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Abstract

Time periodic problem for equations for viscous compressible fluids is considered on the
whole space. When the space dimension is greater than or equal to 3, the existence of a
time periodic solution to the compressible Navier-Stokes equation is proved for sufficiently
small time periodic external force with some symmetry condition. The stability of the
time periodic solution and the time decay estimate of the perturbation are also shown.
Furthermore, for small time periodic external force without the symmetry condition the
existence of a time periodic solution is stated. The stability of the time periodic solution
and the decay of L* norm of the perturbation are also stated. The existence of time peri-
odic solution to the compressible Navier-Stokes-Korteweg system is also shown for small
time periodic external force. The time periodic solution obtained here is asymptotically
stable and the decay of L® norm of perturbation is obtained. When the space dimen-
sion is equal to two, for the compressible Navier-Stokes equation the existence of a time
periodic solution is proved under small time periodic external force with antisymmetry
condition.
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Introduction

This thesis studies time periodic problem for equations for viscous compressible fluids.
The motion of barotropic flow of such fluids in R™ (n > 2) is described by the following
compressible Navier-Stokes equation:

{8tp+v-(pv):0, (0.0.1)
p(O + (v V)v) = pAv = (u+ p)V(V - v) + Vp(p) = pyg. o

Here p = p(x,t) and v = (vq(z,t), -+ ,v,(2,t)) denote the unknown density and the
unknown velocity field, respectively, at time ¢ > 0 and position x € R"; p = p(p) is the
pressure that is assumed to be a smooth function of p satisfying

p'(ps) >0,

for a given positive constant p,; pu and p' are the viscosity coefficients that are assumed
to be constants satisfying

2
p >0, Euﬂt’zo;

and g = g(z,t) is a given external force.
In this thesis we assume that g = g(z,t) satisfies the condition

glx,t+T) = g(x,t) (re€R" teR), (0.0.2)
for some constant 7" > 0.

We also consider time periodic problem for the compressible Navier-Stokes-Korteweg
system in R3:

( Oyp + div M = 0, (0.0.3)
MM\ . (.M
9,M + div ( ; ) — div (5(7) + /C(p)) + pg, (0.0.4)

OpE) + div (ME) + div (P(p, 9)%)

— GA0 + div ((5(%) +K(p)) %) + Mg. (0.0.5)



Here p = p(x,t), M = (My(z,t), My(x,t), M3(x,t)) and E = E(x,t) > 0 denote the
unknown density, momentum, and total energy respectively, at time ¢ € R and position
x € R3; 0 denotes the absolute temperature of the fluid satisfying

1[M]?
E=0Cf0+-"—,
t3

where C), denotes the heat capacity at the constant volume that is assumed to be a positive
constant; S and I denote the viscous stress tensor and the Korteweg stress tensor that
are given by

(0.0.6)

{ (M) = (wdiv i), + 2pd (1),
p)

K 8 8
K(p) = 5(Ap* = |Vp*)di; — kgt 52,

where dij<%> = % (832_ (%)j + %(%)); w and ' are the viscosity coefficients that

are assumed to be constants satisfying

2
>0, §u+u’20;

P = P(p,0) is the pressure that is assumed to be a smooth function of p and 6 satisfying
Pp(p*,g*) > 0, Pg(p*,e*) > 0,

where p, and 6, are given positive constants; x and & denote the capillary constant and
the heat conductivity coefficient respectively, that are assumed to be positive constants;
and g = g(z,t) is a given external force.

We assume that g = g(x,t) satisfies the condition

gz, t+T) = g(x,t) (xR teR) (0.0.7)

for some constant T" > 0.

The system (0.0.3)-(0.0.5) is known to be a model system for two phase flow with phase
transition between liquid and vapor in compressible fluid. In deriving (0.0.3)-(0.0.5), phase
transition boundary is regarded as a diffuse interface. The diffuse interface model displays
the phase boundary as a narrow transition layer. So (0.0.3)-(0.0.5) describes fluid state
by the changes of the density. (Cf., [6, 14, 22] for the derivation of (0.0.3)-(0.0.5).) Note
that if we assume that x = 0, then we obtain the compressible Navier-Stokes equation.

Time periodic flow is one of the basic phenomena in fluid mechanics, and thus, time pe-
riodic problems for fluid dynamical equations have been extensively studied. We refer, e.g.,
to [10, 20, 24, 30, 36] for the incompressible Navier-Stokes case, and to [1, 7, 8, 25, 33| for
the compressible case. Concerning the time periodic problem for the compressible Navier-
Stokes equation for barotropic flow, Valli ([33]) proved the existence and (exponential)
stability of time periodic solutions on a bounded domain of R? for sufficiently small time
periodic external forces. On the other hand, for large external forces, the existence of



time periodic solutions on a bounded domain of R? was proved in the framework of weak
solutions by Feireisl, Matusu-Necasova, Petzeltovd and Straskrava ([7]) for the system
for isentropic flow and by Feireisl, Mucha, Novotny and Pokorny ([8]) for the Navier-
Stokes-Fourier system for heat conductive flow under some dissipative heat flux boundary
condition. As for the time periodic problem on unbounded domains, Ma, Ukai, and Yang
[25] proved the existence and stability of time periodic solutions on the whole space R".
The authors of [25] showed that if n > 5, there exists a time periodic solution (pper, Vper)
around (p.,0) for a sufficiently small g € C°(R; HN ' N L) with g(x,t + T) = g(z,1),
where N € Z satisfying N > n + 2. Furthermore, the time periodic solution is stable
under sufficiently small perturbations and there holds the estimate

||(,0(t), U(t)) - (pper(t)vvper(t))HHN*l S O(l + t)_%”(p(va) - (pper(to)a Uper(tO))“HN*lﬁLla

where t is a certain initial time and (p, v)|i=¢, = (po, vo). Here H* denotes the L2-Sobolev
space on R" of order k.

As for the mathematical analysis for (0.0.3)-(0.0.5), most of literatures treated the
system in terms of the density p, velocity v = M/p and absolute temperature 6:

Op + div (pv) = 0, (0.0.8)
p(Ow + (v V)v) + VP(p,0) = pAv + (u+ ' )Vdivo + kpVAp + pg, (0.0.9)
pCy(0; + (v - V)) + 0P(p, 0)dive = GAH + W (v) + O(p, v), (0.0.10)

where U(v) and ®(p, v) are given by

(v) = g/ (dive)? + 2uDv : Du, Dv = (dy(v))F -4,
d(p,v) =k (% + pAp) dive — k(Vp® Vp) : V.

Chen and Zhao ([4]) considered the stationary problem (0.0.8)-(0.0.10) for g of the form
g(x) = div gi(z) + g2(x) around (ps,0,0,). It was shown in [4] that if g satisfies

3 1
D+ ) Vgl + Y (L )PV g e
k=1 k=0
(1 + 12 gl e + [+ [2)) 7 gallr < 1, (0.0.11)

then there exists a stationary solution for problem (0.0.8)-(0.0.10) in the weighted L>N L?
space. The stability of the stationary solution was also considered in [4]. It was shown
in [4] that if g satisfies (0.0.11), then the stationary solution (p*,v*, §*) is asymptotically
stable under sufficiently small initial perturbations, and the perturbation satisfies

1(p(t),v(t),6(t)) = (p*, v, 0%) |1 — 0

as t — oo. Chen, Xiao and Zhao ([3]) and Cai, Tan and Xu ([2]) then considered
time periodic problem for the barotropic and non-barotropic system of (0.0.8)-(0.0.10),
respectively, on R™ with n > 5. They proved that there exists a time periodic solution
(Ppers Vpers Oper) around (py, 0, 6,) for a sufficiently small g € CO(R; HV=1 N L) satisfying

9



(0.0.2), where N € Z satisfying N > n + 2. Furthermore, the time periodic solution is
stable under sufficiently small perturbations and it holds that

||(p(t) - pper(t>7v<t) - Uper(t>7 9(75) - eper(t))HL"o —0 (t — OO)

In Chapter 1 of this thesis, we assume that the external force g satisfies the following

oddness condition
g(—z,t) = —g(z,t) (z€R", teR). (0.0.12)
We will show that for n > 3 if g satisfies (0.0.2) and (0.0.12) and ¢ is small enough in
some weighted Sobolev space, then (0.0.1) has a time periodic solution (pper, Vper) and
Uper (1) = (Pper(t) — ps, Uper (t)) satisfies
sup ({[uper (t)[|22 + [||2[Vttper (¢) ]| 22)
t€[0,T]
< C{lI(L + [zDgllcqomyzinee + [[(1+ @) gl r20,7;mm-1) }- (0.0.13)

Here m is an integer satisfying m > [5] + 1. In addition, we will prove that the time
periodic solution is stable under sufficiently small initial perturbation, and that the per-
turbation satisfies

1(0(8), 0(8)) = (oper (8), 0per () 122 = O %) 15 t = 0. (0.0.14)
The precise statements are given in Theorem 1.2.1 and Theorem 1.2.2 below.

The proof of the existence of a time periodic solution is given by an iteration argument
by using the time-7-map associated with the linearized problem around (p,,0). Substi-
tuting ¢ = £ and w = 2 with v = /p/(p.) into (0.0.1), we see that (0.0.1) is rewritten
as

Owu + Au = —Blu]u + G(u, g), (0.0.15)
where
(0 ydiv Bk ptp
A= <7v —VA—ﬁVdiV)’ V—p*, U= P (0.0.16)
Bliiju = 4 (“’ 'OW) for u = T(,w), @ = (6, ) (0.0.17)
and

G(u,g) = (fO(u) > , (0.0.18)

f(u, g)
lu) = —yodivw, (0.0.19)
flug) = =1L+ 6w Vo) - 00w = V() + 2y (0.020)

10



e = 2 / (1= )" (p. (1 + 66))db.

To solve the time periodic problem for (0.0.15), we decompose u into a low frequency
part u; and a high frequency part us. Then u; and u., satisfy

Owuy + Auy = Fi(u, g), (0.0.21)
Oroe + Ao + Poo(Bli]ueo) = Fio(u, g), (0.0.22)
where
Fl(u7 g) = Pl[_B[ﬂ]u + G(ua g)]7
FOO(“’» g) = P%[_B[ﬁ]ul + G(“? g)]
and

U=u=u + U, uj=Pu (j=1,00).

Here P, and P, are bounded linear operators from L? into a low frequency part and a
high frequency part, respectively, satisfying P+ P, = I. (See sections 3 and 4 in Chapter
1 for the definitions and properties of P; and Py..)

We rewrite (0.0.21)-(0.0.22) as

Ul(t) == Sl(t)U()l + Yl(t)Fl(u, g), (0023)
Uoo (1) = Seo.a(t)Ugoo + - 00.al(t) Foo(u, ), (0.0.24)
where
upr = (I — Sy (T)) L7 1(T)Fy(u, g), (0.0.25)
Upoo = (I - Soo,ﬂ(T)>71yco,ﬁ(T)Foo(u7g) <0026)
with
U=1u=1u; + Us- (0.0.27)

Here S} (t) is the solution operator for the linear initial value problem for (0.0.21) with the
inhomogeneous term Fi(u, g) = 0 under the initial condition u; |;—g = ug1; -#1(t) is the one
for (0.0.21) with a given inhomogeneous term Fj(u, g) under the initial condition u;|—g =
0; and Sy a(t) and .7« 4(t) are similarly defined by the solution operators for the linear
initial value problem for (0.0.22). We will investigate properties of S1(t), .#1(t), Sec.a(t)
and .« 4(t) in weighted Sobolev spaces. The necessary estimates for S (¢) and .74 () will
be obtained by the explicit formulas for these operators through the Fourier transform,
while those for S (t) and .“« 4(t) will be established by a weighted energy method.
One of the points in the proof is to establish boundedness of operators (I — S;(7T'))™*
and (I — S, (T))~"! in some weighted spaces. As for the low frequency part, due to the
symmetric assumption on g in (0.0.12), one can consider problem (0.0.1) in a function
space with a symmetry, which enables us to show the boundedness of (I — S;(7))~!
from L'((1+ |z|)dz) to the weighted space with norm ||u|p2 + |||z|Vu|/z2. Concerning
the high frequency part, the weighted energy method shows that the spectral radius of
Swoa(T) is strictly less than 1 in the weighted Sobolev space H™((1 + |z|*)dz) with an

11



integer m > [§] + 1 for sufficiently small @, which leads to the desired boundedness of
(I — Soa(T))™'. We note that, due to the spatial decay of the time periodic solution
obtained under the symmetric assumption on ¢ in (0.0.12), one can show the asymptotic
stability of the time periodic solution, together with the decay estimate of L? norm of the
perturbation as ¢t — oc.

