout this article, we
assume that the measured engine data was acquired by keeping the engine under test at
steady condition by controlling its inputs.

2 Preliminaries

We give a brief introduction on boundary modeling via the convex hull in Section 2.1, and
some definitions and facts on the convex hull for a set of points in Section 2.2. Refer to [1, 3]
for more details regarding the convex hull mathematical representation.

2.1 Boundary modeling in model-based calibration

The behavior of automotive engines is represented by the state space representation. One of
the simplest formulations is as follows:{

dx

dt
= f(x, u),

y = g(x, u),

where t is time, x, u and y are vectors which represent the state of the automotive engine, the
input signals into the engine and the output signals from the engine, respectively.

Control theory, statistics and optimization are applied to such mathematical models of auto-
motive engines to design more fuel-efficient and/or eco-friendly engines. MBC is a systematic
approach for aiding such an efficient design of automotive engines and consists of some pro-
cesses, such as the design of experiments and the response surface methodology.

Boundary modeling is a functionality used in MBC, and is applied to define an AOD for
a mathematical engine model. Input signals for automotive engines under development have
specific operating ranges and dynamics. In addition, automotive engines may not behave
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normally when some specific input signals are used, leading to undesirable events such as misfire
and knock of the engine. In boundary modeling, one defines that approximates/represents a
region of input signals where automotive engines behave normally, e.g., without misfire and
knock of the engine.

One of the approximations of the AOD is the convex hull of a set of a finite number of input
signals by which the automotive engine behaves normally. This approximation may be too
rough, but is a simple way to define an AOD in practice. In fact, it is implemented in some
MBC software, such as [9]. Figure 1 displays examples of the approximation of the AOD by
the convex hull. In Figure 1, black circles are input signals by which the automotive engine
behaves normally, and red circles indicates input signals by which the automotive engine does
not behave normally. The blue region is the approximation of the AOD via the convex hull.

Input 1
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Figure 1: Examples of the approximation of the AOD by the convex hull

Note that as we mentioned, the approximation of the AOD by the convex hull may be rough.
In fact, it does not always represent the region where the automotive engine behave normally.
For instance, the approximation at the right of Figure 1 contains red circles, which means that
the automotive engine does not behave normally around the circle.

The approximation of the AOD is used in other processes in MBC as follows:

(P1) Problem of determining whether a new point is in the approximated AOD or not. This
is mathematically formulated as the problem of determining

v̂ ∈ P or v̂ ̸∈ P,

where v̂ is a new point and P is an approximation of the AOD.

(P2) Optimization of some objective functions over the approximated AOD or a subset of the
AOD for more realistic situation in response surface methodology. This is mathematically
formulated as

min
v∈Rn

{f(v) : gj(v) ≥ 0 (j = 1, . . . , k), v ∈ P} ,

where f(v) is the objective function and gj(v) ≥ 0 is an engine operating constraint.

2.2 Convex hull for a set of points in Rn

Let V = {v1, . . . , vm} be a finite set of distinct points in Rn. A point

x =

m∑
i=1

αivi,where

m∑
i=1

αi = 1, αi ≥ 0 for i = 1, . . . ,m,
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is called a convex combination of v1, . . . , vm. In particular, the set {αa+ (1−α)b : 0 ≤ α ≤ 1}
is called the line segment with the endpoints a and b and denoted by [a, b].

A set K ⊆ Rn is convex if for every a, b ∈ K, the line segment [a, b] is contained in K. We
define the empty set ∅ as a convex set. Figure 2 displays an example of convex and nonconvex
sets. In fact, for the set at the left of Figure 2, we see that for every a, b in the set, the line
segment [a, b] is contained in the set, which implies that the set is convex. In contrast, the line
segment [a, b] is not contained in the set at the right of Figure 2.

a

b

a

b

Figure 2: Convex set (left) and nonconvex set (right)

Let K ⊆ Rn be a convex set. A point x ∈ K is an extreme point or vertex of K if y, z ∈ K,
0 < α < 1 and x = αy + (1− α)z imply x = y = z. In other words, the extreme point of K is
a point which does not have any convex combinations with other points in K. For instance,
at the set of the left in Figure 2, the black circles at the corners indicate an extreme point of
the convex set. We denote the set of extreme points in K by ext(K).

