
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Introduction to fuzzy systems, neural networks,
and genetic algorithms

Takagi, Hideyuki
Kyushu Institute of Design

https://hdl.handle.net/2324/1661892

出版情報：Intelligent hybrid systems : fuzzy logic, neural networks, and genetic algorithms,
pp.3-33, 1997-09-01. Kluwer Academic Publishers
バージョン：
権利関係：

Introduction to Fuzzy Systems, Neural Networks, and Genetic

Algorithms

Hideyuki TAKAGI ∗

Kyushu Institute of Design

1 Introduction

Soft Computing technologies are the main topics of
this book. This chapter provides the basic knowl-
edge of fuzzy systems (FSs), neural networks (NNs),
and genetic algorithms (GAs). Readers who have
already studied these technologies may skip the ap-
propriate sections.

To understand the functions of FSs, NNs, and
GAs, one needs to imagine a multi-dimensional
input–output space or searching space. Figure 1 is
an example of such a space.

x1
x2

y

Figure 1: Example of a multi-dimensional space.

Suppose this space is a two-input and one-output
space. FSs and NNs can form this nonlinear input–
output relation. They realize the complex nonlinear-
ity by combining multiple simple functions. The FS
separates the space into several rule areas whose par-
tial shapes are determined by membership functions
and rule output. The NNs form the shape by com-
bining sigmoidal, radial, or other simple functions
that are enlarged, shrinked, upset, and/or shifted
by synaptic weights. A simple example is shown in
section 3.4.

∗4-9-1, Shiobaru, Minami-ku, Fukuoka, 815-8540 Japan,
TEL&FAX +81-92-553-4555, E-mail: takagi@kyushu-
id.ac.jp, URL: http://www.kyuhsu-id.ac.jp/ takagi

0 This artcle appeared in Intelligent Systems: Fuzzy Logic,
Neural Networks, and Genetic Algorithms, Ch.1, pp.1–33,
edited by D. Ruan, Kluwer Academic Publishers (Norwell,
Massachusetts, USA), (September, 1997).

Suppose, however, Figure 1 is a searching space.
Then, the vertical axis shows evaluation values, such
as error values for the NNs and fitness values for
the GAs. The NNs and GAs determine the best
evaluation position in the (x1, x2) searching space.

This chapter introduces the basic knowledge of
these three technologies and provides an overview of
how these technologies are cooperatively combined
and have been applied in the real world.

2 What Are Fuzzy Systems

2.1 Fuzzy theory and systems

Fuzzy sets are the basic concept supporting fuzzy
theory. The main research fields in fuzzy theory are
fuzzy sets, fuzzy logic, and fuzzy measure. Fuzzy
reasoning or approximate reasoning is an application
of fuzzy logic to knowledge processing. Fuzzy control
is an application of fuzzy reasoning to control.

Although most applications of fuzzy theory have
been biased toward engineering, these applications
have recently reached other disciplines, such as med-
ical diagnostics, psychology, education, economy,
management, sociology, etc. The number of fuzzy
applications in the field of KANSEI — a synthetic
concept of emotion, impression, intuition, and other
human subjective factors — has especially increased
in Japanese fuzzy society.

It is not within the scope of this chapter to provide
an overview for every aspect of fuzzy theory. We will
focus on a fuzzy controller as an example of a simple
FS to see how the output of the FS is calculated by
fuzzy rules and reasoning.

2.2 Aspects of fuzzy systems

One feature of FSs is the ability to realize a com-
plex nonlinear input–output relation as a synthe-
sis of multiple simple input–output relations. This
idea is similar to that of NNs (compare with Figure
11.) The simple input–output relation is described
in each rule. The boundary of the rule areas is not
sharp but ‘fuzzy.’ It is like an expanding sponge
soaking up water. The system output from one rule
area to the next rule area gradually changes. This is
the essential idea of FSs and the origin of the term
‘fuzzy.’

Another feature of FSs is the ability to separate
logic and fuzziness. Since conventional two-value
logic-based systems cannot do this, their rules are
modified when either logic or fuzziness should be
changed. The FSs modify fuzzy rules when logic
should be changed and modify membership func-
tions which define fuzziness when fuzziness should
be changed.

Suppose that the performance of an inverted pen-
dulum controller is imperfect. Define a and ȧ as the
angle between a pole in right side and vertical line
and its angular velocity, respectively.

IF a is positive big and ȧ is big, THEN move
a car to the right quickly. and

IF a is negative small ȧ is small, THEN move
a car to the left slowly.
are correct logic, and you need not change the fuzzy
rules themselves. Only the definition of fuzziness
must be modified in this case: big, small, quickly,
slowly, and so on. On the other hand, two-value
logic rules, such as
IF 40◦ ≤ a ≤ 60◦ and 50◦/s ≤ ȧ ≤ 80◦/s, THEN move
a car with 0.5 m/s. or
IF −20◦ ≤ a ≤ −10◦ and 10◦/s ≤ ȧ ≤ 20◦/s, THEN
move a car with −0.1 m/s.
must be modified whenever the rules or the quanti-
tative definitions of angle, angular velocity, and car
speed are changed.

2.3 Mathematical model-based control and
rule-based control

To understand FSs, fuzzy logic control will be used
as a simple example of the FSs in this and the follow-
ing sections. The task is to replace a skilled human
operator in the Figure 2 with a controller.

t

a

r

g

e

t

s

y

s

t

e

mt

a

r

g

e

t

s

y

s

t

e

m

(

a

)

 (b)

Figure 2: (a) Conventional control theory tries to
make a mathematical model of a target system. (b)
Rule-based control tries to make a model of a skilled
human operator.

The mathematical model-based control approach
is based on classic and modern control theory and is
designed to observe the characteristics of the target
system, construct its mathematical model, and build
a controller based on the model. The importance is
placed on the target system and the human operator
is not a factor in the design (Figure 2(a).)

On the other hand, rule-based control does not
utilize the target system in modeling but is based
on the behavior of a skilled human operator (Fig-
ure 2(b).) Although most skilled operators do not
know the mathematical behavior of their target sys-
tems, they can control their systems. For example, a
skilled taxi driver probably does not know the math-
ematical equations of car behavior when his/her taxi
turns to the right up an unpaved hill, but he/she can
still handle the car safely. A fuzzy logic controller
describes the control behavior of the skilled human
operator using IF–THEN type of fuzzy rules.

2.4 Design of antecedent parts

Designing antecedent parts means deciding how to
partition an input space. Most rule-based systems
assume that all input variables are independent and
partition the input space of each variable (see Fig-
ure 3.) This assumption makes it easy to not only
partition the input space but also interpret parti-
tioned areas into linguistic rules. For example, the
rule of “IF temperature is A1 and humidity is A2,
THEN ...” is easy to understand, because the vari-
ables of temperature and humidity are separated.
Some researchers propose multi-dimensional mem-
bership functions that aim for higher performance
by avoiding the constraint of variable independence
instead of linguistic transparency.

