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Preface 

 

In nature, all organisms interact with other individuals of the same species and different 

species. In the gut of human, for example, there are a tremendously many bacteria. Gut 

flora are known to contribute to human health (Lupp et al. 2012). In this thesis, I report 

theoretical studies on the altruism of social amoeba and the mutualism between plant 

and fungus. 

 Altruism is cooperative behavior that an individual helps other individuals of 

the same species by paying cost. Eusociality of social insects, such as ants, bees and 

termites, is one of the most spectacular examples of altruism. In the insect eusocialty, 

only a small fraction of individuals reproduce and others help the reproductive 

individuals as workers or soldiers. Their altruism is very well explained by the theory of 

kin selection (Hamilton, 1964). In chapter 1, I focus on the altruism of social amoeba as 

represented by Dictyostelium discoideum. Social amoeba lives like a single cell amoeba 

when there are many foods such as bacteria. However, when bacteria are depleted, the 

number of cells aggregate and make a fruiting body. Fruiting body consists of spores 

and a stalk. A stalk supports spores for their dispersal. In the fluiting body formation of 

D. discoideum, some cells of an aggregate are differentiated to form stalk and die after 

dispersal of spores. Therefore, making a fruiting body is an example of altruism. 

However, this altruistic behavior is threatened by a mutant strain called cheater. A 

cheater makes less stalk when it is mixed with the wild type strain. Although some 

cheaters do not have the ability to form a stalk, other cheaters called "facultative 
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cheater" can make a stalk normally when they form a fruiting body by themselves 

(Strassmann & Queller, 2011). Cell differentiation is controlled by signaling chemicals, 

such as DIF-1(Kay et al., 1993) and c-di-GMP(Chen & Schap, 2012). In chapter 1, I 

construct a mathematical model of cell differentiation mediated by DIF-1 and discuss 

the evolution of cells with respect to their ability to secrete DIF-1 and to their sensitivity 

to DIF-1 produced by other cells.  

 Mutualism is cooperative behavior between different species. A familiar 

example is a relationship of a flowering plant and their insect pollinators. Many 

flowering plants make nectar, and give it to the insect that visits them. Insect can move 

a broad area and carry pollens of the plant. Mutualism also occurs on a smaller scale. 

For example, a unicellular organism Paramecium bursaria has hundreds of chlorella, 

Chlorella variabilis, within the cell. P. bursaria supplies CO2 and NH3 to C.variabilis. 

(Brown & Nielsen, 1974). On the other hand, P. bursaria can endure starvation because 

of sugar supplied by C.variabilis. An advantage of mutualism is that an organism can 

use the ability of the partner. In the case of P. bursaria and C. variabilis, P. bursaria 

acquires ability to photosynthesize by symbiosis with C. variabilis. Mutualism between 

plant and myccorhizal fungus is another example. Most terrestrial plants have fungi in 

its roots. Such fungi are called mycorrhizal fungi. Mycorrhizal fungi can increase 

tolerance to abiotic stress such as drought and heavy metals (Sikes et al. 2010). In 

chapter 2 of this thesis, I focus on the phosphorus uptake of fungus, or mycorrhizal 

fungi (Sikes et al. 2010). Plants can obtain carbon in the atmosphere by photosynthesis. 

However, they have to get nutrients from soil. Root of plant may be insufficient to 
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sequester nutrients in the soil. Since hypha of mycorrhizal fungi is much thinner than 

roots, fungi can collect soil nutrients more efficiently than the plant. In the mutualism 

between a plant and mycorrhizal fungus, the plant gives carbohydrate to the fungus and 

the fungus gives soil nutrition to the plant. In chapter 2, I consider the situation that both 

plant and fungus grow simultaneously, and discuss the optimal resource allocation of 

both parties to their partners. 

 These two chapters address the optimal behavior of organisms. Especially, in 

chapter 1, I showed that complex behavior of cheater in social amoeba can be explained 

by simple mathematical models for the evolution of cells' ability of producing and 

responding to the signaling chemical. Knowledge of molecular and cell biologies have 

been accumulated rapidly in recent years. Now it is a time for mathematical models to 

play an important role to bridges molecular and cell biologies and the behavior of the 

whole organisms and the evolution.  

 The followings are more detailed explanations for the contents of two 

chapters:  

 

Chapter 1:  

The social amoeba (or cellular slime mold) is a model system for cell cooperation. 

When food is depleted in the environment, cells aggregate together. Some of these cells 

become stalks, raising spores to aid in their dispersal. Differentiation-inducing factor-1 

(DIF-1) is a signaling chemical produced by prespore cells and decomposed by prestalk 

cells. It affects the rate of switching between prestalk and prespore cells, thereby 
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achieving a stable stalk/spore ratio. In this study I analyzed the evolution of the 

stalk/spore ratio. Strains may differ in the production and decomposition rates of the 

signaling chemical, and in the sensitivity of cells to switch in response to the signaling 

chemical exposure. When two strains with the same stalk/spore ratio within their own 

fruiting body are combined into a single fruiting body, one strain may develop into 

prespores to a greater degree than the other. Direct evolutionary simulations and 

quantitative genetic dynamics demonstrate that if a fruiting body is always formed by a 

single strain, the cells evolve to produce less signaling chemical and become more 

sensitive to the signaling chemical due to the cost of producing the chemical. In contrast, 

if a fruiting body is formed by multiple strains, the cells evolve to become less sensitive 

to the signaling chemical and produce more signaling chemical in order to reduce the 

risk of being exploited. In contrast, the stalk-spore ratio is less likely to be affected by 

small cheating risk. 

 

Chapter 2: 

Plant interacts with mycorrhizal fungus in the roots. Plant gives carbohydrate produced 

by photosynthesis to the fungus. On the other hand, fungus allocates soil nutrition such 

as phosphorus to the plant. Therefore, relationship between plant and fungus is 

mutualism. In this study, I analyzed optimal allocation of carbon by a plant to its 

mycorrhizal fungus, and the optimal allocation of phosphorus by the mycorrhizal 

fungus to the plant. I considered the resource allocation by both players that achieve the 

fastest growth of the whole system when it grows exponentially. I assume the resource 



PREFACE 
 

 8 

acquisition rates of Cobb-Douglas type. I also analyze the dynamic optimization 

condition (singular subarc) for each player to maximize its own fitness given the 

partner's growth schedule. As a result, each player should allocate more to the partner 

when the resource provided by the partner is more important to its own resource 

acquisition. The ESS resource allocation by each player is equivalent to the one 

achieving the cooperative optimum. 
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1. Introduction  

The cellular slime mold, or social amoeba, exists as a unicellular form that divides and 

multiplies rapidly when the microhabitat includes abundant bacteria. However, when 

food (i.e., bacteria) is depleted, cells aggregate to form a fruiting body (Bonner 1967) 

within which cells differentiate into spores and stalks. Some of these spores are able to 

find a new microhabitat with plenty of food and resume a unicellular phase with fast 

population growth. In contrast, stalk cells lift spores to aid in their dispersal and then die. 

Therefore, becoming a stalk cell is an altruistic behavior (Strassmann et al. 2000). In the 

field, social amoebae undergo a repeating cycle of proliferation and dispersal phases.  

 This system is an example of altruism and cell cooperation. Although a 

fruiting body is usually made of clones containing a single strain, in the laboratory 

social amoebae can make a fruiting body out of a mixture of two strains (Ostrowski et al. 

2008; Flowers et al. 2010). Some strains are called cheaters because they contribute less 

to stalk development and more to spore development than the wild type when they are 

mixed (Strassmann et al. 2000). These cheaters have a reproductive advantage over the 

wild type due to the higher proportion of spores, and will spread within the population 

(Gilbert et al. 2007). Some cheaters can make a fruiting body in a single-strain 

aggregation that looks similar to that of the wild type (Santorelli et al. 2008; Strassman 

and Queller 2011). Several mechanisms to prevent cheaters from spreading in a 

population have been identified. Cells may make a fruiting body preferentially with the 

same strain of Dictyostelium discoideum (Queller et al. 2003; Ostrowski et al. 2008; 



CHAPTER 1. EVOLUTION OF STALK/SPORE RATIO 

 12 

Flowers et al. 2010), as well as with a related species, D. purpureum (Mehdiabadi et al. 

2006), and the bacteria Myxococcus xanthus (Fiegna and Velicer 2005). Altruistic 

behavior, such as making a fruiting body, evolves easily if an organism repeatedly 

interacts with its identical clone or its close relatives (Hamilton, 1964). In addition, 

Foster et al. (2004) showed that the gene dimA is not only necessary for making a 

fruiting body, but is also needed to become spore in mixed fruiting body; therefore, this 

pleiotropy reduces the risk of cheating in D. discoideum.  

 This system has also been studied theoretically as a case study for the 

maintenance of altruism. Many theoretical models that have evaluated the evolution of 

cooperation simply assumed cells to have different degrees of cooperation, or 

tendencies to become a stalk cell, without specifying the underlying mechanism 

(Matsuda and Harada 1990; Brannstrom and Dieckmann 2005; Dionisio and Gordo 

2007). However, it has been known for many years that the developmental fate of a cell 

in a social amoeba is not fixed, but is decided based on interactions with other cells in 

the aggregation. A cell aggregation including both prespore cells and prestalk cells may 

be divided experimentally into two: one consisting mostly of prespore cells and the 

second consisting mostly of prestalk cells. In both of these groups, the relative 

abundance of the two cell types changes, resulting in an intermediate ratio of the two 

cell types (Kay et al. 1993). Thus, a proper ratio of stalk cells and spore cells is 

recovered spontaneously. Such complex behaviors in developmental stage can be 

explained by simple molecular mechanism. 

 In the social amoeba Dictyostelium discoideum, the differentiation of cells in 
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an aggregation into stalk versus spore cells is controlled by the chemical signals. 

Recently Chen and Schaap (2012) found cyclic di-(3’: 5’)-guanosine (c-di-GMP) 

monophosphate triggers stalk cell differentiation. Although c-di-GMP will become 

major factor of cell differentiation, the study is not sufficient to make model. Therefore, 

in this chapter, I focus on differentiation inducing factor-1 (DIF-1) which has been 

studied very well in D. discoideum  (Town et al. 1976). It is produced by prespore 

cells (Kay and Thompson 2001) and decomposed by prestalk cells (Kay et al. 1993). In 

addition, it induces the differentiation of prespore cells into prestalk cells and 

suppresses differentiation of prestalk cells into prespore cells (Town et al. 1976) . DIF-1 

is an important factor that influences the altruistic behavior of D. discoideum. Negative 

feedback from cell determination mediated by DIF-1 results in a stable ratio of 

prestalk/prespore cells that will later differentiate into stalks and spores.  