The convex hull conv(A) of a subset A ⊆ Rn is the set of all convex combination of points
from A. For a set V = {v1, . . . , vm} of distinct points in Rn, conv(V ) is formulated mathemat-
ically as

conv(V ) =

{
v ∈ Rn : v =

m∑
i=1

αivi for some
m∑
i=1

αi = 1, αi ≥ 0 (i = 1, . . . ,m)

}
.

Since some points in V are extreme points of the convex hull, this representation of conv(V )
is called the vertex representation (abbr. V-representation). Figure 3 displays an example of
the convex hull of V = {(0, 0), (2, 0), (3, 2), (1, 1), (0, 1)}. Since all points except for (1, 1) are
extreme points, ext(conv(V )) = {(0, 0), (2, 0), (3, 2), (0, 1)}. In fact, (1, 1) is not the extreme
point of the convex hull because (1, 1) can be represented by a convex combination with (2, 0),
(3, 2) and (0, 1). In addition, we see conv(V ) = conv(ext(V )) in Figure 3.

(0, 0) (2, 0)

(3, 2)

(0, 1)

(1, 1)

Figure 3: Convex hull of V = {(0, 0), (2, 0), (3, 2), (1, 1), (0, 1)}

A bounded convex set K ⊆ Rn is a polytope if ext(K) is a finite set. Clearly the convex hull
of a set of a finite numbers of points in Rn is a polytope. A half-space is a set which is defined
as {x ∈ Rn : aTx ≤ b}, with suitable a ∈ Rn and b ∈ R. A set P is called polyhedron if P
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is formed as the intersection of finitely many half-spaces, i.e., there exist a1, . . . , ak ∈ Rn and
b1, . . . , bk ∈ R such that P =

{
x ∈ Rn : aTi x ≤ bi (i = 1, . . . , k)

}
.

Minkowski-Weyl’s theorem ensures that every polytope can be reformulated as a polyhedron.
This implies that one can describe the convex hull of a set of points by some half-spaces
in addition to the V-representation, which is called the half-space representation (abbr. H-
representation).

Theorem 2.1 (Minkowski-Weyl) Every polytope is polyhedron, i.e., for a given polytope P ,
there exist a1, . . . , ak ∈ Rn and b1, . . . , bk ∈ R such that P = {x ∈ Rn : aTi x ≤ bi (i = 1, . . . , k)}.
Moreover, every bounded polyhedron is also polytope, i.e., for a given polyhedron P , there exist
v1, . . . , vm ∈ P such that P = conv(V ), where V = {v1, . . . , vm}.

We give two examples of the V- and H-representations. We see from these examples that one
needs to choose a suitable representation of the convex hull from the viewpoint of computation.

Example 2.2 (n-dimensional unit cube) Let P = {x ∈ Rn : 0 ≤ xi ≤ 1 (i = 1, . . . , n)}. P is
called the n-dimensional unit cube. Figure 4 displays an example of 3-dimensional unit cube.
This is already the H-representation. In fact, we define ai ∈ Rn, bi ∈ R (i = 1, . . . , 2n) as
follows:

ai =

{
ei (i = 1, . . . , n),
−ei (i = n+ 1, . . . , 2n),

and bi =

{
1 (i = 1, . . . , n),
0 (i = n+ 1, . . . , 2n),

where ei is the ith n-dimensional standard unit vector. Then P can be reformulated by {x ∈
Rn : aTi x ≤ bi (i = 1, . . . , 2n)}. On the other hand, for ext(P ) = {x ∈ Rn : xi = 0 or 1}, the
V-representation of P is

P = conv({(0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (1, 1, . . . , 1)}).

We remark that the V-representation of P needs 2n extreme points in ext(P ), whereas the
H-representation needs only 2n half-spaces.

