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Three-Dimensional Oscillatory Marangoni Flow
   in Half-Zone Liquid Bridges of Pr=1 Fluid

Shouichi Yasuhiro", Tsuneyuki Sato*'*" and Nobuyuki Imaishi"'"*

                    (Recieved December 1, 1999)

   Three-dimensional (3"D) numerical simulations of oscillatory Marangoni flow were conducted for
half-zone liquid bridges of Pr== 1 fluid with different aspect ratios (O.75'1.60) and over a wide range of

Marangoni number. Growth rate constants B of 3-D disturbances were determined as functions of the
Marangoni number. The critical Marangoni number Mac, i.e, the stability limit of the axisymmetric
steady flow, was determined by extrapolating B to zero. Thus determined critical Marangoni numbers
show good agreement with those of linear stability analyses. A rough estimation predicts a correlation
Maa/Mac oc a2 for large liquid bridges, where a is the liquid bridge radius and Maa is some `apparent cri-

tical Marangoni number' at which the 3"D oscillatory flow can be detected experimentally within a constant
observation time to. Present result predicts an extremely long observation time for experimental determina-
tion of the true critical Marangoni number.

                             1. INTRODUCTION

   Marangoni (thermocapillary) convection in a half-zone liquid bridge of length L and radius a

confined between two differentially heated isothermal solid disks has become a typical model for

the study of Marangoni flows, their stability, and their bifurcations. Many experimental
observations reported multi-morphological features of the 3-D oscillatory flows with various azi-

muthal wave numbers, m, and different types of oscillation, i.e. pulsating or rotating, at different

aspect ratibs (As=L/a) and Marangoni numbers (Ma). Linear stability analyses of Neitzel et

al.", Wanschura et al.2', and Chen et al.3' predict that the first instability at large Pr is

oscillatory. This feature was also confirmed by nonlinear numerical analyses for high Pr fluids
(Rupp et al.`' , Imaishi and Yasuhiro 5' , Savino and Monti 6) , Yasuhiro et al."8' and Kuhlmann 9') .

However, there remain open questions related to whether or not the previously reported instabil-

ity mechanisms do apply, accuracy of the critical Marangoni numbers and how fast and what type

of 3-D flow will grow under given conditions. Masud et al.iO' reported that the critical Maran-

goni number increases with the size of the liquid bridge. This is inconsistent with the linear

stability analysis that predicts a critical Marangoni number independent of the bridge size.

This issue ought to be discussed based on the growth rates of infinitesimal 3mD disturbances.

To date, however, little is known about the growth rate of disturbances under supercritical con-

ditions ii' . The aim of the present paper is to perform a series of numerical simulations on the

time-evolution of 3-D oscillatory flows in adiabatic half-zones of Pr = 1.02 with different aspect

ratios (As==O.75, 1.0, 1.33, and 1.6) at various Ma. These numerical results clarify the

general properties of the oscillatory Marangoni flows, such as the growth rate of the disturbances

at supercritical conditions and the size-dependent 'apparent critical Marangoni number'.

                         2. MATHEMATICALMODEL
    A half-zone liquid bridge with a non-deformable cylindrical surface is sustained between two

differentially heated discs in microgravity conditions as shown in Fig. 1 The temperature differ-
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                                        ence is AT. The thermophysical properties of
                                        the liquid are assumed constant except for the
                                        temperature-dependency of surface tension (aT
                                         = 0o/0T). Initially (T<O), the liquid is at

                                        rest and T= Tc. At T=O, the lower disc
                                        temperature is instantaneously raised and kept
                                        constant at Th "= Tc+AT, while the upper colder

                                        disc temperature is maintained at Tc. The fun-
      Fig. 1 System coordinate apd model. damental equations, boundary and initial condi-

                                        tions are given in non-dimensional form as
follows .

Continuity equation:V'U==O (1)
Momentum equation:OU/0T+(U• V)U= -PrVP+PrV2U (2)

Energy equation:00/0T+(U• I7)(E) == V2e (3)

Initial conditions:U== O, e= -O.5 (4)
Boundary conditions : U(R,o,e) = U(R,As,e) =O, (E)= (R,o,e) = +O.5, O'(R,As,e) == -O.5(z'>O) (5)

atR=-1 0e/0R -= O, 0U,/0R=-MaOe/0Z (6)
         R20(Ue/R)/0R == -MaOe/00, UR ==O (7)
The non-dimensional variables are defined as IR, Zl == Ir/a, z/al , P == Pa2/(crpt), U == ua/cr,

e= (T- Tm) /AT, T= tcy/a2; where Tm = (Th+ Tc) /2, cy =Z/cpp, u : velocity, P : pressure,

cp : heat capacity, p : density, R : thermal conductivity, pt : viscosity, and y : kinematic

viscosity. The dimensionless parameters arising are the Prandtl and the Marangoni numbers
defined as Pr= v/cr, and Ma = -aTATa/ptcr respectively.

