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Chapter 1

Introduction

The dissipative structure of symmetric hyperbolic systems

A0(u)ut +
n∑

j=1

Aj(u)uxj
+ L(u)u = 0,

which include the discrete velocity model of the Boltzmann equations, and symmetric hyperbolic-
parabolic systems of conservation laws

A0(u)ut +
n∑

j=1

Aj(u)uxj
+ L(u)u =

n∑
j, k=1

Bjk(u)uxjxk
,

which include the compressible Navier-Stokes equations, was completely characterized by the
stability condition called the Shizuta-Kawashima condition (see [58, 67]), which gives us the
asymptotic stability result and the explicit rate of convergence: if the degenerate dissipation
matrix L is symmetric, Y. Shizuta and S. Kawashima designed the compensating matrix K
to capture the dissipation of systems over the degenerate kernel space of L.

Now we are concerned with the dissipative structure and asymptotic behavior of these
systems that abound in great interests.

In order to investigate the dissipative structure, which is the key concept to consider the
stability for t → ∞, we define dissipativity or strict dissipativity by using the eigenvalue
λ = λ(iξ) of each system as follows:

Definition 1.0.1 (Dissipative structures: Key to the stability for t → ∞). Let λ =
λ(iξ) be the eigenvalue. Then “dissipativity” or “strict dissipativity” is defined by λ, which
characterises the dissipative structures as follows, respectively:

• Dissipativity: Reλ(iξ) ≤ 0 for any ξ.

• Strict dissipativity: Reλ(iξ) < 0 for any ξ ̸= 0.

Moreover, in order to discuss strict dissipativity in detail, we characterize it by introducing
the following inequality of Type (p, q):

5



6 CHAPTER 1. INTRODUCTION

Definition 1.0.2 (Strict dissipativity of Type (p, q)). We define strict dissipativity as the
following inequality of Type (p, q):

Reλ(iξ) ≤ − c|ξ|2p

(1 + |ξ|2)q
,

where c is a constant.

Y. Shizuta and S. Kawashima concluded that the dissipative structure of symmetric
hyperbolic systems or symmetric hyperbolic-parabolic systems could be characterized as
Type (1, 1) in their general theory.

Recentry, however, we found some physical models to which the general theory of dissi-
pative structure could not be applicable. Moreover, it has been shown that the dissipative
structures of these systems are very different from that obtained in the general theory as
follows:

Dissipative structure Type (p, q) Examples

General theory p=1, q=1 Boltzmann equations,

Compressible Navier-Stokes equations, etc.

p=1, q=2 Dissipstive Timoshenko system,

Euler-Maxwell equations

New dissipativity p=2, q=3 Timoshenko-Fourier system,

Timoshenko-Cattaneo system,

Timoshenko system with memory.

Inspired by recent concrete examples, such as dissipative Timoshenko systems and compress-
ible Euler-Maxwell equations and so on, the matrix L has the skew-symmetric part and is
not symmetric. In this case, the partial positivity on Ker(L1)

⊥ (L1 := the symmetric part
of L) is available only. For this problem Y. Ueda, R. Duan and S. Kawashima [64] found a
real compensating matrix S to make up the full positivity on Ker(L)⊥. Consequently, they
developed decay properties of Type (1, 2) with weaker dissipative mechanism. However, it
has been an open problem to develop a general way to capture the dissipation of the systems
with decay properties of Type (2, 3), which is of much weaker dissipativity also in the low
frequency region.

Indeed, the new dissipative strudtures are very weak in the high frequency region, which
causes regularity-loss in the dissipation terms of the energy estimate and the time decay
estimate of the solutions to the linearized system: therefore we call the dissipative structure
of Type (1, 2) or Type (2, 3) regularity-loss type.

The difficulty caused by this fact prevents us from establishing the new method to analyze
symmetric hyperbolic systems and symmetric hyperbolic-parabolic systems generally.
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1.1 Examples of regularity-loss type

Typical examples of the models which have the dissipative structures of regularity-loss type
are the Timoshenko system, which describes the vibration of the beam, and the Euler-
Maxwell system, which describes the plasma phenomenon. In this section, we give the short
introductions for these systems.

1.1.1 Timoshenko system

The original Timoshenko system was first introduced by S.P. Timoshenko (see [62, 63]) as the
model system which describes the vibration of the beam called the Timoshenko beam. The
Timoshenko beam theory has the advantage of describing not only the transversal movement
but also the shear deformation and the rotational inertia effects. He described it in the form{

ρφtt = {K (φx − ψ)}x (t, x) ∈ R+ × (0, L),

Iρ ψtt = (EIψx)x +K (φx − ψ) (t, x) ∈ R+ × (0, L)
(1.1.1)

with the boundary conditions

EIψx = 0, K (φx − ψ) = 0 on x = 0, L. (1.1.2)

Here t is the time variable and x is the spacial variable which denotes a point on the center
line of the beam. The unknown functions φ = φ(t, x) and ψ = ψ(t, x) denote the transversal
displacement of the beam from the equilibrium state and the rotation angle of the filament of
the beam, respectively. Note that the term φx−ψ denotes the shearing stress. The coefficients
ρ, Iρ, E, I and K denote the density (the mass per unit length), the polar moment of inertia
of a cross section, Young’s modulus of elasticity, the moment of inertia of a cross section, and
the shear modulus, respectively. We see that the system (1.1.1) with the boundary condition
(1.1.2) is conservative so that the total energy of the beam remains constant in time. For a
physical derivation of the system, we refer to [20].

In recent years, the subject of the stability of the Timoshenko-type systems has received
lots of attention. Especially for bounded reference configurations, we have many papers not
only for the linear systems but also the nonlinear systems with relaxation parameters or
memory terms, concerning uniform and decay of energy; see [3, 52, 56]. For similar problems
dealing with the stability theory for the Timoshenko system with thermal dissipation, we
refer to [51]. All the above mentioned papers treated the Timoshenko system in a bounded
domain in which the Poincarè inequality and the type of the boundary conditions play a
decisive role.

1.1.2 Euler-Maxwell system

Compressible Euler-Maxwell equations appear in the mathematical modelling of semiconduc-
tor sciences. When semiconductor devices are operated under some high frequency conditions,
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such as photoconductive switches, electro-optics, semiconductor lasers and high-speed com-
puters, etc., the electron transport in devices interacts with the propagating electromagnetic
waves. Consequently, the Euler-Maxwell equations

∂tn+∇ · (nu) = 0 (t, x) ∈ R+ × R3,

∂t(nu) +∇ · (nu⊗ u) +∇p(n) = −n (E + u×B)− nu, (t, x) ∈ R+ × R3,

∂tE −∇×B = nu (t, x) ∈ R+ × R3,

∂tB +∇× E = 0 (t, x) ∈ R+ × R3

with constraints

∇ · E = n∞ − n, ∇ ·B = 0 (t, x) ∈ R+ × R3

which take the the form of Euler equations for the conservation laws of mass density, current
density and energy density for electrons, coupled to Maxwell’s equations for self-consistent
electromagnetic field, are introduced to describe the transport process. Here the unknowns
n > 0, u ∈ R3 are the density and the velocity of electrons, and E ∈ R3, B ∈ R3 denote the
electric field and magnetic field, respectively. The pressure p(n) is a given smooth function
of n satisfying p′(n) > 0 for n > 0 and n∞ is assumed to be a positive constant, which stands
for the density of positively charged background ions. The reader is also referred to [8, 36]
for more explanation.

1.2 Aim & Abstract

Our goal of this sybject is, based on the former theory of the Shizuta-Kawashima condition, to
clarify the new decay property of regularity-loss type represented by the Timoshenko system,
and build up the general way to overcome the difficulty of the weak dissipation caused by
the regularity-loss property and show the corresponding energy decay structures precisely.

To this end, we start with seeking the lowest regularity index for the optimal time decay
rate of the solutions in L2 to the compressible Euler-Maxwell equations with the weaker
dissipative mechanism. In Chapter 2, we develop a new time-decay estimate of Lp(Rn)-
Lq(Rn)-Lr(Rn) type by using the low-frequency and high-frequency analysis in Fourier spaces,
and apply it to the equations to show that the minimal decay regularity coincides with
the critical regularity for the global-in-time solutions. Due to the dissipative structure of
regularity-loss, extra higher regularity than that for the global-in-time existence is usually
imposed to obtain the optimal time decay rates of classical solutions to dissipative systems.
Consequently, a notion of minimal decay regularity for dissipative systems of regularity-loss
is firstly proposed. Moreover, the recent decay property for symmetric hyperbolic systems
with non-symmetric dissipation is also extended to be the Lp-version.

From Chapter 3, we investigate the decay property and the nonlinear stability of the
Timoshenko system by introducing various dissipative mechanism.
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In Chapter 3, we consider the nonlinear version of the Timoshenko system with a frictional
damping as the dissipative mechanism. We prove the global-in-time existence and uniqueness
of the solutions under smallness assumption on the initial data in the Sobolev space H2

(with the critical regularity-index) by employing the energy method. To this end, we first
make a refinement of the energy method in the Fourier space employed in Ide-Haramoto-
Kawashima for the linearized system, which gives an improvement on the energy estimate in
Ide-Haramoto-Kawashima. Moreover, for initial data in H2 ∩L1, we show that the solutions
decay in L2 at the the optimal time decay rate t−1/4 for t → ∞. The proof starts with
obtaining the precise estimate of the nonlinear solutions by employing the energy method in
the Fourier space. And then, we apply the refined time-decay estimate of Lp(Rn)-Lq(Rn)-
Lr(Rn) type developped in Chapter 2 to the linear part and the nonlinear part of the energy
estimate of the solutions, respectively.

In Chapter 4 and Chapter 5, we first show the global-in-time existence and uniqueness, and
optimal decay rates of the solutions to the dissipative Timoshenko system in the framework
of Besov spaces.

In Chapter 4, we consider the case of equal wave speeds, and construct the global solutions
to the Cauchy problem pertaining to data in the spatially Besov spaces. Furthermore, the
dissipative structure enables us to give a new decay framework which pays less attention on
the traditional spectral analysis. Consequently, the optimal decay estimates of the solution
and its derivatives of fractional order are shown by time-weighted energy approaches in
terms of low-frequency and high-frequency decompositions. As a by-product, the usual decay
estimate of L1(R)-L2(R) type is also shown.

In Chapter 5, as a continued work of Chapter 4, we are concerned with the dissipative
Timoshenko system in the case of non-equal wave speeds. Firstly, with the modification of
a priori estimates in Chapter 4, we construct global solutions to the Timoshenko system
pertaining to data in the Besov space with the regularity s = 3/2. Owing to the weaker
dissipative mechanism, extra higher regularity than that for the global-in-time existence is
usually imposed to obtain the optimal decay rates of classical solutions, and therfore it is
almost impossible to obtain the optimal decay rates in the critical space. To overcome the
outstanding difficulty, we develop a new frequency-localization time-decay inequality, which
captures the information related to the integrability at the high-frequency part. Furthermore,
by the energy approach in terms of high-frequency and low-frequency decomposition, we
show the optimal decay rate for Timoshenko system in critical Besov spaces, which improves
previous works greatly.

In Chapter 6 we study the Timoshenko system with Fourier’s type heat conduction in the
one-dimensional whole space. Note that our Timoshenko-Fourier system does not include
any mechanical damping. We observe that the dissipative structure of the system is of the
regularity-loss type which is a little different from that of the dissipative Timoshenko system
studied in Ide-Haramoto-Kawashima. Moreover, we show the optimal L2 decay estimates of
the solution in a general situation. The proof is based on the detailed pointwise estimates
of the solution in the Fourier space. Since the dissipative structure of the system is of the
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regularity-loss type for a ̸= 1, our energy method looks similar to the one for the previous
system (the dissipative Timoshenko system) but is much more complicated due to its weak
dissipativity.

In Chapter 7 we consider the Timoshenko system with Cattaneo’s type heat conduction
in the one-dimensional whole space. We investigate the dissipative structure of the system
and derive the optimal L2 decay estimate of the solution in a general situation. Our decay
estimate is based on the detailed pointwise estimate of the solutions in the Fourier space.
This decay property is a little different from that of the dissipative Timoshenko system ([24])
in the low frequency region. However, in the high frequency region, it is just the same as
that of the Timoshenko-Fourier system in Chapter6 or the dissipative Timoshenko system in
Chapter3, although the stability number is different. Finally, we study the decay property
of the Timoshenko system with the thermal effect of memory-type by reducing it to the
Timoshenko-Cattaneo system.

In Chapter 8, we consider the initial value problem for the Timoshenko system with
a memory term in the one-dimensional whole space. The aim of this chapter is to show
the global-in-time existence and uniqueness of the solution to the Cauchy problem under
the lowest regularity assumption on the initial data. To this end, we remake the pointwise
estimate of the solution to the linearized system developped in [32] in order to get the way
to construct the Lyapunov function which minimizes the number of the dissipation terms of
regularity-loss. Next, we characterize the dissipative structure of the system by the straight
calculation of the asmnptotic expansions of the eigenvalues. This characterization confirms
that our pointwise estimate is optimal. Finally, based on our linearized system results, we
investigate the nonlinear system and obtain the global-in-time existence and uniqueness in the
critical sobolev space H2. That is, we show that the global-in-time existence and uniqueness
of the system could be proved in the minimal regularity assumption on the initial data and
no need to employ any time-weighted norm as Liu and Kawashima did in [33]. This implies
that our refinement of the Lyapunov function and its application to the nonlinear system
completely overcomes the difficulty caused by the weak dissipation due to the regularity-loss
property of the Timoshenko system with a memory term.
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Notations:

• The Fourier transform f̂ (or F [f ]) of a function f ∈ S (the Schwarz class) is denoted
by

F [f ] :=

∫
Rn

f(x) e−2πx·ξdx.

The Fourier transform of a tempered function in S ′ is defined by the dual argument in
the standard way. Moreover, F−1[f ] stands for the inverse Fourier transform in Rn.

• For 1 ≤ p ≤ ∞, we denote by Lp = Lp(R) the usual Lebesgue space on R with the
norm ∥ · ∥Lp .

• Denote by C([0, T ], X) (resp.,C1([0, T ], X)) the space of continuous (resp., continuously
differentiable) functions on [0, T ] with values in a Banach space X.

• Also, ∥(f, g, h)∥X means ∥f∥X + ∥g∥X + ∥h∥X , where f, g, h ∈ X.

• Every positive constants are denoted by the same symbol C or c without confusion.
Besides, f ≲ g means f ≤ Cg, and f ≈ g means f ≲ g and g ≲ f simultaneously.





Chapter 2

Compressible Euler-Maxwell
equations

2.1 Introduction

Let us consider isentropic Euler-Maxwell equations where the energy equation is replaced
with state equation of the pressure-density relation. Precisely,

∂tn+∇ · (nu) = 0,

∂t(nu) +∇ · (nu⊗ u) +∇p(n) = −n (E + u×B)− nu,

∂tE −∇×B = nu,

∂tB +∇× E = 0,

(2.1.1)

with constraints

∇ · E = n∞ − n, ∇ ·B = 0 (2.1.2)

for (t, x) ∈ [0,+∞) × R3. Observe that, for any vector B∞ ∈ R3, system (2.1.1) admits a
constant equilibrium state of the form

(n∞, 0, 0, B∞), (2.1.3)

which are regarded as vectors in R10. In this chapter, we are concerned with problem (2.1.1)-
(2.1.2) with the initial data

(n, u, E, B)|t=0 = (n0, u0, E0, B0)(x), x ∈ R3. (2.1.4)

Notice that the constraint condition (2.1.2) holds true for every t > 0, if it holds at time
t = 0, namely we assume that

∇ · E0 = n∞ − n0, ∇ ·B0 = 0, x ∈ R3. (2.1.5)

13
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2.1.1 Known results & Motivation

System (2.1.1) is partially dissipative due to the damping term in the momentum equations.
In one space dimension, by using the Godunov scheme with the fractional step together with
the compensated compactness theory, Chen, Jerome, and Wang [8] constructed the global
existence of weak solutions. In several space dimensions, the question of global weak solution
of (2.1.1) is open, and only the global existence and large-time behavior of smooth solutions
have been studied. To state some known results, it is convenient to reformulate the system
(2.1.1) as 

∂tn+ u · ∇n+ n divu = 0,

∂tu+ (u · ∇)u+ a(n)∇n+ E + u×B + u = 0,

∂tE −∇×B − nu = 0,

∂tB +∇× E = 0,

(2.1.6)

where a(n) := p′(n)/n is the enthalpy function. For simplicity, we set w = (n, u, E,B)⊤

(⊤: transpose), which is a column vector in R10. Then (2.1.6) can be written in vector form

A0(w)wt +
3∑

j=1

Aj(w)wxj
+ L(w)w = 0, (2.1.7)

where the coefficient matrices are given explicitly by

A0(w) =


a(n) 0 0 0
0 nI 0 0
0 0 I 0
0 0 0 I

 , L(w) =


0 0 0 0

0 n (I − ΩB) nI 0

0 −nI 0 0

0 0 0 0

 ,

3∑
j=1

Aj(w)ξj =


a(n)(u · ξ) p′(n) ξ 0 0

p′(n) ξ⊤ n (u · ξ) I 0 0

0 0 0 −Ωξ

0 0 Ωξ 0

 .

Here I is the identity matrix of third order, ξ = (ξ1, ξ2, ξ3) ∈ R3, and Ωξ is the skew-symmetric
matrix defined by

Ωξ =

 0 −ξ3 ξ2

ξ3 0 −ξ1
−ξ2 ξ1 0


which implies that ΩξE

⊤ = (ξ × E)⊤ (as a column vector in R3) for E = (E1, E2, E3) ∈ R3.
Let us mention that (2.1.7) is a symmetric hyperbolic system, since A0(w) is real symmetric
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and positive definite matrix and Aj(w)(j = 1, 2, 3) are real symmetric. It is easy to check
that the dissipative matrix L(w) is nonnegative definite, however, L(w) is not real symmetric.
Such partial dissipation forces (2.1.1) to go beyond the class of generally dissipative hyperbolic
systems satisfying the Kawashima-Shizuta condition, which have been well studied by [6, 21,
27, 29, 30, 58, 67, 77] in Sobolev spaces, [70, 71] in critical Besov spaces, see also references
therein.

So far there are a number of efforts on global smooth solutions for (2.1.1) by various
authors, see [15, 17, 45, 46, 61, 66] on the framework of Sobolev spaces, [69, 75] in critical
Besov spaces. In the present chapter, we pay attention to global smooth solutions constructed
in Sobolev spaces. Here we adopt some notations introduced in [66]:

w∞ = (n∞, 0, 0, B∞)⊤, w0 = (n0, u0, E0, B0)
⊤;

N0(t) := sup
0≤τ≤t

∥(w − w∞)(τ)∥Hs ;

D0(t)
2 :=

∫ t

0

(
∥(n− n∞, u)(τ)∥2Hs + ∥E(τ)∥2Hs−1 + ∥∇B(τ)∥2Hs−2

)
dτ.

The global existence of smooth solutions is drawn briefly as follows (see [66] for details):{
The initial data w0 − w∞ ∈ Hs(s ≥ 3) and (2.1.5),

I0 := ∥w0 − w∞∥Hs ≤ ε0,
(2.1.8)

⇒

{
w − w∞ ∈ C ([0,∞);Hs) ∩ C1 ([0,∞);Hs−1) ,

N0(t)
2 +D0(t)

2 ≤ CI20 .
(2.1.9)

Remark 2.1.1. Due to the non-symmetric dissipation, there is an 1-regularity-loss phenomenon
of dissipation rates from the electromagnetic part (E,B), which was first observed in [15].
The regularity index s ≥ 4 was needed for global smooth solutions. Later, this result was
improved in [66], by relaxing the regularity requirement to s ≥ 3, which coincides with the
regularity needed for the standard result of local in time existence of smooth solutions [26, 35].
Denote by sc the critical regularity for smooth solutions to dissipative systems. Therefore, it
follows from [66] that “sc = 3” for the Euler-Maxwell system in R3.

In this chapter, we focus on the time decay of classical solutions to (2.1.1). For this
purpose, we rewrite (2.1.1) as the linearized perturbation form around the equilibrium state
w∞. Set υ = nu/n∞. Then

∂tn+ n∞divυ = 0,

∂tυ + a∞∇n+ E + υ ×B∞ + υ = (divq2 + r2)/n∞,

∂tE −∇×B − n∞υ = 0,

∂tB +∇× E = 0,

(2.1.10)
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where a∞ = p′(n∞)/n∞,

q2 = −n2
∞υ ⊗ υ/n− [ p(n)− p(n∞)− p′(n∞)(n− n∞) ] I

and
r2 = −(n− n∞)E − n∞υ × (B −B∞).

We put z := (ρ, υ, E, h)⊤, where ρ = n − n∞ and h = B − B∞. The corresponding initial
data are given by

z|t=0 = (ρ0, υ0, E0, h0)
⊤(x) (2.1.11)

with ρ0 = n0 − n∞, υ0 = n0u0/n∞ and h0 = B0 − B∞. System (2.1.10) is also rewritten in
vector form as

A0zt +
3∑

j=1

Ajzxj
+ Lz =

3∑
j=1

Qxj
+R, (2.1.12)

where A0, Aj and L are the constant matrices given by (2.1.7) with w = w∞, Q(z) =
(0, qj2/n∞, 0, 0)

⊤ and R(z) = (0, r2/n∞, 0, 0)
⊤. Notice that Q(z) = O(|(ρ, υ)|2) and R(z) =

O(ρ|E|+ |υ||h|), which will be useful in the following.

The linearized form of (2.1.12) reads as

A0∂tzL +
3∑

j=1

Aj∂xj
zL + LzL = 0, (2.1.13)

and the corresponding initial data z0 := (ρ0, υ0, E0, h0)
⊤ satisfy

divE0 = −ρ0, divh0 = 0. (2.1.14)

Next, we apply the Fourier transform of (2.1.13) to get

A0∂tẑL + i|ξ|A(ω) ẑL + LẑL = 0, (2.1.15)

where A(ω) =
∑3

j=1A
jωj, and ω = ξ/|ξ| ∈ S2. Set

Φ̂(ξ) = (A0)−1 (i|ξ|A(ω) + L) .

We define the Green matrix Ĝ(t)z := e−tΦ̂(ξ)ẑ which is a mapping from Xξ to Xξ with

Xξ = {ẑ ∈ C10 | iξ · Ê = −ρ̂, iξ · ĥ = 0} ⊂ C10. Then the linearized solution zL of (2.1.13)-
(2.1.14) is given by G(t)z0.

As shown by [65], by using the energy method in Fourier spaces, the Fourier image of zL
satisfies the following pointwise estimate

|ẑL(t, ξ)| ≲ e−c0η(ξ)t|ẑ0| (2.1.16)

for any t ≥ 0 and ξ ∈ R3, where the dissipative rate η(ξ) = |ξ|2/(1 + |ξ|2)2 and c0 > 0 is a
constant. Furthermore, the decay property was achieved:

∥∂kxzL∥L2 ≲ (1 + t)−
3
4
− k

2 ∥z0∥L1 + (1 + t)−
ℓ
2∥∂k+ℓ

x z0∥L2 , (2.1.17)

where k and ℓ are non-negative integers.
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Remark 2.1.2. The decay (2.1.17) is of the regularity-loss type, since (1 + t)−ℓ/2 is created
by assuming the additional ℓ-th order regularity on the initial data. Consequently, for the
nonlinear Euler-Maxwell system, extra higher regularity than that for global-in-time exis-
tence of classical solutions is imposed to obtain the optimal decay rates. Actually, similar
phenomena also appear in the study of other dissipative systems, for instance, quasi-linear
hyperbolic systems of viscoelasticity in [12, 14], hyperbolic-elliptic systems of radiating gas in
[23], dissipative Timoshenko systems in [25, 33], Vlasov-Maxwell-Boltzmann system in [18],
and a plate equation with rotational inertia effect in [60], etc..

A natural question follows. Which index characterises the minimal regularity for the
optimal time decay for dissipative systems of regularity-loss? This motivates the following

Definition 2.1.1. If the optimal decay rate of L1(Rn)-L2(Rn) type is achieved under the
lowest regularity assumption, then the lowest index is called the minimal decay regularity
index of dissipative systems of regularity-loss, which is labelled as sD.

According to dissipative systems of regularity loss mentioned in Remark 2.1.2, it is not
difficult to see that sD > sc. For example, for compressible Euler-Maxwell equations (2.1.1),
we see that sc = 3, whereas sD = 6 was shown by Duan and his collaborators [15, 17], Ueda
and Kawashima [65] independently. If the regularity of initial data is imposed higher than
sD = 6, then more decay information of solutions can be available, e.g., see [15, 17, 61].
However, this is beyond our primary interest.

2.1.2 Aim, Strategy & Main results

The interest of this chapter is to seek the minimal decay regularity for (2.1.1) such that
sD = 3, which is the same critical regularity as sc = 3 for global classical solutions. Obviously,
such regularity assumption on the initial data is reduced heavily in comparison with known
results in [15, 17, 61, 65] and therein references. Due to the less regularity assumption,
actually, previous techniques used are invalidated.

To do this, we first develop a time-decay inequality of Lp-Lq-Lr type, which is a new and
crucial ingredient in the present chapter. As we known, Umeda, Kawashima and Shizuta
initiated a decay inequality of L2-Lq-L2 type with η(ξ) = |ξ|2/(1+|ξ|2) in the earlier work [67]
for generally hyperbolic-parabolic systems, and the high frequency part yields an exponential
decay. Subsequently, a number of dissipative systems were investigated, see [12, 14, 18, 23,
24, 25, 38, 60, 64, 65], where the dissipative rate is of the (a, b)-type: η(ξ) = |ξ|2a/(1+ |ξ|2)b.
The corresponding decay estimates are also of L2-Lq-L2 type, however, the high-frequency
part usually admits a polynomial decay provided the initial data is imposed more regularity,
for example, see (2.1.17). Anyway, the following general Lp-Lq-Lr time-decay estimate is not
available in previous papers.

Theorem 2.1.1. (Lp-Lq-Lr estimates) Let η(ξ) be a positive, continuous and real-valued
function in Rn satisfying

η(ξ) ∼

{
|ξ|σ1 , |ξ| → 0;

|ξ|−σ2 , |ξ| → ∞;
(2.1.18)
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for σ1, σ2 > 0. For ϕ ∈ S(Rn), it holds that

∥F−1[|ξ|ke−η(ξ)t|ϕ̂(ξ)|]∥Lp

≤ C (1 + t)
−γσ1 (q,p)−

k−j
σ1 ∥∂jxϕ∥Lq︸ ︷︷ ︸

Low−frequency Estimate

+(1 + t)
− ℓ

σ2
+γσ2 (r,p)∥∂k+ℓ

x ϕ∥Lr︸ ︷︷ ︸
High−frequency Estimate

, (2.1.19)

for ℓ > n (1
r
− 1

p
), 1 ≤ q, r ≤ 2 ≤ p ≤ ∞ and 0 ≤ j ≤ k, where γσ(q, p) :=

n
σ
(1
q
− 1

p
) (σ > 0)

and C is some positive constant.

From Theorem 2.1.1, we see that the function decays like a generalized heat kernel at the
low-frequency part, and for the high-frequency part, it decays in time not only with algebraic
rates of any order as long as the function is spatially regular enough, but also additional
information related the integrability is captured in comparison with (2.1.17). In the present
chapter, the case σ1 = σ2 = 2 in the Lp-Lq-Lr estimate will be applied directly, since system
(2.1.1) admits the dissipative rate of (1, 2)-type.

In [65], the authors obtained (2.1.17) for the linearized Euler-Maxwell system. Then
the nonlinear case is achieved straightforward by using the standard Duhamel principle. To
overcome the difficulty arising from the weaker dissipative mechanism of regularity-loss, the
norm

W⊥(t) := sup
0≤τ≤t

(1 + τ)∥(ρ, υ, E)∥W 1,∞

was used in such semigroup approach, which led to an extra-regularity of initial data. Here,
we have to skip the Duhamel principle. Consequently, the energy method in Fourier spaces
for (2.1.10)-(2.1.11) with fixed nonlinear terms is mainly performed, which enables us to
obtain an inequality something like “the square form of Duhamel principle”, see Section 2.3.
Fortunately, the inequality (2.1.19) plays the key role to get the optimal decay estimates
for (2.1.10)-(2.1.11) in the regularity sD = 3. More precisely, the high-frequency estimate is
divided into two parts, and on each part, the advantage of (2.1.19) with respect to (2.1.17)
is that different values (for example, r = 1 or r = 2) can be chosen to obtain desired decay
estimates. See (2.3.16)-(2.3.17), (2.3.19) and (2.3.21)-(2.3.22) for more details. Finally, it
should be pointed out that the degenerate structures of Q(z) and R(z) in (2.1.12) are also
helpful to obtain the desired decay.

Now, we present the decay result for the Cauchy problem of (2.1.7).

Theorem 2.1.2. Assume that the initial data satisfy w0 − w∞ ∈ H3 ∩ L1 and (2.1.5). Set
I1 := ∥w0 −w∞∥H3∩L1 . Then there exists a positive ε1 such that if I1 ≤ ε1, then the classical
solution of the Cauchy problem of (2.1.7) admits the optimal decay estimate

∥w − w∞∥L2 ≤ C∥w0 − w∞∥H3∩L1(1 + t)−
3
4 , (2.1.20)

where C > 0 is some constant.

We would like to remark that ℓ ≥ 0 in the case of p = r = 2.
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Let us mention that the regularity required on the initial data to obtain the L1-L2 decay
coincides with sc = 3 for global solutions of (2.1.7). In other words, the extra-regularity of
initial data was not necessary to obtain the optimal time decay, which improve all previous
efforts for Euler-Maxwell equations, so the minimal decay regularity satisfies that sD = 3.

Remark 2.1.3. From the point of view of harmonic analysis, J. Xu and S. Kawashima inves-
tigated (2.1.1) in the spatially critical Besov spaces, where the critical regularity has been
improved to be sc = 5/2 (see [69, 75]). On the other hand, they [71] gave a decay framework
L2 ∩ Ḃ−s

2,∞(0 < s ≤ n/2) for generally dissipative system satisfying the Kawashima-Shizuta
condition. Is there the possibility such that sD = 5/2 for Euler-Maxwell equations based on
the new functional framework? Here, we draw down an open question.

The rest of this chapter unfolds as follows. In Section 2.2, we shall prove the Lp-Lq-Lr

decay estimates. Section 2.3 is devoted to develop the energy method in Fourier spaces for
(2.1.10) with fixed nonlinear terms. With aid of Lp-Lq-Lr estimates, the optimal decay rate
for (2.1.10)-(2.1.11) under the minimal regularity assumption is further shown. In Appendix
(Section 2.4), as another application of Lp-Lq-Lr estimates, the decay property for symmetric
hyperbolic systems with non-symmetric dissipation can be extended to be the Lp-version.

At the end of the Introduction, we would like to give a outlook for forthcoming works.

Remark 2.1.4. As applications of Lp-Lq-Lr decay estimates, two research lines will begin in
the near future. One is to employ Lp-Lq-Lr estimates in Theorem 2.1.1 related to dissipative
rates of (a, b) type, and investigate more dissipative systems of regularity-loss. Another is to
develop corresponding Lp-Lq-Lr estimates on the kinetic level, and then study the Vlasov-
Maxwell-Boltzmann system of regularity-loss.

2.2 The proof of Lp-Lq-Lr decay estimates

In this section, we give the proof for the time-decay estimate of Lp-Lq-Lr type by using the
high-frequency and low-frequency decomposition method.

The proof of Theorem 2.1.1. Firstly, it follows from Hausdorff-Young’s inequality that

∥F−1[|ξ|ke−η(ξ)t|ϕ̂(ξ)|]∥Lp ≲ ∥|ξ|ke−η(ξ)t|ϕ̂(ξ)|∥Lp′ , (2.2.1)

for 1
p
+ 1

p′
= 1, 2 ≤ p ≤ ∞.

Secondly, we deal with the Lp′-norm on the right-hand side of (2.2.1) at the low-frequency
and high-frequency, respectively. It follows from the assumption (2.1.18) that there exists a
constant R0 > 0 such that

∥|ξ|ke−η(ξ)t|ϕ̂(ξ)|∥Lp′

≤ ∥|ξ|ke−c|ξ|σ1 t|ϕ̂(ξ)|∥Lp′ (|ξ|≤R0)
+ ∥|ξ|ke−c|ξ|−σ2 t|ϕ̂(ξ)|∥Lp′ (|ξ|≥R0)

≜ I1 + I2, (2.2.2)
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for some constant c > 0.

For I1, we are led to the estimate

I1 ≤ ∥|ξ|ke−c|ξ|σ1 t|ϕ̂(ξ)|∥Lp′ (|ξ|≤R0)

= ∥|ξ|j|ϕ̂(ξ)||ξ|(k−j)e−c|ξ|σ1 t∥Lp′ (|ξ|≤R0)
(0 ≤ j ≤ k)

≤ ∥|ξ|jϕ̂∥Lq′ (|ξ|≤R0)
∥|ξ|(k−j)e−c|ξ|σ1 t∥Ls1(|ξ|≤R0)

( 1
q′

+
1

s1
=

1

p′
, q′ ≥ 2

)
≲ ∥∂jxϕ∥Lq(1 + t)

− n
σ1s1

− k−j
σ1

(1
q
+

1

q′
= 1
)

≲ (1 + t)
− n

σ1
( 1
q
− 1

p
)− k−j

σ1 ∥∂jxϕ∥Lq , (2.2.3)

where Hölder inequality was used in the third line and Hausdorff-Young’s inequality was used
again in the fourth line.

For I2, we arrive at

I2 ≤ ∥|ξ|ke−ct/|ξ|σ2 |ϕ̂(ξ)|∥Lp′ (|ξ|≥R0)

=
∥∥∥|ξ|k+ℓ|ϕ̂(ξ)|e

−ct/|ξ|σ2

|ξ|ℓ
∥∥∥
Lp′ (|ξ|≥R0)

≤ ∥|ξ|k+ℓϕ̂∥Lr′ (|ξ|≥R0)

∥∥∥e−ct/|ξ|σ2

|ξ|ℓ
∥∥∥
Ls2(|ξ|≥R0)

( 1
r′

+
1

s2
=

1

p′
, r′ ≥ 2

)
≲ ∥∂k+ℓ

x ϕ∥Lr

∥∥∥e−ct/|ξ|σ2

|ξ|ℓ
∥∥∥
Ls2 (|ξ|≥R0)

(1
r
+

1

r′
= 1
)
, (2.2.4)

where ∫
|ξ|≥R0

e−ct/|ξ|σ2

|ξ|ℓs2
dξ =

∫
ϱ≥R0

e−ct/ϱσ2

ϱσ2(ℓs2/σ2)
ϱn−1dϱ

=

∫ σ2
√
t/R0

0

t
− ℓs2

σ2 yℓs2e−cyσ2 t
n−1
σ2

yn−1
(t

1
σ2 y−2dy)

≲ (1 + t)
− ℓs2

σ2
+ n

σ2 (ℓs2 > n). (2.2.5)

Let us point out that the change of variables ϱ = |ξ| and y = σ2
√
t/ϱ in the first and second

lines of (2.2.5) were performed, respectively.

Together with (2.2.4)-(2.2.5), we obtain

I2 ≲ (1 + t)
− ℓ

σ2
+ n

σ2
( 1
r
− 1

p
)∥∂k+ℓ

x ϕ∥Lr , (2.2.6)
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where the constraint ℓs2 > n leads to ℓ > n(1
r
− 1

p
). It should be noted that I2 can be bounded

by (1 + t)
− ℓ

σ2 ∥∂k+ℓ
x ϕ∥L2 with ℓ ≥ 0 if p = r = 2.

Hence, combining (2.2.2)-(2.2.3) and (2.2.6) together, the proof of Theorem 2.1.1 is com-
plete immediately.

2.3 The proof of Theorem 2.1.2

Based on the Lp-Lq-Lr estimate for (1, 2)-type in Theorem 2.1.1, the main objective of this
section is to show the optimal decay estimate of L1-L2 type for (2.1.10)-(2.1.11) under the
minimal regularity assumption. For clarity, we separate the proof into two parts.

2.3.1 Energy method in Fourier spaces

Since earlier works [58, 67], the energy method in Fourier spaces have been well developed for
hyperbolic systems of viscoelasticity, hyperbolic-elliptic systems of radiating gas, compress-
ible Euler-Maxwell equations, Timoshenko systems and the plate equation with rotational
inertia effect and so on, see [14, 23, 25, 60, 65] and therein references. The interested reader
is also referred to [64] for generally hyperbolic systems with non-symmetric dissipation. Usu-
ally, the energy method in Fourier spaces is adapted to linearized systems. Here, we shall
perform the nonlinear version in Fourier spaces for (2.1.10)-(2.1.11), see (2.3.1) below. Let us
mention that the similar estimate was first given by S. Kawashima in [28] for the Boltzmann
equation, then well developed in [30] for hyperbolic systems of balance laws.

Proposition 2.3.1. Let z = (ρ, υ, E, h)⊤ be the global classical solutions constructed in [66]
(also see (2.1.8)-(2.1.9)). Then the Fourier image of classical solutions of (2.1.10)-(2.1.11)
satisfies the following pointwise estimate

|ẑ(ξ)|2 ≲ e−c1η(ξ)t|ẑ0(ξ)|2 +
∫ t

0

e−c1η(ξ)(t−τ)
(
|ξ|2|Q̂(τ, ξ)|2 + |R̂(τ, ξ)|2

)
dτ, (2.3.1)

for any t ≥ 0 and ξ ∈ R3, where the dissipative rate η(ξ) := |ξ|2/(1 + |ξ|2)2 and c1 > 0 is a
constant.

Proof. Indeed, it suffices to show the influence of nonlinear terms, since the proof follows
from the energy method in Fourier spaces as in [65]. Applying the Fourier transform to
(2.1.10) gives 

∂tρ̂+ n∞i|ξ|υ̂ · ω = 0,

∂tυ̂ + a∞i|ξ|ρ̂ ω + Ê + υ̂ ×B∞ + υ̂ = (i|ξ|q̂2 · ω + r̂2) /n∞,

∂tÊ + i|ξ|ĥ× ω − n∞υ̂ = 0,

∂tĥ− i|ξ|Ê × ω = 0.

(2.3.2)
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Also, we have

i|ξ|Ê · ω = −ρ̂, i|ξ|ĥ · ω = 0. (2.3.3)

For clarity, we divide it into three steps.

Step 1. (Estimate for dissipative term of υ̂): Performing the inner product of (2.3.2)
with a∞ρ̂, n∞υ̂, Ê and ĥ, respectively, then adding the resulting equalities together. We take
the real part to get

d

dt
E0 + c2|υ̂|2 = Re ⟨i|ξ|q̂2 · ω + r̂2, υ̂⟩, (2.3.4)

where E0 := a∞|ρ̂|2 + n∞|υ̂|2 + |Ê|2 + |ĥ|2 ≈ |ẑ|2 and c2 = 2n∞. Here and below, Ref̂ means
the real part of f̂ . Recalling those definitions of Q and R, it follows from Young’s inequality
that

d

dt
E0 +

c2
2
|υ̂|2 ≲

(
|ξ|2|Q̂|2 + |R̂|2

)
. (2.3.5)

Step 2. (Estimate for dissipative term of (ρ̂, Ê)): Performing the inner product of the
second and the third equations of (2.3.2) with a∞i|ξ|ρ̂ ω + Ê and υ̂, respectively, and then
adding the resulting equalities implies

{⟨a∞i|ξ|ρ̂t ω, υ̂⟩+ ⟨υ̂t, a∞i|ξ|ρ̂ ω⟩}+ {⟨υ̂t, Ê⟩+ ⟨Êt, υ̂⟩}

+|a∞i|ξ|ρ̂ ω + Ê|2 − n∞|υ̂|2 − n∞a∞|ξ|2|υ̂ · ω|2

+⟨υ̂ ×B∞ + υ̂, a∞i|ξ|ρ̂ ω + Ê⟩+ iξ⟨ĥ× ω, υ̂⟩

= ⟨(i|ξ|q̂2 · ω + r̂2) /n∞, a∞i|ξ|ρ̂ ω + Ê⟩, (2.3.6)

where ⟨·, ·⟩ denotes the standard inner product in the complex vector value Cn (n ≥ 1).

Taking the real part of (2.3.6) and just following from the similar procedure as in [65],
we arrive at

d

dt
(E1 + a∞|ξ|E2) + c3

(
1 + |ξ|2

)
|ρ̂|2 + c3|Ê|2

≤ ε
|ξ|2

1 + |ξ|2
|ĥ|2 + Cε

(
1 + |ξ|2

)
|υ̂|2 + C

(
|ξ|2|Q̂|2 + |R̂|2

)
, (2.3.7)

for any ε > 0, where E1 := Re ⟨υ̂, Ê⟩, E2 := Re ⟨iρ̂ ω, υ̂⟩ and c3, Cε (depending on ε) are some
positive constants.

Step 3. (Estimate for dissipative term of ĥ): Performing the inner product of the third
and fourth equations of (2.3.2) with i|ξ|ĥ×ω and i|ξ|Ê×ω, respectively, adding the resulting
equalities together, and then taking the real part gives

d

dt
(|ξ|E3) + |ξ|2|ĥ× ω|2 = |ξ|2|Ê × ω|2 − Re ⟨n∞υ̂, i|ξ|ĥ× ω⟩, (2.3.8)
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where E3 := Re ⟨Ê, iĥ × ω⟩. Due to (2.3.3), we have |ĥ × ω| ≈ |ĥ|. Furthermore, it follows
from Young’s inequality that there exists c4 > 0 such that

d

dt
(|ξ|E3) + c4|ξ|2|ĥ|2 ≲ |ξ|2|Ê|2 + C|υ̂|2. (2.3.9)

Together energy inequalities (2.3.5), (2.3.7) and (2.3.9), the next step is to make the
suitable linear combination for them. Here, we feel free to skip them, see Page 262 in [65]
for similar details. That is, the Euler-Maxwell system admits Lyapunov function

E [ẑ] := E0 +
α1

1 + |ξ|2
{
E1 + a∞|ξ|E2 +

α2|ξ|
1 + |ξ|2

E3
}

such that the following differential inequality holds

d

dt
E [ẑ] + c1D[ẑ] ≲

(
|ξ|2|Q̂|2 + |R̂|2

)
, (2.3.10)

where

D[ẑ] = |ρ̂|2 + |υ|2 + 1

1 + |ξ|2
|Ê|2 + |ξ|2

(1 + |ξ|2)2
|ĥ|2,

and α1, α2 are suitable small constants which ensure that E [ẑ] ≈ |ẑ|2. It follows from (2.3.10)
that

d

dt
E [ẑ] + c1η(ξ) E [ẑ] ≲

(
|ξ|2|Q̂|2 + |R̂|2

)
, (2.3.11)

where η(ξ) = |ξ|2/(1 + |ξ|2)2. Finally, the inequality (2.3.1) is followed from Gronwall’s
inequality.

2.3.2 Optimal decay rates

In what follows, with preparations of Theorem 2.1.1 and Proposition 2.3.1, we prove the op-
timal decay estimate for (2.1.10). To show the minimal decay regularity of classical solutions,
we define new time-weighted energy functionals:

N(t) = sup
0≤τ≤t

(1 + τ)
3
4∥z(τ)∥L2 ,

D(t)2 =

∫ t

0

(
∥(ρ, υ)(τ)∥2H3 + ∥E(τ)∥2H2 + ∥∇h(τ)∥2H1

)
dτ.

Furthermore, the degenerate structure of nonlinear terms Q(z) and R(z) enables us to deduce
a nonlinear energy inequality, which is included in the following

Proposition 2.3.2. Let z = (ρ, υ, E, h)⊤ be the global classical solutions of (2.1.10)-(2.1.11)
(see (2.1.8)-(2.1.9)). Additionally, if z0 ∈ L1, then

N(t) ≲ ∥z0∥H3∩L1 +N(t)D(t) +N(t)2. (2.3.12)
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Proof. Let us begin with (2.3.1):

∫
R3

|ẑ(ξ)|2 dξ ≲
∫
R3

e−cη(ξ)t|ẑ0(ξ)|2 dξ

+

∫
R3

∫ t

0

e−cη(ξ)(t−τ)
(
|ξ|2|Q̂(τ, ξ)|2 + |R̂(τ, ξ)|2

)
dτdξ

≜ J1 + J2 + J3. (2.3.13)

For J1, by taking σ1 = σ2 = 2, p = 2, k = j = 0, q = 1 and r = ℓ = 2 in Theorem 2.1.1, we
arrive at

J1 ≲ (1 + t)−
3
2∥z0∥2L1 + (1 + t)−2∥∂2xz0∥2L2 . (2.3.14)

Next, we begin to estimate nonlinear terms. For J2, it is written as the sum of low-
frequency and high-frequency

J2 := J2L + J2H .