The stability of the time periodic solution will be also shown by a decomposition
method associated with the spectral properties of the linearized operator which, in this
case, is a decomposition into low and high frequency parts (cf., [15, 27]). Based on the
estimate (0.0.13) for uper(£) = T (pper(t) — P, Vper(t)), we can apply the Hardy inequality
to show the stability of the time periodic solution (ppe,(t), vper(t)) under sufficiently
small initial perturbations and the decay estimate (0.0.14) in a similar manner to [27].
In contrast to the problem in [27], the terms v, - V¢ + ¢divu,,, appear in the transport
equation for the perturbation. These terms can be handled by using the energy method
and the boundedness properties of the projection onto the low frequency part as in [15],
together with the Hardy inequality. (See also [1]).

In Chapter 2 of this thesis, we will show the existence of a time periodic solution for
(0.0.1) without assuming the oddness condition (0.0.12) for n > 3. It will be proved that
if n > 3, g satisfies (0.0.2) and

lgllcqorszy + 11+ |2 glloqozyze) + 11+ 2" gl 2y < 1,

with an integer s > [n/2] + 1, then there exists a time periodic solution (pper, Vper) €
C([0,T]; H?) with period T for (0.0.1), and wpe,(t) = (pper(t) — pu; Vper (t)) satisfies

1

tSEéI;](H(l + 2" ) pper (D) + Y I+ [2]" ) D per (1) 2
€0, =0

< Cllglleqorysey + 11+ |2[™)gllzeorize) + 1 (1 + 2" gl L20,z5m0-1))- (0.0.28)
Furthermore, if g satisfies
lgllcqoyeyy + 1L+ 2™ glleqoryeey + (1 + 2" gl 2mm < 1,

then the time periodic solution (pper, Vper) is asymptotically stable under sufficiently small
initial perturbations, and the perturbation satisfies

||(p(t)7v(t)) - (pper<t)uvper<t>>||Loo —0

as t — oo. We expect that the decay estimate such as (0.0.14) would also hold for this
case and it would be desirable to derive the optimal decay estimate of L? norm for the
perturbations. The precise statements of our existence and stability results are given in
Theorem 2.2.1 and Theorem 2.2.2 below.

We will prove the existence of a time periodic solution around (p.,0) by an iteration
argument by using the time-T-map associated with the linearized problem at (p,,0). As

12



in Chapter 1 we formulate the time periodic problem as a system of equations for low
frequency part and high frequency part of the solution. In the proof of the existence of
a time periodic solution without assuming the oddness condition (0.0.12), there are two
key observations. One is concerned with the spectrum of the time-7-map for the low
frequency part. Another one is concerned with the convection term v - Vu. As for the
former matter, as in Chapter 1, we need to investigate (I —S1(T))~!, where S;(T') = e~ 14
with A being the linearized operator around (p., 0) which acts on functions whose Fourier
transforms have their supports in {{ € R"; [¢| < 7o} for some ry > 0. (See (2.3.21) and
(2.3.22) bellow.) We will show that the leading part of (I — S;(T))~! coincides with the
solution operator for the linearized stationary problem used by Shibata-Tanaka in [32].
In fact, the Fourier transform of (I — S;(T))"'F takes the form (I — e~ T46)=1F where F
is the Fourier transform of F' and

C
C\ig vEPL 4T )
By using the spectral resolution, we see that

v i

X 1 —
(I —e TA)71 —= 72@. . v\f|2£T§ as £ — 0.
SR viEP ([n N W)

The right-hand side is the solution operator for the linearized stationary problem in the
Fourier space. This motivates us to introduce a weighted L space for the low frequency
part employed in the study of the stationary problem in [32].

As for the high frequency part, we will employ the weighted energy estimates estab-
lished in Chapter 1.

Another point in our analysis is concerned with the convection term v - Vo. Due to
the slow decay of v(z,t) as || — oo, there appears some difficulty in estimating v - Vo.
To overcome this, we will use the momentum formulation for the low frequency part,
which takes the form of a conservation law, and the velocity formulation for the high
frequency part, for which the energy method works well. We also note that, in estimating
the high frequency part of v - Vv, we will use the fact that a Poincaré type inequality
| fllzz < C||V f]| L2 holds for the high frequency part.

The asymptotic stability of the time periodic solution (ppe,, Vper) can be proved as in
Kagei and Kawashima [16] by using the Hardy inequality.

In Chapter 3 of this thesis we consider time periodic problem for (0.0.3)-(0.0.5). We
will show the existence of a time periodic solution for (0.0.3)-(0.0.5) around (p., 0, E,) on
R3 with F, = C,0,. It will be proved that if g satisfies (0.0.7) and

lgllcqomeyy + 1L+ 12*)glleqomce) + 11+ [2[*) gl r20,mm-1) < 1

for an integer s > 2, then there exists a time periodic solution (pper — pi; Mper, Eper — Ex) €
C(]0,T]; H?) with period T for (0.0.3)-(0.0.5), and (pper — Pss Mper, Eper — E) satisfies the

13



estimate

1 1
sup { DM@+ ) pper — p) Ol + D L+ |2 )0 My (1) 1

te[0.T] > 5, §=0

Y+ o )0 Eper = BI(E) 1= |

§=0
< C(lglleqoryieyy + 11+ |2P)gllcoriey + 11+ [2)gll20.r:m5-1)).  (0.0.29)

Furthermore, the time periodic solution (pper, Mper, Eper) for (0.0.3)-(0.0.5) is asymptoti-
cally stable under sufficiently small initial perturbations and the perturbation satisfies

1(p(8), M (2), Et)) = (Pper(t); Mper(t), Eper(t)) || e =0 (¢ = 00).
The precise statements of our results are given in Theorem 3.2.1 and Theorem 3.2.2 below.

The existence of time periodic solution is proved by using the time-T-map for the
linearized semigroup at (ps, 0, E,). We will employ a function space of hybrid type which,
roughly speaking, consists of functions whose low frequency parts belong to a weighted
L* N L? space and high frequency parts belong to a weighted L?-Sobolev space. For
the low frequency part we introduce a function space similar to that employed in the
study of the stationary problem in [4], that is, a set of periodic functions with values in a
weighted L> N L? space similar to (0.0.11). We investigate the spatial decay properties of
the integral kernel of the time-T-map, and establish the estimates for the low frequency
part by a potential theoretic method. Due to the conservation form of momentum and
total energy we can estimate the nonlinear terms for the low frequency part. If we use
(0.0.8)-(0.0.10) instead of (0.0.3)-(0.0.5), the slow decay of p(z,t), v(x,t) and 6(x,t) as
|z| — oo prevents us from obtaining the estimates of the terms (v - V)v, (v - V)@ and
0P (p,0)divo in (0.0.9) and (0.0.10) for the low frequency part. As for the high frequency
part, we employ the weighted energy method to obtain the a priori estimates.

The proof of the existence of time periodic solution is similar to the argument in
Chapter 2. The main difference from Chapter 2 is as follows. In Chapter 2, a coupled
system for the low frequency part and the high frequency part was used in the proof
of the existence of the time periodic solution to avoid the derivative loss for the high
frequency part due to the term v - Vp. In this paper we do not use any coupled system
as in Chapter 2 and directly treat (0.0.3)-(0.0.5) by making use of the smoothing effect
for p due to the term kKVAp arising in the Korteweg tensor. A key point in the proof
of the existence of time periodic solution is to control the decay properties of solution as
|z| — oo, which is similar to the case of the stationary problem. In [3] stationary solution
was obtained in some function space where functions decay like p(z) — p. = O(]z|~%) and
(v(z),0(x)—0.) = O(Jz|™!) as |z| — oo. In this paper we require p(z,t) — p. to decay only
in the order O(|xz|™!) as |z| — oco. The faster decay of p(z) — p. in [4] was obtained from
the fact that p(z) — p. can be represented by the Bessel potential due to the Korteweg
tensor. On the other hand, in the time dependent case, the method in [4] does not work
well, and p(z,t) — p. is represented by the Newton potential which leads to the slower

14



decay than the stationary case. We also note that since we consider the non-barotropic
system, the decay of p(z,t) — p, is slower than that in Chapter 2 in the low frequency
part.

The asymptotic stability of the time periodic solution (pper, Mper, Eper) is proved by
the energy method using the Hardy inequality as in [4, 16].

In Chapter 4 of this thesis we consider the existence of a time periodic solution for
(0.0.1) on R? under the following antisymmetry condition:

gl<_x17x27t) = _gl('r17x27t)7 gl('rl? —l'g,t) = gl(xlax%t)’
92(_x17x27t) = 92<l’1,l’2,t), 92(x17 _x27t) = _92(x17x27t)7 <0030>
g1(w2,71,t) = go(T1, 22, 1), Go(¥2,71,1) = gi1(21, 72, 1).

It will be proved that if g satisfies (0.0.2), (0.0.30) and the estimate

12+ [2Dglleqorpey + 11+ 2P glleqoryze) + (1 + |2*)gll 2 < 1,

for an integer s > 3, then there exists a time periodic solution wupe, = (Pper — Ps, Vper) €
C(R; L) with Vu,., € C(R; H*!) having time period T for (0.0.1), and wu,., satisfies
the estimate

1

sup { SN+ 1240 (pper — ) Ol + O+ 24 v ()] 2 |

t€[0,T] =0 =0

< Cllglloqomicy + 1A+ [2F)gllcqomiz=) + 11+ [2[*)gll z20r::-1).

The existence of a time periodic solution is shown by an iteration argument using
time-T-map concerned with the linearized problem around the constant state. We use
a system of equations decomposed by a low frequency part and high frequency part of
solution as in Chapter 1. Concerning the low frequency part, we apply the potential
theoretic method which control spatial decay properties for a solution. The same method
was used in the study of the stationary problem [32] and the time periodic problem in
Chapter 2 of this thesis for the space dimension n > 3. The main difference between this
study and Chapter 2 is stated as follows. We denote by A; the linearized operator around
(ps,0) on the low frequency part. Then we estimate (I — S1(7))~" in some weighted L*
space, generated by A;. In contrast to [28], since we consider on R?, (I — S;(T"))~! has
the worse order as log |z| at x — 0o, which is the same order as the fundamental solution
of the Laplace equation. More preciously, it follows from the spectral resolution that

v+ il
1 —_— — —
FI=S(T) ™"~ e (]7525_5) as &0, (0.0.31)
VER VIR \T2 T e

where F denotes the Fourier transform. Then the order log |x| appears from the Stokes
inverse in the right hand side of (0.0.31). This prevents us from controlling spatial decay

15



properties for the convection term and the external force. To overcome this difficulty, since
the slowly decaying order appears from the Stokes inverse, we introduce the antisymmetry
condition which was used in the stationary problem for imcompressible fluid on R? ([37]).
Moreover, the following two key observations are used.

The one is concerned with the estimate for the convection term. Due to the slow decay
of v at spatial infinity, we formulate the equations by not only using the conservation form
with the momentum as in Chapter 2 but also rewriting the convection term as

O (<U2)21}1_1J2<U1)2) O (“20@1) + V)

to make use of the antisymmetry condition effectively for the low frequency part. (Cf.,
Remark 4.3.5 bellow.) Furthermore, we establish an estimate for convolution under anti-
symmetry condition in the weighted L* space stated in Lemma 4.3.8 bellow. Combining
these, we obtain the estimate for the convection term in the weighted L space.