The difference between crisp and fuzzy rule-based
systems is how the input space is partitioned (com-
pare Figure 3(a) with (b).) The idea of FSs is based
on the premise that in our real analog world, change
is not catastrophic but gradual in nature. Fuzzy sys-
tems, then, allow overlapping rule areas to shift from
one control rule to another. The degree of this over-
lapping is defined by membership functions. The
gradual characteristics allow smooth fuzzy control.

(

b

)

input 1

i n
p

u

t

2

rule 1 r

u

l

e

2

r

u

l

e

3 r

u

l

e

4 r

u

l

e

5

(

a

)

i

n

p

u

t

1

i n
p

u

t

2

rule 1 rule 2

r

u

l

e

3 r

u

l

e

4 r

u

l

e

5

Figure 3: Rule partition of an input space: (a) parti-
tion for crisp rules and (b) partition for fuzzy rules.

2.5 Design of consequent parts

The next step following the partitioning of an input
space is deciding the control value of each rule area.

2

Fuzzy models are categorized into three models ac-
cording to the expressions of consequent parts:
(1) Mamdani model: y = A

(A is a fuzzy number.)
(2) TSK model: y = a0 +

∑
aixi

(ai is a constant, and xi is an input variable.)
(3) simplified fuzzy model y = c

(c is a constant.)
The Mamdani type of FS has a fuzzy variable

defined by a membership function in their conse-
quents, such as y = big or y = negative small,
which was used in the first historical fuzzy control
[(Mamdani, 1974)]. Although it is more difficult to
analyze this type of FS than a FS whose consequents
are numerically defined, it is easier for this FS to de-
scribe qualitative knowledge in the consequent parts.
The Mamdani type of FS seems to be suitable for
knowledge processing expert systems rather than for
control expert systems.

The consequents of the
TSK (Takagi-Sugeno-Kang) models are expressed by
the linear combination of weighted input variables
[(Takagi&Sugeno, 1985)]. It is possible to expand
the linear combination to nonlinear combination of
input variables; for example, fuzzy rules which have
NNs in their consequents [(Takagi&Hayashi, 1991)].
In this case, there is a tradeoff between system per-
formance and the transparency of rules. The TSK
models are frequently used in fuzzy control fields as
well as the following simplified fuzzy models.

The simplified fuzzy model has fuzzy rules whose
consequents are expressed by constant values. This
model is the special case of both the Mamdani type
of FSs and the TSK models. Even if each rule out-
put is constant, the output of the whole FS is nonlin-
ear, because the characteristics of membership func-
tions are embedded into the system output. The
biggest advantage of the simplified fuzzy models is
that the models are easy to design. It is reported
that this model is equvalent to Mamdani’s model
[(Mizumoto, 1996)].

2.6 Fuzzy reasoning and aggregation

Now that the IF and THEN parts have been de-
signed, the next stage is to determine the final sys-
tem output from the designed multiple fuzzy rules.
There are two steps: (1) determination of rule
strengths and (2) aggregations of each rule output.

The first step is to determine rule strengths, mean-
ing how active or reliable each rule is. Antecedents
include multiple input variables:

IF x1 ∈ µ1 and x2 ∈ µ2 and ... xk ∈ µk, THEN ...

In this case, one fuzzy rule has k membership val-
ues: µi(xi) (i = 1, ..., k). We need to determine how
active a rule is, or its strength, from the k member-
ship values. The class of the fuzzy operators used

for this purpose is called t-norm operator. There
are many operators in t−norm category. One of the
most frequently used t−norm operators is an alge-
braic product: rule strength wi =

∏k
j=1 µj(xj). The

min operator that Mamdani used in his first fuzzy
control is also frequently introduced in fuzzy text-
books: rule strength wi = min(µj (xj)).

The final system output, y∗, is calculated by
weighting each rule output with the obtained rule
strength, wi: y∗ =

∑
wiyi/

∑
wi. Mamdani type

of fuzzy controllers defuzzify the aggregated system
output and determine the final non-fuzzy control
value.

Figure 4 is an example of a simple FS that has
four fuzzy rules. The first rule is “IF x1 is small
and x2 is small, THEN y = 3x1 + 2x2 − 4.” Sup-
pose there is an input vector: (x1, x2) = (10., 0.5).
Then, membership values are calculated. The first
rule has membership values, 0.8 and 0.3, for the in-
put values. The second one has 0.8 and 1.0. If the
algebra product is used as a t-norm operator, then
the rule strength of the first rule is 0.8 × 0.3 = 0.24.
The rule strengths of the second, third, and fourth
rules are 0.8, 1.0, and 0.3, respectively. If min op-
erator is used, the rule strength of the first rule is
min(0.8, 0.3) = 0.3. The output of each rule for the
input vector, (10., 0.5), is 27, 23.5, −9, and −20.5,
respectively. Therefore, the final system output, y∗,
is given as:

y∗ =
∑

wiyi∑
wi

=
0.24× 27 + 0.8 × 23.5 + 1.0× (−9) + 0.3× (−20.5)

0.24 + 0.8 + 1.0 + 0.3∼= 4.33

I

F a

n

d T

H

E

N

y

=

3

x1

+

2

x2

-

4

I

F

IF

I

F

a

n

d

and

a

n

d

T

H

E

N

y

=

2

x1

-

3

x2

+

5

T

H

E

N

y

=

-

x1

-

4

x2

+

3

T

H

E

N

y

=

-

2

x1

+

5

x2

 -

3

x1

1

x1

1

x1

1

x1

1

x2

1

x2

1

x2

1

x2

1

i

n

p

u

t

x1

=

1

0 i

n

p

u

t

x2

=

0

.

5

0

.

8 0

.

3

0

.

8

0

.

3

=

2

7

=

2

3

.

5

=

-

9

=

-

2

0

.

5

Figure 4: Example aggregation of TSK model.

3

axon

c

e

l

l

b

o

d

y

d

e

n

d

r

i

t

e

s

y

n

a

p

s

e

t

o

o

t

h

e

r

n

e

u

r

o

n

s

f r
o

m

o

t

h

e

r

n

e

u

r

o

n

s

w0

w1

w2

wn

1

x1

x2

xn

y

(a) (b)

Figure 5: A biological neuron and an artificial neuron model.

3 What Are Neural Networks

3.1 Analogy from biological neural networks

A biological neuron consists of dendrite, a cell body,
and an axon (Figure 5(a)). The connections between
the dendrite and the axons of other neurons are
called synapses. Electric pulses coming from other
neurons are translated into chemical information at
each synapse. The cell body inputs these pieces of
information and fires an electric pulse if the sum of
the inputs exceeds a certain threshold. The network
consisting of these neurons is a NN, the most essen-
tial part of our brain activity.

The main function of the biological neuron is to
output pulses according to the sum of multiple sig-
nals from other neurons with the characteristics of a
pseudo-step function. The second function of the
neuron is to change the transmission rate at the
synapses to optimize the whole network.

