九州大学学術情報リポジトリ Kyushu University Institutional Repository

無線通信における周波数利用効率向上のための干渉 低減技術に関する研究

丸田, 一輝

https://doi.org/10.15017/1654911

出版情報:九州大学,2015,博士(工学),課程博士 バージョン: 権利関係:全文ファイル公表済

無線通信における周波数利用効率向上 のための干渉低減技術に関する研究

平成 28 年 3 月

九州大学大学院 システム情報科学府 情報知能工学専攻

丸田 一輝

九州大学大学院 システム情報科学府 情報知能工学専攻

概要

スマートフォンの爆発的な普及,大容量コンテンツサービスの急速な展開に伴い,無線通信の 高速化・大容量化が求められている. 無線通信の高速化のためには可能な限り多くの周波数資源 (広い帯域幅)を必要とする.しかしながら,周波数資源は有限であることから現状は複数のシステ ムごとに限られた周波数帯域が割り当てられている.さらにはその周波数帯域は複数のユーザ端 末が時間・周波数上で互いに棲み分けて共有している.本研究は,このようなシステム内・シス テム間における周波数の棲み分けを行わず,同一の周波数を積極的に利用し,その際に生じる干 渉を低減することで周波数利用効率を向上することを目的とする.そこで生じる課題として,(1) セル間干渉,(2)ユーザ間干渉,(3)ホップ間干渉,(4)システム間干渉の4項目がある.本論文では, これらの課題に対する干渉低減技術を検討し,それぞれ以下の成果を得た.

(1) 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し

爆発的に増加するトラフィックへの現状の対策は1 基地局が提供するサービスエリア(セル)の 狭小化,すなわちスモールセル化である.しかしスモールセルが多数,密に設置されることにな ればセル間の同一チャネル干渉が避けられない問題となる.セル間干渉の低減において,基地局 連携技術が有効である.基地局を分散配置されたアンテナと見做し,同一時刻・同一周波数にて 通信可能な技術であるマルチユーザ MIMO を適用する.しかし,全ての基地局が集中制御局を介 して連携し,MIMO 信号処理を行うにはネットワーク構成,演算処理量ともに大規模となり現実 的でない.そこで,集中制御局を不要としかつ簡易な演算にて連携可能な干渉キャンセル方式を 提案した.さらに,その効果を向上可能なフラクショナル周波数繰り返し(FFR)を適用し,それら の併用による周波数利用効率改善効果を計算機シミュレーションにより明らかにした.

(2) Massive MIMO における低演算量ユーザ間干渉抑圧方式

1 基地局に対し、複数のユーザ端末が同一時間・同一周波数にて通信を行うことで周波数利用 効率を向上可能である.それを実現する技術としてマルチユーザ MIMO が広く検討されている. さらに、基地局アンテナ数を100素子以上の規模に拡張した Massive MIMO が注目を集めており、 アンテナ数に比例して空間多重数を増加できるため周波数利用効率向上につながる.一方、 Massive MIMO は、信号処理に要する演算処理量が膨大となることが課題である.そこで、簡易な 演算処理によって同等の性能を実現可能なユーザ間干渉抑圧方式を提案し、計算機シミュレーシ 概要

ョンにより有効性を明らかにした.さらに、実測した伝搬チャネルを用いた評価により、アンテ ナ多素子化により得られる効果を定量的に示すとともに提案方式の実伝搬環境での有効性を明ら かにした.

(3) マルチホップネットワークにおける高効率パケット中継法

スモールセルを多数展開する際には、有線回線の敷設が不要な基地局のマルチホップ接続による無線バックホールが有効である.しかし中継経路上における同一チャネル干渉としてホップ間 干渉が生じるため、これを低減可能な高効率パケット中継伝送法として2方式を検討した.高い パケット中継伝送効率を実現する手法のひとつに周期的間欠送信法(IPT)があるが、これは一次元 のノード配置において一方向のパケット中継伝送時に特に効果を発揮する.これを面的ノード配 置において双方向トラフィックを収容する際への拡張法としてラウンドロビン型 IPT 及びマルチ チャネル中継法を提案し、従来方式よりも高いシステムスループットを達成することを計算機シ ミュレーションにより明らかにした.もう一つの中継伝送効率の向上技術として無線ネットワー クコーディング(WNC)がある.中継局は上り/下り方向のパケットを受信した後、ビットレベル にて合成を行い両局宛にブロードキャストを行うことでパケットの送信回数を削減する.WNC は 合成するパケット長が等しい場合にその効果を最大限発揮するが、実際のトラフィックは様々な データ長のパケットが混在していることから、本研究ではさらにフレームアグリゲーション(FA) を適用することを提案した.ここで、WNC 及び FA を実行するためのタイムアウト値がシステム の特性を決定づける重要なパラメータとなる.本提案手法を実装した装置を試作開発し、屋外伝 送実験により最適なタイムアウト値を求め、システムスループットの改善効果を明らかにした.

(4) サブキャリア送信電力制御を用いたブラインド型アダプティブアレー

複数の無線通信システム間の周波数共用が可能となれば、周波数割り当てやガードバンドを意 識することなく既存(1次)システムに加えて新規(2次)システムを導入することが可能となる.し かし、異なる2システム間における同一チャネル干渉は互いに未知であり、1次システムが新た に干渉抑圧機能を導入することは現実的ではない.そこで、2次システム側が、未知であるシス テム間干渉を抑圧しながらも1次システムへの与干渉を低減することで周波数共用を実現可能な 手法として、サブキャリア送信電力制御及びその電力割り当てに応じたブラインド型アダプティ ブアレーの選択適用方式を提案した.計算機シミュレーションにより、システム間干渉が支配的 な条件においても2システムが周波数共用可能であることを明らかにするとともに、本提案方式 の機能を実装したハードウェアを試作開発し、伝送実験によりその有効性を実証した.

以上本論文では、無線通信システムにおいて問題となる様々な同一チャネル干渉に対し、それ らを低減可能な技術を提案している.それぞれの提案技術は組み合わせて適用することも可能で あり、シナジー効果によってより高い周波数利用効率を実現可能となる.

目次

概要	i
第1章 序論	1
1.1 本研究の背景	1
1.2 本研究の課題	5
1.2.1 セル間干渉 (ICI)	5
1.2.2 ユーザ間干渉 (IUI)	5
1.2.3 ホップ間干渉 (IHI)	5
1.2.4 システム間干渉 (ISysI)	6
1.3 本研究の目的	7
1.4 本論文の構成	7
第2章 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し	.11
2.1 基地局連携技術	11
2.2 準分散型基地局連携セル間干渉キャンセラ	12
2.2.1 システム構成及び提案方式	12
2.2.2 提案方式における基地局連携構成	15
2.3 フラクショナル周波数繰り返し (FFR)	16
2.4 チャネル情報の不完全性	17
2.4.1 チャネル推定誤差	17
2.4.2 取得可能な CSI 数	20
2.5 システムレベルシミュレーション	21
2.5.1 シミュレーション諸元	21
2.5.2 シミュレーション結果	23
2.6 まとめ	34
第3章 Massive MIMO における低演算量ユーザ間干渉抑圧方式	35
3.1 Massive MIMO	35
3.2 プリコーディング方式	36
3.2.1 等利得送信 (EGT)	36

九州大学大学院 システム情報科学府 情報知能工学専攻

目次	iv
3.2.2 Zero Forcing (ZF)	
3.2.3 Gram-Schmidt 直交化 (GSO)	
3.2.4 Gauss-Seidel 法 (GSM)	
3.2.5 提案方式 (IUIC)	
3.3 システムレベルシミュレーション	41
3.3.1 シミュレーション諸元	41
3.3.2 シミュレーション結果	42
3.4 演算量評価	46
3.5 実測チャネル情報に基づく評価	48
3.5.1 伝搬実験概要	48
3.5.2 伝搬特性	51
3.5.3 システムレベル評価	55
3.5.4 リンクレベル評価	56
3.6 まとめ	63
第4章 マルチホップネットワークにおける高効率パケット中継法	65
4.1 マルチホップネットワーク	65
4.2 システムモデル	67
4.3 周期的間欠送信	68
4.3.1 ラウンドロビン型周期的間欠送信 (RR-IPT)	70
4.3.2 マルチチャネル中継法	72
4.3.3 システムレベルシミュレーション	73
4.4 無線ネットワークコーディング	79
4.4.1 試作装置概要	
4.4.2 XOR 型無線ネットワークコーディング (WNC)	
4.4.3 フレームアグリゲーション (FA)	
4.4.4 タイムアウト制御	
4.4.5 試作装置を用いた屋外伝送実験	
4.5 まとめ	92
第5章 サブキャリア送信電力制御を用いたブラインド型アダプティブアレー	
5.1 異システム間周波数共用	93
5.2 システムモデル及びブラインド型アダプティブアレー	94
5.2.1 最大比合成 (MRC)	95
5.2.2 電力比反転 (PI)	95
5.2.3 固有ベクトルビームスペースアダプティブアレー (EBAA)	96
5.2.4 定包絡線アルゴリズム (CMA)	97

九州大学大学院 システム情報科学府 情報知能工学専攻

目次	V
5.2.5 固有ベクトルビームスペース CMA (E-BSCMA)	
5.2.6 基本特性	
5.3 提案方式	
5.4 リンクレベルシミュレーション	
5.4.1 シミュレーション諸元	
5.4.2 シミュレーション結果	
5.5 試作装置を用いた伝送実験	
5.5.1 試作装置概要	
5.5.2 実験諸元	
5.5.1 実験結果	
5.6 まとめ	
第6章 結論	
参考文献	
付録	
略語一覧	
記号一覧	
謝辞	
発表文献一覧	
学術論文	149
国際会議論文	
研究会論文	
大会論文	

第1章

序論

1.1 本研究の背景

光アクセスの普及に伴い,様々なブロードバンドサービスが提供されている.同時に,無線 LAN(Wireless Fidelity, Wi-Fi)[1][2]を始め,WiMAX(Worldwide Interoperability for Microwave Access)[3]やLTE(Long Term Evolution)[4][5]等の無線アクセスは大容量化が実現され,近年ユーザ のネットワークへのアクセス手段は無線通信が主となってきた.さらにスマートフォンやタブレ ット端末が普及したことにより動画を始めとする多様な大容量コンテンツサービスが利用可能と なり,モバイルトラフィックは年間で1.5~2倍のペースで急速に増加している.このままのペー スが続けば今後5年で10倍,10年で1000倍にも増加することが予測されている[6][7].このこと から爆発的に増加するトラフィックを収容するための対応が急務となっている.無線通信におい て伝送速度を向上するための単純な方法としては、占有帯域幅を拡大することである.しかし、 周波数資源は有限であることから一事業者またはシステムに割り当てられる帯域幅も限られてお り、帯域幅の拡大による伝送速度の向上には限界がある.特に、UHF(Ultra High Frequency)~低 SHF(Super High Frequency)帯(800MHz~5GHz帯周辺)の周波数は周囲の建造物等による反射・回折 波を利用し易く無線アクセスに適していることから、上述したWi-Fi をはじめとする多くの無線 通信システムに割り当てられており[8]、周波数資源の枯渇が問題となっている.

図 1-1 に示すように、無線通信の速度は 10 年間で 1000 倍に近いペースで向上している. これ までの通信速度の向上は、方式の観点からは周波数利用効率の高い直交周波数分割多重 (Orthogonal Frequency Division Multiplexing, OFDM)変調方式の採用や、直交振幅変調(Quadrature Amplitude Modulation, QAM)の多値数の増加,より高性能な誤り訂正(Forward Error Correction, FEC) 符号の適用等により実現されてきた. 256QAM や 1024QAM は 1 シンボルでより多くの情報を伝 送可能であるが高い信号対雑音電力比(Signal to Noise power Ratio, SNR)が求められる. また、シャ ノン限界に近い誤り訂正能力を示すターボ符号や低密度パリティ検査(Low Density Parity Check, LDPC)符号は複雑な処理を要するものの、ハードウェアへの負担が大きく、さらなる通信速度の 向上を図ることは限界に迫りつつある.

一方, 基地局(Base Station, BS)とユーザ端末(User Terminal, UT)に複数のアンテナを備え, 空間領域において信号を多重する方式として Multiple Input Multiple Output (MIMO)[9]が有効である.ア

第1章 序論

ンテナ数に比例して伝送容量を増大可能となることから,多値変調及び誤り訂正符号の方式限界 を超える周波数利用効率向上が実現されている.また BS が備えるアンテナ数を 100 素子以上に まで拡張した Massive MIMO[10]-[13]が提案され,近年注目を集めている.多数のアンテナによる 非常に大きい合成利得を得られるとともに,高次の空間多重伝送も可能となる.

第5世代移動通信(Fifth Generation Mobile Communications Systems, 5G)においては,飛躍的な通 信速度の向上が求められており[14],その実現のためにより広帯域を確保可能な 6GHz 以上の高周 波数帯を移動通信に利用することが検討されている[15].周波数が高くなるに従い電波の距離減衰 が大きくなるため,回線利得が不足することになるが,Massive MIMO を適用すれば高いアンテナ 合成利得が得られるためそれを補うことが可能となる.さらに高次の空間多重伝送による通信速 度の向上も同時に実現可能となるため,高周波数帯の利用において Massive MIMO は親和性の高 い技術とされている[16].しかし Massive MIMO はその膨大なアンテナ数故に MIMO 信号処理に 要する演算量も膨大となることが最大の課題として挙げられる.基地局アンテナ数を N_t ,空間多 重数を N_m とすると,一般に,送信ウェイトの算出に要する演算量は $O(N_mN_t^2)$ であり, $N_m>10, N>100$ の規模を考えると従来考えられてきた MIMO と比較して各段に複雑となる.空間多重伝送の性能 を維持しつつ,演算量を大幅に削減可能な技術が求められる.

図 1-1 通信速度及び実装技術の進展

九州大学大学院 システム情報科学府 情報知能工学専攻

システム容量の観点からは、いかに効率よく周波数資源を運用しながらサービスエリアを面的 に展開するかが重要となる.その際に問題となるのがセル(1局のBSにより形成されるカバーエ リア)間における同一チャネル干渉(Inter-Cell Interference, ICI)である.広帯域化・MIMOの適用に より高いピーク速度を達成できたとしても ICI の存在下ではその性能を最大限に発揮できない. 特にセルエッジ領域では ICI の影響を大きく受けることから通信速度が十分に得られない、もし くは通信不可となってしまう恐れがある.ICI への従来の対策技術としては、複数のチャネルを用 意し、隣接するセルには異なる周波数を割り当て、同一チャネルを割り当てるセル間の距離を離 隔する周波数繰り返し[17]や、直交した拡散符号を用いることで干渉電力密度を低減し、1 周波数 繰り返しでありながらも ICI を低減可能な符号分割多元接続(Code Division Multiple Access, CDMA)[18]が採用されてきた.しかし、複数のチャネルを用いる周波数繰り返しはシステムに割 り当てられた帯域を分割して運用する必要があり、また CDMA においてはデータ信号よりも広い 帯域幅を伝送時に必要とすることから、いずれの方式も周波数利用効率に課題が残る.

このような背景から、1 周波数繰り返しを前提に、狭小化したセル(スモールセル)を多数展開す るアプローチが主流となっている. 各 BS のカバーエリアを縮小させることで各 BS に属する UT 数は減少(すなわち BS にかかる負荷を低減)し、その結果システム容量が増大する. マクロセルで は収容することが困難となってきた大容量のトラフィックをオフロードする手段として有効であ る.その形態としては Wi-Fi オフロード[19]やヘテロジニアスネットワーク(Heterogeneous Network, HetNet)[20]が代表的な例と言える. また、高周波数帯は減衰が大きくカバレッジが狭いことから スモールセルとしての利用に適している. 図 1-2 に示すように、スモールセルはまずは高トラフ ィックとなるエリアにスポット的に展開されるため、ICI の影響は小さい. しかしながら、高トラ フィック領域が増加し続ければスモールセルは高密度に配置され、UT もさらに増加すればスモー ルセルへの負荷も増大し、ICI の課題は再び浮上することになる. ICI が支配的となればそれ以上 セル数を増加したとしてもシステム容量は飽和状態となる.

さらに、スモールセルを多数展開していくことを考えると、図 1-2 に示すように、面的に偏在 する BS すべてに光ファイバ等の有線にてバックホール回線を提供することは敷設コストの観点 から困難となる.これに対しては無線回線への置き換え、すなわち無線バックホールの適用が有 効である[21][22].各 BS は中継機能を備え、多段中継(マルチホップ)により相互に接続を行うこ とで簡易かつ低コストにサービスエリアを拡大可能となる.しかしながら、BS は受信したデータ パケットを再度隣接する BS へ送信するため時間リソースを多く消費し、中継伝送効率はホップ 数の増加に伴い低下する[23].さらにはそれらの BS が同じ周波数を用いるのではれば中継経路上 における同一チャネル干渉、すなわちホップ間干渉(Inter-Hop Interference, IHI)が生じるため、これ も中継伝送効率を低下させる要因となる.中継を行う BS がそれぞれ異なるチャネルを用いれば IHI は回避可能であるが、前述した通り利用可能な周波数資源か限られていることを考慮すると、 少ないチャネルで IHI を効率的に制御しながら中継伝送を向上する技術が求められる.

図 1-2 スモールセルの展開例

周波数資源が逼迫していることは前にも述べたが、各システムにおいて通信は常に行われてい るわけではなく、時間、周波数、ないしは空間において未使用の状況が生じ得る.そこで、複数 のシステムがそれらの空きリソースを状況に応じて共有できれば、周波数資源の逼迫を回避可能 となる. コグニティブ無線技術[24]-[26]がその代表的な技術として広く検討されている.既存(1 次)システムの時間・周波数・空間リソースの空き状況を新規(2次)システムの無線局(BS または UT)が検出し、1次システムへの与干渉を回避しながら通信する.しかしこのアプローチは空き帯 域の有効利用、つまり 100%の帯域利用率を狙うものである.同一の周波数資源を複数のシステム 間で積極的に共有し、同一時間・同一空間上で利用することができればより高い周波数利用効率 を達成可能である.このとき、複数のシステム間における干渉、システム間干渉(Inter-System Interference, ISysI)が生じる.これを低減もしくは性能劣化の無い範囲で許容、または信号処理に よって低減することで、周波数利用効率を向上するための研究が進められている[27].ここで考慮 すべき点は、システムが異なれば通信方式や無線信号の型式も異なることから、干渉を制御する ために必要なチャネル状態情報(Channel State Information, CSI)を利用できないことである.このよ

第1章 序論

うな未知の干渉を,事前情報を用いることなく低減することが最大の課題である.この問題を克服し,複数のシステムが周波数割り当てという制約を超えて柔軟に無線リソースを利用可能となれば,帯域幅を限りなく広くとることが可能となり,それに伴い伝送速度の向上が達成される.

1.2 本研究の課題

以上述べたように、広帯域化による通信速度の向上を行うためには様々な場面で生じる同一チ ャネル干渉は避けられない.本論文では、無線通信において克服すべき課題として以下4項目の 干渉問題を挙げる.その概要を図 1-3 に示す.以下にそれぞれの課題について検討されている背 景技術について述べる.

1.2.1 セル間干渉 (ICI)

1 周波数繰り返しによる面的展開を行う際,特にセル端領域における通信品質の劣化が顕著と なる.これに対し,分散配置された BS をアンテナアレーと見做し,マルチユーザ(MU-)MIMO を 適用する基地局連携技術が注目されてきた[28].3GPP(Third Generation Partnership Project)において は Coordinated Multi-Point Transmission/Reception(CoMP)[29]として標準化も進められている.これ により ICI が低減されれば,セルの増加に伴いシステム容量を向上可能となる.理想的には全 BS による連携制御が望ましいが,そのためには膨大な数の BS を集中制御し,また ICI 低減のための 膨大な演算を施す必要があることから非現実的である.そのため実用上の観点から,BS 数は 2~ 3 局での連携に留まる検討が殆どである[30].しかしその場合,クラスタ(連携する BS 群の単位) 間の干渉が依然として問題となる.基地局連携による ICI 低減を完全に行うためには,連続的に 展開される BS 群に対して適用可能な連携方式が必要となる.

1.2.2 ユーザ間干渉 (IUI)

BS あたりの同一時刻・同一周波数における接続 UT 数の増大により,周波数利用効率を向上可 能となる.これを実現する技術として,BS に多数のアンテナを備え,空間多重数を大幅に増大す る Massive MIMO 伝送が有効である.しかし,BS アンテナ数,UT 数の増加に従いユーザ間干渉 (Inter-User Interference, IUI)の抑圧処理(膨大なサイズのチャネル行列の逆行列を求める演算)に要 する演算量も膨大となるため,その簡易化手法が求められる.加えて,Massive MIMO を実環境に 適用した際の詳細な特性,例えば UT 間の空間的な相関や多素子化によりもたらされる効果につ いての報告は少なく,実用化に向けたフィージビリティを明らかにすることも重要である.

1.2.3 ホップ間干渉 (IHI)

無線バックホールとして多数の中継ノードが設置されるマルチホップネットワークには、低コ スト化の観点から特定の事業者/システムに割り当てられていない免許不要帯域を利用すること で現在広く普及している無線 LAN を用いたネットワーク構築が有効である.しかし,各ノード(中 継伝送を行う BS)は自律分散制御である Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)に基づいて通信することから,無線 LAN をインターフェースとしたマルチホップネットワークでは,IHIに起因するパケット衝突が頻発する.この IHI を回避し,中継伝送効率を最大化可能な方式として周期的間欠送信(Intermittent Periodic Transmit, IPT)[31]-[38]が提案されている. IPT は枝分かれの無い 1 次元ノード配置おいて,一方向のトラフィックを中継するのに効果を発揮する方式であるため,2 次元的にノードが配置されるトポロジや双方向トラフィックの効率的な中継伝送法が課題とされてきた[35]-[38].

双方向トラフィックの中継伝送効率化については無線ネットワークコーディング(Wireless Network Cording, WNC)が有効である[39]-[50]. 中継局は上り/下り方向のパケットを受信した後, ビットレベルにて合成を行い上り/下り方向にブロードキャストする. これによってパケットの 送信回数を削減することが可能となる. WNC は合成するパケット長が等しい場合にその効果を最 大限発揮する. 実際のトラフィックは様々なデータ長のパケットが混在していることから, フレ ームアグリゲーション(Frame Aggregation, FA)を併せて適用することで WNC の利得を最大化可能 である. WNC 及び FA を CSMA/CA ベースのマルチホップネットワークに適用する際, それらを 実行するためのタイムアウト値がシステムの特性を決定づける重要なパラメータとなる.

1.2.4 システム間干渉 (ISysI)

複数の無線通信システム間の周波数共用が可能となれば、周波数割り当てやガードバンドを意 識することなく既存(1次)のシステム上に新規(2次)のシステムを導入することが可能となる. 一 方, MIMOを適用し、与/被干渉を低減しながら空間的に周波数共用を図ることで、周波数利用効 率を向上可能である[51][52]. しかし、これらの技術は1次システムに関する帯域の利用状況や受 信品質等、何らかの情報を必要とし、また MIMO を適用する場合にはシステム間に跨る CSI の推 定やウェイトの最適化が必要であり、その実現方法が問題となる. また既存の1次システムへの 機能改変は不可能であることが想定されるため、未知である ISysI を、2次システムのみが事前情 報を用いることなく抑圧しながらも1次システムへの与干渉を低減可能な技術が必要となる.

干渉信号に関する事前知識を不要としながら所望信号を得ることが可能な手段として、アダプ ティブアレーが有効である.アダプティブアレーには様々なアルゴリズムが存在するが、その中 でも、所望信号の到来方向や参照信号を必要としないブラインド型のアルゴリズムは未知のシス テム間干渉の抑圧のためには適する.しかし、旧来確立されているブラインド型アルゴリズムは 干渉信号を適切に抑圧可能な信号電力対干渉電力比(Signal to Interference power Ratio, SIR)の値が 限定されており、加えていずれのアルゴリズムも SIR=0dB 付近においては十分な干渉抑圧効果が 得られない.このため、いかなるレベルの干渉信号も抑圧可能なブラインド型アルゴリズムへの 拡張手法が必要である.加えて、上述した1次システムへの与干渉低減を実現する送信手法の確 立も求められる.

図 1-3 干渉問題

1.3 本研究の目的

本研究では、前節にて示した干渉問題に対しそれぞれ検討を行い、周波数利用効率向上に資す る技術を確立することを目的とする.周波数利用効率の単位は[bit/s/Hz] (=[bps/Hz])であり、「単位 時間・単位帯域当たりに伝送可能な情報ビット数」として定義される.各検討において詳細な定 義はそれぞれ示すが、占有帯域幅を変更することなく、新たな信号処理方式を適用することによ り特性改善を図ることで周波数利用効率の向上を目指す.以下、本論の構成を説明するとともに それぞれの干渉問題を克服するための課題とそれに対する検討のアプローチを述べる.

1.4 本論文の構成

本論文は全6章で構成される.各章の関係を図 1-4 に示す. 第1章である本章では、本研究の背景、課題及び目的について述べた.

第2章では、ICIという課題に対し、エリアを限定することなく、さらに集中制御局を配置する ことなく広域に亘り連携制御可能な構成にて実現可能な ICI キャンセル方式を提案する. 干渉源 となる隣接セルの BS における送信信号及び CSI から干渉信号レプリカを生成し、それが UT にお いて干渉信号と相殺されるように、BS が送信する本来の信号から減算する形で重畳する. 既存技 術である基地局連携 MU-MIMO のように、連携クラスタ単位で閉じた制御ではなく、各セルの BS が同期しながら分散的に隣接セルとの情報交換を行うことで連携伝送を実現可能とする. さら に提案方式を有効に機能させるために、フラクショナル周波数繰り返し(Fractional Frequency Reuse, FFR)[53]を適用する. これにより、セル端領域において周波数帯域幅は分割されるものの、信号 電力対干渉雑音電力比(Signal to Interference and Noise power Ratio, SINR)を向上可能となるため、1 第1章 序論

周波数繰り返しにおける基地局連携 MU-MIMO と比較して高い周波数利用効率を達成可能となる. 本検討では、実環境を想定し、受信機雑音に起因する CSI の推定誤差や、連携可能な BS 数に起 因する利用可能な CSI 数の制約といった劣化要因を考慮に入れた上で提案方式の有効性を計算機 シミュレーションにより定量的に明らかにする.

第3章は、Massive MIMO における IUI 抑圧の課題に対し、第2章におけるアプローチと同様の 手法を導入したレプリカ減算型の IUI 抑圧法を提案する.計算機シミュレーションにより、既存 手法よりも少ない演算量にて同等の空間多重性能を達成可能であることを示し、従来方式と同等 の演算量において実現可能な空間多重数を明らかにする.さらにフィージビリティの検証として 32 アンテナを備える受信局を用いて屋外にて伝搬測定を実施し、実測の CSI を用いた評価から提 案方式による IUI 抑圧効果を検証する.空間多重特性は BS アンテナ数に比例することから、100 素子規模にアンテナを拡張した場合に達成可能なスループットを試算し、高い周波数利用効率を 実現可能であることを示す.

第4章では、IHIに起因するパケット中継伝送効率劣化の課題に対し、2つの検討を行う.1つ はIPTを2次元ノード配置に適用し、上下トラフィックを効率よく収容可能とする手法としてラ ウンドロビン型周期的間欠送信(RR-IPT)及びマルチチャネル中継法を新たに提案する.2チャネル を用い、一方のチャネルに RR-IPT を適用し下り方向のトラフィックを、他方のチャネルには CSMA/CA にて上下トラフィックを収容する.計算機シミュレーションにより、提案方式は従来 の CSMA/CA に基づく中継法と比べて高いシステムスループットを達成可能であることを示す. もう1つはFAを両端のノードに適用した WNC による双方向トラフィックの中継伝送法を提案す る.提案手法を実装した試作装置を開発し、最適なタイムアウト値を屋外伝送実験より求め、シ ステムスループットの改善効果を明らかにする.

第5章では、異システム間の周波数共用シナリオを想定し、ISysI低減手法を検討する.まず干 渉抑圧効果の高いブラインド型アルゴリズムとして固有ベクトルビームスペース方式に基づく CMA(Eigenvector Beam Space CMA, E-BSCMA)を導出する.さらに上記 SIR=0dB 付近における ISysIを抑圧しながらも1次システムへの与干渉を低減し、周波数共用を実現可能な手法としてサ ブキャリア送信電力制御を用いる E-BSCMA の適用方式を提案する.計算機シミュレーションに より、2 システム共用時の周波数利用効率改善効果を明らかにするとともに、本提案方式の機能 を実装したハードウェアを用い、有線接続による伝送実験を通してその有効性を実証する.

第6章では第2章から第5章における研究で得られた成果をまとめ、総合して達成される周波 数利用効率改善効果を示す.また各々の成果が今後の無線通信システムに寄与し得るシナリオに ついての展望と、検討課題を述べる.

九州大学大学院 システム情報科学府 情報知能工学専攻

第2章

準分散型基地局連携セル間干渉キャンセラ 及びフラクショナル周波数繰り返し

ICIを低減するためには、複数のBSをアレーアンテナと見做しMIMO伝送を適用する基地局連 携技術が有効である.これを実現するためには、BS数に依存しない連携構成や干渉低減処理のた めの演算の簡易化が検討すべき課題となる.本章では、それらを両立可能な基地局連携構成及び ICI低減方式について述べる.以下、第2.1節において基地局連携技術の概要について述べ、第2.2 節にてシステムモデル及び提案方式の説明を行い、第2.3節では提案方式を有効に機能させる技 術であるFFRの説明を行う.第2.4節にて本検討で導入するCSI不完全性について述べる.第2.5 節において計算機シミュレーションにおける各パラメータと結果を示し、提案法の効果を明らか にする.最後に、第2.6節で本章をまとめる.

2.1 基地局連携技術

基地局連携技術は、LTE-Advanced では CoMP と呼ばれ、1 周波数繰り返しによるセルラシステ ムにおいて、セルエッジのスループットを向上するために有望な技術として標準化が進められて きた.LTE-Advanced における CoMP は大きく2 種類に分類され、それぞれ Joint Processing (JP)、 Coordinated Scheduling / Coordinated Beamforming (CS/CB)と呼ばれる[29].JP は複数の BS が UT に 対して同一の信号を送信することで受信 SNR を向上する(Joint Transmission, JT)、もしくは一方が 送信を停止することで干渉量を減らし UT の受信 SINR を向上する(Dynamic Point Selection, DPS). CS/CB は BS が複数のアンテナを有する場合、他セルに属する UT への与干渉を低減するようスケ ジューリング及びビームフォーミングを行うものである。両者とも複数の BS の総アンテナ数よ りも少ない UT に対して協調動作を行うため、BS のリソースを冗長に消費する。理想的には複数 の BS がそれと同数の UT に対して信号伝送を可能とすることが望ましい。複数の BS は、空間的 に低相関化された分散アンテナと見做すことができる。その上でマルチューザ MIMO (MU-MIMO)[9]伝送を適用し、複数の UT 宛ての信号を互いに直交化することで ICI を除去し、同 一時刻・同一周波数チャネル上での通信を可能とする[28].基地局連携においてはこのアプローチ が最も高い伝送容量を期待でき、以降、本手法を基地局連携 MU-MIMO (Cooperative MU-MIMO) ここで、基地局連携 MU-MIMO を実施する際には、図 2-1 に示すように、集中制御局(Control Station, CS)を配置し、CS と各 BS 間を有線回線にて接続するような構成が必要となる. CS は全 BS-UT 間の CSI を取得し、MU-MIMO による空間多重伝送を行うための信号処理を実施するが、面的に展開された多数の BS に対して上記の処理を実施することを考えると、扱う CSI の取得に 要する制御情報量やそれを含めたオーバーヘッド、及び演算負荷が膨大となり、CS の処理能力等 に起因する性能の上限も考慮すると非現実的である. これらの制約から、LTE-Advanced において も CoMP は 2~3 程度に限定された BS への適用が想定されていた[30].

図 2-1 集中制御型による基地局連携

2.2 準分散型基地局連携セル間干渉キャンセラ

そこで,BS数の制限なく基地局連携を可能とするICI低減方式を提案する.連携を行う周辺のBSから取得した送信信号及びCSIを基に干渉信号レプリカを生成し,元の送信信号から減算する形で重畳することによりICIを低減する.本手法は完全ではないもののICIを低減する一方,完全にICI除去を行う基地局連携MU-MIMOに対して少ない演算量で実現可能である.