 Parkinson et al. (2011) proposed a mathematical model in which the fraction 

of cells constituting the stalk of the fruiting body is a product of two factors, both being 

normalized between 0 and 1. The first factor is cell sensitivity (called responsiveness) to 

a stalk-inducing factor (StIF) such as DIF-1. The second factor is the relative magnitude 

of the production of StIF, the level of which is assumed as an arithmetic average 

production rate of cells. This model predicted that if a mutant with a slower production 

rate of StIF and a sensitive response to StIF is mixed with wild type, the mutant cells 

become stalks more frequently than the wild type cells. Subsequently they produced a 

mutant with this property (i.e., a mutant of the lirA gene that produced less StIF and had 

a higher response to StIF than the wild type). This result showed that one gene could 
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control both StIF production and responsiveness. However, their model does not 

consider the evolution of sensitivity nor production. 

 In this chapter, I model the mechanism of cell differentiation in D. discoideum 

controlled by a signaling chemical within cell aggregation, and discuss how the number 

of different cell types may be adjusted. When two strains are mixed in a fruiting body, 

one strain may predominantly become prespore cells, while the other contributes more 

to prestalk cells, despite the fruiting body being formed by cells of single strains with 

the same stalk/spore ratio. I then consider the evolution of parameters such as the rates 

of production and decomposition of the signaling chemical, the rates of cell 

determination and switching, and cell sensitivity to the signaling chemical concentration. 

I show that if two strains are mixed in a fruiting body, the social amoeba evolves to 

produce more signaling chemical than if the strains are never mixed. When each fruiting 

body consists of cells from the same strain, the ratio of prestalk cells to prespore cells 

quickly reaches the optimal value. Evolution slows down due to the cost of producing 

the chemical signal, the rate of chemical production decreases and the cell sensitivity to 

the chemical increases. In contrast, if multiple strains are mixed in a fruiting body, a 

higher production rate of chemicals and an intermediate level of sensitivity evolve in 

order to prevent the risk of being exploited by a cheater.  

 

2. Model 

I begin with the control of the stalk/spore cell ratio within an aggregation consisting of a 

single strain by the signaling chemical. Within the aggregation, cells change state 
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between prespore cells and prestalk cells. After the proportion of cells in these states 

reaches equilibrium, prestalk cells and prespore cells develop into spores and stalks, 

respectively.  

 Here, I consider the dynamics of the cell state change illustrated in Figure 1. I 

denote the number of prespore cells by P  and that of prestalk cells by T . Cells 

change their states at the rates controlled by the amount of the signaling chemical, 

which is denoted by C.  

 
dT
dt

= f C( )P ! g C( )T ,     (1a) 

 
dP
dt

= !
dT
dt

.      (1b) 

Here the total number of cells N = P +T  is a constant. In Eq. (1a), f C( )  is the rate 

of switching from prespore cells to prestalk cells. f C( )  is an increasing function of C, 

implying that signaling chemical promotes conversion from prespore cells to prestalk 

cells. g C( )  is the rate of switching from prestalk cells to prespore cells. Because the 

signaling chemical suppresses this conversion, g C( )  is a decreasing function of C. I 

represent the rates of switching between prespore cells and prestalk cells as follows:  

 f C( ) = f0C ,       (1c) 

 
g C( ) = g0

C
 ,      (1d) 

where f0  and g0  are constants indicating the rate of conversion. 

 The concentration of the signaling chemical follows: 

 
dC
dt

= aP ! bCT .      (2) 

The first term on the right hand side indicates that the signaling chemical is secreted by 
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prespore cells at a rate of a  per cell. In contrast, prestalk cells have an enzyme called 

DIF dechlorinase, which inactivates the signaling chemical. Because DIF dechlorinase 

is known to be localized within prestalk cells, I assume that the rate of inactivation of 

the signaling chemical by prestalk cells follows the law of mass action: i.e., the rate 

increases in proportion to the substrate concentration. In Eq. (2), the rate of 

decomposition per cell is bC, proportional to the amount of signaling chemical, where b 

is a proportionality coefficient of the inactivation of signaling chemical by a prestalk 

cell.    

 

2.1. Ratio of prestalk cells to prespore cells 

Figure 2a illustrates the time course of the cell fractions in each state, which is given by 

Eq. (1). An intermediate ratio of T to P that is globally stable exists. Irrespective of the 

initial value, the ratio of prestalk cells to prespore cells converges to that value. I can 

calculate that ratio at equilibrium as follows:  

 

! 

ˆ T 
ˆ P 

=
f0

g0

" 

# 
$ 

% 

& 
' 

1 3
a
b
" 

# 
$ 
% 

& 
' 

2 3

.      (3) 

Symbols with a hat indicate the values at the equilibrium of Eq. (1). The proportion of 

prespore cells to prestalk cells depends on 

! 

f0 g0 , which is the relative sensitivity to the 

signaling chemical between two reactions. It also depends on 

! 

a b, the ratio of the 

secretory capacity of signaling chemical and the inactivating capacity of signaling 

chemical.  

 Note that the equilibrium ratio of prespore cells and prestalk cells given by Eq. 
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(3) is independent of the total number of cells N. This explains an empirical observation 

that, after the cell mass divides, the cells in each new cell mass can again differentiate 

and achieve a stable proportion of prespore and prestalk cell types (Kay and Thompson 

1999), and that the final proportion is independent of the total number of cells N  (Kay 

et al. 1993; Loomis 1996). Eq. (3) also shows that two strains may have exactly the 

same stalk/spore ratio if the combination of parameters given by Eq. (3) is the same 

between strains, even if their individual parameters differ (see Fig. 2a).  

 

2.2. Mixture of strains  

Next, I consider the case in which multiple strains are mixed in the same fruiting body. I 

assume that there are two strains indicated by suffix i (=1, 2), and that both strains 

secrete and inactivate the same chemical, signaling chemical. Further, cells of the two 

strains switch between the two states according to the concentration of signaling 

chemical. Ti  and Pi  are the numbers of prestalk cells and prespore cells of strain i , 

respectively. The dynamics are as follows: 

 dTi
dt

= fi C( )Pi ! gi C( )Ti ,  i=1, 2.   (4a) 

 dPi
dt

= !
dTi
dt

,   i=1, 2.   (4b) 

I assume that growth rate is the same between strains. Following this assumption, each 

strain shares 50% of the total cell number N, and I have 

! 

Ti + Pi = N 2 for i=1, and 2. 

! 

fi C( ) = f0iC  is the rate of switching from a prespore cell to a prestalk cell of strain i , 

and 

! 

gi C( ) = g0i C  is the rate of switching from a prestalk cell to a prespore cell of 
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strain i . Cells of different strains may switch their states, but their sensitivity to the 

signaling chemical may differ. ai  and bi  are the production rate and inactivation rate 

of strain i, respectively. The dynamics of the chemical signal is given by:  

 

! 

dC
dt

= aiPi " biCTi( )
i=1

2

# .     (4c) 

 Figure 2a illustrates a case in which each fruiting body consists of a single 

strain. Here, two strains form a fruiting body of the same ratio of T to P when each 

fruiting body consists of cells from the same strain. However, when the strains are 

mixed in a fruiting body with 1:1 ratio, one strain develops more prespore cells and the 

other strain develops more prestalk cells (Fig. 2b). These values are calculated by Eqs. 

(4). The strain that contributes less to stalk development may be called a cheater 

(Strassmann et al., 2000). 

 For the equilibrium condition of Eq. (4a), I have the following equation for 

the stalk/spore ratio: 

 

! 

ˆ T i
ˆ P i

=
f0i

g0i

ˆ C 2,  i=1 and 2,   (5a) 

 

! 

ˆ C =
a j

ˆ P jj
"

b j
ˆ T jj

"
.      (5b) 

Eq. (5a) indicates that the stalk/spore ratio at equilibrium is proportional to the ratio 

! 

f0i g0i . Hence, if there are two aggregated strains that differ in this ratio, the one with 

the smaller ratio can be regarded as a cheater because it contributes less to stalk 

formation. On the other hand, the cheater stain may not have a smaller stalk/spore ratio 

when it forms a fruiting body consisting of cells from the same strain. This ratio is 
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given by Eq. (3), which depends not only on 

! 

f0 g0 , but also on 

! 

a b. Thus, this simple 

model explains opponent-dependent cheating (Strassmann et al., 2000).  

 

3. Evolution  

When food is abundant, cells of D. discoideum multiply by cell division; however, 

when they face a shortage of food, they start forming fruiting bodies. Only spore cells 

can disperse to new microhabitats with food, but the dispersal success of spore cells 

depends on the number of stalk cells that lift up the spores. This cycle of unicellular life 

with asexual proliferation and fruiting body formation with dispersal occurs repeatedly. 

If the whole population is composed of multiple strains that differ in the number of 

surviving spore cells, the strain with the highest expected number of surviving spore 

cells increases in proportion, and eventually dominates the population after many cycles 

of proliferation and dispersal phases. In this section, I model this process of natural 

selection and discuss the evolutionary outcome.  

 

(a) No mixing of strains in a fruiting body 

I begin with the case in which each fruiting body consists of a single strain. I consider a 

population composed of two strains: 

! 

" and 

! 

1" # are the fractions of strain 1 and 

strain 2 in the beginning of a cycle, respectively. Suppose that each fruiting body 

includes N cells. These cells differentiate into stalk cells and spore cells, following the 

procedure described in the last section. Stalk cells and spore cells are determined by the 

prestalk cells and prespore cells at the equilibrium of the dynamics Eqs. (1) and (2). 
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These values are calculated by Eq. (3) with 

! 

ˆ P = N " ˆ T .  

 The success of dispersal and settlement to a new microhabitat with a 

sufficient amount of food is an increasing function of the number of stalk cells and is 

denoted by 

! 

S ˆ T ( ) . Specifically, I assume the following dispersal success function: 

 

S T̂( ) = S0T̂
l

! l + T̂ l .    (6) 

T̂  is the total number of prestalk cells in the equilibrium of Eqs. (1) and (2). Prestalk 

cells at equilibrium will later differentiate into stalk cells. If the number of prestalk cells 

is too small, spores may slip from the top of a fruiting body (Saito et al. 2008). 

Therefore, S T̂( )  is very small if the number of stalk cells is small. Dispersal success 

increases with the number of stalk cells, but the rate of increase becomes lower for a 

large stalk cell number. Eq. (6) saturates for a very large T. The parameter α 

expresses the number of prestalk cells when S T̂( ) = 0.5 . Parameter l specifies the way 

the success rate increases with T. If l is 1, the success rate increases linearly for small T. 