An artificial neuron model simulates multiple in-
puts and one output, the switching function of
input–output relation, and the adaptive synaptic
weights (Figure 5(b)). The first neuron model pro-
posed in 1943 used a step function for the switching
function [(McCulloch&Pitts, 1943)]. However, the
perceptron [(Rosenblatt, 1958)] that is a NN consist-
ing of this type of neuron has limited capability, be-
cause of the constraints of binary on/off signals. To-
day, several continuous functions, such as sigmoidal
or radial functions, are used as a neuron character-
istic functions, which results higher performance of
NNs.

Several learning algorithms that change the
synaptic weights have been proposed. The combina-
tion of the artificial NNs and the learning algorithms
have been applied to several engineering purposes.

3.2 Several types of artificial neural networks

Many NN models and learning algorithms have been
proposed. Typical network structures include feed-

back and feed-forward NNs. Learning algorithms
are categorized into supervised learning and unsu-
pervised learning. This section provides an overview
of these models and algorithms.

(

a

) (

b

)

Figure 6: (a) a feed-back neural network, and (b) a
feed-forward neural network.

The feed-back networks are NNs that have con-
nections between network outputs and some or all
other neuron units (see Figure 6(a).) Certain unit
outputs in the figure are used as activated inputs
to the network, and other unit outputs are used as
network outputs.

Due to the feed-back, there is no guarantee that
the networks become stable. Some networks con-
verge to one stable point, other networks become
limit-cycle, and others become chaotic or divergent.
These characteristics are common to all non-linear
systems which have feed-back.

To guarantee stability, constraints on synaptic
weights are introduced so that the dynamics of the
feed-back NN is expressed by the Lyapunov func-
tion. Concretely, a constraint of equivalent mutual
connection weights of two units is implemented. The
Hopfield network is one such NNs.

It is important to understand two aspects of the
Hopfield network: (1) Synaptic weights are deter-
mined by analytically solving constraints not by per-

4

forming an iterative learning process. The weights
are fixed during the Hopfield network runs. (2) Final
network outputs are obtained by running feed-back
networks for the solutions of an application task.

Another type of NN which is compared with the
feed-back type is a feed-forward type. The feed-
forward network is a filter which outputs the pro-
cessed input signal. Several algorithms determine
synaptic weights to make the outputs match the de-
sired result.

Supervised learning algorithms adjust synaptic
weights using input–output data to match the input–
output characteristics of a network to desired char-
acteristics. The most frequently used algorithm, the
backpropagation algorithm, is explained in detail in
the next section.

Unsupervised learning algorithms use the mecha-
nism that changes synaptic weight values according
to the input values to the network, unlike supervised
learning which changes the weights according to su-
pervised data for the output of the network. Since
the output characteristics are determined by the
NN itself, this mechanism is called self-organization.
Hebbian learning and competitive learning are rep-
resentative of unsupervised learning algorithms.

A Hebbian learning algorithm increases a weight,
wi, between a neuron and an input,xi, if the neuron,
y, fires.

∆wi = ayxi,

where a is a learning rate. Any weights are strength-
ened if units connected with the weights are acti-
vated. Weights are normalized to prevent an infinite
increase in weights.

Competitive learning algorithms modify weights
to generate one unit with the greatest output. Some
variations of the algorithm also modify other weights
by lateral inhibition to suppress the outputs of other
units whose outputs are not the greatest. Since
only one unit becomes active as the winner of the
competition, the unit or the network is called a
winner-take-all unit or network. Kohonen’s self-
organization feature map, one of the most well-
known competitive NNs, modifies the weights con-
nected to the winner-take-all unit as:

∆wi = a(xi − wi),

where the sum of input vectors is supposed to be
normalized as 1.

3.3 Feed-forward NN and the backpropagation
learning algorithm

Signal flow of a feed-forward NN is unidirectional
from input to output units. Figure 8 shows a nu-
merical example of the data flow of a feed-forward
NN.

x1 x2 xn

w1 w2
wn

y f w xi i= ∑()

(a) (b)

0

.

20

.

4 0

.

9

Figure 7: (a) Hebbian learning algorithms strength
weight, wi when input, xi activates a neuron, y.
(b) Competitive learning algorithms strength only
weights connected to the unit whose output is the
biggest.

Σ

Σ

Σ

−

0

.

3

−

2

1
.

5

0
 . 5

2

.

1

−
 0 . 4

0

.

8

0

.

2

0

.

6

7

−

1

.

5

1

.

1

4

0
 . 5 1 5

−

0

.

6

3

5

0

.

6

8

7

Figure 8: Example data flow in a simple feed-forward
neural network.

One of the most popular learning algorithms
which iteratively determines the weights of the feed-
forward NNs is the backpropagation algorithm. A
simple learning algorithm that modifies the weights
between output and hidden layers is called a delta
rule. The backpropagation algorithm is an extension
of the delta rule that can train the weights, not only
between output and hidden layers but also hidden
and input layers. Historically, several researchers
have proposed this idea independently: S. Amari in
1967, A. Bryson and Y-C. Ho in 1969, P. Werbos
in 1974, D. Parker in 1984, etc. Eventually, Rumel-
hart, et al. and the PDP group developed practical
techniques that gave us a powerful engineering tool
[(Rumelhart, et al., 1986)].

Let E be an error between the NN outputs, v3,
and supervised data, y. The number at superposi-
tion means the layer number. Since NN outputs are
changed when synaptic weights are modified, the E

5

must be a function of the synaptic weights w:

E(w) =
1
2

Nk∑
j=1

(v3
j − yj)2.

Supposed that, in Figure 1, the vertical axis is E
and the x1 ... xn axes are the weights, w1 ... wn.
Then, NN learning is to find the global minimum
coordinate in the surface of the figure.

Since E is a function of w, the searching direction
of the smaller error point is obtained by calculating
a partial differential. This technique is called the
gradient method, and the steepest decent method
is the base of the backpropagation algorithm. The
searching direction, g = −∂E(w)/∂w, and modifi-
cation of weights is given as ∆w = εg. From this
equation, we finally obtain the following backpropa-
gation algorithm.

∆wk−1,k
i,j = −εdk

j vk−1
i

dk
j =




(v3
j − yj)

∂f(Uk
j)

∂Uk
j

for output layer
∑Nk+1

h=1 dk+1
j wk,k+1

i,h

∂f(Uk
j)

∂Uk
j

for hidden layer(s),

where wk−1,k
i,j is the connection weight between the

i-th unit in the (k − 1)-th layer and the j-th unit in
the k-th layer, and Uk

j is the total amount of input
to the j-th unit at k-th layer.

To calculate dk
j , dk+1

j must be previously calcu-
lated. Since the calculation must be conducted in
the order of the direction from the output layer to
input layer, this algorithm is named the backpropa-
gation algorithm.

When a sigmoidal function is used for the charac-
teristic function, f(), of neuron units, the calculation
of the algorithm becomes simple.

f(x) = 1
1+exp−x+T

∂f(x)
∂x = (1 − f(x))f(x)

Figure 9 illustrates the backpropagation algorithm.