Another key observation is concerned with the estimate for the external force. We state
a Poincaré type inequality in the weighted L*° space with the antisymmetry condition for
the low frequency part. (Cf., Lemma (4.3.9) bellow). Using this the inequality, we can
estimate a convolution related to the external force since the integral kernel has the same
order as the first order derivative of the fundamental solution of the Laplace equation. If
we would not use the inequality, the integral kernel would be obstructive for the estimate
which has the order log |z| at spatial infinity.

As for the high frequency part, we use the velocity formulation to avoid some derivative
loss by using the energy method as in chapters 1 and 2.

Note that we use a coupled system of the conservation form of the momentum and
the velocity formulation, but not vorticity equation; and we do not need to assume that
g is a derivative form of some scalar potential function as in [37].

This thesis is organized as follows. In Chapter 1, we show the existence of a time
periodic solution to (0.0.1) for sufficiently small time periodic external force satisfying
(0.0.12) when the space dimension is greater than or equal to 3. We also show the
stability of the time periodic solution and the time decay estimate of the perturbation. In
Chapter 2, it is proved that if time periodic external force ¢ is sufficiently small without
the assumption (0.0.12), then we have the existence of a time periodic solution of (0.0.1)
on R” for n > 3. The time periodic solution is shown to be asymptotically stable under
sufficiently small initial perturbations and the L* norm of the perturbation decays as
time goes to infinity. In Chapter 3, as for (0.0.3)-(0.0.5), the existence of a time periodic
solution is proved for a sufficiently small periodic external force on R3. The stability of
the time periodic solution is proved for sufficiently small initial perturbations. It is also
shown that the L> norm of the perturbation decays as time goes to infinity. In Chapter
4, the existence of a time periodic solution to (0.0.1) is stated for sufficiently small time
periodic external force satisfying (0.0.30).

In each section, notation is introduced which is used throughout the chapter and the
main results are stated. Continuously, the proofs of the main results are given respectively.
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Chapter 1

The existence and stability of time
periodic solution to the compressible
Navier-Stokes equation with
symmetry

Time periodic problem for (0.0.1) on the whole space is studied. The existence of a time
periodic solution is proved for sufficiently small time periodic external force with some
symmetry when the space dimension is greater than or equal to 3. The proof is based on
the spectral properties of the time-T-map associated with the linearized problem around
the motionless state with constant density in some weighted Sobolev space. The stability
of the time periodic solution is also proved and the decay estimate of the perturbation is

established.

1.1 Preliminaries

In this section we first introduce some notations which will be used throughout this
chapter. We then introduce some auxiliary lemmas which will be useful in the proof of
the main results.

For a given Banach space X, the norm on X is denoted by || - || x-

Let 1 < p < oo. L? stands for the usual LP space over R”. The inner product of L? is
denoted by (-,-). For a nonnegative integer k, H* stands for the usual L2-Sobolev space
of order k. (As usual, H® = %))

The set of all vector fields w = T(wy, -+ ,w,) on R™ with w; € L? (j = 1,--- ,n),
i.e., (LP)", is simply denoted by LP; and the norm || - ||(zry» on it is denoted by || - ||z»
if no confusion will occur. Similarly, for a function space X, the set of all vector fields
w="(wy, - ,w,) on R" with w; € X (j =1,---,n), i.e., X", is simply denoted by X;

and the norm || - || x» on it is denoted by || - ||x if no confusion will occur. (For example,
(H*)™ is simply denoted by H* and the norm || - || gx) is denoted by || - || g.)
For u = "(¢,w) with ¢ € H* and w = "(wy,--- ,w,) € H™, we define the norm
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||| g e Of w o HE x H™ by

1
lall s = (1170 + N[z ) -

When m = k, we simply write H* x (H*)" as H*, and, also, ||| i rrryn @S [Jwf] e if no
confusion will occur :

H* = HY 5 (B, s = Nl (u="T(60)).

Similarly, when u = "(¢,w) € X x Y with w = "(wy,- - ,w,) for function spaces X and
Y, we denote its norm ||u||xxy by

1
lullxxy = (Iolx + lwli)?  (u="(¢,w)).
When Y = X", we simply write X x X" as X, and also its norm ||ul|xxx» as ||u||x:
X =X x X" ullx := [Jullxxxn (u="(6w)).

Let a = (o, -+, a,,) be a multi-index. We use the following notation
n
oy =95 -9, ol =) a
j=1

For any integer [ > 0, V'f denotes z-derivatives of order [ of a function f.
For 1 < p < oo, LY stands for the weighted L? space over R™ defined by
Ly =A{f € L% f ey = 11 + |2} fll > < 400}
For a nonnegative integer k, we define the space HF by

HY = {f € H" | flgx = (1 + |2 fllsr < +o00}.

We next introduce function spaces associated with low and high frequency parts. We
denote by f or F[f] the Fourier transform of f :

fO =FI© = [ fe=dr (R,

The inverse Fourier transform of f is denoted by F*[f]:
FHf ) = @2m)™ [ f(e*7de (x € R").
R”

For a nonnegative integer k£ and positive constants r; and r,, with r; < 7., H(koo)
denotes the set of all f € H* satisfying supp f C {|¢| > 1}, and L%l) denotes the set of
all f € L? satisfying supp f C {|¢] < rs}. Note that H’“QL%I) = L7, for any nonnegative
integer k. (Cf., Lemma 1.3.3 (ii) bellow).
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Concerning weighted spaces for high frequency part, we define the space H (1“00)71 by

HEga = {f € Hiyi | fllag < 400}

As for the low frequency part, we define the space e%”(ll)’l by

A1 =1 € Liy; Il = (IAIZ2 + 2|V flIZ2)* < +oo}.

We will consider the time periodic problem in function spaces with some symmetry.

We define I' by
(Tu)(z) = "(¢(~2), ~w(-2)) (u(z) = "(¢(x),w(z)), =€R").

We indicate function spaces satisfying the symmetric condition I'u = u by the subscript
-sym- More precisely, We denote by X, the set of all u = T(¢,w) € X satisfying the
symmetric conditions ['u = u, i.e., ¢(—z) = ¢(z) and w(—z) = —w(z) (r € R"):

Xeym = {u="(¢,w) € X;Tu = u}.

Let —0o < a < b < co. We denote by C*([a,b]; X) the set of all C* functions on
la,b] with values in X. The Bochner space on (a,b) is denoted by LP(a,b; X) and the
L2-Bochner-Sobolev space of order k is denoted by H*(a,b; X).

As for the high frequency part, we will work in the space Z* (a,b):

e (a,b) = {too = (oo, Woo) € C[a, b]; (H{soy1)sym) Woo € L (a, b; H(k;){l)ﬂHl(a,b; Héf;)ll)}
equipped with the norm
%
_ 2 2
||uoo||%(a,b) - (HUOOHC([%I)];H(ICOO)’I) + ||w<>0||LQ(a,b;Hf;;’l)ﬁHl(a,b;Hé“;)lyl)> :

Here k = m — 1 or m with an integer m satisfying m > [3] + 1.
We will look for the low frequency part u; = ' (¢y,w:) in the space H'(0, T’ (%”(11)’1)521,%).

It then follows from the equation that d;w; also belongs to L?(0,T’; L?). Since the nonlin-

earity includes ¢d;w, it is convenient to work in the space H(0, T’; (%(11)71)8ym) incorporate

with the norm ||9;w1 || 12(o,r;2) in the iteration argument. We thus introduce the following
function space for the low frequency part:

Yi(a,b) = {u = "(¢1,w1) € H'(a,b; (%(11)71)8ym);8tw1 € L*(a,b; L3)}
equipped with the norm

1
2

— 2 2
L (PR L X Ry

Note that H'(a, b; (j‘f(ll)’l)sym) C C(la,b); (%(11),1)8%”1)7 where the imbedding is continu-
ous.
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We define the space 2% (a,b) by
%k(av b) = gl(av b) X %(CL, b)
equipped with the norm

1
2

||{U17uoo}’|%k(a,b) - (”uln%(a,b) + Huoo”%(a,b))

We also introduce function spaces of T-periodic functions in t. Cp.,(R; X) denotes
the set of all T-periodic continuous functions with values in X equipped with the norm
| - lleqomx); and L2, (R; X) denotes the set of all T-periodic locally square integrable

per

functions with values in X equipped with the norm || - ||z2(or,x). Similarly, H),,.(R; X)
and 2% (R), and so on, are defined.

per

Let X be a Banach space and let L be a bounded linear operator on X. We denote
by rx (L) the spectral radius of L.
For operators Ly and Lo, [L1, Ls] denotes the commutator of L; and Ls:

(L1, Lol f = Li(L2f) — La(La f).
We next state some lemmas which will be used in the proof of the main results. These
lemma are also used in chapters 2-4.

Lemma 1.1.1. Letn > 2 and let m > [g] + 1. Then there holds the inequality

| fllzee < CIVF|l gm
for f e H™.

Lemma 1.1.1 is proved as follows. Let n > 2 and set 2* := % Since m > [g] + 1,
we see that m —1 > 2. Tt then follows from the Sobolev inequalities that

[ fllzee < Cll fllwmes < CIV flzrm-1,
which shows Lemma 1.1.1.

Lemma 1.1.2. Assumen > 2 and let m be an integer satisfying m > [%} +1. Let m; and
(¢ — 1)m + |u|. Then there holds

10w fre- 0k fo < € T I A5 s -

1<j<t

See, e.g., [18], for the proof of Lemma 1.1.2.
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Lemma 1.1.3. Let n > 2 and let m be an integer satisfying m > [%] + 1. Suppose that
F is a smooth function on I, where I is a compact interval of R. Then for a multi-index
a with 1 < |a| < m, there hold the estimates

1162, Pl fellz2 < ClIF leroiin {1+ IV Al FIV Aullm | foll e

for fi € H™ with fi(x) € I for all x € R™ and f, € H*; and

02 F(f))falliz < CUFlereiin {1+ IV AN} IV Aullin | Foll s

for fi € H™ ' with fi(z) € I for all x € R" and f, € HI*I71,

See, e.g., [16], for the proof of Lemma 1.1.3.

1.2 Main results of Chapter 1

In this section we state our results on the existence and stability of a time periodic solution
for system (0.0.1).

We begin with the existence of a time periodic solution. To state the existence result,
we introduce operators which decompose a function into its low and high frequency parts.
We define operators P, and P, on L? by

Pif = F ' Ff] (feL?j=100),

where

x;(§) € C*(R™)
ey )€
Xl(f) = { 0 (¢
Xeo(§) =1 —x1(8),

0<r <re.

1),

)
00)7

(J

3 3

| <
| >

We fix 0 < r; <re < % so that (1.4.3) in Lemma 1.4.5 below holds for |£| < 7.

Theorem 1.2.1. Let n > 3 and let m be an integer satisfying m > [%] + 1. Assume that
g(x,t) satisfies (0.0.2) and g € Cper(R; LI N L2) N L2, (R; H ). Set

per
(9 = Nglleqomiinsy + l9llzzorimp.

Then there exist constants g > 0 and Cy > 0 such that if [g],, < do, then the system
(0.0.1) has a time periodic solution " (pper, Vper) with period T that satisfies {uy,us} €
27, (B) with |[{ur, usc}l g gry < Colal where u; = T(Pylpyer — o). Pvyer) (1 =
1,00). Furthermore, the uniqueness of time periodic solutions of (0.0.1) holds in the class
{T(p.v); u=T(p—ps, v)satisfies { Pyu, Pxu} € 27..(R), [[{ Pru, POOU}H(%W(O,T) < Codp}-
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Our next issue is to study the stability of the time periodic solution obtained in
Theorem 1.2.1.

Let " (pper, Vper) be the time periodic solution given in Theorem 3.2.1. We denote the
perturbation by u = " (¢, w), where ¢ = p — pper, W =V — Vpe,. Substituting p = ¢ + pper
and v = w + vy, into (0.0.1), we see that the perturbation u = " (¢, w) is governed by

at¢ + Uper : V¢ + ¢divvpe7“ + pperdivw +w- VppeT = FO’
0w + Vper - Vw +w - Ve, — =Aw — B N7 divay (1.2.1)

Pper per

= (D0 + (0 + )V divee,) + V(EL2)g) = P,

Pper

¢
Pper(Pper + @)
¢ ¢ ¢ g
A er — Vd per
Pper (pper + ¢) (pperlu Up * pper (,U * H ) e )
¢ ¢?

