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Abstract

Stability of stationary solutions of the Oberbeck-Boussinesq system (OB) and
the corresponding artificial compressible system is considered. The latter
system is obtained by adding the time derivative of the pressure with small
parameter € > 0 to the continuity equation of (OB), which was proposed by
A. Chorin to find stationary solutions of (OB) numerically. Both systems
have the same sets of stationary solutions and the system (OB) is obtained
from the artificial compressible one as the limit ¢ — 0 which is a singular
limit. It is proved that if a stationary solution of the artificial compressible
system is stable for sufficiently small € > 0, then it is also stable as a solution of
(OB). The converse is proved provided that the velocity field of the stationary
solution satisfies some smallness condition.
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1 Introduction

This paper is concerned with the Oberbeck-Boussinesq equation

dive = 0,
Pr ! (9w +wv-Vv)— Av+ Vp—Rale; = 0, (1.2)
0 +v-VO— A —Rav-e3 = 0,



and the artificial compressible system for (1.1)—(1.3):

20p +dive = 0, (1.4)
Pr ! (v +wv-Vv)— Av +Vp—Rale; = 0,
00 +v-VO—AO—Rav-e3 = 0.

Here v = " (vi(z,t),v3(,t),v3(x,t)), p = p(z,t) and § = O(z,t) denote the unknown
velocity field, pressure and temperature deviation from the heat conductive state,
respectively, at time ¢ > 0 and position x € R3; e3 = 7(0,0,1) € R? Pr > 0
and Ra > 0 are non-dimensional parameters, called Prandtl and Rayleigh numbers,
respectively; and € > 0 is a small parameter, called artificial Mach number. Here
and in what follows, the superscript ' - stands for the transposition. The systems
(1.1)-(1.3) and (1.4)—(1.6) are considered in the infinite layer €2:

Q={r=(2,23);7" = (z1,72) ER* 0 < 23 < 1}.

The Oberbeck-Boussinesq equation (1.1)—(1.3) is a system of equations which
describes convection phenomena of viscous fluid occupying €2 heated from below
(heated at z3 = 0) under the gravitational force. It is well known ([1, 6, 7, 10]) that
under the boundary condition

V]gy=01 =0, Olsy=01 =0, (1.7)

there exists a critical number Ra, > 0 such that when Ra < Ra., the heat con-
ductive state v = 0, 6 = 0 is stable, while, when Ra > Ra,., the heat conductive
state is unstable and convective cellular stationary solutions bifurcate from the heat
conductive state.

A. Chorin ([2, 3, 4]) proposed the artificial compressible system such as (1.4)-
(1.6) to find stationary solutions of equations for viscous incompressible fluid numer-
ically. In the context of the Oberbeck-Boussinesq equation (1.1)—(1.3), the idea is
stated as follows. Obviously, the sets of stationary solutions of (1.1)—(1.3) and (1.4)—-
(1.6) are the same ones. If solutions of the artificial compressible system (1.4)—(1.6)
converge to a function u, = T(ps, vs,05) as t — 0o, then the limit u; is a stationary
solution of (1.4)—(1.6) which is thus a stationary solution of (1.1)—(1.3). By using
this method, Chorin numerically obtained stationary cellular convection solutions
of (1.1)—(1.3).

Since the limit u, in Chorin’s method described above is a large time limit of
solutions of (1.4)—(1.6), us is stable as a solution of (1.4)—(1.6). It is of interest to
consider whether u; is stable as a solution of (1.1)—(1.3), in other words, whether u
represents an observable stationary flow in the real world, and, conversely, what kind
of stationary flows can be computed by Chorin’s method. These questions are to be
formulated as stability problem for stationary solutions of the systems (1.1)—(1.3)
and (1.4)—(1.6). Since the system (1.1)—(1.3) is obtained from (1.4)—(1.6) as the
limit € — 0, one could expect that solutions of (1.1)—(1.3) would be approximated
by solutions of (1.4)—(1.6) when ¢ <« 1. However, this limiting process is a singular
limit, and hence, it is not straightforward to conclude that stability properties of u,
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as a solution of (1.1)-(1.3) are the same as those as a solution of (1.4)—(1.6) even
when 0 < e < 1.

The purpose of this paper is to investigate stability relations of stationary solu-
tions between the systems (1.1)—(1.3) and (1.4)—(1.6) when ¢ is sufficiently small.
We investigate the spectra of the linearized operators around a stationary solution
of (1.1)-(1.3) and (1.4)—(1.6) for 0 < ¢ < 1.

We first show that if a stationary solution us = '(ps,vs,0s) of (1.4)—(1.6) is
asymptotically stable for sufficiently small €, then so is u, as a stationary solution
of (1.1)-(1.3). More precisely, we consider (1.1)—(1.3) and (1.4)—(1.6) under the
boundary condition (1.7) and the periodicity condition

p, v and 6 are Q-periodic in (1, x3), (1.8)

where Q = [—7/ay, /o) X [—7/ag, m/as). Here o, j = 1,2, are positive constants.
We denote the basic period domain by €., = QX (0,1). We introduce the linearized
operators around u; associated with (1.1)-(1.3) and (1.4)-(1.6). Let L : L2, X

per,o
: _T
L2, — L2, , x L2, be the operator acting on U = "(w, #) € D(L) defined by
I —P1PA + P(vs - V + T(Vo,))  —PrRaPey
B T(V98> —Ra'es —A+v,-V
with domain D(L) = [(HZ, N H;,,,)* N L2, ] x [H2,. N H},..|. Here L2, HE
-+, denote L% H*, --- spaces over Q. with periodicity condition in z’, P denotes

the Helmholtz projection from (L7,..)* to L2, where L7, . denotes the set of

all solenoidal vector fields w = T(w', w?,w®) in (L2,,)? with w?|,,_01 = 0. We

define the operator L. : H),,, x (L2,,)* x L2, — H,,. . x (L2,)% x L2, acting on
u="(p,w,0) € D(L.), by
0 ~div 0
L.= [PtV —-PrA+wv,-V+ T(Vv,) —PrRaes
0 T(Vb,) — Ra'es —A+wv,-V

with domain D(L.) = H,,, . x [H}.,, 0 Hj .,
Hy: J,,. () dr = 0).

We prove that if there exists a positive number by such that p(—L., ) D {\ €
C;ReX > —bp} for some sequence e, — 0 as n — oo, then there exists a con-
stant by > 0 such that p(—L) D {A € C;ReX > —b;}. Therefore, a stationary
solution obtained by Chorin’s method with 0 < ¢ < 1 is stable as a solution of
the Oberbeck-Boussinesq system (1.1)-(1.3). Furthermore, we prove an instability
result: if o(—L)N{\ € C;Re\ > 0} # 0, then o(—L.) N{\ € C;Re X > 0} # 0 for
0 < € < 1. This shows that unstable stationary solutions of (1.1)—(1.3) cannot be
obtained by Chorin’s method with 0 < ¢ < 1.