2.2.1 システム構成及び提案方式

本検討では、BS、UT ともに 1 アンテナずつ備えるものとする. 複数本備える場合においても 提案方式は同様に適用可能である. 第*i*セルにおいて, BS から UT に送信する下りリンク(Downlink, DL)の信号を $t_i \in \mathbb{C}^{1\times 1}$, 第*j*セルの BS から第*i*セルの UT 間におけるチャネル係数を $h_{ij} \in \mathbb{C}^{1\times 1}$ とする と、第*i*セルにおける UT の受信信号 $y_i \in \mathbb{C}^{1\times 1}$ は、式(2.1)のように表される.

$$y_{i} = \sum_{j}^{N_{c}} h_{ij} \rho t_{j} + n_{i}$$

= $\rho h_{ii} t_{i} + \rho \sum_{j=1, j \neq i}^{N_{c}} h_{ij} t_{j} + n_{i}$
= $\rho h_{ii} t_{i} + \rho \sum_{j \in C_{i}, j \neq i} h_{ij} t_{j} + \rho \sum_{j \in \overline{C}_{i}} h_{ij} t_{j} + n_{i}.$ (2.1)

13

ここで、*Nc* は ICI を考慮する対象のセル数である.第1項の*h_{ii}t_i* は所望信号,第2項及び第3項 の*h_{ij}t_j* (*i*≠*j*)は隣接セルからの干渉信号(ICI), *n_i* は白色雑音(Additive White Gaussian Noise, AWGN) 項である. チャネルはレイリーフェージング環境を仮定し,*h_{ij}*を平均0,分散1(*E*[|*h_{ij}*²]=1)である 互いに独立な複素ガウス乱数とする. *E*[.]は期待値演算である. また, ρ は電力正規化係数である. ここで、評価対象とするセル全体の集合を *C*∈N^{1×Nc} と表す. そのうち、*C_i*∈N^{1×No} を基地局連携の 対象となる第*i* セル及びその隣接セルから成るセル数*No* の集合とし、*Ĉ_i*∈N^{1×No-No} をそれ以外のセ ル, すなわち基地局連携の対象外となるセルの集合として表す. 例えば, *No*=7 とした場合,図 2-1 中のセル番号を用いれば *C*₁ = {1,2,3,4,5,6,7}, *C*₂ = {1,2,3,7,8,9,10}となる. 提案方式では、 連携対象であるセルからの干渉信号である式(2.1)第2項の干渉信号が UT の受信時に相殺される ように、干渉信号レプリカを送信信号から減算する形で付加する. このときの送信信号 *t_i*⁽¹⁾ は式 (2.2)のように表される. 以降、初期の送信信号を, *t_i*⁽⁰⁾=*t_i* と表す.

$$t_i^{(1)} = t_i^{(0)} - \sum_{j \in C_i, \, j \neq i} h_{ij} t_j^{(0)}.$$
(2.2)

式(2.2)第2項の干渉信号レプリカは同一セル内では式(2.1)第2項の干渉をキャンセルする信号として働くが,他のセルに存在する UT に対してはそれ自身が新たな干渉となって受信される.式 (2.1), (2.2)から, ICI キャンセラを適用した場合の受信信号 $y_i^{(1)}$ は式(2.3)のように表される.

$$y_{i}^{(1)} = \sum_{j=1}^{N_{c}} h_{ij} \rho t_{j}^{(1)} + n_{i}$$

$$= \rho h_{ii} t_{i}^{(0)} - \rho \sum_{j \in C_{i}, j \neq i} h_{ij} t_{j}^{(0)}$$

$$+ \rho \sum_{j \in C_{i}, j \neq i} h_{ij} t_{j}^{(0)} - \rho \sum_{j \in C_{i}, j \neq i} h_{ij} \sum_{k \in C_{j} k \neq j} h_{jj}^{-1} h_{jk} t_{k}^{(0)}$$

$$+ \rho \sum_{j \in \overline{C_{i}}} h_{ij} t_{j}^{(1)} + n_{i}$$

$$= \rho h_{ii} t_{i}^{(0)} - \rho \sum_{j \in C_{i}, j \neq i} h_{ij} \sum_{k \in C_{j}, k \neq j} h_{jj}^{-1} h_{jk} t_{k}^{(0)} + \rho \sum_{j \in \overline{C_{i}}} h_{ij} t_{j}^{(1)} + n_{i}.$$
(2.3)

このように,式(2.1)の第2項の干渉成分が式(2.3)の第2項のように置き換えられる.これを残留 干渉と呼ぶ.第3項のICIキャンセラが適用されていないICI成分も存在するが,第iセルに対す 第2章 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し 14 るセル間距離が十分である場合には無視可能なレベルとなる.このとき,干渉低減が実現されて いれば,干渉キャンセラ適用後の残留干渉が本来の ICI よりも小さいということであり,式(2.4) に示す条件が成立する.

$$\sum_{j \in C_i, j \neq i} |h_{ij}|^2 > \sum_{j \in C_i, j \neq i} |h_{ij}|^2 \sum_{k \in C_j, k \neq j} |h_{ji}^{-1}|^2 |h_{jk}|^2 , \qquad (2.4)$$

式(2.4)は期待値の演算(E[.])を用いて導出される.例えば左辺は

$$E\left[\left|\sum_{j\in C_{i}, \ j\neq i}h_{ij}t_{j}\right|^{2}\right] = E\left[\sum_{\substack{j\in C_{i}, \ j\neq i}}\left|h_{ij}t_{j}\right|^{2} + \sum_{\substack{j\in C_{i}, \ j\neq i}}\sum_{\substack{k\in C_{i}, \ k\neq j}}h_{ij}t_{j}h_{ik}^{*}t_{k}^{*}\right]$$

$$= \sum_{j\in C_{i}, \ j\neq i}\left|h_{ij}\right|^{2}.$$
(2.5)

と導出される.(.)*は複素共役を表す.右辺も同様である.式(2.4)を整理すると

$$|h_{ii}|^2 > \sum_{j \in C_i, j \neq i} |h_{ij}|^2,$$
 (2.6)

となり、これはつまり ICI のレベルが所望信号よりも小さい必要があることを意味しており、式 (2.6)が提案方式である ICI キャンセラが有効に機能するための条件となる.

式(2.3)第2項の残留干渉は、それを相殺するためのレプリカを新たに生成し、式(2.2)の送信信号にさらに重畳することで干渉低減効果を高めることが可能である.これを y 次の送信信号として一般化したとき、式(2.7)、(2.8)のように表される.

$$t_i^{(\gamma)} = t_i^{(0)} + \sum_{j \in C_i, j \neq i} g_{ij} t_j^{(\gamma-1)}, \qquad (2.7)$$

$$g_{ij} = -h_{ii}^{-1}h_{ij} . (2.8)$$

このときの受信信号 y_i^(y) は,式(2.9)のようになる.

$$y_{i}^{(\gamma)} = \rho h_{ii} t_{i} + \rho \sum_{\substack{k(0) \in C_{i}, \\ k(0) \neq i}} h_{ik(0)} \sum_{\substack{k(1) \in C_{k(0)}, \\ k(1) \neq k(0)}} g_{k(0)k(1)} \cdots \sum_{\substack{k(\gamma) \in C_{k(\gamma-1)}, \\ k(\gamma) \neq k(\gamma-1)}} g_{k(\gamma-1)k(\gamma)} t_{k(\gamma)} + \rho \sum_{j \in C_{i}} h_{ij} t_{j} + n_{i}.$$

$$(2.9)$$

k(y)は y 次の ICI キャンセラ適用時におけるセルの番号である. y が十分大きければ, ICI は十分小 さい値に収束する. すなわち,提案方式は基地局連携 MU-MIMO における従来の干渉低減方式(例 えば Zero Forcing, Gram-Schmidt の直交化法等)の近似解を与えるものとして位置づけられる. な 第2章 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し 15 お、基地局連携伝送を行う場合、本来の送信信号に加えて干渉除去のための信号を重畳すること から、いずれの干渉低減方式を用いたとしても BS 当たりの送信電力は変動する.そのため連携 する BS 間においてピーク対平均電力比(Peak to Average Power Ratio, PAPR)が大きくなり、BS が送 信可能な電力が制限されることになる.提案方式は微弱なレプリカ信号を重畳することから、送 信電力の増加を低減可能であることを第2.5.2.5節の評価で明らかにする.

2.2.2 提案方式における基地局連携構成

提案する ICI キャンセラの特徴としては、演算の簡易化に加えて、各セルが限定された周辺セルの情報のみを用いて信号処理を実行可能な点が挙げられる.従来の基地局連携 MU-MIMO では、図 2-1 に示したように CS に接続された BS のみが連携の対象であり、当該連携 BS から構成されるクラスタ内では ICI は低減されるが、異なる CS と接続される隣接クラスタからの干渉(クラスタ間干渉)を受けることになる[59].一方、提案する ICI キャンセラでは、CS を不要とする各 BS が相互に接続された構成において、ICI を低減すべき周辺セルから情報を取得し、生成した干渉信号レプリカを単に送信信号に付加することで実現可能である.図 2-2 に示される連携領域のように、それらが重複し合う形でありながらも各セルが干渉低減を実施することができる.つまり、広範囲に亘る基地局連携を、連携数の上限なしに実施可能となる.

図 2-2 提案方式による基地局連携の構成

第2章 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し 16 ここで、提案方式は「集中制御型」に対し「分散型」と分類できるが、干渉キャンセルを成立さ せるためには BS 間の同期が必要であることから自律分散のような動作との誤解を避けるために 本論文では「準分散型」と定義する.従来の集中制御型では CS が全ての BS のための送信信号を 算出する必要があったが、準分散型における提案方式では干渉キャンセルのための信号処理を各 BS が行うため、本来 CS が負担すべき信号処理量を各 BS へ分散させることができることも特徴 の一つである.

2.3 フラクショナル周波数繰り返し (FFR)

式(2.6)の条件に示されるように、提案方式は UT の受信時における希望信号が干渉信号よりも 小さい条件下でなければ適切に ICI を低減できない.これは、本来の送信信号に重畳して送信す る干渉信号レプリカが同様に他のセルへ干渉を及ぼすためである.そのため ICI の影響が特に大 きいセルエッジでは効果が得られない.そこで、セル間干渉を事前に回避する手法として、セル 間干渉の領域ごとに周波数繰り返し係数(Reuse Factor, RF)を制御する FFR[53]を適用する.本検討 で用いる FFR の概要を図 2-3 に示す.半径 r_{cell} の各セルを、半径 r_{inner} を境界としてセル中心領域 とセルエッジ領域に分割する.セル中心領域には全帯域を割り当て(RF=1)、セルエッジ領域には 帯域を 3 つのサブチャネルに分割し、3 周波数繰り返しとなるように割り当てる(RF=3).セルエ ッジ領域に位置する UT が通信する際、各 BS はサブチャネルへ送信電力密度を 3 倍にして送信す るものとする.また、信号送信時においてセル中心領域とセルエッジ領域に割り当てられる時間 スロット長 T_{inner} , T_{edge} は、各領域の面積 A_{inner} , A_{edge} に比例し、つまり $T_{inner}/T_{edge} = A_{inner}/A_{edge}$ の 関係が成立するものとする.

🗵 2-3 FFR

九州大学大学院 システム情報科学府 情報知能工学専攻

2.4 チャネル情報の不完全性

実環境では、UT の受信状況により CSI に推定誤差が生じ、これが基地局連携の特性に大きく影響を与える.ここでは、CSI の不完全性として、(1) UT の受信 SNR に応じた CSI 推定誤差,(2) BS の連携領域が限定されることによる利用可能な CSI 数,の2 つを考慮する.これまで基地局連携における CSI の推定誤差を考慮した検討が行われている[56]-[58]が、いずれも連携 BS 数が 2~3 程度と限定されていた.また利用可能な CSI 数に関する検討は、大規模な基地局連携システムにおいて現実的な連携規模を見極める上で重要な評価である.

2.4.1 チャネル推定誤差

本検討では、チャネル推定は UT 毎に直交するトレーニング系列、ないしは異なる時間スロット等を用いることで互いの干渉なく独立に行われるものとし、その推定誤差はUTの平均受信 SNR にのみ依存するものとする. UT は推定した CSI を連携対象の BS ヘフィードバックすることで基地局連携送信を実施する.推定誤差 ε を考慮した CSI ĥ は式(2.10)のように定義される.

$$\tilde{h}_{ij} = h_{ij} + \varepsilon_{ij} . \tag{2.10}$$

17

ここで、距離減衰の項は省略している. 推定誤差 ε_{ij} は平均 0、分散 σ_e^2 である複素ガウス乱数と し、分散 σ_e^2 の値は UT の平均受信 SNR によって定まるものとする. 本評価では、まずリンクレ ベルシミュレーションから受信 SNR に対する CSI 推定誤差をモデル化し、その値をシステムレベ ルシミュレーションに適用する. 表 2-1 にリンクレベルシミュレーションで用いたパラメータを 示す. システムとして LTE を想定し、15kHz 間隔で 600 サブキャリアを使用するものとする. ト レーニング信号は1シンボル、全サブキャリアに割り当てられているものとし、1 局の BS から 1 台の UT へのトレーニングによる CSI 推定を考える. 一般に、BS-UT 間の距離に従い伝搬損失は 大きくなることから受信 SNR は小さくなり、CSI の推定誤差も大きくなる. そこで、雑音低減技 術[60]による CSI 推定精度の向上を行う. その概要を図 2-4 に示す.

Parameters	Values
Modulation	OFDM
Number of subcarrier / FFT point	600 / 1024
Subcarrier spacing	15 kHz
Multipath model	ITU-R M.1225 Pedestrian B [61]
Fading model	i.i.d Rayleigh
Channel estimation	Least square with noise reduction [60]

表 2-1 リンクレベルシミュレーションパラメータ

18

図 2-4 雑音低減処理による CSI 推定精度向上

UT ではトレーニング信号を受信した後,まず周波数領域において各サブキャリアの CSI を取得 し,逆フーリエ変換(Inverse Fast Fourier Transform, IFFT)処理を施し,チャネルの時間領域での情 報であるインパルス応答を求める.使用するチャネルモデルを ITU-R M.1225 にて規定されてい る Pedestrian B [61]とすると,このモデルにおけるインパルス応答の到来波の最大遅延量は 3.7µsec であり,一方で 10FDM シンボルの時間長は 66.7µsec である.つまり,インパルス応答は 10FDM 第2章 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し 19 シンボルを構成する全サンプル数のうち,前方の1/10未満の領域に集中しており,以降は雑音成 分である.従ってここではインパルス応答の全サンプルのうち後方7/8の領域を0に置換し,再 度フーリエ変換(Fast Fourier Transform, FFT)を実施する.このとき雑音成分は全周波数領域に分散 されることから,サブキャリア当たりの雑音電力が低減されたCSIを得ることができる.このよ うにして取得したCSIをBSへフィードバックし,基地局連携送信に用いる.

上記の手順により推定した CSI の値と,理想的な CSI 値との差分から,推定誤差の平均二乗誤 差(Mean Square Error, MSE) σ_e^2 を求めた.受信 SNR に対する σ_e^2 の特性を図 2-5 に示す.またこの 結果から, SNR に対する推定誤差値を式(2.11)にモデル化した.以降のシステムレベルシミュレー ションでは式(2.11)に示す CSI 推定誤差を用いる.

図 2-5 受信 SNR に対するチャネル推定誤差

$$10\log_{10}(\sigma_e^2) = \begin{cases} -0.930 \times \text{SNR} - 10.89, & \text{for SNR} < 6\\ 0.019 \times \text{SNR}^2 - 0.895 \times \text{SNR} - 11.629, & \text{for } 6 \le \text{SNR} \le 26\\ -22.141, & \text{for SNR} > 26 \end{cases}$$
(2.11)

なお、OFDM を想定するのであれば上記 CSI 推定処理は全サブキャリアに対して実施することに なる.BS は連携処理も含めて接続対象となる全ての UT に対する CSI を取得する必要があり、そ のためのオーバーヘッドも考慮に入れるべきであるが、これに対しては効率的な CSI 推定を行う

九州大学大学院 システム情報科学府 情報知能工学専攻

第2章 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し 20 ためのさまざまな検討が行われており[62],本論文では議論の対象外とする. CSI 推定誤差を含む 場合,式(2.7),(2.8),(2.9)は以下のように表されることになる.なお,その詳細な導出は付録に 示す.式(2.14)より,推定誤差を含む信号は第2項及び第3項に現れることがわかる.

$$t_i^{(\gamma)} = t_i^{(0)} - \sum_{j \in C_i, j \neq i} \widetilde{g}_{ij} t_j^{(\gamma-1)}, \qquad (2.12)$$

$$g_{ij} = \widetilde{h}_{ii}^{-1} \widetilde{h}_{ij} .$$
 (2.13)

$$y_{i}^{(\gamma)} = \rho h_{ii} t_{i}^{(0)} + \rho \sum_{j \in C_{i}, j \neq i} \mathcal{E}_{ij} t_{j}^{(\gamma-1)}$$

$$+ \rho \sum_{\substack{k(0) \in C_{i}, \\ k(0) \neq i}} h_{ik(0)} \sum_{\substack{k(1) \in C_{k(0)}, \\ k(1) \neq k(0)}} \widetilde{g}_{k(0)k(1)} \cdots \sum_{\substack{k(\gamma) \in C_{k(\gamma-1)}, \\ k(\gamma) \neq k(\gamma-1)}} \widetilde{g}_{k(\gamma-1)k(\gamma)} t_{k(\gamma)}^{(0)}$$

$$+ \rho \sum_{j \in C_{i}} h_{ij} t_{j}^{(\gamma)} + n_{i}.$$

$$(2.14)$$

2.4.2 取得可能な CSI 数

前節でも述べた通り,実際のシステムでは,隣接セルよりも遠方のBSとUT間のCSIは推定精度的にも取得困難となることが考えられ,その取得可能な範囲は限定的になることが考えられる.本節では,基地局連携処理に用いるCSI数もパラメータとして考慮する.各BSにおいて平均SNRの大きい順に,N_{CSI}だけCSIを取得するものとする.このとき,基地局連携による処理を実施する際には取得しないCSIは0として扱う.これを全体のチャネル行列で表現すると,一例として

$$\mathbf{H} = \begin{pmatrix} h_{11} & h_{12} & h_{13} & \cdots & 0 & \cdots & 0 & 0 \\ h_{21} & h_{22} & h_{23} & \cdots & 0 & & 0 \\ h_{31} & h_{32} & h_{33} & \cdots & 0 & & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & h_{ij} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & & & h_{Nc-1 Nc-1} & h_{Nc Nc} \\ 0 & 0 & 0 & \cdots & 0 & \cdots & h_{Nc Nc-1} & h_{Nc Nc} \end{pmatrix},$$
(2.15)

のように、対角成分にのみ値を持つ行列となる.全基地局連携 MU-MIMO は上記 H を用いて送信 ウェイトを算出する.一方,提案する ICI キャンセラ適用時は N_{CSI} だけの BS を連携対象とするこ とと等価となる(No=N_{CSI}).

2.5.1 シミュレーション諸元

シミュレーションパラメータを表 2-2 に示す. セルは図 2-1 のように 6 角形状に 37 セル配置さ れ、中心セルにおける周波数利用効率を評価する. BS の送信電力は、RF=1 の場合のセルエッジ における UT 当たりの平均受信 SNR より定まるものとし、本評価ではその値を 10dB とする. SINR 分布の観点から各方式を公平に比較するために、BS が連携動作する際の送信電力は全 BS 合計で 一定とする. UT は、平均受信電力が最大となるセルを選択する. シミュレーション上では、1 試 行ごとに各 6 角形セル上に UT を 1 台配置することでそれを模擬する. UT は各セル内に一様に分 布し、それぞれのセルに属する BS と UT とが通信に漏れなく割り当てられるものとし、トラフィ ックは常に発生しているフルバッファとする. 第 2.2.1 節においても述べたように、瞬時変動とし てレイリーフェージングを与えているためセルエッジ領域に位置する UT は他セルからの受信レ ベルが大きくなる状況も起こりうる. 建造物等によって生じる受信電力の短区間変動であるシャ ドウイングは考慮しない. FFR において、セル中心領域とセルエッジ領域の境界である *rinner* は UT の平均受信 SINR に対応して定まり、これを閾値とする. UT をセル内に配置したとき、その 平均 SINR が閾値よりも大きければセル中心領域に、閾値よりも小さければセルエッジ領域に割 り当てる. シミュレーション上では、セル中心/セルエッジ領域個別に試行を行い、それぞれの 領域の面積比に応じたサンプル数を取得し、周波数利用効率の分布を評価する.

Parameters	Values
Cell deployment	Hexagonal, 37 cells
Cell edge SNR	10 dB w/o FFR 14.8 dB w/ FFR
Reuse Factor	1 @ Cell center region 3 @ Cell edge region
Reuse partition threshold SINR	$-2 \sim 30 \text{ dB}$
Carrier frequency	2 GHz
Propagation model	ITU-R M.1225 Pedestrian B [61] 40log ₁₀ r + 31 dB (<i>r</i> : meters)
Fading model	i.i.d Rayleigh, flat fading
BS / UT height	30 / 1.2 m
BS / UT antenna	Single, Omni antenna
Number of CSI for cooperation	1~37

表	2-2	システムレベルシミュレーションパラメータ	,
---	-----	----------------------	---

本システムには一定の周波数帯域幅が割り当てられているものとし、セルエッジ領域における 周波数繰り返しによる帯域の分割係数として 1/RF を考慮に入れる.このとき、周波数利用効率 Γ は式(2.16)のように表される.

$$\Gamma = \begin{cases} \log_2(1 + \text{SINR}), \text{ for cell-center region } (\text{RF} = 1) \\ \frac{1}{3}\log_2(1 + \text{SINR}), \text{ for cell-edge region } (\text{RF} = 3) \end{cases}$$
(2.16)

ここで、下記4方式を比較する.

(A) FFR を適用した ICI キャンセラ (Proposal)

(B) FFR を適用した全基地局連携 MU-MIMO (Cooperative MU-MIMO w/ FFR)

(C)1周波数繰り返しによる全基地局連携 MU-MIMO (Cooperative MU-MIMO w/o FFR)

(D) 基地局連携を行わない FFR (FFR w/o Cooperation)

本検討においては(C)により達成される特性を目指すところとしているが、FFR を用いた方式とし ての比較のために(B)の評価も行う.方式(B)は、第2.2 節にて説明した通り、同じチャネルが割り 当てられている領域の BS 同士で連携を行い、MU-MIMO を適用する.なお、(B)及び(C)における MU-MIMO の送信ウェイト算出にはグラムシュミットの直交化(Gram-Schmidt Orthogonalization, GSO)[63]を用いる.各方式により得られる SINR に従って式(2.16)より周波数利用効率が定まる. CSI 推定誤差を考慮し、各方式によって得られる SINR の瞬時値を定式化した. ICI キャンセラ適 用時(A)に得られる SINR を式(2.17)、全基地局連携 MU-MIMO 適用時(B,C)に得られる SINR を式 (2.18)に、さらに基地局連携を行わない FFR のみの場合(D)を式(2.19)に示す.なお、提案方式(A) については干渉キャンセラの繰り返し次数 y によって表式が異なることから、最適値である y=2 の場合について示す.また式(2.17)、(2.18)の詳細な導出は付録に記載する.y=2 が最適である根拠 は第2.5.2.1 節での評価を通して示す.

SINR

(2.17)

22

$$SINR = \frac{\left|\sum_{j \in C_{i}} h_{ij} u_{ji}\right|^{2}}{N_{CSI} \sigma_{e}^{\prime 2} \sum_{j \in C_{i}} \left|h_{ij}\right|^{2} + \sum_{k \in C} \left|\sum_{j \in \overline{C_{i}}} h_{ij} u_{jk}\right|^{2} + \frac{\sigma_{n}^{2}}{\rho}}{\sum_{i \in C_{i}} CSI \text{ estimation}} \underbrace{ICI \text{ from noncooperative}}_{BSs} Noise$$

$$(2.18)$$

SINR =
$$\frac{|h_{ii}|^2}{\sum_{j \in C_i, j \neq i} |h_{ij}|^2 + \sigma_n^2}$$
. (2.19)

 σ_n^2 は雑音電力である.式(2.18)中の u_{ij} はGSOによるウェイトの要素である.GSOウェイトの算 出法については第3.2.3節を参照されたい.それぞれの式からわかるように,(A),(B),(C)は基地 局連携による ICI 除去を実施することから推定誤差の影響を受ける一方,式(2.19)に示すように (D)は基地局連携を伴わないためその影響を受けない.

2.5.2 シミュレーション結果

2.5.2.1 ICI キャンセラ繰り返し次数の最適値

まず,提案方式である ICI キャンセラの繰り返し適用次数の最適値を求める. 図 2-6 に,繰り 返し次数 y に対する周波数利用効率のセル平均値と累積分布関数(Cumulative Dsitribution Function, CDF)の 5%値を示す. ここで, CSI 推定誤差の無い理想的な条件とする. また FFR の閾値 SINR として 2, 6, 10dB の値をプロットしている. いずれの場合においても,セル平均値は概ね y=2 で上限値を迎える. 閾値 SINR=2dB の場合には, y>2 において周波数利用効率は低下する傾向に ある. これは,セル中心領域が広いことから ICI の影響を受けやすく,式(2.6)に示す条件を十分 に満たすことができないことが原因と考えられ, ICI キャンセラの繰り返し適用に伴い生じる残留 干渉が累積した結果,特性が劣化することになる.

23

図 2-6 ICI キャンセラ繰り返し次数に対する周波数利用効率

CDF=5%値に着目すると、いずれの SINR 閾値においてもセル平均値特性と同様に y=2 にて上限を 迎え、低下する傾向にある. セルエッジ領域では ICI の影響が大きいことから、上述した式(2.6) を満たせない状況がより顕著になるためである. 以上の評価より、ICI キャンセラの繰り返し次数 の最適値を y=2 とし、以降はこの値を用いることとする.

2.5.2.2 提案方式及び FFR の効果

次に,全体的な傾向を把握するため,前節と同じく CSI 推定は理想的な条件とし,各方式について取得した周波数利用効率の CDF を図 2-7 に示す.なお,参考として

(E)1 周波数繰り返し(RF=1)

(F)3周波数繰り返し(RF=3),送信電力+4.8dB

の特性も示す. また(A), (B)における FFR は SINR 閾値が 6dB, (D)において SINR 閾値は 4dB としており,詳細は後述するが周波数利用効率のセル平均値が最大となる条件である.

まず,基地局連携を伴わない条件(D, E, F)に着目する.高 CDF 領域においては, RF=1(E)の 場合,高い周波数利用効率を得られる.これは,式(2.16)に示す係数 1/RF が 1,すなわち帯域分割 の影響を受けないためである.RF=3(F)の場合には帯域の分割により上記係数が 1/3 となるため, 高 CDF 領域における周波数利用効率は低下する.しかし低 CDF 領域では,RF=1(E)の場合は特に セルエッジ領域における ICI が大きいために周波数利用効率は小さく,ICI を回避可能かつ送信電 力密度を 3 倍(+4.8dB)とする RF=3(F)の特性が優位となる.次に FFR のみ(D)の場合の特性は,高 CDF 領域において RF=1(E)の特性,低 CDF 領域において RF=3(F)の特性とよく一致する.このよ 第2章 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し 25

うに FFR はセル中心/エッジ領域において最適な RF を与えることで ICI を効果的に回避する.

さらに、FFR に基地局連携 MU-MIMO を適用する方式(B)は、FFR のみ(D)の場合に対して、CDF 全領域にわたり周波数利用効率を改善させることができる. ICI を回避するだけでなく、抑圧する ことの効果である.ここで、方式(B)と FFR を用いない全基地局連携 MU-MIMO (C)を比較すると、 FFR を併用する方式(B)は CDF の 15%から 40%までの領域において劣るものの、高及び低 CDF 領 域において優位となる点である. この理由は以下の様に推察される. FFR を用いない RF=1 の場 合、隣接するセルの境界周辺に基地局連携 MU-MIMO により空間多重する UT が近接して位置す る状況が起こりうる.このような状況では UT とそれぞれの BS との間におけるチャネルの相関(空 間相関とも呼ばれる)は高くなり、この高い空間相関は MU-MIMO の直交化ロスを生じ、その結果 特性が劣化する. 上述の高いチャネル相関の影響は、本来は MU-MIMO のスケジューリング技術 [54][55]により低減することは可能であるが、面的に広がるサービスエリア全体の UT を考慮した MU-MIMO の最適スケジューリングは非常に複雑となり現実的ではない. FFR は、このような高 相関な状況を回避するためのひとつの簡易なスケジューリング法と言える. 加えて、セルエッジ 領域は周波数繰り返しによって ICI を回避するとともにサブチャネル当たりの送信電力を増幅し ているため、良好な SNR が得られる. またセル中心領域においても同様に高い SINR を維持する ことが可能である.

第2章 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し 26

同様の理由から,提案方式である ICI キャンセラ(A)は FFR を適用する基地局連携 MU-MIMO(B) と同様の CDF カーブ特性を示し,(B)よりも劣る周波数利用効率特性を示す.FFR の適用により 式(2.6)の要求条件をより良好に満たすことが可能となるが,この差が,提案方式が干渉低減処理 を近似的に実施することにより生じる劣化量である.

2.5.2.3 FFR の閾値に対する特性及び CSI の推定誤差による影響

図 2-8 に SINR 閾値に対する周波数利用効率のセル平均値を、CSI 推定が理想的な場合及び推定 誤差の影響を考慮した場合それぞれについて示す. ここでは、CSI 推定誤差そのものの影響を見 ることを目的とし、取得する CSI 数は全セル分(*N*_{CSI}=37)とする. 横軸は FFR における半径 *r*_{inner} に対応した SINR の閾値である. SINR 閾値が小さいほど *r*_{inner} は大きくなり、セル中心領域が大き くなる. 反対に、SINR 閾値が大きければ *r*_{inner} は小さく、すなわちセルエッジ領域が大きくなる ことを意味する. 図より、各方式において平均周波数利用効率を最大化する SINR 閾値が存在す ることがわかる. 以降の評価ではここで定めた閾値を用いるものとする.

FFR を用いる方式(A), (B)そして(D)では, SINR 閾値が大きくなると周波数利用効率は減少す る傾向にある.これは, RF=3 であるセルエッジ領域の面積が大きくなるに従い,帯域を3分割す ることによる影響が大きくなるためである.一方, SINR 閾値が小さい場合にも低下する傾向にあ るが,提案方式(A)は特に劣化が大きい.これは,セル中心領域における ICI が大きく,式(2.6)の 要求条件が満たされずに ICI キャンセラの効果が得られなくなるためと考えられる.

推定誤差の影響に依存しない FFR のみ(D)における最適な SINR 閾値は 4dB である. CSI 推定が 理想的な場合,提案方式(A)及び全基地局連携 MU-MIMO(B)における最適な SINR 閾値はそれぞれ 6dB, 2dB であり,FFR(D)と比べて基地局連携による大きな利得が確認できる. 周波数利用効率 の最大値で比較すると,FFR を適用する全基地局連携 MU-MIMO(B)が最も良好な特性を達成する.

次に、CSI 推定誤差の影響に着目する. 方式(A)、(B)及び(C)は CSI 推定が理想的の場合と比較 して平均周波数利用効率の最大値はそれぞれ 22.3%、28.1%、そして 37.9%低下し、(C)においては FFR のみの場合(D)よりも劣化することがわかる. 各基地局連携方式における劣化というのは、本 来直交化処理によって完全に抑圧されるべき ICI が推定誤差に起因して生じるためであるが、FFR を適用した場合、RF=1 の場合と比較してセルの全領域において高い SIR を得られることから抑圧 すべき ICI は相対的に小さいため方式(A)、(B)は(C)と比較して CSI 推定誤差の影響が低減された ものと考えられる. CSI 推定誤差の影響により、最適な SINR 閾値は方式(B)では 2dB から 4dB へ 増加しており、一方で提案方式(A)は 6dB と変化が無い. 基地局連携の利得をより得るためには RF=1 であるセル中心領域は大きいことが望ましく、すなわち SINR 閾値を小さくとる必要がある. しかし CSI に推定誤差が含まれる場合、基地局連携の効果は低減することから、SINR 閾値を大き くし、セル中心領域を縮小することによる干渉回避効果を取り込む方が周波数利用効率の最大化 につながる. 提案方式(A)に関しては、もともと残留 ICI を許容する特徴を有すること、また式(2.6) の条件を満たす必要があることから方式(B)よりも大きな SINR 閾値を要し、このため CSI 推定誤

第2章 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し 27 差の影響が相対的に小さく現れたものと考えられる.注目すべき点は,提案方式(A)とFFRを併用 する全基地局連携 MU-MIMO(B)の特性差は,CSI 推定が理想的な場合では 10.3%であったものが 推定誤差存在下においては 3.1%にまで縮まり,さらに RF=1 である全基地局連携 MU-MIMO(C) と比較して 18.5%高い周波数利用効率を達成することである.

図 2-8 SINR 閾値に対する周波数利用効率のセル平均値

図 2-9 に、周波数利用効率の CDF=5%値の特性を示す.一般的に、CDF=5%値はセルエッジに 位置する UT の特性と定義されており、セルラシステムの性能を評価する一つの指標となる.た だし FFR 適用時においてはセルエッジのみでなく、セル中心領域のエッジ部、すなわち rinner より もすぐ内側に位置する UT の特性も含まれると考えられる.まず、CSI 推定が理想的の条件にて議 論する. SINR 閾値を大きくし、RF=3 のセルエッジ領域を拡張することで方式(A)、(B)、(D)の特 性は向上し、(A)、(B)については FFR の干渉回避効果と併せてさらに基地局連携を適用すること で大きな利得を得られており、全基地局連携 MU-MIMO(C)、FFR のみ(D)の場合よりも優れた特 性を示す.

次に CSI 推定誤差の影響に着目する. RF=1 による全基地局連携 MU-MIMO(C)では,そのセル エッジにおける特性は CSI 推定が理想的の場合と比べて 76.7%劣化する.一方,FFR を用いる方 式(A),(B)の劣化量は,それぞれ最適な SINR 閾値で比較したときに 46.7%, 50.0%となる.この

九州大学大学院 システム情報科学府 情報知能工学専攻
第2章 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し 28 とき,提案方式(A)は全基地局連携 MU-MIMO(C)に対して 211%の改善効果を達成する.しかしながら,FFR のみ(D)の特性と比較すると,FFR に加えて基地局連携を適用している方式(A),(B)との特性差は僅かであり,CSI 推定誤差存在下の基地局連携利得は小さいことがわかる.これに関しては,次節にて評価する取得 CSI 数を最適化することにより性能改善が図られる.

図 2-9 SINR 閾値に対する周波数利用効率の CDF=5%値

2.5.2.4 CSIの取得数による影響

図 2-10 及び図 2-11 を用い、取得する CSI の数 N_{CSI} に対する各方式の特性を比較する.ここで FFR を用いる各方式における SINR 閾値は第 2.5.2.3 節にて求めたものを用いている.また基地局 連携を伴わない FFR(D)の特性は N_{CSI} に依存しない.図 2-10 に示すセル平均値において、CSI 推 定が理想的である場合は N_{CSI} の減少に伴い周波数利用効率は減少する.つまり、推定誤差を含む CSI と同様に、限定的な領域の CSI の利用は不完全な CSI として特性劣化につながる.取得する CSI を近隣セル間のみに限定した場合、0 に置換した CSI h_{ij} に関しては、第 j セルの基地局から第 iセルの端末局への干渉は抑圧されずに影響を受けることになるが、 $N_{CSI} \leq 10$ では提案方式(A)が全 基地局連携 MU-MIMO(C)よりも優位な特性として現れる.これはチャネル推定誤差の影響を(C) が受け易く、(A)は相対的に受け難い前節の考察と一致する.

図 2-10 取得 CSI 数に対する周波数利用効率のセル平均値

図 2-11 に示す CDF=5%値の特性に着目すると, CSI 推定が理想的の場合, *N*_{CSI}≤7 において提案 方式(A)が最も良好な特性を示す.これは, セル平均値から求めた最適 SINR 閾値が方式(B)よりも 大きいためである.

CSI 推定誤差が存在する場合, FFR(D)を除く各方式ともに平均周波数利用効率は N_{CSI}=10 付近 において最大化される. つまり, 過剰に多くの CSI を利用すること(提案方式においては連携領域 を広げることと等価である)は周波数利用効率を低下させる. これは, 大きな推定誤差を含む遠方 のセル間における CSI を無理に使用することは, 不完全な直交化, 提案方式においては精度の低 い干渉信号レプリカを生成することにつながる. その結果, 不要な ICI をより多く生じさせてし まうためである. さらには, そのような不要な干渉低減処理のために送信電力を消費しなければ ならず, 希望信号へ割り当てられるべき電力が低減してしまうことも要因のひとつと考えられる. 遠方のセルとの CSI は, セル間距離が離れていることから受信レベルが低く低精度であるが, そ もそもそのような遠方セルからの ICI は無視可能であり, 無理な基地局連携による干渉低減処理 を行うよりも送信電力を希望信号へ振り向けた方が特性改善につながる. 従って, 取得する CSI 数を制限することは基地局連携の利得を改善し, 方式(A)及び(B)は FFR のみ(D)の特性に対して優 位となる. またシステム設計の観点からは, 取得する CSI 数は少ない方がオーバーヘッドも少な 第2章 準分散型基地局連携セル間干渉キャンセラ及びフラクショナル周波数繰り返し 30 く好ましい.取得する CSI の範囲は隣接セルまでとした $N_{CSI} \leq 7$ が現実的な範囲とも言え,各方式 とも $N_{CSI} = 7$ において概ね平均周波数利用効率は最大値を達成しており,以降はこの値を用いて比 較する. N_{CSI} を 37 から 7 に制限したとき,提案方式(A)において周波数利用効率のセル平均値及 び CDF=5%値はそれぞれ 5.6%, 18.5%改善する.