3.4 Function approximation

The following analysis of a simple NN that has
one input, four hidden nodes, and one output will
demonstrate how NNs approximate the nonlinear re-
lationship between input and outputs (Figure 10.)
The ‘1’s in the figure are offset terms.

Figure 11(a1) – (a5) shows the input–output char-
acteristics of a simple NN during a training epoch,
where triangular points are trained data, and hori-
zontal and virtual axes are input and output ones.
After 480 iterations of training, the NN has learned
the nonlinear function that passes through all train-
ing data points.

As a model of the inside of the NN, Figure 11(b1)
– (b4) shows the output of four units in the hidden

w1 1
2 3
,
,

w1 1
1 2
,
, w3 3

1 2
,
,

w3 1
2 3
,
,

w3 3
2 3
,
,

v1
3 v2

3 v3
3

y3
3y2

3y1
3

o

u

t

p

u

t

l

a

y

e

r

h

i

d

d

e

n

l

a

y

e

r

(

s

)

d v y v v

w d v

j j j j j

i j j i

3 3 3 3

2 3 3 2

1= − −

= −







()()

,
,∆ ε

d d w v v

w d v

j
h

h j h j j

i j j i

2

1

3 2 3 2 2

1 2 2 1

1= −

= −







=
Σ

∆

,
,

,
,

()

ε

s

u

p

e

r

v

i

s

e

d

d

a

t

a

o

u

t

p

u

t

o

f

N

N

Figure 9: Visual-aid of understanding the program-
ming backpropagation algorithm.

layer. For example, the unit (b1) has the synaptic
weight of −22.3 and −16.1 between the unit and the
input layer and outputs f() whose input is −22.3x−
16.1.

One can understand how the NN forms the final
output characteristics visually when the four out-
puts of the hidden layer units with the final output
characteristics are displayed (see Figure 11(c1) and
(c2).) The output characteristics of the NN consist
of four sigmoidal functions whose amplitudes and
center positions are changed by synaptic weights.
Thus, NNs can form any nonlinear function with any
precision by theoretically increasing the number of
hidden units. It is important to note that a learning
algorithm cannot always determine the best combi-
nation of weights.

4 What Are Genetic Algorithms

4.1 Evolutionary computation

Searching or optimizing algorithms inspired by bi-
ological evolution are called evolutionary computa-

1

x 1

y

Figure 10: Simple neural network to analyze nonlin-
ear function approximation.

6

(

a

2

)

(

a

3

)

(

a

4

)

(

a

5

)

(a1) (b1)

(b2)

(b3)

(b4)

(

c

1

)

(

c

2

)

Figure 11: Analysis of NN inside. Triangular points are training data, and horizontal and virtual axes are
input and output axes. (a1) – (a5) are the input–output characteristics of a NN with the training of 10,
100, 200, 400, and 500 iterations, respectively. (b1) – (b4), the characteristics of four trained sigmoidal
functions in a hidden layer, are f(−22.3x− 16.1), f(−1.49x− 0.9), f(−20.7x + 10.3), and f(−21.5x + 4.9),
respectively; where w1x + w0 is trained weights, wi, and input variable, x. (c1) is the same as (a5): the
input–output characteristics of the trained NN. (c2) is the overlapped display of (b1) – (b4). Comparison of
(c1) and (c2) shows the final NN input–output characteristics are formed by combining sigmoidal functions
inside with weighting the function.

tions. The features of the evolutionary computa-
tion are that its search or optimization is conducted
(1) based on multiple searching points or solution
candidates (population based search), (2) using op-
erations inspired by biological evolution, such as
crossover and mutation, (3) based on probabilistic
search and probabilistic operations, and (4) using
little information of searching space, such as differ-
ential information mentioned in section 3.3. Typical
paradigms which consist of the evolutionary com-
putation include GA (genetic algorithm), ES (evo-
lution strategies), EP (evolutionary programming),
and GP (genetic programming).

GAs usually represent solutions for chromosomes
with bit coding (genotype) and searches for the bet-
ter solution candidates in the genotype space using
GA operations of selection, crossover, and mutation.
The crossover operation is the dominant operator.

ESs represent solutions as expressed by the chro-
mosomes with real number coding (phenotype) and
searches for the better solution in the phenotype
space using the ES operations of crossover and mu-
tation. The mutation of a real number is realized

by adding Gaussian noise, and ES controls the pa-
rameters of a Gaussian distribution allowing it to
converge to a global optimum.

EPs are similar to GAs. The primary difference
is that mutation is the only EP operator. EPs use
real number coding, and the mutation sometimes
changes the structure (length) of EP code. It is
said that the similarities and differences come from
their background; GAs started from the simulation
of genetic evolution, while EPs started from that of
environmental evolution.

GPs use tree structure coding to represent a com-
puter program or create new structures of tasks.
The crossover operation is not for a numerical value
but for a branch of the tree structure. Consider
the application’s relationship with NNs. GAs and
ESs determine the best synaptic weights, which is
NN learning. GP, however, determines the best NN
structure, which is a NN configuration.

It is beyond the scope of this chapter to describe
these paradigms. We will focus only on GAs in the
following sections and see how the GA searches for
solutions.

7

Table 1: Technical terms used in GA literatures

chromosome vector which represents solutions of application task
gene each solution which consists of a chromosome
selection choosing parents’ or offsprings’ chromosomes for the next generation
individual each solution vector which is each chromosome
population total individuals
population size the number of chromosome
fitness function a function which evaluates how each solution suitable to the given task
phenotype expression type of solution values in task world, for example, ‘red,’ “13 cm”, “45.2 kg”
genotype bit expression type of solution values used in GA search space, for example, “011,”

“01101.”

4.2 GA as a searching method

It is important to be acquainted with the technical
terms of GAs. Table 1 lists some of the terms fre-
quently used.

There are advantages and one distinct disadvan-
tage to using GAs as a search method.

The advantages are: (1) fast convergence to near
global optimum, (2) superior global searching ca-
pability in the space which has complex searching
surface, and (3) applicability to the searching space
where we cannot use gradient information of the
space.

The first and second advantages originate in
population-based searching. Figure 12 shows this
situation. The gradient method determines the next
searching point using the gradient information at the
current searching point. On the other hand, the GA
determines the multiple next searching points using
the evaluation values of multiple current searching
points. When only the gradient information is used,
the next searching point is strongly influenced by the
local geometric information of the current searching
points. Sometimes it results in the searching be-
ing trapped at a local minima (see Figure 12.) On
the contrary, the GA determines the next searching
points using the fitness values of the current search-
ing points which are widely spread throughout the
searching space, and it has the mutation operator
to escape from a local minima. This is why these
advantages are realized.

The key disadvantage of the GAs is that its con-
vergence speed near the global optimum becomes
slow. The GA search is not based on gradient infor-
mation but GA operations. There are several pro-
posals to combine the two searching methods.

