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Preface

Dispersal is defined as any movement that induces spatial gene flow [1]. Dispersal is central to

population ecology because gene flow can contribute to the genetic makeup of metapopulations. In

particular, limited dispersal, which attenuates population well-mixing, would result in the situation

where localized interactions (including social behaviors, resource competition, and mate competi-

tion) occur among closely related individuals, which is called as population viscosity. Viscosity, in

turn, has profound effects on the evolution of dispersal. For example, inbreeding avoidance [2] and

strong kin competition [3, 4] can drive the evolution of dispersal. In this respect, inclusive fitness

theory has been one of the most successful paradigms for explaining dispersal evolution. Inclusive

fitness theory predicts that seemingly costly social behaviours, including sex ratio [5], altruism

and spite [6, 7] and dispersal [3], can be favored by kin selection in viscous populations. Conse-

quently, personal cost can be partially compensated by indirect benefits from kin, as predicted by

Hamilton’s rule [8, 9]. Thus, social evolution can be driven by and maintained by viscosity.

On the other hand, sociality is faced with severe menaces of parasitism, because parasite trans-

mission occurs locally thereby inhibiting social evolution. As is widely accepted, in the contexts of

host-parasite interactions, dispersal again plays an important role, because the relative level of dis-

persal for each species can have dramatic impacts on host-parasite coevolutionary processes [10].

As patterns of parasite dispersal can be governed by that of host species (simultaneous migration

[11]), understanding the evolutionary causes and consequences for dispersal of host species is of

pivotal importance in population biology. Hence, dispersal and sociality are tightly linked in the

studies of host-parasite interaction.

It is ‘condition-dependent dispersal’ that has recently begun to gather broad attentions from

empirical, experimental, and theoretical researchers. Condition-dependent dispersal refers to the

response in dispersal propensity on any conditions experienced by individuals (sensu lato; for

more broad definitions on conditional dispersal, see [12]). Some experimental and/or empirical

studies demonstrated that host species can respond to own disease-status by modifying disper-
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sal propensity; i.e., disease state-dependent dispersal is reported. In particular, dispersal rate of

sick individuals and that of healthy individuals were different: dispersal rate was biased towards

infected individuals (I-biased dispersal) or towards uninfected individuals (U-biased dispersal).

These differences can generate spatial patterns of distributions for both species. For example,

if dispersal rate is biased towards infected individuals, then parasites can also disperse carried by

their hosts, leading to spread over spaces. On the other hand, if dispersal rate is biased towards

uninfected individuals, then parasites are spatially localized. Hence, explaining the causes and

consequences for disease state-dependent dispersal would add greatly to the understandings of

spatial dynamics of host-parasite interactions. Unfortunately, however, there are few theoretical

studies available that provides predictions on the evolution of dispersal of host species.

In the series of this thesis, I clarify the conditions for disease state-dependent dispersal. Specif-

ically, in Chapter1, I develop a new model of dispersal evolution built on Wright’s islands model

[13] and Hamilton & May’s (1977) seminal model [3], showing the approach to analyze the evolu-

tionary dynamics of disease state-dependent dispersal rates. Also, I show that the genetic structure

of host species is modified by disease state-dependent dispersal. In Chapter2, I extend the previous

model to more general models such that the timing of parasite infections can modify ‘effective’

values of costs of dispersal with subsequences of disease state-dependent dispersal.

In the first and second chapters, however, one the most important features that characterizes

parasites is neglected: transmission. Various modes of transmission are possible, and we would

restrict ourselves to considering horizontal transmission only. Horizontal transmission is fun-

damental to understand parasite evolution, because (1) life-history constraints on virulence and

horizontal transmission are at work so that negative associations between these two traits can de-

velop, and (2) how parasites and infectious diseases spread over space strongly depends on the

propensity of horizontal transmission. Therefore, in Chapter3 I incorporate horizontal transmis-

sion occurring at a local scale and aim to evaluate the effects of horizontal transmission on the

evolution of disease state-dependent dispersal. Consequently, when horizontal transmission oc-

curs after dispersal, there are two equilibria available such that U-biased dispersal and I-biased

dispersal are both stable as an evolutionary outcome. On the other hand, when assuming that hor-

izontal transmission occurs before dispersal, no disease state-dependent dispersal is expected, i.e.,

dispersal rates are equal for infected and uninfected individuals. I can explain these results from

altruism-spite aspects of social evolution theory ([6, 7]).
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Chapter1

Dispersal plays a fundamental role in shaping the ecological processes such as host―parasite in-

teractions, and the understanding of host dispersal tendency leads to that of parasites. Here, we

present the result of our study on how the evolutionarily stable dispersal of a host would depend on

parasite infection, considering kin competition among neighbours. We show that the evolving dis-

persal rate might be higher for susceptible than for infected individuals (S-biased dispersal) or vice

versa (I-biased dispersal). S-biased dispersal is favoured by strong virulence affecting competitive

ability, by high rate of parasite release during dispersal, and by low virulence for infected emi-

grants (i.e. low virulence affecting dispersal ability), whereas I-biased dispersal is favoured in the

opposite situation. We also discuss population structure or between-deme genetic differentiation

of the host measured with Wright’s FST. In I-biased dispersal, between-deme genetic differentia-

tion decreases with the infection rate, while in S-biased dispersal, genetic differentiation increases

with infection rate.

Chapter2

The process of dispersal is central to population biology and evolutionary ecology. Because of

negative impacts on host fitness, parasite infection generates potential costs of dispersal. However,

theoretical predictions that address this issue are lacking. Here, we develop a mathematical model

to demonstrate how the dispersal rate of hosts evolves under the influence of parasites in ecological

scenarios incorporating pre-, during-, and post-dispersal infection/recovery events. We show that

(1) the dispersal tendency is strongly biased towards either infected individuals or susceptible

individuals, (2) the bias is inherently determined by the parasite-mediated relative cost of dispersal,

and (3) the dispersal costs are determined by the autocorrelation of disease states (susceptible and

infected) between pre- and post-dispersal. Our results suggest that parasite virulence in concert

with the timing of infection drive the evolution of disease state-biased dispersal. To understand

the evolutionary processes in spatial host-parasite systems, the parasite-induced costs of dispersal

need to be taken into account.

Chapter3

In viscous populations, horizontal transmission can occur among closely related individuals, which

incurs considerable costs to sociality. Disease-state dependent dispersal, whereby individuals dis-
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perse conditionally on their own disease-state, may solve this: infected individuals can lower

the risk of transmission to siblings if they disperse, but at the same time, uninfected individuals

can escape from such a risk by dispersing. Empirical studies have found that either pattern for

disease-state dependent dispersal is relevant so that dispersal propensity is biased towards infected

individuals or uninfected individuals. No theoretical study is available, however, that investigates

the effect of horizontal transmission among kin on the evolution of dispersal. Here, we develop

kin selection models and aim to show that either pattern of disease-state dispersal can evolve by

natural selection. We found that before-dispersal transmission has no impact, while after-dispersal

transmission has a dramatic impact such that disease-state dependent dispersal exhibits two stable

equilibria, where dispersal biases extremely towards uninfected or infected individuals, indicating

that transmission avoidance can evolve in viscous populations. We discuss the mechanisms that

produce such extreme endpoints of evolution in terms of altruism.
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Chapter 1. 

Parasite infection drives the evolution of state-dependent dispersal of the host. 
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1. Introduction 

Dispersal is defined as any movement of individuals or propagules from the natal or 

breeding area to another area (Greenwood & Harvey 1982; Ronce 2007). It is a 

widespread phenomenon and has broad consequences for the genetic makeup of 

populations. The mode and rate of the dispersal of organisms has been studied 

intensively in both community ecology and evolutionary ecology (Clobert 2001). 

 Mixed or partial dispersal (i.e. dispersal heteromorphism) is commonly observed 

in wild species (Frank 1986), and mathematical models have been developed to predict 

the evolutionary outcome of the dispersal rate. High dispersal might be favoured under 

diverse selective pressures, such as inbreeding depression (Bengtsson 1978; May 1979; 

Motro 1991; Perrin & Mazalov 1999, 2000; Roze & Rousset 2005), local kin 

competition (Hamitlton & May 1977; Motro 1982a, 1982b, 1983; Frank 1986; Taylor 

1988; Gandon 1999; Gandon & Michalakis 1999) and asynchronous temporal 

variability in local fitness and/or spatio-temporal resource heterogeneity (Gadgil 1971; 

van Valen 1971; Levin et al. 1984; Cohen & Levin 1991; McPeek & Holt 1992; Holt & 

McPeek 1996; Travis 2001); however, in other situations, philopatry (i.e. lack of 

dispersal) might be favoured, and these theoretical predictions above were tested 

empirically to be found feasible (reviewed in Ronce 2007). For example, rapid 

evolution of reduced seed dispersal in urban patchy environments has been reported in 

Crepis Sancta (Cheptou et al. 2008). A reduction in dispersal potential in anemochorous 

plants on oceanic islands has evolved over as little as 10 years (Cody & Overton 1996). 

 The level of dispersal determines the level of gene flow across metapopulations, 

and modifies the genetic structure (for example measured with F-statistics; Wright 

1943) of the population; therefore, understanding evolutionary forces acting on 

dispersal-related traits is important in the study of population biology. Dispersal affects 

not only population structure of the focal species but also its interactions with other 

species such as predators and parasites in subdivided populations. In turn, heterospecific 

interactions could have profound effects on the evolution of dispersal (Clobert 2001). 
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 Parasite load is ubiquitous in living organisms (Combes 1998; Morand & Krasnov 

2001), and it may incur a large cost to socially group-forming animals (Alexander 1974). 

Parasites affect various life history traits of their hosts (Thomas et al. 2007; Débarre et 

al. 2011), and host–parasite co-migration among subpopulations influences 

metapopulation dynamics (e.g. May & Southwood 1990). Because hosts undergo 

dispersal carrying their parasites attached, host dispersal tendency is important in 

determining the parasite dispersal, the abundance in local habitats, and the spatial 

distribution of both species (e.g. Galbreath & Hoberg 2012). Theoretical studies of the 

host–parasite coevolutionary process derived many interesting predictions. For 

examples, host dispersal or spatial structure drives the evolution of parasite virulence 

and transmission ability (Gandon et al. 1996; Gandon & Michalakis 2000; Boots & 

Sasaki 1999, 2001; Morgan et al. 2005). The evolution of parasites in a spatially 

structured population is formed by the interplay of genetic and epidemiological 

structures, which are in turn characterized by the feedbacks of ecological dynamics 

(Lion & Boots 2010). Limited parasite dispersal favours weaker virulence because of 

kin selection caused by a high relatedness among parasites infecting the same host 

individual (Wild et al. 2009). If hosts show higher migration rates than that of parasites, 

then hosts might diversify their genes faster than parasites, and parasites might become 

locally maladapted in host–parasite metapopulations (Gandon et al. 1996). Oppliger et 

al. (1999) tested the theoretical prediction that were supported in a lizard species. 

 In these theoretical models, however, host migration rates are often assumed to be 

the same between infected and susceptible individuals (where, by ‘susceptible’, we 

mean ‘uninfected’ henceforth). Because parasites have negative impacts on hosts 

(Lehmann 1993; Fitze et al. 2004), hosts have evolved mechanisms to avoid infection, 

and one example is dispersal (Clobert 2001, pp.169; Folstad et al. 1991; Brown & 

Brown 1992; Chaianunporn & Havestadt 2012); however, only a few empirical studies 

focus on the change in host dispersal tendency caused by parasitism. Particularly, in 

some species, ‘S-biased dispersal’ is reported; i.e. susceptible hosts are more dispersive 
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than those infected with parasites in a great tit Parus major (Heeb et al. 1999), in a 

ciliate Paramecium caudatum (Fellous et al. 2011), and in a money spider Erigone atra 

(Goodacre et al. 2009). In contrast, several studies showed that infected hosts disperse 

more frequently than susceptible hosts (called ‘I-biased dispersal’), in a yellow-bellied 

marmot Marmota flaviventris (van Vulen 1996) and in a cliff swallow Hirundo 

pyrrhonota (Brown & Brown 1992). In a more complex case, the maternal parasite load 

of ticks in a common lizard (Zootoca vivipara) altered offspring natal dispersal 

depending on offspring sexes (Sorci et al. 1994). These dispersal trends might have 

important effects on the community genetic structure, because they could greatly affect 

spatial distribution of hosts and parasites, in terms of not only the number of individuals 

but also allele frequencies. Indeed, several studies have argued that parasite population 

structure is determined by host movement or migration, which is tested and confirmed 

in several nematodes infecting mammals (Blounin et al. 1995), seabird ticks infecting 

several birds (McCoy et al. 2003), trematodes infecting several freshwater hosts 

(Blasco–Costa, et al. 2012), and freshwater pearl mussels larvae parasitizing trout or 

salmon (Karlsson et al. 2013). In contrast, how the host population structure is shaped 

by parasite-affected dispersal is still unknown. 

 Here, we study the evolutionary outcomes of host dispersal that might differ 

conditionally to the state (infected or susceptible), using the direct fitness approach 

(Taylor & Frank 1996). We find that dispersal bias toward susceptible or infected 

individual can evolve by natural selection, which is determined by a single quantity 

mainly characterized by virulence parameters: virulence affecting host’s competitive 

ability favors S-biased dispersal, whereas virulence affecting host’s disperesal ability 

favors S-biased dispersal. We also discuss the genetic structure of the host population in 

the same local population, measured with Wright’s FST (Wright, 1943). FST is shown to 

be strongly affected by several parasitic and demographic factors. 

2. Methods 

We consider a host population that has a structure similar to that studied by Hamilton & 
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May (1977) and other studies (e.g. Frank 1986, Taylor 1988). We consider an asexually 

reproducing host with haploid genetics and discrete non-overlapping generations (i.e. 

Wright-Fisher demography). Following is the life history of the host: 

(1) Start of the generation: the population consists of infinitely many demes, each of 

which supports exactly N adults. That is, N represents the deme size. 

(2) Reproduction: each adult produces a very large number, M, of offspring. 

(3) Infection: in each deme, a fraction R of offspring are infected, but fraction 1–R are 

uninfected, i.e. they remain susceptible.  

(4) State-dependent dispersal: in a resident population, susceptible individuals disperse 

at rate  zS , whereas infected individuals disperse at rate  zI . 

(5) Mortality and release during dispersal: dispersal incurs a cost so that susceptible (or 

infected) individual survives with probability  pS (or pI , respectively). We assume

 pS > pI  with   pI = (1− ε ) pS , which implies that infected individuals suffer a greater 

mortality in the dispersal stage than do susceptible individuals because of selection 

against infected emigrants, ε . Also, during dispersal, a fraction γ  of infected 

individuals who survive the dispersal stage become released from the parasite (the rate 

of parasite maladaptation to the novel environment). 

(6) Mortality event: after dispersal, infected individual dies with rate d (parasite 

virulence affecting competitive ability) before competition, i.e. infected individuals 

show weaker competitive ability than susceptible individuals by factor  (1– d) . 

(7) Competition: individuals compete for N-breeding opportunity to be parents in the 

next generation. 

 We consider the fitness of a rare mutant (focal individual) whose dispersal 

rate,   (xS ,xI ) , are slightly different from those of the resident,   (zS , zI ) . The fitness of 

the focal individual depends on dispersal rates of deme mates (neighbours). The 

neighbours have some chance to be sibs of the focal individual, and are likely to be 

genetically similar to the focal individual compared with individuals randomly sampled 

from the entire population. We define  yS  and  yI  to be dispersal rates averaged over 
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all the other individuals in the same deme (neighbour-mean dispersal rates). 

 The fitness, w, of the focal individual is given as   w = wHOME + wAWAY , where 

  wHOME  is the expected number of adult offspring of the focal individual in the natal 

deme (HOME deme). It is given as follows: 

  
wHOME =

M (1– R)(1– xS )+ MR(1– d)(1– xI )
M{(1– R)(1– yS + pS zS )+ R(1– d)(1– yI + (1– γ ) pI zI )+ Rγ pI zI }  

 (1a) 

The numerator indicates the number of copies of the focal individual, and the 

denominator indicates the total number of individuals in the HOME deme. 

 In a similar manner,   wAWAY  is the expected number of demes occupied by a 

copy of the focal individual in AWAY demes (i.e. non-HOME demes) and is given as 

follows: 

  
wAWAY =

M (1– R) pS xS + MR(1– d)(1– γ ) pI xI + Rγ pI xI

M{(1– R)(1– zS + pS zS )+ R(1– d)(1– zI + (1– γ ) pI zI )+ Rγ pI zI }
.  (1b) 

After some arithmetic, these can be reduced to 

 

  

wHOME =
(1– RE )(1– xS )+ RE(1– xI )

(1– RE )(1– yS + pS zS )+ RE(1– yI + (1+ γ d
1– d

) pI zI )
 

  (2a) 

and 

 

  

wAWAY =
(1– RE ) pS xS + RE pI (1+

γ d
1– d

)zI

(1– RE )(1– zS + pS zS )+ RE(1– zI + (1+ γ d
1– d

) pI zI )
 

,  (2b) 

where RE is ‘effective infection rate’, defined as 
  
RE = (1– d)R

(1– R)+ R(1– d)
= (1– d)R

1– dR
. 

This value indicates the expected number of individuals infected before dispersal 

considering parasite-induced mortality. We can see that   RE  is a monotonically 

increasing function of R, and it increases from 0 to 1, as R increases from 0 to 1, 

because   d <1 . 

 We need to note some assumptions of this model. First, we have assumed that 

infection rate R and virulence d are constant both spatially and temporally. To justify 
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this restrictive assumption, we additionally presume that the infection event (before 

dispersal) occurs independently and identically across space and time, in infinite demes 

and over sufficiently large generations, so that we can regard the infection rate R and d 

as the “expected infection rate” and “expected virulence”. Accordingly, our model gives 

explanation for the host evolution, rather than coevolution. Second, we do not explicitly 

consider horizontal transmission dynamics (Anderson & May 1979), but we can take it 

into account if we presume that the transmission occurs before dispersal; thus we can 

view the infection rate R as the prevalence after horizontal transmission. Finally, we do 

restrict ourselves to consider no population dynamics, although there are some studies 

that work on the evolution of altruistic behavior incorporating demographic factors (e.g. 

Lehmann et al. 2006; Alizon & Taylor 2008). Our assumptions here may, however, 

provide the insights into the aspect of how parasite infection operates on dispersal rates 

of the hosts. 

 

2.1 Relatedness, genetic structure, and evolutionary equilibrium 

 Each individual has a pair of traits,   (xS ,xI ) . In general, let  xi  be the 

phenotype of an individual, and  yi  be the neighbour-mean phenotype.  yi  is 

positively correlated with phenotype of the focal individual  xi . The degree to which 

this is correlated is represented by relatedness among neighbours,   FST
R  (Hamilton 

1964a, 1964b). To clarify this, we adopt the direct fitness approach (Taylor & Frank 

1996). Let gS (or gI) be the breeding value of the trait  xS  (or  xI , respectively). The 

phenotype is the sum of the breeding value and the environmental value,  xi = gi + ei  
and hence,  dxi / dgi = 1 (for   i = S , I ). On the other hand neighbour-mean phenotype, 

 yi , is less strongly correlated with the breeding value of the focal individual  gi . We 

set   dyi / dgi = FST
R ≤1  (for   i = S , I ). Since we consider no pleiotropy or linkage 

disequilibirum, we have 
  
dxi / dg j = dyi / dg j = 0  for  i ≠ j . A similar formalism has 

been adopted by Perrin & Mazalov (1999, 2000) that discusses the evolution of 
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sex-biased dispersal. Throughout, we assume that the selection is weak, i.e., the 

deviation   δ i := xi – zi  is small for   i = S , I . 

 At an interior evolutionary equilibrium, the selection gradients with respect to 

the breeding value should be zero, which implies 
  

dw
dgS

= dw
dgI

= 0  (Taylor & Frank 

1996; Frank 1998). Because the fitness w is a function of the phenotypes of the focal 

individual   (xS ,xI )  and of its neighbours   ( yS , yI ) , we have the following equations: 

  
  

dw
dgS

= ∂w
∂xS

+ FST
R ∂w
∂yS

= 0 ,    �  (3a) 

  
  

dw
dgI

= ∂w
∂xI

+ FST
R ∂w
∂yI

= 0     �  (3b) 

Both derivatives are evaluated at  xi = yi = zi = zi
∗  for   i = S , I . Eq. (3) provides the 

evolutionary isoclines, and are rewritten as follows (Appendix A) : 

    LS : FST
R (1– u*) = (1– pS )(1− u* + v*) ,� � �  � � � � �  (4a) 

 � � � �   LI : FST
R (1– u*) = (1– pI )(1− u* + v*) , � �    � (4b) 

where   u
* = (1– RE )zS

* + REzI
*

  is the expected emigration rate and  

  
v* = (1– RE ) pS zS

* + RE pI 1+ rd
1– d

⎛
⎝⎜

⎞
⎠⎟

zI
*  is the expected immigration rate. The two 

isoclines LS and LI form lines through the state space (the unit square) for   0 ≤ zS
∗ ≤1  

and   0 ≤ zI
* ≤1  (see Section 3). Note that we set the coefficient of relatedness,   FST

R , the 

same for susceptible and infected individuals, because the non-heritable class division 

into susceptible and infected individuals occurs randomly after reproduction. 