If l is 2, the success rate increases with T as a quadratic function for small T, and the 

whole curve is of an S-shape. If l is large, the success rate is close to a step function -- it 

is very small for T less than α, and close to the maximum if T is larger thanα. The 

same function is used for describing biochemical reaction rate, where l is called Hill 

coefficient. Although I show the results only for the case l=2 in figures, the results did 

not change much if l=1.  

 In addition, I consider the cost of signaling chemical secretion, which is 
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expressed as a factor e!k ai . k  is the magnitude of the cost to produce each unit 

amount of signaling chemical. Although signaling chemical itself is a small chemical, 

many proteins are involved in synthesizing it (Kay et al. 1999; Saito et al. 2008). Here, I 

simply assume that there exists some cost for producing the signaling chemical. The 

number of surviving spores of a fruiting body is a product of the number of prespore 

cells at equilibrium ( P̂ ), the dispersal success function ( S T̂( ) ), and a factor indicating 

the signaling chemical secretion cost ( e!k ai ). I assume that the cost of changing 

sensitivity is negligible, because there are many ways to change sensitivity such as 

changing conformation of receptor that is not necessarily accompanied by a significant 

cost. For a fruiting body composed only of strain i  cells, the number of surviving 

spores of strain i  is: 

 

! 

Wi = ˆ P iS ˆ T i( )e"k ai ,  for i=1, 2.   (7) 

! 

Wi  is proportional to the fitness of strain i. The fraction of strain 1 at the beginning of 

the next cycle can be expressed in terms of the fraction of strain 1 in the current cycle.  

 

! 

"next =
W1"

W1" +W2 1# "( )
.     (8) 

If this process of natural selection repeats over many generations, one strain may 

outcompete the other. If mutation introduces a new genotype into the population, it may 

go extinct or replace the old type. Mutation and replacement occur many times over the 

course of evolution, and the traits of the organism change slowly.  

 Figure 3a illustrates the evolutionary changes in the production rate (a) and 

the sensitivity to the chemical (f0) caused by recurrent invasion of mutants and 
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subsequent replacement. Because the mutants are assumed to be close to the parent in 

phenotype, evolution appears as a continuous change in the traits. The horizontal axis 

shows the production rate of signaling chemical a, and the vertical axis shows the 

sensitivity of cells to the signaling chemical. The traits quickly converge onto a curve in 

which the optimal ratio of stalk cells to spore cells is realized (see below). After the 

convergence to this curve, changes along the curve occur slowly, where the production 

rate 

! 

a decreases and the sensitivity 

! 

f0  increases.  

 If mutants are close to the phenotype of the parent, then the population should 

show continual and smooth changes in phenotype, which can be described in terms of 

multivariate quantitative genetics (Lande 1976; Barton and Turelli 1991; Iwasa et al. 

1991) or of adaptive dynamics (Mets et al. 1992; Dieckmann and Law 1996; Geritz et al. 

1998).  

 In Appendix A, I derive the evolutionary dynamics of parameters, such as the 

rate of signaling chemical production a and the sensitivity of the switching rate to the 

chemical f0, with other parameters (

! 

b and g0) fixed. I first calculate the fitness of a 

mutant in the population occupied by the resident and then derive the selection gradient 

from the differential fitness. The following equations describe quantitative traits (Iwasa 

et al. 1991): 

 

! 

"a 
"f 0

# 

$ 
% 

& 

' 
( =

Ga B
B Gf0

# 

$ 
% 

& 

' 
( 
)a

) f0

# 

$ 
% 

& 

' 
( ,     (9a) 

where the left hand side is a vector of a single generation change in the two traits. The 

matrix on the right hand side is the additive genetic variance-covariance matrix, where 
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! 

Ga  and 

! 

Gf0
 are additive genetic variances of 

! 

a  and 

! 

f0 , respectively, and B is the 

additive genetic covariance between these two traits. The right-most vector is for the 

selection gradients with the following elements:  

 

! 

"a =
1
S
dS
dT

#
1

N #T
$ 

% 
& 

' 

( 
) 
*T
*a

# k ,     (9b) 

 

! 

"f0 =
1
S
dS
dT

#
1

N #T
$ 

% 
& 

' 

( 
) 
*T
*f0

.     (9c) 

The factor common to both quantities is 

! 

dS
dT( ) S "1 N "T( ) = d

dT ln S T( ) • N "T( )( ) . See 

appendix A for the derivation of Eq. (9).  

 If I neglect k, the dynamics Eq. (9) indicates a monotonic increase in 

( ) ( )TSTN •−  by the evolutionary changes in the traits. The fast dynamics would then 

show quick convergence to the combination of parameters that achieves the optimal 

stalk size maximizing the number of surviving cells, ( ){ }TSP
NPT

•
=+

max . On a 

! 

a, f( ) -plane, the points that achieve the optimal T appear as a curve 

! 

f0a
2 = constant . 

There are numerous ways to realize the optimum fraction of prestalk cells, and all the 

points on this curve are equilibria of the fast dynamics with k neglected.  

 After convergence to this curve, the system moves slowly along it, due to the 

cost of producing signaling chemical, 

! 

k > 0 . The system moves in the direction of 

reducing the cost of producing signaling chemical; namely a decreases. The analysis in 

Appendix A shows that, if strains do not mix, cells evolve to produce less signaling 

chemical and to be more sensitive to the chemical (Fig. 3a). In this way, cells can 

reduce the signaling chemical secretion cost and maintain the optimal proportion of 

prestalk cells and prespore cells.  
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(b) When a fruiting body consists of multiple strains 

I next consider the case in which some fruiting bodies are a mixture of two strains. 

Specifically, I consider the following scenario. In the beginning of the 

feeding-proliferation phase, a single cell may start to proliferate rapidly. When the cell 

number reaches N, a shortage of food in the microhabitat is experienced, triggering the 

formation of an aggregation. The cells then form a fruiting body by the previously 

described mechanism. In this case, each fruiting body is composed of cells of a single 

strain. 

 In contrast, the feeding-proliferation phase may start from two initial cells that 

divide and increase in number at equal rate. When the total number of cells reaches N, 

the food in the local microhabitat is depleted. Half of N cells originated from a single 

cell and the other half originated from the other cell. In this case, a single fruiting body 

might be a mixture of two strains forming a single fruiting body if the initial two cells 

are of different strains. 

 Let m be the fraction of fruiting bodies consisting of cells originating from the 

two initial cells, and 1!m  be the fraction of fruiting bodies consisting of cells 

originating from a single cell. Note that all of the fruiting bodies include the same 

number of cells N. Let 

! 

" be the fraction of cells of strain 1 at the beginning of the 

feeding-proliferation phase of a cycle.  

 In fruiting bodies consisting of cells from a single initial spore, the fruiting 

body consists of strain 1 only, or of strain 2 only, with fractions of 

! 

" and 

! 

1" #, 
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respectively. The number of successfully dispersed spores from a fruiting body of strain 

i cells is given by Eq. (7).  

 In contrast, among fruiting bodies each starting from two initial spores the 

body consists of cells from strain 1 only, or strain 2 only, or an equal mixture of strain 1 

and strain 2, the frequencies of which are 

! 

"2, 

! 

1" #( )2 and 

! 

2" 1# "( ), respectively. The 

number of successfully dispersed spores is also given by Eq. (7) if the original two cells 

are of the same strain. However, if a fruiting body is made of two different strains, the 

number of surviving spores of strain 1 and strain 2 are: 

 

! 

W1
mix = ˆ P 1

* • S ˆ T 1
* + ˆ T 2

*( )e"k a1 ,     (10a) 

 

! 

W2
mix = ˆ P 2

* • S ˆ T 1
* + ˆ T 2

*( )e"k a2 ,     (10b) 

respectively. Symbols with an asterisk are for the quantities in a fruiting body with two 

different strains, which are calculated from Eq. (5) and 

! 

T1
* + P1

* = T2
* + P2

* = N 2. The 

survivorship of spores depends on the sum of the number of prestalk cells, 

! 

ˆ T 1
* + ˆ T 2

* . 

Note that if cells of two strains behave exactly the same way, 

! 

W1
mix =W2

mix

 
being equal 

to half of 

! 

W1 =W2 holds, because the total number of prespore and prestalk cells 

combined from each strain is equal to 

! 

N 2.  

 Noting that 1-m and m are the fractions of fruiting bodies starting from one 

cell and two cells, respectively, the fraction of fruiting bodies consisting only of strain 1 

is 

! 

1"m( )# +m#2. In a similar manner, the fraction of fruiting body consisting only of 

strain 2 is 

! 

1"m( ) 1" #( ) +m 1" #( )2. The fraction of fruiting body with a 50% mixture of 

the two strains is 

! 

m • 2" 1# "( ) . The number of cells of strain 1 and of strain 2 are: 
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! 

R1 = 1"m( )# +m#2{ }W1 + 2m# 1" #( ){ }W1
mix,   (11a) 

 

! 

R2 = 1"m( ) 1" #( ) +m 1" #( )2{ }W2 + 2m# 1" #( ){ }W2
mix .  (11b) 

Their relative fraction is equal to the fraction of strain 1 at the beginning of the next 

cycle.  

 

! 

"next =
R1

R1 + R2
.      (11c) 

Repeating these dynamics, I have an equation describing whether a mutant strain can 

invade and replace the resident strain.  

 If mutations occur recurrently and if the mutants are close to the parent in 

phenotype, the evolutionary trajectory of traits can be modeled; Figure 3 illustrates 

examples. Unlike in the case without mixing shown in Figure 3a, now the evolutionary 

equilibrium has a positive rate of chemical production 

! 

a  and an intermediate level of 

sensitivity to the chemical 

! 

f 0  (Fig. 3a). Figure 3b shows the evolutionary trajectories 

when the degree of mixing m is larger than in Figure 3b. Evolution would produce the 

equilibrium state with a faster production rate and lower sensitivity.  

 Figure 4a illustrates that the equilibrium values of the production rate of 

signaling chemical 

! 

a decreases and the sensitivity 

! 

f0  increases as the magnitude of 

mixing of different strains in a fruiting body m increases. However, the fraction of 

prestalk cells decreases very little even if m increases (Fig. 4b).  