図 2-11 取得 CSI 数に対する周波数利用効率の CDF=5%値

これまでの評価から、最適な SINR 閾値及び取得 CSI 数の条件において達成可能な周波数利用 効率を図 2-12 にまとめる. CSI 推定誤差の存在下において、提案方式(A)は、理想的な処理を実 施する FFR を用いる全基地局連携 MU-MIMO(B)には特性としては届かないものの、全基地局連携 MU-MIMO(C)よりも優位であり、セル平均値にて 3.5%の改善を達成し、特に CDF=5%値における 改善効果は 112%と大きい. また FFR 単体(D)と比較するとセル平均値、CDF=5%値においてそれ ぞれ 18.3%、27.1%の改善が得られる.

(b) CDF=5% spectral efficiency

図 2-12 各方式において達成される周波数利用効率

以上の結果から、基地局連携への FFR の適用は周波数利用効率改善に寄与するだけでなく CSI の不完全性への耐性向上にも有効であることがわかった. さらに、基地局連携構成を考えると、 準分散型構成で実現可能な提案方式(A)は式(2.7)及び(2.8)に示すように必要な範囲での連携制御 に限定することが可能であるため、それぞれ BS の連携処理における CSI 等の取得に伴うオーバ ーヘッドは N_{CSI}の低減とともに削減可能となる.

32

2.5.2.5 ピーク電力低減効果

基地局連携では、従来/提案技術に関わらず、実質的には本来の送信信号に加えて干渉除去の ための信号を重畳することから、BS当たりの送信電力は変動し、PAPRが増大する.本節ではそ の影響を評価する.図 2-13 に、BS当たりの基地局連携適用時における送信電力の相補累積分布 関数(Complementary Cumulative Distribution Functions, CCDF)特性を示す.なお、送信電力は連携制 御を行わない状態での値を基準とし、規格化している.図より、提案方式(A)は送信電力の分布は 最も小さく、ピーク送信電力を低減するのにも有効であることがわかる.CCDF=1%において、全 基地局連携 MU-MIMO(C)及びその FFR 併用(B)と比較してそれぞれ 8dB,1dB の低減効果を示す. これは、FFR を適用することによる ICI 回避効果により、ICI をさらに低減するのに必要な送信電 力も削減されたためである.加えて、提案方式は ICI レプリカ信号の重畳を途中で打ち切る近似 処理であることから、送信電力の増加をさらに抑制できる.

ピーク送信電力が大きく増加する従来方式(C)においては、選択された UT との通信ごとに適切 な送信電力制御(規格化)を実施する必要があり、ICI 除去のための重畳した信号による増分を抑え るために希望信号への電力は低減することになる.提案方式のようにピーク送信電力を低減可能 な場合には、BS の増幅器の入力の上限に対してある程度のマージンを設けて送信電力を予め設定 すれば瞬時の送信電力制御を行うことなくレプリカ信号の重畳という簡易な処理のみによって基 地局連携による ICI 低減が実現可能となる.

図 2-13 規格化送信電力の CCDF

2.5.2.6 演算量削減効果

最後に,演算量の観点から提案方式の有効性を検証する.ここで,演算量の指標として乗算回数を用いる.CSが MU-MIMOの演算を行う集中制御構成において,GSOによる演算量は第3.2.3節の導出を参照し,式(2.20)のように求められる.

$$\Phi_{\rm conv} = Nc^3(Nc+1) + Nc^2.$$
(2.20)

33

提案方式において,1局のBSに要する演算量は式(2.7)及び(2.8)から式(2.21)のように求められる.

$$\Phi_{\rm prop.} = 2 + (\gamma + 1)N_{\rm CSI} \,. \tag{2.21}$$

図 2-14 に、セル数 Nc に対する演算量を示す.提案方式においては、全 BS を連携対象とする $N_{CSI}=Nc$ の場合、及び良好な周波数利用効率を達成する $N_{CSI}=7$ の場合をそれぞれ示す.集中制御 型構成との比較のため、提案方式では全 BS の演算量の合計値 $Nc\Phi_{prop}$ も併せて示す.また y=2 と する.従来の集中制御型の構成では、CS は全体のチャネル行列演算を実施する必要があるため、演算量は連携 BS 数の増加に伴い急激に増加する.一方で提案方式は総演算量で比較したとして も大幅な演算量削減効果を有することがわかる.その演算負荷はそれぞれの BS に分散され、加 えて CSI の取得領域を限定することでさらに低減される.このためセル数 Nc が連携数 N_{CSI} を超 えた場合にはそれ以上の演算量の増加はなく、良好な周波数利用効率を達成する $N_{CSI}=7$ において は、提案する準分散型の基地局連携構成は従来の集中制御型と比較して 1.2×10^{-5} 倍もの演算量削減効果を実現する.

図 2-14 基地局連携送信に要する演算量 (y=2)

九州大学大学院 システム情報科学府 情報知能工学専攻

2.6 まとめ

本章では、CS を必要としない準分散型の構成で実現可能な基地局連携による ICI キャンセラ, 及び FFR の適用を提案した.特性評価において現実的な環境を模擬するために劣化要因として UT の受信 SNR に依存する CSI 推定誤差と,取得可能な CSI 数(連携可能なセル数)の2 要素を考 慮し,実用的な性能を明らかにするとともに提案方式の有効性を周波数利用効率及び演算量の観 点から明らかにした.計算機シミュレーションの結果,提案方式は全基地局連携 MU-MIMO と比 較して周波数利用効率のセル平均値において 3.5%, CDF=5%値において 112%の改善を達成した.

34

FFR は従来の MU-MIMO では必要となる集中制御による複雑なスケジューリングを不要としな がらも UT 間のチャネル相関を低減するとともに SIR を改善し,提案方式が有効に機能するため の条件を確保する. CSI の不完全性は基地局連携伝送の性能を大きく劣化させるが,FFR の適用 によりその劣化を抑えることが可能である. さらに FFR はピーク送信電力の低減にも有効である ことが明らかとなった.以上から,FFR は基地局連携との相性が良く,かつ演算負荷の少ない準 分散型の構成にて実現可能な ICI キャンセラとの併用は,ICI を克服するための技術として有効な アプローチと言える.

第3章

Massive MIMO における低演算量ユーザ間 干渉抑圧方式

システム容量を向上するためには複数の UT に対し空間多重伝送を行う MU-MIMO が有効であ る. さらに、Massive MIMO を適用すれば多くの UT を同時に収容可能となり、高い周波数利用効 率が期待される.しかし、IUI を抑圧するためのプリコーディング処理に要する演算量が膨大とな ることが課題となる.本章では、低演算量にて実現可能な IUI 抑圧方式の検討を行う.以下、第 3.1 節にて Massive MIMO 伝送についての概要を述べ、第 3.2 節にてシステムモデル及び比較評価 を行う提案方式を含めたプリコーディング方式の説明を行う.第 3.3 節において計算機シミュレ ーションの結果を示すとともに、第 3.4 節では演算量の観点から評価を行い、提案法の効果を明 らかにする.第 3.5 節では伝搬測定により取得した CSI を用いた評価を行い、実環境における提 案方式の伝送特性を明らかにする.最後に、第 3.6 節で本章をまとめる.

3.1 Massive MIMO

Massive MIMO[10]-[16]は, BS が 100 素子規模のアンテナを備え,かつ空間多重伝送を行う UT 数を大幅に増加させることで飛躍的なシステム容量向上を実現可能とする.BS アンテナ数を Nt, 空間多重 UT 数を Nu とすると, Nt>>Nu (例えば Nt>4Nu),つまり空間多重数に対して多くのアン テナ自由度を有する条件が Massive MIMO の定義とされている.これは,Massive MIMO を適用す ることの大きな利点として,前述した空間多重数の増大と,アレー利得を獲得することによる SNR または SIR の改善,があるためである.特に後者は,その膨大なアンテナ自由度を利用すること で,干渉抑圧を伴うプリコーディング方式(例えば,GSO[63]や Zero Forcing(ZF)[64])を用いずとも, 最大比送信(Maximal Ratio Transmission, MRT)[65]や等利得送信(Equal Gain Transmission, EGT)[66] のような各アンテナから送信される希望信号を同位相にて合成するのみの簡易なプリコーディン グ方式にて空間多重伝送が実現可能となることを意味する.つまり,IUI に対して非常に大きい希 望信号の合成利得を与えることで SIR を確保し,所望の伝送品質を実現する.Nt 素子の BS アン テナによる希望信号の同位相合成を実施した場合,信号の振幅 Nt 倍となることから電力は Nt²倍 となり,その合成利得は 10log₁₀(Nt²) dB となる.一方で干渉信号はランダムに合成されるため統 計的には振幅は \sqrt{Nt} 倍であり、電力はNt倍、従って利得は $10\log_{10}(Nt)$ dB に留まる. Nu の UT を 多重した場合、干渉電力は $10\log_{10}(NuNt)$ dB となり、SIR は $10\log_{10}(Nt/Nu)$ dB として与えられる. 例えば Nt=100、Nu=10 とすると、SIR は 10dB であり、干渉抑圧を行わずとも安定した伝送品質 を達成可能となる. しかし多重数の増加に従い SIR は劣化するため、さらなる空間多重数の増加 のためには IUI の抑圧が必須となり、大規模なチャネル行列の直交化処理等を行えば演算量は急 激に増加する. 一般に、送信ウェイト乗算に要する演算量は $O(NuNt^2)$ であり、Nu>10、Nt>100の 規模を考えると従来の MIMO と比較して各段に複雑となる.

3.2 プリコーディング方式

BS のアンテナ数を Nt, 空間多重伝送を実施する UT 数を Nu とすると, BS から UT への DL 伝送としたときの MU-MIMO チャネル行列 $\mathbf{H} \in \mathbb{C}^{Nu \times Nt}$ は式(3.1)のように表される.

$$\mathbf{H} = \begin{pmatrix} h_{11} & h_{12} & \cdots & h_{1Nt} \\ h_{21} & \ddots & & & \\ \vdots & & h_{ij} & & \vdots \\ & & & \ddots & \\ h_{Nu1} & & \cdots & h_{NuNt} \end{pmatrix} = \begin{pmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ \vdots \\ \mathbf{h}_{Nu} \end{pmatrix}.$$
(3.1)

H をもとに算出される MU-MIMO プリコーディングウェイト行列を WEC^{Nt×Nu}とし、また、送信 信号ベクトルを T=($t_1, t_2, ..., t_{Nu}$)^T EC^{Nu×1}、受信機の AWGN ベクトルを N=($n_1, n_2, ..., n_{Nu}$)^T EC^{Nu×1}と すると、受信信号ベクトル Y=($y_1, y_2, ..., y_{Nu}$)^T EC^{Nu×1} は式(3.2)のように表される.

$$\mathbf{Y} = \rho \mathbf{H} \mathbf{W} \mathbf{T} + \mathbf{N}. \tag{3.2}$$

ρは電力規格化係数である.以下,本章において比較を行うプリコーディング方式を述べる.

3.2.1 等利得送信 (EGT)

チャネル係数の逆位相にて信号を伝送し、各送信アンテナからの信号が受信端において同位相 にて合成されるように制御する. 演算量としては最も少ないが、IUIの抑圧機能を有さない.

$$\mathbf{W}_{\text{EGT}} = \begin{pmatrix} h_{11}^{*} & h_{21}^{*} & \dots & h_{Nu1}^{*} \\ |h_{11}| & |h_{21}| & \dots & |h_{Nu1}| \\ h_{12}^{*} & \ddots & & & & \\ |h_{12}| & & & & & \\ \vdots & & |h_{12}| & & & & \\ \vdots & & & |h_{ij}| & & \vdots \\ & & & & & & \\ h_{1Nt}^{*} & & & & & & \\ h_{1Nt}^{*} & & & & & & \\ h_{1Nt}^{*} & & & & & & \\ \end{pmatrix}.$$
(3.3)

同様のウェイト算出法として MRT があるが, DL 伝送においては EGT が適している. MRT は CSI の振幅値に応じてウェイトの振幅値も与えるため, 受信レベルの大きい BS 近傍の UT には大きい 利得を,一方でレベルの小さいセルエッジ付近に位置する UT に対しては小さい利得を与えるよ う制御することから,受信レベルに不均衡が生じてしまうためである.受信時においてはそのよ うな制約はないため,受信 SNR を最大化する観点から MRC が適している.

3.2.2 Zero Forcing (ZF)

MIMO 伝送において広く用いられるプリコーディング方式であり, H の疑似逆行列によって求められる.

$$\mathbf{W}_{\mathrm{TF}} = \mathbf{H}^{H} (\mathbf{H}\mathbf{H}^{H})^{-1}.$$
(3.4)

3.2.3 Gram-Schmidt 直交化 (GSO)

GSO によるウェイトベクトル $\mathbf{u}_i \in \mathbb{C}^{Nt^{\times 1}}$ は以下の手順にて求められる.まず,第*i*UT に対するウェイトベクトルを求めるとき,第*i*UT に対応するチャネルベクトル \mathbf{h}_i を最下行へ移す.

$$\{\mathbf{h}_{1}^{\prime T}, \mathbf{h}_{2}^{\prime T}, ..., \mathbf{h}_{Nu}^{\prime T}\}^{T} \equiv \{\mathbf{h}_{1}^{T}, \mathbf{h}_{2}^{T}, ..., \mathbf{h}_{i-1}^{T}, \mathbf{h}_{i+1}^{T}, ..., \mathbf{h}_{Nu}^{T}, \mathbf{h}_{i}^{T}\}^{T}.$$
(3.5)

次に、 $\mathbf{h}'_k(k=1,2,...,Nu)$ の、 $\mathbf{e}_j(j=1,2,...,k-1) \in \mathbb{C}^{1 \times Nt}$ への射影成分を \mathbf{h}'_k より減算する.なお \mathbf{e}_k は 規格化を行う.

$$\mathbf{e}_{k} = \mathbf{h}_{k}^{\prime} - \sum_{j=1}^{k-1} (\mathbf{h}_{k}^{\prime} \mathbf{e}_{j}^{H}) \mathbf{e}_{j}, \qquad (3.6)$$

$$\mathbf{e}_{k} = (\mathbf{e}_{k}\mathbf{e}_{k}^{H})^{-1/2}\mathbf{e}_{k}, \quad for \ k = 1, ..., Nu$$
(3.7)

式(3.6)及び(3.7)の演算を k=Nu まで繰り返し実施し, \mathbf{e}_{Nu}^{H} を第 *i* UT に対するウェイトとする.

$$\mathbf{u}_i = \mathbf{e}_{Nu}^H \,. \tag{3.8}$$

列ベクトル **u**_iを並べることでプリコーディングウェイト行列 **W**_{GSO}∈ℂ^{Nt×Nu} が求まる.

$$\mathbf{W}_{\text{GSO}} = \{ \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{Nu} \}.$$
(3.9)

3.2.4 Gauss-Seidel 法 (GSM)

演算量を低減しながら ZF に漸近する特性を達成する手法として Neumann 級数展開に基づく方 式[67][68]や Gauss-Seidel 法(Gauss-Seidel Method, GSM)[69]が提案されている. これら ZF における 疑似逆行列演算を近似的に求める手法である.本検討では,同等の特性でより良好な演算量削減 効果が示されている[69]ことから, Gauss-Seidel 法をひとつの比較対象とする.以下にその手順を 示す.まず, \mathbf{HH}^{H} を式(3.10)のように対角成分のみを持つ行列 D と対角要素を除く下三角行 L 及 び上三角行列 \mathbf{L}^{H} に分解する.

$$\mathbf{H}\mathbf{H}^{H} = \mathbf{D} + \mathbf{L} + \mathbf{L}^{H}.$$
 (3.10)

次に、**D**、L、L^Hを用いて式(3.11)に示す漸化式処理により送信信号を求める.

$$\mathbf{T}_{\rm GSM}^{(\gamma)} = (\mathbf{D} + \mathbf{L})^{-1} (\mathbf{T} - \mathbf{L}^H \mathbf{T}_{\rm GSM}^{(\gamma-1)}), \quad \gamma=1, 2, \dots$$
(3.11)

ここで、 γ は干渉キャンセラの繰り返し次数であり、 $\mathbf{T}^{(0)}=\mathbf{0}$ (零ベクトル)とする.最終的に $\rho \mathbf{H}^{H}\mathbf{T}^{(\rho)}$ を送信信号とする.上記演算は、ZFのウェイトにおける($\mathbf{H}\mathbf{H}^{H}$)⁻¹を近似的に求める処理に該当し、 式(3.4)の行列×行列による演算を式(3.11)に示すように行列×ベクトルの演算に置き換えることに よって演算オーダーを $O(Nu^{3})$ から $O(Nu^{2})$ に削減している.しかしながら、式(3.11)には逆行列演算 である($\mathbf{D}+\mathbf{L}$)⁻¹が含まれており、結局これを演算するための演算回路を要する.なお、ウェイトと しては式(3.12)のように表される.

$$\mathbf{W}_{\text{GSM}} = \sum_{k=0}^{\gamma} \{-(\mathbf{D} + \mathbf{L})^{-1} \mathbf{L}^{H}\}^{k} (\mathbf{D} + \mathbf{L})^{-1}, \quad \gamma = 1, 2, \dots$$
(3.12)

3.2.5 提案方式 (IUIC)

提案する IUI 抑圧(IUI Cancellation, IUIC)方式の特徴は,EGT の送信ウェイトを用いた第1段階 の処理により IUI よりも大きな希望信号の利得を獲得し,相対的に小さく抑えられた干渉を更に 抑圧するための第2段階の処理として,シンボル単位で干渉信号レプリカを生成して逆位相で重 畳する手法を導入するところにある.これは,アプローチとしては第2章で提案した ICI キャン セラと同様であり,また前節に示した Gauss-Seidel 法と同様の考え方である.しかしこれに対し て提案方式はさらに少ない演算量で実現可能であり,セルエッジ付近のような低 SNR 領域におい て優れた SIR 特性を達成可能である.以下にその手順を示す.取得したチャネル行列から,式(3.3) と同様に EGT による送信ウェイト行列を得る.

$$\mathbf{W}_{EGT} = \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1Nu} \\ w_{21} & \ddots & & & \\ \vdots & & w_{ij} & & \vdots \\ & & & \ddots & \\ w_{Nt1} & & \cdots & w_{NtNu} \end{pmatrix}$$

$$= (\mathbf{w}_{1} & \mathbf{w}_{2} & \cdots & \mathbf{w}_{Nu}).$$
(3.13)

W_{EGT}を適用した受信信号 Y を式(3.14)及び式(3.15), (3.16)のように表記する.

$$\begin{aligned} \mathbf{Y} &= \mathbf{H} \mathbf{W}_{\text{EGT}} \mathbf{T} + \mathbf{N} \\ &= \begin{pmatrix} \mathbf{h}_{1} \\ \mathbf{h}_{2} \\ \vdots \\ \mathbf{h}_{Nu} \end{pmatrix} (\mathbf{w}_{1} \ \mathbf{w}_{2} \ \cdots \ \mathbf{w}_{Nu}) \begin{pmatrix} t_{1} \\ t_{2} \\ \vdots \\ t_{Nu} \end{pmatrix} + \begin{pmatrix} n_{1} \\ n_{2} \\ \vdots \\ n_{Nu} \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{h}_{1} \mathbf{w}_{1} \ \mathbf{h}_{1} \mathbf{w}_{2} \ \cdots \ \mathbf{h}_{1} \mathbf{w}_{Nu} \\ \vdots \ \mathbf{h}_{i} \mathbf{w}_{1} \ \ddots \ \cdots \ \mathbf{h}_{2} \mathbf{w}_{Nu} \\ \vdots \ \mathbf{h}_{i} \mathbf{w}_{j} \ \cdots \ \mathbf{h}_{Nu} \mathbf{w}_{Nu} \end{pmatrix} \begin{pmatrix} t_{1} \\ t_{2} \\ \vdots \\ t_{Nu} \end{pmatrix} \\ &= \begin{pmatrix} n_{1} \\ \mathbf{h}_{2} \\ \mathbf{w}_{1} \ \ddots \ \cdots \ \mathbf{h}_{2} \\ \mathbf{w}_{Nu} \\ \mathbf{w}_{1} \ \mathbf{h}_{Nu} \\ \mathbf{w}_{2} \ \cdots \ \mathbf{h}_{Nu} \\ \mathbf{w}_{Nu} \end{pmatrix} \\ &= (\mathbf{Z}_{D} + \mathbf{Z}_{IUI}) \mathbf{T} + \mathbf{N}, \end{aligned}$$
(3.14)
$$&= \begin{pmatrix} \mathbf{h}_{1} \\ \mathbf{w}_{1} \ \mathbf{0} \ \cdots \ \mathbf{0} \ \mathbf{0} \\ \vdots \ \mathbf{h}_{i} \\ \mathbf{w}_{i} \ \vdots \\ \mathbf{0} \ \mathbf{0} \ \cdots \ \mathbf{0} \ \mathbf{h}_{Nu} \\ \mathbf{w}_{Nu} \end{pmatrix} \\ &= (\mathbf{Z}_{D} + \mathbf{Z}_{IUI}) \mathbf{T} + \mathbf{N}, \end{aligned}$$
(3.15)
$$&= \begin{pmatrix} \mathbf{0} \ \mathbf{h}_{1} \\ \mathbf{w}_{2} \ \cdots \ \mathbf{h}_{1} \\ \mathbf{w}_{Nu} \\ \vdots \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \cdots \ \mathbf{0} \ \mathbf{h}_{Nu} \\ \mathbf{w}_{Nu} \\ \vdots \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \end{pmatrix} , \qquad (3.15)$$
$$&= \begin{pmatrix} \mathbf{0} \ \mathbf{h}_{1} \\ \mathbf{w}_{2} \ \cdots \ \mathbf{h}_{2} \\ \mathbf{w}_{Nu} \\ \vdots \ \mathbf{0} \\ \mathbf{w}_{Nu} \\ \mathbf{w}_{Nu} \end{pmatrix} , \qquad (3.16)$$

式(3.14)の HW_{EGT}=Z_D+ Z_{IUI} はサイズ Nu×Nu の行列であり、Z_D は所望成分を表す対角行列、Z_{IUI} は IUI 成分を表す非対角行列として定義される.ここで、非対角項における IUI 成分をキャンセ ルするための干渉信号レプリカを導入する.Z_D、Z_{IUI} から、干渉信号レプリカ生成ウェイト Δ W を式(3.17)のように定義する.

$$\Delta \mathbf{W} = -\mathbf{Z}_{\mathrm{D}}^{-1} \mathbf{Z}_{\mathrm{IUI}} = \begin{pmatrix} 0 & -\frac{\mathbf{h}_{1} \mathbf{w}_{2}}{\mathbf{h}_{1} \mathbf{w}_{1}} & -\frac{\mathbf{h}_{1} \mathbf{w}_{3}}{\mathbf{h}_{1} \mathbf{w}_{1}} & \cdots & -\frac{\mathbf{h}_{1} \mathbf{w}_{Nu}}{\mathbf{h}_{1} \mathbf{w}_{1}} \\ -\frac{\mathbf{h}_{2} \mathbf{w}_{1}}{\mathbf{h}_{2} \mathbf{w}_{2}} & 0 & -\frac{\mathbf{h}_{2} \mathbf{w}_{3}}{\mathbf{h}_{2} \mathbf{w}_{2}} & \cdots & -\frac{\mathbf{h}_{2} \mathbf{w}_{Nu}}{\mathbf{h}_{2} \mathbf{w}_{2}} \\ -\frac{\mathbf{h}_{3} \mathbf{w}_{1}}{\mathbf{h}_{3} \mathbf{w}_{3}} & -\frac{\mathbf{h}_{3} \mathbf{w}_{2}}{\mathbf{h}_{3} \mathbf{w}_{3}} & 0 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{\mathbf{h}_{Nu} \mathbf{w}_{1}}{\mathbf{h}_{Nu} \mathbf{w}_{Nu}} & -\frac{\mathbf{h}_{Nu} \mathbf{w}_{2}}{\mathbf{h}_{Nu} \mathbf{w}_{Nu}} & -\frac{\mathbf{h}_{Nu} \mathbf{w}_{3}}{\mathbf{h}_{Nu} \mathbf{w}_{Nu}} & \cdots & 0 \end{pmatrix}$$
(3.17)

九州大学大学院 システム情報科学府 情報知能工学専攻

送信信号 T に ΔW を乗算することで干渉信号をキャンセルするためのレプリカ信号が生成される. このときの新たな受信信号を $Y^{(1)}$ とすると,

$$\mathbf{Y}^{(1)} = \mathbf{H}\mathbf{W}_{EGT}\rho(\mathbf{T} + \Delta\mathbf{W}\mathbf{T}) + \mathbf{N}$$

= $\rho(\mathbf{Z}_{D} + \mathbf{Z}_{IUI})(\mathbf{T} + \Delta\mathbf{W}\mathbf{T}) + \mathbf{N}$
= $\rho(\mathbf{Z}_{D} + \mathbf{Z}_{IUI} + \mathbf{Z}_{D}\Delta\mathbf{W} + \mathbf{Z}_{IUI}\Delta\mathbf{W})\mathbf{T} + \mathbf{N}$
= $\rho(\mathbf{Z}_{D} + \mathbf{Z}_{IUI}\Delta\mathbf{W})\mathbf{T} + \mathbf{N},$ (3.18)

となり,式(3.14)における干渉成分 Z_{IUI} T は式(3.18)では $Z_{IUI}\Delta WT$ に置換されることがわかる.このとき, ΔW の各要素の分母は多素子アンテナによる EGT 利得から大きな値となっており,一方, 分子は位相がランダムに合成された結果であることから,絶対値は1よりも十分に小さいことが 期待される.IUI のレベルとしては, ΔW の各列成分の総和であるため,提案法による干渉抑圧が 有効に機能するためには式(3.19)の条件

$$\left|\mathbf{h}_{i}\mathbf{w}_{i}\right| > \sum_{j\neq i}^{Nu} \left|\mathbf{h}_{i}\mathbf{w}_{j}\right| , \qquad (3.19)$$

が成立する必要がある.式(3.19)は,EGT による初段の干渉抑圧が成立する条件を示しており,こ のとき, ΔW を T に作用させることによってさらに残留する IUI 成分は縮小する.また, $w_i=h_i^*/|h_i|$ であることから,ベクトル積 $h_iw_j=h_ih_j^*/|h_j|$ は第 *i* UT と第 *j* UT 間のチャネル相関(空間相関)を表し ており,当該チャネル相関を低減可能なスケジューリング法を併せて適用することにより IUIC の 効果をさらに向上させることが可能となる.

式(3.18)第2項に示す残留干渉は、それをさらにキャンセルする干渉信号レプリカ $\Delta W^2 T$ を導入 することによりさらに抑圧することが可能であり、同様にこれを y 次まで適用した場合の受信信 号 $Y^{(p)}$ は、

$$\mathbf{Y}^{(\gamma)} = \mathbf{H}\mathbf{W}_{EGT}\rho(\mathbf{T} + \Delta\mathbf{W}\mathbf{T} + \Delta\mathbf{W}^{2}\mathbf{T} + \dots + \Delta\mathbf{W}^{\gamma}\mathbf{T}) + \mathbf{N}$$

$$= (\mathbf{Z}_{D} + \mathbf{Z}_{IUI})\rho\sum_{k=0}^{\gamma}\Delta\mathbf{W}^{k}\mathbf{T} + \mathbf{N}$$

$$= \rho\left(\mathbf{Z}_{D}\mathbf{T} + \mathbf{Z}_{IUI}\sum_{k=1}^{\gamma}\Delta\mathbf{W}^{k}\mathbf{T} + \mathbf{Z}_{IUI}\sum_{k=0}^{\gamma-1}\Delta\mathbf{W}^{k}\mathbf{T} + \mathbf{Z}_{IUI}\Delta\mathbf{W}^{\gamma}\mathbf{T}\right) + \mathbf{N}$$

$$= \rho\left\{\mathbf{Z}_{D} + \sum_{k=1}^{\gamma}\left(\mathbf{Z}_{D}\Delta\mathbf{W} + \mathbf{Z}_{IUI}\right)\Delta\mathbf{W}^{k-1} + \mathbf{Z}_{IUI}\Delta\mathbf{W}^{\gamma}\right\}\mathbf{T} + \mathbf{N}$$

$$= \rho\left(\mathbf{Z}_{D} + \mathbf{Z}_{IUI}\Delta\mathbf{W}^{\gamma}\right)\mathbf{T} + \mathbf{N},$$
(3.20)

となる.このとき、各次数kにおける送信信号を $\Delta T^{(k)}$ とすると、 $\Delta T^{(k)}$ はk-1 次の送信信号を用いて式(3.21)のように漸化式として表される.

九州大学大学院 システム情報科学府 情報知能工学専攻

$$\Delta \mathbf{T}^{(k)} = \Delta \mathbf{W} \Delta \mathbf{T}^{(k-1)}. \tag{3.21}$$

ただし、 $\Delta T^{(0)}$ =T とする.以上から、第 γ 次までの干渉抑圧を適用した送信信号 $T^{(\gamma)}$ は式(3.22)のように表される.

$$\mathbf{T}^{(\gamma)} = \rho \sum_{k=0}^{\gamma} \Delta \mathbf{T}^{(k)} .$$
(3.22)

このように、提案する IUI 抑圧方式では送受信ウェイトとして EGT のウェイトベクトルを用い、 その後残留する IUI をキャンセルする信号をシンボル毎に算出して重畳することでさらなる IUI の抑圧を実現する.式(3.13)、(3.17)、(3.21)、(3.22)からわかるように、提案方式は逆行列演算を一 切用いることなく、行列×ベクトルの乗算処理のみで実施可能である点が特徴であり、演算量の削 減のみならず実装の簡易化を実現する.また、ウェイトとしては式(3.23)のように表される.

$$\mathbf{W}_{\text{IUIC}} = \mathbf{W}_{\text{EGT}} \sum_{k=0}^{\gamma} \Delta \mathbf{W}^{k} .$$
(3.23)

3.3 システムレベルシミュレーション

3.3.1 シミュレーション諸元

シミュレーションパラメータを表 3-1 に示す. LTE に準拠したパラメータとし,1 セルモデル において各プリコーディング方式における空間多重特性を評価する.セル内からランダムに UT を選択する場合と,スケジューリングとして第*i*及び第*j*UT 間の規格化チャネル相関値

$$\operatorname{Corr} = \frac{\left|\mathbf{h}_{i} \mathbf{h}_{j}^{H}\right|}{\left\|\mathbf{h}_{i}\right\| \left\|\mathbf{h}_{j}\right\|},$$
(3.24)

を指標とし、この値が全ての UT 間に対して 0.15 を下回る UT の組み合わせを選択する場合とを評価する.本章では DL における周波数利用効率特性を評価する.

$$\Gamma = \log_2(1 + \text{SINR}). \tag{3.25}$$

また, CSI 推定誤差は受信機雑音に起因するものを考慮し, 第2.4.1 節において示した推定誤差の モデルを用いる. CSI 推定誤差の影響によりウェイトも同様に誤差を含むものとして算出される.

$$\widetilde{\mathbf{W}} = \mathbf{W} + \mathbf{E}.$$
 (3.26)

ここで, **E**=(*ε_{ij}*)は誤差成分による行列である.これを考慮し,SINR は以下の式(3.27)より求まる. 行列 **HŴ**(**Ŵ**は各方式におけるウェイト)の各項の絶対値の二乗から,対角項を所望成分,非対角 項の列に関する総和を干渉成分と見做し算出する.

$$SINR = \frac{\left|\sum_{j=1}^{N_{u}} h_{ij} w_{ji}\right|^{2}}{\sum_{k=1,k\neq i}^{N_{u}} \left|\sum_{j=1}^{N_{u}} h_{ij} w_{jk}\right|^{2} + \sum_{k=1}^{N_{u}} \left|\sum_{j=1}^{N_{u}} h_{ij} \varepsilon_{jk}\right|^{2} + \frac{\sigma_{n}^{2}}{\rho}}$$
(3.27)

Parameters	Values
Carrier frequency	2.0 GHz
Propagation model	3GPP Urban Macro NLOS [70] 35log ₁₀ <i>r</i> + 34.5 [dB] (<i>r</i> : meters)
Fading model	i.i.d Rayleigh
BS / UT height	30 / 1.2 m
BS / UT antenna elements	128 / 1
BS transmission power	40 dBm
BS / UT antenna gain	14 / 0 dBi
UT noise power	-104 dBm
Cell radius	500 m
UT desitribution	uniform
Cell edge SNR	10 dB

表 3-1 システムレベルシミュレーションパラメータ

3.3.2 シミュレーション結果

図 3-1 に、多重 UT 数 Nu=16 における、干渉抑圧次数 γに対する周波数利用効率のセル平均値 及び CDF=5%値を示す.ここでは、提案方式(IUIC)及び Gauss-Seidel 法を比較する.提案方式にお ける γ=0 は干渉抑圧を適用しない、EGT のみの特性に該当する.まず図 3-1(a)に示すセル平均値 に着目すると、Gauss-Seidel 法は γの増加に対する周波数利用効率の向上は大きく、γ>2 において 提案方式よりも優位な特性を示す.これに対し、提案方式の γ に対する周波数利用効率の増加は 緩やかであるが、スケジューリングの適用による改善効果は Gauss-Seidel 法よりも大きい.

図 3-1(b)に示す CDF=5%値においては、常に提案方式が優位となる. Gauss-Seidel 法は ZF の近 似手法であることから、干渉成分を抑圧することにのみアンテナ自由度が消費され、希望信号の 利得を十分に得ることができない. 加えて、CSI 推定誤差を含むことから雑音強調による SINR の 劣化も生じていることが考えられる. 一方で提案方式は EGT によりアレー利得を得たうえで干渉 抑圧処理を実施するため、セルエッジ領域のような SINR の低い CDF=5%値の特性を大きく改善 する結果となる. またスケジューリングによる改善効果も得られており y=4 において周波数利用 効率は飽和する. 以上の評価より、以降は両方式とも y=4 を用いることとする.