- (2 1 (3) 2
+ p,%eTV(p (Pper, ®)@) + e (b)V(p(pper + @) + pperV(p (Pper> @)P7),

1 1
2D (por, ) = / P (0per +08)d0, D (pyor, 6) = / (1= ) (pper + 06)d0.
0 0

(phw + (p+ ¢/ )Vdivw)

We consider the initial value problem for (1.2.1) under the initial condition
uli—o = uo = (¢, wo). (1.2.2)
Our result on the stability of the time periodic solution is stated as follows.

Theorem 1.2.2. Let n > 3 and let m be an integer satisfying m > [g] + 1. Assume
that g(x,t) satisfies (0.0.2) and g € Cper(R; L} N L3) N L2, (R; HY"). Let T (pper, Vper) be

the time periodic solution obtained in Theorem 3.2.1 and let ug = " (o, wo) € H™ N L.
Then there exist constants €, > 0 and €3 > 0 such that if

[9]m+1 < €1, ||UO||H'”mL1 < €,

there exists a unique global solution u = "(¢,w) € C([0,00); H™) of (1.2.1)-(1.2.2) and u
satisfies
IVEu(t)lle < CL+ 87572 (te[0,+00), k=0,1).

Theorem 1.2.2 follows from the same argument as that in [27]; and we omit the
details. In contrast to the problem in [27], several linear terms with coefficients including
Uper appear in the equations for the perturbation. In the transport equation for the
perturbation, there appear the terms v, - Vo + ¢divu,,, and these terms can be handled
by using the energy method and the boundedness properties of the projection onto the
low frequency part as in [15, 27], together with the Hardy inequality; the linear terms
including vy, in the equation of motion for the perturbation can be handled by using the
Hardy inequality. (See also [1]).
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1.3 Reformulation of the problem

In this section we reformulate the time periodic problem for (0.0.1). To prove Theorem
1.2.1, it suffices to show the existence of a time periodic solution of (0.0.15). We decompose
u into a low frequency part vy and a high frequency part u..; and we rewrite the problem
into a system of equations (0.0.23)-(0.0.27) for u; and uq..

Let u satisfy (0.0.15) and set u; = Piu, us = Pou. Then u; and ue, satisfy (0.0.21)
and (0.0.22). Suppose that (0.0.21) and (0.0.22) are satisfied by some functions u; and
Us. Then, since P, + P, = I, by adding (0.0.21) to (0.0.22), we obtain

815(“1 + uoo) + A(ul + uoo) = _Poo<B[u1 + Uoo]uoo) + (Pl + Poo)F(ul + uooag)
= —Blui + uso|(u1 + Uso) + G(u1 + Uss, g).
Set u = 1y + U, then we have

Owu + Au+ Blulu = G(u, g).

Consequently, if we show the existence of a pair of functions {uy, us} satisfying (0.0.21)-
(0.0.22), then we can obtain a solution u of (0.0.15). Therefore, we will consider (0.0.21)-
(0.0.22) to solve the time periodic problem for (0.0.15).

The following two lemmas are concerned with symmetry of (0.0.15) and (0.0.21)-
(0.0.22). We recall that I" is defined by

(Tu)(z) = "(¢(~2), ~w(-2)) (u(z) = "(¢(x),w(z)), =€R").

Lemma 1.3.1. Set g(z,t) = "(0,g9(z,t)) and assume that (Ug)(z,t) = g(z,t)(z €
R" t € R).

(i) If u= T(¢,w) is a solution of (0.0.15), then T'u is also a solution of (0.0.15).

(ii) If {u1,ux } is a solution of (0.0.21)-(0.0.22), then {T'uy, T'ux} is also a solution of
(0.0.21)-(0.0.22).

Lemma 1.3.2. Assume that (I'g)(z,t) = g(x,t) (r € R", t € R).
(1) If Tu)(x,t) = u(z,t) (xr € R*, t € R), then
[T (0w + Au+ Blulu — G(u, 9))|(z,t) = [Ou + Au + Blulu — G(u, g)](x, t)
forz € R",t € R.
(ii) If {Tur(x,t), Tuco(z, 1)} = {ur(x,t), us(x, )} (x € R™, t € R), then
[C(Opur + Auy — Fi(ug + oo, 9))|(z,t) = [Opur + Auy — Fi(ug + tso, 9)](, 1)
and

[T (Optioe + Atie + Poo(Blu1 + tieo|tios) — Fuo (1 + tise, 9))] (2, 1)
= [atuoo + Augo + POO(B[ul + Uoo]uoo) - Foo(“l + UomQ)](xvt)

forx e R*"t € R.
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Lemma 1.3.1 (i) and Lemma 1.3.2 (i) can be verified by direct computations. As
for Lemma 1.3.1 (ii) and Lemma 1.3.2 (ii), by using the facts f(—¢) = f(—-)(£) and
Xi(—€) = x;(§) (j =1,00), we see that I'P; = P, (j = 1,00). Based on these relations,
Lemma 1.3.1 (ii) and Lemma 1.3.2 (ii) can be proved by a straightforward computation.

By Lemma 1.3.1 and Lemma 1.3.2, one can consider (0.0.21)-(0.0.22) in space of func-

)i
tions satisfying {Tuy, Tus } = {u1, oo}, e, u; = T (9j(w, 1), wi(x, 1)) = T(¢;(—x,t), —w;(—x,1))

(j =1,00).

We look for a time periodic solution {uj,us} for the system (0.0.21)-(0.0.22). To
solve the time periodic problem for (0.0.21)-(0.0.22), we introduce solution operators for
the following linear problems:

U|t:0 = Uo1, e
and
{ Opoo + Al + Poo(Blt]tue) = Fio, (1.3.2)
U\f:o = Upoo, o

where @ = " (¢, W), uo1, Ugeo, F1 and F, are given functions.

To formulate the time periodic problem, we denote by Si(¢) the solution operator for
(1.3.1) with F; = 0, and by .#1(t) the solution operator for (1.3.1) with up; = 0. We
also denote by S a(t) the solution operator for (1.3.2) with F, = 0 and by .« () the
solution operator for (1.3.2) with upe = 0. (The precise definition of these operators will
be given later.)

If {u1, us } satisfies (0.0.21)-(0.0.22), then wu;(t) and u(t) are written as

ui(t) = Si(t)u(0) + 71(8)[Fi(u, g)], (1.3.3)
Uso(t) = Sooulloo(0) + L ooult)[Foo(u, 9)]

with v = u; + Ue.
Suppose that {u1,us} is a T-time periodic solution of (1.3.3)-(1.3.4). Then, since
w1 (T) = u1(0) and ueo(T) = uxo(0), we see that

(I = S51(T)ur(0) = Z1(T)[Fi(u
(I = Soou(T))ttoo(0) = F00u(T)

U= U] + Us-

, 9],
[Foo(u, 9)],

Therefore if (I — Si(T)) and (I — Soou(T)) are invertible in a suitable sense, then one
obtains (0.0.23)-(0.0.27). Therefore, to obtain a T-time periodic solution of (0.0.21)-
(0.0.22), we look for a pair of functions {uy,us} satisfying (0.0.23)-(0.0.27). We will
investigate the solution operators S1(t),.%1(t), Soou(t) and % .(t) in sections 5 and 6.

Next, we introduce some lemmas which will be used in the proof of Theorem 3.2.1.
We first derive some inequalities for the low frequency part.
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Lemma 1.3.3. (i) Let k be a nonnegative integer. Then Py is a bounded linear operator
from L? to H*. In fact, it holds that

IV*Pifll2 <Ol flle (FeL?).
As a result, for any p satisfying 2 < p < oo, P, is bounded from L? to LP.
(ii) Let k be a nonnegative integer and let 2 < p < co. Then there hold the estimates

IV*fillee + 1 fill e < Cllfllze (f € LEyy),
[fillge < Cllfillz (f € Ly N LY),
IV fillge < CHlet%ﬂ(lm (f € #y1),
[ fillzz + Hfl”%ﬂ(ll)’l < COlAllr (f € LiynLy).

Proof. The boundedness of P, from L? to H* can be easily verified by using the Plancherel
theorem, since supp P, f C {&; |€] < roo}; and, then, the boundedness of P from L? to LP
with 2 < p < oo follows from the Sobolev inequality.

As for (ii), the first inequality can be obtained as in the same reason for (i). The
second inequality is obtained by (i) and the following computation. For 0 < |o| < k and
fi € L} ,, we see that

202 fille = (27) " 2|96 (€% 1) |l p2(lel <o)
< C{NEN D fill paqerzry + NEN0e fill 2e1<r }

< C{llAllz2ge<r) + 19 fill z2qg 1<) } < Cll 2

The third inequality follows from the second inequality with f; replaced by V fi, since, by
the first inequality, we have ||V fi|z2 < C[[fil| ;2 . As for the last inequality, we have
(1)1

Hlei% = (QW)_H{||JC1H%2(|§|§TOO)+Ha§f1||2m(\g|grw)}

< O swp (|F©)]+12AED} < ClAIL

[€]<r00

and, likewise, we can obtain ||f1||%p1 < C||f1||L%. This completes the proof. O
(1)1

As for the high frequency part, we have the following inequalities.

Lemma 1.3.4. (i) Let k be a nonnegative integer. Then P, is a bounded linear operator
on H*.

(ii) There hold the inequalities
1Pcfllze < ClIVSllze (f € HY),

Ifocllze < ClVEslliz (fo € Hix))-
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Lemma 1.3.4 (i) immediately follows from the definition of P, by using the Plancherel

theorem; and, similarly, inequalities in (ii) can be easily seen since suppE.Tf c {& €] >
r1} and supp foo C {&; (€] > 11} for foo € H} )- We omit the proof.

(00

Lemma 1.3.5. Let x be a function which belongs to the Schwartz space on R™. Then
there holds the estimate

O = Pllzz < CLlllzixllzll fllee + Xzl fl2} - (F € LY.

Proof. Let x be a function which belongs to the Schwartz space on R™. Then

lz[Ocx NI < el [ (e = o) f(y)ldy

R”

< Cf |z —yllx(z—y)|lf(y)ldy + C/ Ix(z = y)llyllf(y)|dy.
13 R™
Therefore, the Young inequality gives

O+ Pllze < CLlleblzelfllez + Ixllzalllel flze} (f € L)

This completes the proof. O

Lemma 1.3.6. Let f, € H(loo
foo Such that

)i Then there exists a positive constant C' independent of

2
.
121V feollZz = Ml foollze = CllfocllZ2-

Proof. Since supp foo C {|¢| > 1}, by the Plancherel theorem, we have
1 n
2V feollZe = 5 YoV fo) 7 = Cllfolle
j=1

1 a .
= 5@m™ > IE@e foo)llz2 = Cll foolZ-

j=1

2 n
r . p
> 5 (2m) D 1€, foo)ll7e = Cllfoollze
j=1
ri 2 2
> o llzlfcllze = Cll foollze-
This completes the proof. O
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1.4 Properties of 5i(t) and .7(t)
In this section we investigate S1(t) and .#1(¢) and establish an estimate for a solution wu;
of (1.3.1) satisfying u1(0) = uy (7).

We consider the restriction of A on L%l). By Lemma 1.3.3 (ii), we see that ||Aus |2 <
Cluq]| g2 for uy € L%l).