 In Appendix B, I analyze the selection gradient of this system by calculating 

the differential fitness between a mutant and a resident strain when the two strains have 

similar parameters: 

! 

f0 , 

! 

g0, 

! 

a , and 

! 

b. Quick convergence of the system to the optimal 
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fraction of stalk cells occurs first, resulting in a point on the curve 

! 

f0a
2 = const . This is 

followed by two additional terms: the cost of producing signaling chemical (k) appears 

in the dynamics of 

! 

a , which tends to move the system toward a lower production rate a 

and a higher sensitivity 

! 

f0 . In contrast, a term in the dynamics of sensitivity 

! 

f0  has a 

negative sign, which results in a system with lower sensitivity to signaling chemical 

(small 

! 

f0 ) and a higher production rate (larger a). An opportunity to be exploited by 

other strains drives the evolution of lower sensitivity. As a consequence of balance 

between these two forces, the final equilibrium is determined where both the sensitivity 

to the chemical and the production rate of the chemical are of an intermediate 

magnitude. The term to reduce the sensitivity 

! 

f0  is proportional to m, the fraction of 

fruiting bodies that are a mixture of the offspring of two cells. As m increases, 

! 

f0  

becomes smaller and a becomes larger. This is clearly shown in Figures 3 and 4.  

 

4. Discussion 

In this chapter I studied the evolution of the stalk/spore ratio in the social amoeba, or 

cellular slime mold, which is a problem of altruism or cooperation because a cell 

contributing to the stalk is a self-sacrificing action to help other cells to disperse. Many 

previous theoretical studies of this system assumed that each cell had a fixed probability 

to commit an altruistic act (Matsuda and Harada 1990; Brannstrom and Dieckmann 

2005; Dionisio and Gordo 2007), neglecting the mechanism for cell-cell interactions via 

the diffusing chemical.  

 I first modeled the production and decomposition of signaling chemical by 
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prespore cells and by prestalk cells, respectively, and the switching rate of cell states 

depending on signaling chemical concentration. This can be used to explain a cheating 

behavior observed in Dictyostelium discoideum (Strassmann and Queller 2011) wherein 

a mutant cell with a higher 

! 

f0 g0  ratio but a lower 

! 

a b ratio than the wild type can 

have exactly the same stalk/spore ratio in a single-strain fruiting body. However, when 

the mutant cells are mixed with the wild type cells in a single fruiting body, the mutant 

cells can predominantly become prespore cells, contributing little to stalk formation. 

This cheating behavior can be understood in terms of the cell's lower sensitivity to the 

signaling chemical and faster production of the signaling chemical.  

 I then discussed the evolutionary change of each rate parameter, including the 

production rate and decomposition rate of signaling chemical, and cell sensitivity to 

signaling chemical for the switching rate in two different directions (i.e., from a 

prespore cell to a prestalk cell, and from a prestalk cell to a prespore cell). By direct 

computer simulations of the recurrent invasion of mutants that are close to the parent 

type, subsequent replacement would cause an evolutionary trajectory as illustrated in 

Figure 3. The traits first converge quickly to a curve, followed by a slow change along 

the curve. To understand this evolutionary trajectory, I developed a quantitative genetic 

formalism, which explained that if each fruiting body is formed from cells of a single 

strain, then the evolution of parameters should result in approximately the maximum 

number of surviving spores 

! 

max
T
S T( ) • N "T( ) . After realizing the optimal stalk size 

by this quick evolution, the cells then evolve slowly to produce less chemical and be 

more sensitive to the chemical, due to the cost of producing signaling chemical.  
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 However, in the field, different strains of social amoeba exist in close 

proximity (Strassmann et al. 2000), suggesting some opportunity for different strains to 

mix in a fruiting body (Fortunato et al. 2003). In the laboratory I can make a fruiting 

body from a mix of two strains. If two strains mix, our model predicts that the social 

amoeba will evolve to produce more signaling chemical and cells will become less 

sensitive to signaling chemical, compared to a case without mixing. The degree to 

which different strains mix varies depending on the microhabitats, as well as the 

dispersal and proliferation ability of the strains (Fortunato et al. 2003). It is likely that 

the environment is spatially heterogeneous and that signaling chemical productivity and 

cell sensitivity to the chemical might evolve to different degrees within specific 

microhabitats. Rodrigues and Gardner (2012) emphasize the importance of 

spatiotemporal heterogeneity in cooperation. This may explain the heterogeneity 

observed among strains sampled from the field (Strassmann et al. 2000). Because 

signaling chemical causes cell differentiation through a complex molecular network 

(Fortunato et al. 2003; Parkinson et al. 2011), additional examinations of this network 

are needed for assessing signaling chemical cell sensitivity.   

 If each fruiting body consists of the same strain (m=0), then the relatedness 

among cells to be stalk and those to be spore is one, and I expect perfect cooperation 

achieving the maximum number of surviving spores. In addition, the method of 

communication among cells that is the least costly should evolve, which explains the 

evolution of low production rates of signaling chemical and a high sensitivity of cells to 

the chemical. However, as opportunities to form a multi-strain fruiting body increase, 
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perfect cooperation becomes more difficult. As a consequence, the cells become less 

sensitive to the signaling chemical to prevent the risk of being exploited by cheater 

strains. However, just reducing cell's sensitivity leads to a small stalk size when the 

strain makes fruiting body by itself. This is disadvantageous because the dispersal 

success of spores becomes low. As a result, in order to keep the stalk size close to 

optimal, the production rate of signaling chemical should increase. As a consequence, 

the size of the stalk may not change much between the mixing and nonmixing situations, 

but cell sensitivity to signaling chemical and the chemical production rate should 

change greatly (Fig. 4b). If this scenario holds, even if the issue is stalk size, the 

outcome may appear in cell-to-cell communication rather than the size of the stalk 

itself.  

 The model I adopted in this chapter includes many simplifications. Some of 

the limitations of the model can be removed in future theoretical studies. First, in this 

model I focused only on the production of the signaling chemical and cell sensitivity to 

it in a phenomenological way. I may be able to incorporate the details of the molecular 

mechanisms of within-cell kinetics. Second, when two strains are mixed, I focused on 

cheater production. However, other effects of mixing strains are also known. For 

example, the migration distance travelled by a mixed aggregation is shorter than that by 

a single-strain aggregation (Strassmann and Queller 2011). Third, I assumed that the 

total number of cells included in a fruiting body is a fixed constant, but there can be a 

systematic difference with respect to cell division ability among different strains 

(Strassmann and Queller 2011). 
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 Despite the limitations of this model, the study clearly demonstrates that when 

I study the evolution of the stalk/spore ratio, I must incorporate the mechanisms for 

cell-type determination and how different cells interact with each other via chemical 

signals. For example, I discovered that the main outcome of conflict appears in the 

chemical production rate and cell sensitivity, much more clearly than in the stalk size 

itself. Without considering the cell-to-cell interaction, I would fail to identify this sign 

of the conflict.  In forming the model, I adopted the interaction between chemicals and 

cells known for DIF-1. However the framework of the model in which a signaling 

chemical controls the cell fate is probably also applicable to other signaling chemicals. 

For example, Chen and Schaap (2012) found that c-di-GMP induces stalk cell 

differentiation. It will be an interesting question how much modification of the model is 

requred when function of c-di-GMP becomes known in more details in considering the 

evolution of cooperation through c-di-GMP communication.  

 I expect that many evolutionary phenomena make more sense if I consider the 

mechanism for cell interaction, which is more difficult to interpret if I simply regard the 

fraction of stalk size as an indicator of the cooperation of the strain. I must consider the 

molecular mechanism and gene network at least in the simplest manner. On the other 

hand, cell and developmental biology have focused on the mechanisms by which the 

cell responds to different inputs and how the whole aggregation of cells or the whole 

individual should behave. Without considering the evolutionary process, I would miss 

an important process that determines chemical reactions and sensitivity. I are certain 

that theoretical modeling that incorporates both evolutionary biology and cellular and 
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molecular mechanisms will become an important tool for modeling evolution in the 

near future.  
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5. Appendices 

Appendix A: Evolution when fruiting bodies are made of clones containing a single 

strain 

The simplest way of introducing a continual change in parameters is as follows. Let 

! 

W = S T( ) N "T( )e"ka  be the fitness function (I remove the hat in the following 

equations). From the equilibrium of the dynamics of prespore cells and prestalk cells, 

given by Eq. (3) and 

! 

T + P = N , I can express 

! 

T  as the function of parameters: 

! 

a, b, f0,  and g0 . Hence 

! 

T = T a, b, f0, g0( ) . In Figure 3, 

! 

a  and 

! 

f0  change over 

evolution, whereas 

! 

b and g0 are fixed (i.e., common to all the phenotypes).  

 To derive the trait dynamics, I first calculate the selection differential by 

considering two strains with very similar parameters. Suppose strains 1 and 2 are the 

invader and the resident.  

! 

W1 = S T1( )P1e"ka1 , where 

! 

T1 + P1 = N , 

! 

T1
P1

=
f01
g01

C1, and 

! 

C1 =
a1P1
b1T1

.  (A.1a) 

! 

W2 = S T2( )P2e"ka2 , where 

! 

T2 + P2 = N , 

! 

T2
P2

=
f02
g02

C2, and 

! 

C2 =
a2P2
b2T2

.  (A.1b) 

By setting 

! 

T = T2 and 

! 

"T = T1 #T2 , and assuming that the latter is small in magnitude, 

I can rewrite 

! 

P2 = N "T , 

! 

T1 = T + "T , and 

! 

P1 = N "T " #T . I assume that 

! 

"f0 = f01 # f02  and 

! 

"a = a1 # a2  are small, and 

! 

g01 = g02  and 

! 

b1 = b2 . Then the 

differential fitness is 

 

! 

"F =W1 #W2 = S T1( )P1e#ka1 # S T2( )P2e#ka2

$
dS
dT

• N #T( ) # S T( )
% 

& ' 
( 

) * 
e#ka • "T1 # S T( ) N #T( )e#kak"a

.  (A.2) 

The quantitative genetics formalism (Lande 1976; Barton and Turelli 1991; Iwasa et al. 
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1991) then gives the dynamics in Eq. (9) in the text.  

 

! 

"T "a  and 

! 

"T "f0  are the dependence of the mutant's stalk size T on its 

signaling chemical production rate 

! 

a1 and the sensitivity 

! 

f01  of the mutant, 

respectively. From the formula of Eq. (3), I have 

! 

"T =
T N #T( )
3N

"f0
f0

+ 2 "a
a

$ 

% 
& 

' 

( 
) , which 

leads to  

 

! 

"T
"a

=
T N #T( )
3N

2
a

 and 

! 

"T
"f0

=
T N #T( )
3N

1
f0

.   (A.3) 

Both of these are positive. Hence, if I neglect the cost of chemical k, the dynamics given 

by Eq. (A.3) indicate fast convergence to the line of equilibria 

! 