For J2L, by taking σ1 = σ2 = 2, p = 2 and k = 1, j = 0, q = 1 in Theorem 2.1.1, we have

J2L ≲
∫ t

0

(1 + t− τ)−
5
2∥Q(τ)∥2L1 dτ

≲
∫ t

0

(1 + t− τ)−
5
2∥z(τ)∥4L2 dτ

≲ N(t)4
∫ t

0

(1 + t− τ)−
5
2 (1 + τ)−3 dτ

≲ N(t)4(1 + t)−
5
2 , (2.3.15)

where we have used the fact Q(z) = O(|(ρ, υ)|2). For simplicity, we set z⊥ := (ρ, υ).

For J2H , more elaborate estimates are needed. For this purpose, we write

J2H =
(∫ t

2

0

+

∫ t

t
2

)
(· · ·) dτ := J2H1 + J2H2.
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Taking σ1 = σ2 = 2, p = 2 and k = 1, ℓ = 2, r = 2 in Theorem 2.1.1 gives

J2H1 ≲
∫ t

2

0

(1 + t− τ)−2∥∂3xQ(τ)∥2L2 dτ

≲
∫ t

2

0

(1 + t− τ)−2∥z⊥∥2L∞∥∂3xz⊥∥2L2 dτ

≲ sup
0≤τ≤ t

2

{
(1 + t− τ)−2∥z∥2L∞

}∫ t
2

0

∥∂3xz⊥∥2L2 dτ

≲ (1 + t)−2N2
0 (t)D

2(t)

≲ (1 + t)−2∥z0∥2H3 , (2.3.16)

where we have used (2.1.9) (taking s = 3) and the fact Q(z) = O(|z⊥|2).

On the other hand, by taking σ1 = σ2 = 2, p = 2 and k = 1, ℓ = 2, r = 1 in Theorem
2.1.1, we get

J2H2 ≲
∫ t

t
2

(1 + t− τ)−
1
2∥∂3xQ(τ)∥2L1 dτ. (2.3.17)

It follows from the Gagliardo-Nirenberg interpolation inequality in [43] that

∥∂xf∥L2 ≲ ∥f∥
2
3

L2∥∂3xf∥
1
3

L2 , ∥∂2xf∥L2 ≲ ∥f∥
1
3

L2∥∂3xf∥
2
3

L2 . (2.3.18)

Furthermore, together with (2.3.17)-(2.3.18), we obtain

J2H2 ≲
∫ t

t
2

(1 + t− τ)−
1
2∥z⊥∥2L2∥∂3xz⊥∥2L2 dτ

≲ N(t)2
∫ t

t
2

(1 + t− τ)−
1
2 (1 + τ)−

3
2∥∂3xz⊥∥2L2 dτ

≲ N(t)2 sup
t
2
≤τ≤t

{
(1 + t− τ)−

1
2 (1 + τ)−

3
2

}∫ t

0

∥∂3xz⊥∥2L2 dτ

≲ (1 + t)−
3
2N(t)2D(t)2. (2.3.19)

For J3, we write

J3 := J3L + J3H .

Note that R(z) = O(ρ|E| + |υ||h|), by taking σ1 = σ2 = 2, p = 2 and k = j = 0, q = 1 in
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Theorem 2.1.1, we obtain

J3L ≲
∫ t

0

(1 + t− τ)−
3
2∥R(τ)∥2L1 dτ

≲
∫ t

0

(1 + t− τ)−
3
2∥z(τ)∥4L2 dτ

≲ N(t)4
∫ t

0

(1 + t− τ)−
3
2 (1 + τ)−3 dτ

≲ N(t)4(1 + t)−
3
2 . (2.3.20)

Similarly, we separate the high-frequency part J3H as follows

J3H =
(∫ t

2

0

+

∫ t

t
2

)
(· · ·) dτ := J3H1 + J3H2.

Taking σ1 = σ2 = 2, p = 2 and k = 0, ℓ = r = 2 in Theorem 2.1.1 leads to

J3H1 ≲
∫ t

2

0

(1 + t− τ)−2∥∂2xR(τ)∥2L2 dτ

≲
∫ t

2

0

(1 + t− τ)−2∥z∥2L∞∥∂2xz∥2L2 dτ

≲ sup
0≤τ≤ t

2

{
(1 + t− τ)−2∥z∥2L∞

}∫ t
2

0

∥∂2xz∥2L2 dτ

≲ (1 + t)−2N2
0 (t)D

2(t)

≲ (1 + t)−2∥z0∥2H3 , (2.3.21)

where we have used (2.1.9) (taking s = 3). On the other hand, by taking σ1 = σ2 = 2, p = 2
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and k = 0, ℓ = 2, r = 1 in Theorem 2.1.1, we arrive at

J3H2 ≲
∫ t

t
2

(1 + t− τ)−
1
2∥∂2xR(τ)∥2L1 dτ

≲
∫ t

t
2

(1 + t− τ)−
1
2∥z∥2L2∥∂2xz∥2L2 dτ

≲ N(t)2
∫ t

t
2

(1 + t− τ)−
1
2 (1 + τ)−

3
2∥∂2xz∥2L2 dτ

≲ N(t)2 sup
t
2
≤τ≤t

{
(1 + t− τ)−

1
2 (1 + τ)−

3
2

}∫ t

0

∥∂2xz∥2L2 dτ

≲ (1 + t)−
3
2N(t)2D(t)2, (2.3.22)

where the Gagliardo-Nirenberg inequality ∥∂xf∥L2 ≲ ∥f∥
1
2

L2∥∂2xf∥
1
2

L2 was used in the second
line.

Therefore, combining above inequalities (2.3.14)-(2.3.16) and (2.3.19)-(2.3.22), it follows
from Plancherel’s theorem that

∥z∥2L2 ≲ (1 + t)−
3
2∥z0∥2H3∩L1 + (1 + t)−

3
2N(t)4

+(1 + t)−
3
2N(t)2D(t)2, (2.3.23)

which leads to (2.3.12) exactly.

According to the energy inequality (2.1.9) (taking s = 3), the dissipation norm D(t) ≲
∥z0∥H3 ≲ ∥z0∥H3∩L1 . Thus, if ∥z0∥H3∩L1 is sufficient small, then it holds that

N(t) ≲ ∥z0∥H3∩L1 +N(t)2 (2.3.24)

which implies that N(t) ≲ ∥z0∥H3∩L1 , provided that ∥z0∥H3∩L1 is sufficient small. Conse-
quently, the optimal decay estimate in Theorem 2.1.2 is achieved.
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2.4 Appendix

In the last section, as another application of Theorem 2.1.1, we generalize recent decay
properties in [64] for linear symmetric hyperbolic systems with non-symmetric dissipation.

2.4.1 Symmetric hyperbolic systems

Consider the Cauchy problem for the first-order linearized symmetric hyperbolic system of
equations with dissipation 

A0wt +
n∑

j=1

Ajwxj
+ Lw = 0,

w|t=0 = w0,

(2.4.1)

with w(t, x) ∈ Rm for t > 0 and x ∈ Rn, where Aj(j = 0, 1, · · ·, n) and L are m × m real
constant matrices. It is assumed that all Aj(j = 0, 1, · · ·, n) are symmetric, A0 is positive
definite and L is nonnegative definite with a nontrivial kernel.

If the degenerate dissipation matrix L is symmetric, Kawashima and Shizuta [58] first for-
mulated the so-called Kawashima-Shizuta condition which designs the compensating matrix
K to capture the dissipation of systems over the degenerate kernel space of L. Inspired by
recent concrete examples, such as dissipative Timoshenko systems and compressible Euler-
Maxwell equations and so on, the matrix L has the skew-symmetric part and is not symmetric.
In this case, the partial positivity on Ker(L1)

⊥ (L1 := the symmetric part of L) is available
only. Recently, Ueda, Duan and Kawashima [64] found a real compensating matrix S to make
up the full positivity on Ker(L)⊥. Consequently, they developed decay properties for (2.4.1)
with the weaker dissipative mechanism. Here, we don’t collect those structural conditions
formulated by [64] for brevity, however, we would like to keep the same notations as in [64]
for the convenience of reader.

Based on conditions (A), (K), (S) and (S)1 in [64], by employing the energy method in
Fourier spaces, they arrived at

d

dt
E(t, ξ) + cη(ξ) E(t, ξ) ≤ 0, (2.4.2)

which implies that E(t, ξ) ≤ e−cη(ξ)tE(0, ξ), where η(ξ) = |ξ|2/(1 + |ξ|2)2 and E(t, ξ) ≈ |ŵ|2.
Furthermore, by Theorem 2.1.1, we can generalize the decay property in [64].

Proposition 2.4.1. Assume that conditions (A), (K), (S) and (S)1 in [64] hold. If the
initial data w0 ∈ W l,r ∩ Lq for l ≥ 0 and 1 ≤ q, r ≤ 2, then the solution w(t, x) of (2.4.1)
satisfies the decay estimate

∥∂kxw∥Lp ≲ (1 + t)−γ2(q,p)− k
2 ∥w0∥Lq + (1 + t)−

ℓ
2
+γ2(r,p)∥∂k+ℓ

x w0∥Lr (2.4.3)

for ℓ > n(1
r
− 1

p
), 2 ≤ p ≤ ∞ and 0 ≤ k + ℓ ≤ l.

Here ℓ ≥ 0 when p = r = 2.



2.4. APPENDIX 29

2.4.2 Symmetric hyperbolic systems with constraints

Inspired by Euler-Maxwell equations, the system (2.4.1) equipped with a general constraint
was also investigated in [64]:

n∑
j=1

Qjwxj
+Rw = 0, (2.4.4)

where Qj and R are m1 ×m real constant matrices with m1 < m. Let Π1 be the orthogonal
projection from Cm1 onto Image(R) = {Rϕ : ϕ ∈ Cm} ⊂ Cm1 . Set Π2 = I − Π1. Noticing
that Π1 and Π2 are m1×m1 real symmetric matrices. Using these projections, the condition
(2.4.4) can be decomposed as

n∑
j=1

Π1Qjwxj
+Rw = 0,

n∑
j=1

Π2Qjwxj
= 0. (2.4.5)

To ensure that (2.4.4) or (2.4.5) holds at an arbitrary time t > 0 if it satisfies initially, the
extra structure condition (C) is posted, see [64] for details. Additionally, those conditions in
Proposition 2.4.1 need to be revised a little in this case. For convenience, the same notations
as in [64] are kept. As a consequence, the dissipative inequality (2.4.2) still holds for the
solution of (2.4.1) along with (2.4.4). Furthermore, we have a similar decay property as
stated in Proposition 2.4.1.

Proposition 2.4.2. Assume that conditions (A), (C), (S), (S∗)1 and (K∗) in [64] hold. If
the initial data w0 ∈ W l,r ∩Lq for l ≥ 0 and 1 ≤ q, r ≤ 2, then the solution w(t, x) of (2.4.1)
satisfies (2.4.4) for all t > 0. Moreover, the solution satisfies the decay estimate (2.4.3).

Remark 2.4.1. Propositions 2.4.1-2.4.2 go back to Theorem 2.2 and Theorem 5.2 in [64], if
one takes p = r = 2 and q = 1. Therefore, the current decay properties can be regarded as a
general Lp-version.





Chapter 3

Dissipative Timoshenko system

3.1 Introduction

In Chapter 3 we consider the Cauchy problem of the dissipative Timoshenko system in the
one-dimensional whole space. This model system introduces a mechanical damping, and
takes the form {

φtt − (φx − ψ)x = 0 (x, t) ∈ R× R+,

ψtt − σ(ψx)x − (φx − ψ) + γ ψt = 0 (x, t) ∈ R× R+.
(3.1.1)

The initial data is given by

(φ, φt, ψ, ψt)(x, 0) = (φ0, φ1, ψ0, ψ1)(x).

Here σ(η) in the nonlinear term is assumed to be a smooth function of η satisfying σ′(η) > 0
for any η under considerations. The coefficient γ in the damping term is a positive constant
by definition.

The corresponding linearized system at z = 0 is{
φtt − (φx − ψ)x = 0 (x, t) ∈ R× R+,

ψtt − a2 ψxx − (φx − ψ) + γ ψt = 0 (x, t) ∈ R× R+
(3.1.2)

with a > 0 being the wave speed defined by a2 = σ′(0).

3.1.1 Formulation & Problem

Based on the change of variable ([24])

v = φx − ψ, u = φt, z = aψx, y = ψt,

31
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the system (3.1.1) is transformed into the following first order system

vt − ux + y = 0, (3.1.3a)

yt − σ
(z
a

)
x
− v + γ y = 0, (3.1.3b)

ut − vx = 0, (3.1.3c)

zt − a yx = 0. (3.1.3d)

The corresponding initial data is given by

(v, y, u, z)(x, 0) = (v0, y0, u0, z0)(x), (3.1.4)

where v0 = φ0,x − ψ0, y0 = ψ1, u0 = φ1, z0 = aψ0,x. Remark that the nonlinearity of the
system (3.1.3) depends on the component z only.

In vector notation, we can write the system (3.1.3) as

A0(z)Wt + A(z)Wx + LW = 0, (3.1.5)

where W = (v, y, u, z)T , A0(z) = diag (1, 1, 1, b(z)/a) with b(z) = σ′(z/a)/a, and

A(z) = −


0 0 1 0
0 0 0 b(z)
1 0 0 0
0 b(z) 0 0

 , L =


0 1 0 0
−1 γ 0 0
0 0 0 0
0 0 0 0

 .

Similarly, the linearized system at z = 0 is given by

Wt + AWx + LW = 0, (3.1.6)

where A0(0) = I and

A := A(0) = −


0 0 1 0
0 0 0 a
1 0 0 0
0 a 0 0

 .

Explicitly,

vt − ux + y = 0, (3.1.7a)

yt − a zx − v + γ y = 0, (3.1.7b)

ut − vx = 0, (3.1.7c)

zt − a yx = 0. (3.1.7d)

Consequently, the system (3.1.3) is regarded as a symmetric hyperbolic system with non-
symmetric relaxation. In fact, the relaxation matrix L is not symmetric such that kerL ̸=
kerL1, where L1 denotes the symmetric part of L, which means the general theory on the
dissipative structure developed in [58, 67] can not be applicable to this system (3.1.1). There-
fore, the new approach to show the dissipative structure and the asymptotic stability of the
system (3.1.1) has to be implemented.
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3.1.2 Known results & Aim

The decay property of the linear system (3.1.2) was first investigated by J.E. Muñoz Rivera
and R. Racke in [50]. They considered the linear system (3.1.2) in a bounded region and with
simple boundary conditions and showed that the energy of the solutions decays exponentially
when a = 1, but polynomially when a ̸= 1 as t→ ∞.

To explain this interesting decay property, K. Ide, K. Haramoto and S. Kawashima [24]
considered the linear system (3.1.2) in one-dimensional whole space. They showed that the
dissipative structure of the system (3.1.6) can be characterized as

Reλ(iξ) ≤ −c η(ξ), η(ξ) =

{
ξ2/(1 + ξ2) for a = 1,

ξ2/(1 + ξ2)2 for a ̸= 1,

where λ(iξ) denotes the eigenvalues of the linear system (3.1.2) in the Fourier space, and c is
a positive constant. We note that the dissipative structure for a = 1 is the same one shown
in the general theory [58, 67]. On the other hand, the dissipative strudture for a ̸= 1 is much
weaker in the high frequency region, which causes regularity-loss in the decay estimate of the
solutions.

In fact, by using the energy method in the Fourier space, the authors in [24] derived the
following pointwise estimate of the solution W = (v, y, u, z)T to the linear system (3.1.6).

|Ŵ (ξ, t)| ≤ C e−c η(ξ) t|Ŵ0(ξ)|,

where W0 = (v0, y0, u0, z0)
T is the corresponding initial data.

Moreover, based on this pointwise estimate, they showed the time decay estimates of this
solution in L2 norm.

∥∂kxW (t)∥L2 ≤ C (1 + t)−
1
4
− k

2 ∥W0∥L1 +

{
C e−c t∥∂kxW0∥L2 for a = 1,

C (1 + t)−
ℓ
2∥∂k+ℓ

x W0∥L2 for a ̸= 1,

where k and l are nonnegative integers, and C and c are positive constants. Note that when
a ̸= 1, in order to obtain the optimal decay rate (1 + t)−1/4−k/2 we have to assume the
additional ℓ-th order regularity on the initial data to make the decay rate (1 + t)−ℓ/2 better
than (1 + t)−1/4−k/2. Therefore the regularity-loss can not be avoided for a ̸= 1.

Based on these linear system results in [24], K. Ide and S. Kawashima [25] proved the
global-in-time existence and uniqueness, and the optimal decay of the solutions to the non-
linear system (3.1.5). To state these results, they introduced the following time-weighted
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norms Ẽ(t) and D̃(t):

Ẽ(t)2 :=

[ s
2
]∑

j=0

sup
0≤τ≤t

(1 + τ)j−
1
2∥∂jxW (τ)∥2Hs−2j ,

D̃(t)2 :=

[ s
2
]∑

j=0

∫ t

0

(1 + τ)j−
3
2∥∂jxW (τ)∥2Hs−2j dτ

+

[ s
2
]−1∑

j=0

∫ t

0

(1 + τ)j−
1
2∥∂jxv(τ)∥2Hs−1−2j dτ +

[ s
2
]∑

j=0

∫ t

0

(1 + τ)j−
1
2∥∂jxy(τ)∥2Hs−2j dτ.

Then the results in [25] are stated as follows.

Proposition 3.1.1 (Global existence & L2 decay estimate [25]). Assume that the initial
data satisfies W0 ∈ Hs ∩ L1 for s ≥ 6 and put Ẽ1 := ∥W0∥Hs + ∥W0∥L1, where W0 is the
corresponding initial data. Then there exists a positive constant δ̃1 such that if Ẽ1 ≤ δ̃1,
the Cauchy problem (3.1.5) with W0 has a unique global in time solution W (t) with W ∈
C([0,∞);Hs) ∩ C1([0,∞);Hs−1). Moreover this solution W (t) verifies the energy estimate

Ẽ(t)2 + D̃(t)2 ≤ C Ẽ2
1

and the optimal decay estimate for lower order derivatives

∥∂kxW (t)∥L2 ≤ C Ẽ1(1 + t)−
1
4
− k

2 ,

where 0 ≤ k ≤ [s/2]− 1, and C > 0 is a constant.

Remark. The norms Ẽ(t) and D̃(t) contain the time-weights with negative exponents. Also,
their results require the high spacial regularity s ≥ 6 and L1 property on the initial data.
These devices in [25] are crucial to control the weak dissipation due to the nonlinearity and
the regularity-loss property of the system (3.1.1).

S. Kawashima and his collaborators have found the diffusion phenomenon of the linear
system (3.1.2) and the nonlinear system (3.1.1). In other words, they showed that the
solutions to the systems (3.1.2) and (3.1.1) approaches the diffusion wave expressed in term
of the superposition of the heat kernels as t→ ∞. However, to overcome the difficulty caused
by the nonlinearity and the regularity-loss property, the suitably large spatial regularity s ≥ 6
was needed for the analysis of the nonlinear problem (3.1.1).

Based on these results, in Chapter 3 we aim at showing the global-in-time existence and
uniqueness of the solutions to the system (3.1.1) under the smallness condition on the initial
data in the Sobolev space with the critical regularity-index H2. Also, we will show the
asymptotic decay of this solution in L2 at the optimal decay rate t−1/4 for t→ ∞ under the
condition on the initial data in H2 ∩ L1.
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3.2 Main results

To state our main results of Chapter 3, we introduce the energy norm E(t) and the corre-
sponding dissipation norm D(t) by

E(t)2 := sup
0≤τ≤t

∥W (τ)∥2Hs ,

D(t)2 :=

∫ t

0

∥v(τ)∥2Hs−1 + ∥y(τ)∥2Hs + ∥∂xu(τ)∥2Hs−2 + ∥∂xz(τ)∥2Hs−1 dτ.

Notice that in the dissipation norm D(t) we have 1 regularity-loss for (v, u) but no regularity-
loss for (y, z). Our first result is then stated as follows.

Theorem 3.2.1 (Global existence). Assume that the initial data satisfy W0 ∈ Hs for s ≥ 2
and put E0 := ∥W0∥Hs. Then there exists a positive constant δ0 such that if E0 ≤ δ0, the
Cauchy problem (3.1.3) and (3.1.4) has a unique global in time solution W (t) with W ∈
C([0,∞);Hs) ∩ C1([0,∞);Hs−1). Moreover this solution W (t) verifies the energy estimate

E(t)2 +D(t)2 ≤ CE2
0 ,

where C > 0 is a constant.

Remark. Our global-in-time existence and uniqueness result holds true under less regularity
assumption s ≥ 2 and without L1 property on the initial data. This refinement is based on
the better Lyapunov function constructed in the next section 3.3, which is the improvement
of the previous result of the linear system in [24]. Our Lyapunov function produces the
optimal dissipation estimate for z without any regularity-loss (see D(t)), which enables us to
control the nonlinearity depending only on z.

Next we state the result on the optimal time decay estimate.

Theorem 3.2.2 (L2 decay estimate). Assume that the initial data satisfy W0 ∈ H2 ∩ L1

and put E1 := ∥W0∥H2 + ∥W0∥L1. Then there is a positive constant δ1 such that if E1 ≤ δ1,
then the solution W (t) obtained in Theorem 3.2.1 satisfies the following optimal L2 decay
estimate:

∥W (t)∥L2 ≤ CE1(1 + t)−
1
4 ,

where C > 0 is a constant.

Remark. In order to show the above decay estimate, first, we estimate the nonlinear solution
by using the energy method in the Fourier space, and then apply the refined decay estimate
of Lp-Lq-Lr type which was established in Chapter 2. For the details, see Section 3.5.

3.3 Linear system

The linear dissipative Timoshenko system (3.1.2) was studied intensively in [24]. In this
section, we first review some of the main results in [24] and then give a refinement of the
energy method in the Fourier space which was employed in [24]. This refinement gives the
optimal pointwise estimates of the solutions in the Fourier space.
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3.3.1 Review on previous results

Decay estimate

The result on the decay estimate of the solutions to (3.1.6), which was obtained in [24], is
stated as follows.

Theorem 3.3.1 (L2 decay estimate [24]). The solution W of the problem (3.1.6) with the
initial data W0 satisfies the following decay estimates for t ≥ 0:

∥∂kxW (t)∥L2 ≤ C(1 + t)−
1
2
( 1
p
− 1

2
)− k

2 ∥W0∥Lp + Ce−ct∥∂kxW0∥L2

for a = 1, and

∥∂kxW (t)∥L2 ≤ C(1 + t)−
1
2
( 1
p
− 1

2
)− k

2 ∥W0∥Lp + C(1 + t)−
l
2∥∂k+l

x W0∥L2

for a ̸= 1, where 1 ≤ p ≤ 2, k and l are nonnegative integers, and C and c are positive
constants.

The above decay estimates follow from the corresponding pointwise estimates of the so-
lutions in the Fourier space. To state the result precisely, we take the Fourier transform of
(3.1.6) to obtain  Ŵt + (iξA+ L)Ŵ = 0,

Ŵ (ξ, 0) = Ŵ0(ξ).
(3.3.1)

Note that the solution to (3.3.1) is given by Ŵ (ξ, t) = etΦ̂(iξ)Ŵ0(ξ), where

Φ̂(ζ) = −(L+ ζA), ζ ∈ C. (3.3.2)

Also we consider the eigenvalue problem corresponding to (3.3.1):

λϕ+ (iξA+ L)ϕ = 0, (3.3.3)

where λ ∈ C and ϕ ∈ C4. We denote by λ = λ(iξ) the eigenvalue of the problem (3.3.1),
which satisfies (3.3.3) for ϕ ̸= 0.

Now we state the result on the pointwise estimate of the solutions to (3.3.1), which was
shown in [24].

Lemma 3.3.2 (Pointwise estimate [24]). The solution Ŵ to the problem (3.3.1) satisfies the
following pointwise estimates for any ξ ∈ R and t ≥ 0:

|Ŵ (ξ, t)| ≤ Ce−cη1(ξ)t|Ŵ0(ξ)| for a = 1,

|Ŵ (ξ, t)| ≤ Ce−cη2(ξ)t|Ŵ0(ξ)| for a ̸= 1,

where η1(ξ) = ξ2/(1 + ξ2) and η2(ξ) = ξ2/(1 + ξ2)2, and C and c are positive constants.

Remark. The corresponding eigenvalue λ(iξ) satisfies Reλ(iξ) ≤ −cη1(ξ) for a = 1 and
Reλ(iξ) ≤ −cη2(ξ) for a ̸= 1, where c is a positive constant. This gives the characterization
of the dissipative structure of the dissipative Timoshenko system (3.1.6). When a ̸= 1, the
dissipative structure is very weak in the high frequency region and verifies Reλ(iξ) ∼ −cξ−2

with a positive constant c for |ξ| → ∞.
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Asymptotic expansion of eigenvalues

Let λj(ζ) be the eigenvalues of the matrix Φ̂(ζ) in (3.3.2). We review the result on the
asymptotic expansion of the eigenvalues λj(ζ) for |ζ| → 0 and |ζ| → ∞, which was given in
[24].

The eigenvalues λj(ζ), j = 1, 2, 3, 4, are the solutions of the characteristic equation

det (λI − Φ̂(ζ)) = λ4 + γλ3 + {1− (a2 + 1)ζ2}λ2 − γζ2λ+ a2ζ4 = 0.

(i) When |ζ| → 0，λj(ζ) has the following asymptotic expansion:

λj(ζ) = λ
(0)
j + λ

(1)
j ζ + λ

(2)
j ζ2 + · · · . (3.3.4)

Here each coefficient λ
(k)
j is given by direct computations as

λ
(0)
j = λ

(1)
j = 0, λ

(2)
j = αj, λ

(3)
j = 0 for j = 1, 2,

λ
(0)
j = βj, λ

(1)
j = 0 for j = 3, 4,

where αj =
1

2

(
γ ±

√
γ2 − 4a2

)
and βj = −1

2

(
γ ±

√
γ2 − 4

)
. Notice that Reαj > 0 and

Re βj < 0. Consequently, for |ξ| → 0, we have

Reλj(iξ) =

{
−(Reαj) ξ

2 +O(|ξ|4) for j = 1, 2,

Re βj +O(|ξ|2) for j = 3, 4.
(3.3.5)

(ii) When |ζ| → ∞, λj(ζ) has the following asymptotic expansion:

λj(ζ) = µ
(1)
j ζ + µ

(0)
j + µ

(−1)
j ζ−1 + µ

(−2)
j ζ−2 + · · · .

Each coefficient µ
(k)
j is given by direct computations as follows: For j = 1, 2, we have

µ
(1)
j = ± 1, µ

(0)
j = δj for a = 1,

µ
(1)
j = ± 1, µ

(0)
j = 0, µ

(−1)
j = ± 1

2P
, µ

(−2)
j =

γ

P 2
for a ̸= 1,

and for j = 3, 4, we have

µ
(1)
j = ± a, µ

(0)
j = −γ

2
, µ

(−1)
j = ± γ2

8a
,

where δj =
1

4

(
− γ ±

√
γ2 − 4

)
and P = a2 − 1. Notice that Re δj < 0. Consequently, when

a = 1, we have

Reλj(iξ) =


Re δj +O(|ξ|−1) for j = 1, 2,

−γ
2
+O(|ξ|−2) for j = 3, 4

(3.3.6)
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for |ξ| → ∞; while in the case a ̸= 1, we have

Reλj(iξ) =

 − γ

P 2
ξ−2 +O(|ξ|−3) for j = 1, 2,

−γ
2
+O(|ξ|−2) for j = 3, 4

(3.3.7)

for |ξ| → ∞. According to the expansion (3.3.7) for |ξ| → ∞, when a ̸= 1, two eigenvalues are
of the standard type and satisfy Reλ(iξ) ∼ −c, while the other two are not of the standard
type and satisfy Reλ(iξ) ∼ −cξ−2.

Energy method in the Fourier space

The pointwise estimates stated in Lemma 3.3.2 were obtained in [24] by using the energy
method in the Fourier space. Here we review this energy method by showing the Lyapunov
function constructed in [24].

The Lyapunov function E constructed in [24] is equivalent to |Ŵ |2 = |v̂|2+|ŷ|2+|û|2+|ẑ|2
and satisfies the differential inequality

Et + cF ≤ 0, (3.3.8)

where F is the corresponding dissipative term and c is a positive constant. The explicit
expressions of E and F are given respectively as follows: When a = 1, we have

E =
1

2
|Ŵ |2 + α2

{
E1 +

α1ξ

1 + ξ2
(E2 + E3)

}
,

F = |v̂|2 + |ŷ|2 + ξ2

1 + ξ2
(|û|2 + |ẑ|2),

(3.3.9)

and when a ̸= 1, we have

E =
1

2
|Ŵ |2 + α2

1 + ξ2

{
E1 +

α1ξ

1 + ξ2
(E2 + E3)

}
,

F =
1

1 + ξ2
|v̂|2 + |ŷ|2 + ξ2

(1 + ξ2)2
(|û|2 + |ẑ|2),

(3.3.10)

where

E1 = −Re (v̂ ¯̂y + aû¯̂z), E2 = Re (iv̂ ¯̂u), E3 = Re (iŷ ¯̂z),

and α1 and α2 are suitably small positive constants.

When a = 1, we see that the energy inequality (3.3.8) with the dissipative term F in
(3.3.9) matches with the eigenvalues in (3.3.5) and (3.3.6). On the other hand, when a ̸= 1,
we find from (3.3.5) and (3.3.7) that the dissipative term F in (3.3.10) is not the desired one.
In fact, we have two eigenvalues of the non-standard type in (3.3.7), while the corresponding
F contains three components of the regularity-loss type. This suggests that the energy
method in the Fourier space employed in [24] should be improved for a ̸= 1. This will be
done in the next subsection 3.3.2.
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3.3.2 Refinement of energy method

When a ̸= 1, we make a modification of the Lyapunov function such that the corresponding
dissipative term matches with the eigenvalues in (3.3.5) and (3.3.7). The desired modification
can be given by

E =
1

2
|Ŵ |2 + α2

1 + ξ2

(
E1 +

α1ξ

1 + ξ2
{E2 + (1 + ξ2)E3}

)
,

F =
1

1 + ξ2
|v̂|2 + |ŷ|2 + ξ2

(1 + ξ2)2
|û|2 + ξ2

1 + ξ2
|ẑ|2,

(3.3.11)

where E1, E2 and E3 are given in the previous subsection, and α1 and α2 are suitably small
positive constants. In fact, we have:

Proposition 3.3.3. Let a ̸= 1. Then, for suitably small positive constants α1 and α2, the
Lyapunov function E in (3.3.11) is equivalent to |Ŵ |2 and satisfies the differential inequality
(3.3.8) with the dissipative term F in (3.3.11), where c is a positive constant.

Remark. Our dissipative term F in (3.3.11) completely matches with the eigenvalues in
(3.3.5) and (3.3.7) for a ̸= 1. Moreover, the above proposition yields the same pointwise
estimate in Lemma 3.3.2 for a ̸= 1.

As a simple corollary of Proposition 3.3.3, we have the optimal energy estimate for (3.1.6)
for a ̸= 1. In fact, we integrate (3.3.8) with respect to t over (0, t). Then we multiply the
resultant inequality by (1+ξ2)2(s−k)|ξ|2k and integrate with respect to ξ ∈ R, where 0 ≤ k ≤ s.
This yields the following optimal energy estimate.

Proposition 3.3.4. Let a ̸= 1, and let s and k be integers with 0 ≤ k ≤ s. Then the solution
W to the problem (3.1.6) with W0 satisfies the following energy estimate for any t ≥ 0:

∥∂kxW (t)∥2Hs−k +

∫ t

0

(
∥∂kxv(τ)∥2Hs−k−1 + ∥∂kxy(τ)∥2Hs−k

+ ∥∂k+1
x u(τ)∥2Hs−k−2 + ∥∂k+1

x z(τ)∥2Hs−k−1

)
dτ ≤ C∥∂kxW0∥2Hs−k , (3.3.12)

where C is a positive constant.

Remark. The energy estimate (3.3.12) completely matches with the eigenvalues given in
(3.3.5) and (3.3.7) for a ̸= 1, and hence it seems optimal. We note that in the dissipative
term of (3.3.12) for a ̸= 1, we have one regularity-loss for two components v and u but no
regularity-loss for other two components y and z.

The proof of Proposition 3.3.3. First our system (3.1.6) in the Fourier space is written ex-
plicitly in the form

v̂t − iξû+ ŷ = 0, (3.3.13a)

ŷt − aiξẑ − v̂ + γŷ = 0, (3.3.13b)

ût − iξv̂ = 0, (3.3.13c)

ẑt − aiξŷ = 0. (3.3.13d)
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When a ̸= 1, we want to construct our Lyapunov function E in (3.3.11) and prove the
differential inequality (3.3.8) with the corresponding F given in (3.3.11). This will be done
by modifying the energy method employed in [24]. Our proof below is divided into four steps.
The first two steps of our proof are the same as in [24], while the other two steps require
some modifications.

Step 1. We multiply (3.3.13a), (3.3.13b), (3.3.13c) and (3.3.13d) by ¯̂v, ¯̂y, ¯̂u and ¯̂z, respec-
tively. Then, adding the resultant equations and taking the real part, we get

1

2
(|Ŵ |2)t + γ|ŷ|2 = 0, (3.3.14)

where |Ŵ |2 = |v̂|2 + |ŷ|2 + |û|2 + |ẑ|2. This will give us the energy estimate for (v̂, ŷ, û, ẑ) as
well as the dissipative estimate for ŷ.

Step 2. We create the dissipative estimte for v̂. To this end, we first multiply (3.3.13b) and
(3.3.13a) by −¯̂v and −¯̂y, respectively, and add the resulting two equalities. Also, we multiply
(3.3.13c) and (3.3.13d) by −a¯̂z and −a¯̂u, respectively, and add the resulting two equalities.
Then, adding the two equalities obtained above and taking the real part, we arrive at

E1,t + |v̂|2 − |ŷ|2 = γ Re (¯̂vŷ)− ξRe {i(¯̂yû+ a2 ¯̂uŷ)}

= γ Re (¯̂vŷ)− (a2 − 1)ξRe (i¯̂uŷ),

where E1 := −Re (v̂ ¯̂y + aû¯̂z). Applying the Young inequality, we obtain

E1,t + (1− ε)|v̂|2 ≤ Cε|ŷ|2 + |a2 − 1||ξ||û||ŷ| (3.3.15)

for any ε ∈ (0, 1), where Cε is a constant depending on ε.

Step 3. We create the dissipative estimate for (û, ẑ). First, we multiply (3.3.13a) and
(3.3.13c) by iξ ¯̂u and iξ ¯̂v, respectively, and subtract the resulting two equalities. From the
real part, we have

ξE2,t + ξ2(|û|2 − |v̂|2) + ξRe (i¯̂uŷ) = 0, (3.3.16)

where E2 := Re (iv̂ ¯̂u). Here we used the fact that Re {i(¯̂uv̂t − ¯̂vût)} = {Re (iv̂ ¯̂u)}t. Similarly,
we multiply (3.3.13b) and (3.3.13d) by iξ ¯̂z and iξ ¯̂y, respectively. Then, subtracting the
resulting two equalities and taking the real part, we have

ξE3,t + aξ2(|ẑ|2 − |ŷ|2)− ξRe {i¯̂z(v̂ − γŷ)} = 0, (3.3.17)

where E3 := Re (iŷ ¯̂z).

When a ̸= 1, we multiply (3.3.17) by 1 + ξ2 and add the resultant equality to (3.3.16).
This gives

ξ{E2 + (1 + ξ2)E3}t + ξ2|û|2 + a(1 + ξ2)ξ2|ẑ|2

= ξ2|v̂|2 + a(1 + ξ2)ξ2|ŷ|2 + ξRe {i¯̂z(v̂ − γŷ)} − ξRe (i¯̂uŷ).
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Using the Young inequality, we obtain

ξ{E2 + (1 + ξ2)E3}t + (1− ε)ξ2|û|2 + a(1− ε)(1 + ξ2)ξ2|ẑ|2

≤ Cε(1 + ξ2)|v̂|2 + Cε(1 + ξ2)2|ŷ|2 (3.3.18)

for any ε ∈ (0, 1), where Cε is a constant depending on ε. This will give us a good dissipative
estimate for (û, ẑ) in terms of the corresponding estimate for (v̂, ŷ).

Step 4. We construct our Lyapunov function E for a ̸= 1. To this end, letting α1 > 0, we
first multiply (3.3.15) and (3.3.18) by 1

1+ξ2
and α1

(1+ξ2)2
, respectively, and add the resultant

inequalities. Applying the Young inequality, we have

1

1 + ξ2

(
E1 +

α1ξ

1 + ξ2
{E2 + (1 + ξ2)E3}

)
t

+ (1− ε− α1Cε)
1

1 + ξ2
|v̂|2 + α1(1− 2ε)

ξ2

(1 + ξ2)2
|û|2

+ α1a(1− ε)
ξ2

1 + ξ2
|ẑ|2 ≤ Cε,α1 |ŷ|2, (3.3.19)

where Cε,α1 is a constant depending on (ε, α1). Next，letting α2 > 0, we multiply (3.3.19)
by α2 and add the resultant inequality to (3.3.14). This yields

1

2
(|Ŵ |2)t +

α2

1 + ξ2

(
E1 +

α1ξ

1 + ξ2
{E2 + (1 + ξ2)E3}

)
t

+ α2(1− ε− α1Cε)
1

1 + ξ2
|v̂|2 + (γ − α2Cε,α1)|ŷ|2

+ α2α1(1− 2ε)
ξ2

(1 + ξ2)2
|û|2 + α2α1a(1− ε)

ξ2

1 + ξ2
|ẑ|2 ≤ 0. (3.3.20)

Here we take ε > 0 such that 1 − 2ε > 0, i.e., 0 < ε < 1
2
. For this choice of ε we choose

α1 > 0 and α2 > 0 such that 1− ε− α1Cε > 0 and γ − α2Cε,α1 > 0. Then (3.3.20) becomes
the desired differential inequality (3.3.8) for our E and F given in (3.3.11) and for a small
positive constant c. This completes the proof of Proposition 3.3.3.

3.4 Energy method

The aim of this section is to prove the global existence result in Theorem 3.2.1. Our global
existence result can be shown by the combination of a local existence result and the desired a
priori estimate. Since our system (3.1.5) is a symmetric hyperbolic system, it is not difficult
to show a local existence result by the standard method, and we omit the details. To state
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our result on the a priori estimate, we consider a solution W (t) of the problem (3.1.5) with
the initial data W0 satisfying W ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1) for s ≥ 2 and

sup
0≤t≤T

∥W (t)∥L∞ ≤ δ, (3.4.1)

where δ is a fixed positive constant. Our a priori estimate is now given as follows.

Proposition 3.4.1 (A priori estimate). Suppose that W0 ∈ Hs for s ≥ 2 and put E0 =
∥W0∥Hs. Let T > 0 and let W (t) be a solution to the Cauchy problem (3.1.5) with the initial
data W0 satisfying (3.4.1). Then there exists a positive constant δ2 independent of T such
that if E0 ≤ δ2, we have the a priori estimate

E(t)2 +D(t)2 ≤ CE2
0 , t ∈ [0, T ], (3.4.2)

where C > 0 is a constant independent of T .

To prove the above a priori estimate in Proposition 3.4.1, we need to show the following
energy inequality by applying the energy method.

Proposition 3.4.2 (Energy inequality). Suppose that W0 ∈ Hs for s ≥ 2 and put E0 =
∥W0∥Hs. Let T > 0 and let W (t) be a solution to the Cauchy problem (3.1.5) with the initial
data W0 satisfying (3.4.1). Then we have the following energy inequality:

E(t)2 +D(t)2 ≤ CE2
0 + CE(t)D(t)2, t ∈ [0, T ], (3.4.3)

where C > 0 is a constant independent of T .

We note that the desired a priori estimate (3.4.2) easily follows from the energy inequality
(3.4.3), provided that E0 is suitably small. Therefore it is sufficient to prove (3.4.3) for our
purpose.

3.4.1 Proof of Proposition 3.4.2

In this subsection we prove the energy inequality (3.4.3) in Proposition 3.4.2 by using the
energy method. Our energy method is based on the refined Lyapunov function constructed in
Subsection 3.3.2 and gives the optimal dissipation estimate for z without any regularity-loss,
which can control the nonlinearity of the system (3.1.5).

Proof. Our proof is divided into 4 steps.

Step 1. (Basic energy and dissipation for y): We calculate as (3.1.3a) × v + (3.1.3b) × y +
(3.1.3c)× u+ (3.1.3d)× {σ(z/a)− σ(0)}/a. This yields

1

2
(v2 + y2 + u2 + S(z))t − {vu+ (σ(z/a)− σ(0))y}x + γy2 = 0, (3.4.4)
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where S(z) := 2
∫ z/a

0
(σ(η)− σ(0))dη is equivalent to |z|2. Integrate (3.4.4) with respect to x

to have

d

dt
E

(0)
0 + 2γ∥y∥2L2 = 0, (3.4.5)

where

E
(0)
0 := ∥(v, y, u)∥2L2 +

∫
R
S(z)dx.

Since E
(0)
0 is equivalent to ∥W∥2L2 , by integrating (3.4.5) with respect to t, we obtain

∥W (t)∥2L2 +

∫ t

0

∥y(τ)∥2L2dτ ≤ CE2
0 . (3.4.6)

Next, we apply ∂kx to (3.1.3) and write ∂kx(v, y, u, z) = (V, Y, U, Z) for simplicity. Then we
have

Vt − Ux − Y = 0, (3.4.7a)

Yt − σ′(z/a)(Z/a)x − V + γY = [∂kx , σ
′(z/a)](z/a)x, (3.4.7b)

Ut − Vx = 0, (3.4.7c)

Zt − aYx = 0, (3.4.7d)

where [A,B] := AB − BA. We compute as (3.4.14) × V + (3.4.7b) × Y + (3.4.17) × U +
(3.4.20)× σ′(z/a)Z/a2. This gives

1

2

(
V 2 + Y 2 + U2 + σ′(z/a)(Z/a)2

)
t
− {V U + σ′(z/a)(Z/a)Y }x + γY 2

=
1

2
σ′(z/a)t(Z/a)

2 − σ′(z/a)x(Z/a)Y + Y [∂kx , σ
′(z/a)](z/a)x. (3.4.8)

Integrate (3.4.8) with respect to x to have

d

dt
E

(k)
0 + 2γ∥∂kxy∥2L2 ≤ CR

(k)
0 (3.4.9)

for 1 ≤ k ≤ s, where

E
(k)
0 := ∥∂kx(v, y, u)∥2L2 +

∫
R
σ

′
(z/a)|∂kx(z/a)|2dx,

R
(k)
0 :=

∫
R
|yx||∂kxz|2 + |zx∥∂kxz∥∂kxy|+ |[∂kx , σ

′
(z/a)]zx||∂kxy|dx.

Here in the term R
(k)
0 we used the relation zt = ayx from (3.1.3d). Now we integrate (3.4.9)

with respect to t and add for k with 1 ≤ k ≤ s. Since E
(k)
0 is equivalent to ∥∂kxW∥2L2 , we

obtain

∥∂xW (t)∥2Hs−1 +

∫ t

0

∥∂xy(τ)∥2Hs−1 dτ ≤ CE2
0 + CE(t)D(t)2. (3.4.10)
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Here we have used the following estimates for R
(k)
0 :

R
(k)
0 ≤ C∥∂x(y, z)∥L∞∥∂kx(y, z)∥2L2 ,

s∑
k=1

∫ t

0

R
(k)
0 (τ) dτ ≤ CE(t)D(t)2.