図 3-1 繰り返し数 yに対する周波数利用効率 (Nu=16)

次に,各方式における全体的な傾向を把握するために周波数利用効率の CDF 特性を図 3-2 に示 す.ここで,各方式においてスケジューリングを適用するものとする. EGT は干渉抑圧を実施し ないため,周波数利用効率は全体として低い.また分布特性から Gram-Schmidt 法が最も優れてお り、アレー利得及び干渉抑圧の効果が十分に得られていることがわかる. ZF 及び Gauss-Seidel 法 は分布が一致しており、Gauss-Seidel 法による近似誤差は Nu=16 の条件においては見られない. しかし、両方式とも高/低 CDF 領域の周波数利用効率が提案方式及び Gram-Schmidt 法と比べて 低い. 前述したアレー利得の損失及び雑音強調効果がによるものと考えられ、特にセルエッジに おける特性が他方式と比べて大きく劣る.提案方式は分布の形状としては Gram-Schmidt 法に類似 しており、1bps 程度の差はあるもののこれに対する近似手法と理解できる.提案方式はアレー利 得を得られることから、ZF、Gauss-Seidel 法と比較して高/低 CDF 領域において優れており、こ れが同等のセル平均値ならびにすぐれた CDF=5%値を達成した要因と考察できる.

図 3-2 周波数利用効率の CDF (Nu=16, Corr=0.15)

次に、空間多重数 Nu に対する UT 当たりの周波数利用効率を図 3-3 に示す. いずれの方式にお いても Nu の増加に従い周波数利用効率は低下する傾向にある. 図 3-3(a)に示すセル平均値を見る と、提案方式は Nu≤20 において ZF/Gauss-Seidel 法よりも優れた特性を示すが、それ以降は乖離が 大きくなることがわかる. これは EGT による干渉抑圧実施前の SIR が小さくなり以降の IUIC が 機能するための条件式(3.19)を十分に満たすことができなくなるためと考えられる. 図 3-3(b)に示 す CDF=5%値では、Nu≤32 において ZF/Gauss-Seidel 法よりも優位な特性となる. このことから、 例えば UT の受信 SNR に応じて所要の周波数利用効率を達成するよう空間多重数 Nu を制御する ことにより従来手法と同等またはそれ以上の特性を達成することは可能である. また、希望信号 電力及び干渉信号電力は、BS アンテナ数 Nt や多重 UT 数 Nu に対して線形の関係であることから、 提案方式の動作条件も*Nt*及び*Nu*の比で定まる.図 3-3の結果より,提案方式が常に有効な条件 としては*Nt/Nu*>6であり,Massive MIMOの適用領域において十分有効であると言える.

図 3-3 空間多重数に対する UT の周波数利用効率 (Corr=0.15)

3.4 演算量評価

プリコーディングに要する乗算回数を指標とし,各方式における所要演算量を評価する.表 3-2 に EGT を除く,乗算処理を要する 4 方式の演算量を示す.なおサイズ Nu×Nu の行列の逆行列演 算に要する乗算回数は(Nu³ + 3Nu² - Nu)/3 としている[71].これをもとに,Nt=128, p=4 としたと きの演算量を図 3-4 に,また提案方式の各比較方式に対する演算量削減効果を図 3-5 にそれぞれ 示す.演算量のオーダーとしては,Gram-Schmidt 法がもっとも大きく $O(NtNu^3)$,他の方式は $O(NtNu^2)$ である.空間多重数が増加するほど提案方式による演算量削減効果は大きくなる.周波 数利用効率として良好な空間多重数として Nu=20 の場合で比べたとき,Gram-Schmidt 法に対して 95%,ZF に対しておよそ 50%,さらに Gauss-Seidel 法に対して 4.8%の演算量削減効果を達成する. 提案方式は逆行列演算を実施する必要はなく, Δ W を求める演算として Nu(Nu-1)の乗算処理に留 めることができることから,類似したアプローチである Gauss-Seidel 法よりも少ない演算量を実 現する.また図 3-4 から,同じ演算量で実施可能な空間多重数を比較した場合,提案方式は ZF に対して概ね 1.4 倍の多重数増加を達成する.

Precoding scheme	Complexity
Proposed IUIC	$NtNu^2 + Nu(Nu - 1) + \gamma Nu^2$
Gauss-Seidel method	$NtNu^{2} + (Nu^{3} + 3Nu^{2} - Nu)/3 + \gamma Nu^{2}$
Zero Forcing	$2NtNu^2 + (Nu^3 + 3Nu^2 - Nu)/3$
Gram-Schmidt orthogonalization	$NtNu^2(Nu+1)$

表 3-2 演算量比較

図 3-4 UT 数に対する所要演算量 (Nt=128)

図 3-5 提案方式による演算量削減効果 (Nt=128)

3.5 実測チャネル情報に基づく評価

Massive MIMO の伝送特性はアンテナ構成や伝搬環境に大きく依存する.これは多数のアンテナ 素子が相互に空間的な相関を持つためである.実伝搬環境における検討及び議論は活発化されて いるが[74][75]まだ報告例は少ない状況にある.本節では,Massive MIMO における伝搬特性の評 価に加え,提案方式の有効性を検証することを目的として伝搬路情報を取得する屋外測定を実施 した.32素子の受信局アンテナを用い1×32の SIMO(Single-Input Multiple Output)チャネルの CSI を取得し、システムレベル及びリンクレベルシミュレーションによりアンテナ多素子化の効果及 び提案方式により達成される空間多重特性を評価する.

3.5.1 伝搬実験概要

図 3-6 に、実験装置の概要を、表 3-3 に実験パラメータを示す.また図 3-7 に UT 側である送 信局の外観を、図 3-8 に BS 側である受信局の外観を示す.5.2 GHz 帯の OFDM トレーニング信号 を任意信号発生器にて生成し、各測定地点の地上高 10m の地点から指向性アンテナを用いて信号 を送信し(図 3-7)、NTT 横須賀 R&D センタ内 10 階に設置した 32 素子アンテナにて信号受信する (図 3-8). これにより、1×32 の SIMO チャネルの CSI を取得する.受信局の地上高は 45m(測定点 との標高差は各地点で異なる)であり、受信局の 32 素子アンテナは 2 波長間隔で円形に配置する. 32 素子アンテナは図 3-6 に示すようにスイッチによって時分割で切り替え、RF 信号からベース バンド信号へダウンコンバートする回路系統が 1 系統の受信装置を用いながらも多素子アンテナ における信号受信を実現する.スイッチの切り替え周期を 33 周期としており、Port 0 は終端され ている. Port 0 の無信号区間を検出することにより Port 1~Port 32 における受信信号を取得する. 受信信号はバイナリデータとして保管され、計算機における信号処理によって CSI 推定を実施す る.

送信信号は PAPR を考慮して定めた所定のトレーニングパターン 1OFDM シンボルの時間波形 を、ガードインターバルを含まず繰り返した連続信号である. 受信処理としては、まず受信信号 を任意のタイミングにて各アンテナで 100 シンボル分抽出し、周波数オフセットの補正処理及び 短時間平均処理を行い、雑音成分を抑圧する. それを FFT することでサブキャリア毎の短時間平 均 CSI を取得し、シンボルタイミングの不確定性を排除するためにアンテナ#1(Port 1)に対する相 対的な CSI に変換する. さらに、異なる時間に取得し同様の処理を施した複数(本実験では 5 回) の短時間平均 CSI を用いて長時間の平均化処理を実施することにより時変動成分を抑圧する. 以 上の処理により高精度な CSI を取得する.

図 3-6 測定装置の概要

表 3-3 実験パラメータ

Parameters	Values
Carrier frequency	5.2GHz
Bandwidth	20MHz
Modulation	OFDM
Number of subcarrier / FFT point	850 / 1024
Transmission power	1 W
Transmitter (UT side) antenna configuration	Planar patch antenna Beamwidth: 87 degree Gain: 6.5 dBi
Receiver (BS side) antenna configuration	Omni-directional antenna, Circular array with 2 wavelength pacing Antenna gain: 1 dBi
τ_1 / τ_2	20 msec / 660 msec
δτ	Lower than 200 nsec
Short term averaging	100
Long term averaging	5

九州大学大学院 システム情報科学府 情報知能工学専攻

図 3-7 送信局の外観

図 3-8 受信局の外観

九州大学大学院 システム情報科学府 情報知能工学専攻

測定は横須賀リサーリパーク(YRP)付近にて実施した.図 3-9 に測定実施エリア及び測定地点を示す.送受信局間は、いずれの地点もほぼ見通し(Line of Sight, LOS)環境となっている.

図 3-9 測定環境

3.5.2 伝搬特性

最初に、取得した CSI をもとに伝搬特性を評価する.まず、CSI の平均化処理の効果を検証する.ある地点において取得した CSI の周波数スペクトルを図 3-10 に示す.送信信号は OFDM 信号を用い、20MHz 帯域の両端に無信号のガードバンド領域を設けている.この領域のノイズレベルと信号が存在する領域のレベル差が SNR に相当する.平均化処理を行う前の受信信号では、所望信号がノイズに埋もれた状態となっていることがわかる.ここで、100 シンボルの短時間平均化により SNR は約 20dB(=10log10)改善し、さらに 5 回の長時間平均化にて約 7.0dB(=10log105)改善する.このことから、希望信号がノイズに埋もれる低 SNR 環境においても、平均化処理により信号を抽出し、その CSI を精度良く推定することが可能となることが確認できる.

図 3-10 取得した伝搬路のスペクトル及び平均化の効果

長時間平均 CSI h_Lと短時間平均 CSI h_Sの差は、伝搬路上を通過する移動体や外乱要因に起因して生じる CSI 推定誤差に相当する.図 3-11 に長時間平均 CSI と短時間平均 CSI の関係の一例を示す.図からわかるように、短時間平均 CSI は時変動等の影響により変動する.

図 3-11 短時間平均 CSI と長時間平均 CSI

推定誤差の分布を統計的に評価するため、式(3.28)に示す長時間平均 CSI に対する短時間平均 CSI の差分ベクトルと、長時間平均 CSI の電力比を求め、各測定地点における SNR との対応を評 価した. SNR は図 3-10 に示すガードバンドのノイズフロア領域と各サブキャリアの信号レベル との差分から算出している.

Fluctuation
$$[dB] = 20 \log_{10} \left| \frac{h_s - h_L}{h_L} \right|$$
 (3.28)

図 3-12 にその結果を示す. 測定した環境における CSI 変動の平均値は SNR の増加に反比例して 低下し, SNR>25dB において概ねフロアとなる. CSI の短時間及び長時間の平均化がそれぞれ 100 回×5 回であることから,合計した雑音低減量は 20log₁₀(500)=27.0dB であり, 観測可能な SNR の 上限が平均化回数と対応することがわかる.

図 3-12 SNR に対する測定 CSI の変動分布

続いて,実環境における伝搬路上の空間相関を評価する.第 i 及び第 j 測定地点間のチャネル相関を規格化した値として式(3.29)にて求める.

$$Corr(\theta) = \frac{\left|\mathbf{h}_{i} \mathbf{h}_{j}^{H}\right|}{\left\|\mathbf{h}_{i}\right\| \left\|\mathbf{h}_{j}\right\|}.$$
(3.29)

受信地点に対する,測定地点間の信号到来角度差 θ とチャネル相関の関係を図 3-13 に示す. 図中 に示す相関値は,全地点間及び全サブキャリアにおいて取得した値を含む. LOS 成分が含まれる 伝搬環境においては,空間相関値は θ に比例して低減することが知られており[72][73],本実験か らも同様のことが確認された. $\theta \leq 5^{\circ}$ の場合には大きな相関値が観測されるが,角度差を大きくす るに従いチャネル相関は低減し, $\theta \geq 10^{\circ}$ であれば,相関値はほぼ 0.4 以下に分布する.

九州大学大学院 システム情報科学府 情報知能工学専攻

図 3-13 測定地点間の角度差に対するチャネル相関

また,図 3-14に2測定地点を角度差それぞれ θ=2°,5°,10°以上となる2点を選出した場合と, ランダムに選出した場合の CDF を示す.ここでは比較として,32本のアンテナのチャネルを独 立無相関(i.i.d)の値として与えた場合のチャネル相関の CDF も併せて示す. θ≥10°であれば相関値 の分布は i.i.d チャネルによるものとほぼ一致する.以上の評価から,LOS 成分を確保可能な環境 においては,空間多重において2測定地点間の角度差を設けるスケジューリング法を適用するこ とによりチャネルの低相関化が実現され,空間多重特性を向上できることが期待される.

九州大学大学院 システム情報科学府 情報知能工学専攻

3.5.3 システムレベル評価

実測 CSI データを用い、DL を想定し、提案方式 IUIC を適用した場合の空間多重特性を評価する.本評価におけるスケジューリング方式としては、前節で得られた結果を踏まえた指標を導入する.測定地点(UT)間の角度差を指標とし、所定の値 θ [°]以上となるように空間多重数 Nu の UT を選択するものとする.プリコーディングウェイト算出には長時間平均 CSI を用い、ウェイトを適用する瞬時チャネルは短時間 CSI を用いる.これにより、実環境における CSI 推定誤差を模擬する.図 3-15 に、空間多重数 Nu=4 における干渉抑圧次数 y に対する SIR 特性を示す.ここで、SIR は式(3.27)より、雑音項を除いて算出される.評価では SIR の平均値及び CDF=1%値を示す.スケジューリング適用時の、 $\theta=2^\circ,5^\circ,10^\circ$ 以上の各特性、及びスケジューリングを実施せず、ランダムに UT を選択した場合の特性をプロットしている.スケジューリングを実施しない場合、互いに近接する UT を選択してしまうことで強いチャネル相関となり SIR が劣悪となる状況がある一方、 θ を大きく設けるに従い SIR は改善し、 $\theta\geq5^\circ$ にて安定した特性が得られることがわかる.

CDF=1%値に注目すると、 θ が小さい、またスケジューリングを適用しない場合、高いチャネル 相関となる UT の組み合わせを含むため γ を大きくしても十分な干渉抑圧の効果が得られないが、 $\theta \ge 5^{\circ}$ では EGT($\gamma=0$)のみでもある程度の SIR を確保できるため、IUIC が有効に機能することがわか る. γ の増加に従い良好な SIR 改善効果が得られ、 $\gamma=7$ 以上で飽和する傾向にある. $\gamma=4$ において も、平均値で SIR=33dB、CDF=1%値で SIR=17.5dB と、良好な特性を達成する.

図 3-15 干渉抑圧次数 y に対する SIR 特性 (Nu=4)

3.5.4 リンクレベル評価

続いて,実測 CSI を用い,空間多重時のリンクレベルでの誤り率特性評価を行うことで達成可能なスループット特性を明らかにする.

3.5.4.1 実測 CSI データを用いたエリアの拡張

図 3-9 に示したように、測定したエリアは BS を中心にほぼ 90°の角度幅に限定されていること から、データサンプル数が限定される.より高精度な評価を行うために、図 3-16 に示すように、 BS アンテナが回転の対称性をもつ円形アレーである特徴を利用し、測定地点のデータを、BS を 中心に 90°ずつ回転し、コピーしたものを疑似的に新しい測定地点として利用する.測定地点を 90°回転させた点の CSI は全アンテナを全体の本数の 1/4 だけシフトしたときのチャネルと等価と 見做せる. 32 本のアンテナを用いた今回の実験の場合には、BS アンテナ#1 と RS#1'間の CSI で ある $h_{\Gamma,1} \ge h_{1,9} \ge$ してアンテナ 8 素子分のシフトを与え、UT から見たチャネルベクトルとしては 左へ8 だけ巡回シフトしたものを新規の UT におけるチャネルベクトルとする.さらに、UT の位 置を 180°回転(チャネルベクトルを 16 巡回シフト)、270°回転(24 巡回シフト)させたものを同様に コピーすることによって、図 3-17 に示すように 360°エリアに亘る領域にエリアを拡張したシミ ュレーションが可能となる.

表 3-4 にリンクレベルシミュレーションに用いたパラメータを示す. OFDM 諸元に関しては表 3-3 と同様である. 図 3-9 に示す測定点における実測 CSI データを図 3-17 のように拡張した環境 にて, IUIC による DL の空間多重特性として,多重数 Nu における SNR に対するシンボル誤り率 (Symbol Error Rate, SER)及びスループットを評価する. なお, CSI の振幅値は全サブキャリアの電 力で規格化し,所望の SNR に対応する雑音電力をシミュレーションにて与える. 空間多重を行う UT の各組み合わせにおいて 10 シンボル送信し, 10000 サンプルの平均値を評価した. UT 間の角 度差を指標としたスケジューリング法を適用するものとし,所定の値 θ=360/2Nu[°]以上となる UT を選択する. 実測に基づく CSI 推定誤差を反映するために,同位相合成ウェイトの算出及び干渉 抑圧は長時間平均 CSI を用い,ウェイトを適用する瞬時チャネルには個別の短時間平均 CSI を用 いる. 比較として,以下の2条件にて評価を行う.

- A) 実測チャネル(Measurement):長時間平均 CSI に対し、時変動を短時間平均 CSI で与える
- B) 見通し(LOS)チャネルモデル(Simulation): 実測の BS-UT 間距離から得られる LOS チャネル に対し、時変動を複素乱数(i.i.d)で与える

B)において、LOS環境の自由空間伝搬を仮定した場合のチャネル係数は式(3.30)にて与えられる.

$$h_{ij} = \frac{l}{4\pi d_{ij}} \exp\left(-j\frac{2\pi d_{ij}}{l}\right).$$
 (3.30)

九州大学大学院 システム情報科学府 情報知能工学専攻

ここで、*l* は波長、*d_{ij}* は受信局(BS)の第 *j* アンテナから第 *i* 測定地点(UT)間の距離を表す. *d_{ij}* は GPS(Global Positioning System)を用いて推定された座標値を用いる. LOS モデルにおける CSI 推定 誤差は i.i.d 複素ガウス乱数にて与えるものとし、分散を σ_e^2 =-16dB とする. 評価では残留干渉成 分による特性劣化を中心に評価することを目的として、全ての UT が同様の SNR 条件下であるも のとした. また、UT における復調時のチャネル推定は理想的とする. SNR はアンテナ数 *Nt*=1 の 場合を基準とし、いずれのアンテナ数 *Nt*、多重数 *Nu* においても総送信電力は一定とする.

Parameters	Values
Number of UT (Measurement point)	133×4
Channel	Measurement, Free space propagation
CSI estimation for demodulation	Ideal
CSI estimation error	Measurement, i.i.d: $\sigma_e^2 = -16 \text{ dB}$
Duration of OFDM Symbol	64 μs
Modulation	16QAM
Forward error correction scheme	Convolutional code, Rate=1/2 Soft decision Viterbi decoder
Number of Tx antenna (BS), Nt	1, 32
Number of Rx antenna (UT), Nr	1
Number of SDM, Nu	1~10
Angular difference, θ	360/2 <i>Nu</i> [degree]

表 3-4 リンクレベルシミュレーションパラメータ

3.5.4.2 シミュレーション結果

図 3-18 に、実測 CSI 及び LOS チャネルモデルそれぞれの場合における SER 特性を示す. ここで、多重数 Nu=1 としたときの BS アンテナ数 Nt=1 及び 32、また Nt=32 としたときの Nu=4 の特性を示している.まず、BS アンテナ数を多素子化することの効果について検証を行うため、多重数 Nu=1、BS アンテナ数 Nt=1 及び 32 の場合について着目する.BS アンテナ数 Nt=1 の場合、周波数選択性フェージングの影響により SNR に対する SER カーブが緩やかであるが、多素子化した Nt=32 の場合、EGT による利得向上の効果と併せて、SER カーブが急峻となる.さらに、その傾きは AWGN 環境となる LOS チャネルモデルの特性の傾きと同等であり、これは、多素子化による統計多重効果が周波数選択性フェージングをフラット化するものと考えられる.一般に、電

波が周囲の反射物を経由し到来するマルチパスフェージング環境での SER 特性は AWGN 環境よ りも劣化するが、近接サブキャリア間の相関は低減されるため、周波数ダイバーシチ効果により インターリーブとの併用で FEC が効果的に機能する.しかし、今回の測定環境のように大地反射 や建造物からの限られた反射波と見通し波が支配的な状況では、周波数方向の相関が強くインタ ーリーブの効果が不十分になり、SER 特性の緩やかな勾配にその影響が現れるものと考えられる. その結果得られる利得は、SER の勾配が緩やかであるフェージング環境を AWGN 相当の環境に置 き換える特性改善量と、多素子化による利得の理論値である 10log10($N^2/NuNt$)=10log10(32)=15dB を加えた大きな SNR 改善効果となる.一方、Nt=32の SER 特性は LOS モデルの特性に対し 1.2dB 劣化している.これは、各アンテナにおける周波数選択性フェージングにより、レベルの低下す るアンテナが同位相合成に効果的に寄与できなくなるためと考えられる.例えば4本アンテナの 場合を例に総受信電力が同一となる以下のケースを比較する.各アンテナの受信電力が等しい (2,2,2)の場合と異なる(1,3,1,3)の場合、同位相合成後の振幅値の合計はそれぞれ 4√2 と(2+2√3)、 そして受信電力は 32 と 29.9 となり、合計の受信電力は同じであってもアンテナ毎に等電力の場 合の利得の方が大きい.このように、周波数選択性による波形歪は EGT 利得に差を生じさせ、こ れが所要 SNR の僅かな劣化となって表れる.

図 3-18 SNR に対する SER 特性 (y=4, Nt=1, 32, Nu=1, 4)

次に,空間多重時について比較を行う.図 3-18 の, *Nt*=32, *Nu*=4 の場合における SER 特性に 着目すると, *Nu*=1 の場合と同様に実測 CSI と LOS モデルによる SER の差は 1.2dB となっている.

このことから、多素子アンテナを用いる効果の理論特性からの劣化量 1.2dB は伝搬環境に起因するものであり、多重数 Nu には大きくは依存しないと思われる. このため、アンテナ数 Nt をさらに大規模にしたとき、それに比例した多重数を実現可能であることが予想される.

図 3-19 に,実測 CSI における BS アンテナ数 Nt=32,多重数 Nu=1~10 における SNR に対する SER 特性を示す.総送信電力一定の条件での評価であるため,空間多重数 Nu が増加すると各ス トリームに割り当てられる送信電力は減少し,それに伴い SER 曲線がシフトする.提案方式は y により IUI 抑圧処理を打ち切ることから, IUI を完全に除去可能とする方式ではないが, Nu<5 で は y=4 においても IUI を十分に抑圧でき,所要 SER=1%を達成可能であることが確認できる.

図 3-19 SNR に対する SER 特性 (*Nt*=32, y=4)

図 3-20 に、干渉が支配的な条件として SNR=20dB とした場合の実測 CSI に基づく干渉抑圧次数 y に対する SER 特性を示す. SER の観点からも、多重数 Nu の増加に伴い干渉抑圧性能は低下しており、ある程度の限界があることがわかる.また全体的な傾向として、y≥4 では偶数と奇数により SER は増減を繰り返しながら収束する様子が観測される.この傾向は図 3-15 の結果においても確認されており、理由としては干渉信号をキャンセルするためのレプリカ信号が他の宛先局に対しては与干渉となることから、多重数が大きく干渉がより支配的となる状況では、レプリカ信号による与干渉が干渉抑圧の効果を上回ると SER が劣化し、続く y+1 次の処理によってその

与干渉が再度抑圧されると SER が改善するという現象が繰り返し生じているためと考えられる. 各多重数において, y≥4 では SER が改善する傾向は見られず,よって y=4 が最適値と言える.

図 3-20 干渉抑圧次数に対する SER 特性 (Nt=32, SNR=20dB)

最後に、図 3-21 に SNR に対する UT 当たりのスループット特性を、図 3-22 に、SNR=20dB と したときの多重数に対する最大システムスループット特性をそれぞれ示す.システムスループッ トは UT 当たりのスループット×Nu として算出している.図 3-20 より所要 SER=1%を満たす最大 の多重数としては Nu=5 であるが、システムスループットの観点からは Nu=7 で最大となる.この ときのシステムスループットは 164Mbps であり、周波数利用効率としては 8.2bps/Hz を達成する.

図 3-18 にて述べた議論から, BS アンテナ数に比例して多重数を増加可能であると仮定すると, 4 倍の 128 素子に拡張した場合, DL の MU-MIMO 伝送において,空間多重数は 28 多重まで可能 ということになる.また,本章では 16QAM, Rate=1/2(シンボルあたり 2bit)を用いて評価したが, より高い変調多値数及び符号化率の適用を考慮し,例えば 64QAM, Rate=3/4(シンボルあたり 4.5bit)とすると,システムスループットは 164Mbps×4(空間多重数)×(4.5/2)(変調多値数,符号化率) =1.476Gbps もの値が,帯域幅 20MHz において実現できることが期待される.これは周波数利用 効率にして 73.8bps/Hz である.以上の結果から,空間多重数の増大によって高い周波数利用効率 を達成可能であることが実測 CSI を用いた評価からも明らかとなった.

図 3-21 SNR に対する RS 当たりのスループット (Nt=32, y=4)

図 3-22 多重数に対するシステムスループット (Nt=32, SNR=20dB)

九州大学大学院 システム情報科学府 情報知能工学専攻

3.6 まとめ

本章では、Massive MIMO 伝送を低演算量にて実現可能な IUI 抑圧方式を提案した. EGT ウェ イトを用い、後続する行列×ベクトルの簡易な演算を繰り返す漸化式処理により IUI を抑圧する. さらに、既存方式である ZF や Gauss-Seidel 法のように逆行列演算を必要としないことからハード ウェアへの実装も容易となる. チャネル推定誤差を考慮したシミュレーションにより、周波数利 用効率特性を評価した. Gram-Schmidt の直交化法には劣るものの、多重 UT 数が *Nt/Nu*>6 におい て ZF 及び Gauss-Seidel 法よりも優れた周波数利用効率、かつ最も少ない演算量削減効果を達成し た. 同演算量にて比較した場合には、ZF に対しておよそ 40%の空間多重数の増大、すなわち周波 数利用効率の改善を可能とする.

また,提案方式の実環境における特性を評価するために32アンテナ素子を備える受信機を用い, 伝搬路測定に基づく評価を実施した.多素子アンテナによる合成利得は周波数選択性の影響によ り若干劣化はするものの,そのような環境においても提案方式が有効に機能することを確認した. リンクレベルシミュレーションよりBSアンテナ数32に対して7多重時に最大のシステムスルー プットを達成可能であることを明らかにし,アンテナ数を128に拡張して空間多重数を増大し, より高い変調多値数及び符号化率の適用を想定したときに帯域幅20MHzにおいて1.476Gbpsもの システムスループット,周波数利用効率にして73.8bps/Hzの実現が期待されることを確認した.
第4章

マルチホップネットワークにおける高効率 パケット中継法

各中継ノードが自律分散的に動作を行うマルチホップネットワークでは, IHI がシステム容量を 低下させる原因となる.本章では,パケット中継伝送効率を改善し, IHI を低減する 2 つの手法に ついて検討する.以下,第4.1節にてマルチホップネットワークの概要を述べ,第4.2節にて検討 を行うシステム構成の説明を行う.第4.3節及び第4.4節ではそれぞれ提案するパケット中継伝送 法とその検討結果を示し,第4.5節にて本章をまとめる.

4.1 マルチホップネットワーク

マルチホップネットワークでは,図 4-1 に示すように,基幹ネットワークと有線で接続された BS(コアノード)を配置し,その周辺にコアノードと無線で中継接続された多数の中継機能を備え る BS を展開することで有線回線の敷設なしにエリアを拡大可能とする.

図 4-1 無線マルチホップネットワーク

無線 LAN をインターフェース(IF)としたマルチホップネットワークではメディアアクセス制御 (Media Access Control, MAC)として自律分散型である CSMA/CA に基づく通信が行われることから, ホップ間干渉(IHI)に起因するパケット衝突が頻発する.そのため中継ノード数に対して指数的に システム容量が劣化することが指摘されている[23].WBS の容量は BS から UT へのアクセス回線 に提供可能な伝送容量に直結するため,多数のスモールセルを収容するためには中継回線ネット ワークの伝送効率,すなわち周波数利用効率を改善し,大容量化を実現する必要がある.伝送効 率の改善とは,上述したパケット衝突による再送またはパケットロスの頻度を低減し,中継伝送 の成功確率を向上させることにより実現される.これを実現するために,克服すべき課題として 以下が挙げられる.

- ・IHI の生じないマルチホップ中継
- ・双方向トラフィックの衝突回避
- ・総送信パケット数の低減

マルチホップネットワークの中継伝送効率改善については、さまざまなアプローチから検討が 行われている.マルチホップネットワークに時分割多元接続(Time Division Multiple Access, TDMA) を採用して中継ノードの送信タイミングを制御することにより、中継リンクにおける隠れ端末、 晒し端末問題を回避する手法[76]や中継回線に MIMO を適用し、リンク間の干渉を制御しながら 双方向のトラフィックを収容する手法[77]等が提案されている.これらの手法は分散制御である CSMA/CA に起因して生じる同一チャネル干渉を問題とし、各中継ノードの時刻同期及び CSI の 共有などを図ることによってその問題を解決するものである.しかしながら、全てのノード間の 同期や、MIMO 伝送を適用するためには制御情報を付加または交換するなどの新たな機構が必要 であり、その簡易な実現法が課題として残る.一方、中継伝送に複数のチャネルを用いることを 前提とし、CSMA/CA におけるチャネル予約の機構である Request To Send(RTS)と Clear To Send(CTS)パケット等を用いた事前のハンドシェイクに基づき各ノードが使用するチャネルを決 定する手法[78][79]も提案されている.マルチチャネル化によりパケット衝突を回避することが可 能となるが、利用可能なチャネル数には限りがあることから、可能な限りチャネル数の増加を抑 えた特性改善手法が望まれる.

本章では、新たな同期手段や信号処理を伴わないアプローチとして周期的間欠送信(Intermitten Periodic Transmit, IPT),及び無線ネットワークコーディング(Wireless Network Coding, WNC)それぞれを用いた 2 つのアプローチから検討を行う.それぞれの技術が解決する課題との関係を図 4-2 に示す.

図 4-2 中継伝送効率改善への課題と検討技術の関係

4.2 システムモデル

本検討では、マルチホップネットワークの中継伝送プロトコル及びパケット制御法に着目する. 図 4-3 に、各ノードに実装されるプロトコルスタック及び中継伝送の例を示す. 中継回線のプロ トコルとして IEEE802.11[1][2]が採用する CSMA/CA を想定する. 各ノードは中継用, UT とのア クセス用にそれぞれ無線インターフェースを搭載しているものとし、中継処理は Wireless Multihop Relay(WMR)層として、MAC 層上位に第 2.5 層として実装する. また、BS 間の中継回線と BS-UT 間の無線アクセス回線では異なるチャネルを割り当てることを前提に互いに干渉はないものとし、 本検討では中継回線の特性にのみ着目する. ここで、ノードA の配下にある UT X からノード D の配下にある UT Y ヘデータパケットを送信する場合を考える. まず、UT X は UT Y を宛先とし たデータパケットをノード A に送信する. ノード A は UT X からデータパケットを受信すると、 中継回線用である WMR 層のヘッダをパケットに付与し、中継ネットワークへ転送する. 中継回 線用ヘッダには宛先としてノード D が登録される. 中継ノード B や C 等では、到来したデータパ ケットの中継回線用ヘッダに記載された宛先情報とルーティングテーブルを参照しそれを中継す る. ノード D は中継パケットを受信すると中継回線のヘッダを取り除き、UT Y に向けてデータ パケットを送信する. WBS としてマルチホップネットワークを展開する場合、BS は固定設置さ れるため、中継経路の更新を頻繁に行う必要はない.

図 4-3 プロトコルスタック及び中継伝送の例

4.3 周期的間欠送信

簡易な手法にて高い中継伝送効率を達成する中継伝送プロトコルとして提案されている IPT[31]は、送信元ノードにおいてパケットを連続的に送信するのではなく、1 パケットずつ一定 の時間間隔を与え送信することで中継経路上で発生する同一チャネル干渉に起因するパケット衝 突を回避し、高い中継伝送効率すなわち周波数利用効率を達成可能な方式である.従って、 RTS/CTS ハンドシェイクを不要とし、ランダムバックオフの上限の初期値である最小 Contention Window 長(MinCW)を最小限にすることができることから中継伝送効率の向上が達成される.さ らに、前述のとおり一定の送信周期により中継経路上の各ノードは同時刻にパケットを送信また は受信するため、これを契機としてさまざまな処理を与えればノードの疑似的な同期化も実現可 能である.

IPT では、始点ノードはバッファに蓄えられたパケットを一定周期で送信し、各ノードは受信 したパケットが自分宛でなければすぐに次の中継先へ向けて当該パケットを送信する. IPT によ るパケット中継の例を図 4-4 に示す. ここでは直線状に中継ノードを配置するストリング型トポ ロジを用いて説明する.図 4-4 では全てのノードに同一の周波数が割り当てられているものとし、 始点ノードに二つの送信周期 $T_{\rm IPT1}$, $T_{\rm IPT2}$ ($T_{\rm IPT1}$ > $T_{\rm IPT2}$)を与えている場合を示している. 送信周期が $T_{\rm IPT1}$ のとき(図 4-4(a)),周波数リユース間隔(Frequency Reuce Space, FRS),すなわち同時にパケッ トを送信するノード間の間隔 $N_{\rm FRS}$ =5 であり、一方、送信周期が $T_{\rm IPT2}$ の場合(図 4-4(b))では $N_{\rm FRS}$ =3 となる. このように、与える送信周期によって FRS を制御でき、適切な送信周期を設定すれば同 ーチャネル間干渉を取り除き、なおかつスループットを最大化させることが可能となる.このと き、最適な送信周期は形成される中継経路や、伝搬環境に依存するため、最適な送信周期を自律 的に設定する必要がある.経路上でパケット衝突が発生する都度,始点ノードが送信周期を一定 値引き上げることで適切な送信周期へと引き込むことが可能である[32][33].ノードを一直線上に 配置したポトロジにおいて, IPT は従来方式よりも高いスループットを達成し,かつパケットロ スを大幅に低減することが実環境における評価からも明らかとなっている[34].

図 4-4 周期的間欠送信 (IPT)

IPT は1次元ノード配置における一方向のパケットフローに対して特に有効な方式である. IPT を2次元ノード配置においても動作可能とするために、コアノードから枝分かれの無い1本のルートを形成する渦巻ルーティングが検討されている[31][35]. しかし、当該ルーティングのためには全てのノードの位置を正確に把握する必要があり、各ノードが自律的にルートを形成するシステムには適さない. そこでルーティングの形状に依存しない IPT の適用法として、図 4-5(a)に示すように始点ノードから宛先ノードまでのルートを予約し、IPT を実施する間、その周辺ノードを待機状態とする中継経路予約(Path Reservation)[36]や、図 4-5(b)に示す手順で上下トラフィックをIPT にて中継する双方向多重型周期的間欠送信(Bidirectional-IPT, Bi-IPT)[37]が提案されている.さらに、ノードが面的に配置された環境下において渦巻ルーティングや中継経路予約を必要としない IPT の適用法としてラウンドロビン型周期的間欠送信(Round Robin-IPT, RR-IPT)[38]も有効な手法として検討されている.これらの技術により高効率なパケット中継が実現されるが、Bi-IPT

にて上りリンク(Uplink, UL)のトラフィックを収容する場合,ULの中継パケットはDLのパケッ ト受信を契機に送出されることから,遅延の増大が課題とされ,また待機状態となるノードに向 けて送信されるパケットの再送回数の増大などの問題が残る.そこで本検討では,RR-IPT をベー スとし,マルチチャネル化によりULトラフィックをBi-IPTを用いずとも従来のCSMA/CAにて 収容する手法を提案する.これにより,RR-IPTの効果を最大限に獲得しながら双方向トラフィッ クを効率的に収容することが可能となる.2 つのチャネルを用い,一方のチャネルにはコアノー ドからのDLトラフィックのみを割り当て,RR-IPTを適用する.他方のチャネルにはDLトラフ ィック及び各ノードからのULトラフィックを従来のCSMA/CAにより収容する.チャネル選択 はコアノードのみが行うため,チャネル選択に伴うオーバーヘッドは生じない.