Let

i 0 i'E )
Ae = | . _ e R").
= (e viept, +re7e) €<®)
Then, since Au; = f‘lflgal, we see that supp/lgal C {& €] < roo} for uy € L%l).
Therefore, the restriction of A on L(Ql) is a bounded linear operator on L%l).
We denote by A; the restriction of A on L%l). Then A; is a bounded linear operator
on L%l) and it satisfies || Ajuq||zz < C|luy||z2 for ug € L%l) and

A1u1 = .7:*11215.7:@41 (u1 € L%l))

Furthermore, —A; generates a uniformly continuous semigroup S;(t) = e~ that is given
by
Si(tu, = Fle e Fuy  (uy € L%l));
and it holds that S (t) satisfies Si(-)us € C*([0,00); L7,,) for each us € L? and
atSl(t)ul = —Alsl(t)ul (: —A51<t)ul), Sl(O)U,l = Uy fOI' uy € L?l)’
10F S (t)ur||2 < || ALl |lwtl|z2 for uy € L%l), t>0, k=0,1,

where ||A;|| denotes the operator norm of A;. The estimates can be obtained by the
energy method based on the relation

(Au, w) = v|[VullL2 + 2|V - ulf7..
We also define the operator .#(t) by

L1(t)[Fi] = /0 Si(t —1)F(1)dr

for Fy € L*(0,T; LE). 1t follows that

t I ~
AAWE] = F / e~y () dr].
0
S1()[F1) € HY0,T; L%I)) for each F) € LQ(O,T;L%I)) and
8t¢71(t)[F1] —|— A1y1<t>[F1] = Fl(t) (a.e.t), 5”1(())[}71] = O,
1) E | mro.r02) < CF || p200,7:22)5

where C' is a positive constant depending on 7.

We next show that A; has similar properties on J“f(ll),l.
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Proposition 1.4.1. (i) A; is a bounded linear operator on ,%”(11)’1 and Si(t) = e M

1s a uniformly continuous semigroup on %(11),1. Furthermore, it holds that Si(-)uy €
CH[0,T"); ) ), 0iS1(-)uy € C([0,T]; L}) for each wy € H#y, and all T' > 0,

||(9tkﬁ91(t)u1||l%ﬂ(1l)y1 < C||u1||%,111)’1 for uy € %(11)’17 tel0,7], k=01,

and
1051 (t)ur L2 < C’||u1||jf1 for uy € ,%”(11),1, te 0,7,
(1)1
where T is any given positive number and C' is a positive constant depending on T'.
(ii) 1 (-) satisfies that 1 (-)[Fy] € H*(0,T; %(11)71) for each Fy € L*(0,T; %”(11)71) and
LA O o, s < OBl Jor B € LT3 0 ),

where C' is a positive constant depending on T. If, in addition, Fy € L*(0,T;L?), then
8t5”1()[F1] € L2(0,T,L%) and

Hatyl(')[Fﬂ||L2(0,T;L§) < OHFIHL?(O,T;L%) for Fy € L2(07T5 L?%
where C'is a positive constant depending on T.

(iii) It holds that
Si1(t) () [F1] = 1 (1) [S1(t) F]

for anyt >0, €[0,T] and Fy € L*(0,T; X), where X = L(21), %”(11)71.

(iv) It holds that T'S1(t) = Si(t)T' and T.71(t) = 1 (t)'. Consequently, the asser-
tions (i)—(iii) above hold with function spaces L%l); %(11),1 and L2 replaced by (L%l))sym7
(%(11),1)sym and (L%)sym; respectively.

The proof of Proposition 1.4.1 will be given later.

We next investigate invertibility of I — Sy (7).

Proposition 1.4.2. Let F} = T(F(x), Fy(x)) € L}y N Ly and suppose that Fi(—z) =
—Fi(x) for x € R™. Then there uniquely exists u € C%”(ll)’l that satisfies

(I —=51(T))u=F, and ||u||%p1 < C’||F1||L%. (1.4.1)
(1),1
Furthermore, if U'Fy = F, then T'u = u.

The proof of Proposition 1.4.2 will be given later.

In view of Proposition 1.4.2, I — Si(T) has a bounded inverse (I — Si(T))~": (L{,, N
L) sym — (%(11)71)sym and it holds that

I = SUT) 7 Fill < ClE.

Using Proposition 1.4.1 (ii) and Proposition 1.4.2, we can obtain the following estimate

for .71 (T)(I — S, (T))~".
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Proposition 1.4.3. For Fy € L*(0,T; (L)NL1)sym), it holds that 1 (T)[(I-S:(T)) ' F1] €
(%(11),1)8?;771 and

-1
17D = D) Fill o, < CIF s ragy
We are now in a position to give an estimate for a solution of (1.3.1) satisfying u(0) =
Proposition 1.4.4. Set
ui (t) = S1(t)L1(T)[(I — S1(T)) ' Fy] + .71(t)[Fi] (1.4.2)
for Fy = T(FO(z,t), Fy(x,t)) € L*0,T; (Lt N Li)sym). Then uy is a solution of (1.3.1)
in %1(0,T) satisfying u1(0) = uy(T") and

||U1||@1(07T) < C“FIHL?(O,T;L%)-

Proof. We find from Proposition 1.4.1 (iii) and Proposition 1.4.2 that u,(0) = uy (7).
As for the estimate for wg, the first term on the right-hand side of (1.4.2) is estimated
by using Proposition 1.4.1 (i) and Proposition 1.4.3. The second term on the right-hand
side of (1.4.2) is estimated by using Proposition 1.4.1 (ii) and Lemma 1.3.3 (ii). Hence,
we obtain the desired estimate. This completes the proof. 0

In the rest of this section we will give proofs of Proposition 1.4.1 and Proposition 1.4.2.

Lemma 1.4.5. ([26]) (i) The set of all eigenvalues of —Ae consists of \;(€) (j = 1, %),
where

{ A(§) = _’/|§|2
Ai(6) = =5 (v + D) £ 53/ (v +0)2[E]* — 4y2[¢]>

If|¢] < 2%, then

)

Re)\i:—;( )€, Im)\i—i7|§|\/1_ — 15

(i) If |€| < %, then e~*¢ has the spectral resolution

eftAg _ Z ot ()

j=1,+

where 11;(§) is eigenprojections for A\;j(€) (7 = 1,£), and 11;(§) (j = 1, £) satisfy

0 0 1 Az —iyT€
Hl(f) <O I |£2> s Hi(&) = j:—)ur o ( l’}/g )\i |£2> .

Furthermore, if 0 < ro < %, then there exist a constant C' > 0 such that the estimates
L <C(=14) (1.4.3)
hold for |€] < reo.
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Hereafter we fix 0 < 7] < ree < szﬂ so that (1.4.3) in Lemma 1.4.5 holds for || < re.

Lemma 1.4.6. Let « be a multi-index. Then the following estimates hold true uniformly
for & with |§] < r and t € [0,T].

(1) [0\ | < ClEP, Jogas] < Clef1 (Ja] = 0).
(i) [(0¢TL)Ey| < Cl¢[ | By, |(9¢TLL) Y] < CLE[™|E] (Ja] > 0), where Fy = T(FY, Fy).
(iii) [0 (eMN)] < ClEP (la] = 1).
(iv) [9g(e*h)] < Cle[* (Jaf > 1).
(v) |(@ge ) Ba| < C(E[ 1| + €[ Er]) (o] 2 1), where Fy = T(F), F).
(vi) [0 (I — M) < Clel> (la] = 0).

(vii) [0g (1 — )~ < Clgl~ 7 (Jaf > 0).

Lemma 1.4.6 can be verified by direct computations based on Lemma 1.4.5.
Let us prove Proposition 1.4.1.

Proof of Proposition 1.4.1. We see from Lemma 1.3.3 (ii) that

||141U1H%0<11)’1 < CVur g < C||U1||jgo(11)’1 (ur € A1),

and so, A; is bounded on jf(ll),l. It then follows that Sy (-)u; € C1([0,T"]; e%”(ll),l) for each
Uy € %(11)71 and

||8fSl(t)u1||%p(1l>Y1 < C||u1||€%p(1m1 for u; € %(11)717 tel0,T, k=01,

where T > 0 is any given positive number and C' is a positive constant depending on 7".
Since [|Ayusllpz < Cl|[Vur|m < C’||u1|\jf(11),1 for uy € 4%0(11)’1 by Lemma 1.3.3 (ii), we see

from the relation 9,51 (¢)u; = —AyS1(t)uy that 9,51 (-)uy; € C([0,T']; L?) and

10051 () || 12 < H&(ﬂm”;gm < Clluall g -

(1)1

The assertion (ii) follows from (i) and the relation 0.7 (t)[Fi] = —A1.71(t)[F1] + Fi(t).
The assertion (iii) easily follows from the definitions of Si(t) and .#(t). As for (iv),
we observe that I'A; = A", from which we find that I'S1(¢) = Si1(¢)I', and hence,
[.71(t) = 1 (t)I. This completes the proof. O

Let us finally prove Proposition 1.4.2.
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Proof of Proposition 1.4.2. We define a function u
uw=F NI — e TA) 1}y
for Fy = T(FY, F}). It suffices to show that lull jpr < C|[Fi[[ry. By the Plancherel
(1)1 !
theorem, we see that
lullzs, = 2m) 31T = ¢ "4) " illzqenn
< (2m) 2 {[|(1 — ") ML 2 gy + 11— €") T TL B |26 <)
(1 = ™) ML Bl 2gei<ra }
=. [1 + ]2 + ]3.

Observe that Hlﬁl depends only on FI but not on ﬁ’lo.
By using Lemma 1.4.5, Lemma 1.4.6 and the fact F}(0) = 0, we see that

[IErat e
L2l <roc)

1
<c|g
2(J¢]<roc) €]

(el <r) < 400 for n > 3, we find that

<[t

Since

I < O|l||Fy | -
Similarly, we can obtain Iy + I3 < C||F||r1, and hence, we see that
lullz, < CUIE Nz + [Nl £l (1.4.4)
Next, by the Plancherel theorem, it follows that
(i0) (i€(1 - e T3) 1Ry )| e
i€0e (1= e ™)) By ]

+Hig( - €_TA§)_15§F1HL?(lflgw)}-

2l Vullz, = (2m)7%

< I =) B gy +

L2(J§]<roo)

The first term on right-hand side has already been estimated and it is bounded by the
right-hand side of (1.4.4). As for the second and third terms on the right-hand side,
similarly to above, one can find from Lemma 1.4.6 that

Jisoe (u =e97) £

We thus obtain

+[iE(I — e 4) 0P| (e <r) < ClIFL 11

L2(J¢1<re0)

l2/Vullz, < Cll Al

Finally, we see from Proposition 1.4.1 (iv) that if I'F} = F}, then I'u = u. This completes
the proof. H
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1.5 Properties of Sy ;(t) and 7 4(?)

In this section we investigate S 4(t) and .« 4(t).
We begin with the solvability of (1.3.2). Let us first consider the following system:

D+ (- Vo) = 7,
{¢‘t:0:¢0_ (1.5.1)

Lemma 1.5.1. ([17, Theorem 4.1].) Let n > 3 and let m be an integer satisfying
m > [2]41. Set k = m—1 or m. Assume that w € C([0,T"]; H™)NL*(0,T"; H™*'), f* €
L*(0,T'; H*) and ¢y € H*. Here T" is a given positive number. Then (1.5.1) has a unique
solution ¢ € C([0,T"]; H*) and ¢ satisfies

t t
[l C{Ilcbolﬁfk +/O H@|Hmﬂ||925||?wfls+/O ||f°||m!|¢||mds}

and .
16020 < Ce KOs )i {Hasouifk + [ HfOH?qde}
0

for t € [0,7"]. Moreover, the solution is unique in C'([0,7"]; H').

We next consider the following system:

{ at(boo + fYPoo(w ’ v(boo) = Fgm
¢oo|t:0 - Qb()oo-

Note that (1.5.2) is rewritten as

(1.5.2)

As for the solvability of (1.5.2), we have the following lemma.