Consequently, adding (3.4.6) and (3.4.10), we arrive at

E(t)2 +

∫ t

0

∥y(τ)∥2Hs dτ ≤ CE2
0 + CE(t)D(t)2. (3.4.11)

Step 2. (Dissipation for v): We rewrite the system (3.1.3) in the form

vt − ux − y = 0,

yt − azx − v + γy = g(z)x,

ut − vx = 0,

zt − ayx = 0,

(3.4.12)

where g(z) := σ(z/a)− σ(0)− σ′(0)z/a = O(z2) as z → 0. We apply ∂kx to (3.4.12). Letting
(V, Y, U, Z) = ∂kx(v, y, u, z) as before, we have

Vt − Ux − Y = 0, (3.4.13a)

Yt − aZx − V + γY = ∂kxg(z)x, (3.4.13b)

Ut − Vx = 0, (3.4.13c)

Zt − aYx = 0. (3.4.13d)

To create the dissipation term V 2, we compute as (3.4.13b) × (−V ) + (3.4.13a) × (−Y ) +
(3.4.13c)× (−aZ) + (3.4.13d)× (−aU). This gives

− (V Y + aUZ)t + (aV Z + a2Y U)x + V 2

= Y 2 + γV Y + (a2 − 1)Y Ux − V ∂kxg(z)x. (3.4.14)

Integrate (3.4.14) with respect to x to obtain

d

dt
E

(k)
1 + ∥∂kxv∥2L2 ≤ ∥∂kxy∥2L2 + γ∥∂kxv∥L2∥∂kxy∥L2

+ (a2 − 1)

∫
R
∂kxy ∂

k
xux dx+R

(k)
1 (3.4.15)

for 0 ≤ k ≤ s− 1, where

E
(k)
1 := −

∫
R
∂kxv ∂

k
xy dx− a

∫
R
∂kxu ∂

k
xz dx,

R
(k)
1 :=

∫
R
|∂kxv| |∂k+1

x g(z)| dx.
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Adding (3.4.15) with k and k + 1 and integrating by parts, we have

d

dt

(
E

(k)
1 + E

(k+1)
1

)
+ ∥∂kxv∥2H1 ≤ ∥∂kxy∥2H1 + γ∥∂kxv∥H1∥∂kxy∥H1

+ (a2 − 1)

∫
R
(∂kxy ∂

k
xux − ∂k+1

x yx ∂
k+1
x u) dx+R

(k)
1 +R

(k+1)
1

≤ ∥∂kxy∥2H1 + γ∥∂kxv∥H1∥∂kxy∥H1 + |a2 − 1|∥∂kxy∥H2∥∂k+1
x u∥L2 +R

(k)
1 +R

(k+1)
1

for 0 ≤ k ≤ s − 2. We integtate this inequality with respect to t and add for k with
0 ≤ k ≤ s − 2. Noting that

∑s−1
k=0 |E

(k)
1 | ≤ C∥W∥2Hs−1 and using the Young inequality, we

obtain ∫ t

0

∥v(τ)∥2Hs−1 dτ ≤ ε

∫ t

0

∥∂xu(τ)∥2Hs−2dτ + Cε

∫ t

0

∥y(τ)∥2Hsdτ

+ CE2
0 + CE(t)2 + CE(t)D(t)2 (3.4.16)

for any ε > 0, where Cε is a constant depending on ε. Here we also used the following
estimates for R

(k)
1 :

R
(k)
1 ≤ C∥z∥L∞∥∂kxv∥L2∥∂k+1

x z∥L2 ,

s−1∑
k=0

∫ t

0

R
(k)
1 (τ) dτ ≤ CE(t)D(t)2.

Step 3. (Dissipation for u and z): To get the dissipation term U2
x , we compute as (3.4.13a)×

(−Ux) + (3.4.13c)× Vx. This gives

−(V Ux)t + (V Ut)x + U2
x = V 2

x + Y Ux. (3.4.17)

Integrating (3.4.17) with respect to x, we have

d

dt
E

(k)
2 + ∥∂k+1

x u∥2L2 ≤ ∥∂k+1
x v∥2L2 + ∥∂kxy∥L2∥∂k+1

x u∥L2 (3.4.18)

for 0 ≤ k ≤ s − 2, where E
(k)
2 := −

∫
R ∂

k
xv ∂

k+1
x u dx. We integrate (3.4.18) with respect to t

and add for k with 0 ≤ k ≤ s− 2. Then we easily get∫ t

0

∥∂xu(τ)∥2Hs−2dτ ≤ C

∫ t

0

∥v(τ)∥2Hs−1 + ∥y(τ)∥2Hs−2 dτ + CE2
0 + CE(t)2. (3.4.19)

In order to create the dissipation term Z2
x, we compute as (3.4.13b)× (−Zx)+ (3.4.13d)×Yx.

This yields

−(Y Zx)t + (Y Zt)x + aZ2
x = aY 2

x − (V − γY )Zx − Zx∂
k
xg(z)x. (3.4.20)

Integrating (3.4.20) with respect to t, we obtain

d

dt
E

(k)
3 + a∥∂k+1

x z∥2L2 ≤ a∥∂k+1
x y∥2L2 + ∥∂kxv − γ∂kxy∥L2∥∂k+1

x z∥L2 +R
(k)
3 (3.4.21)
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for 0 ≤ k ≤ s− 1, where

E
(k)
3 := −

∫
R
∂kxy ∂

k+1
x z dx, R

(k)
3 :=

∫
R
|∂k+1

x z| |∂k+1
x g(z)| dx.

We integrate (3.4.21) with respect to t and add for k with 0 ≤ k ≤ s− 1. This yields∫ t

0

∥∂xz(τ)∥2Hs−1 dτ ≤ C

∫ t

0

∥v(τ)∥2Hs−1 + ∥y(τ)∥2Hs dτ

+ CE2
0 + CE(t)2 + CE(t)D(t)2. (3.4.22)

Here we have used the estimates

R
(k)
3 ≤ C∥z∥L∞∥∂k+1

x z∥2L2 ,

s−1∑
k=0

∫ t

0

R
(k)
3 (τ) dτ ≤ CE(t)D(t)2.

Step 4. Finally, combining (3.4.16), (3.4.19) and (3.4.22), and then taking ε > 0 in (3.4.16)
suitably small, we arrive at the estimate∫ t

0

∥v(τ)∥2Hs−1 + ∥∂xu(τ)∥2Hs−2 + ∥∂xz(τ)∥2Hs−1 dτ

≤ C

∫ t

0

∥y(τ)∥2Hs dτ + CE2
0 + CE(t)2 + CE(t)D(t)2.

This combined with the basic estimate (3.4.11) yields the desired inequality E(t)2 +D(t)2 ≤
CE2

0 + CE(t)D(t)2. Thus the proof of Proposition 3.4.2 is comptlete.

3.5 L2 decay estimate

The aim of this section is to show the optimal decay estimate stated in Theorem 3.2.2. For
this purpose we derive the pointwise estimate of solutions in the Fourier space. We recall
that the system (3.1.3) is written in the form of (3.4.12) or in the vector notation as

Wt + AWx + LW = Gx, (3.5.1)

where G = (0, g(z), 0, 0)T with g(z) = σ(z/a) − σ(0) − σ′(0)z/a = O(z2) for z → 0; the
coefficient matrices A and L are given in (3.1.6).

Proposition 3.5.1 (Pointwise estimate). Let W be a solution of (3.5.1) with the initial data
W0. Then the Fourier image Ŵ satisfies the pointwise estimate

|Ŵ (ξ, t)|2 ≤ Ce−cρ(ξ)t|Ŵ0(ξ)|2 + C

∫ t

0

e−cρ(ξ)(t−τ)ξ2|Ĝ(ξ, τ)|2 dτ (3.5.2)

for ξ ∈ R and t ≥ 0, where ρ(ξ) := ξ2/(1 + ξ2)2, and C and c are positive constants.
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Our optimal decay estimate will be obtained by applying the following decay estimate of
L2-Lq-Lr type, which was established in Chapter 2.

Lemma 3.5.2 (Decay estimate of L2-Lq-Lr type). Let U be a function satisfying

|Û(ξ, t)| ≤ C|ξ|me−cρ(ξ)t|Û0(ξ)| (3.5.3)

for ξ ∈ R and t ≥ 0, where ρ(ξ) = ξ2/(1 + ξ2)2, m ≥ 0, and U0 is a given function. Then we
have

∥∂kxU(t)∥L2 ≤ C(1 + t)−
1
2
( 1
q
− 1

2
)− k+m

2 ∥U0∥Lq

+ C(1 + t)−
ℓ
2
+ 1

2
( 1
r
− 1

2
)∥∂k+m+ℓ

x U0∥Lr , (3.5.4)

where k ≥ 0, 1 ≤ q, r ≤ 2, ℓ > 1
r
− 1

2
(ℓ ≥ 0 if r = 2).

Remark. The first (resp. the second) term on the right hand side of (3.5.4) is corresponding
to the low frequency region |ξ| ≤ 1 (resp. high frequency region |ξ| ≥ 1). When m = 0, q = 1
and r = 2, the estimate (3.5.4) is reduced to

∥∂kxU(t)∥L2 ≤ C(1 + t)−
1
4
− k

2 ∥U0∥L1 + C(1 + t)−
ℓ
2∥∂k+ℓ

x U0∥L2 ,

which is just the same decay estimate obtained in [24] for the linear system (3.1.6).

The outline of the proof of Lemma 3.5.2 is as follows. From the Plancherel theorem and
(3.5.3), we have

∥∂kxU(t)∥2L2 =

∫
R
ξ2k|Û(ξ, t)|2 dξ ≤ C

∫
R
ξ2(k+m)e−cρ(ξ)t|Û0(ξ)|2 dξ

We divide the last integral into two parts corresponding to |ξ| ≤ 1 and |ξ| ≥ 1, respectively,
and estimate each part by applying the Hölder inequality and the Hausdorff-Young inequality.
This yields the desired estimate (3.5.4). We omit the details and refer to Chapter 2.

3.5.1 Proof of Proposition 3.5.1

Proof. Taking the Fourier transform of (3.4.12), we have

v̂t − iξû+ ŷ = 0, (3.5.5a)

ŷt − aiξẑ − v̂ + γŷ = iξĝ, (3.5.5b)

ût − iξv̂ = 0, (3.5.5c)

ẑt − aiξŷ = 0, (3.5.5d)

where g = g(z). We construct a Lyapunov function of the system (3.5.5) in the Fourier space.
The computations below are essentially the same as in Subsection 3.3.2 and correspond to
those in the proof of Proposition 3.4.2. We divide the proof into 4 steps.



48 CHAPTER 3. DISSIPATIVE TIMOSHENKO SYSTEM

Step 1. (Basic energy and dissipation for ŷ): We compute as (3.5.5a) × ¯̂v + (3.5.5b) × ¯̂y +
(3.5.5c)× ¯̂u+ (3.5.5d)× ¯̂z and take the real part. This yields

1

2
E0,t + γ|ŷ|2 = Re (iξ ¯̂yĝ),

where E0 := |Ŵ |2. Applying the Young inequality, we have

E0,t + γ|ŷ|2 ≤ Cξ2|ĝ|2. (3.5.6)

Step 2. (Dissipation for v̂): To create the dissipation term for v̂, we compute as (3.5.5b) ×
(−¯̂v) + (3.5.5a) × (−¯̂y) + (3.5.5c) × (−a¯̂z) + (3.5.5d) × (−a¯̂u) and take the real part. This
gives

E1,t + |v̂|2 − |ŷ|2 = γ Re (¯̂vŷ)− Re {iξ (¯̂yû+ a2 ¯̂uŷ)} − Re (iξ ¯̂vĝ)

= γ Re (¯̂vŷ)− (a2 − 1) ξRe (i¯̂uŷ)− ξRe (i¯̂vĝ)

where E1 := −Re (v̂ ¯̂y + aû¯̂z). We multiply this equality by 1 + ξ2. Then, using the Young
inequality, we obtain

(1 + ξ2)E1,t + c1(1 + ξ2)|v̂|2 ≤ εξ2|û|2 + Cε(1 + ξ2)2|ŷ|2 + C(1 + ξ2) ξ2|ĝ|2 (3.5.7)

for any ε > 0, where c1 is a positive constant with c1 < 1 and Cε is a constant depending on
ε.

Step 3. (Dissipation for û and ẑ): To create the dissipation term |û|2, we compute as (3.5.5a)×
iξ ¯̂u− (3.5.5c)× iξ ¯̂v and take the real part. The result is

ξE2,t + ξ2(|û|2 − |v̂|2) + ξRe (i¯̂uŷ) = 0, (3.5.8)

where E2 := Re (iv̂ ¯̂u). For the dissipation term |ẑ|2, we compute as (3.5.5b)× iξ ¯̂z−(3.5.5d)×
iξ ¯̂y and take the real part. Then we have

ξE3,t + aξ2(|ẑ|2 − |ŷ|2)− ξRe {i¯̂z(v̂ − γŷ)} = −ξ2 Re (¯̂zĝ), (3.5.9)

where E3 := Re (iŷ ¯̂z). Now we combine (3.5.8) and (3.5.9) such that (3.5.8)+(3.5.9)×(1+ξ2).
This gives

ξ {E2 + (1 + ξ2)E3}t + ξ2|û|2 + a (1 + ξ2) ξ2|ẑ|2

= ξ2|v̂|2 + a (1 + ξ2) ξ2|ŷ|2 + (1 + ξ2) ξRe {i¯̂z(v̂ − γŷ)}

− ξRe (i¯̂uŷ)− (1 + ξ2) ξ2Re {¯̂zĝ}.

Using the Young inequality, we get

ξ{E2 + (1 + ξ2)E3}t + c1ξ
2|û|2 + c2 (1 + ξ2) ξ2|ẑ|2

≤ C(1 + ξ2)|v̂|2 + C(1 + ξ2)2|ŷ|2 + C(1 + ξ2) ξ2|ĝ|2, (3.5.10)
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where c1 and c2 are positive constants satisfying c1 < 1 and c2 < a, respectively.

Step 4. (Lyapunov function): Letting α1 > 0, we combine (3.5.7) and (3.5.10) such that
(3.5.7) + (3.5.10)× α1. Then we have{

(1 + ξ2)E1 + α1ξ{E2 + (1 + ξ2)E3}
}
t
+ (c1 − α1C)(1 + ξ2)|v̂|2

+ (α1c1 − ε) ξ2|û|2 + α1c2 (1 + ξ2) ξ2|ẑ|2

≤ Cε,α1(1 + ξ2)2|ŷ|2 + Cα1(1 + ξ2) ξ2|ĝ|2, (3.5.11)

where Cε,α1 and Cα1 are constants depending on (ε, α1) and α1, respectively. Also，letting
α2 > 0, we combine (3.5.6) and (3.5.11) such that (3.5.6) + (3.5.11)× α2

(1+ξ2)2
. Then, putting

E := E0 +
α2

1 + ξ2

(
E1 +

α1ξ

1 + ξ2
{E2 + (1 + ξ2)E3}

)
, (3.5.12)

we obtain

Et + α2(c1 − α1C)
1

1 + ξ2
|v̂|2 + (γ − α2Cε,α1)|ŷ|2

+ α2(α1c1 − ε)
ξ2

(1 + ξ2)2
|û|2 + α2α1c2

ξ2

1 + ξ2
|ẑ|2 ≤ Cα1,α2ξ

2|ĝ|2, (3.5.13)

where Cα1,α2 is a constant depending on (α1, α2). Here we see that there is a small positive

constant α0 such that if α1, α2 ∈ (0, α0], then E in (3.5.12) is equivalent to |Ŵ |2, that is,

c0|Ŵ |2 ≤ E ≤ C0|Ŵ |2, (3.5.14)

where c0 and C0 are positive constants. Futhermore, we choose α1 ∈ (0, α0] such that
c1 − α1C > 0 and take ε > 0 so small as α1c1 − ε > 0. Finally, we choose α2 ∈ (0, α0] such
that γ − α2Cε,α1 > 0. Then (3.5.13) becomes to

Et + cF ≤ Cξ2|ĝ|2, (3.5.15)

where

F :=
1

1 + ξ2
|v̂|2 + |ŷ|2 + ξ2

(1 + ξ2)2
|û|2 + ξ2

1 + ξ2
|ẑ|2 (3.5.16)

This suggests that E in (3.5.12) is the desired Lyapunov function of the system (3.5.5).
Noting (3.5.14), we find that F ≥ cρ(ξ)E, where ρ(ξ) = ξ2/(1 + ξ2)2. Therefore (3.5.15)
becomes to Et + cρ(ξ)E ≤ Cξ2|ĝ|2. Solving this ordinary differential inequality for E and
using (3.5.14), we arrive at the desired estimate (3.5.2) in the form

|Ŵ (ξ, t)|2 ≤ Ce−cρ(ξ)t|Ŵ0(ξ)|2 + C

∫ t

0

e−cρ(ξ)(t−τ)ξ2|ĝ(ξ, τ)|2 dτ.

This completes the proof of Proposition 3.5.1.
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3.5.2 Proof of Theorem 3.2.2

Proof. Let W be the solution to the problem (3.1.5) with W0 obtained in Theorem 3.2.1.
Then W satisfies (3.5.1). Therefore we have the pointwise estimate (3.5.2). We integrate
(3.5.2) with respect to ξ. Applying the Plancherel theorem, we obtain

∥W (t)∥2L2 =

∫
R
|Ŵ (ξ, t)|2 dξ

≤ C

∫
R
e−cρ(ξ)t|Ŵ0(ξ)|2 dξ + C

∫ t

0

∫
R
e−cρ(ξ)(t−τ)ξ2|ĝ(ξ, τ)|2 dξdτ =: I + J. (3.5.17)

We estimate the terms I and J by applying Lemma 3.5.2. For I, using (3.5.4) with m = 0,
we have

I = C

∫
R
e−cρ(ξ)t|Ŵ0(ξ)|2 dξ

≤ C(1 + t)−
1
2∥W0∥2L1︸ ︷︷ ︸

k=0, q=1

+C(1 + t)−1∥∂xW0∥2L2︸ ︷︷ ︸
k=0, ℓ=1, r=2

≤ CE2
1(1 + t)−

1
2 , (3.5.18)

where E1 = ∥W0∥H2 + ∥W0∥L1 . On the other hand, for J we use (3.5.4) with m = 1. Then
we obtain

J = C

∫ t

0

∫
R
e−cρ(ξ)(t−τ)ξ2|Ĝ(ξ, τ)|2 dτdξ

≤ C

∫ t

0

(1 + t− τ)−
3
2∥G(τ)∥2L1︸ ︷︷ ︸

k=0, q=1

dτ + C

∫ t

0

(1 + t− τ)−
1
2∥∂2xG(τ)∥2L1︸ ︷︷ ︸

k=0, ℓ=1, r=1

dτ

=: J1 + J2.

Here we introduce the norms N(t) and D(t) by

N(t) = sup
0≤τ≤t

(1 + τ)
1
4∥W (τ)∥L2 , D(t)2 =

∫ t

0

∥∂xz(τ)∥2H1 dτ.

We know from Theorem 3.2.1 that D(t) ≤ CE0 ≤ CE1. For the low frequency part J1, since
∥G∥L1 ≤ C∥z∥2L2 , we have

J1 ≤ C

∫ t

0

(1 + t− τ)−
3
2∥z(τ)∥4L2 dτ

≤ CN(t)4
∫ t

0

(1 + t− τ)−
3
2 (1 + τ)−1 dτ ≤ CN(t)4(1 + t)−1. (3.5.19)
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For the high frequency part J2, using ∥∂2xG∥L1 ≤ C∥z∥L2∥∂2xz∥L2 , we have

J2 ≤ C

∫ t

0

(1 + t− τ)−
1
2∥z(τ)∥2L2∥∂2xz(τ)∥2L2 dτ

≤ CN(t)2
∫ t

0

(1 + t− τ)−
1
2 (1 + τ)−

1
2∥∂2xz(τ)∥2L2 dτ

≤ CN(t)2D(t)2 sup
0≤τ≤t

{
(1 + t− τ)−

1
2 (1 + τ)−

1
2

}
≤ CN(t)2D(t)2(1 + t)−

1
2 . (3.5.20)

Combining (3.5.18), (3.5.19) and (3.5.20) and using D(t) ≤ CE1, we obtain

(1 + t)
1
2∥W (t)∥2L2 ≤ CE2

1 + CN(t)4 + CE2
1N(t)2.

Thus we have the inequality N(t)2 ≤ CE2
1 + CN(t)4 + CE2

1N(t)2. This inequality can be
solved as N(t) ≤ CE1, provided that E1 is suitably small. Thus we have proved the desired
decay estimate ∥W (t)∥L2 ≤ CE1(1 + t)−1/4. This completes the proof of Theorem 3.2.2.





Chapter 4

Application to Besov spaces (I)

4.1 Introduction

Consider the following Timoshenko system (see [62, 63]), which is a set of two coupled wave
equations of the form {

φtt − (φx − ψ)x = 0,

ψtt − σ(ψx)x − (φx − ψ) + γψt = 0,
(4.1.1)

and describes the transverse vibrations of a beam. Here t ≥ 0 is the time variable, x ∈ R
is the spacial variable which denotes the point on the center line of the beam, φ(t, x) is the
transversal displacement of the beam from an equilibrium state, and ψ is the rotation angle
of the filament of the beam. The smooth function σ(η) satisfies σ′(η) > 0 for any η ∈ R, and
γ is a positive constant. System (4.1.1) is supplemented with the initial data

(φ, φt, ψ, ψt)(x, 0) = (φ0, φ1, ψ0, ψ1)(x). (4.1.2)

The linearized system of (4.1.1) reads correspondingly as{
φtt − (φx − ψ)x = 0,

ψtt − a2ψxx − (φx − ψ) + γψt = 0,
(4.1.3)

with a > 0 is the propagation velocity defined by a2 = σ′(0). The case a = 1 corresponds to
the Timoshenko system with equal wave speeds.

4.1.1 Known results

In a bounded domain, it is known that (4.1.3) is exponentially stable if the damping term φt

is also present on the left-hand side of the first equation of (4.1.3) (see, e.g., [48]). Soufyane
[59] showed that (4.1.3) could not be exponentially stable by considering only the damping
term of the form ψt, unless for the case of a = 1 (equal wave speeds). A similar result was
obtained by Rivera and Racke [50] with an alternative proof. Moreover, Rivera and Racke

53
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[49] extended those results in [48, 50] to the Timoshenko system where the heat conduction
described by the classical Fourier law was additional considered.

In the whole space, Kawashima et. al. [24] introduced the following quantities

v = φx − ψ, u = φt, z = aψx, y = ψt, (4.1.4)

so that the system (4.1.3) can be rewritten as
vt − ux + y = 0,

ut − vx = 0,

zt − ayx = 0,

yt − azx − v + γy = 0.

(4.1.5)

The initial data are given by

(v, u, z, y)(x, 0) = (v0, u0, z0, y0)(x), (4.1.6)

where v0 = φ0,x − ψ0, y0 = ψ1, u0 = φ1 and z0 = aψ0,x. Furthermore, it was shown by [24]
that the dissipative structure of (4.1.5) is characterized by{

Reλ(iξ) ≤ −cη1(ξ) for a = 1,

Reλ(iξ) ≤ −cη2(ξ) for a ̸= 1,
(4.1.7)

where λ(iξ) denotes the eigenvalues of the system (4.1.5) in the Fourier space, η1(ξ) =
ξ2/(1 + ξ2), η2(ξ) = ξ2/(1 + ξ2)2, and c is a positive constant. As the consequence, the
following decay properties are shown for U = (v, u, z, y)⊤ of (4.1.5):

∥∂kxU(t)∥L2 ≤ C(1 + t)−
1
4
− k

2 ∥U0∥L1 + Ce−ct∥∂kxU0∥L2 (4.1.8)

for a = 1, and

∥∂kxU(t)∥L2 ≤ C(1 + t)−
1
4
− k

2 ∥U0∥L1 + C(1 + t)−
l
2∥∂k+l

x U0∥L2 (4.1.9)

for a ̸= 1, where U0 := (v0, z0, u0, y0), k and l are nonnegative integers, and c and C are
positive constants. However, the energy functionals in [24] are not optimal. Recently, by a
careful analysis for asymptotic expansions of the eigenvalues, the author and Kawashima [38]
(see Chapter 3) gave the optimal energy method in Fourier spaces, which is regarded as an
improved version of that in [24]. With the additional assumption

∫
R U0 dx = 0, Racke and

Said-Houari [53] strengthened those decay properties in [24] such that linearized solutions
decay faster with a rate of t−γ/2, by introducing the integral space L1,γ(R).

Other studies on the dissipative Timoshenko system can be found in the literature. We
refer to [47, 48] for frictional dissipation case, [19, 54, 55] for thermal dissipation case, and
[3, 4, 33, 34] for memory-type dissipation case.
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4.1.2 Main results

The main aim of Chapter 4 is to establish the global existence and optimal decay estimates
of solutions in spatially critical Besov spaces. To the best of our knowledge, so far there are
no results available in this direction for the Timoshenko system, although the critical space
has already been succeeded in the study of fluid dynamical equations, see [2, 15, 22, 44] for
Navier-Stokes equations, [10, 74, 76] for Euler equations and related models. In [70], under the
assumptions of dissipative entropy and Shizuta-Kawashima condition, Xu and Kawashima
have already studied generally dissipative hyperbolic systems where the dissipation matrix
is symmetric, however, the Timoshenko system has the non-symmetric dissipation. More
precisely, with the aid of variable change (4.1.4) (with a = 1), it is convenient to rewrite
(4.1.1)-(4.1.2) as a Cauchy problem for the hyperbolic system of first order{

Ut + A(U)Ux + LU = 0,

U(0, x) = U0(x),
(4.1.10)

where

A(U) = −


0 1 0 0
1 0 0 0
0 0 0 1
0 0 σ′(z) 0

 , L =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 γ

 . (4.1.11)

Notice that A(U) is a real symmetrizable matrix due to σ′(z) > 0, and the matrix L is
nonnegative definite but not symmetric, so the Timoshenko system (4.1.10) is an example of
hyperbolic systems with non-symmetric dissipation. Consequently, the general theory (see
[70]) for hyperbolic systems with symmetric dissipation can not be applied directly, which is
the main motivation of this chapter.

The partial damping term γy is a weak dissipation, which enables us to capture the dis-
sipation from contributions of (y, v, ux, zx) only, and the dissipative rates for u, z themselves
are absent. To overcome the difficulty in the derivation of a priori estimates, an elementary
fact in Proposition 4.2.1 (also see [70]) that indicates the relation between homogeneous and
inhomogeneous Chemin-Lerner spaces, will be used, see proofs of Lemmas 4.3.1-4.3.4 for
more details. On the other hand, Xu and Kawashima gave a new decay framework for gen-
eral dissipative system satisfying the Shizuta-Kawashima condition (see [71]), which allows
to pay less attention on the traditional spectral analysis. Inspired by the dissipative struc-
ture for the Timoshenko system (see [24] or (4.1.7)), we hope that the new decay framework
can be adapted to the Timoshenko system with equal wave speeds. However, those analysis
remain valid only for the case of high dimensions (n ≥ 3) due to interpolation techniques

used. To overcome this obstruction, the degenerate space Ḃ
−1/2
2,∞ rather than the general

form Ḃ−s
2,∞ (0 < s ≤ 1/2) will be employed. Notice that L1(R) ↪→ Ḃ0

1,∞(R) ↪→ Ḃ
−1/2
2,∞ (R).

Additionally, we involve new observations so as to achieve the optimal decay estimates at
the low-frequency, see (4.4.23) and (4.4.26) for details.

In this chapter, we focus on the Timoshenko system with equal wave speeds (a = 1).
Now, main results are stated as follows.
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Theorem 4.1.1. Suppose that U0 ∈ B
3/2
2,1 (R). There exists a positive constant δ0 such that if

∥U0∥B3/2
2,1 (R) ≤ δ0,

then the Cauchy problem (4.1.10) has a unique global classical solution U ∈ C1(R+ × R)
satisfying

U ∈ C̃(B3/2
2,1 (R)) ∩ C̃1(B

1/2
2,1 (R))

Moreover, the following energy inequality holds that

∥U∥
L̃∞(B

3/2
2,1 (R)) +

(
∥y∥

L̃2
T (B

3/2
2,1 )

+ ∥(v, zx)∥L̃2
T (B

1/2
2,1 )

+ ∥ux∥L̃2
T (B

−1/2
2,1 )

)
≤ C0∥U0∥B3/2

2,1 (R),

where C0 > 0 is a constant.

Remark 4.1.1. To the best of our knowledge, Theorem 4.1.1 exhibits the optimal critical
regularity of global well-posedness for (4.1.10), which is the first result in this direction
for the Timoshenko system. Observe that there is 1-regularity-loss phenomenon for the
dissipation rates due to the nonlinear influence, which is totally different in comparison with
the linearized system (4.1.5) with a = 1.

Based on the global-in-time existence of solutions, we further obtain the optimal decay
estimates. Denote Λαf := F−1|ξ|αFf (α ∈ R).

Theorem 4.1.2. Let U(t, x) = (v, u, z, y)(t, x) be the global classical solution of Theorem

4.1.1. If further the initial data U0 ∈ Ḃ
−1/2
2,∞ (R) and

M0 := ∥U0∥B3/2
2,1 (R)∩Ḃ−1/2

2,∞ (R)

is sufficiently small. Then the classical solution U(t, x) of (4.1.10) admits the following decay
estimates

∥ΛℓU∥X1(R) ≲ M0(1 + t)−
1
4
− ℓ

2 (4.1.12)

for 0 ≤ ℓ ≤ 1/2, where X1 := B
1/2−ℓ
2,1 if 0 ≤ ℓ < 1/2 and X1 := Ḃ0

2,1 if ℓ = 1/2.

Note that the L1(R) embedding property in Lemma 4.2.3, as an immediate byproduct of
Theorem 4.1.2, the usual optimal decay estimates of L1(R)-L2(R) type are available.

Corollary 4.1.1. Let U(t, x) = (v, u, z, y)(t, x) be the global classical solutions of Theorem
4.1.1. If further the initial data U0 ∈ L1(R) and

M̃0 := ∥U0∥B3/2
2,1 (R)∩L1(R)

is sufficiently small, then

∥ΛℓU∥L2(R) ≲ M̃0(1 + t)−
1
4
− ℓ

2 (4.1.13)

for 0 ≤ ℓ ≤ 1/2.
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Remark 4.1.2. We can say that Theorem 4.1.2 and Corollary 4.1.1 exhibit various decay rates
of solution and its derivatives of fractional order. In comparison with [25], here, the harmonic
analysis allows to reduce significantly the regularity requirements on the initial data.

The rest of this chapter unfolds as follows. In Section 4.2, we present useful properties in
Besov spaces, which will be used in the subsequence analysis. In Section 4.3, we construct
the global-in-time solution by Fourier localization energy methods. Based on the dissipative
structure, in Section 4.4, we develop the decay property for the linearized Timoshenko system
(4.1.4)-(4.1.5) in the framework of Besov spaces. Then, by employing localized time-weighted
energy approaches, we deduce the optimal decay estimates for (4.1.9).

We present those definitions of Besov spaces and Chemin-Lerner spaces in Section 5.6
(Appendix) in Chapter 5 for the convenience of readers.

4.2 Tools

In this section, we only present analysis properties in Besov spaces and Chemin-Lerner spaces
in Rn(n ≥ 1), which will be used in the sequence section. For convenience of reader, the
Appendix in Section 5.6 in Chapter 5 devoted to those definitions for Besov spaces and
Chemin-Lerner spaces.

Firstly, we give an improved Bernstein inequality (see, e.g., [68]), which allows the case
of fractional derivatives.

Lemma 4.2.1. Let 0 < R1 < R2 and 1 ≤ a ≤ b ≤ ∞.

(i) If SuppFf ⊂ {ξ ∈ Rn : |ξ| ≤ R1λ}, then

∥Λαf∥Lb ≲ λα+n( 1
a
− 1

b
)∥f∥La for any α ≥ 0;

(ii) If SuppFf ⊂ {ξ ∈ Rn : R1λ ≤ |ξ| ≤ R2λ}, then

∥Λαf∥La ≈ λα∥f∥La for any α ∈ R.

Besov spaces obey various inclusion relations. Precisely,

Lemma 4.2.2. Let s ∈ R and 1 ≤ p, r ≤ ∞, then

(i) If s > 0, then Bs
p,r = Lp ∩ Ḃs

p,r;

(ii) If s̃ ≤ s, then Bs
p,r ↪→ B s̃

p,r; this inclusion relation is false for the homogeneous Besov
spaces;

(iii) If 1 ≤ r ≤ r̃ ≤ ∞, then Ḃs
p,r ↪→ Ḃs

p,r̃ and Bs
p,r ↪→ Bs

p,r̃;

(iv) If 1 ≤ p ≤ p̃ ≤ ∞, then Ḃs
p,r ↪→ Ḃ

s−n( 1
p
− 1

p̃
)

p̃,r and Bs
p,r ↪→ B

s−n( 1
p
− 1

p̃
)

p̃,r ;



58 CHAPTER 4. APPLICATION TO BESOV SPACES (I)

(v) Ḃ
n/p
p,1 ↪→ C0, B

n/p
p,1 ↪→ C0 (1 ≤ p <∞),

where C0 is the space of continuous bounded functions which decay at infinity.

Lemma 4.2.3. Suppose that ϱ > 0 and 1 ≤ p < 2. It holds that

∥f∥Ḃ−ϱ
r,∞

≲ ∥f∥Lp

with 1/p− 1/r = ϱ/n. In particular, this holds with ϱ = n/2, r = 2 and p = 1.

The global existence depends on a key fact, which indicates the connection between
homogeneous Chemin-Lerner spaces and inhomogeneous Chemin-Lerner spaces, see [70] for
the proof. Precisely,

Proposition 4.2.1. Let s ∈ R and 1 ≤ θ, p, r ≤ ∞.

(i) It holds that

Lθ
T (L

p) ∩ L̃θ
T (Ḃ

s
p,r) ⊂ L̃θ

T (B
s
p,r);

(ii) Furthermore, as s > 0 and θ ≥ r, it holds that

Lθ
T (L

p) ∩ L̃θ
T (Ḃ

s
p,r) = L̃θ

T (B
s
p,r)

for any T > 0.

Let us state the Moser-type product estimates, which plays an important role in the
estimate of bilinear terms.

Proposition 4.2.2. Let s > 0 and 1 ≤ p, r ≤ ∞. Then Ḃs
p,r ∩ L∞ is an algebra and

∥fg∥Ḃs
p,r

≲ ∥f∥L∞∥g∥Ḃs
p,r

+ ∥g∥L∞∥f∥Ḃs
p,r
.

Let s1, s2 ≤ n/p such that s1 + s2 > nmax{0, 2
p
− 1}. Then one has

∥fg∥
Ḃ

s1+s2−n/p
p,1

≲ ∥f∥Ḃs1
p,1
∥g∥Ḃs2

p,1
.

In the sequel we also need a estimate for commutator.

Proposition 4.2.3. Let 1 < p <∞, 1 ≤ θ ≤ ∞ and s ∈ (−n
p
− 1, n

p
]. Then there exists a

generic constant C > 0 depending only on s, n such that
∥[f, ∆̇q]g∥Lp ≤ Ccq2

−q(s+1)∥f∥
Ḃ

n
p +1

p,1

∥g∥Ḃs
p,1
,

∥[f, ∆̇q]g∥Lθ
T (Lp) ≤ Ccq2

−q(s+1)∥f∥
L̃
θ1
T (Ḃ

n
p +1

p,1 )
∥g∥

L̃
θ2
T (Ḃs

p,1)
,

with 1/θ = 1/θ1 + 1/θ2, where the commutator [·, ·] is defined by [f, g] = fg − gf and {cq}
denotes a sequence such that ∥(cq)∥l1 ≤ 1.
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Finally, we state a continuity result for compositions (see, e.g., [22]) to end this section.

Proposition 4.2.4. Let s > 0, 1 ≤ p, r, θ ≤ ∞, F ∈ W
[s]+3,∞
loc (I;R) with F (0) = 0,

T ∈ (0,∞] and f ∈ L̃θ
T (B

s
p,r) ∩ L∞

T (L∞). Then there exists a function C depending only
on s, p, r, n, and F such that

∥F (f)− F ′(0)f∥Ḃs
p,r

≤ C (∥f∥L∞) ∥f∥2
Ḃs

p,r
,

∥F (f)− F ′(0)f∥L̃θ
T (Ḃs

p,r)
≤ C

(
∥f∥L∞

T (L∞)

)
∥f∥2

L̃θ
T (Ḃs

p,r)
.

4.3 Global-in-time existence

Recently, Xu and Kawashima [70] have already established a local existence theory for gen-
erally symmetric hyperbolic systems in spatially critical Besov spaces, which is viewed as the
generalization of the basic theory of Kato and Majda [26, 35]. Fortunately, the new result
can be applied to the current problem (4.1.10) directly, since the non-symmetric dissipation
L has no influence on the local-in-time existence. Precisely,

Proposition 4.3.1. Assume that U0 ∈ B
3/2
2,1 , then there exists a time T0 > 0 (depending only

on the initial data) such that

(i) (Existence): system (4.1.10) has a unique solution U(t, x) ∈ C1([0, T0] × R) satisfying

U ∈ C̃T0(B
3/2
2,1 ) ∩ C̃1

T0
(B

1/2
2,1 );

(ii) (Blow-up criterion): if the maximal time T ∗(> T0) of existence of such a solution is
finite, then

lim sup
t→T ∗

∥U(t, ·)∥
B

3/2
2,1

= ∞

if and only if ∫ T ∗

0

∥∇U(t, ·)∥L∞dt = ∞.

Furthermore, in order to show that classical solutions in Proposition 4.3.1 are globally
defined, the next task is to construct a priori estimates according to the dissipative mechanism
produced by the Timoshenko system. To this end, we define by E(T ) the energy functional
and by D(T ) the corresponding dissipation functional:

E(T ) := ∥U∥
L̃∞
T (B

3/2
2,1 )

and
D(T ) := ∥y∥

L̃2
T (B

3/2
2,1 )

+ ∥(v, zx)∥L̃2
T (B

1/2
2,1 )

+ ∥ux∥L̃2
T (B

−1/2
2,1 )

for any time T > 0.

The first lemma is related to the nonlinear a priori estimate for the dissipation for y.



60 CHAPTER 4. APPLICATION TO BESOV SPACES (I)

Lemma 4.3.1 (The dissipation for y). If U ∈ C̃T (B3/2
2,1 ) ∩ C̃1

T (B
1/2
2,1 ) is a solution of (4.1.10)

for any T > 0, then

E(T ) + ∥y∥
L̃2
T (B

3/2
2,1 )

≲ ∥U0∥B3/2
2,1

+
√
E(T )D(T ). (4.3.1)

Proof. Firstly, we perform the usual energy method. Multiplying the first equation in (4.1.10)
by v, the second one by u, the third one by σ(z)− σ(0) and the last one by y, respectively,
and then adding the resulting equalities, we get

1

2

d

dt
(v2 + y2 + u2 + S(z))−

(
vu+ [σ(z)− σ(0)]

)
x
+ γy2 = 0, (4.3.2)

where

S(z) = 2

∫ z

0

(
σ(η)− σ(0)

)
dη.

Note that S(z) is equivalent to z2, due to the fact σ′(η) > 0 and the smallness assumption
(4.3.40) below. Then we perform the integral to (4.3.2) with respect to x and obtain the
basic energy equality

1

2

d

dt
E0(U) + γ∥y∥2L2 = 0, (4.3.3)

where the energy functional E0(U) is defined by

E0(U) = ∥(v, u, y)∥2L2 +

∫
R
S(z)dx ≈ ∥U∥2L2 .

By integrating in t ∈ [0, T ] and taking the square-root of the resulting inequality, we arrive
at

∥U∥L∞
T (L2) +

√
2γ∥y∥L2

T (L2) ≤ ∥U0∥L2 (4.3.4)

for any T > 0.
Next, we perform the frequency-localization estimate and get the dissipation rate from y

in homogeneous Chemin-Lerner spaces. Applying the operator ∆̇q(q ∈ Z) to (4.1.10) gives

∆̇qvt − ∆̇qux + ∆̇qy = 0,

∆̇qut − ∆̇qvx = 0,

∆̇qzt − ∆̇qyx = 0,

∆̇qyt − σ′(z)∆̇qzx − ∆̇qv + γ∆̇qy = [∆̇q, σ
′(z)] zx,

(4.3.5)

where the commutator is defined by [f, g] := fg − gf . Multiplying (4.3.5) with ∆̇qv, ∆̇qu,
σ′(z)∆̇qz and ∆̇qy, respectively, and then adding the resulting equalities, we get

1

2

d

dt

(
|∆̇qv|2 + |∆̇qy|2 + |∆̇qu|2 + σ′(z)|∆̇qz|2

)
(4.3.6)

−
{
(∆̇qu∆̇qv)x +

(
σ′(z)∆̇qz∆̇qy

)
x

}
+ γ|∆̇qy|2

=
1

2
σ′(z)t|∆̇qz|2 − σ′(z)x∆̇qz∆̇qy + [∆̇q, σ

′(z)] zx∆̇qy.
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Furthermore, by employing the integral with respect to x, with the aid of Cauchy-Schwarz
inequality, we have

1

2

d

dt
E0[∆̇qU ] + γ∥∆̇qy∥2L2 (4.3.7)

≲ ∥σ′(z)t∥L∞∥∆̇qz∥2L2 + ∥σ′(z)x∥L∞∥∆̇qz∥L2∥∆̇qy∥L2

+∥[∆̇q, σ
′(z)]zx∥L2∥∆̇qy∥L2 ,

where

E0[∆̇qU ] := ∥(∆̇qv, ∆̇qy, ∆̇qu)∥2L2 +

∫
R
σ′(z)|∆̇qz| dx ≈ ∥∆̇qU∥2L2 .

From (4.1.10) and a priori assumption (4.3.40) below, we have

∥σ′(z)t∥L∞∥∆̇qz∥2L2 ≲ ∥zt∥L∞∥∆̇qz∥2L2 ≲ ∥yx∥L∞∥∆̇qz∥2L2 . (4.3.8)

Similarly,

∥σ′(z)x∥L∞∥∆̇qz∥L2∥∆̇qy∥L2 ≲ ∥zx∥L∞∥∆̇qz∥L2∥∆̇qy∥L2 . (4.3.9)

Together with (4.3.8)-(4.3.9), by integrating in t ∈ [0, T ], with the help of Young’s in-
equality, we are led to√

E0[∆̇qU ] +
√
2γ∥∆̇qy∥L2

T (L2)

≲
√
E0[∆̇qU0] +

√
∥(yx, zx)∥L∞

T (L∞)

(
∥∆̇qy∥L2

T (L2) + ∥∆̇qz∥L2
T (L2)

)
+
√
∥[∆̇q, σ′(z)]zx∥L2

T (L2)∥∆̇qy∥L2
T (L2). (4.3.10)

It follows from the commutator estimate in Proposition 4.2.3 that

∥[∆̇q, σ
′(z)]zx∥L2

T (L2) ≲ cq2
− 3q

2 ∥z∥
L̃∞
T (Ḃ

3/2
2,1 )

∥zx∥L̃2
T (Ḃ

1/2
2,1 )

, (4.3.11)

where {cq} denotes a sequence such that ∥cq∥ℓ1 ≤ 1. Therefore, we obtain

2
3q
2 ∥∆̇qU∥L∞

T (L2) +
√

2γ2
3q
2 ∥∆̇qy∥L2

T (L2)

≲ ∥∆̇qU0∥L2 + cq
√
∥(yx, zx)∥L∞

T (Ḃ
1/2
2,1 )

(
∥y∥

L̃2
T (Ḃ

3/2
2,1 )

+ ∥zx∥L̃2
T (Ḃ

1/2
2,1 )

)
+cq
√
∥z∥

L̃∞
T (Ḃ

3/2
2,1 )

(
∥y∥

L̃2
T (Ḃ

3/2
2,1 )

+ ∥zx∥L̃2
T (Ḃ

1/2
2,1 )

)
. (4.3.12)

Here, we would like to point out each {cq} has a possibly different form in (4.3.12) or in
sequent inequalities, however, the bound ∥cq∥ℓ1 ≤ 1 is well satisfied. Hence, summing up on
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q ∈ Z, we arrive at

∥U∥
L̃∞
T (Ḃ

3/2
2,1 )

+
√

2γ∥y∥
L̃2
T (Ḃ

3/2
2,1 )

≲ ∥U0∥Ḃ3/2
2,1

+
√
∥(y, z)∥

L̃∞
T (Ḃ

3/2
2,1 )

(
∥y∥

L̃2
T (Ḃ

3/2
2,1 )

+ ∥zx∥L̃2
T (Ḃ

1/2
2,1 )

)
. (4.3.13)

Finally, combining (4.3.4) and (4.3.13), we conclude that from Proposition 4.2.1

E(T ) + ∥y∥
L̃2
T (B

3/2
2,1 )

≲ ∥U0∥B3/2
2,1

+
√
E(T )D(T ). (4.3.14)

Therefore, the proof of Lemma 4.3.1 is complete.

Lemma 4.3.2 (The dissipation for v). If U ∈ C̃T (B3/2
2,1 ) ∩ C̃1

T (B
1/2
2,1 ) is a solution of (4.1.10)

for any T > 0, then

∥v∥
L̃2
T (B

1/2
2,1 )

≲ E(T ) + ∥U0∥B3/2
2,1

+ ∥y∥
L̃2
T (B

3/2
2,1 )

+
√
E(T )D(T ). (4.3.15)

Proof. To do this, it is convenient to rewrite the system (4.1.10) as follows:
vt − ux + y = 0,

ut − vx = 0,

zt − yx = 0,

yt − zx − v + γy = g(z)x,

(4.3.16)

where the smooth function g(z) is defined by

g(z) = σ(z)− σ(0)− z = O(z2)

satisfying g(0) = 0 and g′(0) = 0. By multiplying four equations in (4.3.16) by −y,−z,−u
and −v, respectively, we deduce that

d

dt
E1(U) + ∥v∥2L2 ≤ ∥y∥2L2 + γ∥y∥L2∥v∥L2 + ∥g(z)x∥L2∥v∥L2 , (4.3.17)

where

E1(U) := −
∫
R
(vy + uz) dx.