図 4-5 IPT の拡張方式

4.3.1 ラウンドロビン型周期的間欠送信 (RR-IPT)

2次元ノード配置において有効な中継伝送方式として,RR-IPT を説明する.これは、コアノードを中心にツリー型の経路を構成するマルチホップネットワークの特徴を活用する.コアノードのみが送信周期に従い、隣接ノードへ順番にパケットを送信する.中継ノードは従来の IPT 同様、パケットを受信したら当該パケットを即中継する.以下,RR-IPT の詳細な動作について図 4-6 を用いながら説明する.コアノードは周辺の中継ノードに対し、送信周期を与えながら順番にパケットを送信する.1次元のストリングトポロジにおける IPT では通常、中継先のノードが次の中継先へパケットを送信し終えるまでの時間を送信周期に含める.つまり、図 4-6 中の円で示す電波の到達範囲が重複しないように送信周期を与える必要がある.ところが、中継経路がツリー上

に構成される場合には、中継ノードのパケット送信に干渉を与えない別のノードをコアノードの 次の送信先とすることで、IPT 実行時における送信周期をストリングトポロジの場合よりも短く 設定することが可能となる.ここで、RR-IPT において設定すべき送信周期について考察する.各 ノードのパケット送信に要する時間を全て同一の*T*_{TX}と仮定し、コアノードが第*i*中継先へ送信後 の待機時間である送信間隔を*T*_{IPT,*i*}, コアノードに隣接する中継ノード数を*N*_Nとすると、第*i*中 継ノード以降の1つの枝分かれの無い中継経路に着目したときの送信間隔であるラウンドロビン 周期*T*_{RR} は

$$T_{\rm RR} = \sum_{i=1}^{N_{\rm N}} (T_{\rm TX} + T_{{\rm IPT}, i})$$

= $N_{\rm N} T_{\rm TX} + \sum_{i=1}^{N_{\rm n}} T_{{\rm IPT}, i}$, (4.1)

として与えられる.一方,同経路について所要の周波数リユース間隔を N_{FRS} とすると, IHI を回 避するためのに要する送信周期 T_{FRS} は

$$T_{\rm FRS} = N_{\rm FRS} T_{\rm TX}, \tag{4.2}$$

である.つまり,経路内干渉を及ぼさないためには全ての i に対して

$$T_{\rm RR} \ge T_{\rm FRS,} \tag{4.3}$$

である必要がある.以上の式(4.1)(4.2)(4.3)より,以下の条件式(4.4)が得られる.

$$T_{\rm RR} - T_{\rm FRS} = N_{\rm N} T_{\rm TX} + \sum_{i=1}^{N_{\rm N}} T_{\rm IPT,i} - N_{\rm FRS} T_{\rm TX}$$

= $(N_{\rm N} - N_{\rm FRS}) T_{\rm TX} + \sum_{i=1}^{N_{\rm N}} T_{\rm IPT,i}$
 $\ge 0.$ (4.4)

つまり、 $N_{N} \ge N_{FRS}$ であれば送信周期 $T_{IPT,i}$ を可能な限り小さく設定したとしても式(4.4)の条件を満たすことができるため、経路内干渉を回避可能となる.

一方, RR-IPT では一次元ノード配置の場合とは異なり複数の経路に対して IPT によるパケット 中継が同時に行われるため,中継経路間の干渉(経路外干渉)も考慮する必要がある.主要な経路外 干渉や経路内干渉においては送信周期の設定により回避可能であることから,経路外干渉に起因 するパケット衝突の確率は極めて低い.そこで,MinCW を0ではない,規定値である15 slot よ りも小さい値に設定し, CSMA/CA のオーバーヘッドを削減しながらもランダムバックオフの機 能を残すことで経路外干渉を回避する.また,各中継ノードにて以降のルートが分岐している場 合も,当該ノードはラウンドロビンにて中継するパケットを選択する.

4.3.2 マルチチャネル中継法

高スループットを得るためには一方向のみのトラフィックを IPT にて中継することが好ましい. そこで、中継回線に用いるチャネルを新たに設け、 チャネル1 (Ch.1)を DL トラフィックのみに 割り当て、チャネル 2 (Ch.2)を UL と一部の DL トラフィックに割り当てる. ここで、Ch.1 には RR-IPT を適用する.一般的に、UL トラフィックは DL トラフィックに比べ少なく、中継回線の システム容量に対しても十分少量であることから、Ch.2 を有効に利用することを目的とし DL ト ラフィックを混在させる. 手順としては、Ch.1 を割り当てるパケットのバッファの数に閾値を設 け、DL トラフィックのパケットは優先的に Ch.1 に割り当てる. バッファへ割り当てられたパケ ット数が予め設けた閾値を越える場合には Ch.1 のトラフィックは飽和状態にあると見做し Ch.2 のバッファへ割り当てる.ここでは、当該閾値を 100 パケットとする.また、各チャネルのパケ ットバッファに不均衡が生じないよう、Ch.2 に割り当てられるパケット数は Ch.1 に割り当てら れるパケット数を超えないよう制御される.各ノードはそれぞれの周波数を独立に使用するもの とし、始点ノードにてパケットにいずれかのチャネルが割り当てられれば、以降は同チャネルの みを経由して最終宛先ノードまで中継される.そのためチャネル切り替えのためのオーバーヘッ ドを考慮する必要はなく、動的チャネル割り当て等の処理も不要である.ここで Ch.2 における中 継方法について以下に示す 2 手法を検討する.

4.3.2.1 Dual-IPT

Ch.2 に Bi-IPT を適用し、DL 及び UL トラフィックを多重する. Bi-IPT を用いる場合、UL パケ ットは DL パケットをポーリング信号と見立て、この受信を契機に送出される. IPT の効果により IHI を回避しパケットロスを大幅に削減可能となるが、終点ノードのパケットを送信することから 送信周期が増大することに加え、図 4-5(b)に示したようにパケットの遅延増大が懸念される. ま た、ある中継経路を流れる DL トラフィックが存在しない場合にはデータが空の制御パケットを 送信し、バッファに格納されているパケットを掃き出すことが必要である. このように不要なト ラフィックを必要とすることから、オーバーヘッドの増大も考えられる. 指向性アンテナを用い る場合には上記の課題は改善できる[38]が、無指向性アンテナを用いる場合には無視できない.

4.3.2.2 Mono-IPT

前述したように、Ch.2 におけるトラフィック量は比較的少量となることから、IHI を許容可能 と考えられる.そこで Bi-IPT を用いることなく CSMA/CA で多重する中継法を提案し、本手法の 有効性を新たに検証する.この場合、各ノードは自律的に中継伝送を行うため前節にて説明した Bi-IPT のオーバーヘッドは生じないが、IHI によるパケット衝突は発生する.

4.3.3 システムレベルシミュレーション

4.3.3.1 シミュレーション諸元

各ノードには IEEE802.11a[1]に準拠した無線インターフェースが中継用に 2 機搭載されている ものとし、54Mbps にて通信を行うものとする. 所要 SINR を 10dB とし、これを満たす場合は確 率 1 で受信成功、満たさない場合は確率 1 で受信に失敗するものとする. 無線バックホール部に おける特性のみに着目し、以下 3 手法の比較を行う. それぞれのシミュレーションパラメータを 表 4-1 に示す.

- *A) Mono-IPT* チャネル 1(Ch.1)にのみ RR-IPT を適用し DL トラフィックを中継する. チャ ネル 2(Ch.2)では CSMA/CA にて DL/UL トラフィックを中継する.
- B) Dual-IPT Ch.1 に RR-IPT を適用し DL トラフィックを, Ch.2 に RR-Bi-IPT を適用し DL/UL トラフィックを中継する.
- C) Conventional 従来方式は IPT 等を適用しない、CSMA/CA に基づく中継伝送とする. デ ータパケットの送信に成功すればランダムバックオフの期間をおいて次のパケットの送信 を試みる. またチャネル選択においては上下トラフィックとも平等に2つのチャネルに割 り当てるものとする.

IPT によるパケット中継では、コアノードのみが送信周期に従いながらラウンドロビンにてパケットを送信する.送信周期は表 4-1 に示す通り,経路内/外干渉を考慮し事前に最適な値が設定されているものとする.例えば、最終宛先ノードまで1ホップの場合、以降のパケット中継による干渉を考慮しなくてよいことから送信周期を0として次のパケットを送信する.DLトラフィックのみを中継する RR-IPT では、本評価サイトにおける最大ホップ数は4であり、FRS も最大で N_{FRS}=4となる.コアノードに接続される中継ノード数はN_N=4(=N_{FRS})であることから、式(4.4)の条件を十分に満たしている.RR-Bi-IPTを適用する場合、ノード#2-#9間に経路外干渉が生じるため当該経路間のパケット伝送に用いる送信周期は700 µsecとする.さらに MinCW は7 slot と設定し、従来の15 slot よりも短いが経路外干渉の回避機能が動作するようにする.パケットを格納するバッファは中継先ごとに用意され、パケットの存在するバッファからラウンドロビンにて選択される.選択されたバッファのうち、最も早い時刻に格納されたパケットが送信される.すべてのバッファには十分な容量があるものとし、バッファ溢れによるパケットロスはないものとする.

評価サイト及びノード配置を図 4-7 に示す.より実用的な環境にて評価を行うため,実際の建物をモデル化したものを評価サイトとした.屋内における伝搬環境を想定し[80],壁による減衰を 12dB とした[81]. コアノードを含む 24 のノードが各フロアに設置され,コアノードが中央の廊 下に設置されるものとする.中継経路は最小伝搬損ルーティング[82]により図 4-7 に示すように ツリー状に形成され,変更されることはない.

各中継ノードで発生する UL トラフィックは中継ノードー端末間のアクセス回線ネットワーク で発生したトラフィックであり、コアノードで発生する DL トラフィックは基幹有線ネットワー クを通して送られてくるトラフィックである.本検討では、パケット中継伝送効率そのものを評 価するため、再送制御等を伴わない User Datagram Protocol (UDP)[83]トラフィックを用いる.トラ フィックはポアソン生起によりセッション単位で発生し、1 パケットあたりのデータサイズは IP ヘッダを含め 1500 bytes とする.1 セッション当たりのパケット数は対数正規分布に従うものとし、 発生する平均パケット数は DL トラフィックでは 20 パケット、UL トラフィックでは 3 パケット とした[84].また、ネットワークへの負荷は DL:UL=10:1 の割合[85]にて与えられるものとする.

Parameters	A) Mono-IPT		B) Dual-IPT		C) Conventional	
	Ch.1	Ch.2	Ch.1	Ch.2	Ch.1	Ch.2
Wireless IF	IEEE 802.11a [1]					
Tx rate	54 Mbps					
Channel model	IEEE 802.11 TGn channel model D [80] Wall penetration loss: 12 dB [81]					
Routing protocol	Minimum path loss routing [82]					
Traffic model	UDP traffic [83] Poisson origination, Log-normal distribution Avg. DL: 20 packets, UL: 3 packets [84] Packet size: 1500 bytes, Offered load ratio DL:UL=10:1 [85]					
Relay scheme	IPT	CSMA/CA	IPT	Bi-IPT	CSMA	A/CA
RTS/CTS	Off	On	Off	Off	Oı	n
MinCW [slot]	7	15	7	7	15	5
Buffering	Round Robin	FIFO	Round Robin	Round Robin	FIF	O
Traffic handling	DL	DL+UL	DL	DL+UL	DL+	UL
Ch. switching threshold	100 packets		100 packets			
Tx period [µsec]	0, 100	0	0, 100	100, 700	0	

表 4-1 システムレベルシミュレーションパラメータ

図 4-7 評価サイト

以下に定義する3指標によって特性評価を行う.

- システムスループット[Mbps] 終点ノードにおいて重複無く受信に成功した単位時間当 たりのデータパケットのビット数の総計
- パケット平均遅延[sec] パケットが始点ノードにおいて発生してから終点ノードに届く までに要した時間の平均
- パケットロス率[%] 最大再送回数を超えて破棄されたパケット数の、シミュレーション
 時間内に受信されるべきパケット数に対する割合

シミュレーション上における経過時間は 240 秒間とし、これは結果の数値が収束するのに十分な 期間である.

4.3.3.2 シミュレーション結果

総入力トラフィック量に対するシステムスループット、パケット平均遅延、パケットロス率を それぞれ図 4-8 から図 4-10 に示す.システムスループットの上限としては Mono-IPT が最も高く、 従来方式に比べて 23%改善される. Dual-IPT については、上限値は緩やかに上昇の傾向が見られ るものの改善効果は Mono-IPT に劣る. 平均遅延に着目すると、Dual-IPT は遅延が急激に増大し 始めるトラフィック量が従来方式よりも小さく、遅延の観点からは劣化する結果となっている. Mono-IPT は遅延においても改善されることが確認できる. パケットロス率については Dual-IPT はほぼ 0 を達成しており、IPT の特徴である IHI 回避効果が確実に得られている. Mono-IPT は Ch.2 に CSMA/CA を用いることからパケットロスは存在するものの従来方式と比べて 30%~50%低減 可能となる. 以下、チャネル別の特性を示しながら詳細を考察する.

九州大学大学院 システム情報科学府 情報知能工学専攻

図 4-10 パケットロス率

図 4-11~図 4-13 に, それぞれチャネル別に見たシステムスループット, パケット平均遅延, パケットロス率を示す.まず Mono-IPT の特性に着目すると, DL トラフィックを収容する Ch.1 では従来方式と比較して 42.2%のスループットの改善と低遅延化, さらにパケットロスの大幅な 低減が達成される. Ch.2 では UL トラフィックと一部の DL トラフィックを収容するが, 負荷を Ch.1 に集中することにより Ch.2 における入力トラフィックが低減され,総トラフィックに対する 飽和点が大きい方へシフトすることになる.つまり,シフトした飽和点までは低遅延にてパケッ トを中継できるようになり、そのことが図 4-12 からも観察される. 図 4-13 より、Mono-IPT の Ch.2 におけるパケットロス率は従来方式と比べてわずかに上昇する. これは、Ch.2 は一部の DL トラフィックと全ての UL トラフィックを収容することから、双方向トラフィックの衝突確率が 増加するためと考えられる. 一方、RR-IPT は Ch.1 のパケットロスをほぼ 0 とできることから、 システム全体のパケットロス率低減に寄与する. したがって、Mono-IPT は一方のチャネルに CSMA/CA を用いているにもかかわらず高スループット、低パケットロスを実現する.

九州大学大学院 システム情報科学府 情報知能工学専攻

図 4-13 チャネル別のパケットロス率

Dual-IPT は、Ch.1 については同様に良好な特性を示す一方、Ch.2 で遅延が増大しており、Bi-IPT 適用によるオーバーヘッドの増大が顕著に現れている.しかし、パケットロスの大幅な低減効果 は Ch.1/2 ともに常に得られることから、低トラフィック時には有効な中継伝送方式と言える.

以上の結果より、入力トラフィックに応じて中継伝送方式を動的に制御することで通信品質の 観点から優れたマルチホップネットワークの構築が可能となる.低トラフィック時には Dual-IPT を適用することにより低パケットロスでの中継伝送を実現し、高トラフィック時には Mono-IPT の適用によりシステム容量を23%改善する.

4.4 無線ネットワークコーディング

前節では、Mono-IPT により、IHI を許容しながらも双方向トラフィックを多重する手法を提案 した.双方向トラフィックの中継伝送において有効なもうひとつの手段として WNC がある.ネ ットワークコーディングは本来,有線ネットワークにおける伝送容量改善のために提案された[86]. その無線ネットワークへの応用として多くの検討がなされている[39]-[50].WNC の基本的なフロ ーを図 4-14 に示す.ノードA, R, B が直線状に配置されるトポロジにおいて,中継ノード R が まず A, B 両ノードからパケットを順次受信し,合成する.次のスロットにおいてノード R は当 該合成パケットをブロードキャストし、ノード A, B は自ら送信したもとのパケット情報を用い て合成パケットからそれぞれ受信すべきパケットを取り出す.これにより、従来は図 4-14(a)のよ うに 4 回必要であった双方向の伝送を図 4-14(b)のように 3 回で完了させることが可能となり、シ ステムスループットは理論的には 4/3 倍(=1.33)向上する.中継ノード数 N_Nにおける理論的な WNC の利得は $2N_N / (N_N + 1)$ であることが知られており、 $N_N \rightarrow \infty$ において最大の2となる[40]. つまり、 ホップ数の増大に対して WNC の効果は減少しない.

一方,実際のトラフィック環境はさまざまなパケット長を含む.ノード A, B から送信される パケット長に差がある場合,その差分となる領域はデータ伝送に寄与しないことから,WNC の効 果は劣化してしまう.そこで,ノード A, B において複数のパケットを連結するフレームアグリ ゲーション(FA)を適用し,パケット長を可能な限り揃えた上で WNC を適用することで,WNC 利 得の最大化を図ることが可能である.

図 4-14 2 ホップ双方向中継伝送

九州大学大学院 システム情報科学府 情報知能工学専攻

これまでに、TDMAをベースとした WNC 及び FA の適用効果について報告されている[49][50]. TDMA では送信機会をプリアサインすることで WNC 及び FA の利得を最大化可能であるが, GPS 等を用いて各無線局を同期するための制御が必要である. 自律分散制御に基づく CSMA/CA はそ の必要はなく、さらに WNC の適用により中継局の送信機会を削減できることから改善効果は大 きいことが期待される.しかし,WNC は送信元と宛先が相反するそれぞれの中継パケットがバッ ファに格納されている場合, また FA は宛先が同一である複数のパケットがバッファに格納され ている場合に実施でき、両者を実施するためには所望のパケットがバッファに格納されるまで待 機する必要がある. したがって, CSMA/CA においては各ノードが自律的にバッファ管理を行い ながら送信機会を獲得する必要がある.各ノードにおける送信機会を制御する方法として、WNC 及び FA の実行タイマーを設けることが考えられる. 一方, WNC 及び FA を中継ノード R に適用 する場合には共通のタイムアウト機能により両者の動作を制御可能である[47].しかしこの場合, ノード A, B から FA されないパケットが頻繁に送信されるため CSMA/CA のオーバーヘッドが増 大してしまうこと,WNCとFAの制御を個別に最適化できないことが課題となる.そこで本節で は、WNCを中継ノードRに、FAを両端のノードA、Bに実装した2ホップ伝送試作装置を開発 し、屋外伝送実験による評価から両者のタイムアウト値最適化によるシステムスループット改善 効果を検証する.

4.4.1 試作装置概要

試作装置の外観を図 4-15 に示す.本試作装置は2台の端局A,Bと中継局Rによって構成される2ホップ無線伝送システムである.各無線局は屋外での使用が可能な防水防塵の筐体を備えている. RF 部は各無線局1つずつ備え,8°のビーム幅を持つグリッドパラボラアンテナを端局A,Bにそれぞれ1本,中継局Rには各端局に対向するよう分配器を通して2本備えている.端局A及びBの配下にはEthernet[87]インターフェースを介して端末を接続可能である.

図 4-15 試作装置外観

九州大学大学院 システム情報科学府 情報知能工学専攻

端局 A, B は入力された Ethernet データフレームを、中継局を介した無線中継伝送により交換す る.物理層及び MAC 層は IEEE802.11g[2]無線 LAN の仕様に準拠したものとなっている.OFDM をベースとし、周波数帯域幅は 20MHz, FFT ポイント数 64、データサブキャリア数 48 である. 各無線局は CSMA/CA に則り、キャリアセンスを実施し、当該チャネルがアイドルであることを 確認した後、ランダムバックオフ時間を置いてから送信を開始する.WNC 機能は中継局において 実装されており、デュードは端局 A, B において行われる.

図 4-16 にプロトコルスタック及びフレーム構成を示す. WNC, FA はソフトウェア上にて実装 可能であり,第4.2 節でも述べたように MAC 層とネットワーク層の中間である第2.5 層として実 装した.1 パケットは MAC ヘッダ, WNC ヘッダ及びペイロードから構成され, WNC ヘッダに は、ペイロード中に含まれる Ethernet データフレームの ID が格納される.ペイロードは Ethernet データフレームを Ethernet ヘッダごと格納している. FA 適用時には、1 ペイロード中に複数の Ethernet データフレームが連結して格納される.

(a) Protocol stack

(b) Frame structure

図 4-16 プロトコルスタック及びフレーム構成

4.4.2 XOR 型無線ネットワークコーディング (WNC)

WNC を実現する符号化として,最もシンプルな方式であるビット毎の排他的論理和(eXclusive OR, XOR)演算を採用し,実装している.FA 機能,タイムアウト機能と併せて以下に説明する.WNC を適用したマルチホップ伝送では,以下の3種類の伝送が発生する.

(i) 端局 A→中継局 R

端局 A は CSMA/CA により獲得した送信権においてパケットαを送信する.送信済みパケットはそのペイロード ID と紐付けて端局 A の送信済みバッファに格納され,後の WNC 復号 に用いられる.

- (ii) 端局 B→中継局 R
 (i)と同様に端局 B はパケットβを送信する.
- (iii) 中継局 R→端局 A・端局 B

中継局 R は上記(i)(ii)で送信されたパケット α, β を受信し, 誤り伝播を防止するため Cyclic Redundancy Check (CRC)チェックの結果, 誤りの無いパケットのみを受信バッファへ格納, 中継の対象とする. 続いて中継局は受信バッファを参照しパケット α と β の双方が存在する 場合は XOR 演算を行い, 重畳された WNC パケットを端局 A, B ヘブロードキャストする. XOR 演算は, WNC ヘッダ以降のペイロード部に対してのみ行われるが, パケット α と β の パケット長が異なる場合は, 短いパケットのテール部にダミービット(オールゼロ)を挿入する. 端局 A, B は WNC パケットを受信すると, WNC ヘッダ内に記述されている送信済みパケットの f 報を読み出し, 自身が備える送信済みバッファを参照し, 当該送信済みパケットと, 受信された WNC パケットの XOR 演算を再び行い, 中継されたパケットのペイロードを抽出 する.

(i)~(iii)の伝送がどの順序で実施されるかは CSMA/CA に基づくランダムアクセスにより決定される. 中継局のバッファにパケット α のみ, またはパケット β のみしか存在しない場合には, WNC の実行及び送信ができないが, 中継局にタイマーを設け, パケット受信時より一定期間経過後に WNC 対象のパケットが存在しない場合(タイムアウト)に, WNC を行わずに中継すべきパケット を宛先局へユニキャストする. 詳細は第4.4.4 節にて説明する.

4.4.3 フレームアグリゲーション (FA)

前節で説明した通り、中継局の WNC 動作においてパケットαとβのパケット長が同一でない 場合、いずれかのパケットにダミービットを付加することになるため、システムスループットが 劣化する要因となる. CSMA/CA においては、ランダムなタイミングで中継局にパケットα、βが 到着するため、異なるパケット長の Ethernet データフレームが混在するトラフィック環境では前 記劣化の影響が顕著になると予想される. この影響を緩和するため、本試作装置では、複数の Ethernet データフレームをまとめて1つのパケットのペイロードとする FA 機能を端局 A、B に実 装している. FA なしの場合は、Ethernet データフレーム長の差を吸収するためにダミービットが 多く挿入されるのに対し、FA では、様々なペイロード長の Ethernet データフレームを連結して1 つの大きなパケットとして送信するためダミービット量の削減が期待できる. 本試作装置におけ る FA は、パケット遅延を増大させないことを優先し、Ethernet データフレームの送信バッファへ の入力順番は変更しないものとした.

4.4.4 タイムアウト制御

CSMA/CA においては、各無線局が WNC 及び FA の効果を最大化するよう自律的な制御を与えることが重要である.そのためには、タイムアウト制御が有効であると考えられる.本試作装置においては、端局 A、B が FA 用のタイマーを、中継局 R が WNC 用のタイマーを備えている.それぞれのタイムアウト値を *T*_{FA}及び *T*_{WNC} とする.

図 4-17 に WNC タイムアウト制御の動作フローを示す. 中継局 R は初回パケット受信時から WNC タイマーを起動させ, WNC の実施を最大 *T*_{WNC}の期間待機するが,端局 A 及び B 宛てのパ ケットがバッファに格納されれば,タイムアウトを待たずに WNC を実施し,中継パケットの送 信を行う. タイムアウトとなってもいずれか一方の宛先パケットしかバッファに存在しなければ, WNC を行わずにユニキャスト中継伝送を行う.

図 4-17 WNC におけるタイムアウト制御

図 4-18 に FA タイムアウト制御の動作フローを示す.端局 A, B は最初のパケット受信時に FA タイマー起動させ,最大 *T*_{FA}の期間待機するが,ペイロード長の上限 *L*[bytes]に達し次第送信を開始する. 中継局 R は上述と同様の動作にて受信パケットに対して WNC 処理を施し,中継伝送を行う.

図 4-18 FA におけるタイムアウト制御

図 4-19 に, FA なし/適用時それぞれの場合における WNC 中継フローの一例を示す. FA の適用により,中継局 R では WNC 対象の双方向パケット長が近しくなりダミービットを削減できるため,WNC の効果を最大限に得ることができる.FA では,端局から中継局へのリンクにおける送信回数削減に伴い時間リソースの利用効率を向上可能であるため,システム全体における伝送効率の大幅な向上が期待される.

図 4-19 WNC による中継フローの例

4.4.5 試作装置を用いた屋外伝送実験

4.4.5.1 実験環境及びパラメータ

実験パラメータを表 4-2 に示す. 図 4-20 に実験系を, 図 4-21 に実験環境を, そして図 4-22 にその風景をそれぞれ示す. 端局 A, 中継局 R, 端局 B を一直線上に設置し, それぞれの間隔は およそ 50m である. 各無線局間は見通し環境であり図 4-20 のように三脚に取り付けたアンテナ をそれぞれ対向させている. 周辺からの干渉はなく, 端局 A, B の受信 SNR は 30dB 以上であり, 64QAM, Rate=2/3 モードにてパケット誤り率(Packet Error Rate, PER)=10⁻² 未満となる. 端局 A, B の Ethernet インターフェースと PC を接続し, それぞれの PC から固定ビットレート(Constant Bit Rate, CBR)の UDP[83]トラフィックを互いの PC 宛てに発生させ, トラフィックモニタにて受信ス ループットを測定する. トラフィックは 2 種類混在する環境を想定し, Traffic 1 は 1,500 bytes の データパケット[87], Traffic 2 は 200 bytes の VoIP パケット[88]とする. 生起確率はそれぞれ 50% とする. FA を適用した場合のペイロード長 は*L*=2,200 bytes とし, FA を適用しない場合は, Ethernet の Maximum Transmission Unit(MTU) 1,500 bytes と Ethernet ヘッダ 14 bytes 及び WNC ヘッダ 10 bytes から *L*=1,524 bytes とした. 評価指標として, 両端局に接続されたトラフィックモニタより観測し た受信スループットの合計, すなわちシステムスループットを用いる.

Parameters	Values		
Wireless IF	IEEE 802.11g [2]		
Offered traffic	UDP traffic, Constant Bit Rate Traffic 1: 1,500 bytes [87] Traffic 2: 200 bytes [88] (Occurrence probability: 50%)		
Payload length, L	2,200 bytes (w/ FA) fixed. 1,524 bytes (w/o FA) fixed.		
Buffer size	256 packets		
FA timeout value, $T_{\rm FA}$	0.01 ~ 100 msec (step: 1µsec)		
WNC timeout value, T_{WNC}	0.01 ~ 100 msec (step: 1µsec)		
Multiple Access	CSMA/CA w/o RTS/CTS/ACK		
Modulation	64 QAM		
Forward error correction	Convolutional code, Rate=2/3 Soft decision Viterbi decorder		
Carrier frequency	2.412 GHz		
Transmission power	17 dBm		
Antenna gain	24 dBi		
Antenna beam width	8°		

表 4-2 実験パラメータ

九州大学大学院 システム情報科学府 情報知能工学専攻

図 4-21 実験環境

図 4-22 実験風景

九州大学大学院 システム情報科学府 情報知能工学専攻

4.4.5.2 実験結果

まず,図 4-23 に入力トラフィックに対するシステムスループット特性を示す. ここではいくつ かのパラメータについての例を示す. 図横軸の入力トラフィックは両端局 A, B に入力したトラ フィックの合計である. システムスループットとは,トラフィックモニタにて測定した端局 A, B の平均受信スループットの合計である. システムスループットの最大値は WNC 及び FA を適用す ることで改善され,加えて WNC のタイムアウト値の増加によってさらなる改善が確認できる. 以降,WNC 及び FA それぞれに設定したタイムアウト値において達成したシステムスループット の最大値を用いて評価を行い,最適値を導出する.

図 4-23 入力トラフィックに対するシステムスループット

図 4-24 に、FA タイムアウト値 T_{FA} に対するシステムスループット特性を示す. 図中には T_{WNC} =0.1, 1.0, 10msec の場合のものをプロットしている. T_{FA} に対し、スループットは極大値をと り、 T_{WNC} =0.1, 1.0msec の場合には T_{FA} =10msec、 T_{WNC} =10msec においては T_{FA} =1.0msec が最適値と なることがわかる. T_{FA} が上記最適値よりも大きい場合にスループットが低下する傾向にあること は、図 4-25 に示す FA 実施確率から考察できる. 実施確率は、総受信パケット数に対する FA パ ケット数 N_{FA} (=1~4)の内訳として示している. T_{FA} ≥0.1msec のとき、 N_{FA} =3 及び 4 の割合は増加の 傾向にある一方、減少することが望ましい N_{FA} =1、つまり FA の適用されないパケットの割合は増 加することがわかる. N_{FA} =3 のとき、連結されるパケットの組み合わせは、本装置のペイロード 長が L=2,200 bytes である制約上、(1,500×1 +200×2=1,900 bytes)と(200×3=600 bytes)の 2 通りが, N_{FA} =4 においては(1,500×1 +200×3=2,100 bytes)と (200 bytes×4=800 bytes)の 2 通りが起こり得る.

200 bytes の短パケットのみによる FA の割合が増加すると、全体的な時間リソースの利用効率は 劣化してしまい、さらには、ダミービットを削減可能な FA の組み合わせ(1,500×1 + 200×(N_{FA} -1) bytes)の割合を減少させてしまうことから、上記の結果につながるものと考えられる.よって、過 剰に大きい T_{FA} は好ましくなく、 T_{FA} =1.0 msec が最適値と言える.

図 4-24 FA タイムアウトに対するシステムスループット

(w/o WNC, Offered load=27.0Mbps)

図 4-26 に、WNC タイムアウト値 Twnc に対するシステムスループット特性を示す. 図中には WNC のみ適用時の特性と、FA 適用時における $T_{FA}=0.1, 1.0, 10$ msec の特性をプロットしている. T_{WNC}の増加に従いシステムスループットは向上し,T_{WNC}=10msec にてほぼ上限に達することがわ かる.これは、T_{WNC}の増加に従い WNCの実施確率が向上したためであり、このことは T_{WNC}に対 する WNC の実施確率を示した図 4-27 からも確認できる. WNC 実施確率とは、端局 A, B の受 信パケット数のうち WNC の実施されたパケットの占める割合である. また図 4-26 には複数の T_{FA} における特性を示しているが、 T_{FA} =10msecの場合がどの T_{WNC} においても良好なスループット を得られることがわかる. タイムアウト値の増加は同時に伝送遅延の増大を招くことが考えられ, またホップ数の増加に比例しても遅延は増大する.要求される遅延量に応じたタイムアウト値の 最適化や、中継トラフィックのアプリケーションに応じた優先制御機能を与えることにより要求 を満たすことは可能である.以上の評価より、 T_{FA} =1.0 msec、 T_{WNC} =10msec が最大スループットを 達成するパラメータとなり、このとき従来の CSMA/CA のみのマルチホップ伝送に対して 2.12 倍 の改善効果を達成する.本節では2ホップ伝送における検討結果を示したが、第4.4節にて述べ た通り WNC による利得は中継ノード数により低下しないこと, また FA は中継ノードではなく端 局で実施される、つまり中継処理とは独立であることから上記の改善効果は中継ノード数が増加 した場合にも維持されることが期待できる.

図 4-26 WNC タイムアウトに対するシステムスループット

4.5 まとめ

本章では、ランダムアクセスである CSMA/CA を用いたマルチホップネットワークにおいて IHI を低減し、中継伝送効率を向上可能なパケット中継伝送法として以下の2方式を提案した.

1) RR-IPT を適用したマルチチャネル中継

中継回線に2つのチャネルを用い、一方のチャネルには下りトラフィックのみを RR-IPT にて 中継伝送を行い、もう一方のチャネルには上りと下り両方のトラフィックを CSMA/CA にて同 時に収容する.計算機シミュレーションの結果、従来のパケット中継伝送方式に比べ、提案方 式はシステムスループットを 22.0%(RR-IPT を用いるチャネルでは 42.4%)改善し、平均遅延及 びパケットロスを低減可能であることが明らかとなった.

2) FA を適用した WNC

WNC を適用する際,2つのパケット長の不均衡によりその利得が減少するが,FA によりそれ を補償可能となる.WNC 及びFA を実装した2ホップ無線伝送装置を試作し,屋外環境におけ る伝送実験を通して,WNC 及びFA のタイムアウト値を最適化することによるシステムスルー プット改善効果を明らかにした.WNC のタイムアウト値を10 msec,FA のタイムアウト値を 1.0 msec とすることにより,従来の中継伝送方式と比較してシステムスループットが 112%改 善することを明らかにした.

上記 2 方式は併用することが可能である. 例えば 2 チャネルを用い, 一方のチャネルに RR-IPT を, 他方のチャネルには WNC/FA を適用するような形態が考えられる. このとき期待される周波 数利用効率改善効果は 42.4/2 + 112/2 = 77.2%と算出できる.

第5章

サブキャリア送信電力制御を用いたブライ ンド型アダプティブアレー

同一のシステム内において生じる干渉問題に対しては第2章から第4章に解決可能な技術を示 してきた.ここでは、さらなる周波数利用効率の向上として複数のシステムが同一の空間におい て周波数資源を共用することを検討する.これにより、システムごとに周波数を分割し割り当て るという制約を緩和できるようになることから、大幅な周波数利用効率向上が期待される.しか し、未知である ISysI を、事前情報を用いることなく低減することが課題となる.以下、第5.1節 において周波数共用技術についての概要を述べ、第5.2節においてシステムモデル及び検討する BAA アルゴリズムの概要及び基本特性を示し、第5.3節においてそれらを用いた提案方式の説明 を行う.第5.4節にて計算機シミュレーションによる評価結果を、第5.5節では提案方式を実装し たハードウェア試作装置による検証結果を示し、第5.6節にて本章をまとめる.