Lemma 1.5.2. Let n > 3 and let m be an integer satisfying m > [5] + 1. Set k =m — 1

or m. Assume that w € C([0,T']; H™) N L*(0,T"; H™), F2 € LZ(O,T’;H(’“OO)) and

Goso € Hzfoo). Here T is a given positive number. Then (1.5.2) has a unique solution
o € C([0,T7]; H(koo)) and ¢ Ssatisfies

t
ol < Of ol + [ (Folianes + [l oelfyads

t
4 [ 1 ol
0

and
t
¢ D L+ ||1B|2m ) ds
||¢Oo(t)||§{k SCe(Jfg(H—H | g1 +ll@15m )d {quooo“%{k—l-/ ||Fooo||§{kds}
0
fort e [0,1"].
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Proof. We define {c;S(()@ }o2, as follows. For ¢ =0, o is the solution of

(0) = o0y _ o
quO |t:0 = ¢Ooo~
For ¢ > 1, c;ﬁc(ﬁ) is the solution of
O + (- Vo) = FL +yPi(d - Vol V),
o o0 (1.5.4)
Qboo ‘t:O = ¢Ooo-
By Lemma 1.3.3 (i), we have
[P - Vo) |am < Cll]|z |V oo|| 2 < Cllw]|am || foo e (1.5.5)

since m > [5] +1 > 2. In view of Lemma 1.5.1 and (1.5.5), we find by a standard
argument that
(M]j)@—l—l

1) () — 5O (4|2 \Mt)
oS () — oS () |I7n < Mo )

(6>

0),

where

T’ - - T
My = CeC B Htomart el 2, [ 7 ar),
0

My = Ol oy N0 O
Therefore, one can see that gbgi) converges in C'([0, T"]; H’f) to a function ¢e € C([0, T); Hk)
that satisfies

{ O1Poo + (W - Vo) = Fc?o +YPy( - Vo),
¢00|t:0 - ¢00<>7

hence, ¢ is a solution of (1.5.2). The estimates for ¢, follows from Lemma 1.5.1 and
(1.5.5). )

It remains to prove supp ¢o(t) C {|¢| > r1} for t € [0,7"]. Let Yoo € C5°(R™) with
SUPP Xoo C {|€] < 71}. Let us consider the Fourier transform of (1.5.2):

(1.5.6)

atflgoo + ’Vféoo(w : v¢oo) = Ffo, éooh:o = (Zg000~

Taking the inner product of this equation with Y% ¢eo, We have 2 Yotoo|?2 = 0. We
thus deduce that ||¥eedeo(t)]|22 = [[Xeo®ooo|22 = 0 for ¢ € [0,77]. It then follows that
SUPP Poo(t) C {|€| > 71} for ¢ € [0,T"]. This completes the proof. O

We next consider the following system:

{ OWoo — VAW — DV iV, = Fiy, (1.5.7)

woo|t:0 = Wooo-
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Lemma 1.5.3. (i) Let n > 3 and let m be an integer satisfying m > [§] + 1. Set
k=m—1 orm. Assume that Fy, € L*(0,T"; H* 1) and wo. € H*. Here T' is a given
positive number. Then (1.5.7) has a unique solution wy, € C([0,T"]; H*)NL2(0,T"; H*1)N
HY0,T7"; H*') and

t t
s @+ [ Tl + 10l dr < € Lol + [ 1Fclcsds |
0 0

fort € 10,T"] with a positive constant C' depending on T".
(ii) Assume, further, that Fy, € L2(O,T’;H(kog)1) and Wos, € Héfoo). Then the solution
Weso Satisfies

weo € C([0,T"]; Hisey) N L2(0, T HEL) 0 HY0, T Hi ).

Lemma 1.5.3 (i) follows from standard theory of parabolic equation. The assertion (ii)
can be proved in a similar manner to the proof of Lemma 1.5.2. We omit the details.

2).

3.
Proposition 1.5.4. Let n > 3 and let m be an integer satisfying m > [§] + 1. Set
k=m—1 or m. Assume that

By using Lemma 1.5.2 and Lemma 1.5.3, we show the solvability of (1

w e C([0,T']; H™) N L*(0, T'; H™ ),
Upoo = T(¢Ooo>/wOoo> S H(k )
Foo = "(F3, Foo) € L*(0,T"; Hiyy x H ).

Here T' is a given positive number. Then there exists a unique solution ts, = ' (Poos Woo)
of (1.3.2) satisfying

¢oo € C([0,T']; Hiy), weo € C([0,T']; Hise)) N L2(0, T HEL) 0 HY0, T HEL).

Remark 1.5.5. Concerning the condition for w, it is assumed in Proposition 1.5.4 that
w e C([0,T']; H¥) N L*(0, T'; H**1). However, by taking a look at the proof bellow, it can
be replaced by the condition that Vw € C([0,T']; H*~') N L*(0,T'; H®).

Proof. We define uf) = <¢oo,woo) (¢ =0,1,---) as follows. For ¢ = 0, w® =0 and
45523 is the solution of

808 + Y Po (i - Vo) = F2,
o (1.5.8)
d)oo ‘t:O - ¢Ooo'

For ¢ > 1, w' is the solution of

(1.5.9)

l
Woo |t:0 = Wooo,

{ 8twc(,€) — AW — ovdivwld) = —’yV(b((ffl) + Fy,
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and gbé@ is the solution of

{ 0,08 + Y P (- Vi) = —diveld + FY, (15.10)

=0 = donc-
As in the proof of Lemma 1.5.2, by using Lemma 1.5.2 and Lemma 1.5.3, one can show that
u = T @, wé?) converges to a pair of function ty, = T (Pee, Weo) in C([0,T"]; H(koo)) X
[C([O,T’];H(koo)) N LQ(O,T’;H(]“OJS)]. It is not difficult to see that e = ' (Poo, Woo) is a
unique solution of (1.3.2). This completes the proof. O

We now define Sy 4(t) and . 4(t) formally introduced in section 4.

In the remaining of this section we fix an integer m satisfying m > [5] + 1 and a
function @ = " (¢, W) satisfying

¢ € Coor(R; H™), 1 € Coor(R; H™) N L2, (R; H™ ) (1.5.11)

per

In view of Proposition 1.5.4, we define Sy () (¢t > 0) and .Y a(t) (¢t € [0,T7]) as
follows.

Let k =m — 1 or m. The operator S (%) : Hg“oo) — H("“‘OO) (t > 0) is defined by

uoo(t) - Soo,ﬂ(t)UOOO for Upoo = T(¢0007w000) S H(koo)a

where u.(t) is the solution of (1.3.2) with F, = 0; and the operator ., 4(t) : L*(0, T} H(koo) X
Hi)) — H,, (t €[0,7)) is defined by

(o0

Uoo(t) = S soa(t)[Fo] for Foo=T(FY, Fi) € L*(0,T; Hiyy x H{)),

where () is the solution of (1.3.2) with ugs = 0.

The operators Sy 4(t) and . 4(t) have the following properties in weighted Sobolev
spaces.

Proposition 1.5.6. Let n > 3 and let m be a nonnegative integer satisfying m > [5]+ 1.

Let k =m —1 orm and let £ be a nonnegative integer. Assume that @ = " (¢, W) satisfies
(1.5.11). Then there exists a constant 6 > 0 such that if | W||c(o,r);zm)nL20,0m+1) < 6,
the following assertions hold true.

(1) It holds that Sea(+)uos € C([0, oo);H(koo) J) for each ugso = T (Pooo, Woso) € H(koo)z
and there ezists a constant a > 0 such that So a(t) satisfies the estimate
[SocOuonellas | < Ce™ oy

00),£

for allt >0 and upe € H(koo),f with a constant C' = C(T) > 0.
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(it) It holds that w 4(-) Foo € C([0, T1; H() ) for each Fiog = T(FY, Fy.) € L*(0,T; Hy

H(k 1’ ) and .« a(t) satisfies the estimate

1
t 2
Woo,at)[FoowH&Mgc{ [Ny e d}

(o0),
fort €[0,T] and Fy, € L*(0,T; HE, , x H{ ) ,) with C = C(T) >0
(iii) It holds that ") )Z(Soo,ﬁ(T)) < 1.

(iv) I = Seoa(T) has a bounded inverse (I —Swa(T))™" on HE,) , and (I — S a(T)) ™!
satisfies

I = Seca(T) Ml < Cllully_, for we Hy,

(v) If T'a =@, then I'Sw 4(t) = Seca(t)l and I' o 4(t) = L a(t)L. Consequently, if
't = a, then the assertions (1)—(iv) above hold with function spaces HE , and HE, , % Hf;zl

replaced by (H, ) sym and (HE , % Hfojgl)sym, respectively.

Remark 1.5.7. In Proposition 1.5.6, it is assumed that

H,J)HC([O,T];HS)HLQ(O,T;H5+1) S 5

However, by taking a look at the proof of Proposition 1.5.8 bellow, it can be replaced by
the condition

V@ oqo,r);m5-1)nL2(0.1305) < O

Proposition 1.5.6 will be proved by the weighted energy method. In fact, Proposition
1.5.6 follows from the weighted energy estimate in the following proposition.

Proposition 1.5.8. Let n > 3 and let m be a nonnegative integer satisfying m > [5]+ 1.
Let k=m —1 orm and let ¢ be a nonnegative integer. Assume that

Upoo = T(¢0007 wOoo) S H(koo),éa

Foo = T(FY, Fy) € L*(0,T"; Hyoy o ¥ HE )

for all T' > 0 and that i = T (¢, W) satisfies (1.5.11). Assume also that e = ' (Pso; Weo)
is the solution of (1.3.2) satisfying

9o € C([0,T"]; HE,)), wee € C([0,T']; Hy) N L0, T HELY)

(c0)

o0)

for all T" > 0.

Then there exist a positive constant § and an energy functional E¥[us] such that if
llleqo,rysmmnrz oy <9,
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there holds the estimate

d k 2 2
5€ oo () + dl[l@o0 ()17 + llwoe (Bl ps)

< ClFs Ol ga s + (VD@ + @O Fm) 600 (Bl (15.12)

on (0,7") for all T' > 0. Here d is a positive constant; C' is a positive constant depending

on T but not on T'; E¥[us] is equivalent to |Jus|?:, i-e,
4

O M uso s < € fuoc] < ClluccllZ;

and EX[us)(t) is absolutely continuous in t € [0,T"] for all T" > 0.

The proof of Proposition 1.5.8 will be given in section 1.6.
By using Proposition 1.5.8, we prove Proposition 1.5.6.

Proof of Proposition 1.5.6. Set

1

o = 7 [ UTaO I+ 1Ol .

2t) = (IVo@)llan + @) [7m) —w,
t
Z(t) = / z(T)dr.
0
Observe that Z(t) satisfies Z(t +T) = Z(t) for any t € R, and so it holds that

sup | Z(1)] < sup |Z(7)] < COU+ |22 0,pm)),
teR 7€[0,T]

where C'= C(T) > 0.
By Proposition 1.5.8 with F,, = 0, we see that there exists a positive constant d; such
that

%Sf [Uoo] (1) + d1EF [uoo] (1) < CwEf [uss](t) + Cz(t)Ef [use)(t)  (t>0).  (1.5.13)

If w< & then we find from (1.5.13) that

CERu] (1) + DEF (1) < O=(0Efus(t) (12 0).

We thus obtain
% (HeC7Ogtfu]() <0 (1> 0)
and hence,

4

Sf[uoo](t) S géc[uoo](o)e—%lt€CZ(t) S 60(1_‘—“@”?:’2(O’T;Hm+1))€f[UOO](O)G_Tt (t Z 0)
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Consequently, we have

d
[Sscaltiosellig, < Ce™ Hllunecllan_ (¢ 0).

00),L -

This proves (i). The assertion (ii) is proved similarly; and we omit the proof.
As for (iii), since @ = " (¢, W) € Cpe . (R; H™), it follows from (i) that, for each j € N,

|(SoeaT)Y s, = IS aliTully, < Ce™ ™ full e

00),l

where dy = % > (0. Hence, we have
1(Soc,a(T)) || < Ce™ ™.
We thus obtain

lim |](Sooﬂ(T))J|ﬁ < lim Cie®T = ¢=@T 1,

j—00 j—0o0

This shows (iii). The assertion (iv) is an immediate consequence of (iii).
As for (v), we see that if I't = 4, then I'Py (B[]t ) = Po(Blu|l'us ), and so,

I'(Orthoo + At + Poo(Blt]teo)) = OilMtue + AlUso + Poo (Bl Muno)-

It then follows from the uniqueness of solutions of (1.3.2) that I'Sw 4(t) = Sa.a(t)I" and
'Y 0i(t) = Fou(t)l. This completes the proof. O

We conclude this section with the estimate for a solution u., of (1.3.2) satisfying

Uso(0) = uso (7).