It follows from Young’s inequality that

d

dt
E1(U) +

1

2
∥v∥2L2 ≲ ∥y∥2L2 + ∥z∥L∞∥zx∥L2∥v∥L2 . (4.3.18)

Integrating (4.3.18) in t ∈ [0, T ] gives

∥v∥2L2
t (L

2)

≲ (|E1(U)|+ |E1(U0)|) + ∥y∥2L2
t (L

2) + ∥z∥L∞
t (L∞)∥zx∥L2

t (L
2)∥v∥L2

t (L
2)

≲ E(T )2 + ∥U0∥2B3/2
2,1

+ ∥y∥2L2
T (L2) + E(T )D2(T ), (4.3.19)
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for any T > 0, where we have used the embedding property in Lemma 4.2.2. Then, by
Young’s inequality again, we get

∥v∥L2
T (L2) ≲ E(T ) + ∥U0∥B3/2

2,1
+ ∥y∥L2

T (L2) +
√
E(T )D(T ). (4.3.20)

Next, we turn to the localization energy estimate. Applying the operator ∆̇q(q ∈ Z) to
(4.3.16) implies 

∆̇qvt − ∆̇qux + ∆̇qy = 0,

∆̇qut − ∆̇qvx = 0,

∆̇qzt − ∆̇qyx = 0,

∆̇qyt − ∆̇qzx − ∆̇qv + γ∆̇qy = ∆̇qg(z)x.

(4.3.21)

Multiplying the first equation in (4.3.21) by −∆̇qy, the second one by −∆̇qz, the third one
by −∆̇qu and the fourth one by −∆̇qv, respectively, then adding the resulting equalities, we
have

−(∆̇qv∆̇qy + ∆̇qu∆̇qz)t + (∆̇qv∆̇qz + ∆̇qu∆̇qy)x + |∆̇qv|2

= |∆̇qy|2 + γ∆̇qy∆̇qv − ∆̇qg(z)x∆̇qv. (4.3.22)

With the aid of Hölder and Young’s inequalities, we obtain

d

dt
E1[∆̇qU ] +

1

2
∥∆̇qv∥2L2 ≲ ∥∆̇qy∥2L2 + ∥∆̇qg(z)x∥L2∥∆̇qv∥L2 , (4.3.23)

where

E1[∆̇qU ] := −
∫
R
(∆̇qv∆̇qy + ∆̇qu∆̇qz)dx.

By performing the integral with respect to t ∈ [0, T ], we are led to

∥∆̇qv∥2L2
t (L

2)

≲ ∥∆̇qU∥2L∞
T (L2) + ∥∆̇qU0∥2L2 + ∥∆̇qy∥2L2

T (L2)

+∥∆̇qv∥L∞
T (L2)∥∆̇qg(z)x∥L1

T (L2). (4.3.24)

Furthermore, Young’s inequality enables us to get

2
q
2∥∆̇qv∥L2

T (L2)

≲ cq∥U∥L̃∞
T (Ḃ

1/2
2,1 )

+ cq∥U0∥Ḃ1/2
2,1

+cq∥y∥L̃2
T (Ḃ

1/2
2,1 )

+ cq
√

∥v∥
L̃∞
T (Ḃ

1/2
2,1 )

∥g(z)x∥
1
2

L̃1
T (Ḃ

1/2
2,1 )

, (4.3.25)
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where the norm of g(z) on the right-side of (4.3.25) can be estimated by Proposition 4.2.4

∥g(z)x∥L̃1
T (Ḃ

1/2
2,1 )

≲
∫ T

0

∥g(z)∥
Ḃ

3/2
2,1
dt

≲
∫ T

0

∥z∥2
Ḃ

3/2
2,1

dt ≲ ∥zx∥2L̃2
T (Ḃ

1/2
2,1 )

. (4.3.26)

Therefore, together with (4.3.25)-(4.3.26), by summing up on q ∈ Z, we arrive at

∥v∥
L̃2
T (Ḃ

1/2
2,1 )

≲ ∥U∥
L̃∞
T (Ḃ

1/2
2,1 )

+ ∥U0∥Ḃ1/2
2,1

+ ∥y∥
L̃2
T (Ḃ

1/2
2,1 )

+
√
∥v∥

L̃∞
T (Ḃ

1/2
2,1 )

∥zx∥L̃2
T (Ḃ

1/2
2,1 )

. (4.3.27)

Finally, noticing (4.3.20) and (4.3.27), it follows from Proposition 4.2.1 that

∥v∥
L̃2
T (B

1/2
2,1 )

≲ E(T ) + ∥U0∥B3/2
2,1

+ ∥y∥
L̃2
T (B

3/2
2,1 )

+
√
E(T )D(T ), (4.3.28)

which is just the inequality (4.3.15).

Lemma 4.3.3 (The dissipation for zx). If U ∈ C̃T (B3/2
2,1 )∩ C̃1

T (B
1/2
2,1 ) is a solution of (4.1.10)

for any T > 0, then

∥zx∥L̃2
T (B

1/2
2,1 )

≲ E(T ) + ∥U0∥B3/2
2,1

+ ∥y∥
L̃2
T (B

3/2
2,1 )

+∥v∥
L̃2
T (B

1/2
2,1 )

+
√
E(T )D(T ). (4.3.29)

Proof. Multiplying the third equation in (4.3.16) by yx and the fourth one by −zx, respec-
tively, and then integrating the resulting equalities over R, we arrive at

d

dt
E2(U) + ∥zx∥2L2

≲ ∥yx∥2L2 + (∥v∥L2 + ∥y∥L2)∥zx∥L2 + ∥z∥L∞∥zx∥2L2 , (4.3.30)

where

E2(U) := −
∫
R
zxy dx.

Similar to the procedure leading to (4.3.20), we arrive at

∥zx∥L2
T (L2) ≲ E(T ) + ∥U0∥B3/2

2,1
+ ∥y∥

L̃2
T (B

3/2
2,1 )

+∥v∥
L̃2
T (B

1/2
2,1 )

+
√
E(T )D(T ). (4.3.31)
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On the other hand, from (4.3.21), we have{
∆̇qzt − ∆̇qyx = 0,

∆̇qyt − ∆̇qzx − ∆̇qv + γ∆̇qy = ∆̇qg(z)x.
(4.3.32)

Then, by multiplying the first equation in (4.3.32) by ∆̇qyx and the second one by −∆̇qzx,
respectively, and then employing the energy estimates on each block, we are led to

2
q
2∥∆̇qzx∥L2

T (L2)

≲ cq

(
∥U∥

L̃∞
T (B

3/2
2,1 )

+ ∥U0∥B3/2
2,1

)
+ cq∥yx∥L̃2

T (Ḃ
1/2
2,1 )

+cqε∥zx∥L̃2
T (Ḃ

1/2
2,1 )

+ cqCε

(
∥v∥

L̃2
T (Ḃ

1/2
2,1 )

+ ∥y∥
L̃2
T (Ḃ

1/2
2,1 )

)
+cq
√
∥zx∥L̃∞

T (Ḃ
1/2
2,1 )

∥g(z)x∥
1
2

L̃1
T (Ḃ

1/2
2,1 )

. (4.3.33)

Furthermore, similar to the estimates (4.3.26)-(4.3.27), we get

∥zx∥L̃2
T (Ḃ

1/2
2,1 )

≲ ∥U∥
L̃∞
T (B

3/2
2,1 )

+ ∥U0∥B3/2
2,1

+ ∥y∥
L̃2
T (Ḃ

3/2
2,1 )

+∥v∥
L̃2
T (Ḃ

1/2
2,1 )

+ ∥y∥
L̃2
T (Ḃ

1/2
2,1 )

+
√

∥z∥
L̃∞
T (Ḃ

3/2
2,1 )

∥zx∥L̃2
T (Ḃ

1/2
2,1 )

, (4.3.34)

where we have chosen 0 < ε ≤ 1/2.

Finally, by combining (4.3.31) and (4.3.34), we arrive at (4.3.29).

Lemma 4.3.4 (The dissipation for ux). If U ∈ C̃T (B3/2
2,1 )∩ C̃1

T (B
1/2
2,1 ) is a solution of (4.1.10)

for any T > 0, then

∥ux∥L̃2
T (B

−1/2
2,1 )

≲ E(T ) + ∥U0∥B3/2
2,1

+ ∥v∥
L̃2
T (B

1/2
2,1 )

+ ∥y∥
L̃2
T (B

3/2
2,1 )

. (4.3.35)

Proof. Applying the inhomogeneous operator ∆q(q ≥ −1) to the first equation and second
one of (4.3.16) gives {

∆qvt −∆qux +∆qy = 0,

∆qut −∆qvx = 0.
(4.3.36)

Multiplying the first equation in (4.3.36) by −∆qux and the second one by ∆qvx, we can
obtain

d

dt
E3[∆qU ] + ∥∆qux∥2L2 ≤ ∥∆qvx∥2L2 + ∥∆qux∥L2∥∆qy∥L2 , (4.3.37)
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where

E3[∆qU ] := −
∫
R
∆qv∆qux dx.

Then we integrate (4.3.37) with respect to t ∈ [0, T ] to get

∥∆qux∥2L2
t (L

2) ≤
(
|E3[∆qU ]|+ E3[∆qU0]

)
+∥∆qvx∥2L2

t (L
2) + ∥∆qux∥L2

t (L
2)∥∆qy∥L2

t (L
2). (4.3.38)

By using Young’s inequality and embedding properties in Lemma 4.2.2, we are led to

2−q/2∥∆qux∥L2
T (L2)

≲ cqE(T ) + cq∥U0∥B3/2
2,1

+ cq∥v∥L̃2
T (B

1/2
2,1 )

+cq
√
∥ux∥L̃2

T (B
−1/2
2,1 )

∥y∥
L̃2
T (B

3/2
2,1 )

, (4.3.39)

which leads to (4.3.35) immediately.

Having Lemmas 4.3.1-4.3.4, we obtain the following a priori estimate for solutions. For
brevity, we feel free to skip the details.

Proposition 4.3.2. Suppose U ∈ C̃T (B3/2
2,1 ) ∩ C̃1

T (B
1/2
2,1 ) is a solution of (5.1.10) for T > 0.

There exists δ1 > 0 such that if

E(T ) ≤ δ1, (4.3.40)

then the following estimate holds:

E(T ) +D(T ) ≲ ∥U0∥B3/2
2,1

+
√
E(T )D(T ). (4.3.41)

Furthermore, it holds that

E(T ) +D(T ) ≲ ∥U0∥B3/2
2,1
. (4.3.42)

By using the standard boot-strap argument, for instance, see [40] (Theorem 7.1, p.100),
Theorem 4.1.1 follows from the local existence result (Proposition 4.3.1) and a priori estimate
(Proposition 4.3.2). Here, we give the outline for completeness.

The proof of Theorem 4.1.1. If the initial data satisfy ∥U0∥B3/2
2,1

≤ δ1
2
, by Proposition 4.3.1,

then we determine a time T1 > 0 (T1 ≤ T0) such that the local solutions of (4.1.10) exists in

C̃T1(B
3/2
2,1 ) and ∥U∥

L̃∞
T1

(B
3/2
2,1 )

≤ δ1. Therefore from Proposition 4.3.2 the solutions satisfy the a

priori estimate

∥U∥
L̃∞
T1

(B
3/2
2,1 )

≤ C1∥U0∥B3/2
2,1

≤ δ1
2
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provided ∥U0∥Bσ
2,1

≤ δ1
2C1

. Thus by Proposition 4.3.1 the system (4.1.10) for t ≥ T1 with the

initial data U(T1) has again a unique solution U satisfying ∥U∥
L̃∞
(T1,2T1)

(B
3/2
2,1 )

≤ δ1, further

∥U∥
L̃∞
2T1

(B
3/2
2,1 )

≤ δ1. Then by Proposition 4.3.2 we have

∥U∥
L̃∞
2T1

(B
3/2
2,1 )

≤ C1∥U0∥B3/2
2,1

≤ δ1
2
.

Subsequently, we continuous the same process for 0 ≤ t ≤ nT1, n = 3, 4, ... and finally get a
global solution U ∈ C̃(Bσ

2,1) satisfying

∥U∥
L̃∞(B

3/2
2,1 )

+
(
∥y∥

L̃2
T (B

3/2
2,1 )

+ ∥(v, zx)∥L̃2
T (B

1/2
2,1 )

+ ∥ux∥L̃2
T (B

−1/2
2,1 )

)
≤ C1∥U0∥B3/2

2,1
≤ δ1

2
.

4.4 Optimal decay rates

By employing the energy method in Fourier spaces in [24, 38], it is well-known that the
linearized system (4.1.5)-(4.1.6) admits the dissipative structure

Reλ(iξ) ≤ −cη1(ξ), for a = 1,

with η1(ξ) =
ξ2

1+ξ2
, that is, the following differential inequality holds

d

dt
E[Û ] + c1η1(ξ)|Û |2 ≤ 0, (4.4.1)

where E[Û ] ≈ |Û |2. As a matter of fact, following from the derivation of (4.4.1) as in [24, 38],
we can deduce frequency-localization differential inequalities

d

dt
E[∆̂qU ] + c1η1(ξ)|∆̂qU |2 ≤ 0, (4.4.2)

for q ≥ −1, and

d

dt
E[̂̇∆qU ] + c1η1(ξ)|̂̇∆qU |2 ≤ 0, (4.4.3)

for q ∈ Z.
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4.4.1 Decay property for the linearized system

As shown by [71], we do the similar high-frequency and low-frequency analysis to achieve the
following decay property for (4.1.5)-(4.1.6).

Proposition 4.4.1. If U0 ∈ Ḃσ
2,1(R) ∩ Ḃ−s

2,∞(R) for σ ≥ 0 and s > 0, then the solutions
U(t, x) of (4.1.5)-(4.1.6) has the decay estimate

∥ΛℓU∥Bσ−ℓ
2,1

≲ ∥U0∥Ḃσ
2,1∩Ḃ

−s
2,∞

(1 + t)−
ℓ+s
2 (4.4.4)

for 0 ≤ ℓ ≤ σ. In particular, if U0 ∈ Ḃσ
2,1(R) ∩ Lp(R) (1 ≤ p < 2), one further has

∥ΛℓU∥Bσ−ℓ
2,1

≲ ∥U0∥Ḃσ
2,1∩Lp(1 + t)−

1
2
( 1
p
− 1

2
)− ℓ

2 (4.4.5)

for 0 ≤ ℓ ≤ σ.

Additionally, we also obtain the decay property on the framework of homogeneous Besov
spaces, see [71] for the similar proof.

Proposition 4.4.2. If U0 ∈ Ḃσ
2,1(R) ∩ Ḃ−s

2,∞(R) for σ ∈ R, s ∈ R satisfying σ + s > 0, then
the solution U(t, x) of (4.1.5)-(4.1.6) has the decay estimate

∥U∥Ḃσ
2,1

≲ ∥U0∥Ḃσ
2,1∩Ḃ

−s
2,∞

(1 + t)−
σ+s
2 . (4.4.6)

In particular, if U0 ∈ Ḃσ
2,1(R) ∩ Lp(R) (1 ≤ p < 2), one further has

∥U∥Ḃσ
2,1

≲ ∥U0∥Ḃσ
2,1∩Lp(1 + t)−

1
2
( 1
p
− 1

2
)−σ

2 . (4.4.7)

4.4.2 Localized time-weighted energy approaches

Firstly, we denote by G(t) the Green matrix associated with the linearized system (4.1.5)-
(4.1.6) as follows:

G(t)f = F−1[e−tΦ̂(iξ)Ff ], (4.4.8)

with

Φ̂(iξ) = (iξA+ L),

where

A = −


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , L =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 γ

 .
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Then, by the classical Duhamel principle, the solution to Cauchy problem of the nonlinear
Timoshenko system 

vt − ux + y = 0,

ut − vx = 0,

zt − yx = 0,

yt − zx − v + γy = g(z)x,

(4.4.9)

with

U |t=0 = U0(x) (4.4.10)

can be represented by

U(t, x) = G(t)U0 +

∫ t

0

G(t− τ)R(τ) dτ, (4.4.11)

where R := (0, 0, 0, g(z)x)
⊤. Note that the smooth function g(z) = O(z2) satisfying g(0) = 0

and g′(0) = 0.

Additionally, from the definition of G(t), it is not difficult to obtain the frequency-
localization Duhamel principle for (4.4.9)-(4.4.10).

Lemma 4.4.1. Suppose that U(t, x) is a solution of (4.4.9)-(4.4.10). Then

∆qΛ
ℓU(t, x) = ∆qΛ

ℓ[G(t)U0] +

∫ t

0

∆qΛ
ℓ[G(t− τ)R(τ)] dτ (4.4.12)

for q ≥ −1 and ℓ ∈ R, and

∆̇qΛ
ℓU(t) = ∆̇qΛ

ℓ[G(t)U0] +

∫ t

0

∆̇qΛ
ℓ[G(t− τ)R(τ)] dτ (4.4.13)

for q ∈ Z and ℓ ∈ R.

Based on Lemma 4.4.1, we shall deduce the optimal decay estimate by developing time-
weighted energy approaches as in [37] in terms of high-frequency and low-frequency decom-
positions. For this purpose, we first define some sup-norms as follows

E0(t) := sup
0≤τ≤t

∥U(τ)∥
B

3/2
2,1

;

E1(t) := sup
0≤ℓ< 1

2

sup
0≤τ≤t

(1 + τ)
1
4
+ ℓ

2∥ΛℓU(τ)∥
B

1/2−ℓ
2,1

+ sup
0≤τ≤t

(1 + τ)
1
2∥Λ

1
2U(τ)∥Ḃ0

2,1
.

As a consequence, we have
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Proposition 4.4.3. Let U = (v, u, z, y)⊤ be the global classical solution in the sense of

Theorem 4.1.1. Suppose that U0 ∈ B
3/2
2,1 ∩ Ḃ

−1/2
2,∞ and the norm M0 := ∥U0∥B3/2

2,1 ∩Ḃ−1/2
2,∞

is

sufficiently small. Then it holds that

∥ΛℓU(t)∥X1 ≲ M0(1 + t)−
1
4
− ℓ

2 (4.4.14)

for 0 ≤ ℓ ≤ 1/2, where X1 := B
1/2−ℓ
2,1 if 0 ≤ ℓ < 1/2 and X1 := Ḃ0

2,1 if ℓ = 1/2.

Actually, Proposition 4.4.3 depends on an energy inequality related to sup-norms E0(t)
and E1(t), which is included in the following proposition.

Proposition 4.4.4. Let U = (v, u, z, y)⊤ be the global classical solution in the sense of

Theorem 4.1.1. Additional, if U0 ∈ Ḃ
−1/2
2,∞ , then

E1(t) ≲ M0 + E2
1 (t) + E0(t)E1(t), (4.4.15)

where M0 is the same notation defined in Proposition 4.4.3.

Proof. The proof consists of two steps.

Step 1: High-frequency estimate

Due to ∆qf ≡ ∆̇qf(q ≥ 0), it suffices to show the inhomogeneous case. It follows from
the high-frequency analysis for (4.1.5)-(4.1.6) (see, e.g., [71]) that

∥∆qΛ
ℓG(t)U0∥L2 ≲ e−c2t∥∆qΛ

ℓU0∥L2 (c2 > 0) (4.4.16)

for all q ≥ 0. Then by Lemma 4.4.1, we arrive at

∥∆qΛ
ℓU∥L2

≤ ∥∆qΛ
ℓ[G(t)U0]∥L2 +

∫ t

0

∥∆qΛ
ℓ[G(t− τ)R(τ)]∥L2 dτ

≲ e−c2t∥∆qΛ
ℓU0∥L2 +

∫ t

0

e−c2(t−τ)∥∆qΛ
ℓR(τ)∥L2 dτ (4.4.17)

which leads to∑
q≥0

2q(1/2−ℓ)∥∆qΛ
ℓU∥L2 ≲ ∥U0∥B1/2

2,1
e−c1t +

∫ t

0

e−c2(t−τ)∥R(τ)∥
Ḃ

1/2
2,1
dτ (4.4.18)

for 0 ≤ ℓ ≤ 1/2. Next, we turn to estimate the norm ∥R(τ)∥
Ḃ

1/2
2,1

as follows

∥R(τ)∥
Ḃ

1/2
2,1

= ∥g′(z)zx∥Ḃ1/2
2,1

≤ ∥z∥
Ḃ

1/2
2,1

∥z∥
Ḃ

3/2
2,1

≤ ∥Λℓz∥
Ḃ

1/2−ℓ
2,1

∥z∥
B

3/2
2,1

≲ (1 + τ)−
1
4
− ℓ

2E0(t)E1(t), (4.4.19)
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where Lemma 4.2.1 and Proposition 4.2.2 have been used.

Therefore, together with (4.4.18)-(4.4.19), we obtain

∑
q≥0

2q(1/2−ℓ)∥∆qΛ
ℓU∥L2 ≲ ∥U0∥B1/2

2,1
e−c1t + (1 + t)−

1
4
− ℓ

2E0(t)E1(t) (4.4.20)

for 0 ≤ ℓ ≤ 1/2.

Step 2: Low-frequency estimate

In the following, we proceed with the different low-frequency estimate in comparison with
[71], since those analysis remains true for higher dimensions due to interpolation techniques.
Here, the proof involves new observations, which is divided into two cases.

(i) In the case of 0 ≤ ℓ < 1/2, we have the low-frequency estimate for (4.1.4)-(4.1.5):

∥∆−1Λ
ℓ[G(t)U0]∥L2 ≲ ∥w̃0∥Ḃ−1/2

2,∞
(1 + t)−

1
4
− ℓ

2 . (4.4.21)

Then it follows from Lemma 4.4.1 that

∥∆−1Λ
ℓU(t, x)∥L2

≤ ∥∆−1Λ
ℓ[G(t)U0]∥L2 +

∫ t

0

∥∆−1Λ
ℓ[G(t− τ)R(τ)]∥L2 dτ

≲ ∥U0∥Ḃ−1/2
2,∞

(1 + t)−
1
4
− ℓ

2 + I1 + I2, (4.4.22)

where

I1 =

∫ t
2

0

∥∆−1Λ
ℓ[G(t− τ)R(τ)]∥L2 dτ,

and

I2 =

∫ t

t
2

∥∆−1Λ
ℓ[G(t− τ)R(τ)]∥L2 dτ.
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For I1, noticing that the form R(τ) ≈ g(z)x, we arrive at

I1 ≲
∫ t

2

0

(1 + t− τ)−
1
4
− ℓ+1

2 ∥g(z)∥
Ḃ

−1/2
2,∞

dτ

≲
∫ t

2

0

(1 + t− τ)−
1
4
− ℓ+1

2 ∥g(z)∥L1 dτ

≲
∫ t

2

0

(1 + t− τ)−
1
4
− ℓ+1

2 ∥z∥2L2 dτ

≲ E2
1 (t)

∫ t
2

0

(1 + t− τ)−
1
4
− ℓ+1

2 (1 + τ)−
1
2 dτ

≲ E2
1 (t)(1 + t)−

1
4
− ℓ+1

2

∫ t
2

0

(1 + τ)−
1
2 dτ

≲ E2
1 (t)(1 + t)−

1
4
− ℓ

2 , (4.4.23)

where we have used the fact that g(z) = O(z2) and the embeddings L1 ↪→ Ḃ
−1/2
2,∞ in Lemma

4.2.3 and B
1/2
2,1 ↪→ L2.

On the other hand, for I2, we have

I2 ≲
∫ t

t
2

(1 + t− τ)−
1
4
− ℓ

2∥g(z)x∥Ḃ−1/2
2,∞

dτ. (4.4.24)

It follows from Lemma 4.2.1 and Proposition 4.2.4 that

∥g(z)x∥Ḃ−1/2
2,∞

≲ ∥g(z)∥
Ḃ

1/2
2,∞

≲ ∥z∥2
Ḃ

1/2
2,∞

≲ ∥z∥2
Ḃ

1/2
2,1

≲ (1 + τ)−1E2
1 (t). (4.4.25)

Hence, together with (4.4.24)-(4.4.25), we are led to the estimate

I2 ≲ E2
1 (t)

∫ t

t
2

(1 + t− τ)−
1
4
− ℓ

2 (1 + τ)−1 dτ

≲ E2
1 (t)(1 + t)−1

∫ t

t
2

(1 + t− τ)−
1
4
− ℓ

2 dτ

≲ E2
1 (t)(1 + t)−

1
4
− ℓ

2 . (4.4.26)

Finally, combing (4.4.22)-(4.4.23) and (4.4.26), we conclude that

∥∆−1Λ
ℓU(t, x)∥L2 ≲ ∥U0∥Ḃ−1/2

2,∞
(1 + t)−

1
4
− ℓ

2 + E2
1 (t)(1 + t)−

1
4
− ℓ

2 . (4.4.27)
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(ii) In the case of ℓ = 1/2, similar to the procedure leading to (4.4.27), we can deduce the
corresponding nonlinear low-frequency estimate∑

q<0

∥∆̇qΛ
1/2U∥L2

≤
∑
q<0

∥∆̇qΛ
1/2[G(t)U0]∥L2 +

∫ t

0

∑
q<0

∥∆̇qΛ
1/2[G(t− τ)R(τ)]∥L2 dτ

≲ ∥U0∥Ḃ−1/2
2,∞

(1 + t)−
1
2 + E2

1 (t)(1 + t)−
1
2 . (4.4.28)

With these preparations (4.4.20) and (4.4.27)-(4.4.28) in hand, the desired inequality
(4.4.15) is followed directly by the definitions of E0(t) and E1(t).

The proof of Proposition 4.4.3. From Theorem 4.1.1, we see that

E0(t) ≲ ∥U0∥B3/2
2,1

≲ M0.

Thus, if M0 is sufficient small, it follows from (4.4.15) that

E1(t) ≲ M0 + E2
1 (t),

which implies that E(t) ≲ M0 by the standard method, provided that M0 is sufficient small.
Consequently, we obtain the decay estimate in Proposition 4.4.3.





Chapter 5

Application to Besov spaces (II)

5.1 Introduction

In this work, we are concerned with the following Timoshenko system (see [62, 63]), which
is a set of two coupled wave equations of the form{

φtt − (φx − ψ)x = 0,

ψtt − σ(ψx)x − (φx − ψ) + γψt = 0.
(5.1.1)

System (5.1.1) describes the transverse vibrations of a beam. Here, t ≥ 0 is the time variable,
x ∈ R is the spacial variable which denotes the point on the center line of the beam, φ(t, x)
is the transversal displacement of the beam from an equilibrium state, and ψ(t, x) is the
rotation angle of the filament of the beam. The smooth function σ(η) satisfies σ′(η) > 0 for
any η ∈ R, and γ is a positive constant. We focus on the Cauchy problem of (5.1.1), so the
initial data are supplemented as

(φ, φt, ψ, ψt)(x, 0) = (φ0, φ1, ψ0, ψ1)(x). (5.1.2)

Based on the change of variable introduced by Ide, Haramoto, and the third author [24]:

v = φx − ψ, u = φt, z = aψx, y = ψt, (5.1.3)

with a > 0 being the sound speed defined by a2 = σ′(0), it is convenient to rewrite (5.1.1)-
(5.1.2) as a Cauchy problem for the first-order hyperbolic system of U = (v, u, z, y)⊤{

Ut + A(U)Ux + LU = 0,

U(x, 0) = U0(x)
(5.1.4)

with U0(x) = (v0, u0, z0, y0)(x), where v0 = φ0,x − ψ0, u0 = φ1, z0 = aψ0,x, y0 = ψ1 and

A(U) = −


0 1 0 0
1 0 0 0
0 0 0 a

0 0 σ′(z/a)
a

0

 , L =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 γ

 .
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Note that A(U) is a real symmetrizable matrix due to σ′(z/a) > 0, and the dissipative matrix
L is nonnegative definite but not symmetric. Such degenerate dissipation forces (5.1.4) to
go beyond the class of generally dissipative hyperbolic systems, so the recent global-in-time
existence (see [70]) for hyperbolic systems with symmetric dissipation can not be applied
directly, which is the main motivation on studying the Timoshenko system (5.1.1).

Let us review several known results on (5.1.1). In a bounded domain, it is known that
(5.1.1) is exponentially stable if the damping term φt is also present on the left-hand side of
the first equation of (5.1.3) (see, e.g., [48]). Soufyane [59] showed that (5.1.1) could not be
exponentially stable by considering only the damping term of the form ψt, unless for the case
of a = 1 (equal wave speeds). A similar result was obtained by Rivera and Racke [50] with
an alternative proof. In addition, Rivera and Racke [49] also investigated the Timoshenko
system with the heat conduction, which is described by the classical Fourier law. In the
whole space, Kawashima and his collaborators [24] considered the corresponding linearized
form of (5.1.4): 

vt − ux + y = 0,

ut − vx = 0,

zt − ayx = 0,

yt − azx − v + γy = 0,

(v, u, z, y)(x, 0) = (v0, u0, z0, y0)(x),

(5.1.5)

and showed that the dissipative structure could be characterized by{
Reλ(iξ) ≤ −cη1(ξ) for a = 1,

Reλ(iξ) ≤ −cη2(ξ) for a ̸= 1,
(5.1.6)

where λ(iξ) denotes the eigenvalues of the system (5.1.5) in the Fourier space, η1(ξ) =
ξ2

1+ξ2
,

η2(ξ) = ξ2

(1+ξ2)2
, and c > 0 is some constant. Consequently, the following decay properties

were established for U = (v, u, z, y)⊤ of (5.1.5) (see [24] for details):

∥∂kxU(t)∥L2 ≲ (1 + t)−
1
4
− k

2 ∥U0∥L1 + e−ct∥∂kxU0∥L2 (5.1.7)

for a = 1, and

∥∂kxU(t)∥L2 ≲ (1 + t)−
1
4
− k

2 ∥U0∥L1 + (1 + t)−
l
2∥∂k+l

x U0∥L2 (5.1.8)

for a ̸= 1. Recently, under the additional assumption
∫
R U0dx = 0, Racke and Said-Houari

[53] strengthened (5.1.7)-(5.1.8) such that linearized solutions decay faster with a rate of
t−γ/2, by introducing the integral space L1,γ(R).
Remark 5.1.1. Clearly, the high frequency part of (5.1.7) yields an exponential decay, whereas
the corresponding part of (5.1.8) is of the regularity-loss type, since (1 + t)−ℓ/2 is created by
assuming the additional ℓ-th order regularity on the initial data. Consequently, extra higher
regularity than that for global-in-time existence of classical solutions is imposed to obtain
the optimal decay rates.



5.1. INTRODUCTION 77

In [25], Ide and Kawashima performed the time-weighted approach to establish the global
existence and asymptotic decay of solutions to the nonlinear problem (5.1.4). To overcome
the difficulty caused by the regularity-loss property, the spatially regularity s ≥ 6 was needed.
Denote by sc the critical regularity for global existence of classical solutions. Actually, the
local-in-time existence theory of Kato and Majda [26, 35] implies that sc = 2 for the Tim-
oshenko system (5.1.4), actually, the extra regularity is used to take care of optimal decay
estimates. Consequently, some natural questions follow. Is s = 6 the minimal decay regular-
ity for (5.1.4) with the regularity-loss? If not, which index characterises the minimal decay
regularity? This motivates the following general definition.

Definition 5.1.1. If the optimal decay rate of L1(Rn)-L2(Rn) type is achieved under the
lowest regularity assumption, then the lowest index is called the minimal decay regularity
index for dissipative systems of regularity-loss, which is labelled as sD.

Recently, we are concerned with the global existence and large-time behavior for (5.1.4) in
spatially critical Besov spaces. To the best of our knowledge, there are few results available
in this direction for the Timoshenko system, although the critical space has already been
succeeded in the study of fluid dynamical equations, see [2, 15, 22, 44] for Navier-Stokes
equations, [10, 74, 76, 78] for Euler equations and related models. In [70, 71], under the
assumptions of dissipative entropy and Shizuta-Kawashima condition, Xu and Kawashima
have already investigated generally dissipative systems, however, the Timoshenko system
admits the non-symmetric dissipation and goes beyond the class. Hence, as a first step, we
considered the easy case, that is, (5.1.4) with the equal wave speed (a = 1) in Chapter 4. By
virtue of an elementary fact in Proposition 5.2.3 (also see Chapter 4) that indicates the re-
lation between homogeneous and inhomogeneous Chemin-Lernerspaces, we first constructed
global solutions pertaining to data in the Besov space B

3/2
2,1 (R). Furthermore, the optimal

decay rates of solution and its derivatives are shown in the space B
3/2
2,1 (R)∩ Ḃ

−1/2
2,∞ (R) by the

frequency-localization Duhamel principle and energy approach in terms of high-frequency
and low-frequency decomposition.

In Chapter 5, we hope to establish similar results for (5.1.4) with non-equal wave speeds
(a ̸= 1) that has weaker dissipative mechanism. If done, we shall improve two regularity
indices for Timoshenko system with regularity-loss: sc = 3/2 for global-in-time existence and
sD = 3/2 for the optimal decay estimate, which lead to reduce significantly the regularity
requirements on the initial data in comparison with [25].

Before main results, let us explain new technical points for (5.1.4) with a ̸= 1 and the
strategy to get round the obstruction. Firstly, as in Chapter 4, the degenerate non-symmetric
damping enables us to capture the dissipation from contributions of (y, v, ux, zx), however,
there is an additional norm related to ux in the proof for the dissipation of v. Indeed, we need
to carefully take care of the topological relation between ∥ux∥L̃2

T (Ḃ
−1/2
2,1 )

and ∥ux∥L̃2
T (B

−1/2
2,1 )

as

in Proposition 5.2.3. To do this, we localize (5.1.4) with inhomogeneous blocks rather than
homogeneous blocks to obtain the dissipative estimate for v.

Secondly, due to the weaker mechanism of regularity-loss, it seems that there is no possi-
bility to capture optimal decay rates in the critical space B

3/2
2,1 (R), since the polynomial decay



78 CHAPTER 5. APPLICATION TO BESOV SPACES (II)

at the high-frequency part comes from the fact that the initial data is imposed extra higher
regularity (see (5.1.8)). To overcome the outstanding difficulty, there are new ingredients in
comparison with the case of equal wave speeds in Chapter 4. Precisely, we develop a new

frequency-localization time-decay inequality for the dissipative rate η(ξ) = |ξ|2
(1+|ξ|2)2 in Rn, see

Proposition 5.3.1. At the formal level, we see that the high-frequency part decays in time
not only with algebraic rates of any order as long as the function is spatially regular enough,
but also additional information related the Lp-integrability is available. Consequently, the
high-frequency estimate in energy approaches can be divided into two parts, and on each
part, different values of p (for example, p = 1 or p = 2) are chosen to get desired decay esti-
mates, see Lemma 5.5.1. Additionally, it should be worth noting that the energy approach is
totally different from that in Chapter 4, where the frequency-localization Duhamel principle
was used. Here, we shall employ somewhat “the square formula of the Duhamel principle”
based on the Littlewood-Paley pointwise estimate in Fourier space for the linear system with
right-hand side, see (5.5.3)-(5.5.4) for details.

Our main results focus on the Timoshenko system with non-equal wave speeds (a ̸= 1),
which are stated as follows.

Theorem 5.1.1. Suppose that U0 ∈ B
3/2
2,1 (R). There exists a positive constant δ0 such that if

∥U0∥B3/2
2,1 (R) ≤ δ0,

then the Cauchy problem (5.1.4) has a unique global classical solution U ∈ C1(R+ × R)
satisfying

U ∈ C̃(B3/2
2,1 (R)) ∩ C̃1(B

1/2
2,1 (R))

Moreover, the following energy inequality holds that

∥U∥
L̃∞(B

3/2
2,1 (R)) +

(
∥y∥

L̃2
T (B

3/2
2,1 )

+ ∥(v, zx)∥L̃2
T (B

1/2
2,1 )

+ ∥ux∥L̃2
T (B

−1/2
2,1 )

)
≤ C0∥U0∥B3/2

2,1 (R), (5.1.9)

where C0 > 0 is a constant.

Remark 5.1.2. Theorem 5.1.1 exhibits the optimal critical regularity (sc = 3/2) of global-in-
time existence for (5.1.4), which was proved by the revised energy estimates in comparison
with [42], along with the local-in-time existence result in Proposition 5.4.1. Observe that
there is 1-regularity-loss phenomenon for the dissipation rate of (v, ux).

Furthermore, with the aid of the new frequency-localization time-decay inequality in
Proposition 5.3.1, we can obtain the the optimal decay estimates by using the time-weighted
energy approach in terms of high-frequency and low-frequency decomposition.

Theorem 5.1.2. Let U(t, x) = (v, u, z, y)(t, x) be the global classical solution of Theo-

rem 5.1.1. Assume that the initial data satisfy U0 ∈ B
3/2
2,1 (R) ∩ Ḃ

−1/2
2,∞ (R). Set I0 :=

∥U0∥B3/2
2,1 (R)∩Ḃ−1/2

2,∞ (R). If I0 is sufficiently small, then the classical solution U(t, x) of (5.1.4)

admits the optimal decay estimate

∥U∥L2 ≲ I0(1 + t)−
1
4 . (5.1.10)
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Note that the embedding L1(R) ↪→ Ḃ
−1/2
2,∞ (R) in Lemma 5.2.3, as an immediate byproduct

of Theorem 5.1.2, the usual optimal decay estimate of L1(R)-L2(R) type is available.

Corollary 5.1.1. Let U(t, x) = (v, u, z, y)(t, x) be the global classical solutions of Theorem

5.1.1. If further the initial data U0 ∈ L1(R) and Ĩ0 := ∥U0∥B3/2
2,1 (R)∩L1(R) is sufficiently small,

then

∥U∥L2 ≲ Ĩ0(1 + t)−
1
4 . (5.1.11)

Remark 5.1.3. Let us mention that Theorem 5.1.2 and Corollary 5.1.1 exhibit the optimal
decay rate in the Besov space with sc = 3/2, that is, sD = 3/2, which implies that the minimal
decay regularity coincides with the the critical regularity for global solutions, and the extra
higher regularity is not necessary. In addition, it is worth noting that the present work
opens a door for the study of dissipative systems of regularity-loss type, which encourages
us to develop frequency-localization time-decay inequalities for other dissipative rates and
investigate systems with the regularity-loss mechanism.

Finally, we would like to mention other studies on the dissipative Timoshenko system
with different effects, see, e.g., [47, 48] for frictional dissipation case, [19, 54, 55] for thermal
dissipation case, and [3, 4, 33, 34] for memory-type dissipation case.

The rest of this chapter unfolds as follows. In Section 5.2, we present useful properties
in Besov spaces, which will be used in the subsequence analysis. In Section 5.3, we shall
develop new time-decay inequality with using frequency-localization techniques. Section 5.4
is devoted to construct the global-in-time existence of classical solutions to (5.1.4). Further-
more, in Section 5.5, we deduce the optimal decay estimate for (5.1.4) by employing energy
approaches in terms of high-frequency and low-frequency decomposition. In Appendix (Sec-
tion 5.6), we present those definitions for Besov spaces and Chemin-Lerner spaces for the
convenience of reader.

5.2 Tools

In this section, we only collect useful analysis properties in Besov spaces and Chemin-Lerner
spaces in Rn(n ≥ 1). For convenience of reader, those definitions for Besov spaces and
Chemin-Lerner spaces are given in the Appendix. Firstly, we give an improved Bernstein
inequality (see, e.g., [68]), which allows the case of fractional derivatives.

Lemma 5.2.1. Let 0 < R1 < R2 and 1 ≤ a ≤ b ≤ ∞.

(i) If SuppFf ⊂ {ξ ∈ Rn : |ξ| ≤ R1λ}, then

∥Λαf∥Lb ≲ λα+n( 1
a
− 1

b
)∥f∥La for any α ≥ 0;

(ii) If SuppFf ⊂ {ξ ∈ Rn : R1λ ≤ |ξ| ≤ R2λ}, then

∥Λαf∥La ≈ λα∥f∥La for any α ∈ R.
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Besov spaces obey various inclusion relations. Precisely,

Lemma 5.2.2. Let s ∈ R and 1 ≤ p, r ≤ ∞, then

(i) If s > 0, then Bs
p,r = Lp ∩ Ḃs

p,r;

(ii) If s̃ ≤ s, then Bs
p,r ↪→ B s̃

p,r; this inclusion relation is false for the homogeneous Besov
spaces;

(iii) If 1 ≤ r ≤ r̃ ≤ ∞, then Ḃs
p,r ↪→ Ḃs

p,r̃ and Bs
p,r ↪→ Bs

p,r̃;

(iv) If 1 ≤ p ≤ p̃ ≤ ∞, then Ḃs
p,r ↪→ Ḃ

s−n( 1
p
− 1

p̃
)

p̃,r and Bs
p,r ↪→ B

s−n( 1
p
− 1

p̃
)

p̃,r ;

(v) Ḃ
n/p
p,1 ↪→ C0, B

n/p
p,1 ↪→ C0(1 ≤ p <∞);

where C0 is the space of continuous bounded functions which decay at infinity.

Lemma 5.2.3. Suppose that ϱ > 0 and 1 ≤ p < 2. It holds that

∥f∥Ḃ−ϱ
r,∞

≲ ∥f∥Lp

with 1/p− 1/r = ϱ/n. In particular, this holds with ϱ = n/2, r = 2 and p = 1.

Moser-type product estimates are stated as follows, which plays an important role in the
estimate of bilinear terms.

Proposition 5.2.1. Let s > 0 and 1 ≤ p, r ≤ ∞. Then Ḃs
p,r ∩ L∞ is an algebra and

∥fg∥Ḃs
p,r

≲ ∥f∥L∞∥g∥Ḃs
p,r

+ ∥g∥L∞∥f∥Ḃs
p,r
.

Let s1, s2 ≤ n/p such that s1 + s2 > nmax{0, 2
p
− 1}. Then one has

∥fg∥
Ḃ

s1+s2−n/p
p,1

≲ ∥f∥Ḃs1
p,1
∥g∥Ḃs2

p,1
.

In the analysis of decay estimates, we also need the general form of Moser-type product
estimates, which was shown by Yong in [78].

Proposition 5.2.2. Let s > 0 and 1 ≤ p, r, p1, p2, p3, p4 ≤ ∞. Assume that f ∈ Lp1 ∩ Ḃs
p4,r

and g ∈ Lp3 ∩ Ḃs
p2,r

with
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Then it holds that

∥fg∥Ḃs
p,r

≲ ∥f∥Lp1∥g∥Ḃs
p2,r

+ ∥g∥Lp3∥f∥Ḃs
p4,r
.

In [70], Xu and Kawashima established a key fact, which indicates the connection between
homogeneous Chemin-Lerner spaces and inhomogeneous Chemin-Lerner spaces.
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Proposition 5.2.3. Let s ∈ R and 1 ≤ θ, p, r ≤ ∞.

(1) It holds that

Lθ
T (L

p) ∩ L̃θ
T (Ḃ

s
p,r) ⊂ L̃θ

T (B
s
p,r);

(2) Furthermore, as s > 0 and θ ≥ r, it holds that

Lθ
T (L

p) ∩ L̃θ
T (Ḃ

s
p,r) = L̃θ

T (B
s
p,r)

for any T > 0.

The property of continuity for product in L̃θ
T (B

s
p,r) is similar to in the stationary case

(Proposition 5.2.1), whereas the time exponent θ behaves according to the Hölder inequality.

Proposition 5.2.4. The following inequality holds:

∥fg∥L̃θ
T (Bs

p,r)
≲ (∥f∥

L
θ1
T (L∞)

∥g∥
L̃
θ2
T (Bs

p,r)
+ ∥g∥

L
θ3
T (L∞)

∥f∥
L̃
θ4
T (Bs

p,r)
)

whenever s > 0, 1 ≤ p ≤ ∞, 1 ≤ θ, θ1, θ2, θ3, θ4 ≤ ∞ and

1

θ
=

1

θ1
+

1

θ2
=

1

θ3
+

1

θ4
.

As a direct corollary, one has

∥fg∥L̃θ
T (Bs

p,r)
≲ ∥f∥

L̃
θ1
T (Bs

p,r)
∥g∥

L̃
θ2
T (Bs

p,r)

whenever s ≥ n/p, 1
θ
= 1

θ1
+ 1

θ2
.

Finally, we state a continuity result for compositions (see [1]) to end this section.

Proposition 5.2.5. Let s > 0, 1 ≤ p, r, ρ ≤ ∞, F ∈ W
[s]+1,∞
loc (I;R) with F (0) = 0,

T ∈ (0,∞] and v ∈ L̃ρ
T (B

s
p,r) ∩ L∞

T (L∞). Then

∥F (v)∥L̃ρ
T (Bs

p,r)
≲ (1 + ∥v∥L∞

T (L∞))
[s]+1∥v∥L̃ρ

T (Bs
p,r)
.

5.3 Frequency-localization time-decay inequality

In the recent decade, harmonic analysis tools, especially for techniques based on Littlewood-
Paley decomposition and paradifferential calculus have proved to be very efficient in the study
of partial differential equations. It is well-known that the frequency-localization operator ∆̇qf
(or ∆qf ) has a smoothing effect on the function f , even though f is quite rough. Moreover,
the Lp norm of ∆̇qf can be preserved provided f ∈ Lp(Rn). To the best of our knowledge,
so far there are few efforts about the decay property related to the operator ∆̇qf . Here,
the difficulty of regularity-loss mechanism forces us to develop the frequency-localization
time-decay inequality. Precisely,
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Proposition 5.3.1. Set η(ξ) = |ξ|2
(1+|ξ|2)2 . If f ∈ Ḃσ+ℓ

2,r (Rn) ∩ Ḃ−s
2,∞(Rn) for σ ∈ R, s ∈ R and

1 ≤ r ≤ ∞ such that σ + s > 0, then it holds that∥∥∥2qσ∥̂̇∆qfe
−η(ξ)t∥L2

∥∥∥
lrq

≲ (1 + t)−
σ+s
2 ∥f∥Ḃ−s

2,∞︸ ︷︷ ︸
Low−frequency Estimate

+(1 + t)−
ℓ
2
+n

2
( 1
p
− 1

2
)∥f∥Ḃσ+ℓ

p,r︸ ︷︷ ︸
High−frequency Estimate

, (5.3.1)

for ℓ > n (1
p
− 1

2
) with 1 ≤ p ≤ 2.