5.1 異システム間周波数共用

空間領域での周波数共用を行い、周波数利用効率を向上可能な技術として MIMO を適用した手法[51]や、干渉信号の位相を揃えることにより疑似的な干渉信号数を減少させる干渉アラインメントを用いた周波数共用技術[52]が検討されている.これまで検討されてきたコグニティブ無線技術[24][25]は、図 5-1(a)に示すのように帯域の利用効率 100%を目指すものであったが、上記の手法は図 5-1(b)に示すように与/被干渉を低減しながら空間的に周波数共用を図ることで、周波数利用効率の向上を実現可能である.しかし、これを実現するためにはシステム間の CSI を取得する必要があり、異なるシステムの異なる信号の型式またはフレームフォーマットでは CSI を推定することは困難である.本章では、より積極的な周波数共用として空間領域での共用を検討対象とするが、このとき、互いに事前情報を用いることなく

(i) 2次システム受信機が1次システム送信機から受ける ISysl を抑圧する

(ii) 2次システム送信機が1次システム受信機へ与える ISysI を低減する ことを同時に実現する必要がある.

図 5-1 複数システムにおける周波数共用のアプローチ

干渉信号に関する事前知識を不要としながら所望信号を得ることが可能な手段として、ブライ ンド型アダプティブアレー(Blind Adaptive Array, BAA)が有効である.その中でも、最大比合成 (Maximal Ratio Combining, MRC)[65]や電力比反転(Power Inversion, PI)[89],固有ベクトルビームス ペースアダプティブアレー(Eigenvector Beamspace Adaptive Array, EBAA)[90][91],そして定包絡線 アルゴリズム(Constant Modulus Algorithm, CMA)[92][93]等のブラインド型アルゴリズムは、所望信 号の到来方向や参照信号を必要としないことから、システム間の干渉を抑圧するのに適している. しかしこれらのアルゴリズムはSIR>0dBもしくはSIR<0dBの領域において適切に干渉を抑圧可能 とするものであり、同等の電力(SIR≈0dB)で受信される干渉信号に対しては干渉抑圧効果を十分に 得られない.以下、その動作領域を拡張するとともに、前述した(i)(ii)の要件を同時に実現する手 法の検討を行う.

5.2 システムモデル及びブラインド型アダプティブアレー

図 5-2 に示すような 2 システムが周波数共用を行う環境を想定し、1 次システムは方式に改変 を加えることができない既存のシステム、2 次システムは新たな方式を適用可能な新規システム とする.また1次、2 次システムともに OFDM のようなマルチキャリア伝送を前提とし、以降説 明する BAA の処理は 2 次システムのサブキャリア毎に実施するものとする.ここで、1 次システ ムの送信機を Primary Transmitter (PT)、受信機を Primary Receiver (PR)、2 次システムの送信機を Secondary Transmitter (ST)、受信機を Secondary Receiver (SR)とし、SR は Nr 本の受信アンテナを具 備し、BAA 処理を実施可能とする.SR の受信アンテナには ST からの希望信号及び PT からの干 渉信号すなわち ISysI が受信され、BAA によりその ISysI を抑圧する.

図 5-2 システムモデル

SR が備える Nr 本のアンテナに入力される,第iシンボルにおける受信信号ベクトルを,

$$\mathbf{X}(i) = \begin{bmatrix} x_1(i) & x_2(i) & \cdots & x_L(i) \end{bmatrix}^T, \quad i=1, 2, ..., Ns.$$
(5.1)

とし、これはアレー入力ベクトルと呼ばれる. X(*i*)∈ℂ^{Nr×1}は、ST からの希望信号及び PT からの干 渉信号が合成された信号である. BAA は既知信号により推定する CSI などの事前情報を用いるこ となく、受信信号 X(*i*)のみを用いて干渉抑圧を可能とする. BAA は古くから研究が進められ、種々 のアルゴリズムが確立されており、それらはさまざまな特性を有する. 以下に、本論文で取り扱 う BAA アルゴリズムの概要を示す.

5.2.1 最大比合成 (MRC)

MRC[65]は干渉波を積極的に抑圧する機能は持たないが、受信信号を同相にて合成することで 受信 SNR を最大化するように動作する.受信信号ベクトル X(*i*)に乗算するウェイトベクトルを W_{MRC},ウェイトを適用した出力をy(*i*)とすると、W_{MRC}は式(5.2)のように表される.

$$\mathbf{W}_{\text{MRC}} = E[\mathbf{X}(i) \ y^{*}(i)]$$

= $\frac{1}{Ns} \sum_{i=1}^{Ns} \mathbf{X}(i) \ y^{*}(i),$ (5.2)

$$y(i) = \mathbf{W}_{\mathrm{MRC}}^{H} \mathbf{X}(i) .$$
(5.3)

式(5.2)及び(5.3)を繰り返すことでウェイトを最適化していく.

5.2.2 電力比反転 (PI)

PI[89]は受信信号の SIR を反転するように動作するアルゴリズムである.その性質から、干渉波の電力が大きいほど、つまり SIR が負の方向に大きいほど強い干渉抑圧特性を得られる. PI によるウェイト W_{PI} は受信信号の自己相関行列 R_{xx} から式(5.4)のように求められる.

$$\mathbf{W}_{\mathrm{PI}} = \mathbf{R}_{\mathrm{xx}}^{-1} \mathbf{C} \,, \tag{5.4}$$

$$\mathbf{R}_{xx} = E[\mathbf{X}(i)\mathbf{X}(i)^{H}]$$

= $\frac{1}{Ns}\sum_{i=1}^{Ns} \mathbf{X}(i)\mathbf{X}(i)^{H},$ (5.5)

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^T. \tag{5.6}$$

ここで、Cは拘束ベクトルと呼ばれる.

5.2.3 固有ベクトルビームスペースアダプティブアレー (EBAA)

EBAA[90]は、式(5.5)に示した自己相関行列 \mathbf{R}_{xx} の固有ベクトル $\mathbf{v}_k(k=1, 2, ..., Nr)$ を求め、その いずれかをアレー処理におけるウェイトとして用いる方式である.自己相関行列 \mathbf{R}_{xx} と、固有値 λ_k を対角項に有する行列 Λ 及び固有ベクトル \mathbf{v}_k から構成される行列 V は式(5.7)から(5.9)の関係で表 される.

$$\mathbf{R}_{xx}\mathbf{V} = \mathbf{V}\mathbf{\Lambda} \,, \tag{5.7}$$

$$\boldsymbol{\Lambda} = \begin{bmatrix} \lambda_1 & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_{Nr} \end{bmatrix},$$
(5.8)

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_{Nr} \end{bmatrix}.$$
(5.9)

上式から, 第 k 固有値に対応する EBAA ウェイト W^(k)EBAA は

$$\mathbf{W}_{\text{EBAA}}^{(k)} = \mathbf{v}_k, \qquad (5.10)$$

として与えられる.また,

$$\lambda_1 \ge \lambda_2 \ge \dots, \ge \lambda_{Nr}, \tag{5.11}$$

の関係を有しているものとする.このとき、実際の到来波数を Nw とすると、受信アンテナ数 Nr が到来波数 Nw よりも大きい(Nr>Nw)場合、即ち、アンテナの自由度に余裕がある場合、ウェイト として有効なのは $v_1 \sim v_{Nv}$ である.式(5.11)に示す大小関係は到来波の受信レベルの大小関係と対 応しており、 $W^{(0)}_{EBAA}$ は k 番目の大きさで受信する到来波へビームを向け、他の到来波は干渉とし て抑圧するよう動作する.Nr = Nw = 2 の場合、第1 固有ベクトル v_1 を用いることで、所望信号に ビームを向ける MRC と同様のウェイトを得ることができ、一方、第 2 固有ベクトル v_2 を用いる ことで PI と同様の、電力比を反転する性質を持ったウェイトを得る[91].以下、 $W^{(1)}_{EBAA} = v_1$ 、 $W^{(2)}_{EBAA} = v_2$ とする.

九州大学大学院 システム情報科学府 情報知能工学専攻

5.2.4 定包絡線アルゴリズム (CMA)

CMA[92]は所望信号が定包絡線性を有している場合,その特性を利用する.干渉が加わったことにより振幅変動を有する受信信号の振幅値を一定に戻すよう最適化を図ることで干渉抑圧効果を得る. CMA は他のアルゴリズムと比較して大きい干渉抑圧効果を有する. CMA ウェイトを $W_{CMA}(m)$ (*m* は繰り返し回数),所望の包絡線値を σ (=1),とすると,評価関数 $Q(W_{CMA}(m))$ は式(5.12)及び(5.13)のように表される.

$$Q(\mathbf{W}_{CMA}(m)) = E\left[\left|\left|y\right|^{p} - \sigma^{p}\right|^{q}\right],$$
(5.12)

$$\mathbf{y}(i) = \mathbf{W}_{CMA}^{H}(m)\mathbf{X}(i).$$
(5.13)

p及び q は正の整数であり、それぞれ 1 または 2 の値をとるものとする. 最適ウェイトを求める ためのアルゴリズムはいくつか存在するが、ここでは収束性に優れた Least Square CMA(LS-CMA) を用いる[93]. p=1, q=2 の LS-CMA の場合、ウェイトの更新式は次式(5.14)のように表される.

$$\mathbf{W}_{CMA}(m+1) = \mathbf{W}_{CMA}(m) - \left[\sum_{i=1}^{k} \mathbf{X}(i) \mathbf{X}^{H}(i)\right]^{-1} \sum_{i=1}^{k} \mathbf{X}(i) \left[y^{*}(i) - \delta^{*}(i)\right],$$
(5.14)

$$\delta(i) = \frac{\sigma}{|y(i)|} y(i). \tag{5.15}$$

なお、CMA の初期ウェイトは一般に

$$\mathbf{W}_{\text{CMA}}(0) = [1, 0, 0, \dots, 0]^T, \qquad (5.16)$$

とするが、初期ウェイトの取り方により性能は変化する.例えば、初期ウェイトを PI のウェイト とすれば(W_{CMA}(0)=W_{PI})、受信レベルの小さい信号を捕捉し、ダイバーシチゲインを得ながら受信 レベルの大きい信号を抑圧するように動作する.

5.2.5 固有ベクトルビームスペース CMA (E-BSCMA)

BSCMA[94][95]は、まず第1段階のアレーウェイトによりマルチビームを形成し、それらの中から適当なアレー出力を選択し、第2段階のアレー処理として CMA を適用することで CMA の収束性能等を改善する.本検討では、この BSCMA を応用し、第1段階の処理に EBAA を採用し、 $W^{(1)}_{EBAA}$ と $W^{(2)}_{EBAA}$ をウェイトとして適用した受信信号(*m*=0における *y*)のいずれかを用いて後続の CMA を実施することで EBAA の干渉抑圧効果を向上するための手段として用いる.言い換えると、第1段階の EBAA からウェイトを求め、第2段階の CMA におけるウェイトの初期値 $W_{CMA}(0)$ として上記 EBAA のウェイト $W^{(k)}_{EBAA}$ を設定することになる.

$$\mathbf{W}_{CMA}(0) = \mathbf{W}_{EBAA}^{(k)}, \, k = 1, 2, \dots, Nw.$$
(5.17)

本論文ではこれを E-BSCMA と定義し, 第 k 固有ベクトルに対する E-BSCMA ウェイトを $\mathbf{W}^{(k)}_{\text{E-BSCMA}}$ とする.

5.2.6 基本特性

これまでに説明した各種 BAA アルゴリズムの基本特性を把握するための評価を実施する. 評価 諸元を表 5-1 に示す. 受信アンテナ数 Nr = 2 とし, 2 つの信号が受信される場合の到来方向に対 するそれぞれの信号の出力電力を評価する. このときの第 *i* シンボルの受信信号ベクトル X(i)は 式(5.18)のように表される.

$$\mathbf{X}(i) = \begin{bmatrix} \sqrt{\xi_1} h_{11} & \sqrt{\xi_2} h_{12} \\ \sqrt{\xi_1} h_{21} & \sqrt{\xi_2} h_{22} \end{bmatrix} \begin{bmatrix} s_1(i) \\ s_2(i) \end{bmatrix} + \begin{bmatrix} n_1(i) \\ n_2(i) \end{bmatrix}$$
$$= \begin{bmatrix} \sqrt{\xi_1} & \sqrt{\xi_2} \\ \sqrt{\xi_1} e^{-2\pi i j d \sin \theta_1} & \sqrt{\xi_2} e^{-2\pi i j d \sin \theta_2} \end{bmatrix} \begin{bmatrix} s_1(i) \\ s_2(i) \end{bmatrix} + \begin{bmatrix} n_1(i) \\ n_2(i) \end{bmatrix}.$$
(5.18)

ここで、*d* は波長で規格化した受信アンテナ間隔であり、半波長とする. *s*_l(*i*) (*l*=1, 2)は送信シンボルであり、変調方式は Quadrature Phase Shift Keying (QPSK)とする. *n*_l(*i*)は AWGN、 ξ_i は受信信号 に与える利得を表す. 第1の受信信号 *s*₁を希望信号、第2の信号 *s*₂を干渉信号と仮定し、それぞれの到来角度を 0°、-50°とする. また SIR を 10log₁₀(ξ_1/ξ_2)=3dB とする. CMA の繰り返し数を 10 とし、これは LS-CMA において十分収束する値である.

Parameters	1st signal (desired)	2nd signal (interference)	
Number of reception antenna, Nr	2		
Modulation	QPSK		
Number of symbol, Ns	100		
Gain ξ_1, ξ_2	0	-3 dB	
Angle of arrival θ_1, θ_2	0°	-50°	
Normalized antenna separation d	0.5		
CMA iteration <i>m</i>	10		
SNR	30 dB		

表 5-1 基本特性評価に用いるパラメータ

到来角度に対するアレー出力信号の電力を図 5-3 に示す.まず,MRC を適用した場合,受信電力の大きい希望信号が到来する *θ*=0°方向に対してビームが向けられているのみであり,干渉信号が到来する *θ*=-50°方向にヌルは形成されない.このときの受信利得は,2 アンテナによる同位相合成であることから振幅は2倍,電力は4倍となることから,10log₁₀4=6dB であり,*θ*=0°にておよそ 6dB を出力していることがわかる.しかし,これは信号利得のみに着目しているため,雑音

九州大学大学院 システム情報科学府 情報知能工学専攻

を考慮すると SNR としての利得は 3dB となる. 雑音はランダム合成されることから統計的には振幅は $\sqrt{2}$ 倍,電力は 2 倍となり, SNR=10log₁₀(4/2)=3dB となるためである.

CMA は干渉信号の到来方向に対して鋭いヌルを形成しており,高い干渉抑圧効果を有すること がわかる.加えて,所望信号に対しては MRC と同様の合成利得を獲得する.PI を用いる場合に は受信電力の大きい所望信号の θ=0°方向に対してはヌルを形成するように動作し,干渉信号に対 しては利得を向上している.つまり PI の特徴である電力比を反転する効果が確認できる.しかし, SIR が 3dB であることからヌルは浅く,また所望信号の到来方向 θ=0°に対してずれが生じている ことがわかる.これに対し,PI ウェイトを初期値として CMA を適用する PI-CMA は,所望信号 方向に深いヌルを形成し,同時に干渉信号方向 θ=-50°にビームを形成し,利得を得る.つまり CMA と全く反対の効果をもたらす.

EBAA の特性に着目すると、第1 固有ベクトルを用いた場合の出力パターンは MRC と同様で ある.一方、第2 固有ベクトルは PI と同様の傾向を示すが、より深いヌル及びビームの形成効果 を有することがわかる.それぞれのウェイトを初期値として CMA を適用した E-BSCMA では、 第1 固有ベクトル適用時は CMA と同様の効果、第2 固有ベクトル適用時は PI-CMA と同様の効 果が得られることがわかる.

図 5-3 到来方向に対する出力信号電力

九州大学大学院 システム情報科学府 情報知能工学専攻
次に、各アルゴリズムの特性について入力 SIR と出力 SINR の観点から評価した結果を図 5-4 に示す.ここでのチャネルモデルは i.i.d レイリーフェージングとした.すなわち式(5.18)において h_{ij}は平均 0、分散 1 の互いに独立な複素ガウス乱数であり、出力 SINR は平均値である.MRC は SIR>0dB において所望信号を同位相合成する(ビームを向ける)ことにより利得を向上するため、 入力 SIR よりも 3dB 大きい出力 SINR が得られるが、SIR<0dB においては干渉信号に対して動作 するため、出力 SINR は低下する.一方、PI は入力 SIR 値が反転される形で出力されており、干 渉信号のレベルが大きいほど干渉信号を抑圧し(ヌルを向ける)、高い出力 SINR が得られる.この ように、MRC と PI は入力 SIR に対しそれぞれ異なる出力を得ることがわかる.また、EBAA の 第 1 固有ベクトルは MRC と同様の特性を示し、第 2 固有ベクトルは PI と同様の傾向であるがビ ーム形成効果により SIR<0dB の領域において PI よりも大きい出力 SINR を達成する.CMA は干 渉抑圧効果を有するため、MRC よりも大きい出力 SINR が得られる.また、初期ウェイトに PI を用いる PI-CMA は入力 SIR に対して CMA と逆の出力特性を示す.

そして E-BSCMA の第1 固有ベクトルは SIR>0dB において CMA よりもさらに良好な SINR 特性を示す. これは, EBAA によって初段のアレー利得を得られていることから, CMA が初期状態においてより正確に所望信号を捕捉できるようになったためである. 同様に, E-BSCMA の第2 固有ベクトルは SIR<0dB において PI-CMA よりも高い SINR を達成する. 前述したように, EBAA の第2 固有ベクトルは PI よりも大きい利得を得ることができるためである.

図 5-4 入力 SIR に対する出力 SINR (SNR=30dB)

第5章 サブキャリア送信電力制御を用いたブラインド型アダプティブアレー

以上のことから, E-BSCMA は他のアルゴリズムと比較して最も高い干渉抑圧効果を達成する 方式であることがわかる.しかしながら,より高い干渉抑圧効果を得るためには希望信号と干渉 信号との間に有意なレベル差が設けられている必要があり,それぞれが同等のレベルで受信され るような状況,つまり SIR=0dB 付近の領域では十分な干渉抑圧効果が得られない.

101

5.3 提案方式

BAAの干渉抑圧性能が受信信号電力差に依存することに着目し、OFDMのようなマルチキャリア伝送システムにおいてサブキャリア毎の送信電力割り当て(Subcarrier Transmission Power Assignment, STPA)を導入し、サブキャリア毎のアレー処理によるブラインド干渉抑圧法を提案する.総送信電力一定の条件のもと、サブキャリアごとに電力密度に高低差を設け、干渉波に対する所望信号の電力が大きい/小さい状況を意図的に得ることで E-BSCMA ウェイト W⁽¹⁾E-BSCMA 及び W⁽²⁾E-BSCMA それぞれを所望信号に対して適切に動作させる.図 5-5 に提案方式の概要を示す.W⁽¹⁾E-BSCMA を適用するサブキャリアには高い電力を(高レベルサブキャリア),W⁽²⁾E-BSCMA を適用するサブキャリアには高い電力を(高レベルサブキャリア),W⁽²⁾E-BSCMA を適用するサブキャリアには高い電力を(高レベルサブキャリア),W⁽²⁾E-BSCMA を適用するサブキャリアには低い電力を(低レベルサブキャリア)割り当て,その比を G と定義する.また、高レベルサブキャリアを一定のパターンで繰り返し配置し、総送信電力が一定となるように制御する.ここで、全サブキャリアにおいては SIR>0dB、低レベルサブキャリアにおいては SIR<0dB となり、それぞれの E-BSCMA ウェイトが適切に干渉を抑圧可能となる.

このとき、GとFの設定によって提案方式の動作領域、すなわち E-BSCMA の各ウェイトが機 能する SIR の領域が変化する. その一例を図 5-6 に示す. 干渉を許容可能な領域は高レベルサブ キャリアと低レベルサブキャリアの電力値の間と定義でき、つまり図 5-6(a)から(b)のように Gを 大きくすることでその許容可能領域は拡大する. しかし、G を大きくするに従い低レベルサブキ ャリアは電力密度が低下するため、当該サブキャリアの SNR は低下する. ここで、図 5-6(b)から (c)のように Fを増加させることでその余剰となる電力を全サブキャリアに振り向け、低レベルサ ブキャリアの電力密度を確保できる.

図 5-5 提案方式の概要

図 5-6 提案方式によるサブキャリア送信電力割り当ての例

提案方式による送受信機のブロック構成を図 5-7 に示す.送信機では図 5-7(a)に示すように STPA 部を新規に設ける.アレー処理はサブキャリア毎に実施することから,図 5-7(b)に示すよう

(b) Receiver

5.4.1 シミュレーション諸元

本評価では、1次/2次システムともに 802.11g[2]をベースとした物理層パラメータを用いる. シミュレーションパラメータを表 5-2 に示す. アダプティブアレー処理を実施する受信信号のシ ンボル数は 128 とする. 各システムの送受信アンテナ間のチャネルはレイリーフェージングを独 立に与えるものとする.1次/2次システムともに公平な比較のために2本の受信アンテナを備え るものとし、1次システムにおいては MRC 受信のみを、2次システムにおいては前節にて説明し た提案方式を適用する.タイミング検出は理想的とし,Cyclic Prefix(CP)除去後,適切なFFT ウィ ンドウにて OFDM シンボルを抽出し、サブキャリア毎の受信信号に E-BSCMA を適用する. トレ ーニング信号はアレー処理適用後,自システムのチャネル推定に用いられる.両システムの受信 SNRを30dBに固定し、干渉電力のみを変化させ、SIRに対する両システムのスループット特性を 評価する.以降の評価における SIR は、全サブキャリアの合計から求まる値として定義する.ス ループットは送信に要した時間(送信パケットの合計時間長)に対して受信に成功したデータビッ ト数として算出し、パケットサイズは1500bytesとした.

Parameters	Primary Secondary			
Bandwidth	20 MHz			
Number of subcarrier / FFT point	52 / 64			
Number of data symbol	128			
Number of training symbol	2			
Duration of Symbol / CP	3.2 µs / 0.8 µsec			
Modulation	QPSK			
Forward Error Correction	Convolutional code, Rate=1/2 Soft decision Viterbi decoder			
Channel model	IEEE 802.11 TGn channel model D [80]			
FFT windowing	ideal			
Intra-system CSI estimation	Least square [60]			
Number of Tx antenna, Nt	1			
Number of Rx antenna, Nr	2			
Adaptive array algorithm	MRC	E-BSCMA (m=10)		
Subcarrier Tx power ratio G		16, 18, 20, , 30 dB		
Subcarrier number ratio F		1, 3, 5, , 23, 25, 51		
SNR	30 dB			

表 5-2 リンクレベルシミュレーションパラメータ

5.4.2 シミュレーション結果

5.4.2.1 2次システムにおける干渉抑圧特性

2 次システムの受信 SIR に対するスループット特性を図 5-8 に示す. このときの提案方式にお けるパラメータは G=20dB, F=9 である. 従来方式として, STPA を実施しない(G=0dB)E-BSCMA の特性も併せて示す. 第5.2.6 節において示したように, 従来の E-BSCMA では第1, 第2 固有ベ クトルいずれにおいても SIR=0dB 付近にてスループットが得られていない. 一方, 提案方式を適 用することにより, 有意なスループットが得られていることがわかる. これは, 干渉信号のレベ ルが高/低レベルサブキャリアの間に位置する状況であるためであるが, レベル差の範囲を超え る場合には従来の E-BSCMA に切り替えることでいかなる電力の干渉信号も抑圧可能となる.

図 5-8 2次システムの SIR に対するスループット (G=20dB, F=9)

提案方式適用時,最大スループットの80%を達成するSIRの範囲を動作領域と定義し(図 5-8), 各パラメータにおいて評価した結果を図 5-9 に示す.ここで,F に対応して高レベルサブキャリ ア数 N_{h sc}は式(5.19)のように求められる.

$$N_{h sc} = [52 / (F+1)].$$
(5.19)

[*] は天井関数である. 図 5-9 の横軸に F と併せて示すように, N_{h_sc} と SIR 動作領域の変化が対応していることがわかる. F の増加により高レベルサブキャリア数が減少すると, その余剰となる電力が帯域全体に振り向けられるため,全体的なサブキャリアの電力密度は増加する. そのため, PT からの干渉波を許容可能な領域はより SIR が小さくなる方向へシフトする. また, 高/低九州大学大学院 システム情報科学府 情報知能工学専攻

レベルサブキャリアのレベル差 Gを大きくすれば許容可能な干渉電力のレンジは拡大すると考えられるが,図 5-9 からはその効果は確認されず,動作領域として SIR の値が大きくなる方向へシフトするのみである.これは,Gの増加が最大スループットを低下させるためと考えられ,図 5-10からこのことが確認できる.送信電力の殆どを高レベルサブキャリアに集中させるため,低レベルサブキャリアに割り当てられる電力が減少し,SNR が低下することが理由と考えられる.

図 5-9 提案方式による2次システムの動作領域

九州大学大学院 システム情報科学府 情報知能工学専攻

5.4.2.2 1次システムへの与干渉低減効果

提案方式による STPA は 1 次システムへの与干渉低減にも有効である. 1 次システムの SIR に対 するスループット特性を図 5-11 に示す. STPA の適用により, ST が送信する低レベルサブキャリ アは PR が受ける ISysI を低減することから 1 次システムの動作 SIR は *G*=20dB, *F*=9 のときに 3.6dB, *G*=24dB, *F*=13 のときに 9.1dB 改善する. このように STPA のパラメータによって 1 次システムの 動作 SIR の改善量は変化する. 高レベルサブキャリアはより大きな干渉を受けることになるが, 多数の低レベルサブキャリアにおいて有意な SIR を得られることから FEC によりその影響が補償 されているものと考えられる.

図 5-11 1次システムの SIR に対するスループット

2次システムに導入する STPA の, 各パラメータに対する1次システムへの与干渉低減効果を図 5-12 にまとめる. 与干渉低減効果は図 5-11 に示すように,最大スループットの 80%値における SIR 値の改善量として定義する.ここで,与干渉低減効果は1次システムの FEC に強く依存する ことから,以下に示す符号化率とビットインターリーブパターンの組み合わせにて評価を行う.

- (A) Coding rate=1/2 and Matrix interleave
- (B) Coding rate=1/2 and Random interleave
- (C) Coding rate=3/4 and Matrix interleave

第5章 サブキャリア送信電力制御を用いたブラインド型アダプティブアレー

(A)のケース(図 5-12(a))では, SIR は F≥7 において改善することがわかる. F の増加に比例して 低レベルサブキャリアの数は増加することから SIR は改善すると考えられるが, F=5 において劣 化していることがわかる. これは, ビットインターリーブのパターンにより FEC が効果的に機能 しないためと考えられる.

このことを考察するために、本シミュレーションで採用している Matrix interleave のビットパタ ーンを図 5-13 に示す. Matrix interleave では、ある行・列数に対して 10FDM シンボルに割り当て るビット列を列方向に入力し、行方向に出力することでビットの順序を入れ替える. 復調時のデ インターリーブ処理においては、その入出力方向が逆となる. QPSK を適用するとき、出力され た行方向の連続する 2 ビットを 1 シンボルとする. PR では、図中の実線もしくは破線で囲われた データビットが ST から送信される高レベルサブキャリアにより大きな干渉を受ける. 図 5-13 で は、*F*=5 及び 13 の場合を例に示している. *F*=13 のとき、PR のデインターリーブ出力を見ると、 ST からの高レベルサブキャリアにより干渉を受け、誤る可能性の高いビットは十分に間隔が設け られており、これらのビットは隣接する干渉の影響の少ないビットの尤度を利用して FEC により 復号可能となる. 一方、ビット誤りが連続、もしくは近接している場合には FEC による復号は困 難となる. *F*=5 の場合を見てみると、強い干渉を受けるビットは隣接、また近しい間隔で出力さ れており、FEC の効果を獲得できず、誤りがバースト的に生じているものと考えられる. これが 図 5-12(a)において *F*=5 が特性劣化を引き起こす要因と考察できる.

(B)のケース(図 5-12(b))では、(A)と同じ符号化率 1/2 でインターリーブのパターンをランダムと し、シンボルの送受信毎に異なるものを与えている. つまりインターリーブの効果は一様化され、 $F(N_{h,sc})$ に直接的に依存する特性のみを確認することができる. $F \leq 25(N_{h,sc} \geq 2)$ においては高レベル サブキャリア数の減少に従う SIR 改善効果が確認できるが、 $F = 51(N_{h,sc} = 1)$ では高レベルサブキャ リアは 1 本であり、全サブキャリアの電力密度が高まることから PR が受ける干渉は低レベルサ ブキャリアであっても無視できず、SIR 改善効果は縮小する.

符号化率を 3/4 とする(C)のケース(図 5-12(c))では F=51 を除き有意な SIR 改善効果は得られない. 干渉抑圧機能を持たない 1 次システムには、ターボ符号のようなより強力な FEC 機能を備えることが求められるが、2 次システムにおいて高レベルサブキャリア数及びその配置を最適化することによっても周波数共用効果を最大化することは可能である.

いずれのケースにおいても、Gを大きくすることにより1次システムへの与干渉低減効果は改善する.しかし、図 5-10にも示したように、Gの過度な増大は2次システムのスループットを低下させる.以上の結果より、パラメータG及びFは1次及び2次システムのSIRに応じて周波数利用効率を最大化するよう最適なものを選択できることが望ましい.

九州大学大学院 システム情報科学府 情報知能工学専攻

図 5-13 QPSK R=1/2 におけるインターリーブパターン及び高レベルサブキャリアの配置

5.4.2.3 周波数利用効率改善効果

最後に,2 システムによる周波数共用時に達成可能な周波数利用効率を評価する.周波数利用 効率を以下の式(5.20)に定義する.

$$\Gamma = \frac{TP_{Primary} + TP_{Secondary}}{B}.$$
(5.20)

ここで, *TP*_{Primary} 及び *TP*_{Secondary}は1次/2次システムそれぞれのスループット値, Bはチャネル の帯域幅であり,本評価では表 5-2から B=20MHz である.図 5-14 に示すトポロジを想定し,両 システムの SIR を同様に与える.SIR に対する周波数利用効率を図 5-15 に示す.従来方式は両シ ステムとも STPA を行わず,2アンテナによる MRC 受信のみを用い周波数共用を行う場合である. また比較として,周波数共用を行わない場合の特性を併せて示す.つまり両システムは異なる周 波数を用い(B=40MHz), ISysI は発生しない.これより,周波数利用効率が 0.65 を上回れば周波数 共用が可能ということになる.2次システムは,E-BSCMAの第1/第2固有ベクトルいずれかの みを適用する方式と,STPAを用いる提案方式及びそのパラメータとをSIRに応じて周波数利用効 率が最大となるよう最適なものを理想的に選択可能とする.提案方式の適用領域において用いた パラメータ *G*, *F* の組み合わせを表 5-3 に示す.提案方式の適用により,ISysI が支配的である SIR<0dBの領域においても周波数共用効果が得られており,SIR=0dBのときに93.1%の周波数利 用効率改善効果を達成する.以上の結果より,提案方式はシステム間における事前情報を全く必 要とせず,2システムの周波数共用可能な領域を拡張可能であることが示された.

図 5-14 評価トポロジ

九州大学大学院 システム情報科学府 情報知能工学専攻

表 5-3 SIR に対する最適パラメータ

SIR [dB]	-10	-8	-6	-4	-2	0	2	4	6	8
G [dB]	16	30	28	28	26	26	26	26	28	26
F	51	23	23	23	23	22	22	13	17	9

5.5 試作装置を用いた伝送実験

提案方式である STPA 及び BAA の動作確認及び検証として,同機能を実装した伝送装置を試作 開発した.本節では,開発した試作装置を用い,有線接続による伝送実験にてリアルタイム信号 処理の動作検証を行うとともに基本特性を評価した結果について述べる.

5.5.1 試作装置概要

図 5-16 に試作装置の外観を示す. ビットの入出力及び FEC 処理を行う FPGA ボードと,変復 調及び RF 信号の入出力を行う FPGA ボードから構成される.2次変調方式は狭帯域のキャリアを 複数周波数軸上に干渉の無いように並べるマルチキャリア伝送とする. 送信は1系統であり,出 力端からの信号を同ボード上の2系統の入力端に折り返す構成である.

図 5-16 試作装置外観

図 5-17 (a)に送信機構成を示す.ビット系列に対して誤り訂正符号化を行い,サブキャリア数 N_{sc}に分割する.この符号化ビットは複素変調シンボルへ変換され,低レベルサブキャリアはGdB だけ減衰される.変調シンボルは,フィルタバンクにおいてルートロールオフフィルタによる帯

九州大学大学院 システム情報科学府 情報知能工学専攻

域制限とサブキャリア配列に則した周波数シフトが施された後、マルチキャリア信号として送信 される.受信機構成を図 5-17 (b)に示す.4倍オーバーサンプリングされた2系統の受信信号はフ ィルタバンクによりサブキャリア毎の信号に抽出された後、BAA処理を施される.サブキャリア 毎に設定された BAA アルゴリズムによりウェイトを算出し、受信信号に乗算することで干渉を抑 圧した後、復調する.BAA アルゴリズムは実装の簡易化の観点から CMA 及び PI を採用した.ま た PI に関しては、第 5.2.4 節にて述べたように当該ウェイトベクトルを初期値として CMA を適用 する PI-CMA とし、SIR<0dB における高い干渉抑圧効果を実現する.また本試作装置はアレー処 理適用後の周波数スペクトルと各サブキャリアのコンスタレーションを出力する機能を持つ.

(b) Receiver

九州大学大学院 システム情報科学府 情報知能工学専攻

5.5.2 実験諸元

図 5-18 に実験系,図 5-19 にその外観を示す.1次システムと2次システムの周波数共用環境 を模擬し,試作装置2機を用いて互いに干渉を与える構成とした.2次システム装置の送信信号 は3分配され,うち1系統は1次システムへの干渉として1次システム装置の送信信号に加算・ 受信される.残り2系統は、それぞれ1次システムからの信号と雑音発生器により生成される AWGN を加算し、それぞれ2次システムの受信端2ポートに接続される.1次システムも同様に、 2次システムからの干渉とAWGN が加算され、1次システムの装置に受信される.1次システム と2次システムの到来角度差を、各々の移相器により20°となるように設定した.両システムの受 信 SNR を 30 dB で一定とする.SNR 及び SIR は、装置への入力端での測定値とした.ビット系列 はビット誤り率(Bit Error Rate, BER)カウンタより連続的に発生し、受信したビット系列との比較 により BER を測定する.