4.3 GA operations

Figs. 13 and 14 show the flows of GA process and
data, respectively. Six possible solutions are ex-
pressed in bit code in Figure 14. This is the genotype

expression. The solution expression of the bit code is
decoded to values used in an application task. This
is phenotype expression. The multiple possible so-
lutions are applied to the application task and eval-
uated by each. These evaluation values are fitness
values. GA feed-backs the fitness values and selects
current possible solutions according to their fitness
values. They are parent solutions that determine
the next searching points. This idea is based on the
expectation that better parents can probabilistically
generate better offspring. The offspring in the next
generation are generated by applying the GA opera-
tions, crossover and mutation, to the selected parent
solution. This process is iterated until the GA search
converges to the required searching level.

The GA operations are explained in the following
sections.

4.4 GA operation: selection

Selection is an operation to choose parent solutions.
New solution vectors in the next generation are cal-
culated from them.

Since it is expected that better parents generate
better offspring, parent solution vectors which have
higher fitness values have a higher probability to be
selected.

There are several selection methods. Roulette
wheel selection is a typical selection method. The
probability to be a winner is proportional to the area
rate of a chosen number on a roulette wheel. From
this analogy, the roulette wheel selection gives the
selection probability to individuals in proportion to
their fitness values.

The scale of fitness values is not always suitable
for the scale of selection probability. Suppose there
are a few individuals whose fitness values are very
high, and others whose are very low. Then, the few
parents are almost always selected and the variety of
their offspring becomes small, which results in con-
vergence to a local minimum. Rank-based selection

8

g

r

a

d

i

e

n

t

m

e

t

h

o

d

G

A

1

s

t

g

e

n

e

r

a

t

i

o

n

1

s

t

g

e

n

e

r

a

t

i

o

n 3

r

d

g

e

n

e

r

a

t

i

o

n

3rd generation

5th generation

Figure 12: GA search and gradient-based search.

uses an order scale of fitness values instead of a dis-
tance scale. For example, it gives the selection prov-
ability of (100, 95, 90, 85, 80, ...) for the fitness values
of (98, 84, 83, 41, 36, ...).

Since the scales of fitness and selection are differ-
ent, scaling is needed to calculate selection proba-
bilities from fitness values. The rank-based selection
can be called linear scaling. There are several scaling
methods, and the scaling influences GA conversion.

Elitist strategy is an approach that copies the best
n parents into the next generation as they are. The
fitness value of offspring does not always become bet-
ter than those of its parents. The elitist strategy
prevents the best fitness value in the offspring gen-
eration from becoming worse than that in the previ-
ous generation by copying the best parent(s) to the
offspring.

4.5 GA operation: crossover

Crossover is an operation to combine multiple par-
ents and make offspring. The crossover is the
most essential operation in GA. There are several
ways to combine parent chromosomes. The simplest
crossover is called one-point crossover. The parent
chromosomes are cut at one point, and the cut parts
are exchanged. Crossover that uses two cut points is
called two-point crossover. Their natural expansion
is called multi-point crossover or uniform crossover.
Figure 15 shows these standard types of crossover.

There are several variations of crossover. One
unique crossover is called the simplex crossover
[(Bersini&Scront, 1992)]. The simplex crossover
uses two better parents and one poor parent and
makes one offspring (the bottom of Figure 15.)
When both better parents have the same ‘0’ or ‘1’
at a certain bit position, the offspring copies the bit
into the same bit position. When better parents

have different bit at a certain bit position, then a
complement bit of the poor parent is copied to the
offspring. This is analogous to learning something
from bad behavior. The left end bit of the example
in Figure 15 is the former case, and the second left
bit is the latter case.

4.6 GA operation: mutation

When parent chromosomes have similar bit patterns,
the distance between the parents and offspring cre-
ated by crossover is close in a genotype space. This
means that the crossover cannot escape from the lo-
cal minimum if individuals are concentrated near the
local minimum. If the parents in Figure 16 are only
the black and white circles, offspring obtained by
combining bit strings of any of these parents will be
located nearby.

Mutation is an operation to avoid this trapping at
a local area by exchanging bits of chromosome. Sup-
pose the white individual jumps to the gray point in
the figure. Then, the searching area of GA spreads
widely. The mutated point has the second highest
fitness value in the figure. If the point that has
the highest fitness value and the mutated gray point
are selected and mate, then the offspring can be ex-
pected to be close to the global optimum.

If the mutation rate is too high, the GA searching
becomes a random search, and it becomes difficult
to quickly converge to the global optimum.

4.7 Example

The knapsack problem provides a concrete image of
GA applications and demonstrates how to use GAs.
Figure 17 illustrates the knapsack problem and its
GA coding. The knapsack problem is a task to
find the optimum combination of goods whose total
amount is the closest to the amount of the knapsack,

9

i

n

i

t

i

a

l

i

z

i

n

g

i

n

d

i

v

i

d

u

a

l

s

e

v

a

l

u

a

t

i

o

n

s

e

l

e

c

t

i

o

n

o

f

p

a

r

e

n

t

s

c

r

o

s

s

o

v

e

r

mutation

Figure 13: The flow
of GA process.

G

A

E

n

g

i

n

e

c

h

r

o

m

o

s

o

m

e

(

g

e

n

o

t

y

p

e

)

1 11

1 1

11

1

1

1

11

1

1

1 1

1

1

1

10

0

0

0

00 00

00 0

0

0

0

0

0

0

0

1

1

1

11

1 1

0

0 0

0

00

0

0

1

1

0

0

0

0

1

3

5

43

6

2

1

8

19
1

4
8

3 2

5
6

5

7

6

6

4 32

47
69

3

2

39

2

8
1

5

d

e

c

o

d

e

G

A

O

p

e

r

a

t

i

o

n

s

(

s

e

l

e

c

t

i

o

n

,

c

r

o

s

s

o

v

e

r

,

m

u

t

a

t

i

o

n

)

c

h

r

o

m

o

s

o

m

e

(

p

h

e

n

o

t

y

p

e

)

=

p

o

s

s

i

b

l

e

s

o

l

u

t

i

o

n

s

f

o

r

t

a

s

k

F

i

t

n

e

s

s

f

u

n

c

t

i

o

n application
 task

s

c

a

l

i

n

g

Figure 14: The flow of GA data.

or to find the optimum combination of goods whose
total value is the highest under the condition that
the total amount of goods is less than that of the
knapsack. Although the knapsack problem itself is
a toy task, there are several similar practical prob-
lems such as the optimization of CPU load under a
multi-processing OS.