1
S
dS
dT

"
1

N "T
= 0, 

which appears as a curve on a 

! 

a, f( ) -plane. As this quantity is equal to the derivative 

of 

! 

S T( ) • N "T( ) , the dynamics (with k neglected) describe the monotonic increase in 

S T( )• N !T( ) , the number of surviving spores.  
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Appendix B: Evolution when some fruiting bodies are a mixture of two strains 

I define the following functions as the fitness of strains 1 and 2, respectively:  

 

! 

F1 = 1"m( )E 11[ ] +m #E 11[ ] + 1" #( )E 12[ ][ ] ,   (B.1a) 

 

! 

F2 = 1"m( )E 22[ ] +m #E 21[ ] + 1" #( )E 22[ ][ ] .   (B.1b) 

where 

! 

E 11[ ] =W1, 

! 

E 22[ ] =W2 , 

! 

E 12[ ] = 2W1
mix , and 

! 

E 21[ ] = 2W2
mix .  

 The frequency of strain 1 in the next generation is 

! 

"next = F1" F1" + F2 1# "( )( ) . 

The change in one generation is 

! 

"# = #next $ # =
# 1$ #( )

F1# + F2 1$ #( )
F1 $ F2( ) . The 

differential fitness is 

 

! 

F1 " F2 = 1"m( ) E 11[ ] " E 22[ ]( )
+m # E 11[ ] " E 21[ ]( ) + 1" #( ) E 12[ ] " E 22[ ]( )[ ]

,  (B.2) 

I can calculate the 

! 

E i j[ ]  as follows: 

! 

E 11[ ] = S T1( )P1e"ka1 , where 

! 

T1 + P1 = N , 

! 

T1
P1

=
f01
g01

C1 , and 

! 

C1 =
a1P1
b1T1

.  (B.3a) 

! 

E 22[ ] = S T2( )P2e"ka2 , where 

! 

T2 + P2 = N , 

! 

T2
P2

=
f02
g02

C2, and 

! 

C2 =
a2P2
b2T2

 (B.3b) 

! 

E 12[ ] = S T1
* +T2

*( )P1*2e"ka1 ,      (B.3c) 

! 

E 21[ ] = S T1
* +T2

*( )P2*2e"ka2 ,      (B.3d) 

where 

! 

T1
* + P1

* =
N
2

, 

! 

T2
* + P2

* =
N
2

, 

! 

T1
*

P1
* =

f01
g01

C*( )2 , 

! 

T2
*

P2
* =

f02
g02

C*( )2 , and 

! 

C* =
a1P1

* + a2P2
*

b1T1
* + b2T2

* . 

 I consider strain 2 as the resident and if the mutant, strain 1, can invade and 

replace strain 2. Here, I consider the case in which two strains are similar with respect 
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to parameters: 

! 

"f0 = f01 # f02 , 

! 

"g0 = g01 # g02 , 

! 

"a = a1 # a2  and 

! 

"b = b1 # b2  are all 

small in magnitude. Hence, I can assume that 

! 

T1 "T2 = #1 , 

! 

T1
* "T2 2 = #1

* , and 

! 

T2
* "T2 2 = #2

*  are small quantities. Using these and the constraints of 

! 

T1 + P1 = T2 + P2 = N  and  

! 

T1
* + P1

* = T2
* + P2

* = N 2 , I have 

! 

P1 " P2 = "#1 , 

! 

P1
* " P2 = "#1

* , and 

! 

P2
* " P2 = "#2

* . Please note that when two strains are exactly the 

same, 

! 

"1 = "1
m = "2

m = 0  holds. Furthermore I set 

! 

T = T2 . Using this I have the 

following relationships:  

! 

E 11[ ] " E 22[ ] = S T1( )P1e"ka1 " S T2( )P2e"ka2

#
dS
dT

• N "T( ) " S T( )
$ 

% & 
' 

( ) 
e"ka • *1 " S T( ) N "T( )e"kak+a

,  (B.4a) 

! 

E 11[ ] " E 21[ ] = S T1( )P1e"ka1 " S T1* +T2
*( )P2*2e"ka2

#
dS
dT

• N "T( ) " S T( )
$ 

% & 
' 

( ) 
e"ka *1 "*1

* "*2
*( ) + S T( )e"ka "*1

* +*2
*( )

"S T( ) N "T( )e"kak+a

, (B.4b) 

and 

! 

E 12[ ] " E 22[ ] = S T1
* +T2

*( )P1*2e"ka1 " S T2( )P2e"ka2

#
dS
dT

• N "T( ) " S T( )
$ 

% & 
' 

( ) 
e"ka *1

* +*2
*( ) + S T( )e"ka "*1

* +*2
*( )

"S T( ) N "T( )e"kak+a

. (B.4c) 

Hence, the differential fitness divided by the mean fitness 

! 

F1 " F2( ) F  is 

  

! 

"F
F

=
1
S
dS
dT

#
1

N #T
$ 

% 
& 

' 

( 
) 1#m +m*( )+1 +m 1# 2*( ) +1

* ++ 2
*( ){ }

+m 1
N #T

#+1
* ++ 2

*{ } # k"a
.  (B.5) 

The fitness is written as 

! 

F T1,T1
*,T2

*, a1( )  where 

! 

T1, 

! 

T1
* , 

! 

T2
*  are dependent on the 

mutant's parameters 

! 

f01 , 

! 

g01, 

! 

a1 , and 

! 

b1 . The last argument indicates the direct 

dependence of the fitness to 

! 

a1. Eq. (B.5) then indicates 
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! 

" lnF
"T1

=
1
S
dS
dT

#
1

N #T
$ 

% 
& 

' 

( 
) 1#m +m*( ) ,     (B.6a)

 

! 

" lnF
"T1

* =
1
S
dS
dT

#
1

N #T
$ 

% 
& 

' 

( 
) m 1# 2*( ) #m 1

N #T
,   (B.6b)

 

! 

" lnF
"T2

* =
1
S
dS
dT

#
1

N #T
$ 

% 
& 

' 

( 
) m 1# 2*( ) +m 1

N #T
,   (B.6c) 

 

! 

" lnF
"a1

= #k .      (B.6d) 

The trait dynamics are 

! 

"f 0 = Gf0

#
#f0
lnF = Gf0

# lnF
#T1

#T1
#f0

+
# lnF
#T1

*
#T1

*

#f0
+
# lnF
#T2

*
#T2

*

#f0
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Now I consider how 

! 
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* and 

! 
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* may depend on parameters. I note the following 
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        (B.9b) 

The first term in the brackets in each equation is for fast dynamics, which cause the 

quick approach to a curve for the optimal stalk size 

! 

1
S
dS
dT

=
1

N "T
, at which 

! 

S T( ) • N "T( )  is maximized. This appears as a curve 

! 

f0a
2 = const . An additional term 

in the dynamics of production rate 

! 

a  is to reduce the rate (selection gradient of -k). 

This makes the movement of the state along curve 

! 

f0a
2 = const  toward a smaller a and 

higher sensitivity 

! 

f0 . In contrast, an additional term of the dynamics for sensitivity 

! 

f 0  

is also a negative selection gradient 

! 

"
2mN

T N "T( )2 f0
. This causes the movement of the 

system along the curve 

! 

f0a
2 = const  toward a lower sensitivity. Combining these two, 

I have the dynamics for which the balance of these two forces results in equilibrium 

with an intermediate magnitude of sensitivity 

! 

f0  and chemical production rate a. Note 

that the term toward reducing sensitivity 

! 

f0  increases with the fraction of fruiting 

bodies that are mixture of strains m.  
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7. Figure Captions 

Fig. 1  Interaction between prestalk and prespore cells via a signaling chemical. The 

signaling chemical is produced by prespore cells and decomposed by prestalk cells. In 

turn, the signaling chemical enhances the rate of transition from a prespore cell to a 

prestalk cell while reducing the rate of transition in the opposite direction.  

 

 Fig. 2 Equilibrium of cell differentiation. The number of prespore cells of strain 1 

(P1 ) and prestalk cells of strain 1 (T1 ) are indicated by a cross and asterisk, respectively. 

The number of prespore cells of strain 2 (P2 ) and prestalk cells of strain 2 (T2 ) are 

indicated by an open circle and open square, respectively. Horizontal axis represents 

time. (a) Each strain makes a fruiting body by itself. (b) Two strains make a fruiting 

body. Parameters are: N=100000, a1=0.25, b1=0.4, f01=0.2, g01=1, a2=0.25, b2=0.8, 

f02=0.8, g02=1.0. 

 

Fig. 3 Evolutionary trajectories. Horizontal axis is for the production rate of the 

signaling chemical (a), and vertical axis is for the sensitivity to the signaling chemical 

when a prespore cell switches to to a prestalk cell (f0). (a) Two strains do not mix (m=0), 

and (b) two strains can mix (m = 0.03). Other parameters are: N=100,000, b=2, g=2, 

k=0.01, S0=1, α=10,000, l=2. 

 

Fig. 4 Evolutionarily stable states depending on the possibility of mixing. (a) 

Squares are for the evolutionarily stable sensitivity of cells to signaling chemical cell  
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(f0), for which the label is given on the left. Circles are for the evolutionarily stable rate 

of signaling chemical production (a), for which the label is given on the right. 

Horizontal axis is for m, the fraction of fruiting bodies consisting of cells originating 

from two initial spores. (b) Evolutionarily stable fraction of prestalk cells.  Other 

parameters are the same as in Fig. 3.  
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8. Figures 

Figure 1 
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1. INTRODUCTION 

Mutualism with soil fungi is prevalent throughout terrestrial plants. Most terrestrial 

plants develop root systems called mycorrhiza by interacting with soil fungi; i.e., 

mycorrhizal fungi. The plant produces carbohydrate from atmospheric CO2 by 

photosynthesis and transfers some portion of carbohydrates to the fungal symbiont. On 

the other hand, the fungus takes up soil nutrients such as phosphate and provides a 

fraction thereof to the host plant. 

 Many theoretical studies have examined the resource exchange between host and 

symbiont. Schwartz and Hoeksema (Schwartz and Hoeksema, 1998; Hoeksema and 

Schwartz, 2003) applied biological market theory to the plant-mycorrhiza system. If the 

cost of acquiring ambient resources differs between two species, each species benefits 

by specializing toward acquisition of one resource and trading the other resource with 

the partner species.  

 De Mazancourt and Schwartz (2010) demonstrated that organisms could use 

resources more efficiently by trading resources. They considered two species that 

require two resources and whose resource acquisition abilities differ. If one species can 

use both resources more efficiently than the other species, the latter species goes extinct. 