 Relatedness is not a given constant, but is determined dynamically by several 

factors, such as dispersal rates, dispersal cost, or breeding opportunity. Taylor (1988) 

discussed the evolutionary outcome of relatedness and dispersal rate at equilibrium, and 

we employed this method of analysis. As derived in Appendix B, the stationary value of 

  FST
R  is 

  
  
FST

R = 1
N – (N –1)(1– m)2 ,    �  (5a) 

where m is the backward migration rate (Vuilleumier et al. 2010), which is defined as 
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m = v*

1– u* + v* .       (5b) 

Here we discuss the evolution of dispersal rate that is affected by relatedness   FST
R , and 

the relatedness   FST
R , in turn, is determined by demographic parameters, including 

dispersal rates. 

 To study population genetic structure, we calculate Wright’s FST (see 

Appendix C). FST measures spatial differentiation of alleles, i.e. the extent to which 

neutral markers within a deme are more alike than genes sampled from different demes. 

In the infinite islands model (Wright 1943; Rousset 2004), FST is written as 

� � � �  
  
FST = (1– m)2

N – (N –1)(1– m)2 = FST
R (1– m)2 ,    � (6) 

which is derived under a common assumption that those born in the different demes are 

not related to each other in the infinite islands population (e.g. Ohtsuki 2010). 

3. Results 

In Appendix D, we show that the evolutionarily stable conditions (Maynard Smith 

1982), expressed in two equations given by Eq. (4), are not satisfied simultaneously 

within the unit square for   0 < zS <1 and    0 < zI <1 . Hence we search for the 

ES-dispersal rate   (zS
*, zI

*)  on the boundary of the unit square (i.e. either  zS  or  zI  is 0 

or 1). We also investigate the convergence stability of the calculated ESS by depicting 

evolutionary vector field. 

 As illustrated in Figure 1, under some conditions the ES-dispersal rate of 

susceptible individuals is larger than that of infected individuals ( zS
∗ > zI

∗ ), which 

implies that S-biased dispersal should evolve; however, under other conditions, the 

ES-dispersal rate for susceptible individual is smaller than that of the infected ( zS
∗ < zI

∗ ), 

which implies I-biased dispersal. 

 The derivation is explained in Appendix E, and the results are summarized as 

follows: 

 If 
  

γ d
1– d

>
pS – pI

pI

= ε
1– ε

, dispersal rate is higher for infected individuals.    (7a) 
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 If 
  

γ d
1– d

<
pS – pI

pI

= ε
1– ε

, dispersal rate is higher for susceptible individuals.  � (7b) 

The left hand sides of the inequalities are the product of the parasite release rate 

multiplied by the virulence of the parasite expressed in competitive ability. The right 

hand sides are the selection intensity on infected emigrants. Both competitive ability 

and dispersal survival are lower for infected hosts than for susceptible hosts. Both 

expressions are the difference in these quantities divided by the quantity for infected 

hosts. Note that if the equality of (7) is satisfied, then the system is neutrally stable 

because the evolutionary isoclines defined by the two equations (4) are identical. Thus 

we exclude the equality of (7) to consider the generic parameter sets. 

 

3.1. When 
  
γ d

1– d
> ε

1– ε
 holds true. 

Figure 1 illustrates the vector field of evolutionary dynamics. Horizontal (or vertical) 

axis is dispersal rate for susceptible individual,  zS  , (or dispersal rate for infected 

individual, zI , respectively). We can calculate the ESS, on the boundary of the unit 

square for   0 < zS <1  and  0 < zI <1  by analyzing the sign of selection gradients, such 

as 
  

dw
dgS

 and 
  

dw
dgI  

 evaluated at   xi = yi = zi = zi
*
 for   i = S , I  (Figure 1). 

 In Appendix A, we derive the ESS solution and relatedness   FST
R at 

evolutionary equilibrium. Figure 2 illustrates the ES-dispersal rates for susceptible and 

infected individuals, plotted against infection rate R for varying d. The ES-dispersal rate 

for infected individual,  zI , is a non-decreasing function of the reduction in competitive 

ability or parasite-induced mortality due to infection, d. A large d indicates a strong 

incentive for infected individuals to disperse and to acquire the opportunity for parasite 

release. In the island model with a homogeneous population, the dispersal rate should 

evolve to an intermediate value (Taylor 1988; Rousset 2004). In the population of both 

susceptible and infected individuals, their ES-dispersal rate   (zS
*, zI

*)  might be either 

very large or zero, but their average (emigration rate)   u = (1– RE )zS + REzI  takes an 
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intermediate value. 

 The left panels (a) of Figure 3 illustrate how the between-deme genetic 

differentiation FST changes with infection rate R for varying deme size N and virulence 

affecting competitive ability d. This figure shows that genetic differentiation FST is a 

decreasing (or more precisely, non-increasing step-wise) function of infection rate R. 

Virulence, d, also affects the differentiation; when R is small d has no effect on it, 

whereas when R is large, large d greatly reduces FST. This is because a strong virulence 

makes more infected individuals emigrate from their natal deme. The step-wise 

behaviour of FST can be deduced from analytical expression shown in Appendix E. FST 

has three phases: for small R,   dw / dgS = 0 < dw / dgI  (the first phase) holds at   (zS
*, zI

*) , 

so that an intermediate value of   zS
*  is favoured while high   zI

*  is favoured to be unity 

(i.e.   zI
* = 1 ). Intuitively, “  dw / dgI > 0 ” implies “for infected individuals, the more 

dispersive, the better”. As R increases, both   dw / dgS  and   dw / dgI  decrease, resulting 

in   dw / dgS < 0 < dw / dgI  (the second phase) with   (zS
*, zI

*) = (0,1) . In the second phase, 

FST decreases with R, because the obligate dispersal for infected individuals (i.e. 

  zI = 1 ) causes high level of gene flow (as R increases). Moreover, increased R causes 

  dw / dgS < 0 = dw / dgI  (the third phase) and an intermediate value of   zI
*(<1)  is 

favoured while   zS
* = 0 . A large deme size N reduces the critical value(s) of three phases 

of FST. This is because large N reduces   zS
*  for small R so that   zS

*  is rapidly reduced 

to be null, which makes FST enter on a decreasing phase (the second phase). 

3.2. When 
  
γ d

1– d
< ε

1– ε
 holds true. 

By the analysis similar to that in the last section, we can derive the ESS solution of 

dispersal rates for susceptible and infected hosts as explained in Appendix E. In contrast 

to the previous discussion, the ES-dispersal rate is smaller for infected hosts. 

 Figure 2 illustrates how the ES-dispersal rates depend on infection rate R, for 

varying virulence d. Since the dispersal rate of infected individuals stays low, the 

dispersal rate of susceptive hosts tends to increase to keep the average dispersal rate in 

an intermediate value. When d is small, infected individuals have weak incentive for 



 19 

dispersal to stay in the natal deme. The right panels (b) of Figure 3 illustrate the 

between-deme genetic differentiation FST for varying R, d, and N. We can see that FST 

increase with infection rate R, because  zI  is very small. Also, FST increases with 

decreased d and increased N. This is because, when d is small, the level of gene flow 

among demes is high due to high dispersal rates   (zS , zI )  (Figure 2). Large deme size N 

causes the critical value of three phases 

 The dispersal bias is determined by the sign of γd/(1–d)–ε/(1–ε), that in turn is 

determined by the balance between virulence affecting competition d and that affecting 

dispersal success ε . Hence we analyze the dependence of ES-dispersal rate   (zS , zI )  

(and thus the dispersal bias) on relative intensity of virulence   ε / d , with d fixed, in 

Figure 4. We find dispersal bias is strongly affected by infection rate R. Also we can see 

that the dispersal bias changes at a particular value (see Discussion). 

 

4. Discussion 

We studied the evolution of the dispersal rate of a host species, focusing, in particular, 

on the possible difference of the ES-dispersal rate between a host infected by parasites 

and a host that is not infected. 

 

4.1 evolution of dispersal bias 

Our analyses showed that the dispersal rate might evolve to be higher for either the 

infected hosts (I-biased dispersal), or for susceptible hosts (S-biased dispersal), 

depending on the parameters. I-biased dispersal evolves if the virulence in competitive 

ability multiplied by the parasite release rate is greater than the level of selection against 

infected emigtants. In contrast the S-biased dispersal evolves if the opposite inequality 

holds true. A high relatedness   FST
R  within a deme (i.e. among neighbours) favours the 

evolution of high dispersal, as has been pointed out by Frank (1986). As shown in 

Figure 2, when   γ d / (1– d) > ε / (1– ε )  holds true, a higher infection rate R favours a 

low dispersal rate for susceptible individuals and a high dispersal rate for infected 
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individuals. 

 Infected individuals have a strong incentive for dispersal if dispersal provides 

an opportunity that occurs with probability γ for being released from virulent parasites. 

This increase in dispersal for infected individuals leads to philopatry of susceptible 

individuals, because natural selection favours the average rate of dispersal at an 

intermediate value, as studied in Frank (1986), Taylor (1988), Frank (1998), and 

Rousset (2004).  

 The sign of   γ d / (1– d)( )− ε / (1− ε )  is determined by the interplay of ε  

and  d  for  γ > 0 . Figure 4 illustrates the dependence of ES-  (zS , zI )  on the relative 

value of virulence,   ε / d . After some arithmetics, we have   

  

γ d
1– d

> ε
1– ε

⇔ ε < ε0

γ d
1– d

< ε
1– ε

⇔ ε > ε0

 ,                       (8) 

where   ε0 := γ d / (1− d + γ d) , which leads to the threshold value of   ε / d = ε0 / d . As 

  ε / d  increases with d fixed, quantity   γ d / (1− d)− ε / (1− ε )  changes its sign from 

positive to negative at 

� 

ε d = ε 0 d . Hence the ESS dispersal bias changes 

discontinuously (from I-bias to S-bias). Also note that   0 ≤ ε0 = γ d / (1− d + γ d) ≤1, as 

long as   0 < d <1; thus, the ESS dispersal bias always changes at an intermediate value 

of ε/d. This suggests us that the relative intensity of parasite virulence (on dispersal 

stage or on competition stage) may drastically change host’s adaptive dispersal 

tendency. 

 In some sytems, parasites are reported to manipulate host dispersal behaviours 

to facillitate their dispersal (Thomas et al. 2007). Lion et al. (2006) discussed the 

evolution of parasite manipulation of host dispersal, considering differential migration 

patterns for infected and susceptible individual. They incorporate dispersal rates as a 

given parameters to analyze the consequences of the dispersal of infected individuals 

for the spatial dynamical aspects in a host–parasite system at (non-trivial) steady states 
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(see the section 3 of their article: Ecological Dynamics). From our results, dispersal bias 

towards S or I is quantitative and it is determined by parasite virulence (virulence). 

Combining our results and theirs, we provide the possibility of more detailed analysis of 

spatial host–parasite interactions, e.g. clustering of susceptible hosts and global density 

of infected hosts. 

 We leave two additional notes. First, substituting RE = 0 into (E-7) (i.e. 

assuming no infection), we can recover the following result obtained by previous 

studies (e.g. Taylor 1988; Rousset 2004; Massol et al. 2011 for continuous-time model): 

   
  
xS =

FST
R – cS

FST
R – cS

2 ,        (9) 

with 
  
FST

R = rS := 1+ 1+ 4N (N –1)cS
2( ) / (2N ) . Eq. (8) leads to   xS > 0 : this implies that 

in the presence of kin competition, some level of dispersal is always favoured as an 

evolutionary outcome in the infinite islands model. 

 Second, our model is applicable to the prediction of the evolution of dispersal 

in a class-structured population, particularly when there are two classes, say, “weaker” 

and “stronger” (but see Ronce et al. (2000) for age-structured populations, and 

Gyllenberg et al. (2008, 2011), and McNamara & Dall for the evolution of 

unconditional philopatry). In some natural populations, socially weaker individuals tend 

to disperse (‘ideal despotic distribution’, Fretwell (1972)), whereas in some cases 

stronger individuals are reported to disperse more frequently, e.g. in roe deer 

(Wahlström & Liberg (1995)), and in common lizard (Galliard et al. 2005). Also, our 

formulation describes the evolution of state-dependent dispersal, i.e. conditional 

dispersal, which is well studied in an amount of previous studies (e.g. density- and/or 

patch-size- dependence, Travis 1999, Poethke & Hovestadt 2002; age structure, Ronce 

et al. 2000, Bonte & de la Pena 2009; Cotto et al. 2013; local predation risk, Poethke et 

al. 2010; response to prey dynamics under predation, Travis et al. 2013). Our analytical 

results show that dispersal bias might evolve in a class-structured population, and the 

bias is determined by the relative magnitude of costs of dispersal. Note that, however, 
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the ‘costs of dispersal’ may include varieties of biological scenarios (Bonte et al. 2012). 

In our model, the cost of dispersal is characterized by the following scenarios: (I) 

mortality during dispersal, (II) parasites release during dispersal, and (III) 

parasite-induced mortality after dispersal (see eq.(D-3) in Appendix D); our result here 

is somehow general and provides testable predictions on how dispersal cost variation 

affects the evolution of dispersal in spatially structured populations. There is a 

limitation when applying our method to the evolution dispersal depending on more than 

two states (see Appendix F), and overcoming the difficulty requires us to specify 

ecological scenarios in more detail.  

 

4.2 Association of host dispersal with parasite traits 

Boots et al. (2004) have analyzed the evolutionary association between virulence d and 

host dispersal zI, and concluded that host mobility enhances the success of parasite 

transmission. In addition, using moment equations, Lion & Boots (2010) predicted that 

whether parasites are harmful to their hosts is dependent on the balance between the 

level of horizontal transmission and the possibility of newly-infection, and their results 

are supported by an experimental test (Boots & Mealor 2007). In our analyses, the 

condition for I-biased dispersal to evolve is given by Eq. (7a). This indicates that a 

strong parasite virulence affecting competitive ability favours I-biased host dispersal, 

which might lead to a spatial spread of infected individuals or infectious disease 

(Fellous et al. 2011). In this scenario, we expect that parasites evolve to be virulent 

when spatial spread is advantageous for parasites. In contrast, if the virulence appearing 

in the reduction of competitive ability d is very weak, then S-biased dispersal is 

favoured and adaptive zI becomes small by natural selection. In this case, parasites may 

fail to spread out spatially and form spatial clusterings. 

 From our analyses and previous studies (e.g. Boots & Sasaki 1999), we can 

conclude that, when we consider host–parasite coevolution, we need to take into 

account of the following life history components: (I) host migration tendency, xS and xI; 



 23 

(II) parasite migration tendency (or parasite transmission), which is not considered in 

this study; (III) parasite maladaptation or release during dispersal, γ; (IV) parasite 

virulence affecting host competitive ability, d, and (V) the selection against infected 

emigrants, ε. 

 As far as we know, few or no empirical studies exist in which the evolution of 

host dispersal and parasite traits is investigated simultaneously. If the cost of host 

dispersal and parasite traits can be evaluated for the same system, the inequality 

conditions in Eqs. (7a), and (7b) would serve as an important target of the field study. 

Indeed, we can see that our results support the empirical tests of dispersal in host–

parasite system. As discussed above, strong virulence affecting competitive ability, d, 

promotes I-biased dispersal, and this pattern of dispersal bias is observed in 

yellow-bellied marmot (Marmota flaviventris) (van Vuren 1996). Indeed, this marmot is 

infected with several ectoparasites, including mites. Mites are generally considered to 

have strong negative impacts on the hosts, because they are capable of horizontal 

transmission (Eward 1983; Anderson & May 1982; Clayton & Tompkins 1995; Frank 

1996). Hence, our model predicts that the marmot shows I-biased dispersal because of 

the strong virulence by mites. This might also lead to an understanding of the spatial 

spread of infectious disease and host–parasite geographic range (Duncan et al. 2011; 

Fellous et al. 2012). Our model predicts the possibility that if parasites’ spatial spread or 

migration is selected for, then high virulence are favoured because it induces the high 

level of dispersal by their infected host. 

 

4.3 Parasite release γ and selection against emigrants ε 

As stated in section 4.1, dispersal costs may strongly depend on parasite release rate γ, 

which is reported in endangered parasitic species of freshwater pearl mussel (e.g. 

Morales et al. 2006; Akiyama & Iwakuma 2009; Terui et al. 2013). The species have a 

completely host-dependent dispersal during their early life stages: larvae (Glochidia) 

attach to fish gills (Meyers & Millemann, 1977; Schwalb et al., 2011) and they leave 



 24 

from their host during and/or after host dispersal to the upstream (Terui et al. 2013). It 

is also reported that they harm their hosts during their parasitic stages (Thomas et al. 

2013). Indeed, their population structure is strongly affected by their hosts’ migration 

tendency, depending on which host (trout or salmon) to use (Karlsson et al. 2013). In 

the system of freshwater pearl mussels and fish species, host’s dispersal bias toward 

susceptible or infected individuals has not been reported to our knowledge. However, 

our theoretical results suggest that host fish may have evolved I-biased dispersal in their 

life stages, because parasite release during dispersal is obligate. Hence our model may 

be able to predict host’s migration tendency (disperse toward upstream or stay 

downstream), which leads to better understanding of the life history of these endangered 

mussels. 

 Also, we considered selection against emigrants, ε . For socially 

group-forming animals, ‘social barriers to pathogen’ is hypothyzed (Loehle 1995), 

which postulate that philopatric individuals or group members reject immigrants to 

reduce the risk of infection between groups. Our model incorporates such social barrier 

effect, which is here ε, to predict S-biased dispersal. Estimating whether such barriers 

act toward ‘infected’ emigrants or not, and wehether biased dispersal occurs or not is a 

future challenging. 

 

4.4 Host genetic structure shaped by gene flow, and coevolutionary story 

In this study, we showed that host gene flow, and thus the parasite gene flow, can be 

influenced by parasite traits. Hence, we conjecture that the geographic variation of the 

host–parasite coevolutionary process is strongly affected by the host adaptive migration, 

depending on whether it is susceptible or infected. Because dispersal determines gene 

flow across space, S-biased dispersal and I-biased dispersal result in different outcomes 

of spatially structure of host–parasite populations, which is called ‘geographic mosaic 

theory’ (Thompson 2005). Combining our analysis with this theory, we can conclude 

that if parasitic effects, such as infection rate or parasite virulence, vary spatially among 
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populations, then the level of gene flow determined by adaptive host migration can 

drastically modify host–parasite spatial genetic structure. 

 

 

4.5 concluding remarks: problems and future works 

In this manuscript, we have proposed simple assumptions that a population is 

homogeneous with respect to local infection rate, R; virulence, d; selection against 

infected emigrants, ε, and parasite release rate, r, although several papers have reported 

that there is a spatial variation in host–parasite interaction (e.g. Altizer et al. 2000). 

Further consideration of spatially structured population dynamics (e.g. lattice model, 

Boots & Sasaki 2001), genetically explicit dynamics (e.g. gene-for-gene model, Flor 

1971; Gandon et al. 1996, Sasaki 2000; matching-alleles model, Seger 1988), or their 

combination (e.g. Frank 1991) is required. Also, as one of fundamental characteristics 

of host–parasite interactions, horizontal and/or vertical transmission dynamics 

(Anderson & May 1979) needs to be considered. In addition, our results may lead to 

predict the avoidance of infecting relatives, which is of great interest in the theory of 

evolution of dispersal from altruistic aspects in spatially structured populations (Rousset 

2004; Lehmann et al. 2006).  
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Appendix 

For simplicity, we drop the asterisk (*) for symbols at equilibrium throughout the 

Appendix. 

(A) Evolutionary isoclines: LS and LI 

We derive the evolutionary isoclines by differentiation using the direct fitness approach 

(Taylor & Frank 1996). Remember that gS (or gI) is the breeding value of xS (or xI, 

respectively), i.e.  xS = gS + eS  and xI = gI + eI , where e–terms are errors, and that   FST
R  

denotes the slope of neighbour-mean dispersal rate yS (or yI) on the focal breeding value 

gS (or gI, respectively). The total derivative of w with respect to gS evaluated at

 xi = yi = zi  for   i = S , I  yields  

  

dw
dgS

=
dxS

dgS

∂w
∂xS ( zS ,zI )

+
dyS

dgS

∂w
∂yS ( zS ,zI )

 

  

=
(1– RE )FST

R{(1– RE )(1– zS )+ RE(1– zI )}

(1– RE )(1– cS zS )+ RE(1– cI zI ){ }2 +
–(1– RE )cS

(1– RE )(1– cS zS )+ RE(1– cI zI )
 

  
= (1– RE )

FST
R (1– u)

(1– u + v)2 +
–cS

(1– u + v)
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  (A-1) 

Here we introduce the cost of dispersal:   cS = 1– pS  and 
  
cI = 1– pI (1+

γ d
1– d

) , 

hereafter. Setting the derivative 0 and multiplying both sides by the positive term 

  (1– u + v)2 , we have the equation of LS in Eq. (4a). In a similar manner, we have LI in 

Eq. (4b). 

 

(B) Computation for relatedness coefficient 

Previous studies have derived the stationary value of relatedness   FST
R  from a 

recurrence equation (e.g. Taylor 1988; Gandon & Michalakis 1999; Rousset 2004; 

Ohtsuki 2010). We adopt the same method as theirs, in the following steps. First, we 

can write the backward migration rate as  
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m = v

1– u + v
, (B-1) 

where u (and v) is the expected emigration rate (and immigration rate, respectively) 

defined as 

  u = (1– RE )zS + REzI , (B-2) 

  v = (1– RE )(1– cS )zS + RE(1– cI )zI . (B-3) 

 Second, let   FST
R  be the probability that 2 individuals sampled with replacement 

within a focal deme have a common ancestor within the deme (and this definition gives 

the coefficient of relatedness). It is well known that, under the assumption of asexual 

haploidy, this value obeys the following recursion at a particular time t : 

  
FST

R[t +1]= 1
N

+ N –1
N

(1– m)2 F R
ST[t]  (B-4). 