Proof. For clarity, the proof is separated into high-frequency and low-frequency parts.

(1) If q ≥ 0, then |ξ| ∼ 2q ≥ 1, which leads to

∥̂̇∆qfe
−η(ξ)t∥L2 ≤ ∥̂̇∆qfe

−c0t|ξ|−2∥L2(|ξ|≥1)

=
∥∥∥|ξ|ℓ|̂̇∆qf |

e−c0t|ξ|−2

|ξ|ℓ
∥∥∥
L2(|ξ|≥1)

≤ ∥|ξ|ℓ̂̇∆qf∥Lp′

∥∥∥e−c0t|ξ|−2

|ξ|ℓ
∥∥∥
Ls(|ξ|≥1)

( 1
p′

+
1

s
=

1

2
, p′ ≥ 2

)
≤ 2qℓ∥∆̇qf∥Lp

∥∥∥e−c1t|ξ|−2

|ξ|ℓ
∥∥∥
Ls(|ξ|≥1)

(1
p
+

1

p′
= 1
)
, (5.3.2)

where c1 > 0 and the Hausdorff-Young’s inequality was used in the last line. By performing
the change of variable as in [72], we arrive at∥∥∥e−c1t|ξ|−2

|ξ|ℓ
∥∥∥
Ls(|ξ|≥1)

≲ (1 + t)−
ℓ
2
+n

2
( 1
p
− 1

2
) (5.3.3)

for ℓ > n (1
p
− 1

2
). Besides, it can be also bounded by (1 + t)−

ℓ
2 for ℓ ≥ 0 if p = 2. Then it

follows from (5.3.2)-(5.3.3) that

2qσ∥̂̇∆qfe
−η(ξ)t∥L2 ≲ 2q(σ+ℓ)(1 + t)−

ℓ
2
+n

2
( 1
p
− 1

2
)∥∆̇qf∥Lp . (5.3.4)

(2) If q < 0, then |ξ| ∼ 2q < 1, which implies that

|̂̇∆qf |e−η(ξ)t ≤ |̂̇∆qf |e−c2t|ξ|2 ≲ |̂̇∆qf |e−c2(2q
√
t)2 (5.3.5)

for c2 > 0. Furthermore, we can obtain

2qσ∥̂̇∆qfe
−η(ξ)t∥L2 ≲ ∥f∥Ḃ−s

2,∞
(1 + t)−

σ+s
2 [(2q

√
t)σ+se−c2(2q

√
t)2 ] (5.3.6)

Let us remark that ℓ ≥ 0 in the case of p = 2.
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for σ ∈ R, s ∈ R such that σ + s > 0. Note that∥∥∥(2q√t)σ+se−c2(2q
√
t)2
∥∥∥
lrq

≲ 1, (5.3.7)

for any r ∈ [1,+∞]. Combining (5.3.4), (5.3.6)-(5.3.7), we conclude that∥∥∥2qσ∥̂̇∆qfe
−η(ξ)t∥L2

∥∥∥
lrq

≲ ∥f∥Ḃ−s
2,∞

(1 + t)−
σ+s
2 + ∥f∥Ḃσ+ℓ

p,r
(1 + t)−

ℓ
2
+n

2
( 1
p
− 1

2
), (5.3.8)

which is just the inequality (5.3.1).

5.4 Global-in-time existence

As shown in Chapter 4, the recent local existence theory in [70] for generally symmetric
hyperbolic systems can be applied to (5.1.4) directly.

Proposition 5.4.1 (Chapter 4, [42]). Assume that U0 ∈ B
3/2
2,1 , then there exists a time T0 > 0

(depending only on the initial data) such that

(i) (Existence) : system (5.1.4) has a unique solution U(t, x) ∈ C1([0, T0] × R) satisfying

U ∈ C̃T0(B
3/2
2,1 ) ∩ C̃1

T0
(B

1/2
2,1 );

(ii) (Blow-up criterion) : if the maximal time T ∗(> T0) of existence of such a solution is
finite, then

lim sup
t→T ∗

∥U(t, ·)∥
B

3/2
2,1

= ∞

if and only if ∫ T ∗

0

∥∇U(t, ·)∥L∞dt = ∞.

Furthermore, in order to show that classical solutions in Proposition 5.3.1 are globally
defined, we need to construct a priori estimates according to the dissipative mechanism
produced by the Timoshenko system. For this purpose, define by E(T ) the energy functional
and by D(T ) the corresponding dissipation functional:

E(T ) := ∥U∥
L̃∞
T (B

3/2
2,1 )

and

D(T ) := ∥y∥
L̃2
T (B

3/2
2,1 )

+ ∥(v, zx)∥L̃2
T (B

1/2
2,1 )

+ ∥ux∥L̃2
T (B

−1/2
2,1 )

for any time T > 0. Hence, we have the following
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Proposition 5.4.2. Suppose U ∈ C̃T (B3/2
2,1 ) ∩ C̃1

T (B
1/2
2,1 ) is a solution of (5.1.4) for T > 0.

There exists δ1 > 0 such that if E(T ) ≤ δ1, then

E(T ) +D(T ) ≲ ∥U0∥B3/2
2,1

+
(√

E(T ) + E(T )
)
D(T ). (5.4.1)

Furthermore, it holds that

E(T ) +D(T ) ≲ ∥U0∥B3/2
2,1
. (5.4.2)

Actually, in the case of non-equal wave speeds (a ̸= 1), a priori estimates on the dissipa-
tions for y, zx and ux coincide with the case of equal wave speeds. For brevity, we present
them as lemmas only, the interested reader is referred to Chapter 4 for proofs.

Lemma 5.4.1 (The dissipation for y). If U ∈ C̃T (B3/2
2,1 ) ∩ C̃1

T (B
1/2
2,1 ) is a solution of (5.1.4)

for any T > 0, then

E(T ) + ∥y∥
L̃2
T (B

3/2
2,1 )

≲ ∥U0∥B3/2
2,1

+
√
E(T )D(T ). (5.4.3)

Lemma 5.4.2 (The dissipation for zx). If U ∈ C̃T (B3/2
2,1 ) ∩ C̃1

T (B
1/2
2,1 ) is a solution of (5.1.4)

for any T > 0, then

∥zx∥L̃2
T (B

1/2
2,1 )

≲ E(T ) + ∥U0∥B3/2
2,1

+ ∥y∥
L̃2
T (B

3/2
2,1 )

+∥v∥
L̃2
T (B

1/2
2,1 )

+
√
E(T )D(T ). (5.4.4)

Lemma 5.4.3 (The dissipation for ux). If U ∈ C̃T (B3/2
2,1 ) ∩ C̃1

T (B
1/2
2,1 ) is a solution of (5.1.4)

for any T > 0, then

∥ux∥L̃2
T (B

−1/2
2,1 )

≲ E(T ) + ∥U0∥B3/2
2,1

+ ∥v∥
L̃2
T (B

1/2
2,1 )

+ ∥y∥
L̃2
T (B

3/2
2,1 )

. (5.4.5)

However, the calculation for the dissipation of v is a little different. We would like to give
the proof as follows.

Lemma 5.4.4 (The dissipation for v). If U ∈ C̃T (B3/2
2,1 ) ∩ C̃1

T (B
1/2
2,1 ) is a solution of (5.1.4)

for any T > 0, then

∥v∥
L̃2
T (B

1/2
2,1 )

≲ E(T ) + ∥U0∥B3/2
2,1

+ ε∥ux∥L̃2
T (B

−1/2
2,1 )

+(1 + Cε)∥y∥L̃2
T (B

3/2
2,1 )

+ E(T )D(T ) (5.4.6)

for ε > 0, where Cε is a position constant dependent on ε.
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Proof. It is convenient to rewrite the system (5.1.4) as follows:
vt − ux + y = 0,

ut − vx = 0,

zt − ayx = 0,

yt − azx − v + γy = g(z)x,

(5.4.7)

where the smooth function g(z) is defined by

g(z) = σ(z/a)− σ(0)− σ′(0)z/a = O(z2)

satisfying g(0) = 0 and g′(0) = 0.

Firstly, applying the inhomogeneous frequency-localization operator ∆q(q ≥ −1) to (5.4.7)
gives 

∆qvt −∆qux +∆qy = 0,

∆qut −∆qvx = 0,

∆qzt − a∆qyx = 0,

∆qyt − a∆qzx −∆qv + γ∆qy = ∆qg(z)x.

(5.4.8)

Next, multiplying the first equation in (5.4.8) by −∆qy, the second one by −a∆qz, the third
one by −a∆qu and the fourth one by −∆qv, respectively, then adding the resulting equalities,
we have

−(∆qv∆qy + a∆qu∆qz)t + (a∆qv∆qz + a2∆qu∆qy)x + |∆qv|2

= |∆qy|2 + (a2 − 1)∆qy∆qux + γ∆qy∆qv −∆qg(z)x∆qv. (5.4.9)

Integrating the equality (5.4.9) in x ∈ R, with the aid of Cauchy-Schwarz inequality, we
obtain

d

dt
E1[∆qU ] +

1

2
∥∆qv∥2L2

≲ ∥∆qy∥2L2 + |a2 − 1|∥∆qy∥L2∥∆qux∥L2

+∥∆qg(z)x∥L2∥∆qv∥L2 , (5.4.10)

where

E1[∆qU ] := −
∫
R
(∆qv∆qy +∆qu∆qz) dx.

By performing the integral with respect to t ∈ [0, T ], we are led to

∥∆qv∥2L2
t (L

2)

≲ ∥∆qU∥2L∞
T (L2) + ∥∆qU0∥2L2 + ∥∆qy∥2L2

T (L2)

+∥∆qy∥L2
T (L2)∥∆qux∥L2

T (L2) + ∥∆qg(z)x∥2L2
T (L2), (5.4.11)
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where we have noticed the case of a ̸= 1. Furthermore, Young’s inequality enables us to get

2
q
2∥∆qv∥L2

T (L2)

≲ cq∥U∥L̃∞
T (B

1/2
2,1 )

+ cq∥U0∥B1/2
2,1

+ εcq∥ux∥L̃2
T (B

−1/2
2,1 )

+cq(1 + Cε)∥y∥L̃2
T (B

3/2
2,1 )

+ cq∥g(z)x∥L̃2
T (B

1/2
2,1 )

(5.4.12)

for ε > 0, where Cε is a position constant dependent on ε and each {cq} has a possibly
different form in (5.4.12), however, the bound ∥cq∥ℓ1 ≤ 1 is well satisfied.

Recalling the fact g′(0) = 0, it follows from Propositions 5.2.4-5.2.5 that

∥g(z)x∥L̃2
T (B

1/2
2,1 )

= ∥g′(z)zx∥L̃2
T (B

1/2
2,1 )

≲ ∥g′(z)− g′(0)∥
L̃∞
T (B

1/2
2,1 )

∥zx∥L̃2
T (B

1/2
2,1 )

≲ ∥z∥
L̃∞
T (B

1/2
2,1 )

∥zx∥L̃2
T (B

1/2
2,1 )

. (5.4.13)

Hence, together with (5.4.12)-(5.4.13), by summing up on q ≥ −1, we deduce that

∥v∥
L̃2
T (B

1/2
2,1 )

≲ ∥U∥
L̃∞
T (B

1/2
2,1 )

+ ∥U0∥B1/2
2,1

+ ε∥ux∥L̃2
T (B

−1/2
2,1 )

+(1 + Cε)∥y∥L̃2
T (B

3/2
2,1 )

+ ∥z∥
L̃∞
T (B

1/2
2,1 )

∥zx∥L̃2
T (B

1/2
2,1 )

, (5.4.14)

which leads to the inequality (5.4.6) immediately.

Having Lemmas 5.4.1-5.4.4, by taking sufficiently small ε > 0, we can achieve the proof of
Proposition 5.4.2. For brevity, we feel free to skip the details. Furthermore, along with local
existence result (Proposition 5.4.1) and a priori estimate (Proposition 5.4.2), Theorem 5.1.1
follows from the standard boot-strap argument directly, see Chapter 4 for similar details.

5.5 Optimal decay rates

Due to the better dissipative structure in the case of a = 1 (see Chapter 4), we performed the
Littlewood-Paley pointwise estimates for the linearized problem (5.1.5) and develop decay
properties in the framework of Besov spaces. Furthermore, with the help of the frequency-
localization Duhamel principle, the optimal decay estimates of (5.1.4) are shown by localized
time-weighted energy approaches. For the case of a ̸= 1, if the standard Duhamel principle
is used, we need to deal with the weak mechanism of regularity-loss in the price of extra
higher regularity, so it is impossible to achieve sD = 3/2. Hence, we involve new observations.
Actually, we perform “the square formula of the Duhamel principle” based on the Littlewood-
Paley pointwise estimate in Fourier space for the linear system with right-hand side, see
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(5.5.3)-(5.5.4). Furthermore, we proceed the optimal decay estimate for (5.1.4) in terms of
high-frequency and low-frequency decompositions, with the aid of the frequency-localization
time-decay inequality developed in Section 5.3.

To do this, we define the following energy functionals:

N (t) = sup
0≤τ≤t

(1 + τ)
1
4∥U(τ)∥L2 , D(t) = ∥zx(τ)∥L2

t (Ḃ
1/2
2,1 )

.

The optimal decay estimate lies in a nonlinear time-weighted energy inequality, which is
include in the following

Lemma 5.5.1. Let U = (v, u, z, y)⊤ be the global classical solutions in Theorem 5.1.1. Ad-

ditionally, if U0 ∈ Ḃ
−1/2
2,∞ , then it holds that

N (t) ≲ ∥U0∥B3/2
2,1 ∩Ḃ−1/2

2,∞
+N (t)D(t) +N (t)2. (5.5.1)

Proof. As in [38], perform the energy method in Fourier spaces to get

d

dt
E[Û ] + c3η1(ξ)|Û |2 ≲ ξ2|ĝ|2, (5.5.2)

with η1(ξ) =
ξ2

(1+ξ2)2
, where E[Û ] ≈ |Û |2. As a matter of fact, following from the derivation

of (5.5.2), we can obtain the corresponding Littlewood-Paley pointwise energy inequality

d

dt
E[̂̇∆qU ] + c3η1|̂̇∆qU |2 ≲ ξ2|̂̇∆qg|2, (5.5.3)

where E[̂̇∆qU ] ≈ |̂̇∆qU |2. Gronwall’s inequality implies that

|̂̇∆qU |2 ≲ e−c3η1t|̂̇∆qU0|2 +
∫ t

0

e−c3η1(t−τ)ξ2|̂̇∆qg|2 dτ. (5.5.4)

It follows from Fubini and Plancherel theorems that

∥U∥2L2 =
∑
q∈Z

∥∆̇qU∥2L2

≲
∑
q∈Z

∥̂̇∆qU0e
− 1

2
c3η1(ξ)t∥2L2

+

∫ t

0

∑
q∈Z

∥|ξ|̂̇∆qge
− 1

2
c3η1(ξ)(t−τ)∥2L2 dτ

≜ I1 + I2. (5.5.5)
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For I1, by taking p = r = 2, σ = 0, s = 1/2 and ℓ = 1 in Proposition 5.3.1, we arrive at

I1 =
(∑

q<0

+
∑
q≥0

)(
· · ·
)

≲ ∥U0∥2Ḃ−1/2
2,∞

(1 + t)−
1
2 +

∑
q≥0

22q ∥∆̇qU0∥2L2(1 + t)−1

≲ ∥U0∥2Ḃ−1/2
2,∞

(1 + t)−
1
2 + ∥U0∥2Ḃ1

2,2
(1 + t)−1

≲ ∥U0∥2Ḃ−1/2
2,∞ ∩B3/2

2,1

(1 + t)−
1
2 . (5.5.6)

Next, we begin to bound the nonlinear term on the right-hand side of (5.5.5), which is
written as the sum of low-frequency and high-frequency

I2 =

∫ t

0

(∑
q<0

+
∑
q≥0

)(
· · ·
)

≜ I2L + I2H . (5.5.7)

For I2L, by taking r = 2, σ = 1 and s = 1/2 in Proposition 5.3.1, we have

I2L ≤
∫ t

0

(1 + t− τ)−
3
2∥g(z)∥2

Ḃ
−1/2
2,∞

dτ

≲
∫ t

0

(1 + t− τ)−
3
2∥g(z)∥2L1dτ

≲
∫ t

0

(1 + t− τ)−
3
2∥z(τ)∥4L2dτ

≲ N 4(t)

∫ t

0

(1 + t− τ)−
3
2 (1 + t)−1dτ

≲ N 4(t)(1 + t)−1, (5.5.8)

where we used the embedding L1(R) ↪→ Ḃ
−1/2
2,∞ (R) in Lemma 5.2.3 and the fact g(z) = O(z2).

For the high-frequency part I2H , more elaborate estimates are needed. For the purpose, we
write

I2H =
(∫ t/2

0

+

∫ t

t/2

)(
· · ·
)

≜ I2H1 + I2H2.

For I2H1, taking p = r = 2, σ = 1 and ℓ = 1/2 in Proposition 5.3.1 gives

I2H1 =

∫ t/2

0

∑
q≥0

23q ∥∆̇qg(z)∥2L2(1 + t− τ)−
1
2 dτ

≤
∫ t/2

0

(1 + t− τ)−
1
2∥g(z)∥2

Ḃ
3/2
2,2

dτ. (5.5.9)
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On the other hand, recalling g(z) = O(z2), Proposition 5.2.1 and Lemmas 5.2.1-5.2.2 enable
us to get

∥g(z)∥
Ḃ

3/2
2,2

≲ ∥g(z)∥
Ḃ

3/2
2,1

≲ ∥z∥L∞∥zx∥Ḃ1/2
2,1
. (5.5.10)

Combine (5.5.9) and (5.5.10) to arrive at

I2H1 ≲
∫ t/2

0

(1 + t− τ)−
1
2∥z(τ)∥2L∞∥zx(τ)∥2Ḃ1/2

2,1

dτ

≲ sup
0≤τ≤t/2

{
(1 + t− τ)−

1
2∥z(τ)∥2L∞

}∫ t/2

0

∥zx(τ)∥2Ḃ1/2
2,1

dτ

≲ (1 + t)−
1
2∥U0∥2B3/2

2,1

D2(t)

≲ (1 + t)−
1
2∥U0∥2B3/2

2,1

. (5.5.11)

For the last step of (5.5.11), we would like to explain a little. It follows from Proposition
5.2.3 and Remark 5.6.1 that

D(t) ≲ ∥zx∥L̃2
t (Ḃ

1/2
2,1 )

≲ ∥zx∥L̃2
t (B

1/2
2,1 )

≲ ∥U0∥B3/2
2,1
, (5.5.12)

where we used the energy inequality (5.1.9) in Theorem 5.1.1. By choosing r = 2, p = σ = 1
and ℓ = 1/2 in Proposition 5.3.1, I2H2 is proceeded as

I2H2 =

∫ t

t/2

∑
q≥0

23q∥∆̇qg(z)∥2L1dτ

≤
∫ t

t/2

∥g(z)∥2
Ḃ

3/2
1,2

dτ. (5.5.13)

Thanks to g(z) = O(z2), it follows from Proposition 5.2.2 that

∥g(z)∥
Ḃ

3/2
1,2

≤ ∥g(z)∥
Ḃ

3/2
1,1

≲ ∥z∥L2∥zx∥Ḃ1/2
2,1
. (5.5.14)

Together with (5.5.13)-(5.5.14), we are led to

I2H2 ≲ N 2(t)

∫ t

t/2

(1 + τ)−
1
2∥zx(τ)∥2Ḃ1/2

2,1

dτ

≲ N 2(t) sup
t/2≤τ≤t

(1 + τ)−
1
2

∫ t

t/2

∥zx(τ)∥2Ḃ1/2
2,1

dτ

≲ (1 + t)−
1
2N 2(t)D2(t). (5.5.15)
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Combine (5.5.11) and (5.5.15) to get

I2H ≲ (1 + t)−
1
2∥U0∥2B3/2

2,1

+ (1 + t)−
1
2N 2(t)D2(t). (5.5.16)

Therefore, it follows from (5.5.8) and (5.5.16) that

I2 ≲ (1 + t)−1N 4(t) + (1 + t)−
1
2∥U0∥2B3/2

2,1

+(1 + t)−
1
2N 2(t)D2(t). (5.5.17)

Finally, noticing (5.5.5)-(5.5.6) and (5.5.17), we conclude that

∥U∥2L2 ≲ (1 + t)−
1
2∥U0∥2Ḃ−1/2

2,∞ ∩B3/2
2,1

+ (1 + t)−
1
2N 2(t)D2(t)

+(1 + t)−1N 4(t) (5.5.18)

which leads to (5.5.1) directly.

Proof of Theorem 5.1.2. Note that (5.5.12), we arrive at

D(t) ≲ ∥U0∥B3/2
2,1

≲ ∥U0∥B3/2
2,1 ∩Ḃ−1/2

2,∞
. (5.5.19)

Thus, if the norm ∥U0∥B3/2
2,1 ∩Ḃ−1/2

2,∞
is sufficiently small, then we have

N (t) ≲ ∥U0∥B3/2
2,1 ∩Ḃ−1/2

2,∞
+N (t)2 (5.5.20)

which implies that N (t) ≲ ∥U0∥B3/2
2,1 ∩Ḃ−1/2

2,∞
, provided that ∥U0∥B3/2

2,1 ∩Ḃ−1/2
2,∞

is sufficiently small.

Consequently, the desired decay estimate in Theorem 5.1.2 follows

∥U∥L2 ≲ ∥U0∥B3/2
2,1 ∩Ḃ−1/2

2,∞
(1 + t)−

1
4 . (5.5.21)

Hence, the proof of Theorem 5.1.2 is complete eventually.
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5.6 Appendix

For convenience of reader, in this section, we review the Littlewood–Paley decomposition and
definitions for Besov spaces and Chemin-Lerner spaces in Rn(n ≥ 1), see [5] for more details.

Let (φ, χ) is a couple of smooth functions valued in [0,1] such that φ is supported in
the shell C

(
0, 3

4
, 8
3

)
=
{
ξ ∈ Rn | 3

4
≤ |ξ| ≤ 8

3

}
, χ is supported in the ball B(0, 4

3
) = {ξ ∈

Rn | |ξ| ≤ 4
3
} satisfying

χ(ξ) +
∑
q∈N

φ(2−qξ) = 1, q ∈ N, ξ ∈ Rn

and ∑
k∈Z

φ(2−kξ) = 1, k ∈ Z, ξ ∈ Rn \ {0}.

For f ∈ S ′(the set of temperate distributions which is the dual of the Schwarz class S), define

∆−1f := χ(D)f = F−1 (χ(ξ)Ff) , ∆qf := 0 for q ≤ −2;

∆qf := φ(2−qD)f = F−1
(
φ(2−q|ξ|

)
Ff) for q ≥ 0;

∆̇qf := φ(2−qD)f = F−1
(
φ(2−q|ξ|

)
Ff) for q ∈ Z,

where Ff , F−1f represent the Fourier transform and the inverse Fourier transform on f ,
respectively. Observe that the operator ∆̇q coincides with ∆q for q ≥ 0.

Denote by S ′
0 := S ′/P the tempered distributions modulo polynomials P . We first give

the definition of homogeneous Besov spaces.

Definition 5.6.1. For s ∈ R and 1 ≤ p, r ≤ ∞, the homogeneous Besov spaces Ḃs
p,r is

defined by

Ḃs
p,r = {f ∈ S ′

0 : ∥f∥Ḃs
p,r
<∞},

where

∥f∥Ḃs
p,r

=


(∑

q∈Z

(2qs∥∆̇qf∥Lp)r
)1/r

, r <∞,

sup
q∈Z

2qs∥∆̇qf∥Lp , r = ∞.

Similarly, the definition of inhomogeneous Besov spaces is stated as follows.

Definition 5.6.2. For s ∈ R and 1 ≤ p, r ≤ ∞, the inhomogeneous Besov spaces Bs
p,r is

defined by

Bs
p,r = {f ∈ S ′ : ∥f∥Bs

p,r
<∞},
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where

∥f∥Bs
p,r

=


( ∞∑
q=−1

(2qs∥∆qf∥Lp)r
)1/r

, r <∞,

sup
q≥−1

2qs∥∆qf∥Lp , r = ∞.

On the other hand, we also present the definition of Chemin-Lerner spaces first initialled
by J.-Y. Chemin and N. Lerner [7], which are the refinement of the space-time mixed spaces
Lθ
T (Ḃ

s
p,r) or L

θ
T (B

s
p,r).

Definition 5.6.3. For T > 0, s ∈ R, 1 ≤ r, θ ≤ ∞, the homogeneous mixed Chemin-Lerner
spaces L̃θ

T (Ḃ
s
p,r) is defined by

L̃θ
T (Ḃ

s
p,r) := {f ∈ Lθ(0, T ;S ′

0) : ∥f∥L̃θ
T (Ḃs

p,r)
< +∞},

where

∥f∥L̃θ
T (Ḃs

p,r)
:=
(∑

q∈Z

(2qs∥∆̇qf∥Lθ
T (Lp))

r
) 1

r

with the usual convention if r = ∞.

Definition 5.6.4. For T > 0, s ∈ R, 1 ≤ r, θ ≤ ∞, the inhomogeneous Chemin-Lerner
spaces L̃θ

T (B
s
p,r) is defined by

L̃θ
T (B

s
p,r) := {f ∈ Lθ(0, T ;S ′) : ∥f∥L̃θ

T (Bs
p,r)

< +∞},

where

∥f∥L̃θ
T (Bs

p,r)
:=
( ∑

q≥−1

(2qs∥∆qf∥Lθ
T (Lp))

r
) 1

r

with the usual convention if r = ∞.

We further define
C̃T (Bs

p,r) := L̃∞
T (Bs

p,r) ∩ C([0, T ], Bs
p,r)

and
C̃1
T (B

s
p,r) := {f ∈ C1([0, T ], Bs

p,r) | ∂tf ∈ L̃∞
T (Bs

p,r)},

where the index T will be omitted when T = +∞.

By Minkowski’s inequality, Chemin-Lerner spaces can be linked with the usual space-time
mixed spaces Lθ

T (X) with X = Bs
p,r or Ḃ

s
p,r.

Remark 5.6.1. It holds that

∥f∥L̃θ
T (X) ≤ ∥f∥Lθ

T (X) if r ≥ θ ; ∥f∥L̃θ
T (X) ≥ ∥f∥Lθ

T (X) if r ≤ θ.



Chapter 6

Timoshenko-Fourier system

6.1 Introduction

In the previous chapters (from Chapter 3 to Chapter 5), we have treated the so-called dissi-
pative Timoshenko system{

φtt − (φx − ψ)x = 0 (x, t) ∈ R× R+,

ψtt − a2ψxx − (φx − ψ) + γ ψt = 0 (x, t) ∈ R× R+.
(6.1.1)

The frictional damping is taken into account in this model. Our second model system includes
the heat conduction satisfying the Fourier law, which is called Timoshenko-Fourier system,
and written in the form

φtt − (φx − ψ)x = 0 (x, t) ∈ R× R+,

ψtt − a2ψxx − (φx − ψ) + b θx = 0 (x, t) ∈ R× R+,

θt + b ψtx = κ θxx (x, t) ∈ R× R+.

(6.1.2)

We note that our Timoshenko-Fourier system (6.1.2) doesn’t contain any mechanical damp-
ing. Here the unknown function θ = θ(t, x) denotes the temperature, and κ and b are positive
constants; in the physically reasonable situation, we only have b ̸= 0 but we assume b > 0
for simplicity.

The decay property of the systems (6.1.1) and (6.1.2) in the bounded region 0 < x < 1
was studied in [49] and [50], respectively. It was shown in [49, 50] that the energy of the both
systems decays exponentially as t → ∞ if a = 1, while in the case a ̸= 1, the energy decays
polynomially as t→ ∞.

To explain this interesting decay property, we need to investigate the dissipative structure
of the systems (6.1.1) and (6.1.2). This was done in [24] for the dissipative Timoshenko system
(6.1.1). It was shown in [24] that the dissipative structure of (6.1.1) is characterized by the
property

Reλ(iξ) ≤ −cη1(ξ) for a = 1,

Reλ(iξ) ≤ −cη2(ξ) for a ̸= 1,
(6.1.3)

93



94 CHAPTER 6. TIMOSHENKO-FOURIER SYSTEM

where λ(iξ) denotes the eigenvalues of the system (6.1.1) in the Fourie space, η1(ξ) = ξ2/(1+
ξ2), η2(ξ) = ξ2/(1 + ξ2)2, and c is a positive constant. This dissipative structure for a = 1 is
the same as in the general theory developed in [67, 58]. On the other hand, the dissipative
structure for a ̸= 1 is very weak in the high frequency region and satisfies Reλ(iξ) ∼ −cξ−2

for |ξ| → ∞, which causes the regularity-loss in the decay estimate (see [24] or Theorem
3.3.1) and also in the dissipative term of the energy estimate (see [24] or Proposition 3.3.4).

Here we remark that the energy estimate (3.3.12) for a ̸= 1 given in Proposition 3.3.4 in
Chapter 3 is the optimal improvement of the corresponding estimate obtained in [24]. To
derive this optimal energy estimate, we need to make a refinement of the energy method
employed in [24] in the Fourier space. This has been done in Chapter 3.

In this chapter, we study the dissipative structure of the Timoshenko system (6.1.2) with
the heat conduction. We will show that the dissipative structure of the system (6.1.2) can
be characterized by the property

Reλ(iξ) ≤ −cρ1(ξ) for a = 1,

Reλ(iξ) ≤ −cρ2(ξ) for a ̸= 1,
(6.1.4)

where λ(iξ) is the eigenvalues of the system (6.1.2) in the Fourie space, ρ1(ξ) = ξ4/(1+ ξ2)2,
ρ2(ξ) = ξ4/(1 + ξ2)3, and c is a positive constant. We find that the dissipative structure of
(6.1.2) is different from that of (6.1.1) in the low frequency region. In fact, for |ξ| → 0, we
see that λ(ξ) ∼ −cξ4 for (6.1.2) and λ(ξ) ∼ −cξ2 for (6.1.1). However, there is no difference
in the high frequence region |ξ| → ∞.

As the consequence, we can prove the following optimal decay estimate of the solution
U = (φx − ψ, φt, ψx, ψt, θ) to the system (6.1.2) in the whole space:

∥∂kxU(t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥U0∥Lp + Ce−ct∥∂kxU0∥L2 (6.1.5)

for a = 1, and

∥∂kxU(t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥U0∥Lp + C(1 + t)−
l
2∥∂k+l

x U0∥L2 (6.1.6)

for a ̸= 1, where 1 ≤ p ≤ 2, k and l are nonnegative integers, and U0 is the corresponding
initial data. This decay estimate is a little different from that of (6.1.1) (see Theorem 3.3.1),
and this difference comes from the difference in the low frequency region.

The above decay estimate is based on the corresponding pointwise estimate of the solution
in the Fourier space. Our pointwise estimate is optimal and can be derived by the energy
method in the Fourier space. Our energy method employed in this paper is an improved
version of the energy method developed in [24].

Other studies on the dissipative Timoshenko system can be found in literature. We refer
to [47, 48, 57] for frictional dissipation case, [56, 55, 54] for thermal dissipation case, and
[4, 3, 33, 34] for memory-type dissipation case.
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Similar decay property of the regularity-loss type was found also for other interesting
model systems. We refer to [60] for a plate equation with rotational inertia effect, [23] for
a hyperbolic-elliptic system of radiating gas, [15, 65] for the compressible Euler-Maxwell
system, and [16] for the Vlasov-Maxwell-Boltzmann system.

6.2 Main results

We consider the system (6.1.2) with the initial data

(φ, φt, ψ, ψt, θ)(x, 0) = (φ0, φ1, ψ0, ψ1, θ0)(x).

As in the previous chapters, we introduce the quantities v = φx − ψ, u = φt, z = aψx and
y = ψt and rewrite the system (6.1.2) in the form

vt − ux + y = 0,

yt − azx − v + bθx = 0,

ut − vx = 0,

zt − ayx = 0,

θt + byx = κθxx.

(6.2.1)

The corresponding initial data are given by

(v, y, u, z, θ)(x, 0) = (v0, y0, u0, z0, θ0)(x), (6.2.2)

where v0 = φ0,x − ψ0, y0 = ψ1, u0 = φ1, z0 = aψ0,x. Putting U = (v, y, u, z, θ)T and
U0 = (v0, y0, u0, z0, θ0)

T , we can rewrite this initial value problem (6.2.1), (6.2.2) by using
vector notations as {

Ut + AUx + LU = BUxx,

U(x, 0) = U0(x),
(6.2.3)

where

A = −


0 0 1 0 0
0 0 0 a −b
1 0 0 0 0
0 a 0 0 0
0 −b 0 0 0

 , L =


0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , B =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 κ

 .

We see that A is real symmetric, L is nonnegative definite (not real symmetric) and B is
real symmetric and nonnegative definite. Therefore our system is regarded as a symmetric
hyperbolic-parabolic coupled system with non-symmetric relaxation. Since L is not symmet-
ric, the general theory on the dissipative structure developed in [67, 58] is not applicable to
the above system.
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We take the Fourier transform of (6.2.3) to obtain Ût + (iξA+ L+ ξ2B) Û = 0,

Û(ξ, 0) = Û0(ξ).
(6.2.4)

The solution to (6.2.4) is given by Û(ξ, t) = etΦ̂(iξ)Û0(ξ), where

Φ̂(ζ) = −(L+ ζA− ζ2B), ζ ∈ C. (6.2.5)

The eigenvalue problem corresponding (6.2.4) is

λϕ+ (iξA+ L+ ξ2B)ϕ = 0, (6.2.6)

where λ ∈ C and ϕ ∈ C5. The eigenvalue λ = λ(iξ) of the problem (6.2.4) is the value of λ
satisfying (6.2.6) for ϕ ̸= 0.

Now we state the main result in this chapter, which is on the decay estimate of the
solutions to the Cauchy problem (6.2.3).

Theorem 6.2.1 (Decay estimates). The solution U of the problem (6.2.3) satisfies the fol-
lowing decay estimates for t ≥ 0:

∥∂kxU(t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥U0∥Lp + Ce−ct∥∂kxU0∥L2 (6.2.7)

for a = 1, and

∥∂kxU(t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥U0∥Lp + C(1 + t)−
l
2∥∂k+l

x U0∥L2 (6.2.8)

for a ̸= 1, where 1 ≤ p ≤ 2, k and l are nonnegative integers, and C and c are positive
constants.

Remark. The above decay estimates are a little different from those for the dissipative
Timoshenko system obtained in [24] (see Theorem 3.3.1).

The key to the proof of the above decay estimates (6.2.7) and (6.2.8) is to show the
following pointwise estimates of the solution in the Fourier space.

Lemma 6.2.2 (Pointwise estimates in the Fourier space). The solution Û to the problem
(6.2.4) satisfies the following pointwise estimates for any ξ ∈ R and t ≥ 0:

|Û(ξ, t)| ≤ Ce−cρ1(ξ)t|Û0(ξ)| for a = 1, (6.2.9)

|Û(ξ, t)| ≤ Ce−cρ2(ξ)t|Û0(ξ)| for a ̸= 1, (6.2.10)

where ρ1(ξ) =
ξ4

(1+ξ2)2
and ρ2(ξ) =

ξ4

(1+ξ2)3
, and C and c are positive constants.
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Remark. The corresponding eigenvalue λ(iξ) satisfies Reλ(iξ) ≤ −cρ1(ξ) for a = 1 and
Reλ(iξ) ≤ −cρ2(ξ) for a ̸= 1. Since ρ1(ξ) and ρ2(ξ) for the system (6.2.3) are different
from η1(ξ) and η2(ξ) for (3.3.1), the dissipative structure of (6.2.3) is different from that of
(3.3.1). This difference appears in the low frequency region. In fact, for |ξ| → 0, we see that
λ(ξ) ∼ −cξ4 for (6.2.3) and λ(ξ) ∼ −cξ2 for (3.3.1). However, there is no essential difference
in the high frequency region |ξ| → ∞.

We prove the above pointwise estimates by using the energy method in the Fourier space.
As in the previous section, we need to construct a suitable Lyapunov function E for the
problem (6.2.4) which is equivalent to |Û |2 and satisfies the differential inequality

Et + cF ≤ 0, (6.2.11)

where F is the corresponding dissipative term and c is a positive constant. Our Lyapunov
function E will be given by (6.4.25) for a = 1 and (6.4.28) for a ̸= 1. The corresponding
dissipative term F will be given as follows:

F =
ξ4

(1 + ξ2)2
(|v̂|2 + |ŷ|2) + ξ2

1 + ξ2
(|û|2 + |ẑ|2) + ξ2|θ̂|2 (6.2.12)

for a = 1, and

F =
ξ4

(1 + ξ2)3
|v̂|2 + ξ4

(1 + ξ2)2
|ŷ|2 + ξ2

(1 + ξ2)2
|û|2 + ξ2

1 + ξ2
|ẑ|2 + ξ2|θ̂|2 (6.2.13)

for a ̸= 1. Namely, we can prove the following result.

Proposition 6.2.3. Let a = 1 (resp. a ̸= 1). Then, for suitably small positive constants α1

and α2, the Lyapunov function E in (6.4.25) (resp. (6.4.28)) is equivalent to |Û |2 and satisfies
the differential inequality (6.2.11) with the dissipative term F in (6.2.12) (resp. (6.2.13)),
where c is a positive constant.

Remark. Our dissipative term F in (6.2.12) (resp. (6.2.13)) completely matches with the
eigenvalues in (6.3.3) and (6.3.6) (resp. (6.3.3) and (6.3.7)) for a = 1 (resp. a ̸= 1).

Lemma 6.2.2 easily follows from Proposition 6.2.3.

Proof. We only give the proof for a ̸= 1. Since E is equivalent to |Û |2, we find that F in
(6.2.13) satisfies

F ≥ cρ2(ξ)E

for a positive constant c, where ρ2(ξ) =
ξ4

(1+ξ2)3
. Substituting this inequality into (6.2.11), we

have
Et + cρ2(ξ)E ≤ 0.

This differential inequality can be solved as

E(ξ, t) ≤ e−cρ2(ξ)tE(ξ, 0),

which gives the desired pointwise estimate (6.2.10).
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Also, as a simple corollary of Proposition 6.2.3, we have the following optimal energy
estimates of solutions to the problem (6.2.3).

Proposition 6.2.4. Let s and k be integers with 0 ≤ k ≤ s. Then the solution U to the
problem (6.2.3) satisfies the following energy estimates for any t ≥ 0:

∥∂kxU(t)∥2Hs−k +

∫ t

0

(
∥∂k+2

x v(τ)∥2Hs−k−2 + ∥∂k+2
x y(τ)∥2Hs−k−2

+ ∥∂k+1
x u(τ)∥2Hs−k−1 + ∥∂k+1

x z(τ)∥2Hs−k−1 + ∥∂k+1
x θ(τ)∥2Hs−k

)
dτ

≤ C∥∂kxU0∥2Hs−k (6.2.14)

for a = 1, and

∥∂kxU(t)∥2Hs−k +

∫ t

0

(
∥∂k+2

x v(τ)∥2Hs−k−3 + ∥∂k+2
x y(τ)∥2Hs−k−2

+ ∥∂k+1
x u(τ)∥2Hs−k−2 + ∥∂k+1

x z(τ)∥2Hs−k−1 + ∥∂k+1
x θ(τ)∥2Hs−k

)
dτ

≤ C∥∂kxU0∥2Hs−k (6.2.15)

for a ̸= 1, where C is a positive constant.

Remark. The above energy estimates completely match with the eigenvalues given in (6.3.3)
and (6.3.6) for a = 1 and (6.3.3) and (6.3.7) for a ̸= 1. Therefore they seem optimal. We
note that in the dissipative term of (6.2.15) for a ̸= 1, we have one regularity-loss for two
components v and u but no regularity-loss for other three components y, z and θ.

Finally in this subsection, we give the proof of Theorem 6.2.1.

Proof. Now we prove Theorem 6.2.1. First we consider the case where a = 1. Applying the
Plancherel theorem and using the pointwise estimate (6.2.9), we have

∥∂kxU(t)∥2L2 = C

∫
R
ξ2k|Û(ξ, t)|2 dξ ≤ C

∫
R
ξ2ke−ρ1(ξ)t|Û0(ξ)|2 dξ. (6.2.16)

We divided the last integral into two parts I1 and I2 corresponding to the regions |ξ| ≤ 1
and |ξ| ≥ 1, respectively. Here we see that ρ1(ξ) ≥ cξ4 for |ξ| ≤ 1 so that we have

I1 = C

∫
|ξ|≤1

ξ2ke−cρ1(ξ)t|Û0(ξ)|2 dξ ≤ C

∫
|ξ|≤1

ξ2ke−cξ4t|Û0(ξ)|2 dξ.

For 1 ≤ p ≤ 2, we choose p′ such that 1
p
+ 1

p′
= 1. Also, we take r such that 1

r
+ 2

p′
= 1. Then

we see that 1
2r

= 1
p
− 1

2
. Applying the Hölder inequality and the Hausdorff-Young inequality,

we can estimate I1 as

I1 ≤ C∥ξ2ke−cξ4t∥Lr(|ξ|≤1)∥Û0∥2Lp′

≤ C(1 + t)−
1
4r

− k
2 ∥U0∥2Lp = C(1 + t)−

1
2
( 1
p
− 1

2
)− k

2 ∥U0∥2Lp .
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On the other hand, in the high frequency region |ξ| ≥ 1, we have ρ1(ξ) ≥ c. Therefore we
can estimate I2 as

I2 = C

∫
|ξ|≥1

ξ2ke−cρ1(ξ)t|Û0(ξ)|2dξ

≤ Ce−ct

∫
|ξ|≥1

ξ2k|Û0(ξ)|2dξ ≤ Ce−ct∥∂kxU0∥2L2 .

Substituting these estimates into (6.2.16) gives the desired estimate (6.2.7).

Next we consider the case where a ̸= 1. Using (6.2.10), we have

∥∂kxU(t)∥2L2 ≤ C

∫
R
ξ2ke−ρ2(ξ)t|Û0(ξ)|2 dξ. (6.2.17)

We divided this integral into two parts J1 and J2 corresponding to the regions |ξ| ≤ 1 and
|ξ| ≥ 1, respectively. Since, ρ2(ξ) ≥ cξ4 for |ξ| ≤ 1, the low frequency part J1 is estimated

just in the same way as I1 for a = 1, and we have J1 ≤ C(1 + t)−
1
2
( 1
p
− 1

2
)− k

2 ∥U0∥2Lp . On the
other hand, in the high frequency region |ξ| ≥ 1, we see that ρ2(ξ) ≥ c|ξ|−2. Thus we have

J2 = C

∫
|ξ|≥1

ξ2ke−cρ2(ξ)t|Û0(ξ)|2 dξ ≤ C

∫
|ξ|≥1

ξ2ke−c|ξ|−2t|Û0(ξ)|2 dξ

≤ C sup
|ξ|≥1

{
|ξ|−2le−c|ξ|−2t

}∫
|ξ|≥1

ξ2(k+l)|Û0(ξ)|2 dξ

≤ C(1 + t)−l∥∂k+l
x U0∥2L2 .

Substituting these estimates into (6.2.17) gives the desired estimate (6.2.8) for a ̸= 1. This
completes the proof of Theorem 6.2.1.

6.3 Asymptotic expansion of eigenvalues

In order to see whether the pointwise estimates in Lemma 6.2.2 are optimal or not, we
investigate the asymptotic expansion of the eigenvalues of (6.2.4) for |ξ| → 0 and |ξ| → ∞.
We denote by λj(ζ), j = 1, 2, 3, 4, 5, the eigenvalues of the matrix Φ̂(ζ) in (6.2.4), which are
the solutions to the characteristic equation

det(λI − Φ̂(ζ)) = λ5 − κζ2λ4 +
{
1− (1 + a2 + b2) ζ2

}
λ3

− κ
{
1− (a2 + 1) ζ2

}
ζ2λ2 + (a2 + b2) ζ4λ− a2κζ6 = 0. (6.3.1)

(i) When |ζ| → 0，λj(ζ) has the following asymptotic expansion:

λj(ζ) = λ
(0)
j + λ

(1)
j ζ + λ

(2)
j ζ2 + · · · . (6.3.2)
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We substitute λ = λj(ζ) in (6.3.2) into the characteristic quation (6.3.1) and calculate the

coefficients λ
(k)
j , k = 0, 1, 2 · · · , successively. We have

λ
(0)
j = λ

(1)
j = 0, λ

(2)
j = αj for j = 1, 2, 3,

λ
(0)
j = ±i, λ

(1)
j = 0, λ

(2)
j = ∓ 1

2
iY,

λ
(3)
j = 0, λ

(4)
j = −1

2
b2κ∓ 1

2
iZ for j = 4, 5,

where αj are the solutions of the algebraic equation

X3 − κX2 + (a2 + b2)X − a2κ = 0,

and Y = 1 + a2 + b2 and Z = Y 2/4 + Y − 1. We claim that Reαj > 0 for j = 1, 2, 3.
To see this, we put f(X) = X3 − κX2 + (a2 + b2)X − a2κ. Then f(X) is continuous
and satisfies f(0)f(κ) < 0. This imples that there exists at least one solution X = α1 of
f(X) = 0 in the interval (0, κ). We write other two solutions as α2 and α3. Then we have
Reα2 = Reα3. Also, from Newton’s relations, we have α1 + α2 + α3 = κ, which shows that
Reα2 = Reα3 = (κ − α1)/2 > 0. Moreover, we see that Reλ

(4)
j = −b2κ/2 < 0 for j = 4, 5.