Proposition 1.5.9. Let n > 3 and let m be a nonnegative integer satisfying m > [5] 4 1.
Assume that .
Foo = "(FY,, Fioo) € L*(0, T (Hf\y 4 X H(’;){l)sym)

with k =m —1 or m. Assume also that @ = T (¢, w) satisfies (1.5.11) and T'a = @. Then
there exists a positive constant § such that if

D] (0,10, 5m)A L2 0, 1y < O,

the following assertion holds true.
The function

u00<t> = Soo,ﬁ(t)(l - Soo,ﬁ(T))_lyoo,ﬂ(T) [FOO] + yoo,ﬁ(t)[FOO] (1'5'14)

is a solution of (1.3.2) in #* (0,T) satisfying use(0) = us(T) and the estimate

oo < ClFscllpoorimr - skt -
0% ( )

(o0),1 (00),1
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Proof. By Proposition 1.5.8 and Proposition 1.5.6, we see that

Huoo<t>H kot ”w0<>||L2 (0,6 HF 1)

SC{”U_SOO’QI( N walDIE ]HH’“+HF ”L2 (O.T5HE ) X H{) )
T

+ [ ava
0

{HF HLQOTH(’“ b1 ><H(k ! )+5H¢00”0(0T] HF) }

s+ ) o 5 s

)1

for t € [0,T]. Therefore, if 0 is so small that C'0 < %, then we obtain

oy + e oty < ClPslars ey (15.15)

Next, since s = ' (oo, Woo) satisfies (1.3.2), we obtain

B0ncllis | < Clllwlgess + Usellms |, + 1 Focllicr

),

Hence, it follows from (1.5.15) that

HatwOOHLQ(OTHk )1 ) < C“F HL2 (0,T;H¥

looy 1% Hisoy 1) (1.5.16)

Consequently, we see from (1.5.15) and (1.5.16) that

luscllgt o2y < Ol it

This completes the proof. O]

1.6 Weighted energy estimates for P, part

In this section we prove Proposition 1.5.8 by a weighted energy method.

We first consider the following equation.

{ Oplloo + Alloo + Blii|us = Fi, (1.6.1)

U’t:O = U0oo)

() () =23

We introduce some notations. For nonnegative integers k and ¢, we define EF[us] by

where

Ebfuse) = 5(10oolly + sl + 3 (0w, 2 VO 00).

la|<k—1
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Here k is a positive constant to be determined later.
Note that there exists a constant xg > 0 such that if K > kg, then EF[u.] is equivalent
t0 [too| 2, 1€,
4

O_1|UOO|§{2C < Eﬂ“oo} < C|u00|§{év

for some constant C' > 0.
We also define D¥[u,] for integers k > 1 and ¢ > 0 by

Proposition 1.6.1. Let m be a nonnegative integer satisfying m > [3] + 1 and let £ be a
nonnegative integer. Assume that

Upoo = | (Pooo, Wooo) € HF,
Fo = T(FooovFoo) S L2(0,T/,Hk X Hk_l)

ork=m—1 ork=m. Here T' is a given positive number. Assume also that u., =
for k 1 or k Here T' is a gi 1 ber. A Iso th

(oo, Weo) 8 the solution of (1.6.1) with w € C([0,T"]; H™) N L*(0,T"; H™™) and that
Uso = ' (Poo, Weo ) Satisfies

boe € C([0,T']; HY), weo € C([0,T"); H*) N L0, T'; H*1).
Then there exist positive constants k > kg and d > 0 such that the estimate

O EFCrund + AD (G

e )
< C{eléaunclZ+ (1 + ) 10l + 1V m ) [Greoo 3

1 2

(SN
1 N

(1 =) (L Dl [Cruoc

1 ~ 112 2
(14 2) (10U ) Ttoe e i | (1.6.2)

holds on (0,T"), where € is any positive number; C' is a positive constant independent of
T', ¢ and R > 1; and Ny denotes the set Np = {r € R"; R < |z| < 2R}.

Proof. By multiplying (g to (1.6.1), we obtain

9 (Crso) + 7 - V(CrOoo) + vdiv(Crwso) = CrE, + K1(VCr),
) (1.6.3)
01 (CRrWs) — VA(CRWoo) — PVAIV(Crwso) + YV (CrOs0) = CrF oo + K2(V(R),
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where

Ki(V(r) = 7w V(r+ W V(r0x),
K>(VCr) = —v([(r, Dlwa) — U([Cr, Vdivwe) + 7YV (RO

For a multi-index « satisfying |a| < k, we take the inner product of 0%(1.6.3); with
2202 (Crpo) to obtain

1d
5@” |2“ 0% (Cropoo) |72 + V(02 div(Crwes), [2]*08 (Crodsc))
2

. (1.6.4)
= Z IS},R + gfy{;[CRUoo] + Q1.a0(VCr),
j=1
where
e = = {%(divw, 2108 (Crne)?) + ([0 T (Crrc), |a:\2fas<<3¢oo>>} ,

1), = (92(CRFL), 202 (Crowe)),

2 [Crtin] = 2 (@0 - V(27,102 (Crorns) ),

DO |2

Q1o (VCr) = (05K 1(V(R), |2[*0% (Crds))-

Here we used

(02 (v - V(Crooo)), 21708 (Crdec))
= (@ - VO (Crdw), |20 (Crooo)) + 1([02,10] - V(Crow), |20 (Crds))

= P8, D105 (G )+ (05 0] - VG 05 (Cdc)

= =i, |07 (Cade) ) = 5706 - Do), 105 (Gt )
+’7([a§7 UNJ] ) V(CR¢OO)a |$|248§((<R¢00))

= Lotn+ P ar(V (™))

Q,

This calculation can be justified by using the standard Friedrichs commutator argument.

We take the inner product of 9%(1.6.3)y with |2|*0%((rws) and integrate by parts to
obtain

1d

2dt

~1(05 (Croeo), |2 *037 div(Cruwse) (1.6.5)

= S),R + gZS}[CRUoo] + Q2.0.0(V(r),

2105 (Cruwso 172 + VIl "V OR (Crwso) 172 + ]| divos (Crwso)|[72
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where

]<3> :{<<<Rﬁw>,rxf€<43woo>> (a=0),
w = (08 3 (G, o5 (Cau)) (Jal = 1),

P[] = WOV (Crtne) + POV (Crwse) + 702 (Croooo), V(|20 (Crives)
— (007 (CrEw), D[220 (Crvnc)),

Q2.0.4(VCr) = (07 (K2(VCR)), [21*07 (Criso))-
By adding (1.6.4) to (1.6.5), we see that

5 ANl 02 Caguo) o + a0 (Canec) 22}

+u|[2"V O3 (Crwse)l[7 + Pl divog (Cruwse )17
3

= Z ](JER + 9 [CRUoo] + @ [CRUoo] + Q1 aE(VCR) + ang(ch) (1.6.6)

j=1

By using Lemma 1.1.2 and Lemma 1.1.3, we obtain

3
1Y D10 < €lCrtioolzz + €1V (Crooo) 1 + €2l V(Crtwso) [

la|<k j=1
+C| V| | Crpoo | s

1 1
vo(C+ - b =) Gl

|ZZ@ [Crusell < elCrusol|; + €1l V(Crooe) ffxms + €2l V(Crwee) |7

la|<k j=1

1 1 1
+O£2<1 +-+—+ —) |CRWoo |2
€ €1 €9 =1

1 1 -
+C£2 <1 + -+ a) ||w||§{m|CR¢°°|§{?71
—|—C€2’CRF ’Hk

XHk 1,

2
DD QiadVEr)l < elCrusclzang + €IV (Crooo) 3t )

|o| <k j=1
+€2‘V(<Rwoo)|§{f(]v
1 1 1 9
+C(1+ -+ = ~+ 2>{|woo|H§_+ll(NR

2
4 D0 m ) 9els iy } -
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Taking e; > 0 suitably small, we have

1d
2 dt

v v, ..
lCrunclfy  + 51V (Crwae) e + 5 1div(Crwse)
1
e|cRuoo|L2+e1|v<cR¢oo>% A C(1 7 )Gy e
+C[IV | o [| P |
1 1 -
FOP (L (24 ) 2lpm) ) I Cruo

(1.6.7)

1 1
FO(14 2+ ) @t Il ol vy

We next estimate |||2[* VO doo||25 for o with || < k—1. For a multi-index « satisfying
la] <k — 1, we take the inner product of 9%(1.6.3); with |2|*VI%((rds) to obtain

(O 3“((3%0) [2[*V O3 (Croo)) + IV O (Croo) |22

Z Uk + (02 K(VCr), |2 VS (Crooo)) (1.6.8)

where
TN p = (02D (Crwa), |22V O2 (Cron)),
J2) 5 = ((02(Vdiv(Crun)), |2* VO (Croms)),
) p = (02(CrEw), |22V 02 (Crons)).

J¢
As for the first term on the left-hand side, we have

(8ta§(<Rwoo)a ‘x’2€vag(CR¢oo>

= i(aﬁ(CRwoo), |2 05V (Crévoo)) + (95 (Crwss), V(|2[*)05 04(Crodo))

dt
+(05div(Crwe ), |:B|%8§8t((R¢oo)). (1.6.9)
By (1.6.3), we have
O (Crooc) = =70 - V(o) — Vdiv(Crweo) + CrFay + K1 (VCR).

Substituting this into (1.6.9), we obtain
(9405 (Croo) |2V (CR0eo))

d

O ), |05 (G ~

(05 (Crweo), V(|2[*) 07 K1(VCR))

I = 28 Crus]

.
Il o
N

_l_

(07 div(Crwee), |2[* 07 K1 (VCR)),
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where

TN e = 08div(Cruwe), 2202 (@ - V(Créeo))),
IO n = A(02div(Crws), 2202 (div(Cruws)),
IO = —(02div(Crun), 2202 (CRFL)),

and

P Crun) = A2 (Crwe), V(|22 (0 - V(Crons)))
(02 (Crtwas), V(|29)82div (Crtas))
—(02(Crwse), V(|2]*)02 (CRF)).-

This, together with (1.6.8), gives

@ 32w, [P0V () + 91V (e 2

6
= Y 0+ 28 Crus] + Qs.06(VER),

=4

where

Oy Ka(VCr), 2V (Crooo))
— (07 (Crwso), V(|2[*) 07 K1 (V)
—(07div(Crwec), |2[* 05 K1 (VCR))-

Q3,a,£ = (

By Lemma 1.1.2 and Lemma 1.1.3, we obtain

6
(i) Y 1o aa 2 1 2
Z Z Jourl < Z|V0x (CR¢OO)’L§ + C<7 + ;) ‘V(CRwoo)’Hf

|| <k—1 i=1
~ 12 2 O 2
FNDN 7 1V (Croo )1+ G F ool
Z 32(3) [Crus]] < €€|CR’LUoo|%g "‘gﬂv(g}%woo)‘fqéf—l
|a|<k—1

0l 9 (o)

1 02
+C£<1 + E) |CRwoo|Hé€:11 + C£|CRF00|H§:11’

Y ~
Y QuadVER) < JIV(Crbuo) [fmt iy T ECRWs T2 v

o <k—1
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+C|V(§Rw00>|§{§—1(NR)

L1 =112 2
O (542 ) Wt 0 im i o . 3
for any € > 0 with C' > 0 independent of €.
Combining these estimates with (1.6.8) and (1.6.10), we see that
d le’ 20 Ha v 2
7 D (03 (Crwao), |20V (Croo)) + 51V (Croo) i

la|<k—1

~ 2
< €€|€Rwoo|Lg
L 9w By + (14 2) 10l [V b By + G Foc s}
RWoo Hé“ ¢ Hm™ R%Poco Hécfl R ooHéc—l
1 -
+o(1+ E) (0wl + (14 18 ) ool vy § (1.6.11)

for any € > 0 with C' > 0 independent of €.
Consider now r x (1.6.7) 4+ (1.6.11) with a constant x > 0. Taking x > 0 so large
that |V ((rwes)|7,x on the right-hand side is absorbed into the left-hand side and setting
4

e = 7~ and € = ("¢, we arrive at

@ Bt Cause) (t) + AD[Crutn]

dt
2 €2 ~ 112 ~ 2
< drselly + C((1+ =) @l + V] am ) ICrbnclfy
1 2
(1 2 )ICrPclyp s
1 -
O (14 =) L+ DGty

1 ~ 112 2
+C (14 =) 0 1 m v)  g nits v

for anye > 0 with C' > 0 independent of €. This completes the proof. OJ

Remark 1.6.2. Similarly to the proof of Proposition 1.5.4, one can prove that if

@ € C([0,T'); H™) N L2(0,T'; H™Y),
Upoo € Hka
Fo € L*0,T; H* x H* 1),
then there exists a unique solution e, = ' (oo, Woo) of (1.6.1) in C'([0, T"]; H*)NL2(0,T"; H*x

H**1). Furthermore, by setting £ = 0 and (g = 1 in the proof of Proposition 1.6.1, one
can see that E}[us](t) is absolutely continuous in ¢ € [0,7"] and there holds the estimate

d ) -
T Eolusc] + dDusc] < C{elluoo||§+(||w||§1m+IIlele)IIVcbooII?{k—l
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1
(14 ) 1 lBprics | (1.6.12)

on (0,7"), where € is any positive number; and C'is a positive constant independent of 7"
and e.