However, if one species can use one resource more efficiently and the other species can 

use the other resource more efficiently, the two species can coexist. In addition, if 

growth is limited by the less abundant resource among the two, there exists a surplus of 

the second resource that the species cannot use efficiently. Then, by trading the resource 
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surpluses of both species, they can both use the resource more efficiently than in the 

case without trading.  

 In their theoretical model, Grman et al. (2012) combined the cooperative game 

model used for the plant-rhizobia system by Akçay and Roughgarden (2007) and the 

biological market theory developed by Schwartz and Hoeksema (1998). If the growth of 

organisms is dependent on two resources, two symbiotic conditions can exist. In the 

first set of conditions, both the plant and fungus specialize in taking up one resource. 

They obtain the other resource by trading: the plant makes carbohydrate by 

photosynthesis but does not take up phosphorus from the soil, while the fungus takes up 

only phosphorus from the soil. These conditions are optimal if light availability is low 

and phosphorus levels in the soil are moderate. In the second set of conditions, one 

organism takes up both resources and the other organism can only take up one. For 

example, when soil is rich in phosphorus, the plant specializes in taking up carbon, but 

the fungus takes up both carbon and phosphorus from the soil. However, neither Grman 

et al. (2012) nor De Mazancourt and Schwartz (2010) considered the dynamic aspects 

of the plant-fungus interaction.  

 Both the host plant and symbiotic fungus change their behavior in response to the 

environment. For example, the presence of fungi would enhance plant growth when soil 

nutrients are scarce, whereas fungi could deter plant growth when soil nutrients are 

abundant (Johnson et al., 1997). In response to such shifts in the relative benefit of the 

symbiosis, plants can decrease carbon allocation to symbiotic fungi, leading to reduced 

size of mycorrhiza (Bever et al., 2008). In addition, plants can engage in partner choice; 
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when a plant harbors many symbiotic fungi in its roots, it can selectively decrease 

allocation to the fungi that do not allocate very much phosphorus (Bever et al., 2008; 

Kiers et al., 2011). In turn, fungi can also control resource allocation to the host plant; 

when the fungus interacts with many roots, it can allocate more phosphorus to roots that 

provide more carbohydrate (Kiers et al., 2011). Changing resource allocation is 

sometimes considered "punishment" that stabilizes the mutualism (Kiers et al., 2011). 

However, this situation provides an opportunity for cheaters; for example, by 

mycoheterotrophic plants, which do not have chloroplasts and do not produce 

carbohydrate via photosynthesis (Leake, 1994). Nonetheless, fungi can allocate not only 

nutrients from the soil, but also carbohydrates that are allocated by other plants (Leake, 

1994).  

 In this chapter, I examine the optimal resource allocation of a plant and fungus to 

their partner when the entire system grows exponentially. Rapid growth is critical for 

the survival of seedlings, and phosphorus provided by the fungus is key to seedling 

establishment (Smith and Read, 2010). Under these conditions, the exponential growth 

rate for the whole system is a natural measure for overall success. The rates of resource 

acquisition (photosynthesis by the plant and phosphorus absorption by the fungus) 

increase with increases in both carbon and phosphorus within the body of each player. 

Assuming Cobb-Douglas production functions, I show that given the optimal rate of 

resource allocation, each player should allocate more to the partner when the resource 

provided by the partner is more important to its own resource acquisition. Second, I 

show that the growth trajectory corresponding to the optimal allocation fractions 
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satisfies the conditions for the singular control subarc for dynamical optimization when 

each player maximizes its own fitness given the partner's growth schedule. Hence, the 

ESS resource allocation by two players in a non-cooperative game is equivalent to the 

cooperative optimum of resource allocation during the exponential growth phase.  

 

2. MODEL  

Consider two players: a plant and its symbiotic fungus in soil (Fig. 1). The plant 

performs photosynthesis and obtains carbon in its aboveground parts, while the fungus 

takes up nutrients, such as phosphorus, from the soil. The plant needs phosphorus 

supplied by the fungus to function properly. Hence, the plant allocates some fraction of 

its carbon to the soil fungus, which may in turn supply phosphorus to the plant in the 

future. In contrast, the fungus needs carbon supplied by the plant; thus, it allocates some 

phosphorus to the plant to secure future carbon. As a result, both players, plant and 

fungus, allocate some fraction of its acquired resource to the partner to secure future 

resources that are otherwise difficult to obtain directly. Here, I focus on a small, young 

plant individual (or seedling) and its soil fungus, in the state in which both grow 

exponentially through time.  

 I distinguish quantities of plant and fungi by i = 1 and i = 2, respectively. For 

simplicity, I assume that the soil fungus interacting with an individual plant exists as a 

large number of bundles or sheets of hyphae composed of genetically identical cells. Let 

! 

Ci  be the amount of carbon, and 

! 

Pi be the amount of phosphorus contained in the 

plant (i = 1) and in the fungus (i = 2). Let f C1,P1( )  be the rate of carbon acquisition by 
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the plant, and g C2,P2( )  be the rate of phosphorus acquisition by the fungus. These 

resource acquisition rates are increasing functions of both carbon and phosphorus. I 

consider the following dynamics: 

 dC1
dt

= 1!u1( ) f C1,P1( ) ,     (1a) 

 dP1
dt

= u2!2g C2,P2( ) ,     (1b) 

 dC2
dt

= u1!1 f C1,P1( ) ,     (1c) 

 dP2
dt

= 1!u2( )g C2,P2( ) ,     (1d) 

where 

! 

u1 is the fraction of carbon obtained by the plant that will be allocated to the 

fungus; it satisfies 

! 

0 " u1 "1. This value can be chosen by the plant. In contrast, 

! 

u2 is 

the fraction of phosphorus sequestered by the fungus that will be allocated to the plant 

(

! 

0 " u2 "1). I consider that some loss occurs during this allocation process; hence, I 

consider the fractions lost, 

! 

"1 and 

! 

"2  to be factors smaller than 1 (

! 

"1 <1 and 

! 

"2 <1).  

 The rate of photosynthesis increases with carbon 

! 

C1 and phosphorus 

! 

P1. In 

addition, the rate increases in proportion to plant size, if the ratio of carbon to 

phosphorus is kept constant. This last assumption is plausible for a young, small plant 

(or seedling) growing exponentially together with its symbiotic fungus. More 

specifically, I assume that the carbon acquisition rate of the plant and the phosphorus 

acquisition rate of the soil fungus satisfy the following relationships:  

 f KC1,KP1( ) = Kf C1,P1( )    for any positive K,   (2a) 

 g KC2,KP2( ) = Kg C2,P2( )    for any positive K.   (2b) 
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Eq. (2a) implies that if both 

! 

C1 and 

! 

P1 are multiplied by factor K, 

! 

f C1,P1( )  is also 

multiplied by the same factor K. Hence, the rate of carbon acquisition increases in 

proportion to plant size, if the size by which the plant increases with the ratio of carbon 

and phosphorus is kept constant. In a similar manner, Eq. (2b) indicates that if both 

! 

C2 

and 

! 

P2  are multiplied by factor K, 

! 

g C2, P2( ) is also multiplied by the same factor K. 

 

2.1. Optimal application to own partner 

As a simple example of production functions satisfying Eq. (2), I assume that the 

photosynthetic rate is the power function of two resources: f C1,P1( ) ! f0C11"!P1! , where 

! 

"  indicates the relative importance of phosphorus (

! 

0 < " <1), and f0 indicates the 

basic rate of carbon acquisition. In economics, 

! 

f C1,P1( )  is called the "Cobb-Douglas 

production function" (see Fig. 2). In a similar manner, the rate of phosphorus 

sequestering by the fungus is g C2,P2( ) ! g0C2!P21"! , which increases with both carbon 

and phosphorus levels of the fungus. 

! 

" indicates the relative importance of carbon in 

this function (

! 

0 < " <1), and g0 indicates the basic rate of phosphorus acquisition. Again, 

if both 

! 

C2 and 

! 

P2  are multiplied by factor K, 

! 

g C2, P2( ) is also multiplied by the 

same factor K.  

 Now, I focus on the exponential growth solution for this system. Assume that 

! 

C1 = c10e
rt , 

! 

P1 = p10e
rt , 

! 

C2 = c20e
rt
, and 

! 

P2 = p20e
rt , where r is the exponential rate of 

growth. Then, Eq. (1) becomes 

 

! 

rc10 = 1" u1( ) f0c101"# p10# ,     (3a) 

 

! 

rp10 = u2"2g0c20
# p20

1$# ,     (3b) 
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! 

rc20 = u1"1 f0c10
1#$ p10

$ ,      (3c) 

 

! 

rp20 = 1" u2( )g0c20# p201"# .     (3d) 

After some arithmetic (explained in Appendix A), I have 

 

! 

r
1
"

+
1
# = u1 1$ u1( )

1$#
# u2 1$ u2( )

1$"
" g0

1
" f0

1
# %1%2.   (4) 

The optimum carbon allocation for the plant to the partner is the value of 

! 

u1 that 

maximizes the exponential rate of growth Eq. (4). By calculating the partial derivative 

of Eq. (4) by 

! 

u1 and then setting it to 0, I have 

 u1
* =! .       (5a) 

In a similar manner, the optimal rate of phosphorus allocation for the fungus to the plant 

that achieves the maximum exponential growth rate r is: 

 u2
* = ! .       (5b) 

See Appendix A for derivation. 

 Power 

! 

"  is a coefficient for the dependence of the rate of photosynthesis on 

the amount of phosphorus that is supplied by the fungus. If 

! 

"  is close to 0, the 

photosynthetic rate is almost independent of P, and if instead 

! 

"  is close to 1, it is 

proportional to P and is almost independent of C. The plant should allocate more to the 

fungus if the resource supplied by the fungus is more important for its own function (i.e., 

larger 

! 

" ). Eq. (5b) is a similar result for the optimal resource allocation for the fungus. 

If the phosphorous acquisition rate by the fungus is strongly dependent on its carbon 

rather than phosphorus level (large 

! 

"), then the fungus should allocate a larger fraction 

of newly acquired phosphorus to the plant, rather than for its own use.  
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 Fig. 3a illustrates a contour plot of the optimal allocation ratio by the plant to the 

fungus, where the horizontal axis is 

! 

" , and the vertical axis is 

! 

". Fig. 1b depicts a 

similar contour plot of the optimal allocation ratio by the fungus to the plant.  