Since there are six goods in Figure 17 and the task
is to decide which goods are input into the knapsack,
the chromosome consists of six genes with the length
of 1 bit. For example, the first chromosome in the
figure means to put A, D, and F into the knapsack.
Then, the fitness values of all chromosome are cal-
culated. The total volume of A, D, and F is 60, that
of B, E, and F is 53, that of A, D, E, and F is 68,
and so on. The fitness values do not need to be the
total volume itself, but the fitness function should
be a function of the total volume of the input goods.
Then, GA operations are applied to the chromosome
to make the next generation. When the best solu-
tion exceeds the required minimum condition, the
searching iteration is ended.

o

n

e

p

o

i

n

t

c

r

o

s

s

o

v

e

r
p

a

r

e

n

t

1

p

a

r

e

n

t

2

1 0 0 1 0 1

0 1 0 0 1 1

1 0 0

1 0 10 1 0

0 1 1 o

f

f

s

p

r

i

n

g

1

o

f

f

s

p

r

i

n

g

2

t

w

o

p

o

i

n

t

s

c

r

o

s

s

o

v

e

r

p

a

r

e

n

t

1

p

a

r

e

n

t

2

1 0 0 1 0 1

0 1 0 0 1 1

1 0 0

1 0 10 1 0

0 1 1 o

f

f

s

p

r

i

n

g

1

o

f

f

s

p

r

i

n

g

2

u

n

i

f

o

r

m

c

r

o

s

s

o

v

e

r

(

m

u

l

t

i

-

p

o

i

n

t

s

c

r

o

s

s

o

v

e

r

)

p

a

r

e

n

t

1

parent 2

1 0 0 1 0 1

0 1 0 0 1 1

○● ○ ○ ● ●　t

e

m

p

l

a

t

e

o

f

f

s

p

r

i

n

g

1

o

f

f

s

p

r

i

n

g

21

0 0

1

0

1

0

1 0

0

1

1

s

i

m

p

l

e

x

c

r

o

s

s

o

v

e

r 01 0 1 11 o

f

f

s

p

r

i

n

g

b

e

t

t

e

r

p

a

r

e

n

t

1

better parent 2

1 0 0 1 0 1

0 1 0 0 1 1

p

o

o

r

p

a

r

e

n

t 0 1 001 1

Figure 15: Several variations of crossover.

1 0 1 1 0 1

w

i

t

h

l

o

w

m

u

t

a

t

i

o

n

r

a

t

e

1 1 1 0 11

Figure 16: Effect and an example of mutation.

5 Models and Applications of
Cooperative Systems

There are many types of cooperative models of FSs,
NNs, and GAs. This section categorizes these types
of models and introduces some of their industrial
applications. Readers interested in further study of
practical applications should refer to detailed sur-
vey articles in such references as [(Takagi, 1996),
(Yen et al. eds., 1995)].

5.1 Designing FSs using NN or GA

NN-driven fuzzy reasoning is the first model that
applies an NN to design the membership func-
tions of an FS explicitly [(Hayashi&Takagi,1988),

A

B

C

D

E

F

V

o

l

u

m

e

V

1 1 10 0 0
A B C D E F

11 10 0 0

0 1 1 10 0

1 1 10 0 1

6

0
5

3
6

8

2

6

c

h

r

o

m

o

s

o

m

e

1

c

h

r

o

m

o

s

o

m

e

2

c

h

r

o

m

o

s

o

m

e

3

c

h

r

o

m

o

s

o

m

e

n

f

i

t

n

e

s

s

v

a

l

u

e

Figure 17: Knapsack problem and example of GA
coding.

10

t

i

m

e

p

l

a

t

e

s

u

r

f

a

c

e

scanning
point at
time t

s c
a

n

n

e

d

d

e

p

t

h

o f

p

l

a

t

e

s

u

r

f

a

c

e

w

i

d

t

h

d

i

r

e

c

t

i

o

n

c

o

n

t

r

o

l

2

0

r

o

l

l

s

t

o

m

a

k

e

p

l

a

t

e

f

l

a

t

I

F

s

c

a

n

n

e

d

s

h

a

p

e

i

s
I

F

s

c

a

n

n

e

d

s

h

a

p

e

i

s

I

F

s

c

a

n

n

e

d

s

h

a

p

e

i

s

T

H

E

N

c

o

n

t

r

o

l

A
T

H

E

N

c

o

n

t

r

o

l

B

T

H

E

N

c

o

n

t

r

o

l

N

. . .

. . .

.

.

.

.

.

.

.

.

.

Figure 18: Rolling mill control by fuzzy and neural
systems. Scanned pattern of plate surface is recog-
nized by an NN. The output value of the each output
unit of the NN is used as a rule strength for the cor-
responding fuzzy rule.

(Takagi&Hayashi, 1991)]. The purpose of this model
is to design the entire shape of non-linear multi-
dimensional membership functions with an NN. The
outputs of the NN are the rule strengths of each rule
which are a combination of membership values in
antecedents.

The Hitachi rolling mill uses the model to con-
trol 20 rolls that flatten iron, stainless steel,
and aluminum plates to a uniform thickness
[(Nakajima et al., 1993)]. An NN inputs the
scanned surface shape of plate reel and outputs the
similarity between the input shape pattern and stan-
dard template patterns (see Figure 18). Since there
is a fuzzy control rule for each standard surface pat-
tern, the outputs of the NN indicate how each con-
trol rule is activated. Dealing with the NN outputs
as rule strengths of all fuzzy rules, each control value
is weighted, and the final control values of the 20
rolls are obtained to make plate flat at the scanned
line.

Another approach parameterizes an FS and
tunes the parameters to optimize the FS using an
NN [(Ichihashi&Watanabe, 1990)] or using a GA
[(Karr et al., 1989)]. For example, the shape of a
triangular membership function is defined by three
parameters: left, center, and right. The consequent
part is also parameterized.

The approach using an NN was applied to develop
several commercial products. The first neuro-fuzzy
consumer products were introduced to the Japanese
market in 1991. This is the type of Figure 20, and
some of the applications are listed in section 5.3.

The approach using a GA has been applied to

O

R

D

E

R

F

O

R

M
O

R

D

E

R

F

O

R

M

F

A

X F

A

X

N

A

R

A

2

1

2

3

N

F

-

2

1

5

V

P

-

2

1

1

N

G

-

1

6

6

H

L

-

3

2

1

Figure 19: FAX OCR: hand-written character recog-
nition system for a FAX ordering system.

some Korean consumer products since 1994. Some
of them are: cool air flow control of refrigerators;
slow motor control of washing machines to wash
wool and/or lingerie [(Kim et al., 1995)]; neuro-
fuzzy models for dish washers, rice cookers, and mi-
crowave ovens to estimate the number of dishes, to
estimate the amount of rice, and to increase con-
trol performance; and FSs for refrigerators, washing
machines, and vacuum cleaners [(Shin et al., 1995)].
These neuro-fuzzy systems and FSs are tuned by
GAs.

5.2 NN configuration based on fuzzy rule base

NARA is a structured NN construct based on the IF-
THEN fuzzy rule structure [(Takagi et al., 1992)].
An a priori knowledge of tasks is described by fuzzy
rules, and small sub-NNs are combined according to
the rule structure. Since a priori knowledge of the
task is embedded into the NARA, the complexity of
the task can be reduced.

NARA has been used for a FAX ordering system.
When electric shop retailers order products from a
Matsushita Electric dealer, they write an order form
by hand and send it by FAX. The FAX machine at
the dealer site passes the FAX image to the NARA.
The NARA recognizes the hand-written characters
and sends character codes to the dealer’s delivery
center (Figure 19).