Example 2.3 (Cross-polytope) Let P = {x ∈ Rn : |x1| + · · · + |xn| ≤ 1}. P is called the n-
dimensional cross-polytope. Figure 4 displays an example of the 3-dimensional cross-polytope.
The H-representation of P is

P =


x ∈ Rn :

x1 + x2 + · · ·+ xn ≤ 1
−x1 + x2 + · · ·+ xn ≤ 1
x1 − x2 + · · ·+ xn ≤ 1
−x1 − x2 + · · ·+ xn ≤ 1

...
−x1 − x2 − · · · − xn ≤ 1


.

Here the H-representation is the intersection of 2n half-spaces. In contrast, the V-representation
of P can be formulated by 2n points in Rn. In fact, since both ei and −ei are extreme points
in P , the V-representation of P is P = conv({±e1, . . . ,±en}).

A more compact representation of the convex hull is often useful from the viewpoint of
computation. For instance, the V-representation in Example 2.2 and the H-representation in
Example 2.3 require more computer memory even for small n, whereas the H-representation
in Example 2.2 and the V-representation in Example 2.3 need less memory even for large n.
Hence the H-representation in Example 2.2 and the V-representation in Example 2.3 are more
suitable to deal with in actual computers when the dimension n is large.
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(0, 1, 1)

(0, 0, 1)

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

(1, 0, 0)

(−1, 0, 0) (1, 0, 0)

(0, 0, 1)

(0, 0,−1)

Figure 4: 3-dimensional unit cube (left) and cross-polytope (right)

3 Application of the V-representation to model based calibration
for automotive engines

We propose a way to handle the V-representation of the convex hull of a set of points without
conversion into the H-representation in Sections 3.2 and 3.3. This way uses the results in [10].
Before mentioning them, we discuss the computational difficulty in using some MBC software
in Section 3.1.

3.1 Computational difficulty due to the H-representation

As we have already mentioned in Section 2.1, the convex hull of a set of input signals which make
the automotive engine behave normally is one of the approximation of the AOD of the engine.
Let V = {v1, . . . , vm} be a set of input signals v1, . . . , vm ∈ Rn. Then the approximation via
the convex hull is formulated as conv(V ) and is the V-representation. On the other hand,
for both (P1) and (P2) in Section 2.1, it is converted into P = {v ∈ Rn : Av ≤ b} for some
A ∈ Rk×n and b ∈ Rk in some MBC software, such as [9]. This corresponds to the conversion
of the V-representation of the convex hull conv(V ) into the H-representation, and after this
conversion, (P1) and (P2) are respectively equivalent to

(P1)’ Problem of determining whether Av̂ ≤ b or Av̂ ̸≤ b, and

(P2)’ Solution of min
v∈Rn

{f(v) : gj(v) ≥ 0 (j = 1, . . . , k), Av ≤ b}.

In general, the conversion is computationally costly and generates too many half-spaces to
be handled efficiently by actual computers available RAM memory. This is the main compu-
tational difficulty in using the approximation of the AOD via the convex hull implemented in
some MBC software. Table 1 displays the computation time and the number of generated half-
spaces for the conversion of the V-representation into the H-representation. In this numerical
experiment1, we generated a set V of m points in [−1, 1]n randomly and used vert2lcon.m

in [8], which calls the built-in function convexhulln in MATLAB based on Qhull [11]. “–” in
Table 1 indicates that we do not compute the conversion because it spends more than 1000
sec. We observe from Table 1 that when n is not so large, the conversion is not so compu-
tationally intensive and is rather fast. However, when n is larger (typically more than 10),
1The specification on the used computer is as follows: OS is Ubuntu 14.04, the CPU is Intel R⃝ Xeon R⃝ with
3.10GHz, and the memory is 128GB and version of MATLAB is R2015b.
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n
m 5 7 9 11 13 15

50 0.34 0.15 1.23 11.25 72.05 391.27
566 5,084 42,430 279,804 1,517,292 6,898,066