Here, the first term 1/N is the probability that the same individual is sampled twice (and 

this can occur when sampling is done with replacement). The second has three 

components; (N–1)/N is the probability that different 2 individual is sampled,   (1– m)2  

is the probability that 2 different individuals are both philopatric, and   FST
R[t]  is the 

probability that such sampled individual(s) comes or come from the focal deme. Then, 

solving   FST
R[t +1]= FST

R[t] , we have the following stationary value

  
FST

R = 1
N – (N –1)(1– m)2 . (B-5) 

Although in this form m is implicit (which is determined by ES-  (zS , zI ) ), we derive its 

explicit form after calculating   (zS , zI ) . 

 

(C) Computation for FST 

Wright (1943) derived FST under diffusion approximation in the infinite islands model, 

but we can derive the same result (Rousset 2004, Ohtsuki 2010). Let m be the backward 

migration rate defined in Eq. (5b). Then, because   (1− m)2 is the probability that 

randomly chosen 2 individuals without replacement both come from the parents that are 
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native to the deme, the probability of IBD (denoted by Q) follows the recurrence 

equation (Malécot 1970): 

  
Q[t +1]= 1

N
(1– m)2 + N –1

N
(1– m)2Q[t] . (C-1) 

Setting   Q = ′Q = Q* , we have the following equilibrium condition 

  
FST = (1– m)2

N – (N –1)(1– m)2 = (1– m)2 FST
R ,  (C-2) 

since   FST = Q*  in the infinite island model (Rousset 2004). We investigate explicit 

form of FST after calculating that of   FST
R , and thus after calculating ES-  (zS , zI )  in 

Appendix E. 

 

(D) ESS located on the boundary 

The definition of  LS  and  LI  are given as 

  LS : FST
R (1– u) = cS (1– u + v) ,  (D-1) 

  LS : FST
R (1– u) = cI (1– u + v) ,  (D-2) 

where, remember that 

  

cS := 1– pS

cI := 1– pS (1– ε )(1+ γ d
1– d

)
 . (D-3) 

Suppose that Eqs. (D-3) hold simultaneously; then, we subtract both sides to obtain 

  (cS – cI )(1– u + v) = 0 .  (D-4) 

For generic parameters with  cS ≠ cI , we necessitate   1− u + v = 0 . Because   1– u ≥ 0  

and   v ≥ 0  hold true, we conclude   v = 0  and   1− u = 0 . Here, note that   u = 1  implies 

  zS = zI = 1 , since   0 < RE <1 . Substituting   zS = zI = 1  into 

  v = (1– RE )(1– cS )zS + RE(1– cI )zI , we can immediately see that 

  v = (1– RE )(1– cS )+ RE(1– cI ) ≠ 0 ; this is contradictory. Hence, we have proven that LS 

and LI never intersect each other on the rectangle, and ES   (zS , zI )  does not lie in the 

interior of the unit rectangle. 
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(E) The explicit solution of ESS 

To compute ESS, we need some steps. First, we derive backward migration rate m in 

terms of costs and relatedness. Suppose that ES-  (zS , zI )  lies on  LS . Then the equation 

  LS : FST
R (1– u) = cS (1– u + v)  (E-1)     

needs to be satisfied. Dividing both sides by the positive term   (1– u + v)  yields 

  LS : FST
R (1– m) = cS .  (E-2) 

In case  cS > cI (or  cS < cI ), the inequality   dw / dgI ∝ FST
R (1− m)− cI > 0  (or 

  dw / dgI < 0 ) always holds so that high (or low)  zI  is favoured, which causes I-biased 

(or S-biased, respectively) dispersal. In a similar manner, when   (zS , zI )  lies on  LI , we 

have 

  LI : FST
R (1– m) = cI . (E-3) 

Here, suppose that ES-  (zS , zI )  does not lie on neither  LS  or  LI . In case of I-biased 

(or S-biased) dispersal, the inequaities  FST
R (1− m)− cS > 0  and   FST

R (1− m)− cI < 0  (or

  FST
R (1− m)− cS < 0  and   FST(1− m)− cI > 0 , respectively) can hold simultaneously so 

that ES-dispersal rate is   (zS , zI ) = (0,1)  (or   (zS , zI ) = (1,0) , respectively). In such 

cases, we can calculate m to obtain 

  
(zS , zI ) = (1,0)⇒ m =

(1– RE )(1– cS )
1– (1– RE )cS

, (E-4) 

  
(zS , zI ) = (0,1)⇒ m =

RE(1– cI )
1– REcI

. (E-5) 

 Second, we need 2 case analyses depending on the sign of 
  
γ d

1– d
– ε

1– ε
. 

(E-i) When 
  
γ d

1– d
> ε

1– ε
 holds 

We can depict LS and LI on the unit rectangle, and partition it into 3 regions. Here are 

examples as shown in Figure 2 (i). On the left region, the selective pressure acts on both 

zS and zI towards large values (i.e., dw/dgS > 0 and dw/dgI > 0), and vice versa on the 

right region. On the central region between LS and LI, large zI and small zS are favoured: 

dw/dgS < 0 and dw/dgI > 0. Depicting the vector fields and substituting either zI=1 or 
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zS=0 into LS, LI, Eq. (5) and Eq. (6) yields the following explicit forms of (zS, zI) and 

  FST
R : 

  

zS =

rS – cS − RE(rS – cScI )
(1– RE )(rS – cS

2 )
if 0 < RE <

rS – cS

rS − cScI

0 if
rS – cS

rS – cScI

< RE <1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

, (E-6) 

  

zI =
1 if 0 < RE <

rI – cI

rI – cI
2

rI – cI

RE(rI – cI
2 )

if
rI – cI

rI – cI
2 < RE <1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

,  (E-7) 

and 

  

FST
R =

rS if 0 < RE <
rS – cS

rS – cScI

(1– cI RE )2

N (1– cI RE )2 – (N –1)(1– RE )2 if
rS – cS

rS – cScI

< RE <
rI – cI

rI – cI
2

rI if
rI – cI

rI – cI
2 < RE <1

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 ,   (E-8) 

where 

  
rS :=

1+ 1+ 4N (N −1)cS
2

2N
 (E-9) 

and 

  
rI :=

1+ 1+ 4N (N −1)cI
2

2N
. (E-10) 

Note that cI can be negative. Especially in this case, these results are greatly simplified 

as follows: 
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zS =

(rS – cS )− REcS (1– cI )
(1– RE )(rS – cS

2 )
if 0 < RE <

rS – cS

rS – cScI

0 if
rS – cS

rS – cScI

< RE <1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

, (E-11) 

while the ES-dispersal rate for infected is always unity (i.e.   zI ≡ 1 ). Relatedness 

coefficient   FST
R  is given as 

  

FST
R =

rS if 0 < RE <
rS – cS

rS – cScI

(1– cI RE )2

N (1– cI RE )2 – (N –1)(1– RE )2 if
rS – cS

rS – cScI

< RE <1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

. (E-12) 

Thus there are only two phases (compare with the case of three phases; see Figure 3). 

(E-ii) When  
  
γ d

1– d
< ε

1– ε
 holds 

Similar analysis yields the solution: 

  

zS =

1
1– RE

rS – cS

rS – cS
2 if 0 < RE <

cS (1– cS )
rS – cS

2

1 if
cS (1– cS )

rS – cS
2 < RE <1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

, (E-13) 

  

zI =
0 if 0 < RE <

(1– cS )cI

rI – cScI

rI – cI – (1– RE )(rI – cScI )
RE(rI – cI

2 )
if

(1– cS )cI

rI – cScI

< RE <1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

, (E-14) 

and  
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FST
R =

rS if 0 < RE <
cS (1– cS )

rS – cS
2

(1– cS + cS RE )2

N (1– cS + cS RE )2 – (N −1)RE
2 if

cS (1– cS )
rS – cS

2 < RE <
cI (1– cS )
rI – cScI

rI if
cI (1− cS )
rI − cScI

< RE <1

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

. (E-15) 

 We have found a singular strategy on the boundary of phenotypic space for 

  0 ≤ zS ≤1  and   0 ≤ zI ≤1 , and we still need to investigate whether it is really ESS. To 

do so, we calculate the second derivatives of fitness   W (xS ,xI )  with respect to small 

deviations   (δ S ,δ I )  from resident dispersal rates   (zS , zI ) , i.e., we compute the Hessian 

matrix of W with respect to   (δ S ,δ I ) . This computation is somehow tedious; to avoid 

carrying it out directly, we transform mutant (or resident) dispersal rates   (xS ,xI ) (or 

  (zS , zI ) , respectively) to emigration and immigration rate,   (u
• ,v• )  (or   (u,v) , 

respectively), defined in Eq. (B-2, 3). After some arithemtics, we have 

  
W (u• ,v• ) := w(xS ,xI ) = 1− u•

1− FST
Ru• − (1− FST

R )u + v
+ v•

1− u + v
, (E-16) 

where we changed the notation of fitness for   w(xS ,xI ) to   W (u• ,v• )  to distinguish the 

variable dependence. Note that we explicitly write the neighbour-mean strategy (the 

denominator in the first fitness component) as   (1– RE )yS + RE yI = FST
Ru• + (1− FST

R )u  

Additionally, we write the small deviation of the mutant from the resident as 

  

δu := u• – u = (1– RE )δ S + REδ I

δ v := v• – v = (1– RE )(1– cS )δ S + RE(1– cI )δ I

 (E-17) 

with the following Jacobian matrix 

  

J :=
∂(δu ,δ v )
∂(δ S ,δ I )

=
1− RE RE

(1− RE )(1− cS ) RE(1− cI )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (E-18) 

For generic parameters, this determinant is not null; in particular,   det J > 0  implies 
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I-biased dispersal to evolve whereas   det J < 0  implies S-biased dispersal. Then W can 

be rewritten as 

  
W (u +δu ,v +δ v ) =

1– u −δu

1– FST
Rδu – u + v

+
v +δ v

1– u + v
. (E-19) 

On this setup, we have the first partial derivatives of W  

 

  

∂W
∂δu

∂W
∂δ v

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

FST
R (1– u) – (1– u + v)
(1– FST

Rδu – u + v)2

1
1– u + v

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

 (E-20) 

and the second derivatives 

  

∂2W
∂δu

2 =
2FST

R{FST
R (1− u)− (1− u + v)}

(1− FST
Rδu − u + v)3

∂2W
∂δu ∂δ v

= 0

∂2W
∂δ v

2 = 0

 (E-21) 

for any small deviations   (δu ,δ v ) . Thus we obtain the Hessian matrix of W as 

  

H[W (u +δu ,v +δ v )]=
2FST

R{FST
R (1− u)− (1− u + v)}

(1− FST
Rδu − u + v)3 0

0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

. (E-22) 

Obviously,   det H[W (u +δu ,v +δ v )]≡ 0  (i.e.   det H[W ]  is always null irrespectively of 

  (δu ,δ v ) ). By the chain-rule, 

  H[w(zS +δ S , zI +δ I )]= J T H[W (u +δu ,v +δ v )]J  (E-23) 

holds, where the superscript T denotes transpose, and we can see that   det H[w]  is also 

always null, because 

  det H[w]= (det J )2 det H[W ] . (E-24) 

Thus we call this situation as ‘weak ESS’ such that the singular strategy is surely 

convergence stable, but is not a branching point (Lundberg 2013). This means that the 

singular strategy   (zS , zI )  is optimal when invading a resident population. After the 
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occupation of the system by   (zS , zI ) , any rare mutant can invade, but the mutant may 

not increase in its frequency in the population. This ‘neutral stability’ occurs in Fisher’s 

sex ratio game (Maynard Smith 1989) or in the evolution of partial migration (Lundberg 

2013). For the same reason, the approach to analyze disruptive or stabilizing selection in 

structured population, which is developed by Chesson (1984), Metz & Gyllenberg 

(2001) and Ajar (2003), does not work here to investigate evolutionary stability, 

although it provides a powerful method for analyzing disruptive selection in subdivided 

populations. 

 

(F) Evolution of states-dependent dispersal in more than 2 classes. 

We divided the juvenile offspring into 2 classes (i.e. susceptible state and infected state), 

but we are also interested in whether it is possible to apply our methods to the case 

where there are more than 2 infection states. As a result, when there are more than two 

states, we find it is impossible to investigate evolutionary nor convergence stability of 

state-dependent dispersal rates using our present method. To demonstrate this, we 

introduce three-states population as an example. First, let us denote (RS, RI ; 0, d) the 

situation that there are only 2 infection states like in our present model, where ‘0’ 

indicates no virulence on susceptible individual, d indicates virulence on infected 

individual, RI is infection rate, and RS=1–RI ; we used the subscripts S and I to clearly 

distinguish the states. Here, remember that effective infection rate RE is calculated by 

the following scaling 

  
RE =

(1– d)RI

1– dRI

. (F-1) 

Effective infection rate measures the extent to ‘how many individuals are infected after 

parasite-induced mortality event’. Suppose the state-dependent dispersal rate (of the 

focal individual),   (xS ,xI ) . Using this factor RE, we can define the following linear 

transformation 
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u
v

⎛
⎝⎜

⎞
⎠⎟
=

(1– RE ) RE

(1– RE )(1– cS ) RE(1– cI )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

xS

xI

⎛

⎝⎜
⎞

⎠⎟
, (F-2) 

where u is the expected emigration rate and v is the expected immigration rate. 

Second, let us consider the following three states: (RS, RL, RH ; 0, dL, dH) with 

state-dependent dispersal rate   (xS ,xL ,xH ) , where   RS + RL + RH = 1  and 

  0 < dL < dH <1; the subscript L (or H) is used to indicate the state of ‘lightly infected’ 

individual (or ‘heavily infected’ individual, respectively). Note that the virulence on 

L-individual (or H-individual) is dL (or dH, respectively). Suppose that they suffer 

different dispersal costs, cS, cL and cI. The effective value of infection can be written as 

  

RL;E :=
(1− dL )RL

RS + (1− dL )RL + (1− dH )RH

RH ;E :=
(1− dH )RH

RS + (1− dL )RL + (1− dH )RH

RL;E := 1– RL;E – RH ;E

, (F-3) 

analogously to the case of two-states. Then, we can write the fitness function 

  w = wHOME + wAWAY  as 

  
wHOME =

RS ;E (1− xS )+ RL;E (1− xL )+ RH ;E (1− xH )
RS ;E (1− yS + (1− cS )zS )+ RL;E (1− yL + (1− cL )zL )+ RH ;E (1− yH + (1− cH )zH )

 
(F-4)

 and 

  
wAWAY =

RS ;E (1– cS )xS + RL;E (1– cL )xL + RH ;E (1– cH )xH

RS ;E (1– cS zS )+ RL;E (1– cLzL )+ RH ;E (1– cH zH )
, (F-5) 

where y-terms indicate neighbour-meand dispersal rates for each state, and z-terms 

indicate resident dispersal rates for each state. Here we introduce the following linear 

transformation 

  

u•

v•

⎛

⎝
⎜

⎞

⎠
⎟ =

RS ;E RL;E RH ;E

RS ;E (1− cS ) RL;E (1− cL ) RH ;E (1− cH )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

xS

xL

xH

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, (F-6) 
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u0R

v0R

⎛

⎝
⎜

⎞

⎠
⎟ =

RS ;E RL;E RH ;E

RS ;E (1– cS ) RL;E (1– cL ) RH ;E (1– cH )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

yS

yL

yH

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, (F-7) 

and 

  

u
v

⎛

⎝⎜
⎞

⎠⎟
=

RS ;E RL;E RH ;E

RS ;E (1− cS ) RL;E (1− cL ) RH ;E (1− cH )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

zS

zL

zH

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

. (F-8) 

It is apparent that this linear map has rank 2, i.e. the dimension of the image of this 

lenear map is 2. Then fitness w can be rewritten as 

  
w(xS ,xL ,xH ) =W (u• ,v• ) = 1– u•

1– u0R + v
+ v•

1– u + v
, (F-9) 

where we use W instead of w to explicitly distinguish the variable dependence; hence 

we can see that W is characterized by just two variables u and v, and that the 

evolutionary stability of (u, v) corresponds the evolutionary stability of   (xS ,xL ,xH ) . In 

other words, 

  

∂W
∂u•

∂W
∂v•

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
RS ;E RL;E RH ;E

RS ;E (1– cS ) RL;E (1– cL ) RH ;E (1– cH )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∂w
∂xS

∂w
∂xH

∂w
∂xH

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

. (F-10) 

However, even if we solve the evolutionary satbility condition of (u, v) on LHS, we 

have just two equations on (u, v) so that immediately we find it impossible to solve it 

with respect to   (xS ,xL ,xH )  and we find the system neutrally stable. In a general 

n-states cases for   n ≥ 3 , we can conclude that our model is not capable of searching for 

a singular strategy. 

 Our result here is, surely, not interesting mathematically, but it states that, 

when considering 3-(or more) states-dependent dispersal evolution, we need to take into 

account more specific scenario(s); here in our model we assume 2 fitness components 

enjoyed by either philopatric or migrant offspring, and thus we can characterize fitness 
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w just by two migrant variables (u and v). If natural selection acting on dispersal 

emerges not only during dispersal, then we may incorporate more than two states; we 

leave this problem as a future study.  
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Figure 1 

Evolutionary vector fields of dispersal rate (zS, zI). Two lines indicate LS and LI in each of 

(a) and (b). The ESS indicated by a solid circle is located on the boundary. Parameters: 

(a) ε = 0.1, d = 0.6, γ = 0.5, pS = 0.5, and N = 5; γd/(1–d) > ε/(1–ε) holds true. Infection 

rate is set as R=0.2 in (a-1), and R=0.95 in (a-2). (b) ε = 0.5, d = 0.6, γ = 0.1, pS = 0.5, 

and N = 5; γd/(1–d) < ε/(1–ε) holds true. Infection rate is set as R=0.2 in (b-1), and 

R=0.95 in (b-2). 
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Figure 2 

The ES-dispersal rate (zS, zI), plotted against infection rate, R. (a) I-biased dispersal. 

Parameter values: ε = 0.1, γ = 0.5, pS = 0.5, and N = 5, for d = 0.6 (solid) and d = 0.2 

(dashed) ; γd/(1–d) > ε/(1–ε) holds true. (b) S-biased dispersal. Parameter values are: ε = 

0.5, γ = 0.1, pS = 0.5, and N = 5, for d = 0.6 (solid) and d = 0.2 (dashed); γd/(1–d) < 

ε/(1–ε) holds true. The sign of γd/(1–d)–ε/(1–ε) changes from negative to positive value 

as d increases. Large d can facilitate I-biased dispersal, whereas small d can facilitate 

S-biased dispersal. In case of (a) γd/(1–d) > ε/(1–ε), ES-dispersal rate for either 

susceptible or infected individuals is non-increasing with R, whereas, in case of (b) 

γd/(1–d) < ε/(1–ε), we can see the trend which is opposite to that of (a). 

  

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

zS�

zI� zS�

zI�

Infection rate, R.�

(a) (b) 



 50 

 

Figure 3 

Between-deme genetic differentiation, FST. Horizontal axis is for the infection rate, R. 

Parameters are (i) ε = 0.1, γ = 0.5, and pS = 0.5, for N = 5 (a-1) or 20 (a-2), and for d = 

0.6 (solid) or 0.3 (dashed); γd/(1–d) > ε/(1–ε) holds true. In each case, FST is decreased 

with increased R, increased d, and decreased N. In (a-1), “First (Second, or Third)” 

indicates the phase, in which dw/dgS = 0 < dw/dgI (dw/dgS < 0 < dw/dgI , or dw/dgS < 0 

= dw/dgI , respectively) holds. Similar phases can be seen in other panels. (b) ε = 0.5, γ 

= 0.1, and pS = 0.5, for N = 5 (b-1) or 20 (b-2), and for d = 0.6 (solid) and 0.3 (dashed); 

γd/(1–d) < ε/(1–ε) holds true. An oppostite trend is observed compared to (a). 
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Figure 4 

The dependence of ES-dispersal rates on relative virulence, (ε/d) with d fixed. (either d 

= 0.1 or 0.5) Parameter values : p = 0.5, γ = 0.5, and N = 5. The sign of γd/(1–d)–ε/(1–ε) 

changes at an intermediate value ε0/d (= γ/(1–d+dγ)), so that ε/d < ε0/d indicates I-biased 

dispersal, whereas ε/d > ε0/d indicates S-biased dispersal. 
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Chapter 2. 

How parasite-mediated costs drive the evolution of disease state-dependent 

dispersal. 
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1. Introduction 

Dispersal, defined as any movement of individuals and/or propagules causing gene flow 

across space, is central to evolutionary ecology and population biology (Ronce 2007). 