As a converse of the above result, we prove that if

p(—=L) D {A € C;Re X > —by} (1.9)

]3 X [HZGT m H(},per}' Here H[])-GT,* - {p 6

for some constant by > 0, then there exist constants g > 0 and b; > 0 such that

p(—L.) D{A € C;Re X > -1y} (1.10)
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for 0 < ¢ < 1, provided that

Re (w - Vo, w) 2
’weH&pET,’w;«éO va”%2 =

inf —dp. (1.11)
This gives a sufficient condition for u, to be computed by Chorin’s method with
0 < e < 1. We note that no smallness condition for the temperature 6, of u, is
required.

This result is applicable to stable bifurcating cellular convective patterns such as
roll pattern, hexagonal pattern and etc., when Ra ~ Ra.. In fact, the velocity fields
of bifurcating convective patterns are small when Ra ~ Ra, since they bifurcate
from v = 0, # = 0 when Ra crosses Ra,, and hence, condition (1.11) is satisfied.

To prove the first result, we show that an eigenvalue A of —L. with Im A = O(1)
can be obtained as a perturbation of an eigenvalue of —L as ¢ — 0. In fact, it is
proved that if Ay is an eigenvalue of —L, then, for any neighborhood of A\, there
exists an eigenvalue of —L. for 0 < ¢ <« 1 and the total projection P. on the
neighborhood satisfies P. = Py + O(e), where Fy is a projection whose velocity-
temperature part is the eigenprojection for the eigenvalue A\g of —L (Theorem 5.2
(ii)). Based on this observation we show the first result by a contradiction argument.
In particular, we find that if —L has an eigenvalue with positive real part, then so
does — L. with 0 < ¢ < 1, which gives the instability result.

To prove the converse, we investigate the resolvent (A + L.)~! according to the
cases for A\ near the imaginary axis with [ImA| > O(e™!), [Im\| < O(e7!) and
ITm A\| = O(¢7!) under the condition (1.9). By a standard energy method one can
show that — L. is a sectorial operator and {\;Re A > —b, [Im A| > O(e™ ')} C p(—L.)
with some b > 0 for 0 < ¢ < 1. We show that the spectrum of —L. near the
imaginary axis with [Im A| < O(e™!) can be treated as a kind of regular perturbation
of that of —L, which concludes that {X\;ReA > —b, [Im )\ < O(s7H)} C p(—L.).
The spectrum of —L. in the region |Im A| = O(¢7!) stems from the “compressible”
aspect of —L. and does not appear in the spectrum of —L. We prove {\;Re A >
—b,Im\| = O(e™)} C p(—L.) by an energy method provided that the condition
(1.11) holds.

One more remark is added in order. Due to the translation invariance in x; and
x9 variables, 0 is an eigenvalue of —L. whenever 0,,us # 0 or 0,,us # 0. In this
case nonzero 0, u, are eigenfunctions for the eigenvalue 0. Correspondingly, 0 is an
eigenvalue of —L whenever 0,, U # 0 or 0,,U s # 0. We formulate the main results
of this paper by taking this translation invariance into account. We note that under
the translation invariance one can show the orbital stability of U and u, for the
corresponding nonlinear problems.

This paper is organized as follows. In section 2 we introduce notations used in
this paper. In section 3 we state the main theorems of this paper. Section 4 is
devoted to the study of the null spaces of L and L. for 0 < ¢ < 1. We then prove
the first results in section 5. The converse is proved in section 6; and we give the
estimates for the derivatives of the pressure component of (A + L.)~! in section 7.



2 Preliminaries

In this section we introduce notation used in this paper.
For given aq, as > 0, we denote the basic period cell by

0= [-55)x-58)

a1’ ar az’ ag
We denote the basic period domain by €2,,:

Qper = Q x (0,1).

We denote by Cp¢, the space of restrictions of functions in C°°(€2) which are
Q-periodic in 1" = (r1,13). We also denote by CgS,, the space of restrictions of
functions in C* which are Q-periodic in 2’ = (21, 23) and vanish near z3 = 0, 1.
For 1 < r < oo we denote by L"(£,.) the usual Lebesgue space over {2,.,, and its
norm is denoted by | - ||. The k th order L? Sobolev space over €., is denoted by

H*(Qper), and its norm is denoted by || - || g+-

We set
L2, = the L*(Qye,)-closure of C3°,.,
H;fer = the H*(Qp.,)-closure of Crors
H&,per = the H'({.,)-closure of Coper-

We note that if f € H&per, then flo,——r/a; = fle,=n/a;, and f|z;—01 = 0. The inner
product of f; € L2, (j = 1,2) is denoted by

per

(i f) = /Q f1(0) @) de,

where Z denotes the complex conjugate of z.
The mean value of a function ¢(z) over €, is denoted by (¢):

1

[ er| Ja,,

(¢) ¢(x) dr.

The set of all ¢ € L2, with (¢) = 0 is denoted by L2, ., i.e.,

L2, ={oc L2, : (6) =0}

Furthermore, we set
HY . =HF NI

per,x per per,x”*

the set of all vector fields v in (CgS,,.)* with dive = 0. We

We denote by
set

00
0,per,o

L2, . = the L*(Q.,)*-closure of Cg°

per,o 0,per,o*
It is known that (L2,)* = L2, , ® G.,, where G2, = {Vp;p € H,,} is the

orthogonal complement of L2, .. The orthogonal projection P on L2,  is called



the Helmholtz projection. We define the projection P from (L2,)3 x L2, onto

per per
L2 xI2 by
P 0
P—(O I)'

per,o per
For simplicity the set of all vector fields in (L2,,)* (vesp. (Hg,., )% (H).,)?) are
frequently denoted by L2, (resp. Hj ., HY,,) if no confusion will occur.
We also use notation L2, for the set of all u = " (p,w, ) with p € L2, w =
T(w',w?,w?) € L2, and 0 € L2, if no confusion will occur.

Let ¢ be a positive number. We introduce an inner product ((u1,us)), for u; =
T(pj,wj,0;) (j =1,2) defined by

((u1,up)). = €(p1, p2) + Pr (wy, wy) + (61, 62).
We also define the inner product (Uy,Us,) for U; = " (w;,0;) (j = 1,2) by
<U1, U2> = Prfl(wl,wg) + (91, 92)

We denote the resolvent set of a closed operator A by p(A) and the spectrum
of A by o(A). The kernel and the range of A are denoted by Ker (A) and R(A),
respectively.