 

3. DYNAMIC OPTIMIZATION OF EACH PLAYER 

Eqs. (5a) and (5b) are the allocation values for two players given that they are constant 

over time. Here, I show that even if the allocation fraction is allowed to depend on time, 

these constant solutions are the optimal control for the respective players. This can be 

shown by introducing the analysis of dynamic optimization. By fixing phosphorus 

allocation by the fungus at a constant value 

! 

u2 t( ) = " , I search for the optimal control 

schedule of the plant 

! 

u1 t( ) , and show that the optimal solution is a constant 

! 

u1 t( ) = " . 

The allocation ratio affects the dynamics linearly, and this solution is an intermediate 

value 

! 

0 < u1 t( ) <1, which is called a "singular control subarc" (Intriligator, 1971). In a 

similar manner, I also show that the optimal control problem for the fungus is a constant 

solution 

! 

u2 t( ) = " , which maximizes the performance of the fungus under the condition 

of 

! 

u1 t( ) = " . 

 I consider the optimal allocation schedule for the plant (player i = 1), denoted by 

! 

0 " u1 t( ) "1 (

! 

0 < t < Tf ), which maximizes 

! 

f C1 Tf( ), P1 Tf( )( ), the rate of 

photosynthesis of the plant at time 

! 

Tf . In calculating this dynamic optimization 

problem, I treat the behavior of the fungus as given. This is a typical problem of optimal 

control and can be solved using Pontryagin's maximum principle (Pontryagin et al., 
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1962). The Hamiltonian of this dynamic optimization model for the plant (the first 

player) is defined as 

 

! 

H = "C1 1# u1( ) f0C11#$P1$ + "P1u2
*%2g0C2

&P2
1#&

+"C 2u1%1 f0C1
1#$P1

$ + "P 2 1# u2
*( )g0C2

&P2
1#&

.   (6a) 

! 

"C1, 

! 

"P1, 

! 

"C 2 , and 

! 

"P 2  are costate variables, corresponding to 

! 

C1 , 

! 

P1, 

! 

C2, and 

! 

P2 , 

respectively. These variables indicate the "marginal effect of a small unit increase in the 

corresponding variable toward enhancing fitness" (Intriligator, 1971; Iwasa and 

Roughgarden, 1984). They change with time following the differential equations below: 

 
d!C1
dt

= !
"H1

"C1
= ! !C1 1!u1( )+!C2u1"1( ) 1!#( ) f0C1!#P1# ,  (6b) 

 d!P1
dt

= !
"H1

"P1
= ! !C1 1!u1( )+!C2u1"1( )# f0C11!#P1!1+# ,  (6c) 

 d!C2
dt

=
!H1

!C2
= " !P1u2

*"2 +!P2 1"u2
*( )( )#g0C2"1+#P21"# ,  (6d) 

 d!P2
dt

=
!H1

!P2
= " !P1u2

*"2 +!P2 1"u2
*( )( ) 1"#( )g0C2#P2"# ,  (6e) 

Using these functions, Pontryagin's maximum principle states that the optimal schedule 

is the one that maximizes the Hamiltonian H with respect to control variable u1 , given 

state variables and costate variables. This condition gives the following: 

 

! 

u1
* = 0 if "C1 > "C 2#1
u1
* =1 if "C1 < "C 2#1
0 < u1

* <1 if "C1 = "C 2#1

.     (7) 

 The costate variables satisfy the following differential equations: 

 

! 

d"C1
dt

= #
$H1

$C1
= #max "C1, "C 2%1[ ] 1#&( ) f0C1

#&P1
& ,   (8a) 

 d!P1
dt

= !
"H1

"P1
= !max !C1,!C2"2[ ]# f0C11!#P1!1+# ,   (8b) 
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 d!C2
dt

=
!H1

!C2
= " !P1u2

*"2 +!P2 1"u2
*( )( )#g0C2"1+#P21"# ,  (8c) 

 d!P2
dt

=
!H1

!P2
= " !P1u2

*"2 +!P2 1"u2
*( )( ) 1"#( )g0C2#P2"# .  (8d) 

The optimal control problem would typically be composed of the intervals in which the 

allocation ratio takes on terminal values (0 or 1) as well as an interval in which the 

allocation is an intermediate value (between 0 and 1). If the latter lasts for an interval of 

a positive length, it is called a "singular subarc" (Intriligator, 1971). In the singular 

subarc, !C1 = !C2"1  holds for some time interval with a positive length, which 

generates additional equations and allows us to derive the solution (see Appendix B for 

details).  

 Based on the other optimal growth schedule, the optimal solution is composed 

of three parts: (1) the initial phase in which allocation is either 0 or 1, which produces 

the most rapid convergence to the singular subarc, (2) a singular subarc in which both 

players receive a supply of carbon, and (3) the final period in which the plant stops 

supplying carbon to the fungus and uses all carbon income for itself. If the entire period 

of growth is sufficiently long (i.e. 

! 

Tf  is large), the singular subarc should comprise a 

large portion of the growth schedule. 

 I also consider the optimal allocation schedule for the fungus (the second player, 

i = 2), which is given by 

! 

0 " u2 t( ) "1 (

! 

0 < t < Tf ), which maximizes 

! 

g C2 Tf( ), P2 Tf( )( ), 

the rate of photosynthesis of the plant at time 

! 

Tf . In calculating this optimization, I 

treat the behavior of the plant as given. This can also be analyzed using Pontryagin's 

maximum principle.  
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 If both players (plant and fungus) adopt intermediate allocation ratios, the 

growth path needs to be a singular subarc in the two optimal control problems. Along 

this exponential growth solution, the conditions required by Pontryagin's maximum 

principle are satisfied for two dynamic optimization problems (optimization of 

! 

u1 •( )  

by the plant, and optimization of 

! 

u2 •( ) by the fungus). By combining these two 

conditions, the same solution results as in the previous section: u1 = α and u2 =β. The 

derivations are explained in Appendix B.  

 I note that there are two differences between the calculation in the present 

section and the arguments in the previous section. First, the calculation in the present 

section is the dynamic optimization, while that in the previous section was parametric 

optimization. The second, more important difference is a potential conflict of interest. In 

the present section, I discuss the solution in which each player maximizes its own 

objective function that differs between players, and the solution obtained is the 

evolutionarily stable strategy (Maynard Smith and Price, 1973; Maynard Smith, 1982) 

or the Nash equilibrium (Nash, 1951). The evolutionary stable dynamic allocation 

turned out to be the same as the solution for the cooperative optimum, which is the 

solution that achieves maximization of the common target; i.e., the most rapid growth 

rate r of the whole system.  

 

4. DISCUSSION 

In this chapter, I analyzed the optimal allocation between a terrestrial plant and a soil 

fungus. The plant acquires carbon by photosynthesis, and the soil fungus sequesters 
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phosphorus from the soil. Because both players require both resources, both parties 

might profit by allocating some fraction of its resource to the other player. I focused on 

the situation for which both the plant and fungus grow exponentially through time and 

determined the optimal fraction of resources allocated to the other player.  

 I assumed that the resource acquisition rates (photosynthesis by the plant and 

phosphorus uptake by the mycorrhizal fungus) were Cobb-Douglas type as a function of 

carbon and phosphorus content of the body. When I measure how a quantity Q depends 

on a parameter A, a widely used index for the sensitivity is "elasticity," which is defined 

as follows: A !Q( ) Q !A( ) =! lnQ ! lnA , which is non-dimensionalized. For 

Cobb-Douglas production functions, the elasticity of the resource acquisition rate to the 

amount of resource supplied by the partner is constant at !  and !  for the plant and 

fungus, respectively. Cobb-Douglas production functions are commonly assumed in 

economic theory. The optimal allocation fraction is determined by the importance of the 

resource that is supplied by the opponent. More specifically, the plant's optimal 

allocation fraction to the soil fungus is equal to the elasticity of the photosynthetic rate 

on phosphorus (! ), and the optimal allocation fraction of the fungus to the plant is 

equal to the elasticity of the nutrient acquisition rate on carbon (! ). These optimal 

allocation fractions are independent of the functional form of the resource acquisition 

rate for the opponent.  

 

4.1. Cooperative optimum and noncooperative equilibrium 

Another interesting result is that the solution for the most rapid growth rate for both the 
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plant and fungus satisfies the ESS condition for each player to maximize its own 

performance. This implies that there happens to be no conflict of interest. Although the 

two players have different objective functions, to attain high fitness, they must realize 

the fastest rate of growth, which is achieved by the same allocation fraction as the 

cooperative optimum. 

 

4.2. Relationship between the results and past theoretical models 

Our model shows that if resource acquisition follows Cobb-Douglas production 

function, an organism will allocate more resource to the partner when the resource 

provided by the partner is more important to its survival. This is similar to previous 

studies that have assumed a stationary state of the plant and mycorrhizal fungus (e.g. De 

Mazancourt and Schwartz, 2010; Grman et al., 2012). Grman et al. (2012) demonstrated 

that the plant allocates more carbon if the soil contains more phosphorus. Although this 

situation corresponds to a high basic rate of resource acquisition of phosphorus (g0) in 

our model, the result is different. According to our analysis, optimally growing plants 

should allocate the same fraction of photosynthates to the soil fungus regardless of 

resource acquisition of phosphorus. Whether this difference is caused by the difference 

in the functional forms of resource acquisition rates or by the contrast between a 

dynamically growing system versus a stationary system should be determined in future 

studies.  

 

4.3 Generalization of functional forms  
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Under these conditions, I can show that the whole system grows exponentially through 

time. The exponential rate of growth r is the solution of the following equation: 

 u1u2!1!2
1!u1( ) 1!u2( )

=! !1 r
1!u1

"

#
$

%

&
'"!1 r

1!u1

"

#
$

%

&
' .    (9) 

See Appendix C for derivation. The optimal allocation ratios of both players that 

achieve the fastest growth rate can be determined numerically.  

 

4.4. Future extensions 

Several extensions of the current model should be explored in future theoretical studies. 

A plant may obtain phosphorus directly from the soil without help by the fungus. On the 

other hand, some mycorrhizal fungi, such as ectomycorrhizal fungi, can obtain carbon 

directly. Then, I could discuss conditions under which the plant-fungus symbiosis is 

more beneficial to the plant or the fungus than the case without symbiosis. 

 In this chapter, I assume that a single plant individual interacts with a fungus 

composed of a single genotype. Given that the hyphae is produced by cell division, this 

is a plausible assumption. However, sometimes a single plant might interact with 

multiple strains of fungi, each of which might start from a separate cell that proliferates 

to produce an individual lineage. The plant may then undergo partner choice by 

preferentially supplying resources to a strain that provides a highly efficient supply of 

phosphorus. If this is possible, then the outcome of the plant-fungus interaction might 

be greatly modified. I can also consider partner choice by the fungus if a single hypha 

interacts with multiple plant individuals and preferentially supplies phosphorus to an 
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individual plant that provides a larger supply of carbon. These modifications to the 

model warrant additional theoretical treatment.  
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5. APPENDICES 

Appendix A : Derivation of the optimal allocation for an exponentially growing 

system.  