Dispersal affects various ecological aspects, including interspecific interactions such as 

host–parasite systems (Clobert 2001; Chaianunporn and Hovestadt (2012). Knowledge 

of dispersal tendency directly leads to an understanding of species distribution, 

population genetic structure, and biodiversity. This topic has been intensively studied 

both theoretically and empirically. Dispersal not only influences evolutionary and/or 

ecological conditions, but it also affects various selective pressures. For instance, 

conventional wisdom holds that the interplay between the benefits and costs due to kin 

competition, spatio-temporal fluctuations in the environment, and inbreeding avoidance 

drive the evolution of dispersal (Hamilton & May 1977; McPeek & Holt 1992; Gandon 

1999; Gandon & Michalakis 1999). Initiation, travel, and settlement are three processes 

associated with dispersal; therefore, cost payment can take place before, during, and 

after dispersal (Bonte et al. 2012). For example, dispersers are subject to natural 

selection at each stage of initiation (selection against emigration), travel (selection 

during transportation of dispersing units), and settlement (selection against 

immigration). Thus, the selective forces affecting dispersal are closely associated with 

the costs of the entire dispersal process. Iritani & Iwasa (2014) examined the evolution 

of host dispersal when affected by parasites, and showed that parasite infection is a 

strong selective force acting on the dispersal rate; therefore, concluding that the 

dispersal bias towards susceptible individuals (S-biased dispersal) or infected 

individuals (I-biased dispersal) is determined by the differentiated dispersal costs 

between disease states. Their results indicate that the cost variations within 

subpopulations play a critical role in the evolution of dispersal, even in a homogeneous 

population, and that life history events can give rise to cost variations. 

The results from previous empirical studies indicate either S-biased (Heeb et al. 

1999; Goodacre et al. 2009; Fellous et al. 2011) or I-biased dispersal (Brown & Brown 
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1996; van Vuren 1996) in host–parasite systems. In a host–parasite system, parasite life 

history can greatly modify the dispersal costs of their hosts. For example, in the case of 

the blue tit (Cyanistes caeruleus), if the infection (or indirect transmission) of parasites 

occurs during dispersal, then susceptible individuals are subject to a higher cost than 

that by infected individuals. Similarly, if infected hosts have a chance of recovery 

during dispersal (e.g. salmon that is parasitised by the larvae of freshwater 

pearl-mussels), infected individuals are expected to have strong incentives for 

dispersing (Morales et al. 2006; Akiyama & Iwakuma 2009; Terui et al. 2014). These 

biased dispersal tendencies are important for population biology, because if S-biased 

dispersal is observed in a metapopulation, parasites fail to spread over space. 

Consequently, parasites are locally clustered, and host subpopulations may suffer 

endemic infectious diseases. In contrast, if I-biased dispersal is realised, then parasites 

may spread. In this sense, understanding host dispersal bias is central to spatial 

epidemiology. 

Recently, several studies have reported that parasites represent important agents in 

the diversification of host fish species through the selection against migrants, and the 

underlying mechanisms may include diverse scenarios (MacColl & Chapman 2010; 

Karvonen & Seehausen 2012). One scenario, ‘selection against infected emigrants’, 

suggests that parasite-imposed natural selection acts on the initial dispersal of infected 

individuals; and another scenario refers to ‘selection against infected immigrants’. 

These selection mechanisms are well studied in the context of social evolution in that 

parasite and/or disease infection is costly to social organisation or group living 

(Alexander 1974; Altizer et al. 2003, Nunn & Altizer 2006). Hence, host species and 

their respective societies have developed various mechanisms to combat infection (e.g. 

‘social barrier’; Loehle 1995). Therefore, determining how parasites mediate the costs 

of host dispersal involves diverse ecological scenarios. Unfortunately, due to the 

substantial complexity of the environment, direct estimates of the dispersal cost and/or 

dispersal bias between disease states are often very difficult to determine. 
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In this study, we develop mathematical models to resolve the quantitative measures 

for dispersal bias that are associated with parasite infection and host life history, while 

also taking ecological dispersal cost variations (among disease states) that emerge in 

host–parasite systems into account. We incorporate the following factors: local infection 

before dispersal, infection during dispersal, recovery during dispersal, recovery after 

dispersal, post-dispersal parasite-induced additional mortality (virulence), and selection 

against infected immigrants or emigrants (Table 1). We also analyse the evolutionary 

stability (ES; Smith 1982) and convergence stability (CS; Eshel 1983) for host dispersal 

strategies that depend on the disease state (S or I). We assume an island model 

population structure and employ the direct fitness approach in inclusive fitness theory 

(Taylor & Frank 1996; Frank 1998; Rousset 2004). We also provide proof of 

evolutionary stability. Lastly, we show that natural selection favours dispersal bias 

towards susceptible or infected individuals and that the bias is determined by the 

relative cost of dispersal for each disease state. 

 

2. Methods 

Hereafter, by ‘infection’ or ‘get infected’, we mean the transition to a disease state from 

S to I. On the other hand, by ‘recovery’, we mean the transition from I to S. We 

illustrate the entire life history of the host in Figure 1(a), following Bonte et al. (2012). 

  

2.1 Life history: before departure 

Assume that the host population follows Wright–Fisher demography with 

non-overlapping generations, and is composed of a sufficiently large number of 

subpopulations (nd;    nd→+∞ ), each of which fosters an equal number of adults (N). 

Each adult asexually reproduces equal, large numbers of offspring (fecundity as J; 

  J→+∞ ) under haploid genetics, which is followed by the death of all adults. In each 

subpopulation, local parasite infection occurs at random with prevalence (R), among 

offspring, and infection occurs immediately before offspring dispersal. Note that after 
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infection, there are two host states: susceptible individuals (i.e. not infected; 

S-individuals) and infected individuals (i.e. infected; I-individuals). Specifically, after 

the infection stage, a randomly sampled individual (from the entire population) is an 

I-individual with the probability R. State-dependent host dispersal (i.e. dispersal is 

conditional on either the S or I disease states) follows the infection stage; and 

S-individuals disperse with the probability zS, while I-individuals disperse with the 

probability zI. In the ‘selection against infected emigrants’ scenario, we assume a 

fraction (  
εEmig ) of infected emigrants suffer mortality until the departure phase. 

 

2.2 Life history: during dispersal, before immigration 

During travel between subpopulations, each individual succeeds in transfer with the 

probability p . In other words, the remained ratio (1–p) of individual die during the 

travel, which represents ‘selection during transportation’ (e.g. due to predation). In 

addition, we incorporate parasite infection and recovery during dispersal, a discrete time 

transition that is represented by linear recurrence equations. Therefore, during travel, 

S-individuals are infected with parasites at the rate   α
D , and I-individuals recover from 

parasitic infection with the rate   β
D  (where the superscript D denotes ‘during’ 

dispersal; Figure 1 (b)). In the ‘selection against infected immigrants’ scenario, we 

assume I-individuals fail to settle in other subpopulations at the additional rate   
εImmig . 

 

2.3 Life history: after immigration 

We assume that, immediately after dispersal, infection and recovery takes place in each 

subpopulation. Moreover, a fraction,   αA , of S-individuals are infected and a 

fraction,  β
A , of I-individuals recover from infection in each population (where the 

superscript A denotes ‘after’ dispersal; Figure 1). Lastly, local competition occurs, so 

N-individuals within subpopulations are chosen to form the next generation; and at the 

competition stage, I-individuals suffer from parasitic damage (‘virulence’,  δ ), which 
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makes them competitively weaker than S-individuals by the factor    (1−δ) . Thus, 

competition is asymmetric between disease states (see below and Appendix (a) for the 

fitness function). 

 

2.4 Fitness 

Let     x
• := (xS

• ,xI
• )  denote the deviant strategy of a rare mutant (‘focal adult’), whose 

components indicate a state-dependent dispersal rate. In this situation, the offspring of 

the focal adult disperse with rate   xS
•  when susceptible and the rate   xI

•  when infected. 

However, note that the strategy of the offspring is equivalent to that of the parent 

because asexual haploidy is assumed. Therefore, the offspring of each focal adult are 

exact copies the parent; hence, it is not necessary to distinguish the strategy of the adult 

individual and its offspring. Henceforth, we use ‘individual’ to indicate ‘juvenile 

offspring’. Let    x
0R := (xS

0R ,xI
0R )  be the average strategy of adults within the ‘home 

subpopulation’ (i.e. the native subpopulation of the focal adult), and note that we 

calculate the average value   x0R , among N-members, including the focal adult. Let 

    x
1 := (xS

1 ,xI
1 )  be the mean strategy for the entire population. The fitness measure, w, is 

the expected number of adult offspring of the focal adult, and it can be partitioned into 

     w[x• ,x0R ,x1] := wHOME + wAWAY , (1) 

where the first term represents the fitness component in the home subpopulation, and 

the second term represents the sum of the fitness components in other subpopulations 

(‘away’ subpopulation). Appendix (a) is devoted to deriving an explicit form, and we 

summarise the notation in Table 1. 

 

3. Results 

In order to calculate the convergence stability condition, we adopt the direct fitness 

approach, or specifically, the neighbour-modulated approach in kin selection theory 

(Taylor & Frank 1996; Frank 1998; Rousset 2004). We can write the fitness gradient 

  ∇w := (DS , DI )T , as 
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DS =

∂w
∂ξS

=
∂w
∂xS

•
+ FST

R ∂w
∂xS

0R , (2-a) 

and 

 
    
DI =

∂w
∂ξI

=
∂w
∂xI

•
+ FST

R ∂w
∂xI

0R , (2-b) 

where both of the derivatives are evaluated at     x
• = x0R = x1 = z∗ = (zS

∗ , zI
∗) . Here, 

   (ξS ,ξI )  represents a pair of small deviations of the focal adult    (xS
• ,xI

• )  from residents 

  (xS
1 ,xI

1 ) with     (ξS ,ξI ) := (xS
• ,xI

• )−(xS
1 ,xI

1 ) , and   FST
R  is the coefficient of relatedness 

(Hamilton 1964a, b; see Appendix (b) and (c) for the detailed expansion). 

The singular strategy (SS; Metz et al. 1997),   (zS
∗ , zI

∗) , is found by analysing the 

vector-field on the unit square for    0≤ zS
∗ ≤1 and    0≤ zI

∗ ≤1 (Figure 2). Because Eqs. 

(2) do not hold simultaneously (fundamental algebra was used to prove the relationship; 

see Appendix D in Iritani & Iwasa 2014), the SS lies on the boundary of the unit square 

for    0≤ zS
∗ ≤1  and    0≤ zI

∗ ≤1. The analytical form of SS is shown in Appendix (c), 

and its dependence on R is illustrated in Figure 3. We use the Kuhn–Tucker theorem to 

prove that the SS is surely an evolutionarily stable strategy (ESS; Smith 1982; see 

Appendix (d)). 

Our analysis showed that either S-biased dispersal or I-biased dispersal might 

evolve, and we derived a critical quantity (the ‘bias predictor’) to determine the 

dispersal bias (I-bias or S-bias). The bias predictor (Δ), derived in Appendix (b), gives a 

qualitative measure for the evolutionary consequences of host dispersal. Explicitly, this 

bias is determined by the sign of the bias predictor (∆): 

 

     

Δ := βD

GpI /pS

+ (1– βD )(1– εImmig )
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
(1– εEmig )

=: (1−CI )/ p
! "################ $################

– (1–αD )+αD(1– εImmig )GpI /pS( )
=: (1−CS )/ p

! "############# $#############
, (3-a) 

where 

    
GpI /pS :={1−(1– βA )δ} (1–αAδ) > 0  (3-b) 

is the ‘competition asymmetry’ between S- and I-individuals. This accounts for the 
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relative competitive ability of philopatric I-individuals as compared to that of 

philopatric S-individuals, because philopatric S-individuals are subject to virulence with 

the probability   αA , whereas philopatric I-individuals suffer virulence with the 

probability   (1– βA ) . When ∆ is positive, I-biased dispersal is favoured, and when the 

value is negative S-biased dispersal is favoured. The greater this value is, the stronger 

the evolutionary forces that act on I-biased dispersal. The first term in Eq. (3-a) is the 

relative competitive ability of migrant I-individuals compared to that of philopatric 

S-individuals (divided by p), and the second term is that of migrant S-individuals 

compared to that of philopatric S-individuals, (also divided by p). Consequently,  Δ  is 

the difference between the value of dispersal costs, denoted by  CS  and  CI , (for S- 

and I-individuals, respectively) divided by the basic dispersal success p (i.e. 

   Δ= (CS −CI ) p , see Appendix (b)). In Figure 4, we illustrate the dependence of ∆ on 

several parameters. 

Summarising the results, we derived the evolutionary outcome of dispersal bias: 

   

Δ> 0 ⇔ CS > CI ⇔ zS < zI

Δ< 0 ⇔ CS < CI ⇔ zS > zI

. (4) 

Thus, we conclude that populations with a lower cost of dispersal should disperse 

particularly when the costs are affected by ecological scenarios associated with the life 

history of the host, and that dispersal costs are estimated from epidemiological 

dynamics (disease state transition) and from traits of parasites (virulence). 

 

4. Discussion 

Our analysis showed that (1) dispersal bias can evolve depending on the difference in 

the costs of dispersal, and (2) such differentiated costs (represented by ∆ in Eq. 3-a) 

arise through several ecological factors. We can reduce ∆ to a simplified measure as 

needed (see below). In addition, to clarify the dispersal bias by ∆, there is no need to 

directly estimate the ‘pure’ virulence value,  δ . Instead, only the negative impacts (e.g. 

  αAδ , which quantifies the virulence multiplied by the probability of infection after 
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dispersal) need to be estimated. Thus, the bias predictor (∆) provides a target parameter 

for the prediction of dispersal bias, and consequently, the spread of parasites. 

 

4.1 Generality of the bias predictor 

Our results can be generally interpreted in three ways. First, we can recover a classical 

result (Frank 1986; Taylor 1988; Frank 1998; Rousset 2004) by setting   R = 0  and 

   αA =αD = 0  (i.e. assuming no infection): 

 
   
zS
∗ =

rS −CS

rS −CS
2 , (5) 

where  rS  represents relatedness (see Appendix (c)). This means that the effect of 

kin-competition is at play, along with dispersal costs. Second, we can recover our 

previous result on the evolution of host dispersal bias. Setting 

   
αA =αD = βA = εImmig = 0 , and following with some algebra, yields 

   
Δ∝ δ

βD

1−δ
−
εEmig

1−εEmig

, (6) 

where ‘ ∝ ’ represents ‘positively proportional to’, henceforth. This index is equivalent 

to that obtained by Iritani & Iwasa (2014), and note that their term ‘release rate during 

dispersal’,  γ , corresponds to   β
D  in our present model. 

In a third sense, the bias predictor (∆) serves as a good estimator for the prediction 

of dispersal bias between states, so it can be applied depending on the context. For 

example, setting    
εEmig = εImmig = 0 , we can reduce the bias predictor (∆) to 

    
Δ=

(1−GpI /pS )(αDGpI /pS +βD )
GpI /pS

 (7) 

To investigate the dependence of ∆ on  δ , the partial differentiation of ∆, with respect 

to  δ , by chain-rule, yields 
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∂Δ
∂δ

=
∂Δ
∂GpI /pS

⋅
∂GpI /pS

∂δ
=

αD

(1−αAδ)2 +
βD

{1−(1−βA )δ}22

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

>0
! "############# $#############

AutoA , (8) 

where    AutoA :=1−βA−αA  is the autocorrelation of disease state transitions, 

calculated between the two stages: ‘immediately after dispersal’ and ‘just before 

competition’ (for the derivation, see Appendix (e)). Thus, I-biased dispersal can be 

either promoted or inhibited by parasite virulence depending on the sign of  AutoA
, 

since all other factors are positive (Figure 4). Therefore, if I-individuals are more likely 

to be in state-I than S-individuals (because of some ecological scenarios), then strong 

virulence,  δ , favours I-biased dispersal. Most notably, we can find   Δ∝AutoA , and it 

implies that when measuring dispersal bias between disease states, only the 

autocorrelation of disease states before and after dispersal need to be estimated—as 

long as disease state transitions can occur during dispersal (i.e. either   αD  or   β
D  is 

positive). Some may ask why the autocorrelation matters. The dependence of the bias 

predictor (Δ) on the autocorrelation ( AutoA ) can be explained by noting that, from the 

definition of competition asymmetry,   
GpI /pS  in Eq. (3), we have 

    

GpI /pS <1 ⇔ 1−(1−βA )δ<1−αAδ

⇔ 0 < AutoA . (9) 

Therefore,    
GpI /pS <1 implies that infected philopatric individuals that were infected 

after settlement (with competitive ability     p(1−αAδ) ) are competitively stronger than 

those that were infected before the dispersal stage (with competitive ability 

    p{1−(1−βA )δ}); and this gives I-individuals a strong incentive for dispersing (i.e. 

I-biased dispersal is advantageous). Thus, we can conclude that when  AutoA  is 

positive, higher virulence favours I-biased dispersal; and when it is negative, S-biased 

dispersal is favoured. The practical method to estimate the autocorrelation of disease 

states requires individual-level tracking rather than tracking at the population-level. 

The bias predictor (∆) has an outstanding merit that it is independent of prevalence 
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(R). The prevalence in local subpopulations or groups is usually difficult to measure in 

natural populations. Using the bias predictor (∆) allows the prediction of the dispersal 

bias among disease states without directly estimating the local prevalence. However, it 

should be noted that  Δ  may be dependent on prevalence (R) if density-dependent 

horizontal transmission occurs. This is because the ‘transition’ between states 

corresponds to horizontal transmission and recovery processes, which are neglected in 

the present model. This issue is challenging and will be addressed in a future study. 

 

4.2 Ecological scenarios modify dispersal costs 

We have derived the dispersal costs and their differentiation by several factors, and we 

discuss the ecological scenarios that determine ∆. 

 

4.2.1 Transition during dispersal,   αD and  β
D  

Intuitively,   αD  measures the ‘infection risk during dispersal’ for S-individuals, 

whereas   β
D  measures the ‘recovery rate during dispersal’ for I-individuals. Hence, it 

is expected that both factors enhance I-biased dispersal, but this depends on the 

autocorrelation (as discussed in Discussion 4.1). Indeed, infection during (and after) 

dispersal is observed in a bird species (Knowles et al. 2013), and recovery during 

dispersal is also observed in salmon that are infected with the larvae of freshwater 

pearl-mussels (e.g. Morales et al. 2006; Akiyama & Iwakuma 2009; Terui et al. 2013). 

Thus, the bias predictor presented here plays an essential role in understanding the 

distribution of hosts and parasites in these systems.  

Specifically, ‘selection against immigrant pathogens’ is observed, where pathogens 

have lower performance in the novel environments that they encounter after being 

carried via their hosts’ dispersal (e.g. Giraud 2006a, b; Giraud et al. 2006; Le Gac & 

Giraud 2004). If such a mechanism is substantial, then the host species may recover 

from parasites after the dispersal stage (i.e. recovery during dispersal). Our current 

results shed light on Giraud’s (2006a, b) system for the study of host mobility and its 
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effect on parasite local adaptation and diversification. 

We can verify that ∆ increases monotonically with increased   αD and   β
D  when 

  AutoA >  0 (Appendix (b)); and this occurs when the philopatric individuals that are 

infected after dispersal with competitive ability 
    
1−αAδ( ) p  are competitively stronger 

than continuously infected individuals with competitive ability 
    
1−(1−βA )δ( ) p

 
(see 

Discussion 4.1). Thus, dispersal bias is promoted by transitions that occur during 

dispersal. This is because, when   AutoA >  0 , I-individuals have an incentive for 

recovery during dispersal, and the dispersal of S-individuals is disadvantageous because 

they risk infection during dispersal. 

 

4.2.2 Transition after dispersal,   αA and   β
A  

Hosts can exhibit class-transition after dispersal, because of a variety of parasite life 

histories. For example, Knowles et al. (2013) reported that infection occurred after 

dispersal, and potentially during dispersal, in the blue tit (C. caeruleus). In the study, 

they examined the location and timing of infections from two malaria parasites 

(Plasmodium circumflexum and P. relictum), and determined that the infection with P. 

circumflexum occurred after birds settled into breeding territories. On the other hand, 

they demonstrated that the infection with P. relictum occurred during major dispersal 

events, because they found a positive correlation between the dispersal distance and the 

probability of infection with P. relictum. Our present models exclude dispersal distance, 

while they lack the foci on dispersal bias. Thus, our results shed light on the 

epidemiologically important issues of the spread of malarial parasites. 

Also, for the sake of generality, we considered post-dispersal recovery, because it 

can occur when the focal host is not definitive, but intermediate. Therefore, if parasites 

are transmitted to another host species by hitchhiking on an intermediate host species, 

then parasite clearance can occur after dispersal. In this context, however, we need to 

take into account the possibility that the dispersal of I-individuals may be the 
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consequence of parasite manipulation (see Discussion 4.5 below). 

The dependence of ∆ on   αA  and   β
A  is complex due to additional parameters, 

but deserves discussion. Indeed, from the definition of   
GpI /pS  in Eq. (3), we obtain 

    

∂GpI /pS

∂αA > 0  and 
    

∂GpI /pS

∂βA > 0 , (10) 

so that 

    

∂Δ
∂αA =

∂Δ
∂GpI /pS

⋅
∂GpI /pS

∂αA < 0  and 
    

∂Δ
∂βA =

∂Δ
∂GpI /pS

⋅
∂GpI /pS

∂βA < 0 . (11) 

Thus, the sign of ∆ can change from positive to negative as   αA  and   β
A  increase 

(indeed, we can easily solve   Δ= 0  with respect to   αA  or   β
A  to verify whether 

  Δ= 0  occurs at an intermediate value for    0≤α
A ≤1  and    0≤β

A ≤1 , but the 

calculation is tedious due to multiple parameters). 