3 Main Results

In this section we state the main results of this paper. Let u, = ' (p,,vs,0s) be
a stationary solution of (1.1)—(1.3) under the boundary conditions (1.7) and (1.8)
satisfying fﬂper ps(x) dr = 0. We consider the linearized problem for the Oberbeck-

Boussinesq system (1.1)—(1.3) around us = " (ps, vs, 0;):
divw = 0, (3.1
Prlow — Aw + Pr (v, - Vw + w - Vou,) + Vp — Rafle; = 0, (3.2)
00— A0 +v,-VO+w- -V, —Raw -e3 = 0 (3.3)
under the boundary condition
w|w3:0,1 =0, 6)|z3:0,1 =0, (34)
and the periodicity condition
p, w and 6 are Q-periodic in (x1,x3). (3.5)
The linearized problem for the artificial compressible system is written as
Eop+divw = 0, (3.6)
Pr 0w — Aw + Pr (v, - Vw + w - Vou,) + Vp — Rafle; = 0, (3.7
00— A0 +wv,-VO0+w- -V, —Raw -e3 = 0 (3.8)
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with the boundary conditions (3.4) and (3.5).
By applying the projection P, problem (3.1)—(3.5) is written as

Pr'0,w — PAw + Pr'P(v, - Vw + w - Vv,) — RaPfe; = 0, (3.9)
00— A0 +v,-VO+w-Vl, —Raw -e3 = 0 (3.10)

with the boundary conditions (3.4) and (3.5). We introduce the linearized operator
around U, = " (v,,0,) associated with problem (3.9)-(3.10) under (3.4) and (3.5).
We define the operator L : L2, x L? — L% _ x L? by

per,o per per,o per

I_ (—PrPA +P(vs - V+ "(Vvg)) —PrRaPe; >

T(V,) — Ra'es —A+wv,-V
with domain D(L) = [(H},, N Hy,.,)* N L2, .| % [H, O Hg ...
We also introduce the linearized operator around us; = ' (ps, ws, 05) associated

with (3.6)—(3.8) under (3.4) and (3.5). We define the operator L. : H,, , x (L2,,.)* x
L2 — H' _x(L?,)*x L%, by

per per,*x per per
0 E%div 0
L.=| PtV —PrA+wv,-V+ "(Vv,) —PrRaes
0 T(Ves) — RaTeg —A + v, - \V4
with domain D(L.) = H,,,, x [H},. N H ,.,)* X [H} 0 Hp e, ]

Before going further we make one observation. Due to the translation invariance
in x; and x5 variables, 0 is an eigenvalue of —L. whenever 0,,us; # 0 or Jd,,us # 0.
In this case nonzero 0, u, are eigenfunctions for the eigenvalue 0. Correspondingly,
0 is an eigenvalue of —L whenever 0,,Us # 0 or 0,,Us # 0. For simplicity we
consider the case 0,,us # 0 (and hence 9, U # 0) for j = 1,2.

Theorem 3.1. Let 0,,us # 0 for j = 1,2. If there exists a positive number by such
that p(—Le,) D {A € C;Re X > —by} \ {0} for some sequence e, — 0 as n — oo and
0 is a semisimple eigenvalue of — L., with Ker (—L.,) = span {0, us, Op,us}, then
there exists a constant by > 0 such that p(—L) D {\ € C;Re A > —b1} \ {0} and 0
is a semisimple eigenvalue of —L with Ker (—L) = span{0,,Us, 0,,U}.

Theorem 3.1 shows that if u, is obtained by Chorin’s method with 0 < ¢ < 1,
then it is stable as a solution of the Oberbeck-Boussinesq system. In particular, we
have the following instability result.

Theorem 3.2. Let 0,,us # 0 for j =1,2. If o(—L) N {A € C;Re X > 0} # 0, then
o(—Le)N{X € C;Re A > 0} # 0 for sufficiently small €.

By Theorem 3.2, we see that unstable stationary solutions of the Oberbeck-
Boussinesq system cannot be obtained by Chorin’s method with 0 < ¢ < 1.

We next give a sufficient condition for us; to be computed by Chorin’s method
with 0 < e < 1.



Theorem 3.3. Let 0,,U, # 0 for j = 1,2. Suppose that p(—L) D {\ € C;Re\ >
—bo} \ {0} for some constant by > 0 and 0 is a semisimple eigenvalue of —L with
Ker (—L) = span{0,,U,, 0,,Us}. Then there exist constants g > 0, &g > 0 and
by > 0 such that if

Re (w - Vv, w) <
’lUGH;eT’O,w;éO val‘% =

inf — 5, (3.11)
then p(—L.) D {\ € C;ReX > —b1} \ {0} for all 0 < e < ey and 0 is a semisimple
eigenvalue of — L. with Ker (—L.) = span {0y, ts, Op,Us } .

In Theorem 3.3 we require smallness condition for the velocity field v, only but
not for the temperature 6,.

Remark 3.4. It is known that —L s sectorial. Furthermore, —L. is also sectorial
for each ¢ > 0. (See Proposition 6.1 below.) Consequently, under the assumptions
of Theorems 3.1 and 3.3, us = " (ps, v, 0s) is asymptotically (orbitally) stable as a
solution of both problems. More precisely, a solution of the nonlinear problem near
us converges to a stationary solution us(- + d',-) for some a’ € R? as t — oo.

Remark 3.5. Theorems 3.1 and 3.3 also hold with slight modifications when 0, u, =
0 (and hence 0,,Us = 0) for both j = 1,2 or for one of j = 1,2. For ea-
ample, if 0,,Us # 0 and 0,,Us = 0, then Theorem 3.3 holds with Ker (—L) =
span {0,, U, 0., U} and Ker (—L.) = span{0,, us, Op,us} replaced by Ker (—L) =
span {0,, U} and Ker (—L.) = span {0,,us}, respectively. Likewise, the theorems
hold for other cases with similar modifications.

Since the velocity fields of cellular stationary convective patterns bifurcating
from the heat conductive state are small when Ra ~ Ra., we apply Theorem 3.3
and Remark 3.5 to obtain the following corollary.

Corollary 3.6. If us is a stable convective pattern of (1.1)—(1.3) bifurcating from the
heat conductive state, then it is also stable as a solution of (1.4)—(1.6) for 0 < e <« 1
when Ra ~ Ra,.

To prove Theorems 3.1-3.3, we will first investigate the null spaces of L and L.
in section 4. Theorems 3.1 and 3.2 will be proved in section 5. The proof of Theorem
3.3 will be given in sections 6 and 7.

4 The null spaces of L and L.

In this section we investigate the relation of the null spaces of L and L.. We introduce
the adjoint operator L* : L2, x L2, — L2 x L2  of L:
I —PrPA + P(—v, - V + (Vv,)) PrP((Vé) — Raes)
o —Ra'e; A —v,-V

with domain D(L*) = [(H},, N Hg .,

SN L2 x [H?2 N H}
)

per,o per O,per] .



In what follows we assume that 0 is a semisimple eigenvalue of — L with Ker (—L) =
span {0, Us, 0,,U s }.

Since —L is a sectorial operator with compact resolvent and 0 is a semisimple
eigenvalue of —L, we have the following resolvent estimate for —L.

Proposition 4.1. Set U;O) = 0,,U, for j = 1,2. Then the following assertions
hold.

(i) There exist U = T(w?,0%) € D(L*) such that L*U’ = 0 and (U JU3) = 65

]’]

for j,k =1,2. Furthermore,

L2 xL? =X,® Xy,

per,oc per

where Xog = Ker (—L) and

Xi=R(-L)={UelL, xL, ;({UU;)=0j=1,2}

per,o per?