                          2. NUMERICALMETHOD
    Using cylindrical coordinates, these equations are discretized by a finite difference method

with a modified central difference treatment for the convective term tO and non-uniform staggered

grids. The radial velocities on the central axis were calculated by means of the method of Ozoe

et al.i2) . The HSMAC,scheme was used to proceed time evolution of velocity and pressure.

The calculations were run on an MPU of Fujitsu VPP700 at the Computer Center of Kyushu Uni-

versity and also on Engineering Work Stations. For numerical calculations, non-uniform grid

is adopted. The grid resolution in (r,g,e) directions is (45,40,65) for As=O.75,
(30,32,49) for As==1.0, (26,34,49) for As==1.33, and (25,34,49) for As=1.60,
respectively. Time step AT was chosen between 5X10-' and 2Å~10-6. A two dimensional
simulation code with the same scheme and 2-D grids was run in order to obtain a 2-D solution

under the same conditions. The thermophysical properties of molten KCI are adopted here as cr

== 7.2Å~ 10-7 [m2/s] , ft = O. 99 [W/ (m•K)], pt = 1. 13 [mPa' s] , v == 7. 41 Å~ 10-7 [m2/s] , oT =

-7.1Å~10-5 [N/(m•K)] and Pr=1.02. Thus AT=1 corresponds to 13 seconds for a real
system in which a is 3.0mm.
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                                 3. RESULTS

  3.1 Result for As = 1.60 and Ma = 2220
   Fig. 2 shows the time evolution of the axial and the azimuthal velocity and the local tempera-

tures at different points in the liquid bridge, as well as a local and the spatially averaged Nusselt

number (Nu) on the end plates. As shown in Figure 2-b, periodic azimuthal motions are cre-

ated within the initial transient stage. The 3-D disturbances are caused by unavoidable
round-off errors in numerical calculations. The plot suggests that a perturbation grows ex-
ponentially with time in the form, X(T) = Fx(R,z) exp ((B + ico) T) sin (mO) , where m is the azi-

muthal wave number, B the growth rate constant, and co = 2zfa2/cr a non-dimensional frequency

of oscillation. In this case study, a 3-D disturbance with m=1 is self-excited and becomes

dominant at the early stage of growth. The disturbance increases its amplitude exponentially

with time and a pulsating, m==1 oscillatory flow with constant oscillation amplitude is
established. As time passes, however, the pulsating oscillation is taken over by a rotating
oscillation. In this mode, a steadily rotating 3'D structure of temperature and velocity fields is

established as shown in Fig. 3. This 3-D structure keeps rotating with a constant angular
velocity tu/m in counterclockwise direction.
   The trajectories of infinitesimal tracer particles over 4 rotation periods (4 periods of local

temperature oscillation) are shown in Fig. 4. Despite of the obvious counter-clockwise rotation

of the 3D structure of the temperature and flow fields, tracer particles fed near the surface show

                                          a very long distance azimuthal migration in
                                          clock-wise direction. Compared with the
                                          previous results for rotating m=3 oscillatory

   350 flow at As-1.0" and rotatzng m-1 oscilla-      (a)                                          tory flow at As 1.338' , the motion of fluid T300e,g-:;g:
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Fig. 2 Simulated results of a 3-D oscillatory Marango-

      ni flow in a half-zone of Pr=1.02 for As=
      1.60 and Ma = 2220.
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Snap-shots of a rotating m = 1 oscillation:

As = 1.60 and Ma = 2220.
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Fig. 4 Trajectories of tracer particles during 4 periods

      of local temperature oscillation.
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  Fig. 5 Growth rate constantB as function of Ma.

and the type of oscillations (pulsating or

cated in parentheses are those obtained by
32, 57) grid points in r, 2 and 0 direction,

ity analysis8', except for As=O.75. The
perturbation w

W
              4.

    Slightly above the threshold,

   B=B(Ma/Ma,-1]", Ma>Ma,

    The constants B and n were calculated
obtained for n = O.89.