図 5-18 実験系

図 5-19 実験系外観

九州大学大学院 システム情報科学府 情報知能工学専攻

表 5-4 に装置諸元及び実験パラメータを示す.サブキャリア間の干渉は無く,直交関係と見做 せるため伝送方式,及び量子化の有無の差異を除けば基本的には第 5.4 節にて述べた OFDM によ るシミュレーションと同条件である.ただし有線接続における伝送系であることから,伝搬路は 周波数選択性の無いフラットフェージング環境となる.なお,1次システムの受信機側は BAA を 実施せず,1系統の受信信号のみを用いて復調処理を行う.

Parameters	Primary	Secondary	
Bandwidth	5.2 MHz		
Number of subcarrier, $N_{\rm SC}$	52		
Subcarrier bandwidth	50 kHz		
Subcarrier spacing	100 kHz		
Carrier frequency	140 MHz		
Number of data symbol	128 (512 samples)		
Roll-off factor	0.2 (per subcarrier)		
Tx / Rx quantization bit	14 / 12 bits		
Modulation scheme	QPSK		
Forward error correction	Convolutional code, Rate=1/2 Soft decision Viterbi decoder		
Interleave	None		
Number of Tx port	1		
Number of Rx port	1	2	
Adaptive array algorithm	None	CMA / PI-CMA	
Angle of arrival difference	20 degrees		
G	4, 8, 12, 16, 20, 24, 26 dB		
F	7, 11, 13, 17, 25, 51		

表 5-4 装置諸元及び実験パラメータ

5.5.1 実験結果

5.5.1.1 2次システム受信特性

提案方式による干渉抑圧効果を検証する. SIR=0dB としたときの,従来方式及び提案方式によ る受信スペクトラム及びコンスタレーションを図 5-20 に示す. STPA のパラメータを G=20dB, F=7 とする.全サブキャリアに等電力密度を割り当てる従来方式では BAA を適用したとしてもコ ンスタレーションが収束しておらず,干渉を抑圧できていない.一方 STPA を適用することによ 第5章 サブキャリア送信電力制御を用いたブラインド型アダプティブアレー 117 り所望信号と干渉信号に有意なレベル差を得られることからコンスタレーションは収束し、高/ 低レベルサブキャリアそれぞれにおいて干渉を抑圧できていることがわかる.しかし、図から明 らかなように低レベルサブキャリアのコンスタレーションは高レベルのものと比べて振幅が小さ くなる.加えて低レベルサブキャリアではその振幅値を表現できるビット数が少ないことから量 子化誤差の影響を受けやすくなる.そのためGを大きくした場合の受信特性が劣化することが考 えられる.

図 5-20 BAA 適用時の受信スペクトル及びコンスタレーション (SIR=0dB)

2 次システムの受信 SIR に対する BER 特性を図 5-21 に示す. 基本特性として, STPA を実施せ ず全サブキャリアに CMA または PI-CMA のみを適用した際の BER 特性も示す. また, それぞれ に同様の条件で実施したシミュレーション結果も併せて示す. SIR=0dB 周辺の領域において, CMA 及び PI-CMA は BER が大きく劣化しているが,提案方式では,良好な BER 特性の改善が確認で きる. また,シミュレーションと比較すると, CMA, PI-CMA では 2dB 程度の劣化が見られる. これは,実際の伝送系では全サブキャリアに等電力を割り当てていたとしても伝送路上でわずか な振幅変動が生じることが考えられ, CMA が所望信号を適切に補足できていないか,動作が不安

第5章 サブキャリア送信電力制御を用いたブラインド型アダプティブアレー 118 定になり、CMAの干渉抑圧性能の劣化したためと推測できる.これと同様の理由から、提案方式 適用時の動作領域外となる SIR においてシミュレーション値と実測値との乖離が確認できる. CMA が安定して動作する領域においては、実測値とシミュレーションの差は 2dB 未満であり、 干渉抑圧アルゴリズムとしては理論通り動作していることが確認できる.

図 5-21 2 次システムの SIR に対する BER 特性

次に,高/低レベルサブキャリア電力比G及びサブキャリア数比Fによる,提案方式の動作SIR 領域を明らかにする.ここでは、BER<10⁵となる SIR の範囲を動作領域と定義し、まず、F=7 に おける G に対する動作 SIR の上限と下限を図 5-22 に示す. シミュレーション値も併せて示す. 周波数選択性は無いため、動作領域すなわち上限と下限の差はGの値に対応する形で大きくなる. しかしながら, G =24dB では動作領域はシミュレーション値と乖離が生じ, 動作領域は小さくな る. また G=26dB では動作しないことが確認された.本試作装置は、サブキャリア毎にデジタル 段での制御により電力を低下させる形で G に従う電力差を設け, 試作装置からの出力を増幅器に よって増幅することで総送信電力一定とする制御を行っている。このため、低レベルサブキャリ アの量子化分解能の不足や, SIR が低い領域の評価時における干渉信号の試作装置への過入力に より、動作領域として限界が生じたものと考えられる.

図 5-22 Gに対する 2 次システムの動作領域 (F=7)

G=20dB とし, *F*を変化させたときの動作 SIR 領域を図 5-23 に示す. 第 5.4.2.1 節にて説明した ように, *F*を増加させると余剰となる電力が帯域全体に振り分けられるため,全体的なサブキャ リアの電力密度は増加し,動作 SIR は小さくなる方向にシフトする.しかし,*F*が大きくなり量 子化分解能の低い低レベルサブキャリア数が増加すると.全体的な干渉抑圧性能は劣化するため, 動作 SIR の下限値はシミュレーション値と比較して大きくなることになる.

図 5-23 Fに対する 2 次システムの動作領域 (G=20dB)

九州大学大学院 システム情報科学府 情報知能工学専攻

5.5.1.2 1次システム受信特性

最後に,STPAによる1次システムへの与干渉低減効果を確認する.STPA適用/非適用時の1 次システムのSIRに対するBER特性を図 5-24に示す.ここでは、与干渉低減効果の高い例とし て{G=20dB, F=17}、{G=24dB, F=17}のSTPAパラメータを示す.いずれのケースにおいても、シ ミュレーションと比較してBERカーブの描き方は類似しており、シミュレーションと同様の動作 SIR 改善効果の傾向を確認できる.BER=10⁻⁵において、G=20dB, F=17の場合では従来方式に対し て動作SIRを3.0dB改善可し、さらにGを24dBにまで拡大できれば7.0dBの動作SIRの改善が 可能である.図 5-22において示したように、Gの過度な増大は2次システムの受信性能劣化につ ながるが、量子化ビット数の増加もしくはSTPAの実装次第では適用可能領域となることは十分 に考えられる.また、本試作装置では未実装であったビットインターリーブ機能を追加すること によりFECの能力を最大限に利用可能となることから、さらなる与干渉低減効果も期待できる.

以上より,提案する STPA 及び BAA による周波数共用方式の有効性を,ハードウェア実装による伝送実験の観点から明らかにした.

図 5-24 1次システムの SIR に対する BER 特性

5.6 まとめ

本章では、STPA と、BAA アルゴリズムの選択的適用による周波数共用方式を提案した.サブ キャリア毎に高/低電力にて割り当てることで干渉波に対して SIR>0dB 及び SIR<0dB となる状況 を意図的に作り出し、高レベルサブキャリアには E-BSCMA の第1 固有ベクトルを、低レベルサ ブキャリアには第2 固有ベクトルを割り当て、2 次システムが適切に干渉信号のみを抑圧させる ことが可能となる. さらに低レベルサブキャリアは1 次システムへの与干渉を低減する効果を併 せ持つ.計算機シミュレーションにより、サブキャリア全体で見たときの SIR=0dB 周辺における 干渉抑圧を実現し、さらに、2 システムが周波数を共用した場合の周波数利用効率を SIR=0dB に おいて 93.1%改善可能であることを明らかにした.

また,提案方式を実装した試作装置を開発し,有線接続による伝送実験を行いリアルタイム信号処理による基本特性の検証を行った.シミュレーションと同様,2次システムにおける SIR=0dB 周辺での干渉抑圧効果,及び1次システムへの与干渉低減効果を確認した.

提案方式が異なる複数システムの周波数共用環境における共存可能領域を拡大することが可能 な技術として有効であることをシミュレーション及び伝送実験の両面から明らかにした.

第6章

結論

本論文では、無線通信における周波数資源の逼迫という課題を解決し、周波数利用効率を向上 するための干渉低減技術の研究を行った. 同一システム内における干渉問題として、第2章では セル間干渉、第3章ではユーザ間干渉、第4章ではホップ間干渉を対象とし、それぞれの干渉を 低減可能な方式を提案した. また第5章ではシステム間干渉を低減し、異システム間において周 波数共用を可能とする方式を提案した. 各章の要点を以下にまとめる.

第2章では、準分散型の構成で実現可能な基地局連携による ICI キャンセラ、及び FFR の適用 を提案した.特性評価において現実的な環境を模擬するために劣化要因として CSI の不完全性を 導入し、計算機シミュレーションによって基地局連携システムにおける実用的な性能を明らかに するとともに提案方式の有効性を周波数利用効率及び演算量の観点から明らかにした. CSI の不 完全性として UT の受信 SNR に依存する CSI 推定誤差と、取得可能な CSI 数(連携可能なセル数) の2要素を取り入れた.計算機シミュレーションの結果、提案方式は全基地局連携 MU-MIMO と 比較して周波数利用効率のセル平均値において 3.5%、CDF=5%値において 112%の改善を達成し た.FFR は従来の MU-MIMO では必要となる集中制御による複雑なスケジューリングを不要とし ながらも UT 間のチャネル相関を低減するとともに SIR を改善し、提案方式が有効に機能するた めの条件を確保する. CSI の不完全性は基地局連携伝送の性能を大きく劣化させるが、FFR の適 用によりその劣化を抑えることが可能である.さらに FFR はピーク送信電力の低減にも有効であ ることを明らかにした.

第3章では、Massive MIMO において低演算量にて実現可能な IUI 抑圧方式を提案した. EGT ウェイトを用い、後続する行列×ベクトルの簡易な演算を繰り返す漸化式処理により IUI を抑圧する. さらに、既存方式である ZF や Gauss-Seidel 法のように逆行列演算を必要としないことからハードウェアへの実装も容易となる. チャネル推定誤差を考慮したシミュレーションにより、周波数利用効率特性を評価した. Gram-Schmidt の直交化法には劣るものの、多重 UT 数が Nt/Nu>6 において ZF 及び Gauss-Seidel 法よりも優れた周波数利用効率、かつ最も少ない演算量削減効果を達成した. 同演算量にて比較した場合には、ZF に対しておよそ 40%の空間多重数の増大を可能とす

る.また,提案方式の実環境における特性を評価するために32アンテナ素子を備える受信機を試 作開発し,伝搬路測定に基づく評価を実施した.多素子アンテナによる合成利得は周波数選択性 の影響により若干劣化はするものの,実環境においても提案方式が有効に機能することを確認し た.リンクレベルシミュレーションよりBSアンテナ数32に対して7多重時に最大のシステムス ループットを達成可能であることを明らかにし,アンテナ数を128に拡張し,より高い変調多値 数及び符号化率の適用を想定したときに帯域幅20MHzにおいて1.476Gbpsものシステムスループ ット,周波数利用効率にして73.8bps/Hzの実現が期待されることを確認した.

第4章では、ランダムアクセスである CSMA/CA を用いたマルチホップネットワークにおいて IHI を低減し、中継伝送効率を向上可能なパケット中継伝送法として2方式を提案した.1 つは RR-IPT を適用したマルチチャネル中継法である.中継回線に2つのチャネルを用い、一方のチャ ネルには下りトラフィックのみを RR-IPT にて中継伝送を行い、もう一方のチャネルには上りと下 り両方のトラフィックを CSMA/CA にて同時に収容する.計算機シミュレーションの結果、従来 のパケット中継伝送方式に比べ、提案方式はシステムスループットを23%改善し、平均遅延及び パケットロスを低減可能であることを明らかにした.

もう1つはFAを端局に適用したWNCである.FAを端局に適用することによりCSMA/CAによるオーバーヘッドを削減するとともに両端局から送信されるパケット長を可能な限り等しくし、WNCの利得を最大限化することが可能となる.WNC及びFAを実装した2ホップ無線伝送装置を試作し、屋外伝送実験を通して、WNC及びFAのタイムアウト値を最適化することによるシステムスループット改善効果を評価した.タイムアウト値の最適化の結果、従来の中継伝送方式と比較してシステムスループットが112%改善することを明らかにした.これら2つの技術は併用することが可能である.例えば一方のチャネルにRR-IPTを、他方のチャネルにはWNC/FAを適用するような形態が考えられる.このとき得られる周波数利用効率改善効果は42.4/2+112/2=77.2%と算出できる.

第5章では、STPAと、BAAアルゴリズムの選択的適用による周波数共用方式を提案した.サ ブキャリア毎に高/低電力にて割り当てることで干渉波に対してSIR>0dB及びSIR<0dBとなる状 況を意図的に作り出し、高レベルサブキャリアには E-BSCMA の第1固有ベクトルを、低レベル サブキャリアには第2固有ベクトルを適用し、2次システムが適切に干渉信号のみを抑圧させる ことが可能となる.さらに低レベルサブキャリアは1次システムへの与干渉を低減する効果を併 せ持つ.計算機シミュレーションにより、SIR=0dB周辺における干渉抑圧を実現し、さらに、2 システムが周波数を共用した場合の周波数利用効率をSIR=0dBにおいて93.1%改善可能であるこ とを明らかにした.また、提案方式を実装した試作装置を開発し、有線接続による伝送実験によ り基本特性の検証を行った.シミュレーションと同様、2次システムにおける干渉抑圧効果、及 び1次システムへの与干渉低減効果を確認した. 第6章 結論

上記それぞれの研究結果は複合的に適用可能である.各章における成果である周波数利用効率 改善効果は,第2章:112%(p.34),第3章:40%(p.63),第4章:77.2%(p.92),第5章:93.1%(p. 121)である.これらを総合すると

$$2.12 \times 1.4 \times 1.772 \times 1.931 = 10.16 \tag{6.1}$$

となり、システム全体として10倍以上の周波数利用効率改善効果を達成可能となる.

図 6-1 に、5Gの実現に向けた要素技術の概要を示す. 基地局連携技術(CoMP)は、2011 年に 3GPP Release11 にて標準仕様化されたがマクロセル環境ではその効果は小さいことから実用化には至らなかった. スモールセルが多数配置される環境ではエリアが大きくオーバーラップすることから, 基地局連携の効果を大きく得られることが期待され、2020年の実用化に向けた議論が再度高まっている. 第2章にて検討した基地局連携技術の成果はここに活かされるものと考えられる.

2022 年以降には、20GHz 超の高周波数帯を用いた Massive MIMO 伝送技術の実用化が見込まれ ており、アナログ素子と信号処理量の簡素化を実現可能なアナログ・デジタルのハイブリッドに よる構成が有力な候補として検討されている[96][97].まずアナログ段によるビームフォーミング によって利得を獲得し、デジタル段における信号処理系統数を削減した後に MIMO 信号処理を実 施する.第3章で検討した成果である低演算量 IUIC は、初段に適用する EGT ウェイトがアナロ グビームフォーミングに相当し、その後段にレプリカ減算型の IUIC 処理を適用可能である.した がってアナログ・デジタルハイブリッド構成においても本成果を活用することができる.また多 数のモノを同時にかつ低遅延にネットワークに収容する機器間(Machine to Machine, M2M)通信に 対しても本研究成果を適用可能である.

無線 LAN システムの動向としては,20Gbps 以上のスループットをスコープとしている IEEE802.11ay[98]が2020年頃の実用化を目指して設立された.60GHz帯を用いるが近距離通信の みならず,モバイルトラフィックのオフロード,また無線バックホール等の用途が想定されてお り,第4章の研究成果である高効率パケット中継伝送方式がここに活かされるであろう.

2016年には、LTE が自システムの 2GHz 帯と無線 LAN で利用されている 5GHz の免許不要帯域 を連結し(キャリアアグリゲーション)、ひとつの LTE の周波数帯域として運用する技術であるラ イセンス補助アクセス(Licensed Assisted Access, LAA)[99]の実用化が見込まれている. LTE は CSMA/CA のように周囲の無線リソースの仕様状況を検知し送信を控える機能を持たないため、 無線 LAN はリソースを奪われてしまい動作に影響を及ぼすことが懸念される. このような課題に 対して第5章の研究成果である周波数共用方式は活かされるであろう.

周波数利用効率の向上に寄与し得る技術のひとつに,全二重通信(Full Duplex)[100]が検討されて いる.これは従来, BS-UT 間の UL/DL の通信を時分割複信(Time Division Duplex, TDD)もしくは 周波数分割複信(Frequency Division Duplex, FDD)で行っていたものを同一時間・同一周波数にて実 現可能とするものである.本論文で扱った干渉問題に加え,このような全二重通信を前提とした 際に生じる干渉の克服,またそれを応用したさらなる周波数利用効率の向上が今後研究すべき課 題として考えられる.

図 6-1 5Gの実現に向けた要素技術

以上,現状の動向を踏まえ,それぞれの提案技術の適用領域についての展望及び検討課題を述べた.本論文の研究成果が将来の周波数枯渇時代における無線通信システムの構築に寄与できることを期待したい.

参考文献

- [1] IEEE Std 802.11a, "Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Higher speed physical layer in the 5 GHz band," 1999.
- [2] IEEE 802.11g-2003, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Further Higher Data Rate Extension in the 2.4 GHz Band," 2003.
- [3] 802.16TGe-2005 Standard, "Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands," February 2006.
- [4] 3GPP TS36.300, "Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Universal Terrestrial Radio Access Network (EUTRAN); Overall description".
- [5] 3GPP TR 36.814 V9.0.0, "Further advancements for E-UTRA physical layer aspects," March 2010.
- [6] Report ITU-R M.2243, "Assessment of the global mobile broadband deployments and forecasts for International Mobile Telecommunications," January 2012.
- [7] Cisco White Paper, "Cisco Visual Networking Index: Forecast and Methodology, 2014-2019," 2015.
- [8] http://www.tele.soumu.go.jp/j/adm/freq/search/myuse/index.htm
- [9] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, "An introduction to the multi-user MIMO downlink," IEEE Communications Magazine, vol. 42, no. 10, pp. 60–67, October 2004.
- [10] T. L. Marzetta, "Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas," IEEE Transactions on Wireless Communications, vol.9, no.11, pp.3590-3600, Nov. 2010.
- [11] J. Hoydis, S. ten Brink, M. Debbah, "Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need?," IEEE Journal on Selected Areas in Communications, vol.31, no.2, pp.160-171, February 2013.
- [12] F. Rusek, D. Persson, B. K. Lau, G. E. Larsson, T. L. Marzetta, O. Edfors, F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays." IEEE Signal Processing Magazine, 30(1). p.40-60, 2013.
- [13] E. G. Larsson, O. Edfors, F. Tufvesson, T. L. Marzetta, "Massive MIMO for Next Generation Wireless Systems," IEEE Communications Magazine, vol.52, no.2, pp.186-195, February 2014.
- [14] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, P. Popovski, "Five disruptive technology directions for 5G," IEEE Communications Magazine, vol.52, no.2, pp.74-80, February 2014.
- [15] B. Bangerter, S. Talwar, R. Arefi, K. Stewart, "Networks and devices for the 5G era," IEEE

Communications Magazine, vol.52, no.2, pp.90-96, February 2014.

- [16] S. Suyama, J. Shen, A. Benjebbour, Y. Kishiyama, Y. Okumura, "Super high bit rate radio access technologies for small cells using higher frequency bands," Proc. IEEE MTT-S International Microwave Symposium (IMS) 2014, June 2014.
- [17] K. T. Kim, S. K. Oh, "A Universal Frequency Reuse System in a Mobile Cellular Environment," Proc. VTC 2007-Spring, pp.2855-2859, April 2007.
- [18] W. C. Y. Lee, "Overview of cellular CDMA," IEEE Transactions on Vehicular Technology, vol. 40, no. 2, pp. 291-302, May 1991.
- [19] A. Olivia, C. Bernardos, M. Calderon, T. Melia, and J. Zuniga, "IP flow mobility: smart traffic offload for future wireless networks," IEEE Communications Magazine, vol. 49, no. 10, October 2011.
- [20] R. Ferrus, O. Sallent, R. Agustí, "Interworking in heterogeneous wireless networks: Comprehensive framework and future trends," IEEE Wireless Communications, vol.17, no.2, pp.22-31, April 2010.
- [21] Y. Yamao, H. Suda, N. Umeda, and N. Nakajima, "Radio Access Network Design Concept for the Fourth Generation Mobile Communication System," Proc. VTC'00-Spring, vol.3, pp.2285-2289, May 2000.
- [22] R. Pabst, R, B.H. Walke, D.C Schultz, P. Herhold, H. Yanikomeroglu, S. Mukherjee, H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Aghvami, D. D. Falconer, G.P. Fettweis, "Relay-based deployment concepts for wireless and mobile broadband radio," IEEE Communications Magazine, vol.42, no.9, pp.80-89, September 2004.
- [23] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee and R. Morris, "Capacity of ad hoc wireless networks," Proc. ACM MobiCom '01, 2001.
- [24] Q. Zhao, "Spectrum opportunity and interference constraint in opportunistic spectrum access," Proc. ICASSP2007, vol.3, pp.III-605–III-608, Apr. 2007.
- [25] S. Haykin, "Cognitive radio: brain-empowered wireless communications," IEEE Journal on Selected Areas in Communications, vol.23, no. 2, pp.201-220, Feb. 2005.
- [26] T. Matsumura, K. Ibuka, K. Ishizu, H. Murakami, H. Harada, "Prototype of FDD/TDD dual mode LTE base station and terminal adaptor utilizing TV white-spaces," Proc. CROWNCOM'14, pp.317-322, June 2014.
- [27] J. Mashino, T. Sugiyama, "Subcarrier Suppressed Transmission for OFDMA in Satellite/Terrestrial Integrated Mobile Communication System," Proc. IEEE ICC'11, June 2011.
- [28] S. Shamai and B. Zaidel "Enhancing the cellular downlink capacity via co-processing at the transmitting end," Proc. VTC' 01-Spring, pp. 1745-1749, May 2001.
- [29] L. Daewon, S. Hanbyul, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, K. Sayana, "Coordinated multipoint transmission and reception in LTE-advanced: deployment scenarios and

operational challenges," IEEE Communications Magazine, vol.50, no.2, pp.148-155, February 2012.

- [30] S. A. Ramprashad, H. C. Papadopoulos, A. Benjebbour, Y. Kishiyama, N. Jindal, G. Caire, "Cooperative cellular networks using multi-user MIMO: trade-offs, overheads, and interference control across architectures," IEEE Communications Magazine, vol.49, no.5, pp.70-77, May 2011.
- [31] H. Furukawa, "Hop Count Independent Throughput Realization by a New Wireless Multihop Relay," in Proc. VTC'04-Fall, September 2004.
- [32] H. Furukawa, Y. Higa, R.-G. Cheng and J.-S. Yang, "Proposed text for frame forwarding on 802.11s," IEEE802.11-05/770r0, June 2005.
- [33] G. Jin, H. Furukawa, "Automatic Transmission Period Setting for Intermittent Periodic Transmission in Wireless Backhaul System," IEICE Trans. Commun., Vol.E95-B, No.3, pp.857-865, March 2012.
- [34] Y. Higa and H. Furukawa, "Experimental evaluations of Wireless Multihop Network associated with the Intermittent Periodic Transmit," Proc. IEEE APWCS'06, pp. 234-238, August 2006.
- [35] Y. Higa, H. Furukawa, "One-way relay for wireless multihop networks associated with the intermittent periodic transmit and the spiral mesh routing," Proc. VTC'05-Spring. vol.5, pp.3202-3206 May 2005.
- [36] Y. Tohzaka, Y. Higa and H. Furukawa, "Evaluations of Wireless Multihop Network Incorporating Intermittent Periodic Transmit and Packet Forwarding Path Reservation," Proc. IEEE VTC'07 spring, pp. 212-216, April 2007.
- [37] K. Maruta, Y. Tohzaka, Y. Higa, H. Furukawa, "Bidirectional Traffic Handlings in Wireless Multihop Networks Incorporating Intermittent Periodic Transmit and Packet Forwarding Path Reservation," Proc. APWCS'07, August 2007.
- [38] K. Mitsunaga, K. Maruta, Y. Higa and H. Furukawa, "Application of directional antenna to wireless multihop network enabled by IPT forwarding," Proc. ICSPCS'08, December 2008.
- [39] S. Katti, D. Katabi, W. Hu, and R. Hariharan, "The importance of being opportunistic: Practical network coding for wireless environments," Proc. Allerton Conference on Communication, Control and Computing, September 2005.
- [40] S. Katti, H. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, "XORs in The Air: Practical Wireless Network Coding," Proc. ACM SIGCOMM'06, pp. 243-254, September 2006.
- [41] C. Hausl and P. Dupraz, "Joint network-channel coding for the multipleaccess relay channel," Proc. IEEE SECON'06, vol.3, pp.817-822, September 2006.
- [42] W. W. L. Ho and Y.-C. Liang, "Two-way relaying with multiple antennas using covariance feedback," Proc. IEEE VTC'08-fall, September 2008.
- [43] A. Argyriou, "Network coding in IEEE 802.11 wireless LANs with an enhanced channel access scheme," Proc. IEEE GLOBECOM'08, November 2008.
- [44] D. Umehara, T. Hirano, S. Denno, M. Morikura, and T. Sugiyama, "Analysis of network coding in

slotted ALOHA with two-hop bidirectional traffic," Proc. IEEE ICC'09, June 2009.

- [45] D. Umehara, S. Denno, M. Morikura, T. Sugiyama, "Throughput Analysis of Two-Hop Wireless CSMA Network Coding," Proc. IEEE ICC'10, May 2010.
- [46] Y. Sangenya, D. Umehara, M. Morikura, N. Otsuki, and T. Sugiyama, "Novel length aware packet aggregation and coding scheme for multihop wireless LANs," Proc. ICSPCS'11, December 2011.
- [47] J. Hasegawa, H. Yomo, Y. Kondo, P. Davis, R. Suzuki, S. Obana, and K. Skakibara, "Bidirectional packet aggregation and coding for VoIP transmission in wireless multi-hop networks," Proc. IEEE ICC'09, June 2009.
- [48] N. Otsuki, T. Sugiyama, "Wireless Network Coding Diversity Technique Based on Hybrid AF/DF Relay Method Employing Adaptive Power Control at Relay Node for Bidirectional Two-Hop Wireless Networks," IEICE Trans. on Comm., Vol.E95-B, No.12, pp.3772-3785, December 2012.
- [49] N. Otsuki, T. Sugiyama, "Performance Evaluation of TDMA Based Wireless Network Coding Prototype System," Proc. IEEE VTC'12-Fall, September 2012.
- [50] N. Otsuki, T. Sugiyama, "Implementation of a TDMA Based Wireless Network Coding Prototype System with Ethernet Frame Aggregation," IEICE Trans. on Comm., Vol.E95-B, No.12, pp.3752-3759, September 2012.
- [51] J. Park, Y. Park, S. Hwang, B. J. Jeong, "Low-Complexity GSVD-Based Beamforming and Power Allocation for a Cognitive Radio Network," IEICE Transactions on Communications, Vol.E95-B, No.11, pp. 3536-3544, Nov. 2012.
- [52] B. Guler, A. Yener, "Selective Interference Alignment for MIMO Cognitive Femtocell Networks," IEEE Journal on Selected Areas in Communications, vol.32, no.3, pp.439-450, March 2014.
- [53] 3GPP; Huawei, "Soft frequency reuse scheme for UTRAN LTE," R1-050507, May 2005.
- [54] R. Kudo, Y. Takatori, K. Nishimori, A. Ohta, S. Kubota, "User Selection Method for Block Diagonalization in Multiuser MIMO Systems," Proc. VTC 2006-Spring, Vol.5, pp.2216-2220, May 2006.
- [55] N. Kusashima, I. D. Garcia, K. Sakaguchi, K. Araki, S. Kaneko, Y. Kishi, "Dynamic Fractional Base Station Cooperation Using Shared Distributed Remote Radio Units for Advanced Cellular Networks," IEICE Trans. Commun., vol.94-B, no.12, pp.3259-3271, December 2011.
- [56] P. Marsch, G. Fettweis, "On Downlink Network MIMO under a Constrained Backhaul and Imperfect Channel Knowledge," Proc. GLOBECOM 2009, pp.1-6, November 2009.
- [57] E. Bjornson, R. Zakhour, D. Gesbert, B. Ottersten, "Cooperative Multicell Precoding: Rate Region Characterization and Distributed Strategies With Instantaneous and Statistical CSI," IEEE Transactions on Signal Processing, vol.58, no.8, pp.4298-4310, August 2010
- [58] J. Zhang; C-K. Wen, S. Jin, X. Gao, K-K. Wong, "Large System Analysis of Cooperative Multi-Cell Downlink Transmission via Regularized Channel Inversion with Imperfect CSIT," IEEE

Transactions on Wireless Communications, vol.12, no.10, pp.4801-4813, October 2013.

- [59] J. Zhang, R. Chen, J. G. Andrews, A. Ghosh, and R. W. Heath, "Networked MIMO with clustered linear precoding," IEEE Transactions on Wireless Communications, vol. 8, no. 4, pp. 1910-1921, April 2009.
- [60] J. J van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson, "On channel estimation in OFDM system," Proc. IEEE VTC'95, vol. 2, pp. 815-819, July 1995.
- [61] ITU-R Recommendation, M. 1225, "Guidelines for evaluation of radio transmission technologies for IMT-2000," 1997.
- [62] X. Hou, Z. Zhang, H. Kayama, "Doubly-Selective Channel Estimation for Packet OFDM Systems with Virtual Subcarriers," Proc. VTC 2008-Fall, pp.1-6, September 2008.
- [63] H. Nishimoto, S. Kato, Y. Ogawa, T. Ohgane, T. Nishimura, "Imperfect block diagonalization for multiuser MIMO downlink," Proc. PIMRC 2008. September 2008.
- [64] Q. H. Spencer, A. L. Swindlehurst, M. Haardt, "Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels," IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461-471, 2004. 14.
- [65] T. Tabata, S. Hori, N. Kikuma, T. Wada, M. Fujimoto, H. Asato, "Experimental Study of Adaptive Array Antenna System for ISDB-T Mobile Reception," Proc. ISAP2009, tf3.2, October 2009.
- [66] D. J. Love, R. W. Heath, "Equal gain transmission in multiple-input multiple-output wireless systems," IEEE Transactions on Communications, vol.51, no.7, pp.1102-1110, July 2003.
- [67] H. Prabhu, J. Rodrigues, O. Edfors, F. Rusek, "Approximative matrix inverse computations for large-scale MIMO and applications to linear pre-coding systems," Proc. IEEE WCNC'13, April 2013, pp. 2710–2715.
- [68] Z. Dengkui, L. Boyu, L. Ping, "On the matrix inversion approximation based on neumann series in massive MIMO systems," Proc. IEEE ICC'15, pp.1763-1769, June 2015
- [69] X. Gao, L. Dai, J. Zhang, S. Han, C.-L. I, "Capacity-Approaching Linear Precoding with Low-Complexity for Large-Scale MIMO Systems," Proc. IEEE ICC'15, pp.3180-3185, June 2015.
- [70] 3GPP TR 25.996 V9.0.0, "Spacial channel model for Multiple Input Multiple Output (MIMO) simulations," December 2009.
- [71] R. W. Farebrother, "Linear Least Squares Computations," New York: Marcel Dekker, 1988.
- [72] F. Kaltenberger, D. Gesbert, R. Knopp, M. Kountouris, "Correlation and capacity of measured multi-user MIMO channels," Proc. IEEE PIMRC'08, September 2008.
- [73] N. L. Ratnayake, K. Ziri-Castro, H. Suzuki, "Effects of user distribution on multiuser MIMO-OFDM channel capacity in rural area," Proc. ISCIT'12, pp.411-416, October 2012.
- [74] G. Dahman, J. Flordelis, F. Tufvesson, "Experimental evaluation of the effect of BS antenna inter-element spacing on MU-MIMO separation," Proc. IEEE ICC'15, pp.1685-1690, June 2015.

- [75] G. Xiang, O. Edfors, F. Rusek, F. Tufvesson, "Massive MIMO Performance Evaluation Based on Measured Propagation Data," IEEE Transactions on Wireless Communications, vol.14, no.7, pp.3899-3911, July 2015.
- [76] T. Fujii, "Dynamic Subcarrier Controlled TDMA/OFDM Multi-Hop Wireless Network for Improving End to End Throughput," Proc. WCNC '09. April 2009.
- [77] F. Ono, and K. Sakaguchi, "MIMO Spatial Spectrum Sharing for High Efficiency Mesh Network," IEICE Trans. Commun., Vol. E91-B, No.1, pp.62-69, January 2008.
- [78] T. Luo, M. Motani, V. Srinivasan, "CAM-MAC: A Cooperative Asynchronous Multi-Channel MAC Protocol for Ad Hoc Networks," Proc. BROADNETS '06. October 2006.
- [79] H. Zhai, J. Wang, Y. Fang, "DUCHA: A New Dual-Channel MAC Protocol for Multihop Ad Hoc Networks," IEEE Transactions on Wireless Communications, Vol.5, no.11, pp.3224-3233, November 2006.
- [80] TGn Channel Models, IEEE Std. 802.11-03/940r4, May 2004.
- [81] ITU-R WP3K, "Draft revision of recommendation ITU-R P.1238; Propagation data and prediction models for the planning of indoor radio communication systems and radio local area networks in the frequency range 900MHz to 100GHz," ITU-R Document 3/53, March 1999.
- [82] T. J. Harrold, A. R. Nix, "Intelligent relaying for future personal communication systems," in IEE Colloquium (Ref. No. 2000/003): Capacity and Range Enhancement Techniques for the Third Generation Mobile Communications and Beyond, 2000.
- [83] J. Postel, "RFC 768 User Datagram Protocol", 1980.
- [84] M. Abrams, S. Williams, G. Abdulla, S.Patel, R. Ribler, and E. A. Fox "Multimedia traffic analysis using Chitra95," in Proc. ACM Multimedia '95, pp.267-276, November 1995.
- [85] K. Cho, K. Fukuda, H. Esaki and A. Kato, "Observing Slow Crustal Movement in Residential User Traffic," Proc. ACM CoNEXT '08, Article No. 12, 2008.
- [86] R. Ahlswede, S. Li, and R. Yeung, "Network information flow," IEEE trans. on Information Theory, vol. 46, pp. 1204-1216, July 2000.
- [87] IEEE 802.3-2005, "Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications," IEEE Std 802.3-2005 (Revision of IEEE Std 802.3-2002 including all approved amendments), vol. Section 1, 2005.
- [88] ITU-T recommendation G.711, "Pulse code modulation (PCM) of voice frequencies," Nov. 1988.
- [89] R. T. Compton, Jr., "The Power-Inversion Adaptive Array: Concept and Performance," IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, no.6, pp.803-814, Nov. 1979.
- [90] W. D. White, "Cascade preprocessors for adaptive antennas," IEEE Transactions on Antennas and Propagation, vol.24, no.5, pp.670,684, Sep. 1976.
- [91] Y. Hatanaka, Y. Karasawa, "A Software Antenna Configuration Having Robustness for Strong

Interference Signal Coming Suddenly : By Utilizing the Power Inversion Characteristics in the Second Eigenvector Beam Output," IEICE Transactions on Communications (Japanese Edition), Vol.J85-B, No.7, pp.1086-1094, 2002.