The eigenprojection 11y for the eigenvalue O of —L s given by

LU = (U, U)UY + (U, U)UY

(i) Set II§ = I — ILy. There exist constants ag > 0 and ¢y € R such that

Y\ {0} C p(—1L),
where
Y :={A € C;Re A > —ao|Im A + ¢},

and the estimates

A+ L) 'Fll,<C ILF|>+ I F
0+ D)7 Fll < € { L IMP e + o IR

rmu+m1mbsc{HMJm+mrm%

|A

hold uniformly for A € ¥\ {0}. Furthermore, if IlgF = 0, then Ty(A+ L)"'F =0
and the above estimates hold for any A € X.

We next introduce an operator .2,  : HY, . x (L2, )3 x L2, — H}, . x(L%,)%x

) per,* per per per,* per
L;., defined by
D(ﬁ ) Hp}er * {waer N H&per] [Hier N H&per}
0 L div 0
ZLer=|PrtV A=PrA+uv,-V+ "(Vvy) —PrRaes ,
0 T(V0,) — Ra'es A—A+4+wvs-V
and its adjoint £ , per* (Lfm) X Lier — H]}er* (Lfm) X Lfm, by
D( ) H;er * [ngr N H(%per] [Hzger N Héper}



0 —%div 0

o= | -PrVv A —PrA —wv, -V + (Vu,) Pr(Vl,) — PrRaes
0 —RaTeg X — —v,-V
Note that
ZL.o=L..

We also introduce the operators Ay and o7, by

Avap — A —PrA + v, -V + T(Vo,)
A= T(V0,) — Ra'es W,

and

0
dyw= | A\—PrA+wv,-V+ T(Vov,) | w.
T(V0,) —Ra'es

We first prepare the following lemma.

Lemma 4.2. There exists a bounded linear operator V : H,, . — [H> N Hj,,]*
such that

divVif=f, NV flu <Clfllm
for f € HL,..

This lemma follows from the solvability for the nonhomogeneous Stokes problem
divv = f, —Av + Vp = 0 under the boundary conditions v|,,—0; = 0, and p, v
being Q-periodic in x’. See, e.g., [5].

In what follows we set

Y =H . x(L2,)x L?

per,* per per*
Proposition 4.3. Let ¢ > 0.
(i) Let u§0) = O0p,us (j =1,2). Then

Ker (fe,o) = Ker (Le) = span {u§0)7 ugo)}.

(ii) For each j = 1,2, there ewists a unique p; € H!  such that ZLou; =0,

per,x €

k T (% * )k T * * - - . - .-
ui = (p;,w},07), where " (w},07) (j = 1,2) are the functions given in Proposition

4.1 (i). Furthermore,
R(Zep) = R(L:) ={u € Y; ((u,uj)). =0,j = 1,2}

(iii) There exists a positive number €1 such that if || < e1, then
Y = Ker (L.) ® R(Le).

Therefore, 0 is a semisimple eigenvalue of L.. Furthermore, if F = T(f,g,h) €
R(L.), then there exists a unique solutionu = " (p,w,0) € D(L)NR(L.) of Lou = F
and u satisfies

ullrxz e < CLE2N flla + 1 F 23,
where F = T (g, h).
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Proof. Let u = "(p,w,0) € D(ZL.y) satisfy ZL.ou = 0. Then U = "(w,0)
satisfies U € D(L) and LU = 0. By assumption, there exist a; € C such that
U = 410;,Us+ a20,,U;. On the other hand, .Z. o(a10,,us + a20,,us) = 0. We thus
obtain

vp = V(aflaamps + a28x2p5)-

Since p and a0, ps+ a20,,ps are in ngm, we have p = a10,, ps+a20,,ps, and hence,
(0)

U = a10y, Us + a20,,us. This shows Ker (£, ) = span {u§°>, us’ } and (i) is proved.
As for (ii), since L*U; = 0, there exists a unique pj € H),, , such that u} =
T(p;, U;) satisfies u; € D(Z ) and Z7 qut = 0.
Let us prove R(ZL.p) = {u € Y; {{u,u})), = 0,j = 1,2}. Set w = w — *V f.
Then
Logii=F -2\ V (4.1)

where @ = T (p,w,0) and F = (0, g, h). Therefore, we have
LU = P[F — 2A,V f], (4.2)
where U = T(w,6) and F = T(g, h). Since ((F, u)). =0 for j = 1,2, we have
(P[F — * AV f1,U?)
= (F,U}) - e?Pr Y (-PrAV f +v,-VV f + V f . Vu,, w})
—*(Vf-Vl,—RaV [ -e3,0})
= (F,Uj)
—’Pr (V f, =PrAw} — v, - Vw} + (Vv,)w] + Pr(V6,)0; — PrRaf}e;)
= (F.U})—*Pr ' (V f,PrVp})
= (F.U})+*(divV f,p))
— (R, =0,

Applying Proposition 4.1, we see that there exists a unique solution U = T(w,0) €
D(L) N X of (4.2) with estimate

1Tz < CLE2Nfllar + [[Fll2}-

It then follows that there exists a unique p € H! _ such that @ = T(p,w,0) €

per,*

D(Z.p) is a solution of (4.1). Setting u = T(p,w + €2V f,0), we see that u €
D(Z.p) and Z. pu = F with estimate
lull ez < CLE2|fllarn + | F |2} (4.3)

We thus conclude that R(Z. ) = {u € Y; ((u,u})). = 0,7 = 1,2}. Note that R(L.)
is closed.
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As for (iii), we first show that there exists = D(L.) (j = 1,2) such that

7,
Ker (L.) = span {u\”, u$}, (W, uf)). = 65 (i k = 1,2).

J,e

505) = aljug()) + GQjUgO) (7 = 1,2). By the conditions

@11 Q12| 1 0
= (azl a22> B (0 1) ’ (4'4>

5 (<<u§0%u>;>>s <<u§°>,ur>>e) |

We look for ugoa) in the form wu

((u??,u}i)} = 0, we have

where

(g us)). () us)).

Since <U§O), U;) = 6k, we see that

B (10" 20 )
e 2 (0) * 1 2 (0) * :
e*(p1 7, p3) +e%(py 7, p3)

10
Ba—>(0 1)

as € — 0, and hence, B. has its inverse B! for 0 < ¢ < 1. We thus obtain the
. 0 .

desired uge) (7=1,2).
Set

Therefore,

2
* 0
Poouw =" ({u,uf)) ul.
j=1

Then P, . is the projection on Ker (L.), i.e., the eigenprojection for the eigenvalue
0 of —L.. It is easy to see that R(I — Py.) = {u € Y; ((u,u})), = 0,5 = 1,2}. This,
together with (ii), implies that R(L.) = R(I — ), and hence, Y = Ker (L.) &
R(L.). This decomposition and (ii), together with (4.3), yield the unique existence
of solution u € D(L.) N R(L.) of L.u = F for F' € R(L.) with the desired estimate.
This completes the proof O

5 Proof of Theorems 3.1 and 3.2

In this section we prove Theorems 3.1 and 3.2. We introduce some operators. We
define Ly : (H},,)® x L2, — (L2,,)* by

L\U = AMw — PrAw + v, - Vw + w - Vv, — PrRafe;
for U = "(w,0) € (H%,)? x L?

per per*
Let A € p(—L). For any F = "(g,h) € L2, , x L2, there exists a unique
p € H  satisfying

per,x

Vp=IF —Ly(\+L)'F, (5.1)

12



and
[pllzrr < C{IA[Cox + Con + 1} F |2,

where I is the n x (n+ 1) matrix given by I = (I, 0) with I being the n x n identity
matrix, i.e., IF = g, and

L)'F

||‘lp||2 per,c per’

We denote this p by py[F]. The correspondence F' € L2 x L? +s p)|[F] € H!

per,c per per,*
is linear, and hence, defines a bounded linear operator.