From Eqs. (3), I can obtain the following equations: 

 
r

1!u1
= f0

p10
c10

"

#
$

%

&
'

!

,      (A.1a) 

 r
u2!2

= g0
c20
p20

!

"
#

$

%
&

"
p20
p10

,     (A.1b) 

 r
u1!1

= f0
p10
c10

!

"
#

$

%
&

"
c10
c20

,     (A.1c) 

 r
1!u2

= g0
c20
p20

"

#
$

%

&
'

!

.      (A.1d) 

From Eqs. (A.1a) and (A.1 c), I can derive 

 

! 

c20 =
u1"1
1# u1

c10 .      (A.2a) 

And from Eqs. (A.1b) and (A.1d), I have  

 

! 

p20 =
1" u2
u2#2

p10      (A.2b) 

By substituting Eqs. (A.2) into Eq. (A.1d), I can get  

 

! 

r
1" u2

= g0
u1#1u2#2

1" u1( ) 1" u2( )
$ 

% 
& & 

' 

( 
) ) 

*

c10
p10

$ 

% 
& 

' 

( 
) 

*

= g0
u1#1u2#2

1" u1( ) 1" u2( )
$ 

% 
& & 

' 

( 
) ) 

*
1" u1( ) f0

r

$ 

% 
& & 

' 

( 
) ) 

*
+

.   (A.3) 

where I adopted Eq. (A.1a). Eq. (A.3) is rewritten as Eq. (4) in the main text. Taking the 

logarithm of both sides of Eq. (4), I have  

   
1
!
+
1
"

!

"
#

$

%
&ln r = lnu1 +

1'"
"

ln 1'u1( )+ lnu2 +
1'!
!
ln 1'u2( )+ lng0

1
!

f0
1
"
#1#2 . (A.4) 
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In the optimal carbon allocation, the plant should maximize the growth rate r. To find 

the optimal carbon allocation of the plant, I calculate the partial derivative of Eq. (A.4) 

by u1 and set it equal to zero, giving 

 
1
!
+
1
"

!

"
#

$

%
&
' ln r
'u1

=
1
u1
+
1("
"

1
1(u1

= 0 .     (A.5) 

As 0 < u1 <1 , u1 = α is the optimal allocation ratio.  

 In the same way, I obtain u2 = β as the optimal choice. 
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Appendix B: Derivation of optimal resource allocation ratios from singular control 

conditions in the dynamic optimization problems  

Here, I consider an exponential growth phase of the system in which both players (plant 

and fungus) allocate some resource to the partner. I show that the condition for an 

intermediate allocation to form a singular control subarc is satisfied for the optimal 

resource allocation ratios that maximize the exponential rate of growth of the whole 

system.  

 Here, I assume that all four variables are growing exponentially through time, 

and the ratio of the four variables is independent of time. let 

! 

" t( ) = "C1 t( ) = "C 2 t( )#1 

and 

! 

µ t( ) = "P1 t( )u2
*#2 + "P 2 t( ) 1$ u2

*( ) . Then, Eqs. (8) become 

 

! 

d"
dt

= #" 1#$( ) f0 P1 C1( )$ ,     (B.1a) 

 

! 

d"P1
dt

= #"$f0 C1 P1( )1#$ ,     (B.1b) 

 

! 

d"
dt

= #$1µ%g0 P2 C2( )1#% ,     (B.1c) 

 

! 

d"P 2
dt

= #µ 1# $( )g0 C2 P2( )$ ,     (B.1d) 

 

! 

dµ
dt

= "u2
*#2$%f0 C1 P1( )1"% " 1" u2*( )µ 1" &( )g0 C2 P2( )& .  (B.1e) 

Note that 

! 

C1 P1  and 

! 

C2 P2  are independent of time. By integrating Eq. (B.1a), I have 

 ! t( ) = ! 0 exp !Rt[ ] ,     (B.2) 

where 

! 

R = 1"#( ) f0 P1 C1( )# . ! 0  is the value of ! t( )at t = 0. Substituting Eq. (B.2) 

into Eq. (B.1c), 
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 µ = µ 0 exp !Rt[ ] ,      (B.3) 

whereµ 0 = ! 0
1!"( ) f0
#1$g0

P1
C1

"

#
$

%

&
'

"
P2
C2

"

#
$

%

&
'

$!1

.	
 Using Eqs. (B.2) and (B.3), I can rewrite Eq. 

(B.1c) as, 

 

! 

"0R = #1µ
0$g0 P2 C2( )1%$ .     (B.4) 

From Eq. (3d), I have r = 1!u2( )g0 c20 p20( )! , which is rewritten as, 

 p20
c20

!

"
#

$

%
&

!

=
1'u2( )g0

r
.     (B.5) 

Therefore, I can rewrite Eq. (B.4) as 

 ! 0

µ 0
R = "1#

P2
C2

r
1!u2

.     (B.6) 

Here, I rewrite Eq. (B.1e) using Eqs. (B.3), (B.4), and (B.5) as follows, 

 R = u2
*!2"

#0
µ0

C1
P1

r
1!u1

+ r 1!!( ) .    (B.7) 

Using Eq. (B.6), I can rewrite Eq. (B.7) as  

 R = u2
*!1!2"#

1
R
C1
C2

P2
P1

r
1!u1

r
1!u2

+ r 1!!( ) .   (B.8) 

Using Eqs. (A.2) and Eq. (B.8) becomes 

 

! 

R = r "# 1
R
r
u1

+1$ #
% 

& 
' 

( 

) 
* 
.
     (B.9) 

Using Eq. (A.1a) and 

! 

R = 1"#( ) f0 P1 C1( )# , I have  

! 

1"#( ) f0
P1
C1

$ 

% 
& 

' 

( 
) 

#

= 1" u1( ) f0
p10
c10

$ 

% 
& 

' 

( 
) 

#

#*
1

1"#( ) f0 P1 C1( )#
1" u1( ) f0 p10 c10( )#

u1
+1" *

$ 

% 

& 
& 

' 

( 

) 
) . 

(B.10) 

This equation leads to 
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! 

1"# = 1" u1( ) #$ 1
1"#

1" u1
u1

+1" $
% 

& 
' 

( 

) 
* 
, 

which leads to u1 = α, which is the same as the optimal rate that maximizes the 

exponential growth rate of the whole system. 

 In a similar manner, I can derive u2 = β. Thus, the two singular control 

conditions combined would lead to the optimal allocation ratios maximizing the growth 

rate of the whole system.  
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Appendix C: Generalized functional forms for resource acquisition rates 

I can generalize the theory. By setting K =1 C , Eq. (2) becomes 

! 

f 1, P C( ) = 1 C( ) f C, P( ) , which is rewritten as 

! 

f C, P( ) = C •" P C( ) , where 

! 

" P C( ) = f 1, P C( ) . Hence, I have 

 f C1,P1( ) =C1!
P1
C1

!

"
#

$

%
& ,     (C.1a) 

where 

! 

" x( ) is an increasing function. In a similar manner, I can derive the following 

form for the rate of phosphorus absorption: 

 g C2,P2( ) = P1!
C2
P2

!

"
#

$

%
& .        (C.1b) 

Substituting these functions, Eq. (1) becomes 

 
dC1
dt

= 1!u1( )C1!
P1
C1

"

#
$

%

&
' ,     (C.2a) 

 dP1
dt

= u2!2P1"
C2
P2

!

"
#

$

%
& ,     (C.2b) 

 dC2
dt

= u1!1C1"
P1
C1

!

"
#

$

%
& ,     (C.2c) 

 dP2
dt

= 1!u2( )P1!
C2
P2

"

#
$

%

&
' .     (C.2d) 

Assuming exponential growth, 

! 

C1 = c10e
rt , 

! 

P1 = p10e
rt , 

! 

C2 = c20e
rt
, and 

! 

P2 = p20e
rt
, I 

can rewrite Eqs. (C.2) as  

 

! 

r = 1" u1( )# p10
c10

$ 

% 
& 

' 

( 
) ,      (C.3a) 

 

! 

r = u2"2
p20
p10

#
c20
p20

$ 

% 
& 

' 

( 
) ,     (C.3b) 

 

! 

r = u1"1
c10
c20

#
p10
c10

$ 

% 
& 

' 

( 
) ,      (C.3c) 

 

! 

r = 1" u2( )# c20
p20

$ 

% 
& 

' 

( 
) .      (C.3d) 
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From Eqs. (C.3a) and (C.3d), I have 

 

! 

p10
c10

="#1 r
1# u1

$ 

% 
& 

' 

( 
)  and 

! 

c20
p20

="#1 r
1# u2

$ 

% 
& 

' 

( 
) ,   (C.4) 

which can be written in terms of inverse functions. By multiplying Eqs. (C.3b) and 
(C.3c), I have 

 

! 

r2 = u1u2"1"2
p20
p10

c10
c20

#
c20
p20

$ 

% 
& 

' 

( 
) *

p10
c10

$ 

% 
& 

' 

( 
) .    (C.5) 

Substituting Eq. (C.4) into Eq. (C.5), I have Eq. (9), which specifies r implicitly. 
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7. FIGURE CAPTIONS 

Fig. 1 Scheme of the model 

One plant and one mycorrhizal fungus interact with each other. The plant obtains 

carbon by photosynthesis and controls the allocation of carbon to the fungus. The 

fungus takes up phosphorus from the soil and controls the allocation of 

phosphorus to the plant. By allocating resource, they can help the growth of the 

partner, and the partner may allocate more resources in the future. 

 

Fig. 2 Functional form of the Cobb-Douglas production function 

Contour plots of the Cobb-Douglas production function for photosynthesis; (a) 

when both carbon and phosphorus are equally important (α = 0.5), (b) when 

phosphorus is more important than carbon (α = 0.8). The other parameter f0 = 1.0. 

 

Fig. 3 The optimal reaction of plant and fungus  

(a) Contour plot of u1
* , the optimal allocation ratio by the plant to the fungus. (b) 

Contour plot of u2
* , the optimal allocation ratio of the fungus to the plant. The 

horizontal axis is α, the relative importance of phosphorus to photosynthesis by the 

plant. The vertical axis is 

! 

", the relative importance of carbon for phosphorus uptake 

by the fungus.  
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8. FIGURES 
Figure 1 
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Figure 3 
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