100 0.04 0.42 8.41 107.85 1506.60 –
1,326 16,382 229,218 2,399,099 25,526,149 –

200 0.06 1.20 32.88 699.06 – –
1,970 42,918 851,321 13,002,403 – –

1000 0.15 7.44 394.21 – – –
6,724 238,486 8,053,847 – – –

2000 0.24 13.87 980.61 – – –
9,262 427,048 17,550,631 – – –

Table 1: Numerical results on the conversion of the V-representation into the H-representation
: computation time [sec] (upper) and the number of generated half-spaces (lower)

generating the convex hull in the H-representation becomes computationally intensive. More-
over, since it generates many half-spaces, we can expect that the optimization in (P2)’ will
also be computationally intensive.

3.2 Application of the V-representation to (P1) : to determine whether a new
point is in the convex hull or not

Let V = {v1, . . . , vm} be a set of points in Rn. For (P1) in Section 2.1, i.e., the problem of
determining whether v̂ ∈ conv(V ) or v̂ ̸∈ conv(V ), we have two approaches via H-representation
and V-representation. In the approach via H-representation, after converting conv(V ) to the
linear inequalities Av ≤ b, we need to check whether Av̂ ≤ b or not. It is relatively easy to
check Av̂ ≤ b, while the conversion is computationally intensive for not so large m and/or n as
in Table 1. On the other hand, in the approach via V-representation, the linear programming
(abbr. LP) method is available. At the end of this subsection, we will show that the approach
via V-representation is much faster than the H-representation.

Fundamentally, LP can be regarded as an optimization problem, i.e., the problem of mini-
mization or maximization of a linear objective function over a polyhedron. The simplex method
and interior-point method are efficient algorithms to solve a LP problem or detect the infeasi-
bility of the problem. In addition, linprog implemented in Optimization Toolbox offered by
MathWorks and [5], are available as commercial software to solve LP problems. Refer to [2, 7],
for more details on LP.

One can determine whether a new point v̂ is in conv(V ) or not by solving the following LP
problem:

min
α1,...,αm

{
m∑
i=1

ciαi :

m∑
i=1

αivi = v̂,

m∑
i=1

αi = 1, αi ≥ 0 (i = 1, . . . ,m)

}
, (1)

where c ∈ Rn is fixed arbitrarily. Since any convex combination of v̂ with v1, . . . , vm is feasible
in (1), we see that

• if the optimal value of (1) is finite, then v̂ is in conv(V ), and,

• otherwise (1) is infeasible, i.e., the feasible region is empty, and thus v̂ is not in conv(V ).
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Hence one can determine whether a new point v̂ is in P or not by solving (1) instead of
constructing Av ≤ b for the H-representation of conv(V ).

Table 2 displays the computation time for the same sets V of m points in Rn as Table
1. Here we generate v̂ ∈ [−1, 1]n randomly. We used linprog to solve all LP problems.
Comparing Table 2 with Table 1, we see that the determination of v̂ ∈ conv(V ) via LP method
is much faster in computation time than the conversion into the H-representation of conv(V ).
This implies that the H-representation for (P1) will require more time to compute than the
V-representation. For instance, in the case (m,n) = (1000, 9), the same V is used in Tables 1
and 2, and it spends 394.21 seconds to construct the H-representation of conv(V ), whereas it
spends only 0.09 seconds to determine whether v̂ ∈ conv(V ) or not. Since we need to check
Av̂ ≤ b for the determination of v̂ ∈ conv(V ) via the H-representation, where A and b are
constructed by the H-representation of conv(V ), the total amount of computation time via the
H-representation is more than 394.21 seconds. Therefore, we can conclude from Tables 1 and
2 that the V-representation is less computationally intensive than H-representation.

n
m 5 7 9 11 13 15

50 0.26 0.02 0.01 0.02 0.02 0.04

100 0.03 0.01 0.01 0.01 0.02 –

200 0.02 0.01 0.02 0.13 – –

1000 0.02 0.03 0.09 – – –

2000 0.03 0.04 0.12 – – –

Table 2: Computation time [sec] to determine whether a new point is in the convex hull or not
by using LP method