We first give an expression of Z;l\ in terms of (A + L)%

Proposition 5.1. Let A € p(—L). Then

o PAP(F — 2 AV f)]
L= ((A + L)—AlP(F — 52A;Vf) + €2Vf)

for F=T(f g ,h)e H. . x L xL?

per,x per per*

Proof. For a given F' = "(f,g,h) € H, . x L?  x L2  we consider the problem

ZLeau=F. As in the proof of Proposjtfg;*él.?), gfg set 56; u— 1(0,62V f,0). Then
we have Z. i = F — 2/,\V f with F' = 7(0,g,h). We thus arrive at
(A\+L)U = P(F — A,V f),
where F = T(g, h). Since A € p(—L) we have
T(w,0) :=U = (\+ L) 'P(F —2A,Vf).
It then follows that @ = " (p, w, ) with
p=p[P(F - 2A\V )]

satisfies L. il = F —2/\V f. Setting u = | (p,w, #) with w = @ 42V f we have
the desired expression. This completes the proof. 0
We next give a perturbation result of eigenvalues of —L.

Theorem 5.2. Let Ay € o(—L). Then \g is an eigenvalue of —L with finite multi-
plicity and the following assertions hold.
(i) There exist C >0, m € N and r1 > 0 such that

0 < A= Xo| 71} € p(—L)

and

I+ L) gl < lgll2

¢
A — Xo|™
for X with 0 < |\ — Ao| < 1.

13



(ii) For any ro € (0,11], there exists a positive number ey = €o(ro,r1, M, |Ao|)
such that o(—L:) N{X; |A = Xo| <710} # 0 for 0 < e <eg, and if |\ — Xo| = 10, then
A€ p(—L.) for 0 < e < gy and the total projection P., the sum of eigenprojections
for eigenvalues of —L. lying inside the circle |\ — \o| = ro, satisfies

1

P.F = — A+ L) 'Fd\ = PF +O(*)F
270 J)x—xol=ro

in H! X L? x L? as € — 0. Here Py is the projection defined by

1,,PF
PyF =
I, PF

for F="T(f,g,h) € H'. . x L*>x L? where F = "(g,h), I, is the eigenprojection

per,x

for the eigenvalue Ny of —L given by

1
I, PF = —/ A+ L) 'PFd\

270 J 3~ xol=ro

and .
H)\OPF:——, p)\[PF}dA,
270 Jx—xol=ro
ie., II\,F € H]}er,* is the function satisfying
1
VI,,PF = —— (I—Lyx(A+ L) HYPFa\.

270 J|x—xol=ro

(iii) It holds that dim R(P.) = dim R(Fp) = dim R(IIy,) for 0 < e < &.

Remark 5.3. Let m be the algebraic multiplicity of N\o. Then one can take a basis
of R(ILy,) consisting of functions U, (No+L)Uj, -+ ,(No+L)™ U, j=1,---,r,
with (Ao + L)™U; = 0 and my + --- +m, = m. We denote by pj, € H;er7* the
pressure satisfying

Ly, (Ao + D)™ U; = T(\g + L)™*U; — Vpye

for 1 <j<r, 0<{¢<mj—1. It then follows that a set of functions " (pjs, (Ao +
Lyn=tU;), 1<j<r,0<{<m;—1, forms a basis of R(P).

Proof. Since — L has compact resolvent, its spectrum consists of discrete eigenvalues
with finite multiplicities. Let the algebraic multiplicity of Ay be m. Then we see
that there exist a m € N, 1 < m < m, and a constant r; > 0 such that {\;0 <
A= Xo| <7} Cp(—L) and

A+ L) glln= < gll2

v
A= Aol

14



for A with 0 < |\ — Ag| < ry. This proves (i).
As for (ii), we set

1
J=10
0

o O O
o O O

and write A + L, as
A Lo =2y + M =L+ 22L23J).

Since JF = T(f,0,0) for F = T(f,g,h), we see from (i) and Proposition 5.1 that

<|)\0| + TgL -+ 1)2

0

| LT F | ez < CE° SNl e

for |A — Ao| = 7. Therefore, if

2 o’ 1
- 4C(|/\0|+7”0 1)2‘)\0|+T0’

3

then

(‘)\0‘ + ’I"(T)n + 1)2

0

_ 1
INZL AT F || xmzxmz < Ce2(|o] + 7o) 1z < SHErrxpzxre

for [\ — Ao| = ro. It then follows that (I + \.Z ;}\J ) is boundedly invertible both on
Y and D(L.) with estimates

”(I—I— /\f;ij)_lFHHle?xL? < 2||FHH1><L2><L2
for ' €Y and
||(]+ )\g;iJ)_lFHHlxlprp < 2||F||H1><H2><H2

for ' € D(L.). We thus find that A + L. = £, + AJ has a bounded inverse
A+ L)t = (ZLon+e°XJ)7 on Y which satisfies

A+L)™t = I+ A,iﬂ;ij)*l.f;j

o0

= Z(—A)N(fgiJ)Nf;i

N=0

with estimates
|(A+ Le)_1F||H1><L2><L2 < C|\|F|lgrxrzxr2

and

S C€2||FHH1><L2><L2-
HlXL2xL?

\NL AJZ LANNLF
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Using these estimates with Proposition 5.1 and the assertion (i), we obtain the
desired result (ii).

As for (iii), we first observe that Py is a projection, i.e., P = Fy. By (ii) we
have P. — P, in the operator norm as ¢ — 0. It then follows from [8, Chap.I,
Lemma 4.10] that dim R(P.) = dim R(F,) for 0 < ¢ < 1. On the other hand,
dim R(Fy) = dim R(IT,,). We thus obtain the desired result. This completes the
proof. O

Proof of Theorems 3.1 and 3.2. Theorem 3.2 is an immediate consequence
of Theorem 5.2 (ii). To prove Theorems 3.1, we first observe that dimKer (L) =
dim Ker (%, ). Suppose that 0 is not a semisimple eigenvalue of L. Then

dim R(IIy) > dim Ker (L) = dim Ker (%, o) = dim Ker (L.). (5.2)

Since 0 is a semisimple eigenvalue of L., we have dim Ker (L.) = dim R(P.). This,
together with (5.2), implies that dim R(IT;) > dim R(P.), which contradicts to
Theorem 5.2 (iii) with A\g = 0. We thus conclude that 0 is a semisimple eigenvalue
of —L.