Consequently, for |ξ| → 0, we have

Re λj(iξ) =


−(Re αj) ξ

2 +O(|ξ|3) for j = 1, 2, 3,

−1

2
b2κ ξ4 +O(|ξ|5) for j = 4, 5.

(6.3.3)

(ii) To derive the asymptotic expansion of the eigenvalues λj(ζ) for |ζ| → ∞, we define

the matrix Ψ̂(ζ−1) = B − ζ−1A − ζ−2L. Then we have the relation Φ̂(ζ) = ζ2Ψ̂(ζ−1). Let
µj(ζ

−1) be the eigenvalues of the matrix Ψ̂(ζ−1), which are the solutions to the characteristic
equation

det(µI − Ψ̂(ζ−1)) = µ5 − κµ4 −
{
(1 + a2 + b2)− ζ−2

}
ζ−2µ3

+ κ
{
(a2 + 1)− ζ−2

}
ζ−2µ2 + (a2 + b2) ζ−4µ− a2κζ−4 = 0. (6.3.4)

When |ζ|−1 → 0, we have the asymptotic expansion of µj(ζ
−1) in the form

µj(ζ
−1) = µ

(2)
j + µ

(1)
j ζ−1 + µ

(0)
j ζ−2 + µ

(−1)
j ζ−3 + · · · . (6.3.5)

This together with the relation λj(ζ) = ζ2µj(ζ
−1) gives the asymptotic expansion of λj(ζ)

for |ζ| → ∞:

λj(ζ) = µ
(2)
j ζ2 + µ

(1)
j ζ + µ

(0)
j + µ

(−1)
j ζ−1 + µ

(−2)
j ζ−2 + · · · .

We substitute the asymptotic expansion of µj(ζ
−1) in (6.3.5) into the characteristic equation

(6.3.4) and calculate the coefficients µ
(k)
j , k = 2, 1, 0,−1,−2, · · · , successively. For four

eigenvalues we find the following expressions: When a = 1, we have

µ
(2)
j = 0, µ

(1)
j = ±1, µ

(0)
j = βj for j = 1, 2, 3, 4,
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and when a ̸= 1, we have

µ
(2)
j = 0, µ

(1)
j = ±1, µ

(0)
j = 0,

µ
(−1)
j = ± 1

2P
, µ

(−2)
j =

b2

2κP 2
for j = 1, 2,

µ
(2)
j = 0, µ

(1)
j = ±a, µ

(0)
j = − b2

2κ
, for j = 3, 4,

where βj are the solutions of the algebraic equation 4κX2 + 2b2X + κ = 0 and satisfy
Re βj < 0, and P = a2 − 1 (for a ̸= 1). On the other hand, for the last eigenvalue, we have

µ
(2)
j = κ, µ

(1)
j = 0 for j = 5.

Consequently, when a = 1, we have

Re λj(iξ) =

 −Re βj +O(|ξ|−1) for j = 1, 2, 3, 4,

−κ ξ2 +O(1) for j = 5
(6.3.6)

for |ξ| → ∞; while in the case a ̸= 1, we have

Re λj(iξ) =


− b2

2κP 2
ξ−2 +O(|ξ|−3) for j = 1, 2,

− b2

2κ
+O(|ξ|−1) for j = 3, 4,

−κ ξ2 +O(1) for j = 5

(6.3.7)

for |ξ| → ∞. According to the expansion (6.3.7) for |ξ| → ∞, when a ̸= 1, one eigenvalue
is of the standard type and satisfies Reλ(iξ) ∼ −cξ2, two eigenvalues are of the standard
type and satisfy Reλ(iξ) ∼ −c, while the other two are not of the standard type and satisfy
Reλ(iξ) ∼ −cξ−2.

The asymptotic expansions (6.3.3), (6.3.6) and (6.3.7) imply that the energy inequality
in Proposition 6.2.3 and hence the pointwise estimates (6.2.9) and (6.2.10) in Lemma 6.2.2
seem optimal.

6.4 Energy method in Fourier spaces

The aim of this subsection is to prove Proposition 6.2.3.
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Proof. The system (6.2.4) is written explicitly in the form

v̂t − iξû+ ŷ = 0, (6.4.1a)

ŷt − aiξẑ − v̂ + biξθ̂ = 0, (6.4.1b)

ût − iξv̂ = 0, (6.4.1c)

ẑt − aiξŷ = 0, (6.4.1d)

θ̂t + biξŷ + κξ2θ̂ = 0. (6.4.1e)

By using the energy method for this system in the Fourier space, we construct the Lyapunov
function E and prove the differential inequality (6.2.11) with the desired dissipation term F .
Our proof below is divided into six steps.

Step 1. We multiply (6.4.1a), (6.4.1b), (6.4.1c), (6.4.1d) and (6.4.1e) by ¯̂v, ¯̂y, ¯̂u, ¯̂z and
¯̂
θ,

respectively. Then, adding the resultant equations and taking the real part, we get

1

2
(|Û |2)t + κξ2|θ̂|2 = 0, (6.4.2)

where |Û |2 = |v̂|2 + |ŷ|2 + |û|2 + |ẑ|2 + |θ̂|2. This gives us the energy estimate for Û together
with the dissipative estimate for θ̂.

Step 2. We construct the dissipative estimate for (v̂, ŷ). We multiply (6.4.1c) and (6.4.1a)
by iξ ¯̂v and −iξ ¯̂u, respectively. Then, adding the resulting equalities and taking the real part,
we get

ξE1,t + ξ2|v̂|2 = ξ2|û|2 + ξRe (i¯̂uŷ), (6.4.3)

where E1 = Re (iv̂ ¯̂u). Also, we multiply (6.4.1d) and (6.4.1b) by iξ ¯̂y and −iξ ¯̂z, respectively.
Then, adding the resulting equalities and taking the real part, we get

ξE2,t + aξ2|ŷ|2 = aξ2|ẑ|2 − ξRe (iv̂ ¯̂z)− bξ2Re (¯̂zθ̂), (6.4.4)

where E2 = Re (iẑ ¯̂y).

(i) When a = 1, adding (6.4.3) to (6.4.4) and using the Young inequality, we obtain

ξ(E1 + E2)t + (1− ε) ξ2(|v̂|2 + |ŷ|2)

≤ Cε(1 + ξ2)(|û|2 + |ẑ|2) + Cεξ
2|θ̂|2 (6.4.5)

for any ε ∈ (0, 1), where Cε is a positive constant depending on ε.

(ii) When a ̸= 1, multiplying (6.4.4) by 1 + ξ2, adding the resultant equality to (6.4.3), and
using the Young inequality, we obtain

ξ
{
E1 + (1 + ξ2)E2

}
t
+ (1− ε)

{
ξ2|v̂|2 + a(1 + ξ2) ξ2|ŷ|2

}
≤ Cε(1 + ξ2)|û|2 + Cε(1 + ξ2)2|ẑ|2 + Cε(1 + ξ2) ξ2|θ̂|2 (6.4.6)



6.4. ENERGY METHOD IN FOURIER SPACES 103

for any ε ∈ (0, 1), where Cε is a positive constant depending on ε.

Step 3. To obtain the dissipative estimate for û, we use (6.4.3) in the form

−ξE1,t + ξ2|û|2 = ξ2|v̂|2 − ξRe (i¯̂uŷ). (6.4.7)

We want to eliminate both the terms ξ2|v̂|2 and −ξRe (i¯̂uŷ) on the right hand side of (6.4.7).
First, to eliminate the term ξ2|v̂|2, we multiply (6.4.1b) and (6.4.1a) by −¯̂v and −¯̂y, respec-
tively. Then, adding the resultant equalities and taking the real part, we get

E3,t + |v̂|2 = |ŷ|2 − aξRe (i¯̂vẑ) + bξRe (i¯̂vθ̂)− ξRe (iû¯̂y), (6.4.8)

where E3 = −Re (v̂ ¯̂y). Here, to eliminate the term −aξRe (i¯̂vẑ) on the right hand side of
(6.4.8), we multiply (6.4.1c) and (6.4.1d) by −¯̂z and −¯̂u, respectively. Then, adding the
resultant equalities and taking the real part, we get

E4,t + ξRe (iv̂ ¯̂z) = −aξRe (i¯̂uŷ), (6.4.9)

where E4 = −Re (û¯̂z). We multiply (6.4.9) by a and add the result to (6.4.8). This gives

(E3 + aE4)t + |v̂|2 = |ŷ|2 + bξRe (i¯̂vθ̂)− (a2 − 1) ξRe (i¯̂uŷ), (6.4.10)

where we have used the equality a2Re (i¯̂uŷ) + Re (iû¯̂y) = (a2 − 1)Re (i¯̂uŷ).

Next we try to eliminate the term |ŷ|2 on the right hand side of (6.4.10). For this purpose,

we multiply (6.4.1e) and (6.4.1b) by −ξ ¯̂y and ξ
¯̂
θ, respectively. Then, adding the resultant

equalities and taking the real part, we get

ξE6,t + bξ2|ŷ|2 = bξ2|θ̂|2 − aξ2Re (ẑ
¯̂
θ) + ξRe (iv̂

¯̂
θ) + κξ3 Re (i¯̂yθ̂), (6.4.11)

where E6 = Re (iŷ
¯̂
θ). Moreover, we try to eliminate the term ξRe (iv̂

¯̂
θ) on the right hand

side of (6.4.11). To this end, we multiply (6.4.1c) and (6.4.1e) by − ¯̂
θ and −¯̂u, respectively.

Then, adding the resultant equalities and taking the real part, we get

E5,t − bξRe (i¯̂uŷ) = −ξRe (iv̂ ¯̂θ) + κξ2 Re (¯̂uθ̂), (6.4.12)

where E5 = −Re (û
¯̂
θ). We add (6.4.11) to (6.4.12) and eliminate the term ξRe (iv̂

¯̂
θ) to have

(ξE6 + E5)t + bξ2|ŷ|2 = bξ2|θ̂|2 + bξRe (i¯̂uŷ)

+ κξ2Re(¯̂uθ̂)− aξ2 Re (ẑ
¯̂
θ) + κξ3 Re (i¯̂yθ̂). (6.4.13)

Now we combine (6.4.7), (6.4.10) and (6.4.13) such that {(6.4.7) + (6.4.10)× ξ2} × b +
(6.4.13). This can eliminate both the terms ξ2|ŷ|2 and −ξRe (i¯̂uŷ) in (6.4.7) and we have{

b
(
−ξE1 + ξ2(E3 + aE4)

)
+ (ξE6 + E5)

}
t
+ bξ2|û|2

= bξ2|θ̂|2 + b2ξ3 Re (i¯̂vθ̂)− b(a2 − 1) ξ3 Re (i¯̂uŷ)

+ κξ2 Re (¯̂uθ̂)− aξ2 Re (ẑ
¯̂
θ) + κξ3 Re (i¯̂yθ̂), (6.4.14)
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which still contains the term ξ3 Re (i¯̂uŷ). Finally, to eliminate this term, we multiply (6.4.12)
by (a2 − 1)ξ2 and add the resultant equality to (6.4.14). This yields{

b
(
−ξE1 + ξ2(E3 + aE4)

)
+ (ξE6 + E5) + ξ2(a2 − 1)E5

}
t

+ bξ2|û|2 = bξ2|θ̂|2 − (a2 + b2 − 1) ξ3 Re (iv̂
¯̂
θ)

+ κ
{
1 + (a2 − 1) ξ2

}
ξ2Re (¯̂uθ̂)− aξ2Re (ẑ

¯̂
θ) + κξ3Re (i¯̂yθ̂). (6.4.15)

After a simple computation we arrive at(
ξ2E3 + ξE4 + E5

)
t
+ bξ2|û|2

≤ bξ2|θ̂|2 + (|a2 − 1|+ b2)|ξ|3|v̂||θ̂|+ κξ2|û||θ̂|

+ κ|a2 − 1|ξ4|û||θ̂|+ aξ2|ẑ||θ̂|+ κ|ξ|3|ŷ||θ̂|, (6.4.16)

where E3 = bE3 + abE4 + (a2 − 1)E5 and E4 = −bE1 + E6.

Step 4. To obtain the dissipative estimate for ẑ, we use (6.4.4) in the form

−ξE2,t + aξ2|ẑ|2 = aξ2|ŷ|2 + ξRe (iv̂ ¯̂z) + bξ2 Re (¯̂zθ̂). (6.4.17)

We want to eliminate both the terms aξ2|ŷ|2 and ξRe (iv̂ ¯̂z) on the right hand side of (6.4.17).
First, to eliminate the term aξ2|ŷ|2, multiplying (6.4.17) by b and (6.4.13) by a, and adding
the resultant equalities, we get

{−bξE2 + a(ξE6 + E5)}t + abξ2|ẑ|2

= abξ2|θ̂|2 + bξRe (iv̂ ¯̂z) + abξRe (i¯̂uŷ)

+ aκξ3Re (i¯̂yθ̂) + aκξ2Re (¯̂uθ̂) + b2ξ2Re (¯̂zθ̂)− a2ξ2Re (ẑ
¯̂
θ). (6.4.18)

We can eliminate both the terms bξRe (iv̂ ¯̂z) and abξRe (i¯̂uŷ) on the right hand side of
(6.4.18) by using (6.4.9). In fact, multiplying (6.4.9) by b and adding the resultant equality
to (6.4.18), we get

{−bξE2 + a(ξE6 + E5) + bE4}t + abξ2|ẑ|2 = abξ2|θ̂|2

+ aκξ3Re (i¯̂yθ̂) + aκξ2Re (¯̂uθ̂) + b2ξ2Re (¯̂zθ̂)− a2ξ2Re (ẑ
¯̂
θ). (6.4.19)

After a simple computation we arrive at

(ξE6 + E7)t + abξ2|ẑ|2

≤ abξ2|θ̂|2 + aκ|ξ|3|ŷ||θ̂|+ aκξ2|û||θ̂|+ |b2 − a2| ξ2|ẑ||θ̂|, (6.4.20)

where E6 = −bE2 + aE6 and E7 = aE5 + bE4.
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Now we combine (6.4.16) and (6.4.20) to show a good dissipative estimate for (û, ẑ) in
terms of the corresponding estimate for (v̂, ŷ, θ̂).

(i) When a = 1, we add (6.4.16) to (6.4.20) and use the Young inequality to obtain{
(ξ2E3 + ξE4 + E5) + (ξE6 + E7)

}
t
+ b(1− ε) ξ2(|û|2 + |ẑ|2)

≤ Cεξ
2|θ̂|2 + C|ξ|3(|v̂||θ̂|+ |ŷ||θ̂|)

≤ Cε,α1(1 + ξ2) ξ2|θ̂|2 + α1ε
ξ4

1 + ξ2
(|v̂|2 + |ŷ|2) (6.4.21)

for any ε ∈ (0, 1) and α1 > 0, where Cε and Cε,α1 are constants depending on ε and (ε, α1),
respectively.

(ii) When a ̸= 1, we multiply (6.4.20) by 1 + ξ2 and add the resultant inequality to (6.4.16).
Then, applying the Young inequality, we obtain{

(ξ2E3 + ξE4 + E5) + (1 + ξ2)(ξE6 + E7)
}
t

+ b(1− ε)
{
ξ2|û|2 + a(1 + ξ2) ξ2|ẑ|2

}
≤ Cϵ(1 + ξ2) ξ2|θ̂|2 + C

{
|ξ|3|v̂||θ̂|+ (1 + ξ2)|ξ|3|ŷ||θ̂|

}
≤ Cϵ,α1(1 + ξ2)2 ξ2|θ̂|2 + α1ε

( ξ4

1 + ξ2
|v̂|2 + aξ4|ŷ|2

)
(6.4.22)

for any ε ∈ (0, 1) and α1 > 0, where Cε and Cε,α1 are constants depending on ε and (ε, α1),
respectively.

Step 5. We construct the Lyapunov function for a = 1. When a = 1, letting α1 > 0, we
multiply (6.4.5) and (6.4.21) by α1ξ

2 and 1+ξ2, respectively and add the resultant inequalities
to get

α1ξ
3(E1 + E2)t + (1 + ξ2)

{
(ξ2E3 + ξE4 + E5) + (ξE6 + E7)

}
t

+ α1(1− 2ε) ξ4(|v̂|2 + |ŷ|2) + b(1− ε− α1Cε)(1 + ξ2) ξ2(|û|2 + |ẑ|2)

≤ Cε,α1(1 + ξ2)2 ξ2|θ̂|2. (6.4.23)

Then, letting α2 > 0, we multiply (6.4.23) by α2/(1 + ξ2)2 and add the resultant inequality
to (6.4.2). This yields

1

2
(|Û |2)t + α2α1

ξ3

(1 + ξ2)2
(E1 + E2)t

+ α2
1

1 + ξ2
{
(ξ2E3 + ξE4 + E5) + (ξE6 + E7)

}
t

+ α2α1(1− 2ε)
ξ4

(1 + ξ2)2
(|v̂|2 + |ŷ|2)

+ α2b(1− ε− α1Cε)
ξ2

1 + ξ2
(|û|2 + |ẑ|2) + (κ− α2Cε,α1) ξ

2|θ̂|2 ≤ 0. (6.4.24)
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Here we take ε > 0 as 1 − 2ε > 0. For this choice of ε, we choose α1 > 0 and α2 > 0 such
that 1− ε− α1Cε > 0 and κ− α2Cε,α1 > 0. Now we define our Lyapunov function E by

E =
1

2
|Û |2 + α2α1

ξ3

(1 + ξ2)2
(E1 + E2)

+ α2
1

1 + ξ2
{
(ξ2E3 + ξE4 + E5) + (ξE6 + E7)

}
,

(6.4.25)

which is equivalent to |Û |2 for suitably small α1, α2 > 0. Then (??) becomes the desired
differential inequality (6.2.11) with the dissipative term F given in (6.2.12). This completes
the proof of Proposition 6.2.3 for a = 1.

Step 6. We construct the Lyapunov function for a ̸= 1. When a ̸= 1, letting α1 > 0,
we multiply (6.4.6) and (6.4.22) by α1ξ

2 and 1 + ξ2, respectively, and add the resultant
inequalities to get

α1ξ
3
{
E1 + (1 + ξ2)E2

}
t
+ (1 + ξ2)

{
(ξ2E3 + ξE4 + E5)

+ (1 + ξ2)(ξE6 + E7)
}
t
+ α1(1− 2ε)

{
ξ4|v̂|2 + a(1 + ξ2) ξ4|ŷ|2

}
+ b(1− ε− α1Cε)

{
(1 + ξ2) ξ2|û|2 + a(1 + ξ2)2 ξ2|ẑ|2

}
≤ Cε,α1(1 + ξ2)3 ξ2|θ̂|2. (6.4.26)

Then，letting α2 > 0, we multiply (6.4.26) by α2/(1 + ξ2)3 and add the resultant inequality
to (6.4.2) to get

1

2
(|Û |2)t + α2α1

{ ξ3

(1 + ξ2)3
E1 +

ξ3

(1 + ξ2)2
E2

}
t

+ α2

{ 1

(1 + ξ2)2
(ξ2E3 + ξE4 + E5) +

1

1 + ξ2
(ξE6 + E7)

}
t

+ α2α1(1− 2ε)
{ ξ4

(1 + ξ2)3
|v̂|2 + a

ξ4

(1 + ξ2)2
|ŷ|2
}

+ α2b(1− ε− α1Cε)
{ ξ2

(1 + ξ2)2
|û|2 + a

ξ2

1 + ξ2
|ẑ|2
}

+ (κ− α2Cε,α1) ξ
2|θ̂|2 ≤ 0. (6.4.27)

Here we choose ε ∈ (0, 1) and α1, α2 > 0 just in the same way as in the case of a = 1, and
then define the Lyapunov function E by

E =
1

2
|Û |2 + α2α1

{ ξ3

(1 + ξ2)3
E1 +

ξ3

(1 + ξ2)2
E2

}
+ α2

{ 1

(1 + ξ2)2
(ξ2E3 + ξE4 + E5) +

1

1 + ξ2
(ξE6 + E7)

}
.

(6.4.28)
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Then (6.4.27) becomes the differential inequality (6.2.11) with the dissipative term F given
in (6.2.13). Thus the proof of Proposition 6.2.3 is complete for a ̸= 1.





Chapter 7

Timoshenko-Cattaneo system

7.1 Introduction

In Chapter 7 we study the decay property of the Timoshenko system with the heat conduction
described by the Cattaneo low. The system is written in the form

φtt − (φx − ψ)x = 0,

ψtt − a2ψxx − (φx − ψ) + bθx = 0,

θt + q̃x + bψtx = 0,

τ0q̃t + q̃ + κθx = 0,

(7.1.1)

where a, b, κ and τ0 are positive constants; we regard τ0 as a parameter of our system
(7.1.1) satisfying τ0 ∈ (0, 1]. The original Timoshenko system, which consists of the first
two equations in (7.1.1) with b = 0, was first introduced by S.P. Timoshenko ([62, 63]) and
describes the vibration of the beam called the Timoshenko beam, while the last two equations
in (7.1.1) with b = 0 represent the heat conduction described by the Cattaneo law. Here in
(7.1.1), t ≥ 0 is the time variable, x ∈ R is the spacial variable which denotes the point on
the center line of the beam, and φ, ψ, θ and q̃ are the unknown functions of t ≥ 0 and x ∈ R,
which denote the transversal displacement, the rotation angle of the beam, the temperature
and the heat flow, respectively.

We put τ0 = 0 formally in (7.1.1). Then we have the Fourier law q̃ = −κθx from the
last equation in (7.1.1). This together with the other three equations in (7.1.1) yields the
Timoshenko-Fourier system

φtt − (φx − ψ)x = 0,

ψtt − a2ψxx − (φx − ψ) + bθx = 0,

θt + bψtx = κθxx.

(7.1.2)

Namely, when we put τ0 = 0 formally, our Timoshenko-Cattaneo system (7.1.1) is reduced
to the Timoshenko-Fourier system (7.1.2).

109
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The decay property of the Timoshenko-Cattaneo system (7.1.1) in a bounded region
0 < x < 1 was studied in [56, 54]. It was shown in [56] that the energy of the solution does
not decay exponentially as t → ∞ if a = 1. More detailed deccay property of (7.1.1) was
investigated in [54] by introducing the stability number

P :=
τ0
κ
(1− a2 − b2) + (a2 − 1). (7.1.3)

It was proved in [54] that the energy of the system decays exponentially as t → ∞ if the
stability number satisfies P = 0, while in the case P ̸= 0, the energy decays polynomially as
t→ ∞. We note that the decay result in [56] for a = 1 corresponds to that in [54] for P ̸= 0.

To explain this decay property, we investigate the dissipative structure of the Timoshenko-
Cattaneo system (7.1.1) in the whole space. We will show in Subsection 7.2.2 that the
dissipative structure of the system (7.1.1) can be characterized by the property

Reλ(iξ) ≤ −cρ1(ξ) for P = 0,

Reλ(iξ) ≤ −cρ2(ξ) for P ̸= 0.
(7.1.4)

Here λ(iξ) denotes the eigenvalues of the system (7.1.1) in the Fourier space, the exponents
ρ1(ξ) and ρ2(ξ) are given by ρ1(ξ) = ξ4/(1 + ξ2)2 and ρ2(ξ) = ξ4/(1 + ξ2)3, respectively,
and c is a positive constant independent of the parameter τ0 ∈ (0, 1]. We note that the
dissipative structure (7.1.4) for P ̸= 0 is very weak in the high frequency region and satisfies
Reλ(iξ) ∼ −cξ−2 for |ξ| → ∞.

The above dissipative structure (7.1.4) of the Timoshenko-Cattaneo system (7.1.1) is very
similar to that of the Timoshenko-Fourier system (7.1.2). In fact, it was observed in Chapter
6 (see also [38, 49]) that the dissipative structute of the Timoshenko-Fourier system (7.1.2)
is characterized by

Reλ(iξ) ≤ −cρ1(ξ) for a = 1,

Reλ(iξ) ≤ −cρ2(ξ) for a ̸= 1,
(7.1.5)

where λ(iξ) is the eigenvalues of the system (7.1.2), ρ1(ξ) and ρ2(ξ) are the same as in (7.1.4),
and c is a positive constant. We note that the dissipative structure (7.1.5) of the Timoshenko-
Fourier system (7.1.2) is formally obtained from (7.1.4) of the Timoshenko-Cattaneo system
(7.1.1) by putting τ0 = 0 because the stability number P becomes P = a2 − 1 for τ0 = 0.

A similar dissipative structure was first found in [24] (see also [50]) for the dissipative
Timoshenko system {

φtt − (φx − ψ)x = 0,

ψtt − a2ψxx − (φx − ψ) + γψt = 0,
(7.1.6)

where a and γ are positive constants. It was shown in [24] that

Reλ(iξ) ≤ −cη1(ξ) for a = 1,

Reλ(iξ) ≤ −cη2(ξ) for a ̸= 1,
(7.1.7)
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where λ(iξ) denotes the eigenvalues of the system (7.1.6), the exponents η1(ξ) and η2(ξ) are
given respectively by η1(ξ) = ξ2/(1+ξ2) and η2(ξ) = ξ2/(1+ξ2)2, and c is a positive constant.
We note that this dissipative structure (7.1.7) for a = 1 is the same as that in the general
theory developed in [67, 58].

It is interesting to compare the above dissipative structures (7.1.4) (or (7.1.5)) and (7.1.7).
In the low frequency region |ξ| → 0, we see that Reλ(iξ) ∼ −cξ4 in (7.1.4) (or (7.1.5)), while
we have Reλ(iξ) ∼ −cξ2 in (7.1.7). On the other hand, in the high frequency region |ξ| → ∞,
we have the common dissipative structure. In fact, we have Reλ(iξ) ∼ −c both in (7.1.4) for
P = 0 (or (7.1.5) for a = 1) and (7.1.7) for a = 1. Also, we see that Reλ(iξ) ∼ −cξ−2 both
in (7.1.4) for P ̸= 0 (or (7.1.5) for a ̸= 1) and (7.1.7) for a ̸= 1. The Timoshenko system
with Cattaneo law and frictional damping can be regarded as the symmetric hyperbolic
system with non-symmetric relaxation term. The regularity-loss structure for the symmetric
hyperbolic systems which contain the Timoshenko system with frictional damping is studied
by [64]. However, the regularity-loss structure for the symmetric hyperbolic systems which
contain the Timoshenko system with Cattaneo law remains an open question.

The above dissipative structure Reλ(iξ) ∼ −cξ−2 in the high frequency region |ξ| → ∞
is very weak and causes the regularity-loss in the decay estimate. In fact, we show that
the solution to the Timoshenko-Cattaneo system (7.1.1) in the whole space satisfies the
following decay estimates: Put V = (φx − ψ, φt, ψx, ψt, θ,

√
τ0 q̃) and write |V |2 = |(φx −

ψ, φt, ψx, ψt, θ)|2 + τ0|q̃|2. Then we have

∥∂kxV (t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥V0∥Lp + Ce−ct∥∂kxV0∥L2 (7.1.8)

for P = 0, and

∥∂kxV (t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥V0∥Lp + C(1 + t)−
l
2∥∂k+l

x V0∥L2 (7.1.9)

for P ̸= 0. Here V0 denotes the initial data corresponding to V , 1 ≤ p ≤ 2, k and l are
nonnegative integers, and C and c are positive constants independent of τ0 ∈ (0, 1]. We note

that when P ̸= 0, we have the decay rate (1 + t)−
l
2 only by assuming the additional l-th

order regularity on the initial data. Therefore the decay estimate (7.1.9) for P ̸= 0 is of the
regularity-loss type. For a similar decay estimate of the regularity-loss type for the system
(7.1.6), we refer the readers to [24].

The key to the proof of the above decay estimate is to show the corresponding pointwise
estimate of the solution in the Fourier space. Our pointwise estimate seems optimal and
can be derived by the energy method in the Fourier space. Our energy method for the
Timoshenko-Cattaneo system (7.1.1) is a generalized version of the previous one employed in
Chapter 6 for the Timoshenko-Fourier system (7.1.2). In fact, the previous energy method
in Chapter 6 can be simply obtained from the present energy method by putting τ0 = 0
formally.

Finally in Section 7.3, we study the Timoshenko system with the thermal effect of memory-
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type (cf. [11]): 
φtt − (φx − ψ)x = 0,

ψtt − a2ψxx − (φx − ψ) + bθx = 0,

θt + bψtx − κ

∫ t

0

g(t− τ) θxx(τ) dτ = 0,

(7.1.10)

where a, b and κ are positive constants, and g(t) is an exponentially decaying function
satisfying g(t) > 0 and

∫∞
0
g(t) dt = 1. We restrict to the simplest case where

g(t) =
1

τ0
e
− t

τ0

with τ0 being a positive constant. In this special case, we will observe that the system
(7.1.10) can be reduced to the Timoshenko-Cattaneo system (7.1.1) and therefore verifies the
dissipative structure (7.1.4) and the decay estimates (7.1.8) and (7.1.9). We expect that the
same conclusion holds true even for a more general memory kernel g(t) but it remains an
open question.

There are many other works on the Timoshenko system with dissipation. We refer to
[47, 48, 57] for frictional damping case, [11, 55, 54, 56] for thermal dissipation case, and
[4, 3, 33, 34] for memory-type dissipation case. The decay property of the regularity-loss
type which is similar to (7.1.9) is known also for other interesting model systems. We refer to
[23] for a hyperbolic-elliptic system of radiating gas, [60] for a plate equation with rotational
inertia effect, [15, 65] for the compressible Euler-Maxwell system, and [16] for the Vlasov-
Maxwell-Boltzmann system.

7.2 Timoshenko-Cattaneo system

7.2.1 Main results

We consider the Timoshenko-Cattaneo system (7.1.1) with the initial data

(φ, φt, ψ, ψt, θ, q̃)(x, 0) = (φ0, φ1, ψ0, ψ1, θ0, q̃0)(x).

We introduce the quantities v = φx − ψ, u = φt, z = aψx, y = ψt and q =
1√
κ
q̃, and rewrite

the system (7.1.1) in the form of the first order system

vt − ux + y = 0,

yt − azx + bθx − v = 0,

ut − vx = 0,

zt − ayx = 0,

θt + byx +
√
κqx = 0,

τ0qt +
√
κθx + q = 0.

(7.2.1)
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The corresponding initial data are given by

(v, y, u, z, θ, q)(x, 0) = (v0, y0, u0, z0, θ0, q0)(x), (7.2.2)

where v0 = φ0,x − ψ0, y0 = ψ1, u0 = φ1, z0 = aψ0,x and q0 = 1√
κ
q̃0. We rewrite this initial

value problem (7.2.1), (7.2.2) for the Timoshenko-Cattaneo system by using vector notations.
Put U := (v, y, u, z, θ, q)T and U0 := (v0, y0, u0, z0, θ0, q0)

T . Then we have

A0Ut + AUx + LU = 0, U(x, 0) = U0(x), (7.2.3)

where the coefficient matrices are given by

A0 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 τ0

 , A =


0 0 −1 0 0 0
0 0 0 −a b 0
−1 0 0 0 0 0
0 −a 0 0 0 0
0 b 0 0 0

√
κ

0 0 0 0
√
κ 0

 ,

L =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 .

We see that A0 is real symmetric (diagonal) and positive definite, A is real symmetric, and L
is nonnegative definite (but is not real symmetric). Therefore our Timoshenko-Cattaneo sys-
tem in (7.2.3) is regarded as the first order symmetric hyperbolic system with non-symmetric
relaxation. Unfortunately, we conclude that the general theory on the dissipative structure
developed in [67, 58] is not applicable to our Timoshenko-Cattaneo system, because the re-
laxation matrix L is not symmetric such that kerL ̸= kerL1, where L1 denotes the symmetric
part of L.

We take the Fourier transform of (7.2.3) to obtain

A0Ût + (iξA+ L)Û = 0, Û(ξ, 0) = Û0(ξ), (7.2.4)

where ξ ∈ R is the Fourier variable. The eigenvalue problem associated with (7.2.4) is

λA0ϕ+ (iξA+ L)ϕ = 0, (7.2.5)

where λ ∈ C and ϕ ∈ C6. Namely, the eigenvalue of the problem (7.2.4) is the solution
λ = λ(iξ) ∈ C to the characteristic equation

det{λA0 + (iξA+ L)} = 0. (7.2.6)
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Now we state the result on the decay estimate of the solution to the problem (7.2.3) for
the Timoshenko-Cattaneo system. To this end, for the given solution U = (v, y, u, z, θ, q)T to
the problem (7.2.3), we define the vector function V by V = (v, y, u, z, θ,

√
τ0 q)

T and write
|V |2 = |(v, y, u, z, θ)|2 + τ0|q|2, so that

∥V ∥2L2 = ∥(v, y, u, z, θ)∥2L2 + τ0∥q∥2L2 .

With this notation, our decay result can be stated as follows.

Theorem 7.2.1. Let V be the above function defined from the solution U to the problem
(7.2.3). Then V satisfies the following decay estimates for t ≥ 0:

∥∂kxV (t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥V0∥Lp + Ce−ct∥∂kxV0∥L2 (7.2.7)

for P = 0, and

∥∂kxV (t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥V0∥Lp + C(1 + t)−
l
2∥∂k+l

x V0∥L2 (7.2.8)

for P ̸= 0. Here V0 is the initial data for V , 1 ≤ p ≤ 2, k and l are nonnegative integers,
and C and c are positive constants independent of τ0 ∈ (0, 1].

Remark. The above decay estimates (7.2.7) and (7.2.8) are the same as those for the
Timoshenko-Fourier system (7.1.2) obtained in Chapter 6 (also see [38]), although the sta-
bility number is different.

We remark that the decay estimate (7.2.8) for P ̸= 0 is of the regularity-loss type because
we can get the decay rate (1+ t)−l/2 only by assuming the additional l-th order regularity on
the initial data.

To prove the above decay estimates (7.2.7) and (7.2.8), we need to show the following
pointwise estimates of the solution in the Fourier space.

Lemma 7.2.2. Let V̂ be the function corresponding to the solution Û to the problem (7.2.4)
in the Fourier space. Then V̂ satisfies the following pointwise estimates for any ξ ∈ R and
t ≥ 0:

|V̂ (ξ, t)| ≤ Ce−cρ1(ξ)t|V̂0(ξ)| for P = 0, (7.2.9)

|V̂ (ξ, t)| ≤ Ce−cρ2(ξ)t|V̂0(ξ)| for P ̸= 0, (7.2.10)

where V̂0 is the initial data for V̂ , ρ1(ξ) = ξ4

(1+ξ2)2
and ρ2(ξ) = ξ4

(1+ξ2)3
, and C and c are

positive constants independent of τ0 ∈ (0, 1].

These pointwise estimates are also the same as those for the Timoshenko-Fourier system
(7.1.2) obtained in Chapter 6 (also see [38]). Once these pointwise estimates in Lemma 7.2.2
are shown, the decay estimates (7.2.7) and (7.2.8) can be proved just in the same way as
Chapter 6 and therefore we omit the proof of Theorem 7.2.1. The pointwise estimates in
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Lemma 7.2.2 will be proved in Subsection 7.2.3 and Subsection 7.2.4 by applying the energy
method in the Fourier space.

Finally in this subsection, we state the result on the energy estimates of the solution to
the problem (7.2.3), which will be proved at the end of Subsection 7.2.4.

Proposition 7.2.3. Let V = (v, y, u, z, θ,
√
τ0 q) be the function corresponding to the solution

U to the problem (7.2.3). Let s and k be integers with 0 ≤ k ≤ s. Then V satisfies the
following energy estimates for any t ≥ 0:

∥∂kxV (t)∥2Hs−k +

∫ t

0

(
∥∂k+2

x (v, y)(τ)∥2Hs−k−2

+ ∥∂k+1
x (u, z, θ)(τ)∥2Hs−k−1 + ∥∂kxq(τ)∥2Hs−k

)
dτ ≤ C∥∂kxV0∥2Hs−k

(7.2.11)

for P = 0, and

∥∂kxV (t)∥2Hs−k +

∫ t

0

(
∥∂k+2

x v(τ)∥2Hs−k−3 + ∥∂k+2
x y(τ)∥2Hs−k−2

+ ∥∂k+1
x u(τ)∥2Hs−k−2 + ∥∂k+1

x (z, θ)(τ)∥2Hs−k−1 + ∥∂kxq(τ)∥2Hs−k

)
dτ

≤ C∥∂kxV0∥2Hs−k

(7.2.12)

for P ̸= 0, where C is a positive constant independent of τ0 ∈ (0, 1].

Remark 1. Here we used the Sobolev space Hm with negative m, which is defined as usual,
namely, Hm = {u ;

∫
R(1 + |ξ|2)m |û(ξ)|2 <∞}.

Remark 2. We note that in the dissipative term of (7.2.12) for P ̸= 0, we have one regularity-
loss for two components v and u but there is no regularity-loss for other four components
y, z, θ and q. Also, we remark that the energy estimates in Chapter 6 (also in [38]) for
the Timoshenko-Fourier system (7.1.2) are formally obtained from (7.2.11) and (7.2.12) by
putting τ0 = 0.

7.2.2 Asymptotic expansion of eigenvalues

We denote by λ = λj(iξ), j = 1, 2, 3, 4, 5, 6, the eigenvalues of the probelm (7.2.4), which are
the solutions to the characterestic equation (7.2.6). We investigate the asymptotic expansion
of these eigenvalues for |ξ| → 0 and |ξ| → ∞. It is convenient to introduce the variable ζ ∈ C
and consider the eigenvalues in the form λ = λj(ζ). These λ = λj(ζ) are the solutions of the
characteristic equation

det{λA0 + (ζA+ L)} = τ0λ
6 + λ5 +

[
τ0
{
1− (1 + a2 + b2) ζ2

}
− κζ2

]
λ4

+
{
1− (1 + a2 + b2) ζ2

}
λ3

+
[
τ0(a

2 + b2) ζ2 − κ
{
1− (a2 + 1) ζ2

}]
ζ2λ2

+ (a2 + b2) ζ4λ− a2κζ6 = 0. (7.2.13)
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(i) When |ζ| → 0，λj(ζ) has the following asymptotic expansion:

λj(ζ) = λ
(0)
j + λ

(1)
j ζ + λ

(2)
j ζ2 + · · · . (7.2.14)

We determine the coefficients λ
(k)
j in (7.2.14) by direct computations. For the first three

eigenvalues, we find that

λ
(0)
j = λ

(1)
j = 0, λ

(2)
j = αj for j = 1, 2, 3,

where αj are the solutions of the algebraic equation f(X) := X3−κX2+(a2+b2)X−a2κ = 0.
These αj are the same as in Chapter 6 and we know that Reαj > 0 for j = 1, 2, 3. This
follows from the fact that f(0)f(κ) < 0 and α1 + α2 + α3 = κ. On the other hand, for the
next two eigenvalues, we find that

λ
(0)
j = ±i, λ

(1)
j = 0, λ

(2)
j = ∓1

2
Y i, λ

(3)
j = 0,

λ
(4)
j = −1

2

b2κ

1 + τ 20
∓ 1

2
Zi for j = 4, 5,

where Y := 1+a2+b2 and Z :=
1

4
Y 2 + Y − 1− τ0

b2κ

1 + τ 20
. We see that Reλ

(4)
j = −1

2

b2κ

1 + τ 20
< 0

for j = 4, 5. We remark that these coefficients are reduced to the corresponding coefficients
in Chapter 6 if we put τ0 = 0 formally. Finally, for the last eigenvalue, we have

λ
(0)
j = − 1

τ0
for j = 6.

This coefficient is singular for τ0 → 0.

Consequently, for each fixed τ0 ∈ (0, 1] and for |ξ| → 0, we have

Re λj(iξ) =



−(Reαj) ξ
2 +O(|ξ|3) for j = 1, 2, 3,

−1

2

b2κ

1 + τ 20
ξ4 +O(|ξ|5) for j = 4, 5,

− 1

τ0
+O(|ξ|) for j = 6.

(7.2.15)

This expansion for |ξ| → 0 shows that we have Reλ(iξ) ∼ −cξ2 for three eigenvalues,
Reλ(iξ) ∼ −cξ4 for two eigenvalues, and Reλ(iξ) ∼ −c for one eigenvalue.

(ii) To derive the asymptotic expansion of the eigenvalues λj(ζ) for |ζ| → ∞, we consider
the characteristic equation in the form

det{λA0 + (ζA+ L)} = ζ6 det{µA0 + (A+ ζ−1L)} = 0,
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where we put µ = λ
ζ
. Let µ = µj(ζ

−1) be the solutions of the modified characteristic equation

det{µA0 + (A+ ζ−1L)} = 0:

det{µA0 + (A+ ζ−1L)} = τ0µ
6 + ζ−1µ5 +

[
τ0
{
ζ−2 − (1 + a2 + b2)

}
− κ
]
µ4

+
{
ζ−2 − (1 + a2 + b2)

}
ζ−1µ3

+
[
τ0(a

2 + b2)− κ
{
ζ−2 − (a2 + 1)

}]
µ2

+ (a2 + b2) ζ−1µ− a2κ = 0. (7.2.16)

Then we have the relation λj(ζ) = ζµj(ζ
−1). On the other hand, the asymptotic expansion

of µj(ζ
−1) for |ζ|−1 → 0 has the form

µj(ζ
−1) = µ

(1)
j + µ

(0)
j ζ−1 + µ

(−1)
j ζ−2 + µ

(−2)
j ζ−3 + · · · . (7.2.17)

Consequently, we have the following asymptotic expansion of λj(ζ) for |ζ| → ∞:

λj(ζ) = µ
(1)
j ζ + µ

(0)
j + µ

(−1)
j ζ−1 + µ

(−2)
j ζ−2 + · · · .

We determine the coefficients µ
(k)
j in (7.2.17) by direct computations. For the first two

eigenvalues, these coefficients are given as follows: When P = 0, we have

µ
(1)
j = ±1, µ

(0)
j = βj for j = 1, 2,

and when P ̸= 0, we have

µ
(1)
j = ±1, µ

(0)
j = 0, µ

(−1)
j = ±κ− τ0

2κP
, µ

(−2)
j =

b2

2κP 2
for j = 1, 2,

where P denotes the stability number given in (7.1.3). Here βj are the solutions of the
algebraic equation 4(τ0Q+R)X2+2QX+R = 0, where Q := −(1−a2−b2) and R := κ−τ0.
We see that

QR = −(1− a2 − b2)(κ− τ0)

= τ0(1− a2 − b2) + κ(a2 − 1) + b2κ = b2κ > 0,

where we used P = 0 in the last equality. Thus the signs of τ0Q+R, Q and R coincide, and
we conclude that Re βj < 0 for j = 1, 2. We remark that all these coefficients are reduced to
the corresponding coefficients in Chapter 6 if we put τ0 = 0 formally.

On the other hand, for the other four eigenvalues, we have

µ
(1)
j = γj, µ

(0)
j = −1

2
δj for j = 3, 4, 5, 6,
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where γj are the solutions of the algebraic equation τ0Y
4 − {τ0(a2 + b2) + κ}Y 2 + a2κ = 0,

and δj are given by

δj :=
γ2j − (a2 + b2)

τ0{γ2j − (a2 + b2)}+ (τ0γ2j − κ)
.

We see easily that γj ∈ R for j = 3, 4, 5, 6. Also, we find that

{γ2j − (a2 + b2)}(τ0γ2j − κ) = τ0γ
4
j − {τ0(a2 + b2) + κ}γ2j + (a2 + b2)κ

= b2κ > 0,

which shows that δj > 0 for j = 3, 4, 5, 6.

Consequently, for each fixed τ0 ∈ (0, 1], when P = 0, we have

Reλj(iξ) =


Re βj +O(|ξ|−1) for j = 1, 2,

−1

2
δj +O(|ξ|−1) for j = 3, 4, 5, 6

(7.2.18)

for |ξ| → ∞, while in the case P ̸= 0, we have

Re λj(iξ) =


− b2

2κP 2
ξ−2 +O(|ξ|−3) for j = 1, 2,

−1

2
δj +O(|ξ|−1) for j = 3, 4, 5, 6

(7.2.19)

for |ξ| → ∞. When P = 0, we see from (7.2.18) that all the eigenvalues are of the standard
type and satisfy Reλ(iξ) ∼ −c for |ξ| → ∞. On the other hand, when P ̸= 0, we know from
(7.2.19) that four eigenvalues satisfy Reλ(iξ) ∼ −c for |ξ| → ∞, while the other two are not
of the standard type and satisfy Reλ(iξ) ∼ −cξ−2 for |ξ| → ∞.