3.3 Application of the V-representation to (P2) : an optimization problem in the
frame of MBC response surface methodology

As we have already mentioned in (P2) of Section 2.1, the following optimization problems are
typically solved by using MBC models obtained using the response surface methodology:

min
v∈Rn

{f(v) : gj(v) ≥ 0 (j = 1, . . . , k), v ∈ P} , (2)

where P is the approximation of AOD by the convex hull for a set V = {v1, . . . , vm} of points
in Rn, i.e. P = conv(V ). Since any v ∈ conv(V ) can be represented by a convex combination
of v1, . . . , vm, the optimization (2) can be equivalently reformulated as

min
α1,...,αm∈R

f̃(α1, . . . , αm) :

g̃j(α1, . . . , αm) ≥ 0 (j = 1, . . . , k),
m∑
i=1

αi = 1, αi ≥ 0 (i = 1, . . . ,m)

 , (3)

where f̃(α1, . . . , αm) = f

(
m∑
i=1

αivi

)
and g̃j is defined in a similar manner to f̃ .

Before showing numerical comparison of (3) with (2), we mention some advantages and
disadvantages of the formulation (3):
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(I) One can skip the process of constructing the H-representation of conv(V ). As we have
already seen in Table 1, the conversion is computationally intensive, and thus one can
greatly reduce the computational cost.

(II) Since one does not apply the conversion of the V-representation of conv(V ) into the
H-representation, the number of inequality constraints in (3) is much lower than (2)
formulated by the H-representation. Consequently, the feasibility check of a generated
solution in algorithms of optimization for (3) is much easier than (2).

(III) In contrast, the number of variables in (3) increases. In fact, it is m, while for (2) is n,
and thus the computational cost increases in one evaluation of a function value at a given
solution. This is the disadvantage of the formulation (3). For instance, we will see in
Table 3 that (2) formulated by the H-representation is more efficient than (3) for n = 4.

To compare (3) with (2) formulated by the H-representation, we use a diesel engine data
set. This data set consists of 875 observations and each measured observation consists of
following nine engine measurements, i.e., Start of main injection event MAINSOI [degCA],
Common rail fuel-pressure FUELPRESS [MPa], Variable-geometry turbo charger [VGT], vane
position VGTPOS [mm], Exhaust gas recirculation (EGR) valve opening position EGRPOS
[ratio], Amount of injected fuel mass during main injection event MAINFUEL[mg/stroke],
Mass-flow ratio of recirculated exhaust gas EGRMF [ratio], Air-Fuel ratio AFR [ratio], VGT
rotational speed VGTSPEED [rpm], and in-cylinder peak pressure PEAKPRESS [MPa]. The
measurements were performed at seven specific engine operating points, expressed as (Engine
Speed SPEED [rpm], Brake Torque BTQ [Nm]) pairs.

Next, we generated point-by-point response surface models, i.e., seven models, for the Brake-
specific Fuel Consumption BSFC [g/kWh], by using the following three types of inputs from
this diesel engine data set:

(A type) BSFCp(MAINSOI, FUELPRESS, VGTPOS, EGRPOS),

(B type) BSFCp(MAINSOI, FUELPRESS, VGTPOS, EGRPOS, MAINFUEL, EGRMF, AFR),
and

(C type) BSFCp(MAINSOI, FUELPRESS, VGTPOS, EGRPOS, MAINFUEL, EGRMF, AFR,
VGTSPEED, PEAKPRESS),

where p = 1, . . . , 7.
The dimension n of these data sets is 4, 7 and 9, respectively. We considered different n in

order to investigate the scalability of our proposed approach and to compare the computational
cost with the H-representation of the convex hull.