Suppose that there exists A\g € o(—L) with Ay # 0 and Re\g > 0. Then, by
Proposition 4.1 (ii), we have Im A\g = O(1). Let o = (Re A\g+bg)/2 > 0. We see from
Theorem 5.2 (ii) that there exist g9 > 0 such that {\;|A — Xo| < ro} No(—L.) # 0
for all 0 < e < ep. But if |A — Ag| < 7o, then

Re)\:Re()\—)\o)+(Re)\0+b0)—bo ZTO_bO > —b().

This contradicts to the assumption {\;Re A > —bo} \ {0} C p(—L.,) with &, — 0.
The proof of Theorem 3.1 is complete. U

6 Proof of Theorem 3.3

In this section we give a proof of Theorem 3.3. We consider the resolvent problem
for —L,:
A+ Lou = F, (6.1)

where u = T (p,w,0) € D(L.) and F = "(f,g,h) € Y. Problem (6.1) is written as
e2\p + divw = &°f, (6.2)
Pr ' \w — Aw + Pr (v, - Vw + w - Vv,) + Vp — Rafle; = Pr'g, (6.3)
M — A0 +v,-VO+w -V, — Raw - e3 = h, (6.4)
and u = " (p, w, ) satisfies the boundary conditions (3.4) and (3.5).

Proposition 6.1. There exist constants a. = O(1) > 0 and b. = O(1) >0 ase — 0
such that {\ € C;Re\ > —a.e*|[Tm A|* + b.} C p(—L.) for all0 < e < 1.
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Proof. We set )
ulll2 = (€*lIpll5 + Pr~wl|3 + [|0]13)

for u = T (p,w,#). Taking the inner product ((-,-))_ of (6.1) with u, we have
Mulll2 + [[Vw|i3 + Vo3

= 2RaRe (0, w?) + 2ilm (p, divw) — Pr~! (v, - Vw, w) — (vs - VO,0)  (6.5)

—Pr Y (w - Vg, w) — (w -V, 0) + ((F,u))..

Noting that Re (vs- Vw, w) = Re (vs- V0, 60) = 0, we see from the real part of (6.5)
that
(Re A = bo)|[[ull[3 + [IVewll3 + VO3 < [IIF]l|2lull]2, (6.6)

where by = 3{||Vv;|l + (Pr+ 1)(2Ra + ||V0s]/c)}. The imaginary part of (6.5)
yields

[ A[l[[ulll; < 2lpllolldivw]ls + Pro{og]lo [ Vw2 [w]l:
Hvslloo VOl 16]]2 + Pr [ Vol llwll3 + [V slloollwll2 6]l

2wl

IN

{(2c7 + Prodfvlc) IV lla + 0]l 765

_1 1
+Pr72 [ Vo[ [|w]l2 + Pr2{| Vsl [0]]2 + |||F|||z} [Hul[]2,
and hence,

M AP[[ulll} < 36 {(4e7* + Protfju.ll3,) [IVawll3 + [[osl5 1 VOll3

P [V |2 w3 + Prl VO [IZ 10115 + [11F1113} -
It then follows from (6.6) and (6.7) that
(Re A+ a-*[Im AP = bo)|[[ull5 + 5 (IVwll3 + [[VO]3)
< (071 + 36a.2?)[[| P13

for all 6 > 0, where
1

72(4 + e2(Pr7' 4 1)[|vy]|2)

Az =

and
be = 6 + by + 36a.e” (| Vusll2, + Prl|VEI2,) -

It remains to estimate ||0,pl|2. To this end we use the estimates in section 7. We
introduce quantities D(w, ) and M (w,#) defined by

D(w,0) = [[Vwlf;+[[V8|3,
M(w,0) = |vll%@r 2Vl + [ VOI3) + (Pr2 Va2 + [V0[13) [wl3
+Ra(1 + Ra)([[wll3 + [10]13)-
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We set
Y1 ={A€;Re )+ a?lmA| — b, >0}

and
22 = {)\ c 7CllSt ()\, 21) Z 1}

In what follows we assume that A € ¥5. It then follows that
M(w,8) < CI[|F|]]3.

Here C' is a positive constant depending on Ra and Pr but not on e.
We consider (1 4 ¢72) x (6.8) + dy x (7.8). Then taking dy > 0 suitably small,
we see that

(Re A + a?[Im A2 — b.)|||ul[]3 + (Re A + [Im A]) D(w, )
+(Re A+ 2[Im AP) (|[|0zull[3 + €21 0x, p113)
b (14 ) D(w, 8) + [e2Apl2 + AR ull) (6.9)
+bo ([02w]|3 + 1920113 + 110.pll3)
<O+ {)0.£15+ (1+ %) IIFII[3}
with some positive constants by and C' uniformly for 0 < ¢ < 1. This completes the

proof. O

We next show that the spectrum of —L. in a disc with radius O(e™!) can be
viewed as a perturbation of the one of —L. From the assumption of Theorem 3.3,
we see that one can take the constant ¢y in Proposition 4.1 (ii) so that ¢y < 0 by
changing ay > 0 suitably. In what follows we fix these ay > 0 and ¢y < 0. Using
Proposition 4.1 (ii), Lemma 4.2, (5.1) and Proposition 5.1, we have the following
estimates for ,5,”;1\

Proposition 6.2. Let ¢ > 0. If A\ € £\ {0}, then Z. \ has a bounded inverse .,?6_/1\
and T (p,v,0) = f;}\F for F =T(f,g,h) €Y satisfies

C < . 1
01 < 5 S NE ] + {2l + 5 1R
j=1

C < .
18U (|2 + [|0:pll2 < o S IEw) ]+ C{E0N + DI f i+ [1F 2}
j=1

where U = "(w,0) and F = "(g,h). Furthermore, if F € Y1, then "(p,v,0) =
XE_}\F exists uniquely in Yy . and the above estimates hold with A = 0 and ((F,u})), =
0(=1,2).
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Proof. As in the proof of Proposition 4.3 (ii), we see that

wPF - 24V i) = Y { (R, - v e Ul

J=1

Therefore, applying Proposition 4.1 (ii), Lemma 4.2 and Proposition 5.1 together
with (5.1), we have the desired result. This completes the proof. O

Proposition 6.3. There exist positive numbers 1 and ay such that
Y N{A€C;ReX > —by, |\ < are™'} C p(—Le|vi.)
for all0 < e < ey. Here

Yie=R(L:) ={u € Y;{{u,uj)), =0,j=1,2}.