Horizontal transmission can occur following the dispersal stage in many systems 

(Anderson & May 1979). In the model, the post-dispersal transition event can be 

regarded as a horizontal transmission event, whereby parasites are transferred from one 

host individual to another of the same species and generation when the transmission is 

frequency independent. It is often suggested, however, that host–parasite dynamics are 

heavily influenced by the density and/or frequency of I-individuals (Hochachka & 

Dhondt 2000; Begon et al. 2002; but see Oli et al. 2006 for frequency-independent 

dynamics). We will address this issue in a future study. 

 

4.2.3 Selection against infected emigrants and immigrants,   
εEmig and   

εImmig  

Parasites can harm their hosts at each stage of the hosts’ life history (Barrett et al. 2008). 

Since the cost of dispersal is partially paid before dispersal (Bonte et al. 2012), selection 

against infected emigrants can emerge as a result of early-stage infection and imposed 

parasite damage. Indeed, as reviewed in Zuk & Stoehr (2002), parasites can harm their 

hosts during the developmental stage, which may possibly result in the incomplete 
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development of dispersal-related traits (e.g. wings in insects). 

Selection against infected immigrants can act in the context of the evolution of 

‘social barrier’ mechanisms (Loehle 1995), in which group-living organisms are 

adapted to pathogen and/or parasite transmission. Selection against infected immigrants 

may act in animals with the ability to distinguish between infected and uninfected 

individuals, and between philopatric and migrant individuals. Loehle (1995) proposed 

the hypothesis of social avoidance, in which strange and sick individuals fail to join the 

other group members. This phenomenon is observed in wild populations of guppies 

(avoidance of infected mates; Kennedy et al. 1987) and chimpanzees (avoidance of 

strangers; Goodall 1986). Combinations of such mechanisms can potentially result in 

selection against infected immigrants. 

It is obvious that ∆ decreases as   
εEmig  increases, but the dependence of ∆ on   

εImmig  

is not as apparent. In Figure 4b, we illustrate the dependence of ∆ on   
εImmig . AutoA > 0 

implies that a large   
εImmig  is likely to favour I-biased dispersal (see Discussion 4.1). 

Thus, we can conclude that the autocorrelation (AutoA) plays a key role in determining 

the evolution of biased dispersal. 

 

4.3 ES-dispersal strategy 

As shown in Figure 3, ES-dispersal rate   zS
*  and   zI

*  is either 0 or 1 when R varies. 

This result is similar (or mathematically equivalent) to that of Iritani & Iwasa (2014); 

however, our result is more general (see Discussion 4.1). Because we consider the finite 

capacity of subpopulations, we must also take the intensity of kin competition into 

account. In our result of ES-dispersal strategy (described in Appendix (c)), the dispersal 

rate that evolves is balanced between the kin competition effect (which is represented 

by the relatedness coefficient) and the cost of dispersal (e.g.  CS ). Such a drastic 

dispersal bias can be understood from the kin competition perspective. For example, 
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when the bias predictor ∆ is positive, I-individuals have a strong incentive for 

dispersing. However, from the S-individuals’ perspective, their infected ‘sibs’ will 

emigrate so that the mean dispersal tendency among sibs (i.e. the mean dispersal rate of 

individuals bearing the same gene) can be balanced to enhance their inclusive fitness; 

and this occurs because kin selection favours an intermediate value of dispersal 

(Hamilton & May 1977; Frank 1986; Taylor 1988). As the prevalence (R) increases, the 

mean dispersal rate among sibs increases, so that S-individuals have a lower dispersal 

tendency due to kin selection. 

As already examined, some species express either I-biased dispersal (Brown & 

Brown 1992; van Vuren 1996) or S-biased dispersal (Heeb et al. 1999; Goodacre et al. 

2009; Fellous et al. 2011). Our analysis provides feedback for these systems that can be 

used for further studies of the evolutionary consequences of host migration, and thus, 

parasite spread. 

 

4.4 Future study 

4.4.1 Co-evolutionary dynamics 

Previous studies have argued the possibility that local parasite adaptation is affected by 

host dispersal (Gandon et al. 1996; Boots & Sasaki 1999, 2002), and that host dispersal 

tendency is strongly dependent on parasite virulence (Iritani & Iwasa 2014). In 

ecological scenarios, dispersal bias plays an important role in that the gene flow of 

parasites is either regulated or promoted across space because of the difference between 

host dispersal tendencies. The geographical distribution of parasites is heavily 

influenced by host dispersal and distribution. For instance, when the bias is towards 

infected individuals, parasites succeed in migrating across space. Conventional wisdom 

suggests that coevolution exhibits spatial mosaics (i.e. the ‘geographic mosaic theory of 

coevolution’; Thompson 2005). Previous studies combining parasite adaptation and host 

dispersal have assumed, however, that the host migration tendency among patches is 

constant, but our results suggest that is not always feasible. Demonstrating that 
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between-subpopulation genetic differentiation is either reduced or enhanced by parasites, 

we can conclude that spatial genetic diversity can occur not only through geographically 

diverged host–parasite interactions, but also through state-dependent host dispersals. 

Thus, the model described here could be extended to allow for such coevolution, but 

only by accounting for variation in the levels of host–parasite co-migration. 

 

4.4.2. Host manipulation by parasites 

Our results provide interesting aspects regarding host manipulation by parasites 

(Thomas et al. 2007; Hughes et al. 2012), as some parasites manipulate their hosts to 

promote the transmission probability to another (or next) host. Lion et al. (2006) studied 

how parasite-induced host dispersal modifies the dynamic spatial structure of the 

host–parasite community. In their model, they assumed that the dispersal of infected 

hosts was completely determined by the parasite (i.e. it was a fixed parasite trait); 

however, we set the dispersal of I-individuals as an evolving host trait. Thus, combining 

our results with those of Lion et al. (2006) would permit a more specific analysis of the 

host–parasite structuring process. 

 

4.4.3. Role of horizontal transmission 

We constructed a host–parasite model assuming no horizontal transmission. It is often 

suggested, however, that host–parasite dynamics are heavily influenced by host density 

and prevalence (Hochachka & Dhondt 2000; Begon et al. 2002). Therefore, an 

investigation of the effect of horizontal transmission on the evolution of host dispersal 

(or its bias) is needed. In particular, in the model, we conclude that dispersal bias is 

independent of the initial prevalence (R). In the event of frequency- or 

density-dependent transmission, the infection factor   β
A  might be dependent on R, 

because the risk of horizontal transmission is thought to increase as the density of 

infected hosts or the prevalence of the infection increases (Hochachka & Dhondt 2000; 

Begon et al. 2002). Consequently, our present analysis of the dispersal-bias predictor is 
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insufficient when frequency-dependent transmission cannot be neglected (though we 

can apply this model when the transmission is not frequency-dependent). By 

incorporating horizontal transmission, we can predict the spatial dynamics of 

host–parasite coevolution, and explain how geographical biodiversity is shaped. 

We have restricted ourselves to assuming the prevalence (R) is constant over space 

and generations, although this is not the case in host–parasite systems (i.e. prevalence 

varies both spatially and temporally). Our present results provide a predictable 

hypothesis regarding dispersal bias that is independent of prevalence, and in the future, 

we aim to develop a more applicable estimator under increasingly relaxed assumptions 

regarding spatial heterogeneity. 
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Figure 1 

The schematics of the host life cycle under study: reproduction, infection, dispersal, 

after dispersal, and competition. (a) Processes of dispersal (initiation, travel, and 

settlement) and life cycle event that migrants experience. Each solid arrow represents 

the probability of success at each stage: i.e. selection strength at each stage. Dashed, 

crossed arrows represent transition during dispersal (PD). Note that the travel success 

enjoyed by S- and I-individuals is denoted by a common factor p, which we allow 

various interpretations (e.g. the probability of successful initiation, travel, settlement, 

and/or their product). (b) The whole life cycle. Here we concentrate on the focal 

subpopulation (i.e. ‘home’ subpopulation), and changing the superscript 0 to 1 yields the 
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full life history in the non-focal subpopulation (i.e. ‘away’ subpopulation). The notation 

is used in accordance with that shown in Table 1. 
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Figure 2  

Evolutionary vector fields of the dispersal rate (zS, zI). Two lines indicate 

    
∂w ∂ξS (ξS ,ξI )=(0,0)

= 0  and 
    
∂w ∂ξI (ξS ,ξI )=(0,0)

= 0  in both (a) and (b). We can observe 

that the candidate evolutionarily stable strategy (ESS), indicated by a solid circle, is 

located on the boundary. Parameters: (a) αA = βA = 0.4 so that ∆ > 0 holds, and (b) αA = 

βA = 0.6 so that ∆ < 0 holds. Other parameters are shared in (a) and (b): εEmig = 0.5, 

εImmig = 0.1, p = 0.6, δ = 0.2, N = 5, and αD = βD = 0.6. The prevalence R is varied, and is 

indicated in each panel. 
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Figure 3 

ES-dispersal strategy, (zS, zI), plotted against prevalence, R. We vary the virulence, δ = 

0.4 and 0.8, as shown in the panel. Parameters: (a) αA = βA = 0.4 so that AutoA < 0 and ∆ 

> 0 holds, and (b) αA = βA = 0.6 so that AutoA > 0 and ∆ < 0 holds. Other parameters are 

shared between (a) and (b): εEmig = 0.1, εImmig = 0.1, p = 0.6, N = 5, and αD = βD = 0.6.  
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Figure 4 

(a) The dependence of ∆ on δ, αA, and βA. When AutoA is positive, strong virulence 

indicates a large ∆, and I-biased dispersal is favoured; when AutoA is negative, weak 

virulence indicates a small ∆, and S-biased dispersal is favoured. When AutoA = 0,  Δ  

is no longer dependent on δ. (b) The dependence of ∆ on εImmig, αA, and βA. When AutoA 

is positive, a large εImmig indicates a large ∆, and I-biased dispersal is favoured; when 

AutoA is negative, a small εImmig indicates a small ∆, and S-biased dispersal is favoured.
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Appendix 

(a) Fitness measure 

The fitness measure under study, w, is defined as the expected number of adult 

offspring. We partitioned w into two components as follows: 

    w[x• ,x0R ,x1]= wHOME[x• ,x0R ,x1]+ wAWAY[x• ,x0R ,x1] , (a-1) 

where the first component indicates the probability that the offspring of focal adult can 

become the adult in the next generation of the home subpopulation, and the second 

component does so in away subpopulation. To obtain this fitness measure, we need to 

calculate the transition dynamics as shown in Figure 1. We calculate the 

state-transitions in a backwards manner. 

 

(a-1) Transition after dispersal 

First, we describe the transition dynamics after dispersal, but before competition, as 

 

      

[S]tot
iC

[I]tot
iC

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
=

1−αA βA

αA 1−βA

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

=PA
  

[S]tot
iA

[I]tot
iA

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
, (a-2) 

where   [S]tot
iC  (or   [I]tot

iC ) represents the number of S-individuals (or I-individuals, 

respectively) just before competition, for   i = 0  (home subpopulation) or   i = 1 (away 

subpopulation). The super script, C, is used to emphasise ‘before competition’, and the 

subscript tot indicates that the dynamics occur for all individuals (including both 

philopatric individuals and migrants) in each subpopulation. In the components of 

transition matrix, the superscript A represents ‘after dispersal’.   [S]tot
iA  (or   [I]tot

iA ) 

represents the number of S-individuals (or I-individuals) immediately after dispersal. 

  [S]tot
iA  and   [I]tot

iA  can be calculated by standard algebra. In the home subpopulation, 

it is calculated as 

 

   

[S]tot
0A

[I]tot
0A

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
=

RNJ (1− xS
0R )+[S]m

1A

(1−R)NJ (1− xI
0R )+[I]m

1A

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
 (a-3) 



 75 

and in another subpopulation, 

   

[S]tot
1A

[I]tot
1A

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
=

RNJ (1− xS
1 )+[S]m

1A

(1−R)NJ (1− xI
1 )+[I]m

1A

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
. (a-4) 

 

(a-2) Transition and selection during dispersal 

During-dispersal dynamics for migrants can be written as follows: 

 

      

[S]m
iA

[I]m
iA

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
=

1 0
0 1−εImmig

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
=:XImmig

! "###### $######

1−αD βD

αD 1−βD

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

=:PD
! "######## $########

1 0
0 1−εEmig

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
=:XEmig

! "###### $######

p[S]m
iB

p[I]m
iB

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
, (a-5) 

where   [S]m
iB  (or   [I]m

iB ) represents the number of susceptible (or infected, respectively) 

migrants before dispersal,  [S]m
B ; the superscript B indicates ‘before dispersal’. The 

subscript m emphasises that they are calculated only for migrants (excluding philopatric 

individuals). Note that both of the migrant components are multiplied by the basic 

dispersal success probability, p. The first matrix, XImmig, denotes the selection against 

infected immigrants. In the second matrix,   PD , the components   αD  and   β
D  indicate 

the transition probabilities from one state to the other. For example,   β
D  represents the 

probability that dispersed individuals become susceptible during dispersal given that 

they are infected before dispersal. The third matrix, XEmig, denotes the selection against 

infected emigrants. 

From (a-2)–(a-5), we can write the overall state transitions in the home 

subpopulation in a matrix form as 

 

    

[S]0C
tot

[I]0C
tot

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= PA

(1− R)NJ (1− xS
0R )

RNJ (1− xI
0R )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

philopatry
! "#### $####

+ X ImmigP
DXEmig

(1− R) pNJxS
1

pRNJxI
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

migrant
! "###### $######

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

, (a-6) 

where 
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XEmig :=

1 0
0 1−εEmig

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
 (a-7) 

denotes initial probability. The dynamics in another subpopulation can be written in the 

same way (by changing both superscripts 0R and 0 to 1): 

    

[S]1C
tot

[I]1C
tot

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= PA

(1− R)NJ (1− xS
1 )

RNJ (1− xI
1 )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

philopatry
! "### $###

+ X ImmigP
DXEmig

(1− R) pNJxS
1

pRNJxI
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

migrant
! "###### $######

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

 (a-8) 

 

(a-3) Fitness measure, w 

In this setup, we have the fitness function w: 

 
    
w =

[S]p
•C + (1−δ)[I]p

•C

[S]tot
0C + (1−δ)[I]tot

0C +
[S]m

•C + (1−δ)[I]m
•C

[S]tot
1C + (1−δ)[I]tot

1C , (a-9) 

where the superscript •  indicates the ‘focal adult’ with  

    
[S]p

•C + (1−δ)[I]p
•C = (1−R)J (1−δαA )(1− xS

• )+ RJ{1−δ(1−βA )}(1− xI
• )

 (a-10)
 

and 

    [S]m
•C + (1−δ)[I]m

•C = (1−R)J (1−δαA )(1−CS )xS
• + RJ{1−δ(1−βA )}(1−CI )xS

• , 

where we used the notations  CS  and CI :  

 
    
CS =1− p 1−αD +αD(1−εImmig )GpI /pS( )  (a-11)

 

and 

 
    
CI =1− p βD

GpI /pS

+ (1−βD )(1−εImmig )
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
(1−εEmig ) . (a-12) 

These can be regarded as effective values of S for dispersal associated with impact of 

parasite infection. In the denominator of the first (or second) component of w, we 

express the total number of individuals in the home (or away) subpopulation, with the 



 77 

asymmetric competition described by (1–δ). We set a conventional assumption for 

   0≤CS and    0≤CI , which is not always the case, particularly when   
GpI /pS  takes an 

extreme value. For example, permitting    
GpI /pS →+0 , we can see that  CI  diverges to 

–∞, as long as    β
D > 0 . We can see that the extremity of    

GpI /pS →+0  means    δ≈1  

(obligate mortality by parasite) with    β
A ≈1 (obligate recovery after dispersal), which 

is unfeasible. Similarly,    
GpI /pS →+∞  means    δ≈1  with    αA ≈1 (obligate infection 

after dispersal), which is again unfeasible. Therefore, we restrict ourselves to 

considering a ‘moderate’ value of costs of dispersal, although the extension for negative 

C’s is possible. 

In an explicit form,   wHOME  can be written as 

    

1
N
⋅

(1−R)(1−δαA )(1− xS
• )+ R{1−δ(1−βA )}(1− xI

• )
(1−R)(1−δαA ){1− xS

0R + (1−CS )xS
1 }+ R{1−δ(1−βA )}{1− xI

0R + (1−CI )xS
1 } (a-13)

  

and   wAWAY  can be written as 

    

1
N
⋅

(1−R)(1−δαA )(1−CS )xS
• + R{1−δ(1−βA )}(1−CI )xS

•

(1−R)(1−δαA ){1− xS
0R + (1−CS )xS

1 }+ R{1−δ(1−βA )}{1− xI
0R + (1−CI )xS

1 }
 

(a-14) 

To scale the prevalence, we define the effective prevalence as 

 
    
RE :=

R{1−δ(1−βA )}
(1−R){1−δαA}+ R{1−δ(1−βA )}

=
RGpI /pS

(1−R)+ RGpI /pS

. (a-15) 

In the denominator, the fraction    (1−R)  of individuals is susceptible before dispersal, 

but goes dead with the fraction   δα
A  because of parasite-induced mortality (parasite 

virulence) after transition, but before competition. On the other hand, the second term in 

the denominator (which is equivalent to the numerator) indicates the fraction R of 

individuals that are infected before dispersal, but die before competition due to 

virulence after transition at rate    δ(1−β
A ) . From the second expression, we can 
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interpret the effective prevalence as the ratio of individuals that are infected just before 

dispersal, taking into account the effect of relative competition ability, t. It is obvious 

that RE is an increasing function of t, and thus, that of   α
A  and   β

A . This scaling 

reduces the fitness function to 

 
   
wHOME =

(1−RE )(1− xS
• )+ RE(1− xI

• )
(1−RE ){1− xS

0R + (1−CS )xS
1 }+ RE{1− xI

0R + (1−CI )xS
1 }

 (a-16) 

and 

 
   
wAWAY =

(1−RE )(1−CS )xS
• + RE(1−CI )xS

•

(1−RE ){1− xS
0R + (1−CS )xS

1 }+ RE{1− xI
0R + (1−CI )xS

1 }
. (a-17) 

 

(b) Calculation of bias predictor, ∆ 

Our analysis showed that the dispersal bias is determined by the sign of the predictor 

 
    
Δ := βD

GpI /pS

+ (1– βD )(1– εEmig )
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
(1– εImmig ) – (1–αD )+αD(1– εEmig )GpI /pS( )

. (b-1)
 

The derivation is obtained from the definitions of  CS  and  CI : 

    

CS −CI = 1− p 1−αD +αD(1−εImmig )t( )−1+ p β
D

t
+ (1−βD )(1−εImmig )

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
(1−εEmig )

= p β
D

t
+ (1−βD )(1−εImmig )

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
(1−εEmig )− p 1−αD +αD(1−εImmig )t( )

= pΔ

(b-2) 

The proof that this value predicts the dispersal bias is shown in Appendix (d) below. 

Note that the equality   Δ= 0  (i.e.   CS = CI ) implies the neutrality of evolutionary 

dynamics for (zS, zI), but it does not hold for generic parameters; therefore, we exclude 

the equality   Δ= 0 . 

∆ varies depending on each factor. Here we demonstrate its dependence on   αD  

and  β
D  (as discussed in the main text). The differentiation of ∆ at    

εEmig = εImmig = 0  
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with respect to   αD  or   β
D yields 

 
    
∂Δ
∂αD =1−GpI /pS  (b-3) 

and 

    

∂Δ
∂βD =

1
GpI /pS

−1=
1

GpI /pS

(1−GpI /pS ) . (b-4) 

Thus,   AutoA > 0  indicates ∆ is an increasing function of   αD  or   β
D since 

   
(1−GpI /pS ) = AutoA . 

 

(c) ES-dispersal strategy and relatedness coefficient : direct fitness expansion 

In order to analyse convergence stability, we employ the direct fitness approach (Taylor 

& Frank 1996; Frank 1998; Rousset 2004). First, we partially differentiate w with 

respect to the deviations    (ξS ,ξI ) : 

 
    

∂w
∂ξi

=
∂w
∂xi

•
+ r ∂w
∂xi

0R = r 1−u∗

{1−u∗+ v∗}2 −
Ci

{1−u∗+ v∗}  (c-1)
 

for   i = S , I , evaluated at   x• = x0R = x1 = z∗ . Here,   u∗ (or   v∗ ) is the average 

emigration rate (or immigration rate, respectively): 

    u
∗ = (1−RE )zS

* + REzI
* , (c-2) 

    v
∗ = (1−RE )(1−CS )zS

* + RE(1−CI )zI
* . (c-3) 

Note that the within-subpopulation average is calculated with respect to the effective 

prevalence    1−RE  and   RE . The asterisk (*) indicates ‘at equilibrium’, but hereafter, 

we drop it for the simplicity of expressions. The backwards migration rate, defined as 

the probability that a randomly sampled individual after dispersal (but before 

competition) within subpopulation has its parent in another subpopulation, can be 

written as 

 
   
m =

v
1−u + v

. (c-4) 

In other words,    1−m  is the probability that a randomly sampled individual within a 

subpopulation is native. The coefficient of relatedness r (Hamilton 1964a, b) is 
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described as 

 
    
r := FST

R :=
dxS

0R

dξS

=
dxI

0R

dξI

, (c-5) 

with    FST
R ={1+ (N−1)FST} N  and    FST = (1−m)2 FST

R  (Rousset 2004), which 

suggests that there are infinitely many subpopulations. Therefore, the allelic correlation 

is null between different subpopulations. The notation R is again used to emphasise that 

two individuals are sampled from the home subpopulation with ‘replacement’. 