Next, for each data set, we have solved the following seven optimization problems, one for
each operating point set:

min
v∈Rn

{fp(v) : v ∈ P} (p = 1, . . . , 7),

where P = conv(V ), and V consists of a subset of the initial 875 n-dimensional vectors, since
the approach we adopted is a point-by-point one. The measured points in each subset are
unique. As an indication, each local model consisted of 125 of such measurements, and for
each local model a corresponding convex hull was generated. Next, an optimization problems
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was considered. For this, we generate seven objective functions fp (for example using BSFC as
the objective to be minimized) and do not use any extra constraint gj(v) ≥ 0 in this numerical
experiment, except for the boundary model constraint itself. In conclusion, we have performed
a point-by-point minimization problem for BSFC.

Table 3 displays numerical comparison of (3) with (2) formulated by the H-representation
of P . In this numerical experiment2, we use MBC Toolbox [9] and compare computation time
of (3) with (2). The third and fourth columns in Table 3 are the computation time of the
conversion of P into the H-representation and the total of computation time for seven types of
optimization, respectively. We do not describe the time in (3), but “–” in Table 3 because we
do not convert P into the H-representation. We used fmincon with interior-point algorithm
implemented in Optimization toolbox of MATLAB to solve both (2) and (3). The optimization
settings that were used to obtain the solution are listed in Table 4. For the settings not listed
in Table 4 the defaults settings were used.

We observe the following from Table 3.

(i) In (A type) and (B type), i.e., n = 4 and n = 7, (2) formulated by the conversion of
H-representation is faster than (3), whereas in (C type), (3) is approximately 2 times
faster than (2). In fact, as we can expect form Table 1, the number of linear inequalities
in (2) considerably increases. Consequently, the evaluation of computed solutions at each
iteration becomes computationally intensive.

(ii) The computation time of converting conv(V ) into the H-representation considerably in-
creases as n increases. This can be also expected from Table 1. As (3) can skip this
conversion, we can expect that (3) is more efficient than (2) for n ≥ 9.

H-representation Optimization

(2) (A type) 0.06 5.33
(B type) 7.72 15.05
(C type) 285.31 66.65

(3) (A type) – 45.52
(B type) – 26.06
(C type) – 37.94

Table 3: Comparison of (3) with (2) formulated by the H-representation of P in computation
time [sec]

4 Conclusion

We propose a way to reduce the computational cost in the approximation of the AOD via
the convex hull. The H-representation of the convex hull is identified as the main bottleneck.
We focus on the two processes in MBC and observe that the computational cost is greatly
reduced when using the V-representation of a set of points instead of the H-representation.
More precisely, when the dimension n of the space in which a set V of points lies is less than

2The specification on the used computer is as follows: OS is Windows 7, the cpu is Intel R⃝ CoreTM i7 with
3.60GHz, and the memory is 32GB and version of MATLAB is R2015b.
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Maximum number of function evaluations 5000 for H-rep.
20000 for V-rep.

Maximum number of iterations 500

Maximum change in variables for finite-difference gradients 0.1

Minimum change in variables for finite-difference gradients 10−8

Step tolerance for free variables 10−6

Constraint violation tolerance 10−6

Objective function tolerance 10−6

Table 4: Optimization options used by fmincon

seven, the H-representation is not so computationally intensive. Otherwise it becomes more
computationally intensive than the V-representation.

Enumeration of all the extreme points in conv(V ) may be useful when the V-representation
is applied to (P1) and (P2) described in Section 3. In fact, this is ensured by Krein-Milman’s
theorem that for every bounded closed convex set A, conv(A) = conv(ext(A)) holds. A simple
way to enumerate all extreme points of conv(V ) is to solve the following LP problem for every
vk ∈ V :

min
αi (i̸=k)


m∑
i̸=k

ciαi :
m∑
i̸=k

αivi = vk,
m∑
i̸=k

αi = 1, αi ≥ 0 (i ̸= k)

 . (4)

If the optimal value is finite, then vk is not an extreme point in conv(V ) because vk is a
convex combination with other vi except for vk. Otherwise (4) is infeasible, and thus vk is an
extreme point. This way is used as a pre-processing for (P1) and (P2). If conv(V ) consists
a few extreme points in comparison to the set V , then we can expect the improvement of
performance for (P1) and (P2). See [10] for a much faster algorithm of the enumeration of all
extreme points.
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