Proof. As in the proof of Theorem 5.2, we write the resolvent problem
A+ Liu=F

on Y, as
Leau+ Nu=F, (6.10)

where F' = T(f,g,h) € Yi.. If A\ € X, then it follows from Proposition 6.2 that
(6.10) is written as
LaI+2L3J)u=F,

and, furthermore, we have
LT F sz < *CLlA] + D fll e

forall F = T(f,g,h) € Y .. It then follows that there exists £, > 0 such that if A € 2
and || < 1/(4y/Cie), then L2\ JF € D(Z.») = D(L¢) and | A\L 3T F || 2wz <
S| F |l rixr2xze for 0 < e < ep. Therefore, (I+ )\X;}\J) is boundedly invertible both
on Y. and Yy . N D(L.) with estimates

(1 + AZ23T)  Fllacrexre < 20 F| iz
for ' € V), and

(I + ML) Fllimcaexiz < 2| F |l rxmzxm
for F' € Y. N D(L.). We thus find that A + L. = £, + AJ has a bounded inverse
A+ L)™' = (ZLa+e2XJ)7 ! on Yy . which satisfies

AN+ L)' =2 - AZ3T Y (-0 (LD 2,
N=0
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and

I+ L) Fllairexze < 2CH {2 (A + DI fllae + [ F[l2}

< 20, {g (ﬁ +s) 11l + ||FH2}

with F' = T(g, h). This completes the proof. 0

Theorem 3.3 follows from Propositions 4.3, 6.1 and 6.3 if /b./a. < a; for 0 <
e < 1. In the case \/b./a. > ay, there is some range of A\ near the imaginary axis
with |[Im A| = O(¢™1) to be proved that it belongs to p(—L.).

To prove Theorem 3.3 when \/b./a. > a1, we first prepare an estimate for the
f-component. We recall that the Poincaré inequality

V82 > 516]|2
holds for 0 € H}

0.per With some positive constant B.

Proposition 6.4. Let ' (p,w,0) be a solution of (6.2)—(6.4) under boundary condi-
tions (3.4) and (3.5). Then if Re A > —%2, the following estimates hold:

B

2
IVOl> < 3 {(IVOs]lco + Ra)[Jw|l2 + [ A]]2} -

1 2Vl 0o
1612 < gy (1 2512 ) €098l + R ol + 1),

Proof. We take the inner product of (6.4) with § to obtain

Allolz + Vel
(6.11)
= —(ilm (v, - V0,0) + (w - Vb,,0) — Ra(w?,0)) + (h,0).

Using the Poincaré inequality we see from the real part of (6.11) that
(Rer 22 ) 1615 + U018 < (1901 + ) ol + ]} 101
This implies that if Re A > —%2, then
VO] < % {(IVslloo + Ra)[[wll2 + [[A]l2} - (6.12)

Furthermore, the imaginary part of (6.11), together with (6.12), implies that
Tm A|[|0]]2 = |-Im ((vs-V0,0) + (w- Vb,,0) — Ra(w?,0)) + Im (h, 0)|

< AllvslleclVOll2 + ([[Vs]loo + Ra)llwl]2 + [[A][2} [[6]]2

< (L4 28 (V0. o+ Rl + [ ]

from which we have the desired estimate for ||0||5. This completes the proof. O

We are now in a position to complete the proof of Theorem 3.3.
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Proposition 6.5. For given p, > 0 and n. > 0 there exist constants 1 > 0 and
co > 0 such that if

f Re (w - Vv, w) - Pr
weH} ., w0 [Vwl?2 = T3y
then 0
{A =p+ ig; —c2 < 1 < p, | > m} Cp(—Le)

for all 0 < e < e1. Here g1 and ¢y are positive constants depending only on Pr, Ra,
Hvs”cl7 HVOSHOO; /87 ,LL* (Ind 77*

Proof. We see from (6.2) that

p=——=divw + f (6.13)

52)\
Substituting (6.13) into (6.3), we have
2)2 2

p W~ 2 \Aw — Vdivw + EP—)\('US -Vw +w - Vv,) — 2 \Rafes = °G,, (6.14)
T r

where G = %g - V.
Let A = p+ Ly with |n| > n.(> 0). Without loss of generality we may assume
n > n,. Taking the inner product of (6.14) with w, we have

2)\2
Pr
= —’A (Pr ' (vs - Vw,w) + Pr ' (w - Vo, w) — Ra(0,w?)) + *(Gy, w).
(6.15)
Since \? = (u? — e72n?) + 2ie 'y and Re (v, - Vw, w) = 0, the real and imaginary
parts of (6.15) yield

lw]3 + Al V|3 + [|divw]]3

1 :
5o (& =) [[wl3 + | Veol|3 + [|div wll3
= —uRe (Pr ' (w - Vo, w) — Ra(f, w?))

(6.16)
+enlm (Pr (v, - Vw, w) + Pr ' (w - Vo, w) — Ra(f, w’))
+eRe (G, w)
and
2epn
o + 2| T
= —*ulm (Pr (v, - Vw,w) + Pr ' (w - Vv, w) — Ra(f, w’)) (6.17)

—enRe (Pr'(w - Vv, w) — Ra(6, w?))
+&2Im (G, w).
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Since [Im A| = 2, by Proposition 6.4, we have

Rae 2||vs]loo
Ra(o, )] < 22 (14 220 (v + Rl + ).

and hence, we see from (6.16) that

1
S = <)

n
< (e% Ly €n> IVl + (] + en)Pr Vo, oo + enPr2[v,2.) o]

*

Rae 2||vs]| oo
rel + e (14 22 ) (9 + Rl + ol

+2[|Ghlla[|w ]
(6.18)

Similarly, we see from (6.17) that

2un 31
|| 15+ IVw|3

£2| u[2Pr2||v,||2
< —oprRe(w: Vo) + (S et ve )

Rage 2Vl oo
el + ) (14 22 (198, + Rl + Dol

+el| Gallz[[w]]2-
(6.19)
We set M = infypepn 4420 %. It then follows from %= x (6.18) +
,per’ 2
(6.19) that
2
T 2> o (N Enp e
Loy + 0 _ETH Vw
(st o) Il (4= S0 = Y w0
< —nPr M Vw|3 + Con(|1F [l mix 22 [[wll2,
where
I — 2/4L_77 _ €2M2 ”’U:?H2 5|M| 577*) HV ||
s Pr Pr >

e ||vs||2
—5Ra(1 =) (5“” )( ""S”“)<|\wsy|m+aa),

ENx € 2Vl oo
ConlIFllmxazy) = (14 52) [Ra (B0 1) (1 200 o+ ]
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We take € > 0 so small that £2p, < % and en. < < in (6.20). Then by using the
Poincaré inequality, we have

M 6] N
(Iwnup y +—n) Jw =LVl < e MV lB Con(IF i <quy) el

8
(6.21)
and hence, if
Y
- 32
we find from (6.21) that
enn T 51 | [wllz + S IVWllz < CoalllFllmxaye)llwll2. (6.22)

Therefore, if we show I, ,, + %277 > f—zn for —co < p < py and n > n, with some
co >0 when 0 < e < 1, tglen th(g proof of Proposition 6.6 is complete.
Let us prove I, , + '%77 > 'f—(),n. When 0 < p < iy, we have

2 o, ol
Lo 2 n{n (g - 1) = 5 (190 + 125]

cRa EMs 2||vg|loo
5 (1+ 4)<1+ 57 ) (190, +Ra)

e (1 |lvsl)? e (e 1
K€ = |\ —= 5\ 7 - \Y s|loo
Pr (4 i n?Pr ) * Pr <4 N 77*) Vol

£?Ra £ 2||vs]| 0o
+— <1+ 1 ) <1+ 3 >(||Vvs||oo+Ra).