Relatedness r is the same for S-individuals and I-individuals, because in this model the 

class-division into S and I is not genetically inherent, but occurs at random despite 

genetic backgrounds. Note that the coefficient of relatedness, r, needs to be evaluated at 

the resident strategy    x• = x0R = x1  when we produce the evolutionary vector field (see 

Figure 2). 

 

(c-1) When ∆ is positive  

When ∆ is positive, the ES-dispersal strategy is biased towards infected individuals 

(I-biased). The solution   (zS
*, zI

*)  is 

 

   

zS
* =

rS −CS −RE(rS −CSCI )
(1−RE )(rS −CS

2 )
if 0 < RE <

rS −CS

rS −CSCI

0 if
rS −CS

rS −CSCI

< RE <1

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪ (c-6) 

and 

 

   

zI
* =

1 if 0 < RE <
rI −CI

rI −CI
2

rI −CI

RE(rI −CI
2 )

if
rI −CI

rI −CI
2 < RE <1

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

, (c-7) 

where the coefficient of relatedness  rS  and  rI  are defined as 
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rS :=

1+ 1+ 4N (N−1)CS
2

2N  (c-8)
 

and 

 
   
rI :=

1+ 1+ 4N (N−1)CI
2

2N
. (c-9) 

The coefficient of relatedness also varies as RE changes: 

 

   

FST
R = r =

rS if 0 < RE <
rS −CS

rS −CSCI

1

N−(N−1)(
1−RE

1−RECI

)2
if

rS −CS

rS −CSCI

< RE <
rI −CI

rI −CI
2

rI if
rI −CI

rI −CI
2 < RE <1

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪ (c-10)

 

In particular, when   N = 1 , the coefficient of relatedness is always unity. 

 

(c-2) When ∆ is negative 

Similar to (c-1), we have 

 

   

zS
* =

1
1−RE

rS −CS

rS −CS
2 if 0 < RE <

CS (1−CS )
rS −CS

2

1 if
CS (1−CS )

rS −CS
2 < RE <1

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

, (c-11) 

 

   

zI
* =

0 if 0 < RE <
(1−CS )CI

rI −CSCI

rI −CI −(1−RE )(rI −CSCI )
RE(rI −CI

2 )
if

(1−CS )CI

rI −CSCI

< RE <1

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

, (c-12) 

and 
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FST
R = r =

rS if 0 < RE <
CS −CS

2

rS −CS
2

1

N−(N−1)(
RE

1−CS + RECS

)2
if

CS −CS
2

rS −CS
2 < RE <

CI (1−CS )
rI −CICS

rI if
CI (1−CS )
rI −CICS

< RE <1

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

. (c-13) 

 

(d) Derivation of the solution and proof of the evolutionary stability 

We need to prove the maximality of the solution given in Appendix (c), which is left 

unsolved in Iritani & Iwasa (2014). For the proof, we use the theorem given by Kuhn & 

Tucker (1951). The direct calculation is tedious, and thus we operate the following 

linear transformation beforehand: 

 

    

y• = u•

v•

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
:=

1−RE RE

(1−RE )(1−CS ) RE(1−CI )

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

xS
•

xI
•

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

y∗ = u∗

v∗
⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
:=

1−RE RE

(1−RE )(1−CS ) RE(1−CI )

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

zS
∗

zI
∗

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
 (d-1)

 

where the notations for u and v are the emigration rate and immigration rate, 

respectively (see Eqs. (c-2)). We write the square matrix on the right hand side as T. In 

order to incorporate the kin selection effect, we calculate the subpopulation mean 

strategy and get 

 
   

u0R = ru• + (1−r)u∗

v0R = rv• + (1−r)v∗  (d-2)
 

where the notation 0R is used in the same way as above, and r is the coefficient of 

relatedness. This can be justified by assuming weak selection. Then the fitness function 

of the focal individual can be rewritten as 
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w[x• ,x0R ]=W (u• ,v• ,u0R ,v0R ) =W[y• ,y0R ] =
1−u•

1−u0R + v∗
+

v•

1−u∗+ v∗

=
1−u•

1−ru•−(1−r)u∗+ v∗
+

v•

1−u∗+ v∗

(d-3)

 

where we write the fitness as W rather than w, to clarify the difference between the 

variables (which are y’s rather than x’s). Here, because we are interested in evolutionary 

stability rather than convergence stability, we formulate it as if  u∗  and  v∗  are not 

variables but parameters; therefore, we write     W (u• ,v• ,u0R ,v0R ) =W[y• ,y0R ]  simply as 

    W (u• ,v• ) =W[y•] . Also note that the constraint or the feasible region, which is a unit 

square for    0≤ xS ≤1  and    0≤ xI ≤1 , needs to be written in terms of u and v (see 

below). Calculation of the fitness gradient  ∇W  of the fitness W(u,v) evaluated at  y
∗  

yields 

 

   

∇W =

−(1−u∗+ v∗)+ rS (1−u∗)
(1−u∗+ v∗)2

1
(1−u∗+ v∗)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

. (d-4) 

Apparently,  ∇W  is never null because the second component is always positive.  

Second, to depict the domain of   W (u,v) , we calculate the orientation, i.e. the 

determinant of T: 

     det T = RE(1−RE )(CS −CI )∝Δ , (d-5) 

where  ∝  is used to indicate ‘positively proportional to’. This estimation means that 

state-biased dispersal is determined by whether the orientation of T is preserved or not. 

For the sake of simplicity, we restrict ourselves to assuming ∆ is positive. 

When ∆ is positive, we can write the constraints as 
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g1 :=−(1−CS )u + v≥0
g2 :=−(1−CI )(u−1)+ v−{1−(1−RE )CS −RECI }≥0
g3 := (1−CS )(u−1)+{1−(1−RE )CS −RECI }−v≥0
g4 := (1−CI )u−v≥0  (d-6)

 

Let  Y  be the parallelogram represented by the above constraints (d-6). Obviously,  Y  

is convex in R2. Because T is a linear (and thus continuous) mapping, the image of the 

boundary of a unit square corresponds to the boundary of  Y . The gradient vectors are 

given as 

 
   
∇g1 =

−(1−CS )

1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
,∇g2 =

−(1−CI )

1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
,∇g3 =

1−CS

−1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
,∇g4 =

1−CI

−1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
. (d-7) 

 

(d-1) Deviation of the candidate ESS  

Because the gradient  ∇W  is never null, we can see that the ESS is on the boundary if 

it exists. To derive the ES solution, the following theorem by Kuhn & Tucker (1951) is 

applied. We rewrite the theorem in terms of our system under study: 

Theorem 1 [Kuhn–Tucker: necessary condition for maximality] 

Let     K :={1≤ i≤ 4 ; gi(y∗) = 0}  be a set of indices for the constraints 

   g1,g2 ,g3,g4 ≥0 . Assume that    W[y]  and each of    {gk ;k ∈ K}  are differentiable, 

and that each    {gk ;k ∉ K}  is continuous. If    ∇gk[y∗]  are linearly independent for 

  k ∈ K  and if   y
∗  is evolutionarily stable, then there exists Lagrange multipliers 

    λk ≥0  for   k ∈ K  such that 

 
     
∇W[y∗]+ λk∇gk[y∗]= 0

k∈K
∑ . (d-8) 

Using this theorem, we can analytically investigate the candidate ESS  y = y∗ . As an 

example, we derive the solution in the case where    (zS
∗ , zI

∗)  lies on the boundary for 

  zS
∗ = 0  (i.e.   g4 = 0 ). After substitution for gradients and   k = 4 , the Eq. (d-8) yields 
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−(1−u* + v*)+ r(1−u*)
(1−u* + v*)2

1
1−u* + v*

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

+λ4

1−CI

−1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
= 0

0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
. (d-9) 

Here, the equality    g4 = (1−CI )u−v = 0  yields    1−u + v =1−CIu , and hence, we 

have 

 

    

−(1−CIu
*)+ r(1−u*)

(1−CIu
*)2

1
1−CIu

*

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

+λ4

1−CI

−1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
= 0

0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
. (d-10) 

By a standard method of linear algebra, we have a desired result: 

 
   
u* =

r−CI

r−CI
2 , (d-11) 

where  r = rI . Note that     λ4 =1 (1−CIu
*) > 0  holds. In addition, we need to check 

whether this candidate solution satisfies other constraints. The satisfaction of   g1,g2 ≥ 0  

is obvious; as for    g3≥0 , the substitution of Eq. (d-11) into (d-6) yields 

   

(1−CS )(u*−1)−v* +1−(1−RE )CS −RECI ≥0 ⇔ (CS −CI )RE ≥ (CS −CI )u*

⇔ RE ≥u* =
rI −CI

rI −CI
2

(d-

12)

 

since    CS −CI > 0 . Thus, in terms of   (zS
*, zI

*) , the (unique) candidate ESS is 

 
   
(zS

*, zI
*) = (0,

rI −CI

RE(rI −CI
2 )

)
 (d-13)

 

for    RE ≥ (rI −CI ) (rI −CI
2 ) . 

 

(d-2) Proof of the evolutionary stability (maximality) 

Next, we introduce a theorem asserting the maximality of  y
∗ , by Kuhn & Tucker 
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(1951): 

Theorem 2 [Kuhn–Tucker: sufficient condition for maximality] 

Let      y
∗ = (u∗ ,v∗)∈Y  be a candidate ESS (i.e. SS) for the fitness function 

     W :Y→R , which is semi-concave at  y
∗ . Consider the constraints for g, defined as 

Eqs. (d-7). In addition, assume that the equality holds at 

   k ∈ K :={1≤ i≤ 4 ; gi(t
∗) = 0} . Then  y

∗ is the ESS if it satisfies the following 

property: 

There are     λi ≥0  (  i = 1,2,3,4 ) such that 

 
     
∇W[y∗]+ λk∇gk[y∗]= 0

k∈K
∑ .(d-14) 

The quasi-concavity of W is easy to prove; more precisely,  W is concave on  Y  

(concavity of W implies its quasi-concavity). In order to demonstrate an example, we 

show that 
   
(zS
∗ , zI

∗) =
rS −CS −RE(rS −CSCI )

(1−RE )(rS −CS
2 )

,1
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

 is evolutionarily stable for 

   RE ≤ (rS −CS ) (rS −CSCI ) . 

 First, we rewrite the candidate ESS in terms of u and v: 

 

   

u∗ = (1−RE )xS + RExI =
rS −CS + RECS (CI −CS )

rS −CS
2

v∗ = (1−RE )(1−CS )xS + RE(1−CI )xI =
rS −CS

rS −CS
2 {1−(1−RE )CS −RECI }

(d-15)

 

Substitution of   
u*,v*( )  into Eq. (d-4) yields 

 

   

∇W =

−CS + CS
2

rS (1−u∗)

CS

rS (1−u∗)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

. (d-16) 

 Second, because  y
∗  meets the equality of the constraints for   g3 = 0 , and 

from the theorem, we have 



 87 

 

     

−CS + CS
2

rS (1−u∗)

CS

rS (1−u∗)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

+λ3

(1−CS )

−1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
= 0 , (d-17) 

which yields     λ3 = CS {rS (1−u∗)}> 0  under the assumption that   CS > 0  and 

   1−u∗ > 0 . We also need to check that this solution satisfies the other constraints, 

   g1,g2 ,g4 ≥0 . Obviously,    g1≥0  and    g2 ≥0  hold. To see the condition for 

    g4[y
∗]≥0 , we have: 

 
   

(1−CI )u∗ −v∗ = (1−RE )(CS −CI )zS
∗ ≥0 . (d-18) 

Because    (1−RE )(CS −CI )≥0  by the assumption that   Δ> 0 , solving    zS
*≥0  yields 

 
   
RE ≤

rS −CS

rS −CS
2 , (d-19) 

which is consistent with our case. 

In other cases, e.g. where   (zS
∗ , zI

∗) = (1,0) , we can employ the same method as 

above; the condition 

   

rS −CS

rS −CSCI

< RE <
rI −CI

rI −CI
2  (d-20) 

can be given by solving the condition that Lagrange multipliers   λ3  and   λ4  are both 

positive. 

 

(e) Calculation for autocorrelation 

We begin with the general formulation of the calculation of autocorrelation for the 

two-dimensional dynamics described by a transition matrix P: 

    
P :=

1−α β
α 1−β

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
. (e-1) 

Let   Qτ  denote the state (S or I) at time τ so that     Qτ =1 for state-S and     Qτ = 0  for 
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state-I, and let  HS  (and   ′HS ) denote the probability that a randomly sampled 

individual is in state-S at time  τ  (and    τ+1, respectively). The correlation coefficient 

of statistical association between disease state at time  τ  and    τ+1  is given by 

     

Auto[P] =
Cov[Qτ ,Qτ+1]

Var[Qτ ]⋅Var[Qτ+1]

= 1−α−β( )
′HS (1− ′HS )

HS (1−HS )

∝ 1−α−β( )

(e-2) 

Hence, applying Eq. (e-2) for    P = PA , immediately we have 

    Auto[PA ]∝1−αA−βA . (e-3) 

In the main text, we defined the right hand side in Eq. (e-3) as the autocorrelation of 

disease states, because    1−α
A−βA  is sufficient for our purpose of predicting the 

dispersal bias; thus, all that matters in our analyses is the sign of  AutoA . 
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Chapter 3. 

Disease state-dependent dispersal and the avoidance of transmission among kin. 
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1 Introduction

Sociality considerably increases the parasite burden and risk of parasite infection (Alexander 1974

[2]). Because parasite infection has major impacts on diverse aspects of host life history, host

species have developed mechanisms to avoid and/or resist infection, including dispersal (Loehle

1995 [38]; also see pp.169-179 in Clobert (2001) [9]). Dispersal plays a fundamental role in the

establishment of sociality, because it affects the genetic composition of social groups as well as the

pandemics of infectious diseases within and/or across groups. In turn, it is also widely accepted

that population genetic structure greatly affects the evolution of dispersal by interaction among

kin, including competition (Hamilton & May 1977 [26], Frank 1986 [17], Taylor 1988 [55]), and

mating (Perrin & Mazalov 2000 [48]). Thus, dispersal and parasite-induced selection are closely

linked in the context of sociality.

Social evolution is primarily driven by kin selection (Hamilton 1964a, b [23, 24] Frank 1998[19],

Marshall 2015[41]). In support of the predictions of inclusive fitness theory, ample evidence sug-

gests that kin selection drives the evolution of a variety of social behaviours that can incur poten-

tial costs, e.g., dispersal (Frank 1986 [17], Taylor 1988 [55], Frank 1998 [19], Rousset 2004 [50]),

helping (altruism) and harming (spite) (Lehmann et al. 2006 [36], West & Gardner 2010 [61]), sex

ratio (Hamilton 1967 [25]), and the virulence-resistance coevolution in host-parasite interactions

(Frank 1996 [18]). One of the key assumptions underlying inclusive fitness theory is that social

behaviours occur among kin due to limited dispersal. Hence, viscosity is crucial to understanding

the evolution of sociality.

Viscosity also has a profound effect on sociality in the presence of horizontally transmissi-

ble parasites, because horizontal transmission can occur between closely related individuals in

social organisms. This can impose large costs, because transmission of parasites among closely

related individuals is disadvantageous in terms of inclusive fitness. In this vein, we can expect that

condition-dependent dispersal (‘disease state-dependent dispersal’) can play a central role: for ex-

ample, if infected individuals disperse from their natal group, then the risk of transmission among

kin may be mitigated; however, the opposite may also be the case, because uninfected individuals

can ‘escape’ from the risk of transmission from their siblings by dispersal. Hence, it is not intu-

itively obvious what specific patterns of disease state-dependent dispersal are likely to emerge by

natural selection.

Indeed, there is empirical evidence for the emergence of disease state-dependent dispersal in

94



animals. Heinze & Walter (2010) [28] have suggested that in Temnothorax ants, infected workers

have fewer social interactions and tend to leave their colony if they are infected with an ento-

mopathogenic fungus. In addition, Kralj & Fuchs (2006) [35] have shown that honeybee workers

tend to abandon their hives when infected with parasitic varroa mites. Rueppell et al. (2010) [52]

performed computer simulations to demonstrate that altruistic self-removal of infected individuals

from social groups can impede the spread of diseases, which is supported by their own empirical

tests with honey bee populations (Apis mellifera L.). From a more general empirical avenue, sev-

eral studies have reported two contrasting patterns for disease state-dependent dispersal: dispersal

propensity is either biased towards infected individuals (I-biased dispersal) or uninfected individ-

uals (U-biased dispersal). I-biased dispersal has been reported in a yellow-bellied marmot (Mar-

mota flaviventris) population infected with several parasites, including fleas (Oropsylla stanfordi),

lice (Linognathoides marmotae), and mites (family Dermanyssidae) (Van Vuren 1996), as well as

in a cliff swallow (Hirundo pyrrhonota) population infected with hematophagous fleas (Cerato-

phyllus celsus) and swallow bugs (Oeciacus vicarius). In contrast, U-biased dispersal has been

reported in a great tit (Parus major) population infected with hen fleas (Ceratophyllus gallinae;

Heeb et al. 1999 [27]), in a money spider (Erigone atra) population infected with an endosymbiont

(Rickettsia; Goodacre et al. 2009 [21]), in a chub (Squalius cephalus)) population infected with

the larvae of duck mussels (Anodonta anatina; Horký et al. 2014 [29]), in a ciliate (Paramecium

caudatum) population infected with a bacterium (Holospora undulata; Fellous et al. 2011 [15]),

and in a cichlid (Tropheus moorii) population infected with flatworms Cichlidogyrus (Grégoir et

al. 2015 [22]). There is also some evidence of the direct negative impacts of parasites on host

mobility (e.g. Luong et al. 2015 [39], Bradley & Altizer 2005 [6]). In addition, the potential

contributions of parasites to host dispersal or migratory behaviours have been reported (Tschirren

et al. 2007 [59], Debeffe et al. 2014 [12], van Dijk et al. 2015 [60]) and the effects of parasite-

driven selection on migration (MacCol & Chapman 2010 [40]). The host migration-driven genetic

structure in the context of host-parasite interactions has been studied in avian species (e.g. McCoy

et al. 2003 [43], Knowles et al. 2014 [33], Koprivnikar & Leung 2015 [34]; for review, see Altizer

2011 [4]). Furthermore, parasites may be used as tags for host migration behaviours (Galbreath

& Hoberg 2012[20], Terui & Miyazaki 2015[57]). In general, disease state-dependent dispersal

may contribute to the spatial genetic makeup of host-parasite interactions, because dispersal of

the infected host will result in dispersal of the parasites (“simultaneous migration”, Morgan et al.

2007 [45]). Thus, obtaining a detailed understanding of disease state-dependent dispersal is cen-
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tral to the evolutionary ecology of host-parasite interactions; accordingly, the role of host-dispersal

ecology in host-parasite interactions has received broad research attention (Poulin 2011, [49]).

Some theoretical studies have tackled the problem involving the evolution of host dispersal in

the context of parasitism. For example, Chaianunporn & Hovestadt (2012) [7] have studied the

effect of interspecific interactions on dispersal in a metacommunity context, showing that para-

sitism could promote dispersal in both the hosts and parasites. However, they have not considered

disease state-dependent dispersal. Iritani & Iwasa (2014) and Iritani (2015) ([31], [30]) have stud-

ied the evolution of disease state-dependent dispersal, showing that differences in the timing of

infection (before, during, and/or after dispersal) could modify the cost of dispersal for juveniles in

each disease state, resulting in either pattern for disease state-dependent dispersal. However, they

have not evaluated the effects of horizontal transmission on disease state-dependent dispersal.

In the present paper, I address the question, “how does the risk of parasite transmission among

kin drive or inhibit the evolution of dispersal?” In particular, I aim to clarify which members

of a natal group should disperse when the risk of infection or horizontal transmission is high:

infected or uninfected individuals? To answer this question, I use the neighbour-modulated ap-

proach (Taylor & Frank 1996, [56]) on the basis of inclusive fitness theory. Toward this end, I

aim to capture the effect of horizontal transmission on the evolutionary endpoints for the disper-

sal rates of uninfected and infected juveniles. I here consider two possibilities for the timing of

horizontal transmission, either before dispersal or after dispersal (but before competition) to see

how the different timing of horizontal transmission affect evolutionary endopoint of dispersal, i.e.,

convergently stable dispersal rate(s) (Eshel 1983[13], Rousset & Billiard 2000 [51], Rousset 2004

[50]).

2 Methods

2.1 Life cycle

Here, I demonstrate the basal model structure in the absence of horizontal transmission. My mod-

els are built on Wright’s island model of dispersal (Wright 1931 [62], Hamilton & May 1977

[26]), where the entire population consists of an infinite number of islands (“social groups”). Host

organism is asexual haploid, following the birth-death Moran demography. At the beginning of

adulthood, N adult individuals are supported in each social group, each reproducing an infinite

number (J) of offspring (J → ∞) equally. Immediately after reproduction, one adult is randomly
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chosen to die in each group, and juveniles become infected with probability P and remain unin-

fected with probability 1 − P, wherein I assume that each juvenile randomly becomes infected

from an external environmental source (e.g. via infection-borne vectors, or during foraging). Ju-

veniles are thus categorized into two disease-states: ‘uninfected’ or ‘infected’. Juveniles disperse

conditionally according to their own disease state (right before the dispersal stage), where the

dispersal rate for uninfected juveniles (or infected juveniles) is generically denoted by dU (or dI).