5.3 Combination of NN and FS

There are many consumer products which use both
NN and FS in a combination of ways. Although
there are many possible combinations of the two sys-

11

N

N

F

S

N

N

F

S

NN

FS
NNFS

(

a

) (

b

) (c) (

d

)

Figure 20: Combination types of an FS and an NN: (a) independent use, (b) developing tool type, (c)
correcting output mechanism, and (d) cascade combination.

as developing tool

(MATSUSHITA ELECTRIC)

image density of back groud

image density of solid black

exposured image density

temperature

humidity

toner density

exposure lamp control

toner density control

grid voltage control

bias voltage control

Figure 21: Photo copier whose fuzzy system is tuned
by a neural network.

tems, the four combinations shown in Figure 20 have
been applied to actual products. See the reference
of [(Takagi, 1995)] for details on these consumer ap-
plications.

Figure 20(a) shows the case where one piece of
equipment uses the two systems for different pur-
poses without mutual cooperation. For example,
some Japanese air conditioners use an FS to prevent
a compressor from freezing in winter and use an NN
to estimate the index of comfort, the PMV (Predic-
tive Mean Vote) value [(Fanger,1970)] in ISO-7730,
from six sensor outputs.

The model in Figure 20(b) uses the NN to opti-
mize the parameters of the FS by minimizing the
error between the output of the FS and the given
specification. Figure 21 shows an example of actual
applications of this model. This model has been
used to develop washing machines, vacuum clean-
ers, rice cookers, clothes driers, dish washers, electric
thermo-flask, inductive heating cookers, oven toast-
ers, kerosene fan heaters, refrigerators, electric fans,
range-hoods, and photo copiers since 1991.

Figure 20(c) shows a model where the output of an
FS is corrected by the output of an NN to increase
the precision of the final system output. This model
is implemented in washing machines manufactured
by Hitachi, Sanyo, and Toshiba, and oven ranges
manufactured by Sanyo.

Figure 20(d) shows a cascade combination of an
FS and an NN where the output of the FS or NN
becomes the input of another NN or FS. An electric
fan developed by Sanyo detects the location of its
remote controller with three infrared sensors. The
outputs from these sensors change the fan’s direc-
tion according to the user’s location. First, a FS es-
timates the distance between the electric fan and the
remote controller. Then, a NN estimates the angle
from the estimated distance and the sensor outputs.
This two-stage estimation was adopted because it
was found that the outputs of three sensors change
according to the distance to the remote controller
even if the angle is same.

Oven ranges manufactured by Toshiba use the
same combination. An NN first estimates the ini-
tial temperature and the number of pieces of bread
from sensor information. Then an FS determines the
optimum cooking time and power by inputting the
outputs of the NN and other sensor information.

Figure 22 shows an example of this cascade model
applied to the chemical industry. Toshiba applied
the model to recover expensive chemicals that are
used to make paper from chips at a pulp factory
[(Ozaki, 1994)]. The task is to control the tempera-
ture of the liquid waste and air (or oxygen) sent to a
recovering boiler, deoxidize liquid waste, and recover
sulfureted sodium effectively.

The shape of the pile in the recovering boiler in-
fluences the efficiency of the deoxidization, which,
in turn, influences the performance of recovering the
sulfureted sodium. An NN is used to recognized the
shape of the pile from the edge image detected from
the CCD image and image processing. An FS de-
termines the control parameters for PID control by
using sensor data from the recovering boiler and the
recognized shape pattern of the pile.

5.4 NN learning and configuration based on GA

One important trend in consumer electronics is
the feature that adapts to the user environment
or preference and customizes mass produced equip-
ment at the user end. An NN learning func-
tion is the leading technology for this purpose.

12

image
processing NN

FS

PID controller
 for
air & heat control

sensing data

pattern recognition
of shape

air & heat
control

recovered
chemicals

recovering boiler

he
at

ed
 li

qu
id

 w
as

te

ai
r

CCD camera

Figure 22: Chemicals recycling system at a pulp fac-
tory. An NN identifies the shape of the chemical pile
from the edge image, and a fuzzy system determines
the control values for air and heat control to recover
chemicals optimally.

c

o

n

t

r

o

l

r

e

f

.

t

e

m

p

.

r

o

o

m

t

e

m

p

.

o

u

t

d

o

o

r

t

e

m

p

.
t

i

m

e
r

e

f

e

r

e

n

c

e

t

e

m

p

.

R

C

E

t

y

p

e

N

N

G

A

w

a

r

m

/

c

o

o

l
remote key

Figure 23: Temperature control by a RCE neural
network controller designed by GA at the user end.

Japanese electric companies applied a single user-
trainable NN to (1) kerosene fan heaters that learn
and estimate when their owners use the heater
[(Morito et al., 1991)], and (2) refrigerators that
learn when their owners open the doors to pre-cool
frozen food [(Ohtsuka et al., 1992)].

LG Electric developed an air conditioner that im-
plemented a user-trainable NN trained by a GA
[(Shin et al., 1995)]. The NNs in RCE’s air con-
ditioners inputs room temperature, outdoor tem-
perature, time, and user-set temperature, and out-
puts control values to maintain the user-set tempera-
ture [(Reilly et al., 1982)]. Suppose a user wishes to
change the control to low to adapt to his/her prefer-
ence. Then, a GA changes the characteristics of the
NN by changing the number of neurons and weights
(see Figure 23).

w

a

t

e

r

d

r

a

i

n

a

g

e

&

s

u

p

p

l

y

G

A N

N

p

h

o

t

o

s

y

n

t

h

e

t

i

c

r

a

t

e

(fitness value)

CO 2

O
N

/

O

F

F

t

i

m

e

p

a

t

t

e

r

n

Figure 24: Water control for a hydroponics system.

5.5 NN-based fitness function for GA

A GA is a searching method that multiple individu-
als apply to a task and evaluate for the subsequent
search. If the multiple individuals are applied to an
on-line process in addition to the usual GA applica-
tions, the process situation changes before the best
GA individual is determined.

One solution is to design a simulator of the task
process and embed the simulator into a fitness func-
tion. An NN can then be used as a process simula-
tor, trained with the input-output data of the given
process.

A GA whose fitness function uses an NN as a sim-
ulator of plant growth was used in a hydroponics
system [(Morimoto et al., 1993)]. The hydroponics
system controls the timing of water drainage and
supply to the target plant to maximize its photosyn-
thetic rate. The simulation NN is trained using the
timing pattern as input data and the amount of CO2

as output data. The amount of CO2 is used as an
alternative to the photosynthetic rate of the plant.
Timing patterns of water drainage and supply gener-
ated by the GA are applied to the pseudo-plant, the
trained NN, and evaluated according to how much
CO2 they create (Figure 24). The best timing pat-
tern is selected through the simulation and applied
to the actual plant.

6 Summary

This chapter introduced the basic concepts and con-
crete methodologies of fuzzy systems, neural net-
works, and genetic algorithms to prepare the read-
ers for the following chapters. Focus was placed on:
(1) the similarities between the three technologies
through the common keyword of nonlinear relation-
ship in a multi-dimensional space visualized in Fig-
ure 1 and (2) how to use these technologies at a
practical or programming level.