We conclude from the asymptotic expansions (7.2.15) for |ξ| → 0 and (7.2.18), (7.2.19)
for |ξ| → ∞ that the energy inequalities (7.2.11) and (7.2.12) in Proposition 7.2.3 completely
match with the eigenvalues of our problem (7.2.4). Also, we remark that these asymptotic
expansions suggest the optimality of the pointwise estimates (7.2.9) and (7.2.10) in Lemma
7.2.2.

7.2.3 Pointwise estimates in Fourier spaces

The main purpose of this subsection is to prove Lemma 7.2.2 on the pointwise estimates in
the Fourier space. This will be done by employing the energy method in the Fourier space.
Here in this subsection, we only give a short outline of that energy method and the detailed
computations will be given in the next subsection,

In our energy method, we construct a Lyapunov function E for the problem (7.2.4) in the
Fourier space. Our Lyapunov function E is equivalent to |V̂ |2 in the sense that

c|V̂ |2 ≤ E ≤ C|V̂ |2 (7.2.20)
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with positive constants c and C not depneding on τ0 ∈ (0, 1], and satisfies the differential
inequality

Et + cF ≤ 0, (7.2.21)

where V̂ is given in Lemma 7.2.2, F is the corresponding dissipative term, and c is a positive
constant independent of τ0 ∈ (0, 1].

After the detailed computations in the next subsection, we find that our Lyapunov func-
tion E and the corresponding dissipative term F can be given as follows: When P = 0, we
have

E =
1

2
|V̂ |2 + τ0α3

ξ

1 + ξ2
E0 + α3α2α1

ξ3

(1 + ξ2)2
(E1 + E2)

+ α3α2
1

1 + ξ2
(H1 + τ0ξ

2Ẽ7 +H2), (7.2.22)

F =
ξ4

(1 + ξ2)2
(|v̂|2 + |ŷ|2) + ξ2

1 + ξ2
(|û|2 + |ẑ|2 + |θ̂|2) + |q̂|2, (7.2.23)

and when P ̸= 0, we have

E =
1

2
|V̂ |2 + τ0α3

ξ

1 + ξ2
E0 + α3α2α1

ξ3

(1 + ξ2)3
{
E1 + (1 + ξ2)E2

}
+ α3α2

1

(1 + ξ2)2
{
(H1 + τ0ξ

2Ẽ7) + (1 + ξ2)H2

}
, (7.2.24)

F =
ξ4

(1 + ξ2)3
|v̂|2 + ξ4

(1 + ξ2)2
|ŷ|2 + ξ2

(1 + ξ2)2
|û|2

+
ξ2

1 + ξ2
(|ẑ|2 + |θ̂|2) + |q̂|2. (7.2.25)

Here α1, α2 and α3 are suitably small positive constants independent of τ0 ∈ (0, 1], and the
artificial energies E0, E1, E2, Ẽ7, H1 and H2 are specified in the next subsection.

More presicely, we can prove the following result.

Proposition 7.2.4. Let P = 0 (resp. P ̸= 0). Then, for suitably small positive constants α1,
α2 and α3 independent of τ0 ∈ (0, 1], the Lyapunov function E in (7.2.22) (resp. (7.2.24)) is
equivalent to |V̂ |2 in the sense of (7.2.20) and satisfies the differential inequality (7.2.21) with
the dissipative term F in (7.2.23) (resp. (7.2.25)), where c is a positive constant independent
of τ0 ∈ (0, 1].

Remark. If we put τ0 = 0 formally, then our Lyapunov function E and the dissipative term
F in Proposition 7.2.4 are respectively reduced to the corresponding E and F in Chapter 6
for the Timoshenko-Fourier system (7.1.2).
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Proof of Lemma 7.2.2. The lemma easily follows from Proposition 7.2.4. Here we only give
the proof for P ̸= 0. We recall that V̂ = (v̂, ŷ, û, ẑ, θ̂,

√
τ0 q̂) and Û = (v̂, ŷ, û, ẑ, θ̂, q̂).

Since E is equivalent to |V̂ |2 in the sense of (7.2.20), we find that F in (7.2.25) satisfies

F ≥ cρ2(ξ)|Û |2 ≥ cρ2(ξ)|V̂ |2 ≥ cρ2(ξ)E,

where c is a positive constant independent of τ0 ∈ (0, 1] and ρ2(ξ) = ξ4/(1+ξ2)3. Substituting
this inequality into (7.2.21), we have Et + cρ2(ξ)E ≤ 0. This differential inequality can be
solved as E(ξ, t) ≤ e−cρ2(ξ)tE(ξ, 0), which combined with (7.2.20) gives the desired pointwise
estimate (7.2.10). This completes the proof of Lemma 7.2.2.

Finally in this subsection, we give the proof of Proposition 7.2.3 on the energy estimates.

Proof of Proposition 7.2.3. We prove the proposition only for P ̸= 0. We integrate the
differential inequality (7.2.21) with respect to t over (0, t). Then we multiply the resulting
inequality by (1 + ξ2)s−kξ2k and integrate with respect to ξ ∈ R, where 0 ≤ k ≤ s. Since
E is equivalent to |V̂ |2 in the sense of (7.2.20) and F is given by (7.2.25) for P ̸= 0, this
computation together with the Plancherel theorem yields the desired energy estimate (7.2.12)
for P ̸= 0. Thus the proof of Proposition 7.2.3 is complete.

7.2.4 Energy method in Fourier spaces

In this subsection we prove Proposition 7.2.4 by applying the energy method in the Fourier
space. In each case of P = 0 and P ̸= 0, we need to construct a suitable Lyapunov function
E for the problem (7.2.4) and prove the differential inequality (7.2.21) with the desired
dissipation term F .

First, we note that the explicit form of the Timoshenko-Cattaneo system in (7.2.4) (in
the Fourier space) is given as

v̂t − iξû+ ŷ = 0, (7.2.26a)

ŷt − aiξẑ − v̂ + biξθ̂ = 0, (7.2.26b)

ût − iξv̂ = 0, (7.2.26c)

ẑt − aiξŷ = 0, (7.2.26d)

θ̂t +
√
κiξq̂ + biξŷ = 0, (7.2.26e)

τ0q̂t + q̂ +
√
κiξθ̂ = 0. (7.2.26f)

We apply the energy method in the Fourier space for this system. Our energy method below
is an improved version of the previous one in Chapter 6 (also see [38]) for the Timoshenko-
Fourier system and is divided into seven steps.

Step 1. (Basic energy and estimate for q̂):
We multiply the equations (7.2.26a), (7.2.26b), (7.2.26c), (7.2.26d), (7.2.26e) and (7.2.26f)
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by ¯̂v, ¯̂y, ¯̂u, ¯̂z ,
¯̂
θ and ¯̂q, respectively. Then, adding the resultant equations and taking the real

part, we get

1

2
(|V̂ |2)t + |q̂|2 = 0, (7.2.27)

where we recall that |V̂ |2 = |(v̂, ŷ, û, ẑ, θ̂)|2 + τ0|q̂|2. This is the basic (physical) energy
equality which contains the dissipation q̂.

Step 2. (Estimate for θ̂):
We create the estimate for the dissipation θ̂. To this end, we multiply (7.2.26e) and (7.2.26f)

by iξτ0 ¯̂q and −iξ ¯̂θ, respectively, add the resulting equations, and take the real part. This
yields

τ0ξE0,t +
√
κξ2|θ̂|2 = τ0

√
κξ2|q̂|2 + τ0bξ

2Re (ŷ ¯̂q) + ξRe (i
¯̂
θq̂),

where E0 = Re (iθ̂ ¯̂q); ξE0 is an artificial energy which is not used in Chapter 6. This equality
becomes trivial when τ0 = 0, because we have q̂ = −

√
κiξθ̂ for τ0 = 0. We simply estimate

this equality as

τ0ξE0,t +
√
κξ2|θ̂|2 ≤ τ0

√
κξ2|q̂|2 + τ0bξ

2|ŷ||q̂|+ |ξ||θ̂||q̂|. (7.2.28)

Step 3. (Estimate for (v̂, ŷ)):
This step is just the same as in Chapter 6. We multiply (7.2.26c) and (7.2.26a) by iξ ¯̂v and
−iξ ¯̂u, respectively, and add the resulting equalities. Also, we multiply (7.2.26d) and (7.2.26b)
by iξ ¯̂y and −iξ ¯̂z, respectively, and add the resulting equalities. Then, taking the real part,
we have

ξE1,t + ξ2|v̂|2 = ξ2|û|2 + ξRe (i¯̂uŷ), (7.2.29)

ξE2,t + aξ2|ŷ|2 = aξ2|ẑ|2 − ξRe (iv̂ ¯̂z)− bξ2Re (¯̂zθ̂), (7.2.30)

where E1 = Re (iv̂ ¯̂u) and E2 = Re (iẑ ¯̂y); ξE1 and ξE2 are artificial energies.

Step 4. (Estimate for û):
We create the dissipation for û. First we compute essentially in the same way as in Chapter 6.
Namely, we calculate (7.2.26b)× (−¯̂v)+(7.2.26a)× (−¯̂y), (7.2.26c)× (−¯̂z)+(7.2.26d)× (−¯̂u),

(7.2.26e)× (−iξ ¯̂y) + (7.2.26b)× (iξ
¯̂
θ), and (7.2.26c)× (− ¯̂

θ) + (7.2.26e)× (−¯̂u), and take the
real part. This yields the differential equalities for the artificial energies E3, E4, ξE6, and

E5, where E3 = −Re (v̂ ¯̂y), E4 = −Re (û¯̂z), E6 = Re (iŷ
¯̂
θ), and E5 = −Re (û

¯̂
θ). We combine

these four equalities together with (7.2.29)× (−1) such that it produces the modified energy
H1:

H1 := b
{
(−ξE1) + ξ2(E3 + aE4)

}
+ (ξE6 + E5) + (a2 − 1)ξ2E5. (7.2.31)

Consequently, we obtain

H1,t + bξ2|û|2 = bξ2|θ̂|2 − (1− a2 − b2) ξ3 Re (i¯̂vθ̂)− aξ2Re (ẑ
¯̂
θ)

+
√
κ(a2 − 1) ξ3 Re (i¯̂uq̂) +

√
κξRe (i¯̂uq̂)−

√
κξ2 Re (¯̂yq̂), (7.2.32)
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which is reduced to the equation (6.4.15) in Chapter 6 (or (3.39) in [38]) if we put τ0 = 0
formally.

Next, we eliminate the term −(1− a2 − b2) ξ3 Re (i¯̂vθ̂) on the right hand side of (7.2.32).
For this purpose, we multiply (7.2.26a) and (7.2.26f) by τ0 ¯̂q and ¯̂v, respectively. Then, adding
the resultant equalities and taking the real part, we get

τ0E7,t +
√
κξRe (i¯̂vθ̂) = τ0ξRe (iû¯̂q)− τ0Re (ŷ ¯̂q)− Re (¯̂vq̂), (7.2.33)

where E7 = Re (v̂ ¯̂q) is an artificial energy which is not used in Chapter 6. We multiply
(7.2.33) by − 1√

κ
(1− a2 − b2) ξ2 and add the result to (7.2.32). This yields(

H1 + τ0ξ
2Ẽ7

)
t
+ bξ2|û|2

= bξ2|θ̂|2 − aξ2Re (ẑ
¯̂
θ) +

1√
κ
(1− a2 − b2) ξ2 Re (¯̂vq̂)

+
{ τ0√

κ
(1− a2 − b2)−

√
κ
}
ξ2 Re (ŷ ¯̂q) +

√
κPξ3Re (i¯̂uq̂) +

√
κξRe (i¯̂uq̂),

where Ẽ7 = − 1√
κ
(1 − a2 − b2)E7, and P is the stability number defined in (7.1.3). This

equality is simply estimated as(
H1 + τ0ξ

2Ẽ7

)
t
+ bξ2|û|2 ≤ Cξ2|θ̂|2 + Cξ2|ẑ||θ̂|

+ Cξ2|v̂||q̂|+ C(1 + τ0) ξ
2|ŷ||q̂|+ C|P ||ξ|3|û||q̂|+ C|ξ||û||q̂|, (7.2.34)

where C is a positive constant independent of τ0 ∈ (0, 1].

Step 5. (Estimate for ẑ):
We create the dissipation for ẑ by calculating essentially in the same way as in Chapter 6.
Namely, we combine the three differential equalities for ξE6, E5 and E4 (which are used in
the previous step) together with (7.2.30) × (−1) such that it produces the modified energy
H2:

H2 = b(−ξE2) + a(ξE6 + E5) + bE4. (7.2.35)

This yields

H2,t + abξ2|ẑ|2 = abξ2|θ̂|2 + (b2 − a2) ξ2Re (¯̂zθ̂)

− a
√
κξ2Re (¯̂yq̂) + a

√
κξRe (i¯̂uq̂),

which can be reduced to the equality (6.4.19) in Chapter 6 (or (3.43) in [38]) if we put τ0 = 0
formally. This equality is simply estimated as

H2,t + abξ2|ẑ|2 ≤ Cξ2|θ̂|2 + Cξ2|ẑ||θ̂|+ Cξ2|ŷ||q̂|+ C|ξ||û||q̂|, (7.2.36)

where C is a positive constant independent of τ0 ∈ (0, 1].
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Step 6. (Lyapunov function for P = 0):
We construct the Lyapunov function E for P = 0. Let P = 0. First, in order to get a good
dissipation for (v̂, ŷ), we add (7.2.29) and (7.2.30). By applying the Young inequality, we get

ξ(E1 + E2)t + (1− ε) ξ2(|v̂|2 + a|ŷ|2)

≤ Cε(1 + ξ2)(|û|2 + a|ẑ|2) + Cεξ
2|θ̂|2 (7.2.37)

for any ε ∈ (0, 1), where Cε is a positive constant depending on ε but independent of τ0 ∈
(0, 1]. Next, we add (7.2.34) with P = 0 and (7.2.36) to get a good dissipation for (û, ẑ).
Applying the Young inequality, we obtain(

H1 + τ0ξ
2Ẽ7 +H2

)
t
+ bξ2|û|2 + ab(1− ε) ξ2|ẑ|2

≤ Cεξ
2|θ̂|2 + Cξ2|v̂||q̂|+ C(1 + τ0)ξ

2|ŷ||q̂|+ C|ξ||û||q̂| (7.2.38)

for any ε ∈ (0, 1), where Cε denotes a constant depending on ε but independent of τ0 ∈ (0, 1].

Now we combine the above two inequalities. Letting α1 > 0, we multiply (7.2.37) and
(7.2.38) by α1ξ

2 and 1 + ξ2, respectively, and add the resultant inequalities. This yields{
α1ξ

3(E1 + E2) + (1 + ξ2)(H1 + τ0ξ
2Ẽ7 +H2)

}
t

+ α1(1− ε) ξ4(|v̂|2 + a|ŷ|2) + b(1− α1Cε)(1 + ξ2) ξ2|û|2

+ ab(1− ε− α1Cε)(1 + ξ2) ξ2|ẑ|2

≤ Cε,α1(1 + ξ2) ξ2|θ̂|2 + C(1 + ξ2) ξ2|v̂||q̂|

+ C(1 + τ0)(1 + ξ2) ξ2|ŷ||q̂|+ C(1 + ξ2)|ξ||û||q̂|. (7.2.39)

Here Cε,α1 denotes a constant depending on (ε, α1) but independent of τ0 ∈ (0, 1]. Also,
letting α2 > 0, we multiply (7.2.28) and (7.2.39) by 1 + ξ2 and α2, respectively, and add the
resultant inequalities. If we introduce the quantity E by

(1 + ξ2)2E = τ0(1 + ξ2) ξE0

+ α2

{
α1ξ

3(E1 + E2) + (1 + ξ2)(H1 + τ0ξ
2Ẽ7 +H2)

}
, (7.2.40)

then the result is written as follows.

(1 + ξ2)2Et + α2α1(1− ε) ξ4(|v̂|2 + a|ŷ|2) + α2b (1− α1Cε)(1 + ξ2) ξ2|û|2

+ α2ab (1− ε− α1Cε)(1 + ξ2) ξ2|ẑ|2 +
√
κ(1− α2Cε,α1)(1 + ξ2) ξ2|θ̂|2

≤ τ0C(1 + ξ2) ξ2|q̂|2 + α2C(1 + ξ2) ξ2|v̂||q̂|+ α2C(1 + ξ2)|ξ||û||q̂|

+ Cα2(1 + τ0)(1 + ξ2) ξ2|ŷ||q̂|+ (1 + ξ2)|ξ||θ̂||q̂|.
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Here Cα2 is a constant depending on α2 but independent of τ0 ∈ (0, 1]. Moreover, estimating
the right hand side by using the Young inequality, we obtain

(1 + ξ2)2Et + α2α1(1− 2ε) ξ4(|v̂|2 + a|ŷ|2)

+ α2b (1− ε− α1Cε)(1 + ξ2) ξ2(|û|2 + a|ẑ|2)

+
√
κ(1− ε− α2Cε,α1)(1 + ξ2) ξ2|θ̂|2

≤ Cε,α1,α2(1 + τ0)
2(1 + ξ2)2|q̂|2, (7.2.41)

where Cε,α1,α2 is a constant depending on (ε, α1, α2) but independent of τ0 ∈ (0, 1].

Finally，letting α3 > 0, we multiply (7.2.41) by α3/(1 + ξ2)2 and add the result to the
basic energy equality (7.2.27). This yields

Et + α3α2α1(1− 2ε)
ξ4

(1 + ξ2)2
(|v̂|2 + a|ŷ|2)

+ α3α2b (1− ε− α1Cε)
ξ2

1 + ξ2
(|û|2 + a|ẑ|2)

+ α3

√
κ(1− ε− α2Cε,α1)

ξ2

1 + ξ2
|θ̂|2

+
{
1− α3Cε,α1,α2(1 + τ0)

2
}
|q̂|2 ≤ 0, (7.2.42)

where we put E = |V̂ |2/2 + α3E . Since E is given in (7.2.40), we see that this E is written
explicitly in the form of (7.2.22). Also we find that our E contains the component q̂ only in the
terms τ0E0 and τ0Ẽ7 with the factor τ0; see also (7.2.31) and (7.2.35). Thus we conclude that
there is a small positive constant α0 independent of τ0 ∈ (0, 1] such that if α1, α2, α3 ∈ (0, α0],
then our E is equivalent to |V̂ |2 in the sense of (7.2.20). This E becomes our desired Lyapunov
function for suitably chosen α1, α2, α3 ∈ (0, α0]. In fact, in (7.2.42), we take ε > 0 such that
1 − 2ε > 0. For this choice of ε, we choose α1, α2, α3 ∈ (0, α0] independent of τ0 ∈ (0, 1] so
small that 1− ε− α1Cε > 0, 1− ε− α2Cε,α1 > 0 and 1− 4α3Cε,α1,α2 > 0. Thus we conclude
that our (7.2.42) becomes the desired differential inequality (7.2.21) with the dissipative term
F given in (7.2.23). This completes the proof of Proposition 7.2.4 for P = 0.

Step 7. (Lyapunov function for P ̸= 0):
We construct the Lyapunov function E for P ̸= 0. Let P ̸= 0. In this case, to get a good
dissipation for (v̂, ŷ), we combine (7.2.29) and (7.2.30) such that (7.2.29)+(7.2.30)× (1+ξ2).
Then, applying the Young inequality, we obtain

ξ
{
E1 + (1 + ξ2)E2

}
t
+ (1− ε) ξ2

{
|v̂|2 + a(1 + ξ2)|ŷ|2

}
≤ Cε(1 + ξ2)|û|2 + Cε(1 + ξ2)2|ẑ|2 + Cε(1 + ξ2) ξ2|θ̂|2 (7.2.43)

for any ε ∈ (0, 1), where Cε is a positive constant depending on ε but independent of τ0 ∈
(0, 1]. Next we combine (7.2.34) and (7.2.36) to get a good dissipation for (û, ẑ). We make
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the combination (7.2.36)×(1+ξ2)+(7.2.34). Then, applying the Young inequality, we obtain{
H1 + τ0ξ

2Ẽ7 + (1 + ξ2)H2

}
t
+ bξ2|û|2 + ab (1− ε)(1 + ξ2) ξ2|ẑ|2

≤ Cε(1 + ξ2) ξ2|θ̂|2 + Cξ2|v̂||q̂|+ C(1 + τ0)(1 + ξ2) ξ2|ŷ||q̂|

+ C|P ||ξ|3|û||q̂|+ C(1 + ξ2)|ξ||û||q̂| (7.2.44)

for any ε ∈ (0, 1), where Cε is a constant depending on ε but independent of τ0 ∈ (0, 1].

Now we combine the above two estimates for P ̸= 0. Letting α1 > 0, we multiply (7.2.43)
and (7.2.44) by α1ξ

2 and 1 + ξ2, respectively, and add the resultant inequalities to get[
α1ξ

3{E1 + (1 + ξ2)E2}+ (1 + ξ2){H1 + τ0ξ
2Ẽ7 + (1 + ξ2)H2}

]
t

+ α1(1− ε) ξ4
{
|v̂|2 + a(1 + ξ2)|ŷ|2

}
+ b (1− α1Cε)(1 + ξ2) ξ2|û|2 + ab (1− ε− α1Cε)(1 + ξ2)2 ξ2|ẑ|2

≤ Cε,α1(1 + ξ2)2 ξ2|θ̂|2 + C(1 + ξ2)ξ2|v̂||q̂|+ C(1 + τ0)(1 + ξ2)2 ξ2|ŷ||q̂|

+ C|P |(1 + ξ2)|ξ|3|û||q̂|+ C(1 + ξ2)2|ξ||û||q̂|, (7.2.45)

where Cε,α1 is a constant depending on (ε, α1) but independent of τ0 ∈ (0, 1]. Then，letting
α2 > 0, we multiply (7.2.28) and (7.2.45) by (1 + ξ2)2 and α2, respectively, and add the
resultant two inequalities. We introduce the quantity E by

(1 + ξ2)3E = τ0(1 + ξ2)2 ξE0 + α2

[
α1ξ

3{E1 + (1 + ξ2)E2}

+ (1 + ξ2){H1 + τ0ξ
2Ẽ7 + (1 + ξ2)H2}

]
. (7.2.46)

Then the result is written as

(1 + ξ2)3Et + α2α1(1− ε) ξ4
{
|v̂|2 + a(1 + ξ2)|ŷ|2

}
+ α2b (1− α1Cε)(1 + ξ2) ξ2|û|2 + α2ab (1− ε− α1Cε)(1 + ξ2)2 ξ2|ẑ|2

+
√
κ(1− α2Cε,α1)(1 + ξ2)2 ξ2|θ̂|2

≤ τ0C(1 + ξ2) ξ2|q̂|2 + α2C(1 + ξ2) ξ2|v̂||q̂|+ Cα2(1 + τ0)(1 + ξ2)2 ξ2|ŷ||q̂|

+ (1 + ξ2)2|ξ||θ̂||q̂|+ α2C|P |(1 + ξ2)|ξ|3|û||q̂|+ α2C(1 + ξ2)2|ξ||û||q̂|,

where Cα2 is a constant depending on α2 but independent of τ0 ∈ (0, 1]. By using the Young
inequality, we arrive at

(1 + ξ2)3Et + α2α1(1− 2ε) ξ4
{
|v̂|2 + a (1 + ξ2)|ŷ|2

}
+ α2b (1− ε− α1Cε)(1 + ξ2) ξ2

{
|û|2 + a (1 + ξ2)|ẑ|2

}
+
√
κ(1− ε− α2Cε,α1)(1 + ξ2)2 ξ2|θ̂|2

≤ Cε,α1,α2(1 + τ0)
2(1 + P 2)(1 + ξ2)3|q̂|2, (7.2.47)
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where Cε,α1,α2 is a constant depending on (ε, α1, α2) but independent of τ0 ∈ (0, 1]. Finally,
we combine this inequality with the basic energy equality (7.2.27). Namely, letting α3 > 0,
we multiply (7.2.47) by α3/(1+ ξ2)3 and add the resultant inequality to (7.2.27). This yeilds

Et + α3α2α1(1− 2ε)
ξ4

(1 + ξ2)3
{
|v̂|2 + a(1 + ξ2)|ŷ|2

}
+ α3α2b (1− ε− α1Cε)

ξ2

(1 + ξ2)2
{
|û|2 + a (1 + ξ2)|ẑ|2

}
+ α3

√
κ (1− ε− α2Cε,α1)

ξ2

1 + ξ2
|θ̂|2

+
{
1− α3Cε,α1,α2(1 + τ0)

2(1 + P 2)
}
|q̂|2 ≤ 0, (7.2.48)

where we put E = |V̂ |2/2 + α3E . In view of (7.2.46), we observe that this E is written
explicitly in the form of (7.2.24). Here we choose ε ∈ (0, 1) and α1, α2, α3 > 0 similarly
as in the previous step for P = 0. Then our E is the desired Lyapunov function which is
equivalent to |V̂ |2 in the sense of (7.2.20), and (7.2.48) becomes the differential inequality
(7.2.21) with the dissipative term F given in (7.2.25). Thus the proof of Proposition 7.2.4 is
complete for P ̸= 0.

7.3 Timoshenko system with thermal effect of memory-

type

We consider the Timoshenko system (7.1.10) with the thermal effect of memory-type:
φtt − (φx − ψ)x = 0,

ψtt − a2ψxx − (φx − ψ) + bθx = 0,

θt + bψtx − κ

∫ t

0

g(t− τ) θxx(τ) dτ = 0

(7.3.1)

with the initial data

(φ, φt, ψ, ψt, θ)(x, 0) = (φ0, φ1, ψ0, ψ1, θ0)(x). (7.3.2)

Here a, b and κ are positive constants, and g(t) is an exponentially decaying function satis-
fying g(t) > 0 and

∫∞
0
g(t) dt = 1.

In this chapter we only treat the simplest case where the memory kernel g(t) is given
explicitly in the form

g(t) =
1

τ0
e
− t

τ0 (7.3.3)
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with τ0 being a given positive parameter. In this case we introduce the quantity q̃ by

q̃ = −κ
∫ t

0

g(t− τ) θx(τ) dτ.

Since g′(t) = −g(t)/τ0 and g(0) = 1/τ0 by (7.3.3), we find that q̃t = −(q̃ + κθx)/τ0. Conse-
quently, we can transform our system (7.3.1) into the Timoshenko-Cattaneo system (7.1.1).
The corresponding initial data are given as follows.

(φ, φt, ψ, ψt, θ)(x, 0) = (φ0, φ1, ψ0, ψ1, θ0)(x), q̃(x, 0) = 0.

As in Section 7.2, by introducing the quantities

v = φx − ψ, u = φt, z = aψx, y = ψt, q =
1√
κ
q̃,

we can rewrite the above Timoshenko-Cattaneo system (7.1.1) in the form of the first order
symmetric hyperbolic system (7.2.1) for (v, y, u, z, θ, q). The corresponding initial data are
given by (v, y, u, z, θ, q)(x, 0) = (v0, y0, u0, z0, θ0, q0)(x), where

v0 = φ0,x − ψ0, y0 = ψ1, u0 = φ1, z0 = aψ0,x, q0 = 0.

For this system (7.1.1) associated with (7.3.1), we can apply Theorem 7.2.1 and obtain
the decay estimates (7.2.7) and (7.2.8) for P = 0 and P ̸= 0, respectively, where P is the
stability number in (7.1.3). To state this decay result for our system (7.3.1), we introduce

W = (φx − ψ, φt, ψx, ψt, θ), W0 = (φ0,x − ψ0, φ1, ψ0,x, ψ1, θ0).

Then we have:

Theorem 7.3.1. Assume that the memory kernel g(t) is given by (7.3.3). Let W be the
above function defined from the solution to the initial value problem (7.3.1), (7.3.2). Then W
satisfies the following decay estimates for t ≥ 0:

∥∂kxW (t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥W0∥Lp + Ce−ct∥∂kxW0∥L2 (7.3.4)

for P = 0, and

∥∂kxW (t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥W0∥Lp + C(1 + t)−
l
2∥∂k+l

x W0∥L2 (7.3.5)

for P ̸= 0, where P is the stability number in (7.1.3). Here W0 is the initial data for
W defined above, 1 ≤ p ≤ 2, k and l are nonnegative integers, and C and c are positive
constants independent of the parameter τ0.

Remark. By considering the asymptotic expansion of the eigenvalues obtained in Subsection
7.2.2, we think that the above decay estimates (7.3.4) and (7.3.5) are optimal. We expect
that the same decay result holds true even for the system (7.3.1) with a general memory
kernel g(t), which decays exponentially as t → ∞ and satisfies g(t) > 0 and

∫∞
0
g(t) dt = 1,

but it remains an open question.





Chapter 8

Timoshenko system with memory

8.1 Introduction

In this chapter we consider the Cauchy problem of the Timoshenko system with a memory
term {

φtt − (φx − ψ)x = 0, (x, t) ∈ R× R+,

ψtt − σ(ψx)x + (φx − ψ) + γ g ∗ ψxx = 0, (x, t) ∈ R× R+
(8.1.1)

with the initial data

(φ, φt, ψ, ψt)(x, 0) = (φ0, φ1, ψ0, ψ1)(x), x ∈ R (8.1.2)

in one dimensional whole space R. The two coupled wave equations in (8.1.1) with γ = 0 is
the original Timoshenko system, which was first introduced by S. P. Timoshenko in [62, 63]
as a model system which describes the vibration of the beam called Timoshenko beam. This
beam thery has the advantage of describing not only the transversal movement but also the
shear deformation and the rotational inertia effects. Here t is the time variable and x is the
spacial variable which denotes a point on the center line of the beam. The unknown functions
φ = φ(t, x) and ψ = ψ(t, x) denote the transversal displacement and the rotation angle of
the beam, respectively. Note that the term φx −ψ denotes the shearing stress. The function
σ(η) in the nonlinear term is assumed to be a smooth function of η such that σ′(η) > 0 for
any η under considerations. The term

g ∗ ψxx :=

∫ t

0

g(t− τ)ψxx(τ) dτ

corresponds to a memory-type damping. In this chapter the relaxation function g is assumed
to satisfy the following conditions.

129
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Assumption: The function g is assumed to be a smooth function of t ≥ 0 such that
g(t) > 0,

∫
R+

g(t) dt = 1,

−c0 g(t) ≤ g′(t) ≤ −c1 g(t),

|g′′(t)| ≤ Cg(t)

(8.1.3)

for t ≥ 0, where c0, c1 and C are positive constants.

Under (8.1.3), it follows that

|g(t)|+ |g′(t)|+ |g′′(t)| ≤ Ce−c1t

for t ≥ 0, where C is a positive constant.

Based on the change of variable, which was first introduced in [24],

v = φx − ψ, u = φt, z = aψx, y = ψt

with a > 0, which denotes the wave speed defined by a2 = σ
′
(0), we reduce the system (8.1.1)

and (8.1.2) to the first order hyperbolic system

vt − ux + y = 0, (8.1.4a)

yt − σ
(z
a

)
x
− v ++b g ∗ zx = 0, (8.1.4b)

ut − vx = 0, (8.1.4c)

zt − a yx = 0 (8.1.4d)

with the initial data

(v, y, u, z)(x, 0) = (v0, y0, u0, z0)(x), (8.1.5)

where b :=
γ

a
< a, v0 = φ0,x − ψ0, y0 = ψ1, u0 = φ1, z0 = aψ0,x. Note that the nonlinear-

ity depends on z only. In vector notation, the Cauchy problem (8.1.4) and (8.1.5) can be
rewritten as {

Wt + F (W )x +Bg ∗Wx + LW = 0,

W (x, 0) = W0(x),
(8.1.6)

where W = (v, y, u, z)T , W0 = (v0, y0, u0, z0)
T , F (W ) = −(u, σ(z/a), v, ay)T (the superscript

T means the transpose),

B =


0 0 0 0
0 0 0 b
0 0 0 0
0 0 0 0

 , L =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .
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The corresponding linearized system is given by{
Wt + AWx +Bg ∗Wx + LW = 0,

W (0, x) = W0(x),
(8.1.7)

where

A =


0 0 −1 0
0 0 0 −a
−1 0 0 0
0 −a 0 0

 .

The system (8.1.6) can be seen as a particular case of the first order symmetric hyperbolic
system with the non-symmetric relaxation term LW and memory-type dissipation term Bg ∗
Wx. Because the matrix L is not symmetric, the general theory of the dissipative structure
established in [67] and [58] is not applicable to the system (8.1.6). Therefore, in order to
know the dissipative structure and the asymptotic stability of the system (8.1.6), new ideas
have to be implemented.

8.1.1 Known results

In [33], Liu and Kawashima first investigated the Cauchy problem (8.1.1) in one dimensional
whole space R. Due to the regularity-loss property and the weak dissipation of the system,
they had to assume the stronger nonlinearity (to make the initial data much smaller) than
usual. By virtue of the semi-group arguments, they obtained the global-in-time existence and
uniqueness, and optimal decay of the solution to the problem (8.1.6) under enough smallness
and high regularity assumptions on the initial data. There, they employed a time-weighted
L2 energy method combined with the optimal L2 decay of lower-order derivatives of the
solution.

Here, in order to state their results precisely, we introduce the energy norm Ẽ and the
corresponding dissipation norm D̃ as follows:

Ẽ(t)2 :=

[ s
2
]∑

j=0

sup
0≤τ≤t

(1 + τ)
j
2
−ε ∥∂jxW (τ)∥2Hs−2j ,

D̃(t)2 :=

[ s
2
]∑

j=0

∫ t

0

(1 + τ)
j
2
−1−ε ∥∂jxW (τ)∥2Hs−2j dτ

for ε ∈ (0, 1
4
] and s ≥ 0.

Proposition 8.1.1 (Global-in-time existence & L2 decay estimate [33]). Assume σ
′
(η) =

a2 + O(η2) as η → 0. Let s be an integer satisfying s ≥ 3 for a = 1 and s ≥ 5 for a ̸= 1.
Suppose that the initial dataW0 ∈ Hs∩L1

1 and
∫
R W0(x) dx = 0. Put E1 := ∥W0∥Hs+∥W0∥L1

1
.
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Then there exists a positive constant δ1 such that if E1 ≤ δ1, the Cauchy problem (8.1.6) has
a unique global-in-time solution W (t) with

W ∈ C([0,∞];Hs) ∩ C1([0,∞];Hs−1),

and the solution W (t) verifies the energy estimate

Ẽ(t)2 + D̃(t)2 ≤ CE2
1 .

Moreover, for this solution W (t), the following optimal decay estimates for lower-order
derivatives hold:

(1) if a = 1, then for 0 ≤ k ≤ [ s−1
2
],

∥∂kxW (t)∥Hs−2k−1 ≤ CE1(1 + t)−
3
8
− k

4 ;

(2) if a ̸= 1, then for 0 ≤ k ≤ [ s−3
2
],

∥∂kxW (t)∥Hs−2k−3 ≤ CE1(1 + t)−
3
8
− k

4 .

In Proposition 8.1.1 they assumed W0 ∈ L1
1 and

∫
R W0(x) dx = 0 because it gives 1/4

more decay, and this is crucial to their proof. Their proof of the global-in-time existence and
uniqueness results is essentially parallel to the computations of the energy estimate in the
Fourier space for the linearized system (8.2.13), which they showed in [32].

In [32], based on the energy estimate in the Fourier space, they derived the pointwise
estimate of the solution to the linearized system (8.2.13) in the Fourier space, which gives a
sharp decay estimate of the solutionin L2.

Proposition 8.1.2 (Pointwise estimate in Fourier space [32]). Let Ŵ = (φx+ψ, ψt, aψx, φt)
be a solution and Ŵ0 be the corresponding initial data to the Cauchy problem (8.2.13). Then
Ŵ satisfies the following pointwise estimates in the Fourier space for any ξ ∈ R and t ≥ 0:

|Ŵ (ξ, t)| ≤ Ce−cρ̃1(ξ)t|Ŵ0(ξ)| for a = 1,

|Ŵ (ξ, t)| ≤ Ce−cρ̃2(ξ)t|Ŵ0(ξ)| for a ̸= 1,

where ρ̃1(ξ) = ξ4/(1 + ξ2)
2
, ρ̃2(ξ) = ξ4/(1 + ξ2)

4
.

This result implies that the decay property of the system is of the regularity-loss type
and is much weaker than that of the system with a normal damping term (so called the
dissipative Timoshenko system or the classical Timoshenko system): Concerning the recent
developments for the dissipative Timoshenko system, we refer to [38, 42, 72].

Finally, we would like to mention other studies on the Timoshenko system with different
dissipative mechanism; see, e.g., [47, 48] for frictional dissipation case, [19, 54, 55] for thermal
dissipation case, and [3, 4, 34] for memory-type dissipation case.
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8.1.2 Aim

The aim of this chapter is to show the global-in-time existence and uniqueness of the solution
to the Cauchy problem (8.1.6) under the lowest regularity assumption on the initial data.

To this end, in Section 8.2 we remake the pointwise estimate of the solution to the
linearized system (8.2.13) in [32] in order to get the way to construct the Lyapunov function
which minimizes the number of the dissipation terms of regularity-loss.

Next, we characterize the dissipative structure of the system 8.1.6 by the straight calcu-
lation of the asmnptotic expansions of the eigenvalues. This characterization confirms that
our pointwise estimate is optimal.

Finally, in Section 8.3, based on our linearized system results in Section 8.2, we investigate
the nonlinear system (8.1.6) and obtain the global-in-time existence and uniqueness in the
critical sobolev space H2. That is, we show that the global-in-time existence and uniqueness
of the system (8.1.6) could be proved in the minimal regularity assumption on the initial
data and no need to employ any time-weighted norm as Liu and Kawashima did in [33]. This
implies that our refinement of the Lyapunov function in Section 8.2 and its application to
the nonlinear system completely overcomes the difficulty caused by the weak dissipation due
to the regularity-loss property of the Timoshenko system with a memory term (8.1.1).

8.2 Linear system

In Section 8.2, we consider the linearized Timoshenko system of memory type (8.2.13) in
one dimensional whole space R. In Subsection 8.2.2, we derive the pointwise estimate of the
solution to the linearized system (8.2.13) in the Fourier space, which gives the optimal decay

estimate of the solution in L2 with the desired decay rate t−
1
8 in Section 8.2.1.

In Subsection 8.2.3, we characterize the dissipative structure of the Timoshenko system
of memory type (8.1.6), based on the information of the eigenvalues of the linearized system
(8.2.13). Note that our pointwise estimate in Subsection 8.2.2 completely matches with the
dissipative structure shown in Subsection 8.2.3.

8.2.1 Decay estimate

In this subsection, we show the L2-decay estimate of the solution to the linearized Timoshenko
system of memory type (8.2.13).

Applying the Fourier transform to (8.2.13) to have Ŵt + iξAŴ + iξBg ∗ Ŵ + LŴ = 0,

Ŵ (ξ, 0) = Ŵ0(ξ),
(8.2.1)

where Ŵ = (v̂, ŷ, û, ẑ)T , Ŵ0 = (v̂0, ŷ0, û0, ẑ0)
T . Firstly, we give the pointwise estimate of the

solution to the linearized system in the Fourier space (8.2.1).
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Theorem 8.2.1 (Pointwise estimate in Fourier space). Let Ŵ be a solution and Ŵ0 be the
corresponding initial data to the Cauchy problem (8.2.1). Then Ŵ satisfies the following
pointwise estimates in the Fourier space for any ξ ∈ R and t ≥ 0:

|Ŵ (ξ, t)| ≤ Ce−cρ1(ξ)t|Ŵ0(ξ)| for a = 1, (8.2.2)

|Ŵ (ξ, t)| ≤ Ce−cρ2(ξ)t|Ŵ0(ξ)| for a ̸= 1, (8.2.3)

where ρ1(ξ) = ξ4/(1 + ξ2)
2
, ρ2(ξ) = ξ4/(1 + ξ2)

3
.

Remark 8.2.2. In [32], Liu and Kawashima showed the same result as (8.2.2) in the case
of a = 1. However, in the case of a ̸= 1, their estimate with ρ̃2(ξ) = ξ4/(1 + ξ2)

4
is worse

one than expected from our dissipative structure result in Proposition 8.2.9. Our results with
ρ1(ξ) = ξ4/(1 + ξ2)

2
for a = 1 and ρ2(ξ) = ξ4/(1 + ξ2)

3
for a ̸= 1 completely match with the

dissipative structure in Proposition 8.2.9.

The proof of Theorem 8.2.1 is given by the energy method in the Fourier space, and the
optimal estimate (8.2.3) in the case of a ̸= 1 requires our improvement: See Subsection 8.2.2.

Secondly, the above pointwise estimates give us the optimal L2-decay estimates of the
solution to the linearized system (8.2.13) stated as follows.

Theorem 8.2.3 (L2-decay estimate). Let W be a solution and W0 be the corresponding
initial data to the Cauchy problem (8.2.13). Then W satisfies the following decay estimates
for any t ≥ 0:

∥∂kxW (t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥W0∥Lp + Ce−ct∥∂kxW0∥L2 , (8.2.4)

for a = 1, while

∥∂kxW (t)∥L2 ≤ C(1 + t)−
1
4
( 1
p
− 1

2
)− k

4 ∥W0∥Lp + C(1 + t)−
ℓ
2∥∂k+ℓ

x W0∥L2 , (8.2.5)

for a ̸= 1，where 1 ≤ p ≤ 2 and k, ℓ ≥ 0 are constants.

Remark 8.2.4. Clearly, the high frequency part in (8.2.4) for a = 1 yields an exponential
decay. On the other hand, the corresponding part in (8.2.5) for a ̸= 1 is of the regularity-loss
type, since (1 + t)−ℓ/2 is created only by assuming the additional ℓ-th order regularity on the
initial data.

In the rest of this subsection, we give the proof of Theorem 8.2.3. This proof is essentially
same as the proof first given by Ide, Haramoto and Kawashoma in [24] (also see [32, 38]).

Proof of Theorem 8.2.3 ([24, 32, 38]). First we consider the case of a = 1. Applying the
Plancherel theorem and using the pointwise estimate (8.2.2), we have

∥∂kxW (t)∥2L2 = C

∫
R
ξ2k|Ŵ (t, ξ)|2 dξ ≤ C

∫
R
ξ2ke−ρ1(ξ)t|Ŵ0(ξ)|2 dξ. (8.2.6)
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We divide the last integral into two parts I1 and I2 corresponding to the regions |ξ| ≤ 1 and
|ξ| ≥ 1, respectively. Here we see that ρ1(ξ) ≥ cξ4 for |ξ| ≤ 1 so that we have

I1 = C

∫
|ξ|≤1

ξ2ke−cρ1(ξ)t|Ŵ0(ξ)|2 dξ ≤ C

∫
|ξ|≤1

ξ2ke−cξ4t|Ŵ0(ξ)|2 dξ.

For 1 ≤ p ≤ 2, we choose p′ such that 1
p
+ 1

p′
= 1. Also, we take r such that 1

r
+ 2

p′
= 1. Then

we see that 1
2r

= 1
p
− 1

2
. Applying the Hölder inequality and the Hausdorff-Young inequality,

we estimate I1 as

I1 ≤ C∥ξ2ke−cξ4t∥Lr(|ξ|≤1)∥Ŵ0∥2Lp′

≤ C(1 + t)−
1
4r

− k
2 ∥W0∥2Lp = C(1 + t)−

1
2
( 1
p
− 1

2
)− k

2 ∥W0∥2Lp .

On the other hand, in the high frequency region |ξ| ≥ 1, we have ρ1(ξ) ≥ c. Therefore we
estimate I2 as

I2 = C

∫
|ξ|≥1

ξ2ke−cρ1(ξ)t|Ŵ0(ξ)|2 dξ

≤ Ce−ct

∫
|ξ|≥1

ξ2k|Ŵ0(ξ)|2 dξ ≤ Ce−ct∥∂kxW0∥2L2 .

Substituting these estimates into (8.2.6) gives the desired estimate (8.2.4).

Next we consider the case of a ̸= 1. Using (8.2.3), we have

∥∂kxW (t)∥2L2 ≤ C

∫
R
ξ2ke−ρ2(ξ)t|Ŵ0(ξ)|2 dξ. (8.2.7)

We divide this integral into two parts J1 and J2 corresponding to the regions |ξ| ≤ 1 and
|ξ| ≥ 1, respectively. Since, ρ2(ξ) ≥ cξ4 for |ξ| ≤ 1, the low frequency part J1 is estimated

just in the same way as I1. That is, J1 ≤ C(1 + t)−
1
2
( 1
p
− 1

2
)− k

2 ∥W0∥2Lp . On the other hand, in
the high frequency region |ξ| ≥ 1, we see that ρ2(ξ) ≥ c|ξ|−2. Thus,

J2 = C

∫
|ξ|≥1

ξ2ke−cρ2(ξ)t|Ŵ0(ξ)|2 dξ ≤ C

∫
|ξ|≥1

ξ2ke−c|ξ|−2t|Ŵ0(ξ)|2 dξ

≤ C sup
|ξ|≥1

{
|ξ|−2le−c|ξ|−2t

}∫
|ξ|≥1

ξ2(k+l)|Ŵ0(ξ)|2 dξ

≤ C(1 + t)−l∥∂k+l
x W0∥2L2 .