Dispersal also incurs some extrinsic costs (c) so that only the fraction 1 − c of dispersed juveniles

survive to settle in an alternative group. Finally, competition for a breeding spot (which is one out

of N per group) follows to form the next generation. In the competition, infected juveniles suffer

a disadvantage such that infected juvenile suffer a dicrease in competitive ability by the factor v

compared to uninfected juveniles. Thus, the competitive ability for uninfected juveniles is unity,

while that for infected juveniles is 1 − v. I refer to v as parasite virulence (0 ≤ v ≤ 1). I do not

consider parasite evolution.

In the baseline life cycle described above, horizontal transmission occurs either before or after

dispersal (Figure 1 summarizes the life cycle). Let P′ be the ratio of infected juveniles right before

dispersal (i.e., the probability that a randomly sampled juvenile is infected right before dispersal).

Similarly, let P′′ be the ratio of infected juveniles immediately after dispersal (i.e., the probability

that a randomly sampled juvenile is infected (in state-I) immediately after dispersal), and let P′′′

be the ratio of infected juveniles right before competition (i.e., the probability that a randomly

sampled jveniles is infected right before competition). Both P′′ and P′′′ may or may not be the

functions of the dispersal rate (depending on the models under study). Therefore, the values of P′′

and P′′′ in the mutant-native group (‘focal group’) are functions of the group-average dispersal

rates, which I clarify below.

2.2 Dynamics of horizontal transmission

Here, I describe the dynamics of horizontal transmission. Let qU (or qI = 1 − qU) be a generic

symbol for the ratio of uninfected (or infected) juveniles in a group. I assume that such contact

occurs in a one-shot, pairwise manner, and has no immediate effect on fecundity or survival. I use

a discrete SI-model (Kermack & McKendrick 1927 [32]):

q′U = qU − κqUqI,

q′I = qI + κqUqI, (2-1)
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where κ is a generic symbol for the probability of horizontal transmission (‘transmission rate’,

0 ≤ κ ≤ 1) given that a single uninfected juvenile had physical contact with an infected juvenile

(which occurs at rate qI).

For horizontal transmission before dispersal, we presume α = κ with qI = P so that:

P′ = P + αP(1 − P), (2-2)

whereas for horizontal transmission after dispersal, we presume β = κ with qI = P′′ so that:

P′′′ = P′′ + βP′′(1 − P′′). (2-3)

Given the setup, we can derive the fitness W, the expected number of adult offspring of the mutant,

as:

W :=
(1 − βvP′′0 )(1 − P′)(1 − d•U) + (1 − v)P′(1 − d•I )

(1 − βvP′′0 )(1 − P′)(1 − d0
U + (1 − c)dU) + (1 − v)P′(1 − d0

I + (1 − c)dI)
(2-4)

+
(1 − βvP′′)(1 − P′)(1 − c)d•U + (1 − v)P′(1 − c)d•I
(1 − βvP′′)(1 − P′)(1 − cdU) + (1 − v)P′(1 − cdI)

. (2-5)

Note that the discounting factor 1−v is multiplied with P′, accounting fot the reduced competitive

ability of infected juveniles. Also, P′′0 (defined as the probability that a randomly sampled juvenile

is infected right after dispersal in the focal group) is a function of (d0
U, d

0
I ), and the factor 1− vβP′′0

represents the competitive ability of juveniles (in the focal group) that were uninfected right before

dispersal; for derivation, see Appendix A, wherein the reproductive values are also taken into

account.

In order to investigate the emergence of disease state-dependence in dispersal, I first present

the case in which dispersal rates are the same between disease states; i.e., the dispersal rate exhibits

state-independence: dU = dI =: d (Model 1). Secondly, I assume the disease state-dependent case

in which the phenotype is represented by a pair of dispersal rates (dU, dI) that evolve jointly (Model

2).

2.3 Analyses

Because the main focus of this study is to capture the effect of horizontal transmission, I employ

the neighbour-modulated approach (Taylor & Frank 1996 [56], Frank 1998 [19], and Taylor et al.

2007 [54]). To analyse the evolutionary endpoints for the phenotype of dispersal rates (dU, dI), I

98



assume a vanishingly rare mutant that has a slightly different phenotype, d•U = dU + δU and d•I =

dI+δI, where the δ-terms are small deviations of mutant dispersal rates (denoted by (d•U, d
•
I )) from

wild-type dispersal rates (denoted by (dU, dI)). Because of the population viscosity, phenotypic

correlations can develop between phenotypes of the mutant juveniles and the mean phenotype

of juveniles in the focal group, where the latter is written as (d0
U, d

0
I ). Then, we can analyse the

direction of selection by the partial derivative of W with respect to the deviation δ:

D(d) :=
dW
dδ

∣∣∣∣
δ=0

=
∂W
∂d•
∣∣∣∣
d•=d0=d

+R
∂W
∂d0

∣∣∣∣
d•=d0=d

(2-6)

in the disease state-independent case. If D > 0 is satisfied, then higher dispersal rate is favoured.

Similarly, in the disease state-dependent case, the direction of selection on (dU, dI) can be

analysed by:

DU(dU, dI) :=
∂W
∂δU

∣∣∣∣
δU=δI=0

=
∂W
∂d•U
+ R
∂W
∂d0

U
,

DI(dU, dI) :=
∂W
∂δI

∣∣∣∣
δU=δI=0

=
∂W
∂d•I
+ R
∂W
∂d0

I
, (2-7)

where DU(dU, dI) > 0 (or DI(dU, dI) > 0) indicates that a higher value of dispersal for uninfected

juveniles (or that for infected juveniles) is likely to be favoured by natural selection. In the above

expressions, each derivative is evaluated at δU = δI = 0.

Here, R is the relatedness coefficient; i.e., the probability that a pair of randomly sampled

juveniles immediately after reproduction are identical-by-descent (namely, “whole-member relat-

edness”, Pepper, 2000 [47]). R is given by:

R =
dd0

dδ

∣∣∣∣
δ=0
, (2-8)

in the disease state-independent case, and

R =
dd0

U
dδU

∣∣∣∣
δU=δI=0

=
dd0

I
dδI

∣∣∣∣
δU=δI=0

, (2-9)

in the disease state-dependent case. The coefficient of relatedness, R, is dependent on the population-

average dispersal rates and thus needs the evaluation of stationary values. Under the Moran pro-
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cess, a stationary value for R is such that solves:

R =
1
N
+

N − 1
N

hR, (2-10)

where h is the probability that a randomly sampled adult is philopatric (‘backward philopatric

rate’), and is a function of dispersal rate(s). For the deviation of Equation (5-33), see Mullon &

Lehmann (2014) [46] and Appendix B.

The results are categorized according to the following steady-state relations: U-biased disper-

sal given dU > dI, I-biased dispersal given dU > dI, or no disease state-dependence given dU = dI.

3 Results

3.1 Model 1: Horizontal transmission before dispersal

In this section, I incorporate horizontal transmission occurring before dispersal only; then, it holds

that P′′ = P′′′ (the ratio of infected juveniles right after dispersal is equal to that right before

competition), while P is updated to be P′ following Equation (2-2).

3.1.1 Disease state-independent dispersal

When the dispersal rate is disease state-independent, fitness W is much simplified:

W =
1 − d•

1 − d0 + (1 − c)d
+

(1 − c)d•

1 − cd
, (3-1)

which is exactly the same as Taylor’s (1988) formulation [55]. By the neighbor-motulated expan-

sion, the condition for the evolution of increased dispersal rate D(d) > 0 reads:

D(d) = −C∅ + B∅R > 0. (3-2)

The first term, which is defined by −C∅ := −c/(1 − cd), is the fitness cost to dispersal; i.e., the cost

of dispersal (−c) divided by one minus the total loss from the gene pool due to the costly dispersal

(1 − cd). The second term, with B∅ := (1 − d)/(1 − cd)2, is the “indirect” fitness benefit from kin

competition avoidance, multiplied by the relatedness coefficient (R). This is a classical result that

the balance between the dispersal cost and benefit of kin competition avoidance can determine the

evolutionarily stable dispersal rate (Maynard Smith & Price 1973[53], Hamilton & May 1977[26],

Taylor 1988[55]). These terms necessarily appear in the present models throughoutly (see below).
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A convergently stable phenotype d = d∗ would solve D(d) = 0 [13]. After some algebra with

Equation (5-33) and backward philopatric rate h = (1 − d)/(1 − cd), we obtain:

d∗ =
R − c
R − c2 =

1
1 + Nc

. (3-3)

Thus, the convergently stable dispersal rate is equivalent to the well-known results demonstrated

by Hamilton & May (1977) [26], Frank (1986) [17], and Taylor (1988) [55], and any parameters

involving with parasite traits (β, v, and P-values) have no effect. This d∗ is evolutionarily stable

(proof follows from Ajar 2003, [1] and Massol et al. 2013 [42]; available upon request for the

author). Hereafter, I write d∅ := 1/(1 + Nc), which represents a benchmark result (‘Taylor’s

(1988) result’; Taylor 1988, [55]).

3.1.2 Disease state-dependent dispersal

Here, I investigate the case in which dispersal is conditional on the disease state, such that a

‘phenotype’ is a pair of dispersal rates, (dU, dI). If it holds generically that dU ! dI, then the

conclustion is that disease state-dependent dispersal can evolve. The direction of selection can be

captured by DU(dU, dI) and DI(dU, dI); however, as a result, the convergently stable dispersal rates

read:

d∗U = d∗I =
1

1 + Nc
= d∅. (3-4)

Thus, disease state-dependent dispersal is not evoked (but see Appendix C for a more precise

interpretation of this result in terms of structural stability), and Taylor’s (1988) result holds [55].

3.2 Model 2: Horizontal transmission after dispersal

In this section, I investigate the case in which horizontal transmission occurs after dispersal.

3.2.1 Disease state-independent model

The condition for increased dispersal rate in the form of Hamilton’s rule is equivalent to the pre-

vious model of disease state-independent dispersal (Equation (3-1)) and thus the condition for the

evolution of increased dispersal rate reads (Equation (3-2)):

−C∅ + B∅R > 0. (3-5)
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Consequently, evolutionarily stable dispersal rate reads d∗ = 1/(1 + Nc) = d∅. Thus, horizontal

transmission does not generate additional selective pressure for dispersal rate, and Taylor’s (1988)

result holds [55].

3.2.2 Disease state-dependent model

In this case, we are to analyse the joint evolution of a pair of dispersal rates, dU, dI. The condition

for the evolution of increased dispersal rate for uninfected or infected juveniles is, respectively,

give by:

DU ∝ −C + RB + (dU − dI)RKU > 0,

DI ∝ −C + RB − (dU − dI)RKI > 0 (3-6)

where C is the fitness cost to dispersal defined by:

−C :=
−c

(1 − vβP′′)(1 − P)(1 − cdU) + (1 − v)P′(1 − cdI)
, (3-7)

while B is the fitness benefit for reduced kin competition:

B :=
(1 − vβP′′)(1 − P)(1 − dU) + (1 − v)P′(1 − dI)
(
(1 − vβP′′)(1 − P)(1 − cdU) + (1 − v)P′(1 − cdI)

)2 . (3-8)

Additional terms involving KU and KI have appeared, that are positive-valued functions of (dU, dI):

KU :=
vβ(1 − v)P′(1 − P′)(1 − c)

(1 − vβP′′)
(
(1 − vβP′′)(1 − P′)(1 − cdU) + (1 − v)P′(1 − cdI)

)2 ·
P′(1 − cdI)

(
(1 − P′)(1 − cdU) + P′(1 − cdI)

)2

KI :=
vβP′(1 − P′)(1 − c)

(
(1 − βvP′′)(1 − P′)(1 − cdU) + (1 − v)P′(1 − cdI)

)2 ·
(1 − P′)(1 − cdU)

(
(1 − P′)(1 − cdU) + P′(1 − cdI)

)2 (3-9)

The K-terms clearly isolate the effects of horizontal transmission on the evolutionary dynamics of

disease state-dependent dispersal. It can be shown that dU = dI = d∅ (which solves DU = DI = 0)

is convergently unstable; more precisely, dU = dI = d∅ is an interior unstable equilibrium (saddle)

in the phenotypic space for 0 ≤ dU ≤ 1 and 0 ≤ dI ≤ 1. As a result, the evolutionary dynamics

exhibit bistability, where the convergently stable phenotype is located on the boundary of the

phenotypic space (Figure 2).

This trend is generic, so that any change in the given parameters does not erode the (structural)

stability of these evolutionary dynamics. Therefore, disease state-dependent dispersal (either d∗U >
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d∗I or d∗U < d∗I ) is convergently stable. In Figure 3, the convergently stable dispersal rate for

uninfected individuals is plotted for dI = 1 (left) or dI = 0 (right) as a function of transmission rate

(β, top panels: A and B) and as a function of virulence (v, bottom panels: C and D).

To summarize, the present models show that disease state-dependent dispersal can evolve by

avoiding transmission among kin, but its evolutionary endpoint depends on the timing of horizon-

tal transmission: if horizontal transmission occurs only before dispersal, disease state-dependent

dispersal is not evoked. However, if horizontal transmission occurs after dispersal, then disease

state-dependent dispersal is favoured. One of two opposite patterns for disease state-biased dis-

persal can emerge according to the selective forces that reinforce the trend of dispersal bias, and

the evolutionary forces that produce such two patterns are balanced.

4 Discussion

4.1 Emergence of disease state-dependent dispersal

Some well-established explanations for dispersal evolution have been put forward, including that

dispersal aids kin competition avoidance (Hamilton & May 1977 [26]) and inbreeding avoidance

(Perrin & Mazalov 2000 [48]), but is counterselected by the multiple costs of dispersal (Bonte et al.

2012 [5]). The present results highlight the pivotal importance of transmission avoidance among

kin, which would drive the evolution of disease state-dependent dispersal. Also, it is suggested

that evolutionary forces are balanced so that the two extremes of dispersal bias are, to some extent,

fairly likely to evolve when horizontal transmission occurs after dispersal. This indicates that the

selective pressures of transmission avoidance among kin by U-biased and I-biased dispersal are

generically of the same magnitude. This has not been intuitively obvious, and my theoretical

challenge has answered the question addressed above: the intensity of selection for U-biased or

I-biased dispersal are balanced, and we can expect both patterns depending on the evolutionary

history of dispersal.

In the case of disease state-independent dispersal (dU = dI) irrespectively of when horizon-

tal transmission occur (before and/or after dispersal), we recover the classical result obtained by

Taylor (1988) [55] such that benefit of reduced kin competition and cost of dispersal are balanced.

This can be understood from the expression of P′′, where the dependence of P′′ on dispersal rate

vanishes. In words, disease state-independent dispersal does not modify the local density of in-

fected juveniles, and thus disease state-independent does not confer any additional cost or benefit
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due to the avoidance of horizontal transmission among kin.

The most striking result is that, on the other hand, when horizontal transmission occurs after

dispersal, there are two convergently stable states, where either I-biased or U-biased dispersal is

expected. Why do such extreme patterns occur? This effect can also be seen from Equation (3-6),

because either DU or DI contains a term proportional to dU−dI (see the third terms in Equation (3-

6)), although these terms are of opposite signs. Thus, a small difference in dispersal rates would

push the state from the point dU = dI = d∅ to the boundary. For example, when the population

is at dU = dI = d∅ (i.e. population is at the evolutionarily stable states without state-dependent

dispersal), a small mutation that differentiates dU < dI would have, on average, a higher fixation

probability than expected for a selectively neutral mutation, and would eventually leads to dI = 1

by recurrent allelic substitutions under weak selection. The other extreme can be reasoned using

the same logic. Biologically, this evolutionary process and its endpoint strongly depend on the

genetic architecture as well as on the history of the emergence of phenotypic plasticity. Once

phenotypic plasticity is genetically established by e.g. genetic accommodation, this trend of biased

dispersal is self-reinforced. The aim of this study was not, however, to describe the whole process

of adaptation, but rather my present results clarify that disease state-dependent dispersal aids the

horizontal transmission among kin, isolated by the K-terms in Equation (3-6).

The convergently stable dispersal rate for uninfected individuals is plotted for dI = 1 (left)

or dI = 0 (right) as a function of transmission rate (β, top panels: A and B) and as a function of

virulence (v, bottom panels: C and D). In the left panels (A, C), a convergently stable dispersal rate

for infected juveniles is complete, dI = 1, and thus horizontal transmission does not occur among

kin. In this scenario, when the transmission rate (β) or virulence (v) is small, parasites have low

impacts, and the dispersal rate for uninfected juveniles is small so that the average group dispersal

rate is balanced around d∅, as neutral stability predicts. However, as β and v are increased, the

inclusive fitness effect via the change in competitive ability of philopatric uninfected juveniles is

negative; thus, a higher dispersal rate is likely to be favoured, leading to a higher dispersal rate for

uninfected juveniles. In contrast, when d∗I = 0 (Figure 3B, D), the transmission risk among kin is

severest. Then, increasing β would escalate the risk of transmission among kin, thereby favouring

higher dispersal for uninfected juveniles to escape from it. In contrast, as v is increased, the

negative impact of horizontal transmission becomes severer, and the relative number of infected

juveniles is decreased.

Our results show that virulence has dramatic impacts on the evolutionary endpoints for disease
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state-dependent dispersal, which can be deduced from the expression of KU and KI. One extreme

represents v = 0 (i.e., parasites have no impact on host fitness), evolutionary dynamics is reduced

so that d∅ is the unique, stable equilbrium. This is because v = 0 indicates that “there is no

parasite” and thus juveniles show no individual variation.

In other extreme, the impact of parasite is the severest when v = 1, i.e., when infected juve-

niles are bound to be mortal at the stage of competition; in this case, there is no selection upon

dispersal rate for infected juveniles because they are incapable of reproducing offspring irrespec-

tively of the dispersal rate. Thus, dispersal of uninfected juveniles confers no additional benefit

involving transmission avoidance among kin, thereby leading to dU → d∅. That is, kin compe-

tition avoidance vs. cost of dispersal are the sole driving forces, which recovers Taylor’s (1988)

result [55] (namely KU = 0 when v = 1; see Figure 3D). This trend is generally sound: as higher

virulence reduces the strength of kin competition by killing infected juveniles, lower dispersal rate

for uninfected juveniles is favoured (Figure 3). Hence, while infected juveniles have the incentive

to reducing the possibility of disease transmission to their siblings, selection upon dispersal of

uninfected juveniles is predominated by the evolutionary dynamics of dispersal rate for infected

juveniles.

In empirical studies of disease state-dependent dispersal, parasite species are identified and

thus more or less information of parasite traits is available. How can one clarify the patterns of

evolution of disease state-dependent/independent dispersal based on such information? I would

point out two promising avenues. Firstly, the timing of transmission may matter for coevolu-

tionary processes of host-parasite interactions (Day 2003 [11]): the present results predict that

pre-dispersal transmission does not impose any additional selective pressure, while post-dispersal

transmission has dramatic impacts. As far as we know, there is no study that investigates the tim-

ing of transmission in the context of metapopulations. Hence, there are more scope for assessing

the timing of transmission and its effect on disease state-dependent dispersal.

A second point concerns how to classify the petterns of disease state-dependent dispersal; the

classification of such patterns are not necessarily within the scope of our results (because there

are two candidates of steady states). Nevertheless, further investigations are possible on the ba-

sis of virulence-transmission tradeoff theory (Ewald 1993[14]), which represents one of the best

established paradigm that horizontally transmissible parasites are more virulent and exploit the

hosts, while vertically transmissible parasites tend to be benign. (Ewald 1993[14], Clayton &

Tompkins 1994[8]) This mechanism is explained by the “tragedy of the commons” (Alizon et al.
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2009[3]), because the parasites that inflict severe damage on their hosts may have lower repro-

ductive success through overexploitations. For example, ticks generally show strong virulence

and possess high abilities of horizontal transmission (Clayton & Tompkins 1994[8], Møller et

al. 2009[44]), while lice are able to vertically transmit with relatively low virulence (Clayton &

Tompkins 1994[8]). According to on our models, for low-virulence parasites (say v→ 0 and thus

KU,KI → 0), dispersal bias is not pronounced (Figure 2, A, C, D). The present results demon-

strate that more remarkable parasitic traits (higher virulence and higher transmission rate) would

produce clearer tendency for disease state-dependence in dispersal (Figure 2, B). Therefore, if the

virulence-transmission tradeoff hypothesis is taken into account, where horizontal transmissibility

is positively correlated with virulence, then the substantial trend both for host and parasite can

show pronounced variations of parasite traits and dispersal bias over taxa. This may explain the

reason for the limited availability of empirical or eperimental evidence for disease state-dependent

dispersal: for some cases, where parasite traits are outstanding (strong virulence with high hor-

izontal transmissibility), host develops disease state-dependent dispersal, while for other cases,

where parasite traits are benign (low virulence and low horizontal transmissibility), host shows

relatively mild or no responses to parasites in the dispersal propensities.

4.2 Social aspects of transmission avoidance

Empirical studies have revealed that either U-biased or I-biased dispersal can emerge. Examples

of some outstanding systems that are consistent with the present results can be found in Heinze

& Walter (2010) [28], Kralj & Fuchs (2006) [35], and Rueppell et al. (2010) [52]. Self-removal

is a well-appreciated concept, especially in bees, and is considered to be an extreme form of

altruistic dispersal. The present results suggest that the timing of horizontal transmission matter

in such a way that produces the bistability of evolutionary dynamics. This is simply because

dispersal does not affect the magnitude of the pre-dispersal infection risk. In other words, P′

(the probability that a randomly sampled juvenile is infected right before dispersal, which thus

represents the risk of horizontal transmission before dispersal) is independent of dispersal rates.