Readers who are interested in studying these ap-
plications further should refer to the related tutorial
papers.

13

References

[(Bersini&Scront, 1992)] Bersini, H. and Scront, G., “In
search of a good evolution-optimization crossover,”
in Parallel Problem Solving from Nature, R. Man-
ner and B. Mandrick (eds.), pp.479–488, Elsevier
Science Publishers, (1992).

[(Fanger,1970)] Fanger, P. O., “Thermal Comfort —
Analysis and Application in Environmental Engi-
neering,” McGraw-Hill (1970)

[(Hayashi&Takagi,1988)] Hayashi,I. and Takagi, H.,
“Formulation of Fuzzy Reasoning by Neural Net-
work,” 4th Fuzzy System Symposium of IFSA
Japan, pp.55–60 (May, 1988) (in Japanese)

[(Ichihashi&Watanabe, 1990)] Ichihashi, H. and Watan-
abe, T., “Learning control by fuzzy models using a
simplified fuzzy reasoning,” J. of Japan Society for
Fuzzy Theory and Systems, Vol.2, No.3, pp.429–437
(1990) (in Japanese)

[(Karr et al., 1989)] Karr, C., Freeman, L., Meredith,
D., “Improved Fuzzy Process Control of Space-
craft Autonomous Rendezvous Using a Genetic Al-
gorithm,” SPIE Conf. on Intelligent Control and
Adaptive Systems, pp.274–283 (Nov., 1989)

[(Kim et al., 1995)] Kim, J.W., Ahn, L.S., and Yi, Y.S.,
“Industrial applications of intelligent control at
Samsung Electric Co., – in the Home Appliance
Devision –,” in Fuzzy Logic for the Applications to
Complex Systems, ed. by W. Chiang and J. Lee,
World Scientific Publishing, pp.478–482 (1995)

[(McCulloch&Pitts, 1943)] McCulloch, W. S. and Pitts,
W. H., “A logical calculus of the ideas immanent in
nervous activity,” Bullet. Math. Biophysics, Vol.5,
pp.115–133 (1943)

[(Mamdani, 1974)] Mamdani, E. H., “Applications of
fuzzy algorithms for control of simple dynamic
plant,” Proc. of IEEE, Vol. 121, No. 12, pp.1585–
1588 (1974)

[(Mizumoto, 1996)] Mizumoto, M., “Product-
sum-gravity method = fuzzy singleton-type reason-
ing method = simplified fuzzy reasoning method,”
Fifth IEEE Int’l Conf. on Fuzzy Systems, New Or-
leans, USA, pp.2098–2102, (Sept., 1996)

[(Morimoto et al., 1993)] Morimoto, T., Takeuchi, T.,
and Hashimoto, Y., “Growth optimization of plant
by means of the hybrid system of genetic algorithm
and neural network,” Int’l Joint Conf. on Neu-
ral Networks (IJCNN-93-Nagoya), Nagoya, Japan,
Vol.3, pp.2979–2982 (Oct. 1993).

[(Morito et al., 1991)] Morito, K., Sugimoto, M., Araki,
T., Osawa, T., and Tajima, Y., “Kerosene fan
heater using fuzzy control and neural networks
〈CFH-A12JD〉”, Sanyo Technical Review, Vol. 23,
No. 3, pp.93–100 (1991) (in Japanese)

[(Nakajima et al., 1993)] Nakajima, M., Okada, T.,
Hattori, S., and Morooka, Y., “Application of pat-
tern recognition and control technique to shape con-
trol of the rolling mill,” Hitachi Review, Vol.75,
No.2, pp.9–12 (1993) (in Japanese)

[(Ohtsuka et al., 1992)] Ohtsuka, H., Suzuki, N., Mina-
gawa, R., and Sugimoto, Y. “Applications of In-
telligent Control Technology to Home Appliances,”
Mitsubishi Electric Technical Report, Vol.66, No.7,
pp.728–731 (1992) (in Japanese)

[(Ozaki, 1994)] Ozaki, T., “Recovering boiler control at
a pulp factory,” Neuro-Fuzzy-AI Handbook, Ohm
Publisher, pp.1209–1217 (1994) (in Japanese)

[(Reilly et al., 1982)] Reilly, D.L., Cooper, L.N., and
Elbaum, C., “A neural model for category learn-
ing,” Biological Cybernetics, Vol.45, No.1, pp.35–41
(1982)

[(Rosenblatt, 1958)] Rosenblatt, F., “The perceptron:
a probabilistic model for information storage and
organization in the brain,” Psychological Review,
Vol.65, pp.386–408 (1958)

[(Rumelhart, et al., 1986)] Rumelhart, D.E., McClel-
land, J.L., and the PDP Research Group, Paral-
lel distributed processing: explorations in the mi-
crostructure of cognition, Cambridge, MA: MIT
Press (1986)

[(Shin et al., 1995)] Shin, M.S., Lee, K.L., Lim, T.L.,
and Wang, B.H., “Applications of evolutionary
computations at LG Electrics,” in Fuzzy Logic for
the Applications to Complex Systems, ed. by W.
Chiang and J. Lee, World Scientific Publishing,
pp.483–488 (1995)

[(Takagi&Sugeno, 1985)] Takagi, T. and Sugeno, M.,
“Fuzzy Identification of Systems and Its Applica-
tions to Modeling and Control,” IEEE Trans. SMC-
15-1, pp.116–132 (1985)

[(Takagi&Hayashi, 1991)] Takagi, H. and Hayashi, I.,
“NN-driven Fuzzy Reasoning,” Int’l J. of approx-
imate Reasoning (Special Issue of IIZUKA’88), Vol.
5, No.3, pp.191–212 (1991)

[(Takagi et al., 1992)] Takagi, H., Suzuki, N., Kouda,
T., Kojima, Y., “Neural networks designed on Ap-
proximate Reasoning Architecture,” IEEE Trans.
on Neural Networks, Vol. 3, No. 5, pp.752–760
(1992)

[(Takagi, 1995)] Takagi, H., “Applications of Neural
Networks and Fuzzy Logic to Consumer Products,”
ed. by J. Yen, R. Langari, and L. Zadeh, in Indus-
trial Applications of Fuzzy Control and Intelligent
Systems, Ch.5, pp.93–106, IEEE Press, Piscataway,
NJ, USA (1995)

[(Takagi, 1996)] Takagi, H., “Industrial and Commer-
cial Applications of NN/FS/GA/Chaos in 1990s,”
Int’l Workshop on Soft Computing in Industry
(IWSCI’96), Muroran, Hokkaido, Japan, pp.160–
165 (April, 1996)

[(Yen et al. eds., 1995)] Yen, J., Langari, R., and Zadeh,
L., (edit.) Industrial Applications of Fuzzy Control
and Intelligent Systems, IEEE Press, Piscataway,
NJ, USA (1995)

14