- [92] J. Treichler, B.G. Agee, "A new approach to multipath correction of constant modulus signals," IEEE Trans., Acoust., Speech, Signal Processing (ASSP), vol.31, no.2, pp.459-472, Apr. 1983.
- [93] B. G. Agee, "The least-squares CMA: A new technique for rapid correction of constant modulus signals," Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) '86, vol.11, pp.953-956, Apr. 1986.
- [94] I. Chiba, W. Chujo, M. Fujise, "Beam space constant modulus algorithm adaptive array antennas," IEEE 8th International Conference on Antennas and Propagation (ICAP), vol. 2, pp. 975-978, 1993.
- [95] K. Nishimori, N. Kikuma, N. Inagaki, "The Differential CMA Adaptive Array Antenna Using an Eigen-Beamspace System," IEICE Transactions on Communications, Vol.E78-B, No.11, pp.1480-1488, Nov. 1995.
- [96] T. E. Bogale, L. B. Le, "Beamforming for multiuser massive MIMO systems: Digital versus hybrid analog-digital," Proc. IEEE GLOBECOM'14, pp.4066-4071, December 2014.
- [97] F. Sohrabi, Y. Wei, "Hybrid digital and analog beamforming design for large-scale MIMO systems," Proc. IEEE ICASSP'15, pp.2929-2933, April 2015.
- [98] http://www.ieee802.org/11/Reports/tgay_update.htm
- [99] J. Yubing, S. Chao-Fang, B. Krishnaswamy, R. Sivakumar, "Coexistence of Wi-Fi and LAA-LTE: Experimental evaluation, analysis and insights," Proc. IEEE ICC'15, pp.2325-2331, June 2015.
- [100] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, S. Katti, "Achieving Single Channel, Full Duplex Wireless Communication," Proc. MobiCom'10, September 2010.

付録

CSI 推定誤差存在下における基地局連携時の受信信号表現の導出

第2章において提案した基地局連携 ICI キャンセラ,またグラムシュミット直交化法(GSO)は, CSI 推定誤差に起因して基地局連携送信時に誤差成分を含むことになる.ここでは各基地局連携 送信法適用時の所望信号,干渉信号,及び誤差成分を導出し,誤差成分が SINR 特性にどのよう に影響を与えるかを示す.ここで,希望信号のチャネル利得 h_{ii} .は自身及び ICI に関する CSI 推定 誤差成分 ε_{ij} よりも十分小さい,すなわち $|h_{ii}| >> |\varepsilon_{ij}|$ の関係にあると仮定し, $\tilde{h}_{ii} = h_{ii} + \varepsilon_{ii} \approx h_{ii}$.のように 近似する.この近似を用い,まず基地局連携 ICI キャンセラについて, $\gamma=2$ における受信信号を以 下の式(A.1)のように導出する.

$$\begin{split} y_{i}^{(2)} &= \rho \sum_{j=1}^{M} h_{ij} \rho t_{j}^{(2)} + n_{i} \\ &= \rho h_{ii} t_{i}^{(2)} + \rho \sum_{j \in C_{i}, j \neq i} h_{ij} t_{j}^{(2)} + \rho \sum_{j \in \overline{C}_{i}} h_{ij} t_{j}^{(2)} + n_{i} \\ &= \rho h_{ii} \Biggl(t_{i}^{(0)} - \sum_{\substack{j \in C_{i}, j \neq i}} \widetilde{g}_{ij} t_{j}^{(0)} + \sum_{\substack{j \in C_{i}, j \neq i}} \widetilde{g}_{ij} \sum_{\substack{k \in C_{j}, j \neq i}} \widetilde{g}_{jk} t_{k}^{(0)} \Biggr) \\ &+ \rho \sum_{\substack{j \in C_{i}, j \neq i}} h_{ij} \Biggl(t_{j}^{(0)} - \sum_{\substack{k \in C_{j}, j \neq i}} \widetilde{g}_{jk} t_{k}^{(0)} + \sum_{\substack{k \in C_{j}, j \neq i}} \widetilde{g}_{jk} \sum_{\substack{l \in C_{k}, j \neq i}} \widetilde{g}_{kl} t_{l}^{(0)} \Biggr) \\ &+ \rho \sum_{\substack{j \in C_{i}, j \neq i}} h_{ij} t_{j}^{(2)} + n_{i}. \end{split}$$
$$\begin{split} &\approx \rho h_{ii} \Biggl(t_{l}^{(0)} - \sum_{j \in C_{i}, \atop j \neq i} \frac{h_{ij} + \mathcal{E}_{ij}}{h_{ii}} t_{j}^{(0)} + \sum_{j \in C_{i}, \atop j \neq i} \frac{h_{ij} + \mathcal{E}_{ij}}{h_{ii}} \sum_{\substack{k \in C_{j}, \atop j \neq i}} \widetilde{g}_{jk} t_{k}^{(0)} \Biggr) \\ &+ \rho \sum_{j \in C_{i}, \atop j \neq i} h_{ij} \Biggl(t_{j}^{(0)} - \sum_{\substack{k \in C_{j}, \atop k \neq j}} \widetilde{g}_{jk} t_{k}^{(0)} + \sum_{\substack{k \in C_{j}, \atop k \neq j}} \widetilde{g}_{jk} \sum_{\substack{l \in C_{i}, \atop k \neq j}} \widetilde{g}_{jk} t_{l}^{(0)} \Biggr) \\ &+ \rho \sum_{j \in C_{i}} h_{ij} t_{j}^{(2)} + n_{i} \end{aligned}$$

$$&= \rho h_{ii} t_{i}^{(0)} - \rho \sum_{\substack{j \in C_{i}, \atop j \neq i}} \widetilde{g}_{jk} \sum_{\substack{l \in C_{j}, \atop j \neq i}} \widetilde{g}_{jk} t_{l}^{(0)} \\ &+ \rho \sum_{\substack{j \in C_{i}, \atop j \neq i}} h_{ij} \sum_{\substack{k \in C_{j}, \atop l \neq k}} \widetilde{g}_{jk} \sum_{\substack{l \in C_{k}, \atop l \neq k}} \widetilde{g}_{kl} t_{l}^{(0)} \\ &+ \rho \sum_{\substack{j \in C_{i}, \atop l \neq k}} h_{ij} t_{j}^{(2)} + n_{i} \end{aligned}$$

$$&= \rho h_{ii} t_{i}^{(0)} - \rho \sum_{\substack{j \in C_{i}, \\ l \neq k}} \widetilde{g}_{jk} \sum_{\substack{l \in C_{j}, \\ l \neq k}} \widetilde{g}_{kl} t_{l}^{(0)} \\ &+ \rho \sum_{\substack{j \in C_{i}, \\ l \neq k}} h_{ij} t_{j}^{(2)} + n_{i} \end{aligned}$$

$$&= \rho h_{ii} t_{i}^{(0)} - \rho \sum_{\substack{j \in C_{i}, \\ l \neq k}} \widetilde{g}_{jk} \sum_{\substack{l \in C_{j}, \\ l \neq k}} \widetilde{g}_{kl} t_{l}^{(0)} \\ &+ \rho \sum_{\substack{j \in C_{i}, \\ l \neq k}} h_{ij} t_{j}^{(2)} + n_{i} \end{aligned}$$

$$&(A.1)$$

式(A.1)の第2項はCSI推定誤差に起因して生じる誤差信号であり、これは(y-1)次の送信信号から 生じるものであることがわかる.したがって、y次のICIキャンセラ適用時における受信信号は式 (2.14)のように導出される.

次に,式(2.17)の ICI キャンセラ適用時における SINR を導出する.まず,式(A.1)第2項の誤差 信号電力を求める. $t_j^{(1)} = t_j^{(0)} + \Sigma \tilde{g}_{jk} t_k^{(0)}$ であるから,それぞれの項について期待値演算を行う.

$$E\left[\sum_{j\in C_i} \left| \varepsilon_{ij} \right|^2 \right] = (N_{\rm CSI} - 1)\sigma_e^2, \qquad (A.2)$$

付録

$$E\left[\left|\sum_{\substack{j \in C_{i}, \\ j \neq i}} \varepsilon_{ij} \sum_{\substack{k \in C_{j}, \\ k \neq j}} \widetilde{g}_{jk}\right|^{2}\right] = E\left[\left|\sum_{\substack{j \in C_{i}, \\ k \neq j}} \varepsilon_{ij} \sum_{\substack{k \in C_{j}, \\ k \neq j}} \frac{h_{jk} + \varepsilon_{jk}}{h_{jj} + \varepsilon_{jj}}\right|^{2}\right]$$
$$\approx E\left[\left|\sum_{\substack{j \in C_{i}, \\ j \neq i}} \varepsilon_{ij} \sum_{\substack{k \in C_{j}, \\ k \neq j}} \frac{h_{jk} + \varepsilon_{jk}}{h_{jj}}\right|^{2}\right]$$
$$= \sum_{\substack{j \in C_{i}, \\ j \neq i}} \left|\varepsilon_{ij}\right|^{2} \sum_{\substack{k \in C_{j}, \\ k \neq j}} \frac{\left|h_{jk}\right|^{2} + \left|\varepsilon_{jk}\right|^{2}}{\left|h_{jj}\right|^{2}}$$
$$\approx (N_{\rm CSI} - 1)\sigma_{e}^{2} \sum_{\substack{j \in C_{i}, \\ j \neq i}} \sum_{\substack{k \in C_{j}, \\ k \neq j}} \left|\frac{h_{jk}}{h_{jj}}\right|^{2}.$$
(A.3)

ここで, ε_{ij} に関する高次の累乗項は微小な値となることから無視している.式(A.1)第3項の残留 干渉成分の電力については以下の式(A.4)のように導出される.

$$\begin{split} & E\left[\left|\sum_{\substack{j \in C, \\ j \neq i}} h_{ij} \sum_{\substack{k \in C, \\ k \neq j}} \widetilde{g}_{jk} \sum_{\substack{l \in C, \\ l \neq k}} \widetilde{g}_{jk} \right|^{2}\right] \\ & \approx E\left[\left|\sum_{\substack{j \in C, \\ j \neq i}} h_{ij} \sum_{\substack{k \in C, \\ k \neq j}} \frac{h_{jk} + \varepsilon_{jk}}{h_{jj}} \sum_{\substack{l \in C, \\ l \neq k}} \frac{h_{kl} + \varepsilon_{jk}}{h_{jj}} \left|^{2}\right] \\ & = E\left[\left|\sum_{\substack{j \in C, \\ j \neq i}} \sum_{\substack{k \in C, \\ k \neq j}} \sum_{\substack{l \in C, \\ l \neq k}} \frac{h_{jj}}{h_{jk}} h_{kl} + h_{jk} \varepsilon_{kl} + \varepsilon_{jk} h_{kl} + \varepsilon_{jk} \varepsilon_{kl}\right)\right|^{2}\right] \\ & = \sum\left[\sum_{\substack{j \in C, \\ j \neq i}} \sum_{\substack{k \in C, \\ k \neq j}} \sum_{\substack{l \in C, \\ l \neq k}} \frac{h_{ij}}{h_{jj}} h_{kk}}\right|^{2} \left(h_{jk} h_{kl} + h_{jk} \varepsilon_{kl}\right)^{2} + |\varepsilon_{jk} h_{kl}|^{2} + |\varepsilon_{jk} \varepsilon_{kl}|^{2}\right) \\ & = \sum_{\substack{j \in C, \\ j \neq i}} \sum_{\substack{k \in C, \\ k \neq j}} \sum_{\substack{l \in C, \\ l \neq k}} \left|\frac{h_{ij}}{h_{jj}} h_{kk}}\right|^{2} \left(h_{jk} h_{kl}\right)^{2} + (N_{CSI} - 1)^{2} \sigma_{\varepsilon}^{2} \left(h_{jk}\right)^{2} + |h_{kl}|^{2}\right) \right) \\ & = \sum_{\substack{j \in C, \\ j \neq i}} \sum_{\substack{k \in C, \\ k \neq j}} \sum_{\substack{l \in C, \\ l \neq k}} \left|\frac{h_{ij}}{h_{ij}} \frac{h_{jk} h_{kl}}{h_{kl}}\right|^{2} \\ & + (N_{CSI} - 1)^{2} \sigma_{\varepsilon}^{2} \sum_{\substack{j \in C, \\ l \neq k}} \sum_{\substack{l \in C, \\ l \neq k}} \left|\frac{h_{ij}}{h_{jk}} \frac{h_{jk}}{h_{kl}}\right|^{2} \\ & + (N_{CSI} - 1)^{2} \sigma_{\varepsilon}^{2} \sum_{\substack{l \in C, \\ l \neq k}} \left|\frac{h_{ij}}{h_{jk}} \frac{h_{kl}}{h_{kl}}\right|^{2} \\ & + (N_{CSI} - 1)^{2} \sigma_{\varepsilon}^{2} \sum_{\substack{l \in C, \\ l \neq k}} \sum_{\substack{$$

以上導出したそれぞれの値より,式(2.17)の SINR は導出される.また,式(A.3)及び(A.4)に示すように,誤差信号成分は yの増加とともに累積的に増大していくことがわかる.

次に GSO 適用時の受信信号を導出する.GSO による送信ウェイトを $W_{GSO} = \{ u_1, u_2, ..., u_{Nc} \} \in \mathbb{C}^{Nc \times Nc}$ とすると、その各要素 u_{ij} は CSI 推定誤差に起因した誤差成分

$$\widetilde{u}_{ij} = u_{ij} + \varepsilon'_{ij}, \qquad (A.5)$$

を含むものとする.これを考慮すると、第 iUT の受信信号は式(A.6)ように表せる.

$$y_{i} = \sum_{k=1}^{N_{c}} \sum_{j=1}^{N_{c}} h_{ij} \widetilde{u}_{jk} \rho t_{k} + n_{ij}$$

$$= \rho \sum_{k \in C} \left\{ \sum_{j \in C_{i}} h_{ij} (u_{jk} + \varepsilon'_{jk}) + \sum_{j \in \overline{C}_{i}} h_{ij} u_{jk} \right\} t_{k} + n_{ij}$$

$$= \rho \sum_{j \in C_{i}} h_{ij} u_{ji} t_{i} + \rho \sum_{k \in C} \sum_{j \in C_{i}} h_{ij} u_{jk} t_{k} + \rho \sum_{k \in C} \sum_{j \in C_{i}} h_{ij} \varepsilon'_{jk} t_{k}$$

$$+ \rho \sum_{k \in C} \sum_{j \in \overline{C}_{i}} h_{ij} u_{jk} t_{k} + n_{ij}$$

$$= \rho \sum_{j \in C_{i}} h_{ij} u_{ji} t_{i} + \rho \sum_{k \in C} \sum_{j \in C_{i}} h_{ij} \varepsilon'_{jk} t_{k} + \rho \sum_{k \in C} \sum_{j \in C_{i}} h_{ij} u_{jk} t_{k} + n_{ij}.$$
(A.6)

式(A.6)の第1項は所望信号,第2項は誤差成分,そして第3項は連携対象外のBSからのICIである.上式第3項において,連携対象外のウェイト u_{ij} ($i\in\bar{C}_i$) に対する誤差成分はICIに含まれるものと見做す.ここで,ウェイトの誤差成分もCSI 推定誤差と同様に複素ガウス分布に従うものと仮定し,その分散を $E[|\epsilon'_{ij}|^2]\approx\sigma'_e^2$ とすると,式(A.6)各項の二乗平均値より式(2.18)のSINR は導出される.

略語一覧

AWGN	Additive White Gaussian Noise
BAA	Blind Adaptive Array
BER	Bit Error Rate
Bi-IPT	Bi-directional Intermittent Periodic Transmit
BS	Base Station
BSCMA	Beam Space Constant Modulus Algorithm
CCDF	Complementary Cumulative Distribution Functions
CDF	Cumulative Distribution Function
CDMA	Code Division Multiple Access
СМА	Constant Modulus Algorithm
CoMP	Coordinated Multi-Point Transmission/Reception
CS/CB	Coordinated Scheduling / Coordinated Beamforming
CSMA/CA	Carrier Sense Multiple Access with Collision Avoidance
CSI	Channel State Information
CTS	Clear To Send
DL	Downlink
DPS	Dynamic Point Selection
EBAA	Eigenvector Beamspace Adaptive Array
EGT	Equal Gain Transmission
E-BSCMA	Eigenvector Beam Space Constant Modulus Algorithm
FA	Frame Aggregation

FDD	Frequency Division Duplex
FEC	Forward Error Correction
FFR	Fractional Frequency Reuse
GSM	Gauss-Seidel Method
GSO	Gram-Schmidt Orthogonalization
GPS	Global Positioning System
HetNet	Heterogeneous Network
ICI	Inter-Cell Interference
ICIC	Inter-Cell Interference Coordination
IHI	Inter-Hop Interference
IPT	Intermittent Periodic Transmit
ISysI	Inter-System Interference
IUI	Inter-User Interference
JP	Joint Processing
LAN	Local Area Network
LDPC	Low Density Parity Check
LAA	Licensed Assisted Access
LTE	Long Term Evolution
MAC	Media Access Control
MIMO	Multiple-Input Multiple-Output
MRC	Maximal Ratio Combining
MRT	Maximal Ratio Transmission
MSE	Mean Square Error,
MU-MIMO	Multiuser Multiple-Input Multiple-Output
M2M	Machine to Machine
OFDM	Orthogonal Frequency Division Multiplexing
PAPR	Peak to Average Power Ratio

PER	Packet Error Rate
PI	Power Inversion
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Reuse Factor, Radio Frequency
RR-IPT	Round Robin Intermittent Periodic Transmit
RTS	Request To Send
SER	Symbol Error Rate
SIR	Signal to Interference power Ratio
SINR	Signal to Interference plus Noise power Ratio
SHF	Super High Frequency
SNR	Signal to Noise power Ratio
STPA	Subcarrier Transmission Power Assignment
TDD	Time Division Duplex
TDMA	Time Division Multiple Access
UHF	Ultra High Frequency
UL	Uplink
UT	User Terminal
WBS	Wireless Backhaul Systems
Wi-Fi	Wireless Fidelity
WiMAX	Worldwide Interoperability for Microwave Access
WMR	Wireless Multihop Relay
WNC	Wireless Network Cording
XOR	eXclusive OR
ZF	Zero Forcing
3GPP	Third Generation Partnership Project
5G	Fifth Generation Mobile Communications Systems

記号一覧

Γ	周波数利用効率
t	送信信号
Т	送信信号ベクトル
у	受信信号
Y	受信信号ベクトル
ρ	電力規格化係数
h	チャネル係数
h	チャネルベクトル
Н	チャネル行列
W	ウェイト
п	雑音
Ν	雑音ベクトル
σ_n^2	雑音電力
ε	チャネル推定誤差
Ε	誤差成分行列
σ_e^2	誤差電力
X	アレー入力ベクトル
\mathbf{R}_{xx}	自己相関行列
С	拘束ベクトル
λ	固有值
Λ	固有値行列

V	固有ベクトル
V	固有ベクトル行列
Nc	セル数
No	連携セル数
N _{CSI}	取得 CSI 数
Nt	基地局アンテナ数
Nr	ユーザ端末アンテナ数
Ns	シンボル数
Nu	ユーザ端末数
$N_{ m N}$	コアノードの隣接中継ノード数
N _{FRS}	周波数リユース間隔
$N_{ m FA}$	FA パケット数
Nw	到来波数
N _{SC}	サブキャリア数
N_{h_sc}	高レベルサブキャリア数
С	連携セルの集合
\bar{C}	非連携セルの集合
γ	干渉キャンセラ繰り返し次数
r _{cell}	セル半径
<i>r</i> _{inner}	セル中心領域の半径
A _{edge}	セルエッジ領域の面積
A _{inner}	セル中心領域の面積
T _{edge}	セルエッジ領域に割り当てられるタイムスロット長
T _{inner}	セル中心領域に割り当てられるタイムスロット長
T_{TX}	パケット送信時間
T_{IPT}	パケット送信間隔
$T_{ m RR}$	ラウンドロビン周期

T_{FRS}	所要送信周期
$T_{ m FA}$	FA タイムアウト値
$T_{ m WNC}$	WNC タイムアウト値
L	Ethernet フレームのペイロード長
θ	受信信号の到来方向
m	CMA 繰り返し数
G	高/低レベルサブキャリア電力比
F	高/低レベルサブキャリア数比
В	チャネル帯域幅
(•)*	複素共役
$(\cdot)^{-1}$	逆行列
$(\cdot)^T$	転置
$(\cdot)^H$	複素共役転置
•	絶対値
•	ノルム
E(•)	期待值,確率的平均
[•]	天井関数

謝辞

本論文は,著者が2014年より九州大学大学院システム情報科学府情報知能工学専攻博士後期課程在学中に,また2008年よりNTTアクセスサービスシステム研究所において行った研究成果をまとめたものです.本論文を作成するにあたり,大変多くの方々に支えていただきました.

研究室に配属されて以来,研究についてご指導いただいたことはもちろん,博士後期課程への 進学を快く受け入れていただくとともに,本論文を作成するにあたって多くのご指導を賜りまし た九州大学 システム情報科学研究院 情報知能工学部門 教授 古川 浩 先生に深く感謝申し上げ ます.論文説明会等を通して貴重なご意見を頂いた,九州大学 情報基盤研究開発センター 先端 ネットワーク研究部門 教授 岡村 耕二 先生,九州大学 システム情報科学研究院 情報知能工学 部門 准教授 藤崎 清孝 先生,九州大学 システム情報科学研究院 情報学部門 准教授 實松 豊 先生に深く感謝いたします.貴重なご意見を頂くとともに筆者が社会人となってからも度々激励 のお言葉を頂きました九州大学 日本エジプト科学技術連携センター 教育連携部門 准教授 牟田 修 先生に深く感謝いたします.

筆者が入社以来,研究についてご指導いただくとともに博士号取得に向けた活動を温かく応援 していただいた日本電信電話株式会社 NTT アクセスサービスシステム研究所 無線エントランス プロジェクト プロジェクトマネージャー 中津川 征士 氏,そして同プロジェクト 基幹方式グル ープ グループリーダー 飯塚 正孝 氏に深く感謝いたします.様々な研究の機会を与えていただ き,多くのご指導を頂くとともに研究者,技術者としての視野を広げていただいた 現 工学院大 学 工学部 情報通信工学科 教授 杉山 隆利 氏に深く感謝申し上げます.入社以来,研究者とし ての考え方,進め方について日々熱心にご指導いただいた NTT アクセスサービスシステム研究所 太田 厚 氏,現 三菱電機 情報技術総合研究所 アンテナ技術部 丸山 貴史 氏に深謝いたします.

研究を遂行するにあたり、ご指導、ご助言を頂くとともにときに相談にも乗っていただいた NTT 未来ねっと研究所 増野 淳 氏,現 NTT ドコモ 無線アクセスネットワーク部 大槻 暢朗 氏,そ して実験等の遂行にあたり多大なご支援をいただいた NTT アクセスサービスシステム研究所 黒 崎 聰 氏,新井 拓人 氏,NTT 未来ねっと研究所 宗 秀哉 氏に厚く御礼申し上げます.

最後に、これまでの筆者の進む道に対し温かく見守り支援してくださった両親、そして博士後 期課程への進学を理解してくれ、応援してくれた妻泉と、日々の心の支え、励みとなってくれた 息子 煌士、娘 玲奈に深い感謝の意を表して謝辞といたします.

発表文献一覧

学術論文

- [1] K. Maruta, A. Ohta, M. Iizuka, T. Sugiyama, "Spectral Efficiency Improvement of Fractional Frequency Reuse by Inter-Cell Interference Cancellation on Cooperative Base Station," IEICE Transactions on Communications, Vol.E95-B, No.6, pp.2164-2168, June 2012. [Letter]
- [2] K. Maruta, J. Mashino, T. Sugiyama, "Blind Interference Suppression Scheme by Eigenvector Beamspace CMA Adaptive Array with Subcarrier Transmission Power Assignment for Spectrum Superposing," IEICE Trans. Commun., Vol.E98-B, No.06, pp.1050-1057, June 2015.
- [3] 丸田,古川, "無線バックホールにおけるラウンドロビン型周期的間欠送信及びマルチチャ ネル中継法," Research Reports on ISEE of Kyushu University, Vol.20, No.2, pp.53-60, July 2015.
- [4] K. Maruta, A. Ohta, M. Iizuka, T. Sugiyama, "Impact of Imperfect Channel State Information on Quasi-Decentralized Cooperative Inter-Cell Interference Cancellation with Fractional Frequency Reuse," IEEJ Transactions on Electronics, Information and Systems, Vol.135, No.10, October 2015.
- [5] K. Maruta, J. Mashino, N. Otsuki, T. Sugiyama, "System Throughput Improvement by Optimizing Timeout for Wireless Network Coding and Frame Aggregation on CSMA/CA Bidirectional Two-Hop Relaying Prototype," IEEJ Transactions on Electrical and Electronic Engineering, Vol.11, No.S1, June 2016.

国際会議論文

- [6] K. Maruta, T. Maruyama, A. Ohta, M. Nakatsugawa, "Inter-Cluster Interference Canceller for Multiuser MIMO Distributed Antenna Systems," Proc. PIMRC'09, September 2009.
- [7] K. Maruta, T. Maruyama, A. Ohta, J. Mashino, M. Nakatsugawa, "Improving Spectral Efficiency of Multiuser-MIMO Distributed Antenna Systems by Inter-Cluster Interference Cancellation," Proc. APMC'10, December 2010.
- [8] K. Maruta, A. Ohta, M. Iizuka, T. Sugiyama, "Iterative Inter-Cluster Interference Cancellation for

Cooperative Base Station Systems," Proc. VTC'12-Spring, May 2012.

- [9] K. Maruta, A. Ohta, M. Iizuka, T. Sugiyama, "Applying FFR to Inter-Cell Interference Cancellation with Quasi-Decentralized Base Station Cooperation," Proc. VTC'14-Spring, May 2014.
- [10] K. Maruta, J. Mashino, T. Sugiyama, "Blind Adaptive Arrays with Subcarrier Transmission Power Assignment for Spectrum Superposing," Proc. APMC'14, November 2014.
- [11] K. Maruta, A. Ohta, S. Kurosaki, T. Arai, M. Iizuka, "A Novel Application of Massive MIMO: Massive Antenna Systems for Wireless Entrance (MAS-WE)," Proc. ICNC'15, February 2015.
- [12] K. Maruta, A. Ohta, S. Kurosaki, T. Arai, M. Iizuka, "Experimental Investigation of Space Division Multiplexing on Massive Antenna Systems," Proc. ICC'15, June 2015.

研究会論文

- [13] 丸田,丸山,太田,増野,中津川,"マルチユーザ MIMO 分散アンテナシステムにおけるクラ スタ間干渉キャンセラを用いた周波数利用効率改善効果,"信学技報,vol. 109, no. 369, RCS2009-231, pp. 139-144, 2010 年1月.
- [14] 丸田,丸山,太田,増野,飯塚, "マルチユーザ MIMO 分散アンテナシステムにおけるクラス タ間干渉キャンセラの特性改善,"信学技報, vol. 110 no. 268, RCS2010-150, pp. 51-56, 2010 年 11 月.
- [15] 丸田,太田,飯塚,杉山,"基地局連携セル間干渉キャンセラによる FFR の周波数利用効率改善効果,"信学技報,vol. 111, no. 289, RCS2011-196, pp. 43-48, 2011 年 11 月.
- [16] 丸田,太田,飯塚,杉山, "FFR を用いた基地局連携セル間干渉キャンセラにおけるチャネル 情報不完全性の影響,"信学技報, vol. 111, no. 451, RCS2011-354, pp. 229-234, 2012 年 3 月.
- [17] 丸田, 増野, 大槻, 杉山, "無線ネットワークコーディング試作装置の屋外伝送実験特性," 信 学技報, vol. 112, no. 351, RCS2012-196, pp.77-82, 2012 年 12 月.
- [18] 丸田,太田,黒崎,新井,飯塚,"大規模アンテナ無線エントランスシステムの提案 ~ 計算 機シミュレーションによる特性評価 ~,"信学技報, vol. 113, no. 8, RCS2013-6, pp. 31-36, 2013年4月.
- [19] 丸田,太田,黒崎,新井,飯塚,"大規模アンテナ無線エントランスシステムの実験的検証
 ~ 超高次空間多重に向けた基本特性評価 ~,"信学技報, vol. 113, no. 93, RCS2013-72, pp. 205-210, 2013 年 6 月.
- [20] 丸田, 増野, 杉山, "サブキャリア送信電力制御を用いたブラインド型アダプティブアレー," 信学技報, vol. 113, no. 301, RCS2013-196, pp. 129-134, 2013 年 11 月.
- [21] 丸田,太田,黒崎,新井,飯塚,"大規模アンテナ無線エントランスシステムの実験的検証
 ~ 実伝搬データを用いたリンクレベル性能評価 ~,"信学技報, vol. 113, no. 386,

発表文献一覧

RCS2013-262, pp. 41-46, 2014 年 1 月.

- [22] 丸田, 増野, 中戸, 杉山, "サブキャリア送信電力制御を用いた固有ベクトルビームスペース CMA アダプティブアレーによるブラインド干渉抑圧方式," 信学技報, vol. 113, no. 456, RCS2013-343, pp. 223-228, 2014 年 3 月.
- [23] 丸田, 増野, 大槻, 杉山, "CSMA/CA 無線ネットワークコーディング試作装置のタイムアウト最適化による伝送特性改善,"信学技報, vol. 114, no. 8, RCS2014-13, pp. 67-72, 2014 年 4 月.
- [24] 丸田,太田,新井,黒崎,岩國,飯塚,"平行四辺形アレーを用いた大規模アンテナ無線エントランスシステム(MAS-WE)の実験的検証 ~ 超高次空間多重時の特性評価 ~,"信学技報,vol. 114, no. 86, RCS2014-80, pp. 281-286, 2014 年 6 月.
- [25] 丸田,太田,白戸,黒崎,新井,岩國,飯塚,"大規模アンテナ無線エントランスシステムにおける常時ビーム形成型空間分割多元接続方式及び周波数バックオフ制御,"信学技報,vol. 115, no. 2, RCS2015-16, pp. 83-88, 2015 年 4 月.
- [26] 丸田,太田,白戸,黒崎,新井,岩國,飯塚, "マルチセル Massive MIMO システムにおける MMSE-CMA アダプティブアレーを用いたアップリンク干渉除去,"信学技報, vol. 115, no. 181, RCS2015-154, pp. 129-134, 2015 年 8 月.
- [27] 丸田,古川,"無線バックホールにおけるラウンドロビン型周期的間欠送信を用いた効率的 マルチチャネル中継法の検討,"信学技報, vol. 115, no. 206, CQ2015-67, pp. 161-166, 2015 年 9 月.
- [28] 丸田, 岩國, 太田, 白戸, 新井, 飯塚, "第1固有モード伝送を積極活用する高周波数帯マルチ ユーザ Massive MIMOの検討,"信学技報, vol. 115, no. 288, RCS2015-205, pp. 91-96, 2015年11 月.

大会論文

- [29] 丸田, 丸山, 太田, 中津川, "マルチユーザ MIMO 分散アンテナシステムにおけるクラスタ間 干渉キャンセラに関する検討," 2009 年電子情報通信学会総合大会講, B-5-144.
- [30] 丸田,丸山,太田,中津川,"マルチユーザ MIMO 分散アンテナシステムにおけるクラスタ間 干渉キャンセラを用いた周波数リユース最適化," 2009 年電子情報通信学会ソサイエティ大 会, B-5-140.
- [31] 丸田,丸山,太田,増野,中津川,"クラスタ間干渉キャンセラを適用した分散アンテナシス テムのクラスタエッジにおける周波数利用効率改善効果,"2010年電子情報通信学会総合大 会, B-5-139.
- [32] 丸田,丸山,太田,増野,中津川,"マルチユーザ MIMO 基地局連携システムにおける端末局 スケジューリングに関する検討," 2010 年電子情報通信学会ソサイエティ大会, B-5-37.

発表文献一覧

- [33] 丸田,丸山,太田,増野,飯塚,"分散アンテナシステムにおけるダイナミッククラスタリン グとクラスタ間干渉キャンセラの併用による周波数利用効率改善効果,"2011年電子情報通 信学会総合大会, B-5-84.
- [34] 丸田,太田,丸山,増野,飯塚,"基地局連携システムにおけるセル間干渉キャンセラ適用に よるFFRの周波数利用効率改善効果," 2011年電子情報通信学会ソサイエティ大会, B-5-71.
- [35] 丸田,太田,飯塚,杉山,"FFR を用いた基地局連携セル間干渉キャンセラのチャネル推定誤 差環境下における特性評価、"2012 年電子情報通信学会総合大会、B-5-28.
- [36] 丸田,太田,飯塚,杉山,"低精度 CSI ミューティングの基地局連携セル間干渉キャンセラへの適用," 2012 年電子情報通信学会ソサイエティ大会, B-5-58.
- [37] 丸田,太田,黒崎,新井,飯塚,"大規模アンテナ無線エントランスシステムにおけるユーザ 間干渉抑圧法,"2013年電子情報通信学会総合大会,B-5-177.
- [38] 丸田,太田,黒崎,新井,飯塚,"大規模アンテナ無線エントランスシステムにおけるユーザ 間干渉抑圧特性の実験的検証,"2013 年電子情報通信学会ソサイエティ大会, B-5-109.
- [39] 丸田, 増野, 中戸, 杉山, "サブキャリア送信電力制御を用いた固有ベクトルビームスペース CMAアダプティブアレーによるブラインド干渉抑圧の動作領域拡張," 2014年電子情報通信 学会総合大会, B-1-193.
- [40] 丸田,太田,新井,黒崎,岩國,飯塚,"大規模アンテナ無線エントランスシステムにおける 伝搬実験特性評価,"2014年電子情報通信学会ソサイエティ大会, B-5-90.
- [41] 丸田,太田,白戸,黒崎,新井,岩國,飯塚,"大規模アンテナシステムにおける常時ビーム形 成型多元接続の特性評価,"2015年電子情報通信学会総合大会, B-5-109.
- [42] 丸田, 岩國, 太田, 白戸, 新井, 飯塚, "高周波数帯マルチユーザ Massive MIMO における第 1 固有モード伝送のチャネル時変動特性," 2015 年電子情報通信学会ソサイエティ大会, B-5-77.