Disease state-independent dispersal does not, however, facilitate transmission avoidance. Thus,

these results suggest that “altruistic” disease state-dependent dispersal by infected individuals can

evolve by natural selection, which is consistent with self-removal in bee. From the point of view

of the infected individuals, dispersal can lower the risk of transmission to their siblings, which can

be interpreted as altruism towards related individuals. In contrast, from the point of view of the
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uninfected dispersers, dispersal would aid in escaping from disease transmission, but is associated

with the same cost that it would otherwise incur from transmission. Thus, the dispersal of infected

and uninfected juveniles may represent altruism (rather than spite), and these forces are balanced

at the evolutionarily stable strategy for disease state-dependent models (d∅). In general, “spite

and altruism are two sides of the same coin” (Lehmann et al. 2006 [36]) in the following sense:

spiteful behaviour oriented towards unrelated individuals can in turn increase the fitness of closely

related individuals. Similarly, altruistic acts oriented preferentially towards related individuals can

consequently decrease the fitness of unrelated individuals. This conceptual issue was pointed out

by Lehmann et al. (2006) [36] and West & Gardner (2010) [61], who highlighted the importance of

clarifying the differences. For example, I-biased populations would exhibit, on average, lowered

possibilities of transmission among kin. In this case, I-biased dispersal can be interpretted as

altruism. At the same time, however, I-biased dispersal potentiates the transmission of parasites to

unrelated juveniles, which can be interpreted as spiteful behaviour to unrelated individuals as third

party. Thus, the altrusim-spite interpretation based on our modeling approach completely matches

with those formulated in Lehmann et al. (2006) [36] and West & Gardner (2010) [61].

The present models are conceptually similar with those of Perrin & Mazalov (2000) [48], who

studied the effect of inbreeding risk on the evolution of sex-biased dispersal. In particular, they

showed that when the modes of social competition (local resource competition or local mate com-

petition) are fairly acting, no sex-biased dispersal is evoked. On the other hand, if sex-specific

competition is substantial, then male-biased dispersal can be favoured. The distinction from the

present models is that, in their models, encoutering with kin (with subsequent inbreeding) has di-

rect deleterious effects on fitness (namely, inbreeding depression, which reduces the fecundity of

a pair). In light of Perrin & Mazalov’s (2000) [48] seminal study, I speculate that parasite trans-

mission in a social group may represent one mode of social interaction (including competition),

which conforms with my interpretation of disease state-dependent dispersal as a spiteful/altruistic

behaviour. Indeed, the fact is well appreciated that social interaction (e.g. allo-grooming) mediates

horizontal transmission among group members (Theis et al. 2015; [58]). Hence, further empir-

ical studies are required to study the social behaviours with different consequences for disease

state-dependent dispersal.
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4.3 Future extensions

The present modelling approach was simplified to maintain tractability, which inevitably results in

certain limitations. For example, I have not considered the vertical transmission of parasites (and

subsequent dynamics of epidemiology), group size variations (e.g. Cote & Poullin 1995 [10]), the

possibility of host manipulation by parasites (Lion et al. 2006 [37]), genetic dynamics (“infection

genetics”; e.g. gene-for-gene model (Flor 1971 [16]), spatial variations in parasite prevalence

(which is here P), or parasite evolution (virulence, transmissibility, and/or infectivity). However,

pointing out these limitations highlights that further implementations on the basis of this modelling

framework should be possible, regardless of the choice of whether or not to use inclusive fitness

theory.

4.4 Conclusion

Our study represents the first attempt to analyse the effect of horizontal parasite transmission on the

evolution of dispersal, revealing that disease state-dependent dispersal can evolve. The altruistic

aspect of disease state-dependent dispersal is disclosed in social animals facing parasitism. Further

studies are required to fully understand the maintenance of sociality in the face of diseases, i.e.,

evolution of social immunity.
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Figure 1: The assumed life cycle is depicted for group size N = 2, where HT represents ‘horizontal
transmission’. Each individual produces an infinite number of juveniles. After reproduction, one
individual is chosen to die at random (the birth-death Moran demography). Juveniles are infected
at random with probability P. In Model 1, HT occurs before dispersal, resulting in the ratio of
infected juveniles to become P′. Juveniles disperse with success probability (1 − c). The ratio
of infected juveniles after dispersal is denoted by P′′. In Model 2, HT follows dispersal, which
updates the ratio of infected juveniles from P′′ to P′′′. Finally, juveniles compete for the single
vacant spot to form the next generaion, and infected juveniles have a lower competitive ability
(1−v). Note that ‘parasite-induced mortality (v) right before competition’ is equivalent to ‘reduced
competitive ability’.
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Figure 2: The evolutionary trajectory based on DU (the isocline is coloured in black), DI (the
isocline is coloured in grey) is depicted for N = 5, P = 0.4, and α = 0 (no horizontal transmission
before dispersal). An interior unstable equilibrium occurs at dU = dI = 1/(1 + Nc) (open circle).
As a result, two boundary equilibria occur (closed circles).
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Figure 3: The convergently stable dispersal rate for uninfected individuals is plotted for dI = 1
(left) or dI = 0 (right) as a function of transmission rate (β, top panels: A and B) and virulence
(v, bottom panels: C and D). The results for d∅ = 1/(1 + Nc) are also plotted for comparison
(dashed line). (A, C): When d∗I = 1, there is no transmission among kin. Increased β and v
would reduce the relative number of uninfected juveniles (because they are infected and suffer the
virulence), thereby increasing the intensity of kin competition. Thus, a higher dispersal rate for
uninfected juveniles is favoured. (B, D) When d∗I = 0, the transmission risk among kin is the
severest. Then, increased β would escalate the risk of transmission among kin, favouring higher
dispersal for uninfected juveniles to escape from it. In contrast, as v is increased, the negative
impact of horizontal transmission becomes severer, and the relative number of infected juveniles
is decreased.

5 Appendix

5.1 Invasion fitness and selection gradient

In the context of evolutionary dynamics, invasion fitness characterizes whether a vanishingly rare

mutant showing up in the population can increase its frequency. In a class structured population,

however, relative contribution of individuals in different classes affect the total gene frequency and

its asymptotic growth rate. The method proposed by Rousset (2004) [50] allows one to compute

them automatically. LetW be a reproductive success matrix , whose elements read:

W :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
WU|U WU|I

WI|U WI|I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (5-1)
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Here, the element WY|X denotes the expected number of successful juveniles in disease-state Y

(right before competition) born to the parent in disease-state X (right before competition). juvenile

succesfulness is characterized by winning a breeding spot.

Suppose that the population is monomoprhic; then, the elements of W (evaluated at δ = 0)

can be computed as:

WU|U =
1

1 − vP′′′
, (5-2)

WU|I =
1

1 − vP′′′
, (5-3)

WI|U =
1 − v

1 − vP′′′
, (5-4)

WI|I =
1 − v

1 − vP′′′
. (5-5)

It is easy to show that the dominant eigenvalue is 1, associated left eigenvector q and right eigen-

vector p reading:

qT = (1, 1), (5-6)

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − P′′′

P′′′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (5-7)

Thus, we can simply sum up the fitness gains via infected and uninfected juveniles right before

competition. Hereafter, we call P-values simply as ‘prevalence’, which defines the probabilities

that a randomly sampled juveniles at specific stages is infected.

When we compute the reproductive values, we have used P-values; of our interest is, however,
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Figure 4: A path diagram is shown to compute the variable dependence of invasion fitness W.
Any dispersal rates and neighbor-dispersal rates (shown in the middle row: d•U, d

0
U, d

0
I , d

0
I ) are

dependent on the mutation effects, δU, δI. These dispersal rates mediate the change in the variables
of fitness in the right row.

to compute the selective pressures, and thus below we use the following notations:

U•P := (1 − P′)(1 − d•U),

I•P := P′(1 − d•I ),

U•D := (1 − P′)(1 − c)d•U,

I•D := P′(1 − c)d•I ,

U0
P := (1 − P′)(1 − d0

U),

I0
P := P′(1 − d0

I ),

UP := (1 − P′)(1 − dU),

IP := P′(1 − dI),

UD := (1 − P′)(1 − c)dU,

ID := P′(1 − c)dI,

U0 := U0
P + UD,

I0 := I0
P + ID,

U := UP + UD,

I := IP + ID, (5-8)
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These quantities define the relative number of juveniles; for example, U•D denotes the relative

number of dispersed uninfected juveniles of the focal adult, I0
P denotes the relative number of

philopatric infected juveniles of the focal adult, and U0 reads the relative number of uninfected

individuals in the focal group immediately after dispersal (before horizontal transmission). The

other symbols can be read in a similar manner. Also note that the backward philopatric rate,

namely a probability that a randomly sampled adult individual was philopatric, reads:

h =
(1 − βvP′′)UP + (1 − v)IP

(1 − βvP′′)U + (1 − v)I
. (5-9)

From Equation (5-8) we can translate:

P′′′0 =
I0 + βU0 I0

U0+I0

U0 + I0 (5-10)

P′′′ =
I + βU I

U+I

U + I
, (5-11)

P′′0 =
I0

U0 + I0 , (5-12)

P′′ =
I

U + I
, (5-13)

P′ = P + αP(1 − P). (5-14)

Invasion fitness of a mutant adult reads:

W =
(1 − βI0

U0+I0 )U•P +
βI0

U0+I0 (1 − v)U•P + (1 − v)I•P
(1 − βI0

U0+I0 )U0 +
βI0

U0+I0 (1 − v)U0 + (1 − v)I0

+
(1 − βI

U+I )U•D +
βI

U+I (1 − v)U•D + (1 − v)I•D
(1 − βI

U+I )U + βI
U+I (1 − v)U + (1 − v)I

(5-15)

where the first term (or second term) accounts for the sum of fitness gains via philopatric juveniles,

(or that via dispersed juveniles, respectively). Partially using P′′0 and P′′ (prevalence immediately

after dispersal), W can be writte as:

W =
(1 − βvP′′0 )U•P + (1 − v)I•P
(1 − βvP′′0 )U0 + (1 − v)I0 +

(1 − βvP′′)U•D + (1 − v)I•D
(1 − βvP′′)U + (1 − v)I

=
G0U•P + (1 − v)I•P
G0U0 + (1 − v)I0 +

GU•D + (1 − v)I•D
GU + (1 − v)I

(5-16)

The term G0 := 1− βvP′′0 = 1− P′′0 + P′′0 (1− β)+ P′′0 β(1− v) accounts for the reduced competitive
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ability due to horizontal transmission; with a probability P′′0 , an uninfected juvenile encounter

with an infected juveniles (after dispersal), in which case, with a probability β he/she gets infected

and thus suffers the virulence. G0 represents the competitive ability of uninfected individuals in

the focal group (G = 1 − βvP′′), while G represents that in other groups. G takes into account the

effect of horizontal transmission.

Hereafter, we prefer to use Equation (5-16) over Equation (5-15) simply for convenience.

Hence, we regard W as a function of G0, U•P, U•D, I•P, I•D, U0, and I0, thereby expanding the

selective pressures in the neighbor-modulated way. This computation is successful in the point

that we can completely purify the effect of horizontal transmission, as we see below.

Selection gradient are computed from chain-rules. Under weak selection, selection gradient

reads:

DU(dU, dI) =
∂W
∂δU
,

DI(dU, dI) =
∂W
∂δI

(5-17)

where all the partial derivatives are evaluated at δU = δI = 0. Neighbor-modulated expansion

yields

DU(dU, dI) =
∂W
∂d•U
+ R
∂W
∂d0

U
,

DI(dU, dI) =
∂W
∂d•I
+ R
∂W
∂d0

I
. (5-18)

Here, R is the coefficient of relatedness, defined as the probability that a pair of randomly sampled

juveniles immediately after reproduction are identical by descent. R is independent of disease-

state (U vs. I), because infection occurs at random after reproduction irrespectively of whether

a juvenile is mutant or wild. Moreover, we can expand Equation (5-18) by recalling the variable

dependences (see the diagram in Figure 5.1):

DU(dU, dI) =
∂W
∂U•P

∂U•P
∂d•U
+
∂W
∂U•D

∂U•D
∂d•U

+ R
∂W
∂U0
∂U0

∂d0
U
+ R
∂W
∂G0
∂G0

∂d0
U
,

DI(dU, dI) =
∂W
∂I•P

∂I•P
∂d•I
+
∂W
∂I•D

∂I•D
∂d•I
+ R
∂W
∂I0
∂I0

∂d0
I
+ R
∂W
∂G0
∂G0

∂d0
I
. (5-19)

In each equation of Equation (5-19), the sum of first and second term corresponds to the fitness
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cost of dispersal, while the third term accounts for the avoidance of kin competition; the final term

accounts for the inclusive fitness effect of horizontal transmission (after dispersal), because β (hor-

izontal transmission rate after dispersal) is isolated in the expression. Coefficient of relatedness is

multiplied because transmission occurs locally.

Below, we evaluate each partial derivative (evaluated at δU = δI = 0):

∂W
∂U•P

∂U•P
∂d•U

= G(1 − P′)
−1

GU + (1 − v)I
∂W
∂U•D

∂U•D
∂d•U

= G(1 − P′)
1 − c

GU + (1 − v)I

∂W
∂U0
∂U0

∂d0
U
= G(1 − P′)

GUP + (1 − v)IP
{
GU + (1 − v)I

}2

∂W
∂G0
∂G0

∂d0
U
= (1 − P′)

βv(1 − v)(UIP − IUP)
{
GU + (1 − v)I

}2 · I
(U + I)2

∂W
∂U•P

∂U•P
∂d•I

= (1 − v)P′
−1

GU + (1 − v)I
∂W
∂I•D

∂I•D
∂d•I

= (1 − v)P′
1 − c

GU + (1 − v)I
∂W
∂I0
∂I0

∂d0
I
= (1 − v)P′

GUP + (1 − v)IP
{
GU + (1 − v)I

}2

∂W
∂G0
∂G0

∂d0
I
= −P′

βv(1 − v)(UIP − IUP)
{
GU + (1 − v)I

}2 · U
(U + I)2 (5-20)

Some algebra yields:

UIP − IUP = P′(1 − P′)(1 − c)(dU − dI). (5-21)

It is worthy noting that

∂h
∂G
=
∂W
∂G0 (5-22)

when the latter is evaluated δU = δI = 0; this partial derivative measures the effect of transmission

on the fitness via philopatric juveniles. Finally, we obtain the selective pressures by substituting
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Equation (5-20) into Equation (5-19) to obtain:

DU

G(1 − P′)
= −C + RB + R

βv(1 − v)P′(1 − P′)(1 − c)(dU − dI)

G
{
GU + (1 − v)I

}2 · I
(U + I)2

DI

(1 − v)P′
= −C + RB − R

βvP′(1 − P′)(1 − c)(dU − dI)
{
GU + (1 − v)I

}2 · U
(U + I)2 ,

(5-23)

where we use the notation for

−C :=
−c

GU + (1 − v)I
(5-24)

B :=
GUP + (1 − v)IP
{
GU + (1 − v)I

}2 . (5-25)

The third term in Equation (5-23) tells us the conditions for neutrality: evolutionary dynamics

exhibits neutrality DU/{G(1 − P′)} = DI/{(1 − v)P′} = RB − C, whenver one of the equalities

meets: β = 0 (transmission never occurs), v = 0 (no impact of parasites), P′ = 0 (there is no

infected juvenile at the stage of dispersal), P′ = 1 (there is no uninfected juvenile at the stage of

dispersal), c = 1 (disperser can never win a spot), or dU = dI (there is no dispersal bias); otherwise,

evolutionary dynamics exhibits an interior saddle. Because α does not appear in the expression

(but implicitly affects P′ = P+αP(1−P), which is always larger than 0 and smaller than 1 as long

as P ! 0, 1), α does not contribute to disease state-dependent dispersal. We would write

βv(1 − v)P′(1 − P′)(1 − c)

G
{
GU + (1 − v)I

}2 · I
(U + I)2 =: KU, (5-26)

βvP′(1 − P′)(1 − c)
{
GU + (1 − v)I

}2 ·
U

(U + I)2 =: KI (5-27)

5.2 Fitness in disease-independent dispersal

When dispersal rate exhibits unconditionality (dU = dI), fitness is rather simplified. Invasion

fitness reads:

W =
G0U•P + (1 − v)I•P
G0U0 + (1 − v)I0 +

GU•D + (1 − v)I•D
GU + (1 − v)I

(5-28)

=
1 − d•

1 − d0 + (1 − c)d
+

(1 − c)d•

1 − cd
, (5-29)
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which is the same as the fitness function when there is no horizontal transmission. Backward

philopatric rate h is simply h = (1 − d)/(1 − cd). Convergently stable dispersal rate d∗ is such that

solves dW/dδ = 0 evaluated at d = d∗. This condition yields

d∗ =
R − c
R − c2 . (5-30)

Since we are interested in studying steady states of the population, we ought to evaluate the sta-

tionary value for R. Let F be the probability that a pair of disinct adults are identical by descent,

namely the “others-only” coefficient of relatedness (Pepper 2000 [47]); In any generation, R and

F satisfy:

R =
1
N
+

N − 1
N

F, (5-31)

which is a well known result: with a probability 1/N, a single individual is sampled twice; oth-

erwise, two distinct individuals in the same group are identical by descent with a probability F.

Over two succesive generations, F obeys the recursion:

FNext =
2
N

hR +
N − 2

N
F. (5-32)

With the probability 2/N, (only) one of the pair of distinct adults is a new breeder such that has

filled a single vacant breeding-spot which was available because of the death of an adult in the

previous generation; in which case, they are identical by descent with the probability R given

that the new breeder was philopatric (which occurs with a probability h). On the other hand, with

probability (N−2)/N, two distinct individuals are both “survivors” from the previous generation(s),

in which case they are identical by descent with a probability F. After some arrangement with

Equation (5-31) and Equation (5-32), we obtain the stationary value of R that would satisfy:

R =
1
N
+

N − 1
N

Rh. (5-33)

Finally, h reads simply:

h =
1 − d
1 − cd

(5-34)
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in a monomorpchi population. The direct substitution of Equation (5-33) into Equation (5-30) is

possible, but we prefer to compute as implicitly as possible. Looking to the evolutionary stability

condition RB∅ − C∅ = 0, we multiply 1 − cd to obtain Rh = c with F = Rh; thus F = c at

equilbrium. Substituting R = 1/N + (N − 1)F/N (Equation (5-31)) into Equation (5-30) yields:

d∗ =
R − c
R − c2 (5-35)

=

1
N +

N−1
N F − c

1
N +

N−1
N F − c2

(5-36)

=

1
N +

N−1
N c − c

1
N +

N−1
N c − c2

(5-37)

=
1

1 + Nc
, (5-38)

as desired. Thus, disease state-independent dispersal model gives exactly the same result as that

obtained by Taylor (1988) [55].

5.3 No horizontal transmission after dispersal

When we consider no transmission after dispersal, we can simply assume β = 0 and hence G = 1.

Then, fitness function is simply

W =
(1 − P′)(1 − d•U) + (1 − v)P′(1 − d•I )

(1 − P′)(1 − d0
U + (1 − c)dU) + (1 − v)P′(1 − d0

I + (1 − c)dI)
(5-39)

+
(1 − P′)(1 − c)d•U + (1 − v)P′(1 − c)d•I
(1 − P′)(1 − cdU) + (1 − v)P′(1 − cdI)

. (5-40)

Recall that P′ is the prevalence immediately before dispersal. Here, we define the quantities of

immigration rate (given the survival during dispersal):

d• :=
(1 − P′)d•U + (1 − v)P′d•I

1 − vP′
, (5-41)

d0 :=
(1 − P′)d0

U + (1 − v)P′d0
I

1 − vP′
, (5-42)

d :=
(1 − P′)dU + (1 − v)P′dI

1 − vP′
. (5-43)

Then, invasion fitness w(d•, d0) := W(d•U, d
•
I , d

0
U, d

0
I ) can be reduced to:

w =
1 − d•

1 − d0 + (1 − c)d
+

(1 − c)d•

1 − cd
. (5-44)
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This indicates that the evolutionary dynamics exhibits neutrality not only in the first order (selec-

tion gradient) but in the full order (fitness function), and thus disease state-dependent dispersal is

not evoked.

Neutral stability is, in this system, characterized by two properties. Firstly, invasion fitness W

is a constant (W ≡ 1) on some set L. Namely,

w(d•, d0)
∣∣∣
d•=d0=d∅

≡ W
∣∣∣
(d•U,d

•
I )∈L≡ 1, (5-45)

where

L :=
{
(dU, dI)

∣∣∣∣
(1 − P′)dU + (1 − v)P′dI

1 − P′v
= d∅
}

(5-46)

Secondly, any point on L is convergently stable for each fixed values of parameters. L always

passes through d = d∅ as long as N and c are both fixed and β = 0; in words, α, v, P changes

the “slope” of L, but never affects the value of d∅ = 1/(1 + Nc). Thus, any points on L\{d∅}
would become unstable even with only slight changes in α, v, and/or P, while d∅ is always stable

independently of such parameters of parasitic impacts. Therefore, L/{d∅} is structurally unstable,

and we can conclude that convergently stable dispersal rate is d∅.
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