                     Table 1

                o            o
         oA         eAe     e i-.-..-kk. ,-.,.-.-a"-.-.-.-,-.-#...-....-.---.-L-
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                                rotating)

                                  using slightly
                                   respectively.
  The determined critical Marangoni numbers Mac are consistent with those of the linear stabil-

                                     results suggest a mode selection rule, z.e. the
          hich has the largest growth rate constant under a given condition becomes dominant

hen the Marangoni number is slightly above the critical value.

                APPARENT CRITICAL MARANGONI NUMBER
                          the growth rate constants in Fig. 5 can be approximated as

                                                                         (8)

                                       by least-squares. Typically, B=10.7 was
                    But the'parameters depend on As and m. In particular, n may range

                             Critical Marangoni Number and Frequency.

 elements in this slightly longer half-zone
 seems less localized. This is caused by the
 presence of radial velocity on the axis for m =

 1. 3-D disturbances with m>1 appear not
 to exhibit such a flow across the axis.

     In order to determine the growth rate
 constant, the Marangoni number was changed

 at several times in a stepwise manner. The
 result gives the growth rate constant B as a

 function of the Marangoni number as shown in

 Fig. 5. From the figure, the critical Maran-

 goni number Mac is determined as the Maran-

 goni number at which the growth rate becomes
 zero; in this case (As = 1.6, m= 1) Mac =

 1430.
   3.2' Results for other aspect ratios

     A series of simulations were conducted for

 other aspect ratios, i.e. As=O.75, 1.05)') ,

 and 1.338'. The critical azimuthal wave
 numbers (m), the critical Marangoni numbers

 obtained here Mac, the critical Marangoni
 numbers by linear stability analysis 8' , MacL,

are summarized in Table 1. The values indi-
       coarser grid for As = O. 75 , i.e. , (34 ,

Presentresults LinearstabilityTheory
As m Ma, coc Ma,L tocL

Typeofoscillation

O.75 34 5424(5792)
5350(5693)

144.2(149.2)
161.3(165.7)

4944
5775

129.2
166.7

pulsating

pulsating

1.00 23 2615
3175

65.7
82.8

2532

-
62.1

-
pulsating

pulsating-rotating

1.33 2 1722 42.0 1752 41.1 pulsating-rotating

1.60 12 1430
1781

28,3
36.5

1413
1734

27.4
35.5

pulsating-rotating

pulsating
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from O.7 to 1.0. In the previous paper 8), we

adopted B = 20 for the maximum value of n =

1.0. In this paper, B= 10.7 was determined
for the average of n=O.89.

   Eq. 8 provides a following discussion on
the experimental observability of the incipi-

ence of the 3-D oscillatory Marangoni flow in

half-zone liquid bridges within a given
observation time, to. When the Marangoni
number is increased beyond its critical value,

a disturbance of an initial amplitude gVlo starts

its growth exponentially by ZPIoeBT with con-

stant B, and the experimental instrument will

detect the perturbation only if a certain
threshold amplitude Zlr" is exceeded. Hence,

the apparent critical conditions correspond to

    Maa = Ma, [1 + (l" (crIPB'* f,To) a,) ii" ]

                  '
where Maa is the apparent critical Marangoni

critical Marangoni number
of the radius of the liquid bridgb, provided the

assume that Eq.8 holds over a wide

KCI. Eq.9 then predicts a size dependence
shown jn Fig. 6 for djfferent values of to.

effect on Maa/Ma, regardless the liquid bridge

observation time is required to detect the

using large liquid bridges. Fig. 6 explains
numbers of Masud et al.'O) .

                               5.

    Three-dimensional simulations over wide
(As =: 0. 75 ' 1. 60) revealed the mu

flow in half-zone liquid bridges of Pr == 1.02

sistent with the linear stability analysis,

were correlated as a function of the
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Apparent critical Marangoni number: effect of to

and liquid bridge radius a.

                number.
from the true critical Marangoni number will b

                  observation
        range of Ma/Mac with B
               of the apparent critical Marangoni number

               The parameter
                 size.
             perturbations

                qualitatively

                            (9)

 Therefore the deviation of the apparent

              e scaled with the square

    period to is kept constant. Let us

     = 10.7, n=O.89 and for the fluid
                           (Ma,) as
   ZP'*/ZVIo appears not to give significant

It should be noted that an extremely long

near the true critical Marangoni number

   the size-dependent critical Marangoni

                                  CONCLUSION

                                       ranges of Marangoni number and the aspect ratio
                              lti-morphological features of the 3-D oscillatory Marangoni

                                       fluid. The critical Marangoni numbers are con-
                                    except for As=O.75. The growth-rate constants
                               Marangoni number. And the correlation was used to ex-
plain the size-dependent apparent critical Marangoni numbers.
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