*

where

Therefore, if we take € > 0 so that

2
——K. >0
Pr -
and ) )
16 > Pr
8Ra ( EN ( 2H’USHOO)
ey S ) 1+ V]| + Ra) > 0,
Pl 1) (19w, + Ra)
then we have I, ,, + %277 > [1'}—277 for 0 < pu < py and n > 7., and hence,
oMWl + 55 IVwllz < CoalllFllmxzaz)wll: (6.23)

for 0 < p < py and 7 > 7. 3
When p < 0, we assume that |u| < £56%. We write L., as L., = nl(u,n).
Then we see that I.(u,1) > I (—5B% ) = —g—; + O(e), and so we take € > 0 in
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such a way that I. (—% 2,17*) + %25 > 0. It then follows that I, ,, + %277 > %25777
and hence, we have (6.23) for —c, < p < 0 and n > 7, with ¢, = ££ 4% Similarly
to the proof of Proposition 6.1, we can derive the necessary estimate for ||,p||3 by
combining estimate (6.23), Propositions 6.4 and 7.5. This completes the proof. [

Theorem 3.3 now follows by taking 7, = %, p, = 2b|c—15-1 and € > 0 sufficiently
small.

7 Estimate for ||0,pl|>

In this section we give basic energy estimates which yield the estimate for ||0,p]|2 in
the resolvent estimate. The following Propositions 7.1-7.4 can be obtained by the
Matsumura-Nishida energy method [9]. We here give an outline of the proof.

Proposition 7.1. Let u = " (p,w, 0) be a solution of (6.2)—(6.4) satisfying boundary
conditions (3.4) and (3.5). Then

(Re A + €2|Tm AP?)|[|0pul |3 + 3 D(0pw, 8,,0) + 3]|€2A0wpl|3
(7.1)
< C(L+) {oe?[10wpl3 + 67 2(|0x f1I3 + II1F[]13 + M (w, 0)}

for any & > 0, where C' is a positive constant independent of € and 9.

Proposition 7.1 can be proved as in the proof of Proposition 6.1 by taking the
inner product ((9,/(6.1), d,»u)), and using the relation e2X\d,p = —div dpw +e20, f
which follows from (6.2).

We next compute the inner product (((6.1), Au))_ to obtain the following esti-
mate.

Proposition 7.2. Letu = " (p,w, ) be a solution of (6.2)—(6.4) satisfying boundary
conditions (3.4) and (3.5). Then

1 1
(Re A+ [Im ) D(w.6) + APl < € { Slaivewl} + dr(w.0) (72

where C' is a positive constant independent of €.
As for the normal derivative of p, we have the following estimate.

Proposition 7.3. Letu = " (p,w, 0) be a solution of (6.2)—(6.4) satisfying boundary
conditions (3.4) and (3.5). Then

(Re A + €*[Im A*)e?(|0x,pll5 + 31102, pl13 + 51l 20w, pII3 73)
< C{e[10u, 115 + IFN]3 + M(w, 0) + [AP[|lw]3 + [ VOwwll3}

where C' 1s a positive constant depending on Pr but independent of €.
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Outline of Proof. We denote w’ = T(w', w?), V' = 7(9,,,0,,) and A’ = 92 +92..
Applying 0., to (6.2), we have

EXX0yp + V' - Oy’ + 07w = £%0,, f. (7.4)
The third equation of (6.3) is written as
Priaw® — A'w® — 92 w® + 0,,p = §°, (7.5)

where
3 =Prlg® — Pri(v, - Vu® + w - Vo?) + Rab.

We compute (7.4)+(7.5) to obtain
2Ny, + Opap = H, (7.6)

where
H=¢2%0,,f+3 — (Praw’ — Aw? + V' - 0,,w).

Taking the L? inner product of (7.6) with d,,p, we have
(Re A+ *[Im AP*)e?[|02,p 13 + 3 1102,p13 + 111£° 202,113
< CLE0n fI5 + HIFN13+ M(w, 0) + AP w3 + [ Vorwl3} .

This, together with the relation e?A0,,p = —0,,p + H, gives the desired estimate.
OJ

The elliptic estimates yield the following estimate for the second order derivatives
of w and @ and the first order derivatives of p.

Proposition 7.4. Letu = " (p,w, ) be a solution of (6.2)—(6.4) satisfying boundary
conditions (3.4) and (3.5). Then

102w]|3 + [|026113 + 1|0=plI3 -
< LB + NFIB + 2203 + AP(lwl3 + [613) + M(w,0)},
where C'is a positive constant depending on Pr but independent of €.
Outline of Proof. We rewrite (6.1) as
divw = e2f — 2\p,
—~Aw +Vp=Pr g — (Pr ' Aw + Pr (v, - Vw + w - Vv,) — Rades),
—A=h—(M+vs-VO+w- VO, — Raw - e3).

Applying the estimates for the Stokes system and the elliptic equation (see, e.g.,
[5, 11]), we obtain the desired estimate. O

Combining the estimates in Propositions 7.1-7.4, we have the following estimate
for ||0,pll2 and ||0%w]|s.
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Proposition 7.5. Let 0 < e <1 and let u = "(p,w,0) be a solution of (6.2)~(6.4)
satisfying boundary conditions (3.4) and (3.5). Then

(Re A+ [Im Al) D(w, ) + (Re A + &2[Tm A]?) (|||l |3 + €710, 13)
+b (leA0upll3s + 5IAPI [l + |02w][3 + (102013 + [10:p13) (7.8)

< C(+e) {013+ (1 + ) (Idivew]| + M(w,0) +[||F|II3) }

Proof of Proposition 7.5. Let 0 <& < 1. We see from (7.1) + (7.2) + dy x (7.3)
with suitably small dy > 0 that

(Re A+ [Im A[) D(w, 0) + (Re A + €2[Im AP*) (|[|0xrul[[3 + €2(|0,p]13)
+b (D(Opw, 020) + [|0pll5 + €2A0upll2 + 3 IAP|[[l]]3) 79
< C(1+2) {021 0upll3 + 07?0, 13
+ (14 %) (Idivaw|3 + M(w, 0) + |||F[|3) }

for any 6 > 0 with positive constants b and C' independent of § and e.
Adding d3 x (7.3) to (7.9) and taking d3 > 0 suitably small, we have

(Re A+ [Im Al) D(w, ) + (Re A + &2[Tm A]?) (|[|0zul|[3 + &[0, p1I3)
+b (12013 + 5IAPlulll3 + [0ZwlI3 + 102013 + [19.p13) (7.10)
< C(1+e){0e?]|0xpll3 + 072|013
+ (14 z) ((Idivw|3 + M(w, 0) + ||| F][13) }

for any 0 > 0 with positive constants b and C independent of § and 0 < ¢ < 1.
Taking 6 > 0 suitably small, we arrive at

(Re A+ [Im AJ) D(w, ) + (Re A + &2[Im A[?) (|[|0zrull[5 + €2[|0w,p]13)
+b (€220upll7 + 3 IAP[[ull]3 + (02wl + (1026013 + [10:p]13) (7.11)
< C+ ) {]0:£13 + (1+ =) ((divel3 + M(w, 0) + || FI]I3)}
This completes the proof. 0
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