Substituting these estimates into (8.2.7) gives the desired estimate (8.2.5) for a ̸= 1. This
completes the proof of Theorem 8.2.3.
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8.2.2 Energy method in Fourier spaces

In this subsection, we prove Theotem 8.2.1 by the energy method in the Fourier space. Before
the proof, we prepare some notations related to the convolution operator with respect to t.

Let k(t) be a real valued kernel function. For any complex valued function φ(t) and ψ(t),
we define

(k ∗ φ)(t) =
∫ t

0

k(t− τ)φ(τ) dτ,

(k ⋄ φ)(t) =
∫ t

0

k(t− τ)(φ(t)− φ(τ)) dτ,

k[φ, ψ](t) =

∫ t

0

k(t− τ)(φ(t)− φ(τ))(ψ̄(t)− ψ̄(τ)) dτ,

where ψ̄ denotes the complex conjugate of ψ. Here we see that

k ∗ φ = K(t)− k ⋄ φ, (k ∗ φ)t = k(t)φ− k
′ ⋄ φ, (8.2.8)

where K(t) =

∫ t

0

k(s) ds and k
′
(t) =

dk(t)

dt
. Moreover, applying the Hölder inequality, we

have

|(k ⋄ φ)(t)|2 ≤
(∫ t

0

|k(τ)| dτ
)

|k|[φ, φ](t). (8.2.9)

Finally, the following special equality first given by Rivera and his collaboraters in [3] takes
very much important role in our proof of Theorem 8.2.1.

Lemma 8.2.5 ([3, 13, 41]). Let k be a real valued function. Then, for any complex valued
function φ, we have the following equality:

−2Re {(k ∗ φ) φ̄t} =
d

dt
{k[φ, φ]−K(t)|φ|2}+ {k′

[φ, φ]− k(t)|φ|2}. (8.2.10)

Proof of Theorem 8.2.1. In the case of a = 1, the proof of (8.2.2) is already shown in [32].
Therefore, here we focus on the proof for a ̸= 1, which is of our refinement to show (8.2.3).

First, we rewrite the linearized system (8.2.13) in the form

v̂t − iξû− ŷ = 0, (8.2.11a)

ŷt − a iξẑ + v̂ + b iξg ∗ ẑ = 0, (8.2.11b)

ût − iξv̂ = 0, (8.2.11c)

ẑt − a iξŷ = 0. (8.2.11d)
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The proof is given by the energy method in the Fourier space, and is divided into 5 steps.

Step 1: Take the inner product in C4 of Ŵt + iξAŴ + iξBg ∗ Ŵ + LŴ = 0 with Ŵ , then
take the real part to have

1

2
(|Ŵ |2)t +Re {b iξ(g ∗ ẑ) ¯̂y} = 0. (8.2.12)

To eliminate the second term in (8.2.12), we make the following equality: Multiply the
complex conjugate of (8.2.11d) by −g ∗ ẑ and take the real part. This gives

−Re {(g ∗ ẑ) ¯̂zt} − Re {a iξ(g ∗ ẑ) ¯̂y} = 0. (8.2.13)

Then, make the combination a×(8.2.12)+b×(8.2.13) and use the equality (8.2.10) to obtain
the following basic energy equality:

1

2
E1,t +D1 = 0, (8.2.14)

where we put

E1 = a |Ŵ |2 + b g[ẑ, ẑ]− bG(t)|ẑ|2, D1 =
b

2
(−g′

[ẑ, ẑ] + b g(t)|ẑ|2),

and G(t) =

∫ t

0

g(s) ds．Here by putting M2
0 = g[ẑ, ẑ] + g(t)|ẑ|2 and using the assumption

(8.1.3) on g, E1 and D1 can be estimated as

c(|Ŵ |2 +M2
0 ) ≤ E1 ≤ C(|Ŵ |2 +M2

0 ), D1 ≥ cM2
0 . (8.2.15)

Note that the basic energy equality (8.2.14) does not contain any dissipation term except
D1, which is directly due to the memory term.

Step 2: Next we create the dissipation term ξ2|ŷ|2 by making use of the memory effect.
Multiply (8.2.11b) by −iξ(g ∗ ¯̂z)t and take the real part to have

1

2
(b |ξ|2|g ∗ ẑ|2)t − Re {iξŷt (g ∗ ¯̂z)t}+Re {iξ(a iξẑ − v̂)(g ∗ ¯̂z)t} = 0. (8.2.16)

Here we rewrite the second term in (8.2.16) by using (g ∗ ¯̂z)t = g(0) ¯̂z + g
′ ∗ ¯̂z. This yields

1

2
(1 + ξ2)E2,t + g(0)Re (iξŷ ¯̂zt) = R2, (8.2.17)

where

(1 + ξ2)E2 = b |ξ|2|g ∗ ¯̂z|2 − 2Re {iξ(g ∗ ¯̂zt)},

R2 = −Re {iξ(a iξẑ − v̂)(g ∗ ¯̂z)t + iξŷ (g
′ ∗ ¯̂z)t}.
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Finally, to eliminate the second term in (8.2.17), firstly multiply the complex conjugate of
(8.2.11d) by −iξŷ and take the real part to get

−Re (iξŷ ¯̂zt) + a ξ2|ŷ|2 = 0. (8.2.18)

Secondly, multiply (8.2.18) by g(0) and add the result to (8.2.17). This gives the desired
equality with the dissipation term ξ2|ŷ|2:

1

2
(1 + ξ2)E2,t + a g(0)ξ2|ŷ|2 = R2. (8.2.19)

Moreover, by using (8.2.8), (8.2.9) and (8.1.3), we see that
|g ∗ ¯̂z| = |G(t)¯̂z − g ⋄ ¯̂z| ≤ C(|¯̂z|+M0),

|(g ∗ ¯̂z)t| = |g(t)¯̂z − g
′ ⋄ ¯̂z| ≤ CM0,

|(g′ ∗ ¯̂z)t| = |g′
(t)¯̂z − g

′′ ⋄ ¯̂z| ≤ CM0.

(8.2.20)

Therefore, by using (8.2.20), E2 and R2 in (8.2.19) can be estimated as

|E2| ≤ C(|Ŵ |2 +M2
0 ), |R2| ≤ Cξ2|ẑ|M0 + C|ξ|(|v̂|+ |ŷ|)M0. (8.2.21)

Step 3: In this step, we create the dissipation term |v̂|2 by using the relaxation part LŴ in
(8.2.1). Make the combination (8.2.11b)× ¯̂v + (8.2.11a)× ¯̂y to have

(v̂t ¯̂y + ¯̂vŷt) + |v̂|2 − |ŷ|2 − iξ(v̂ ¯̂y + a ¯̂vẑ) + b iξ ¯̂v(g ∗ ẑ) = 0. (8.2.22)

Similarly, make the combination (8.2.11c)× ¯̂z + (8.2.11d)× ¯̂u to get

(ût ¯̂z + ¯̂uẑt)− iξ(v̂ ¯̂z + a ŷ ¯̂u) = 0. (8.2.23)

To eliminate the last term in (8.2.22), we make the following equality: Multiply the complex
conjugate of (8.2.11c) by −g ∗ ẑ. This gives

−{¯̂u (g ∗ ẑ)}t + ¯̂u (g ∗ ẑ)t − iξ ¯̂v (g ∗ ẑ) = 0. (8.2.24)

Consequently, make the combination (8.2.22) + a× (8.2.23) + b× (8.2.24) and take the real
part to obtain

E3,t + |v̂|2 = R3, (8.2.25)

where

E3 = Re {(v̂ ¯̂y + a ¯̂vẑ − b û (g ∗ ¯̂z)}, R3 = |ŷ|2 − (a2 − 1)Re (iξ ¯̂yû)− bRe {û (g ∗ ¯̂z)t}.

Therefore, by using (8.2.20), E3 and R3 in (8.2.25) can also be estimated as

|E3| ≤ C(|Ŵ |2 +M2
0 ), |R3| ≤ |ŷ|2 + C|ξ||ŷ||û|+ C|û|M0. (8.2.26)
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Remark 8.2.6. In the case of a = 1, R3 is estimated as |R3| ≤ |ŷ|2 + C|û|M0.

Step 4: Finally, we create the dissipation term ξ2|û|2+ξ2(1+ξ2)|ẑ|2 by using the hyperbolic
part iξAŴ . Note that our refinement lies in this step: We create the dissipation term
ξ2|û|2 + ξ2(1 + ξ2)|ẑ|2 instead of ξ2(|û|2 + |ẑ|2) in [32]. Make the combination (8.2.11a) ×
iξ ¯̂u− (8.2.11c)× iξ ¯̂v to have

iξ(v̂t ¯̂u− ¯̂vût) + ξ2(|û|2 − |v̂|2)− iξŷ ¯̂u = 0. (8.2.27)

Also, make the combination (8.2.11b)× iξ ¯̂z − (8.2.11d)× iξ ¯̂y to get

iξ(ŷt ¯̂z − ¯̂yẑt) + a ξ2(|ẑ|2 − |ŷ|2) + iξv̂ ¯̂z − b ξ2(g ∗ ẑ) ¯̂z = 0. (8.2.28)

In the case of a ̸= 1, we make the combination (8.2.27)+(8.2.28)×(1+ξ2). Then, use (8.2.8)
and take the real part to obtain

ξ{E4 + (1 + ξ2)E5}t + ξ2{|û|2 + (a− bG(t))(1 + ξ2)|ẑ|2} = R4, (8.2.29)

where

E4 = Re {iv̂ ¯̂u}, E5 = Re {iẑ ¯̂y},

R4 = ξ2{|v̂|2 + a (1 + ξ2)|ŷ|2}+Re (iξŷ ¯̂u)

− Re {iξ(1 + ξ2) v̂ ¯̂z} − b ξ2(1 + ξ2) Re {(g ⋄ ẑ) ¯̂z}.

Therefore, by using (8.2.20), E4 and R4 in (8.2.29) can be estimated as
|E4|+ (1 + ξ2)|E5| ≤ (1 + ξ2)|Ŵ |2,

|R4| ≤ Cξ2{|v̂|2 + (1 + ξ2)|ŷ|2}

+|ξ|{|ŷ||û|+ (1 + ξ2)|v̂||ẑ|}+ Cξ2(1 + ξ2)|ẑ|M0.

(8.2.30)

Remark 8.2.7. In the case of a = 1, we employ the combination (8.2.27) + (8.2.28) instead
of (8.2.27) + (8.2.28)× (1 + ξ2).

Step 5: Now we construct the Lyapunov function for a ̸= 1. Combine the equalities obtained
from Step 2 to Step 4 as (8.2.19)× (1 + ξ2)2 + {(8.2.25)× ξ2(1 + ξ2) + (8.2.29)× α1ξ

2} × α2

with suitably small positive constants α1 > 0 and α2 > 0. Then divide the result by (1+ξ2)3.
This gives

1

2
Et +D = R, (8.2.31)
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where

E = E2 +
2α2ξ

2

(1 + ξ2)2

{
E3 + α1ξ

(
E4

1 + ξ2
+ E5

)}
,

(1 + ξ2)3 D = α2(1 + ξ2) ξ2|v̂|2 + a g(0)(1 + ξ2)2 ξ2|ŷ|2

+ α2α1ξ
4{|û|2 + (a− bG(t))(1 + ξ2)|ẑ|2},

(1 + ξ2)3R = (1 + ξ2)2R2 + α2{(1 + ξ2) ξ2R3 + α1ξ
2R4}.

We see a − bG(t) ≥ a − b > 0. Besides, by using the inequalites (8.2.21)，(8.2.26) and
(8.2.30), we estimate E，D and R by the Young inequality. Then we choose α1 > 0 and
α2 > 0 such that

|E| ≤ C(|Ŵ |2 +M2
0 ),

(1 + ξ2)3D ≥ c (1 + ξ2) ξ2|v̂|2 + c (1 + ξ2)2 ξ2|ŷ|2 + c ξ4|û|2 + c (1 + ξ2) ξ4|ẑ|2,

|R| ≥ 1

2
D + CM2

0 .

(8.2.32)

Furthermore, make the combination (8.2.14) + (8.2.31)× α3 with any α3 > 0 to have

1

2
Et +D = 0, (8.2.33)

where

E = E1 + α3E , D = D1 + α3(D −R).

Therefore, for a suitably small positive constant α3, E and D can be estimated by using
(8.2.15) and (8.2.32) as

c (|Ŵ |2 +M2
0 ) ≤ E ≤ C(|Ŵ |2 +M2

0 ), (8.2.34)

D ≥ c ξ2

(1 + ξ2)2
|v̂|2 + c ξ2

1 + ξ2
|ŷ|2 + c ξ4

(1 + ξ2)3
|û|2 + c ξ4

(1 + ξ2)2
|ẑ|2 + cM2

0 . (8.2.35)

Especially，we put ρ2(ξ) = ξ4/(1 + ξ2)
3
, then we have D ≥ c ρ2(ξ)(|Ŵ |2 +M2

0 ) ≥ c ρ2(ξ)E.
Therefore, from (8.2.33) we obtain Et+c ρ2(ξ)E ≤ 0．Consequently, the differential inequality

|E(t, ξ)| ≤ Ce−cρ2(ξ)t|E(0, ξ)|

and the estimate of E (8.2.34) yield the desired pointwise estimate (8.2.3) for a ̸= 1.

Remark 8.2.8. When a ̸= 1, we see from (8.2.35) that the coefficients of the three compo-
nents |ŷ|, |ẑ| and M2

0 become c for |ξ| → ∞, while the other two |v̂| and |û| become cξ−2

for |ξ| → ∞. These suggest that our way of constructing the dissipation term for a ̸= 1
completely matche with the dissipative structure results in Subsection 8.2.3.
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8.2.3 Spectral property

In this subsection, we characterize the dissipative structure of the Timoshenko system of
memory type (8.1.6) in order to confirm our pointwise estimates (8.2.2) and (8.2.3) are
optimal. To this end, in the first place, we simplify the linearized system (8.2.13) to the first
order hyperbolic system without any convolution operators to make the calculations easier.

Assume

g(t) = µe−µt (8.2.36)

and put w =
∫ t

0
g(t− τ)z (τ) dτ . Moreover, let z̃ =

√
a− b z and w̃ =

√
b (w − z). Then the

linearized system (8.2.13) can be reduced to

vt − ux + y = 0,

yt − c1 z̃x − v + c2 w̃x = 0,

ut − vx = 0,

z̃t − c1 yx = 0,

w̃t + c2 yx + µ w̃ = 0,

(8.2.37)

where c1 =
√
a− b, c2 =

√
b. Next, applying the Fourier transform to (8.2.37), we have

v̂t − iξû− ŷ = 0,

ŷt − c1 iξ ˆ̃z + v̂ + c2 iξ ˆ̃w = 0,

ût − iξv̂ = 0,

ˆ̃zt − c1 iξŷ = 0,

ˆ̃wt + c2 iξŷ + µ ˆ̃w = 0,

(8.2.38)

where ξ ∈ R is the Fourier variable. In vector notation, the system (8.2.38) is written as

ˆ̃Wt + (iξÃ+ L̃) ˆ̃W = 0, (8.2.39)

where

ˆ̃W =


v̂
ŷ
û
ˆ̃z
ˆ̃w

 , Ã =


0 0 −1 0 0
0 0 0 −c1 c2
−1 0 0 0 0
0 −c1 0 0 0
0 c2 0 0 0

 , L̃ =


0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 µ

 .

Consequently, the eigenvalue problem associated with (8.2.38) is given by

λϕ+ (iξÃ+ L̃)ϕ = 0, (8.2.40)
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where λ ∈ C and ϕ ∈ C5. Namely, the eigenvalue of the system (8.2.39) is the solution
λ = λ(iξ) ∈ C to the characteristic equation

det{λϕ+ (iξÃ+ L̃)ϕ} = 0. (8.2.41)

We see that this λ for the most simplified system (8.2.37) can be checked to be the eigenvalue
of the original linearized system (8.2.12). Now we state our results on the dissipative structure
of the system (8.1.6).

Proposition 8.2.9 (Dissipative structure). The dissipative structure of the Timoshenko sys-
tem of memory type (8.1.6) with (8.2.36) could be characterized by

Reλ(iξ) ≤ −cρ(ξ), ρ(ξ) =

 ξ4/(1 + ξ2)2 for a = 1,

ξ4/(1 + ξ2)3 for a ̸= 1,

where λ(iξ) denotes the eigenvalue of the system (8.1.6) with (8.2.36).

Remark 8.2.10. We see that the dissipative structure of (8.1.6) is much weaker than that
of the dissipative Timoshenko system in the low frequency region; λ(ξ) ∼ −cξ4 for |ξ| → 0 in
the case of (8.1.6), while λ(ξ) ∼ −cξ2 for |ξ| → 0 in the case of the dissipative Timoshenko
system. However, there is no difference in the high frequence region |ξ| → ∞ (see [24, 38]).
On the other hand we note that the dissipative structure of (8.1.6) is just the same as that
of the Timoshenko-Fourier system (see [38]). The dissipative structure of (8.1.6) is also the
same as that of the Timoshenko-Cattaneo system, however the stability number is a little
defferent (see [39]).

Now we prove the dissipative structure result in Proposition 8.2.9. To this end, we
calculate the asymptotic expansions of the eigenvalues of (8.2.37) for |ξ| → 0 and |ξ| → ∞,
respectively. Put iξ = ζ ∈ C and denote by λj(ζ) (j = 1, 2, 3, 4, 5) the eigenvalues of the
matrix −(ζÃ+ L̃) in (8.2.39), which are the solutions to the characteristic equation

det {λI + ζÃ+ L̃} = λ5 + µλ4 −
{
(c21 + c22 + 1) ζ2 − 1

}
λ3

− µ
{
1− (c21 + 1) ζ2

}
λ2 + (c21 + c22) ζ

4λ+ c21µζ
4 = 0. (8.2.42)

(i) When |ζ| → 0，λj(ζ) has the following asymptotic expansion:

λj(ζ) = λ
(0)
j + λ

(1)
j ζ + λ

(2)
j ζ2 + λ

(3)
j ζ3 + λ

(4)
j ζ4 · · · (8.2.43)

for j = 1, 2, 3, 4, 5. We substitute λ = λj(ζ) in (8.2.43) into the characteristic quation (8.2.42)

and calculate the coefficients λ
(k)
j (k = 0, 1, 2 · · · ), successively. Then we have

λ
(0)
j = λ

(1)
j = 0, λ

(2)
j = ± c1i, λ

(3)
j = 0, λ

(4)
j = − c22

2µ
± c1 (c

2
1 + 1)

2
i for j = 1, 2,

λ
(0)
j = ± i, λ

(1)
j = 0, λ

(2)
j =

µc22
2 (1 + µ2)

∓ 1

2

(
c21 + 1 +

c22
1 + µ2

)
for j = 3, 4,

λ
(0)
5 = −µ.



8.2. LINEAR SYSTEM 143

Consequently, for |ξ| → 0, we obtain

Re λj(iξ) =



− c22
2µ

ξ4 +O(|ξ|5) for j = 1, 2,

− µc22
2 (1 + µ2)

ξ2 +O(|ξ|3) for j = 3, 4,

−µ+O(|ξ|) for j = 5.

(8.2.44)

(ii) Next, we derive the asymptotic expansion of the eigenvalues λj(ζ) for |ζ| → ∞. Let
ηj(ζ

−1) (j = 1, 2, 3, 4, 5) be the eigenvalues of the matrix −(Ã+ζ−1L̃), which are the solutions
to the characteristic equation

det (ηI + Ã+ ζ−1L̃) = η5 + µζ−1η4 −
{
(c21 + c22 + 1)− ζ−2

}
η3

+ µ
{
ζ−2 − (c21 + 1)

}
ζ−1η2 + (c21 + c22) η + c21µζ

−1 = 0. (8.2.45)

When |ζ|−1 → 0, we have the asymptotic expansion of µj(ζ
−1) in the form

ηj(ζ
−1) = η

(2)
j ζ + η

(1)
j + η

(0)
j ζ−1 + η

(−1)
j ζ−2 + η

(−2)
j ζ−3 + · · · (8.2.46)

for j = 1, 2, 3, 4, 5. This together with the relation λj(ζ) = ζηj(ζ
−1) gives the desired

asymptotic expansion of λj(ζ) for |ζ| → ∞:

λj(ζ) = η
(2)
j ζ2 + η

(1)
j ζ + η

(0)
j + η

(−1)
j ζ−1 + η

(−2)
j ζ−2 + · · · .

We substitute the asymptotic expansion of ηj(ζ
−1) in (8.2.46) into the characteristic equation

(8.2.45) and calculate the coefficients η
(k)
j (k = 2, 1, 0,−1,−2, · · · ), successively. Then, for

j = 1, we have

η
(2)
1 = η

(1)
1 = 0, η

(0)
1 = − c21

c21 + c22
µ.

For 2, 3, 4, 5, we calculate the coefficients η
(k)
j in the case of c21 + c22 = 1 and c21 + c22 ̸= 1,

respectively: when c21 + c22 = 1, we have

η
(2)
j = 0, η

(1)
j = ± 1, η

(0)
j =

−µc22 ±
√
µ2c42 − 4

4
,

where we note that Re

(
−µc22 ±

√
µ2c42 − 4

4

)
< 0, and when c21 + c22 ̸= 1, we obtain

η
(2)
j = 0, η

(1)
j = ± 1, η

(0)
j = 0,

η
(−1)
j = ± 1

2 (c21 + c22 − 1)
, η

(−2)
j =

c22
2 (c21 + c22 − 1)2

µ for j = 2, 3,

η
(2)
j = 0, η

(1)
j = ±

√
c21 + c22, η

(0)
j = − c22

2 (c21 + c22)
µ, for j = 4, 5.
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Consequently, when c21 + c22 = 1, we have

Re λj(iξ) =


− c21
c21 + c22

µ+O(|ξ|−1) for j = 1,

Re

(
−µc22 ±

√
µ2c42 − 4

4

)
+O(|ξ|−1) for j = 2, 3, 4, 5

(8.2.47)

for |ξ| → ∞; while in the case c21 + c22 ̸= 1, we obtain

Re λj(iξ) =



− c21
c21 + c22

µ+O(|ξ|−1) for j = 1,

− c22
2 (c21 + c22 − 1)2

µ ξ−2 +O(|ξ|−3) for j = 2, 3,

− c22
2 (c21 + c22)

µ+O(|ξ|−1) for j = 4, 5

(8.2.48)

for |ξ| → ∞.

Remark 8.2.11. According to the expansion (8.2.48) for |ξ| → ∞, when c21 + c22 ̸= 1, three
eigenvalues satisfy Reλ(iξ) ∼ −c, while the other two satisfy Reλ(iξ) ∼ −cξ−2. Therefore,
the asymptotic expansions (8.2.44), (8.2.47) and (8.2.48) imply that the pointwise estimate
for a ̸= 1 (note that c21 + c22 corresponds to a) shown by Liu and Kawashima in [32] seems
not optimal, though the estimate for a = 1 seems optimal. On the other hand, our pointwise
estimates, not only (8.2.2) for a = 1, but also (8.2.3) for a ̸= 1, seem optimal. Moreover, the
number of the components which cause the regularity-loss also matches with the number of
the eigenvalues which satisfy Reλ(iξ) ∼ −cξ−2 for |ξ| → ∞ (see Subsection 8.2.2).

8.3 Nonlinear system

The main purpose of Section 8.3 is to show the global-in-time existence and uniqueness of the
nonlinear Timoshenko system of memory type (8.1.6) under the least regularity assumption
on the initial data.

To state our results, we introduce the energy norm E(t) and the corresponding dissipation
norm D(t) by

E(t)2 := sup
0≤τ≤t

(
∥W∥2Hs +

s∑
k=0

∥M (k)
0 ∥2L2

)
(τ),

D(t)2 :=

∫ t

0

(
∥∂xv∥2Hs−2 + ∥∂xy∥2Hs−1 + ∥∂2xu∥2Hs−3

+ ∥∂2xz∥2Hs−2 +
s∑

k=0

∥M (k)
0 ∥2L2

)
(τ) dτ,
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where M
(k)
0 (t) :=

(
g[∂kxz, ∂

k
xz] + g(t)|∂kxz|2

) 1
2
. Notice that in the dissipation norm D(t) we

have 1 regularity-loss for (v, u) but no regularity-loss for (y, z,M0).

Our main theorem is stated as follows.

Theorem 8.3.1 (Global-in-time existence & uniqueness). Assume σ
′
(η) = a2 + O(η2) as

η → 0 and the initial data W0 ∈ Hs for s ≥ 2, and put E0 := ∥W0∥Hs. Then there exists
a positive constant δ0 such that if E0 ≤ δ0, the Cauchy problem (8.1.6) has a unique global
solution W (t) with

W ∈ C([0,∞];Hs) ∩ C1([0,∞];Hs−1).

Moreover this solution W (t) verifies the energy estimate

E(t)2 +D(t)2 ≤ CE2
0 .

Remark 8.3.2. Here we used the Sobolev space Hm with negative m, which is defined as
usual, namely, Hm = {u ;

∫
R(1 + |ξ|2)m |û(ξ)|2 <∞}.

Remark 8.3.3. Our global-in-time existence and uniqueness result holds true with s ≥ 2,
and we do not need L1

1 property and
∫
R W0(x) dx = 0, which are required in the previous

result [?]. This less regularity requirement is due to the refined Lyapunov function, which
produces the optimal dissipative estimate for z without any regularity-loss (see D(t)). This
improvement enables us to control the nonlinearity depending only on z.

Our global-in-time existence and uniqueness result is shown by the combination of a local
existence result and the following a priori estimate result.

Proposition 8.3.4 (A priori estimate). Assume σ
′
(η) = a2 + O(η2) as η → 0 and the

initial data W0 ∈ Hs for s ≥ 2, and put T > 0 and δ > 0. Let W (t) be the solution to the
Cauchy problem (8.1.6) satisfying

W ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1)

and

sup
0≤t≤T

∥W (t)∥L∞ ≤ δ. (8.3.1)

Then there exists a positive constant δ1 independent of T such that if E0 ≤ δ1, we have a
priori estimate

E(t)2 +D(t)2 ≤ CE2
0 . (8.3.2)

Since our system (8.1.6) is a symmetric hyperbolic system, it is not difficult to show the
local existence by the standard method based on the successive approximation sequence (see
[26]). Therefore we omit the details.

To prove the above a priori estimate in Proposition 8.3.4, we need to show the following
energy inequality by applying the energy method.
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Proposition 8.3.5 (Energy inequality). Suppose that W0 ∈ Hs for s ≥ 2 and put E0 =
∥W0∥Hs. Let T > 0 and let W (t) be a solution to the Cauchy problem (8.1.6), satisfying
(8.3.1). Then we have the following energy inequality:

E(t)2 +D(t)2 ≤ CE2
0 + CE(t)2D(t)2, t ∈ [0, T ]. (8.3.3)

We note that the desired a priori estimate (8.3.2) easily follows from the energy inequality
(8.3.3), provided that E0 is suitably small. Therefore it is sufficient to prove (8.3.3) for our
purpose (see Subsection 8.3.1).

8.3.1 Energy method

In this subsection we prove the energy estimate (8.3.3) in Proposition 8.3.5 by using the
energy method. This proof is essentially parallel of the proof of Theorem 8.2.1 in Subsection
8.2.2. The most crucial point is to estimate the dissipation z, paying attention to the special
nonlinearity of the system (8.1.4). In the coming computations, the following sharp estimates
for composite functions will be used.

Lemma 8.3.6 ([23, 31]). Let 1 ≤ p, q, r ≤ ∞ and 1
p
= 1

q
+ 1

r
. Then the following estimates

hold:
∥∂kx(uv)∥Lp ≤ C(∥u∥Lq∥∂kxv∥Lr + ∥v∥Lq∥∂kxu∥Lr)

for k ≥ 0, and

∥[∂kx , y]∂kxv∥Lp ≤ C(∥∂xu∥Lq∥∂kxv∥Lr + ∥∂xv∥Lq∥∂kxu∥Lr)

for k ≥ 1, where [A,B] = AB −BA denotes the commutator and Lp = Lp(R).

Proof of Proposition 8.3.5. Our proof is devided into 5 steps.

Step 1: The goal of this step is to get the estimate (8.3.12) of the basic energy of the
solution W (t) in H2 and the memory-type dissipation terms. First, make the combination

(8.3.19)× v + (8.3.14)× y + (8.1.4c)× u+ (8.1.4d)×
σ( z

a
)− σ(0)

a
to have

1

2

{
v2 + y2 + u2 + 2

∫ z
a

0

(σ(η)− σ(0)) dη

}
t

− {vu+ y (σ
(z
a

)
− σ(0))− b y g ∗ z}x,−

b

a
zt g ∗ z = 0, (8.3.4)

where we used zt = a yx in the last term. Then, we use the equality (8.2.10) to the last term
in (8.3.4). This gives

1

2

{
v2 + y2 + u2 + S(z)− b

a
G(t) z2 +

b

a
g[z, z]

}
t

− {vu+ y (σ
(z
a

)
− σ(0))− b y g ∗ z}x,+

b

2a
{−g′

[z, z] + g(t)z2} = 0, (8.3.5)
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where S(z) := 2

∫ z
a

0

(σ(η)− σ(0)) dη and G(t) :=

∫ t

0

g(s) ds. Here, we have

S(z)− b

a
G(t) z2 =

(
1− b

a
G(t)

)
z2 +O(z4)

as z → 0 and 1 − b

a
G(t) ≥ 1 − b

a
> 0. Therefore, integrating (8.3.5) with respect to x ∈ R

yields the following basic energy equality:

d

dt
E

(0)
0 +

b

a

∫
R
(−g′

[z, z] + g(t)z2) dx = 0, (8.3.6)

where

E
(0)
0 := ∥(v, y, u)∥2L2 +

∫
R

(
S(z)− b

a
G(t) z2 +

b

a
g[z, z]

)
dx.

Next, apply ∂kx (k ≥ 1) to (8.3.19), (8.3.14), (8.1.4c) and (8.1.4d), and write ∂kx(v, y, u, z) =
(V, Y, U, Z) for simplicity to have

Vt − Ux − Y = 0, (8.3.7a)

Yt − σ
′
(z
a

)(Z
a

)
x

− V + bg ∗ Zx =
[
∂kx , σ

′
(z
a

)](z
a

)
x
, (8.3.7b)

Ut − Vx = 0, (8.3.7c)

Zt − aYx = 0. (8.3.7d)

Then, make the combination (8.3.7a)×V +(8.3.7b)×Y +(8.3.7c)×U +(8.3.7d)×σ′
(z
a

) Z
a2

,

and use (8.2.10) to have

1

2

{
V 2 + Y 2 + U2 + σ

′
(z
a

)(Z
a

)2

− b

a
G(t)Z2 +

b

a
g[Z,Z]

}
t

− {V U + Y σ
′
(z
a

)(Z
a

)
− b y g ∗ Z}x +

b

2a
{−g′

[Z,Z] + g(t)Z2}

=
1

2

(z
a

)
t

(
Z

a

)2

− Y σ
′
(z
a

)
x

(
Z

a

)
+ Y

[
∂kx , σ

′
(z
a

)](z
a

)
x
. (8.3.8)

Here we note that

σ
′
(z
a

)(Z
a

)2

−G(t)2 =

(
1− b

a
G(t)

)
Z2 +O(z2)Z2
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as z → 0 and 1 − b

a
G(t) ≥ 1 − b

a
> 0. Therefore, integrating (8.3.8) with respect to x ∈ R

yields

d

dt
E

(k)
0 +

b

a

∫
R
(−g′

[∂kxz, ∂
k
xz] + g(t)|∂kxz|2) dx ≤ R

(k)
0 (8.3.9)

for 1 ≤ k ≤ s, where

E
(k)
0 := ∥∂kx(v, y, u)∥2L2 +

∫
R

(
σ

′
(z
a

)(∂kxz
a

)2

− b

a
G(t)|∂kxz|2 +

b

a
g[∂kxz, ∂

k
xz]

)
dx,

R
(k)
0 :=

∫
R

∣∣∣σ′
(z
a

)
t

∣∣∣ |∂kxz|2 + ∣∣∣σ′
(z
a

)
x

∣∣∣ |∂kxy ∂kxz|+ |∂kxy|
∣∣∣[∂kx , σ′

(z
a

)]
zx

∣∣∣ dx.
Here, denote

M
(k)
0 (t) =

(
g[∂kxz, ∂

k
xz] + g(t)|∂kxz|2

) 1
2

for k ≥ 0, then the following estimates hold. |g ∗ ∂kxz| ≤ C(|∂kxz|+M
(k)
0 ),

|(g ∗ ∂kxz)t|+ |(g′ ∗ ∂kxz)t| ≤ CM
(k)
0 .

(8.3.10)

Next, integrate the combination (8.3.6) + (8.3.9) with respect to t to have

E
(k)
0 (t) +

∫
R
g[∂kxz, ∂

k
xz] dx+

∫ t

0

∥M (k)
0 (τ)∥2L2 dτ ≤ E

(k)
0 (0) + C

∫ t

0

R
(k)
0 (τ)dτ

for 0 ≤ k ≤ s, where R0
0 = 0. By virtue of the assumptions σ

′
(η) > 0 and (8.3.1), we can

regard E
(k)
0 as

∥∂kxW∥2L2 +

∫
R
g[∂kxz, ∂

k
xz] dx.

Therefore, we obtain

∥∂kxW (t)∥2L2 +

∫
R
g[∂kxz, ∂

k
xz] dx+

∫ t

0

∥M (k)
0 (τ)∥2L2 dτ

≤ C∥∂kxW0∥2L2 + C

∫ t

0

R
(k)
0 (τ)dτ (8.3.11)

for 0 ≤ k ≤ s. Here, by using (8.3.1) and Lemma 8.3.6, R
(k)
0 can be estimated as

R
(k)
0 ≤ C∥yx∥L∞∥zx∥L∞(∥∂kxy∥2L2 + ∥∂kxz∥2L2).
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Thus, add (8.3.11) for k with 0 ≤ k ≤ s to have

∥W (t)∥2Hs +
s∑

k=0

∫
R
g[∂kxz, ∂

k
xz] dx+

s∑
k=0

∫ t

0

∥M (k)
0 (τ)∥2L2 dτ

≤ C∥W0∥2Hs + CE(t)2D(t)2. (8.3.12)

Step 2: In this step we make the dissipation estimate of y (8.3.18) below. Firstly, we apply
the Fourier transform to the nonlinear system (8.1.4) and rewrite the result as

v̂t − iξû− ŷ = 0, (8.3.13a)

ŷt − a iξẑ + v̂ + b iξg ∗ ẑ = iξf̂(z), (8.3.13b)

ût − iξv̂ = 0, (8.3.13c)

ẑt − a iξŷ = 0, (8.3.13d)

where f(z) := σ
(z
a

)
− σ(0)− σ

′
(0)
(z
a

)
= O(z3), which follows from σ

′
= a2 +O(η2). Then,

we make the dissipation estimate of y just in the same way as Step 2 in the proof of Theorem
8.2.1. This gives

1

2
(1 + ξ2)E2,t + a g(0)ξ2|ŷ|2 = ξ2f̂(z)(g ∗ ¯̂z)t +R2 (8.3.14)

with E2 and R2, which can be estimated as

|E2| ≤ C(|Ŵ |2 +M2
0 ), |R2| ≤ Cξ2|ẑ|M0 + C|ξ|(|v̂|+ |ŷ|)M0.

Therefore, multiplying (8.3.14) by 1/(1+ξ2), and by using (8.2.20) and the Young inequality,
we obtain

1

2
E2,t + a g(0)(1− ε)

ξ2

1 + ξ2
|ŷ|2

≤ Cε
ξ2

(1 + ξ2)2
|v̂|2 + Cε

ξ4

(1 + ξ2)2
|ẑ|2 + CεM

2
0 + Cε

ξ4

(1 + ξ2)2
|f̂(z)|2 (8.3.15)

for ε > 0. We note that we have estimated the term ξ2f̂(z)(g ∗ ¯̂z)t of the nonlinear part as
follows:

ξ2

1 + ξ2
|f̂(z)||(g ∗ ¯̂z)t| ≤ Cε

ξ4

(1 + ξ2)2
|f̂(z)|2 + εM2

0 .

Next, we integrate (8.3.15) with respect to t over (0, t). Then we multiply the resultant
inequality by (1 + ξ2)2(s−k)|ξ|2k and integrate with respect to ξ ∈ R, where 0 ≤ k ≤ s − 1.



150 CHAPTER 8. TIMOSHENKO SYSTEM WITH MEMORY

This yields∫ t

0

∥∂xy(τ)∥2Hs−1 dτ ≤ C∥W0∥2Hs + C∥W (t)∥2Hs + C

s∑
k=0

∥M (k)
0 (t)∥2L2

+ C

∫ t

0

(
∥∂xv∥2Hs−2 + ∥∂2xz∥2Hs−2 +

s∑
k=0

∥M (k)
0 ∥2L2 +

s−2∑
k=0

∥∂k+2
x f(z)∥2L2

)
(τ) dτ

(8.3.16)

for s ≥ 2. Here, by using σ
′
(η) = a2 + O(η2) as η → 0, (8.3.1), Lemma 8.3.6 and (8.3.10),

we have

∥∂k+2
x f(z)∥L2 ≤ C∥z∥2L∞∥∂k+2

x z∥L2 for 0 ≤ k ≤ s− 2,

which implies∫ t

0

s−2∑
k=0

∥∂k+2
x f(z)∥2L2(τ) dτ ≤ C sup

0≤τ≤t

(
∥z(τ)∥4L∞

) ∫ t

0

∥∂2xz(τ)∥2Hs−2 dτ

≤ C sup
0≤τ≤t

(
∥W (τ)∥2H2

) ∫ t

0

∥∂2xz(τ)∥2Hs−2 dτ

≤ CE(t)2D(t)2. (8.3.17)

Thus, by using (8.3.12), from the inequarity (8.3.16) we arrive at the dissipation estimate of
y ∫ t

0

∥∂xy(τ)∥2Hs−1 dτ ≤ C∥W0∥2Hs + CE(t)2D(t)2. (8.3.18)

Step 3: We make the dissipation estimate of v just in the same way as Step 3 in the proof
of Theorem 8.2.1. This gives

E3,t + |v̂|2 = iξf̂(z) ¯̂v +R3, (8.3.19)

where, by using (8.2.20), E3 and R3 can also be estimated as

|E3| ≤ C(|Ŵ |2 +M2
0 ), |R3| ≤ |ŷ|2 + C|ξ||ŷ||û|+ C|û|M0.

Therefore, multiplying (8.3.19) by ξ2/(1+ξ2)2, and by using (8.2.20) and the Young inequality,
we obtain

ξ2

(1 + ξ2)2
E3,t + (1− ε)

ξ2

(1 + ξ2)2
|v̂|2

≤ Cε
ξ2

1 + ξ2
|ŷ|2 + Cε

ξ4

(1 + ξ2)3
|û|2 + CεM

2
0 + Cε

ξ4

(1 + ξ2)2
|f̂(z)|2 (8.3.20)
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for ε > 0. We note that we have estimated the term iξf̂(z) ¯̂v of the nonlinear part as follows:

|ξ|3

(1 + ξ2)2
|f̂(z)||v̂| ≤ Cε

ξ4

(1 + ξ2)2
|f̂(z)|2 + ε

ξ2

(1 + ξ2)2
|v̂|2.

Next, we integrate (8.3.20) with respect to t over (0, t). Then we multiply the resultant
inequality by (1 + ξ2)2(s−k)|ξ|2k and integrate with respect to ξ ∈ R, where 0 ≤ k ≤ s − 1.
This yields∫ t

0

∥∂xv(τ)∥2Hs−2 dτ ≤ C∥W0∥2Hs + C∥W (t)∥2Hs + C
s∑

k=0

∥M (k)
0 (t)∥2L2

+ C

∫ t

0

(
∥∂xy∥2Hs−1 + ∥∂2xu∥2Hs−3 +

s∑
k=0

∥M (k)
0 ∥2L2 +

s−2∑
k=0

∥∂k+2
x f(z)∥2L2

)
(τ) dτ

(8.3.21)

for s ≥ 2. By using (8.3.12) and (8.3.17), from (8.3.21) we arrive at the dissipation estimate
of v ∫ t

0

∥∂xv(τ)∥2Hs−2 dτ ≤ C∥W0∥2Hs + CE(t)2D(t)2. (8.3.22)

Step 4: We make the dissipation estimate of u and z just in the same way as Step 4 in the
proof of Theorem 8.2.1. This gives

ξ{E4 + (1 + ξ2)E5}t + ξ2{|û|2 + (a− bG(t))(1 + ξ2)|ẑ|2}

= −ξ2(1 + ξ2)f̂(z) ¯̂z +R4, (8.3.23)

where, by using (8.2.20), E4 and R4 can be estimated as
|E4|+ (1 + ξ2)|E5| ≤ (1 + ξ2)|Ŵ |2,

|R4| ≤ Cξ2{|v̂|2 + (1 + ξ2)|ŷ|2}

+|ξ|{|ŷ||û|+ (1 + ξ2)|v̂||ẑ|}+ Cξ2(1 + ξ2)|ẑ|M0.

Therefore, multiplying (8.3.23) by ξ2/(1+ ξ2)3, and by using (8.1.3), (8.2.20) and the Young
inequality, we obtain

ξ3

(1 + ξ2)3
{E4 + (1 + ξ2)E5}t + (1− ε)

ξ4

(1 + ξ2)3
{|û|2 + (1 + ξ2)|ẑ|2}

≤ Cε
ξ2

(1 + ξ2)2
|v̂|2 + Cε

ξ2

1 + ξ2
|ŷ|2 + CεM

2
0 + Cε

ξ4

(1 + ξ2)2
|f̂(z)|2 (8.3.24)



152 CHAPTER 8. TIMOSHENKO SYSTEM WITH MEMORY

for ε > 0. We note that we have estimated the term −ξ2(1 + ξ2)f̂(z) ¯̂z of the nonlinear part
as follows:

ξ4

(1 + ξ2)2
|f̂(z)||ẑ| ≤ Cε

ξ4

(1 + ξ2)2
|f̂(z)|2 + ε

ξ4

(1 + ξ2)2
|ẑ|2.

Next, we integrate (8.3.24) with respect to t over (0, t). Then we multiply the resultant
inequality by (1 + ξ2)2(s−k)|ξ|2k and integrate with respect to ξ ∈ R, where 0 ≤ k ≤ s − 2.
This yields∫ t

0

(
∥∂2xu∥2Hs−3 + ∥∂2xz∥2Hs−2

)
(τ) dτ ≤ C∥W0∥2Hs + C∥W (t)∥2Hs + C

s∑
k=0

∥M (k)
0 (t)∥2L2

+ C

∫ t

0

(
∥∂xv∥2Hs−2 + ∥∂xy∥2Hs−1 +

s∑
k=0

∥M (k)
0 ∥2L2 +

s−2∑
k=0

∥∂k+2
x f(z)∥2L2

)
(τ) dτ

(8.3.25)

for s ≥ 2. By using (8.3.12) and (8.3.17), the desired estimate of u and z follows from
(8.3.25): ∫ t

0

(
∥∂2xu∥2Hs−3 + ∥∂2xz∥2Hs−2

)
(τ) dτ ≤ C∥W0∥2Hs + CE(t)2D(t)2. (8.3.26)

Step 5: Consequently, we add all the dissipation estimates (8.3.18), (8.3.22) and (8.3.26) to
have ∫ t

0

(
∥∂xv∥2Hs−2 + ∥∂xy(t)∥2Hs−1 + ∥∂2xu∥2Hs−3 + ∥∂2xz∥2Hs−2

)
(τ) dτ

≤C∥W0∥2Hs + CE(t)2D(t)2. (8.3.27)

Finally, we add (8.3.27) to the estimate of the basic energy and the memory-type dissipation
terms (8.3.12). This yields

∥W (t)∥2Hs +
s∑

k=0

∫
R
g[∂kxz, ∂

k
xz] dx+

s∑
k=0

∫ t

0

∥M (k)
0 (τ)∥2L2 dτ

+

∫ t

0

(
∥∂xv∥2Hs−2 + ∥∂xy(t)∥2Hs−1 + ∥∂2xu∥2Hs−3 + ∥∂2xz∥2Hs−2

)
(τ) dτ

≤C∥W0∥2Hs + CE(t)2D(t)2. (8.3.28)

Thus, from (8.3.28), we arrive at the desired energy inequarity (8.3.3) in Proposition 8.3.5.
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[49] J. E. Muñoz Rivera and R. Racke, Mildy dissipative nonlinear Timoshenko systems:
Global existence and exponential stability, J. Math. Anal. Appl., 276 (2002) 248-278.
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