Remark 1.6.3. One can easily see that (1.6.2) holds with (g and N replaced by (g — (g
and Ng r for R" > R > 1, where Ny g denotes the set Npp = {x € R"; R < |z| < 2R'}.

Proposition 1.6.4. Let m be a nonnegative integer satisfying m > [5] +1 and let £ be
an integer satisfying £ > 1. Assume that

U)o =— T((b[)o<37/w000> S Héca
Fo="(FY, Fy) € L*(0,T; Hy x H}™Y)

for k =m —1 ork =m. Here T’ is a given positive number. Assume also that u., =
(oo, Weo) s the solution of (1.6.1) with w € C([0,T"]; H™) N L*(0,T"; H™) and that
Uso = | (Poos Woo) Satisfies

boe € C([0,T"]; HY), weo € C([0,T"); H*) 0 L2(0, T'; H*).
Then it holds that
b € C([0,T]; HY), we € C([0,T]; H) N L*(0,T'; H™).

Furthermore, there exist positive constants k > ko and d > 0 such that Ef[us)(t) is
absolutely continuous in t € [0,T"] and there holds the estimate

d
EEf[uoo] + dD5 [us)
2 62 ~ 112 ~ 2
< CefunclZz+ (14 =)0l + [Vl ) 9ol
1 2
(1 ) 1Pl
1
F(142) (14 [ 0m) sl ) (1.6.13)

on (0,7"), where € is any positive number; C' is a positive constant independent of T' and
€.

Proof. It suffices to prove that
CRUs — Uso in C([0,T']; HY) N L*(0,T'; HY x H )

as R — oo. We prove this by induction on /.
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We first observe that it holds that
CRUoo — Use in C([0,T"); H*) N L*(0,T'; H* x H*™) (1.6.14)

as R — oo, since u., € C([0,T"]; H*) N L*(0,T"; H* x H*'). We also note that since
supp (Cr — (') C Nrr = {x € R"; R < |z| < 2R'} for R’ > R, it holds that

| CRUoe — CR’UooHH,{f < C””OO”H}“(NR’R/)

for " > R > 1.
Set
@E,R,R’(t) = |CRUOO(t) _CR’UOO(t)ﬁ{éw
o(t) = 1+ [[o()|Fn + VO(®)||am € L'(0,T),
t
) = [Gntos = Crtonlly + [ 1CrFo =GPl s d
0

t
~ 2 2
[ 1Ol v, et 47

Let us prove Proposition 1.6.4 for £ = 1. By (1.6.2), we have

t
o (t) + / D[t — Crti]
0
t

< C{al,R,R’(T/)+/O b(T)SOLR,R'(T)dT} (1.6.15)

for t € [0,T'], where C' is a constant depending on e. By the Gronwall inequality, we
obtain

o1,rr (1) < Oal,R,R’<T,)€CfOT b(r)dr (1.6.16)
for ¢ € [0,7"]. Since a1 rr(T") — 0 as R, R' — oo, we see that supg<,<q ¢1,r,r(t) — 0

as R, R — oo. This, together with (1.6.15), yields that fOTI D¥[CRtios — Crrtine] dT —
0 as R,R — oo. In view of (1.6.14), we thus conclude that {(ru~} is Cauchy in
C([0,T"); HF) N L2(0,T"; HF x HF*') and

CRUoo — Use in C([0,T"); HF) N L*(0,T'; HY x HI™)

as R — oo. Letting R — oo in (1.6.2) with ¢ = 1, we have the desired estimate in
Proposition 1.6.4 with ¢ = 1. Proposition 1.6.4 thus holds for ¢ = 1.

We next suppose that Proposition 1.6.4 holds for £ = p. We will prove that it also
holds for ¢ = p+ 1. By (1.6.2) and Remark 1.6.3, we have

t
Opr1,rr (1) + / D’;H[CRUOO — CRrrloo) AT
0
t
S O{ap_,_LR,R/(T/) +/ b(T)gOp_:,_l,R,R/(T) dT} (1617)
0

47



for t € [0, T"], where C is a constant depending on € and p. By the Gronwall inequality,
we obtain

Epetrr(t) < Capir g r(T)e o b d (1.6.18)

for t € [0, 7"]. By the induction assumption, we see that a,1 pr(7") — 0 as R, R' — oo,
and hence, by (1.6. 18) sup0<t<T, Yp+r1.rr(t) = 0 as R, R" — oo. This, together with

(1.6.17), yields that fo 1 [CRUco — Crrtise) dT — 0 as R, R’ — oco. It then follows that
{Crusc} is Cauchy in C([0,7"); HE, ) N L*(0,T"; H¥ , x HiH) and

CRuoo = Uss in C([0,T]; Hyy) N L0, T HE < HYTY)

as R — oo. It is not difficult to see that £ Ef[u.;] = G} on (0,7”) for some G§ € L*(0,1"),
and, thus, EF[us](t) is absolutely contlnuous int € [0,7']. Letting R — oo in (1.6.2) with
¢ =p+ 1, we have the desired estimate in Proposition 1.6.4 with ¢ = p + 1. Proposition
1.6.4 thus holds for £ = p 4+ 1. This completes the proof. 0

We are now in a position to prove Proposition 1.5.8.

Proof of Proposition 1.5.8. Let U = "(®, W) € C([0,T"]; H}) N L?(0, T"; Hf x H} ™).
Then, by Lemma 1.3.3, we see that

[P Bla]U| gy < Cllollool[VO[lLz < COIU -

It then follows from Remark 1.6.3 and Proposition 1.6.4 that there exists a unique solution
Us € C([0,T"); HF x HF) N L*(0,T"; HF x H ') of

and U, satisfies
t
0l + [ 19Uy
t

< Cof ol + [ 1Pl

t t
+52/ U1 3ge d +/ b(T) [ Uso 72 1d7}. (1.6.20)

0 0 N

Here b(r) =1 - [ Fm + ||V@|!Hm
We set UL = 0 and define UY/ (7 = 1,2,---) inductively by the solution of (1.6.19)

with U = UY™Y. Applying the Gronwall inequality to (1.6.20) with U, = Ul and
U =0, we have
IUL O < Ao

for t € [0,7"], where

T/
Ay = co{||u0w||§,5 +/ P dT}eCpoHLl(o,T/).
0
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Similarly, using (1.6.20) with U, U9 Ui VandU =0Y¢V_pyg? forj =2,3,---,
one can inductively see that

UL (#) — UL ()| <

<Ol ==
Ao ((CoKod)1~1 |Ibllusorm (CoKod?)
U= 1 < Ao f(Coky (0,7 (Colo
/”V Mgy dr < KO{ G- 5l }

Here Ky = 1+ ||b||Ll(OVT/)eCOHbHLI(O»T’). It then follows that UY converges to a function Us,
in C([0,T"); HF) N L2(0,T"; Hf x H}™) as j — oo. One can easily see that U,, satisfies
(1.6.19) with U = U, i.e., U is a solution of (1.3.2), and U (t) € H(koo) for all t € [0,T7].
By the uniqueness of solutions of (1.3.2) (see Proposition 1.5.4), we see that Us, = teo.

Applying Remark 1.6.2 and Proposition 1.6.4 with F, replaced by F,, + P, B[t]us,
we have

d
—EF D’f -
=B Tuoc] + dDf [uc

< c{e|uoo|%z+((1 D)0+ 190 ) el
+< >‘F ’Hka’“ L
F2(142) (U 1l s}
for j =0,1,--- ,¢. Using Lemma 1.3.4 (ii) and Lemma 1.3.6, we see that

diEk[uoo] + 2d1|uoo|

H’“ka"'l
~112 ~ 2
< O €t o+ (1+—)I|wl|Hm+||VwHHm | Poo I 55
J € J

1 2 .9 1 112 9
—|—<1 + E) ’FOOIHJICXHJ]?71 +7 (1 + E) (1 + HwHHm) ‘UOO‘H]’?_l}

for 5 =0,1,--- ¢, with some constant d; > 0. Taking € > 0 suitably small, we obtain
d 2
EEJ [Uoo] + d1|uoo|Hj,_€XHJI_€Jr1
< O (N0l + 1971 ) Nocl s + [y s
+72 (14 ([ @1 3m) Iuoo|§{ffl} (1.6.21)

for j=0,1,---,¢.

We now prove (1.5.12) by induction on £. When ¢ = 0, inequality (1.6.21) with j =0
is nothing but (1.5.12) with ¢ = 0. Assume that (1.5.12) holds for £ = j — 1. Then by
adding m % (1.6.21) to (1.5.12) with ¢ = j — 1, we obtain the desired inequality
(1.5.12) for ¢ = j. This completes the proof. O
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1.7 Proof of Theorem 1.2.1

In this section we prove Theorem 1.2.1.
We first establish the estimates for nonlinear and inhomogeneous terms Fj(u, g) and

«(u,9)
o Rug = r (00 ST) S (0

Fuulu,g) = Pu (_W Tl fo(u)) = (Fiﬁ%) |

where f°(u) and f(u,g) are the same ones defined in (0.0.19) and (0.0.20) with v =
Uy + Uoo, =" (P, w), u; = (¢, w;) (j =1,00).

We first state the estimates for Fj(u, g) and Fio(u, g).
Proposition 1.7.1. There hold the estimates

(i) 1Y ()ll2y < C(lI¢llze [ dive]zz + lwllz2 [Vl z2),
(i) 12 (s 9)ny < C(lollz2 0wl o + w2 Vel s
+ el lVollzs + loll2llgllzs + llgllzy),
(iif) IS @)l < CIS Nl e lldiveoll e + l[wll e [V rlly).
(iv) 1Eso (o)l = < Cllwllazm [V ewll s + |l | V] gy

uniformly foru =T (¢, w) = U1 +uoe with uy = " (¢r, wi) (k = 1,00) satisfying ||p|| L~ < 3
and ||ul|gm < 1.

Proposition 1.7.1 directly follows from Lemmas 1.1.1 and 1.1.3.

We next estimate F;(uV), g) — F;(u®,g) (j = 1, 00).
Proposition 1.7.2. There hold the estimates
(i) 1D () = FP (@)1
< C{lI" — 6@ r2lldivao ™|z + [|6@ || 2 ldiv(w™ — w )] 2
+ [l — W@ 2|V | 2 4+ 0@ ||V (Y = 6@ 2},

(ii> Hﬁ'l(u(l),g) - F‘l(u(m’g)“L}
< C{lw™ = w2 [V 2 + w®]| 2] V(w — w®)]| 2
+ 160 = 6P 2 ([P |2 [V || 2 + 10w ™M |22 + llgll z2)
+ 1P| 2| Oy (W™ — w )| 12
+ (Ve 2 + V6P | 2) 19 = 6@ 2 + [[6W |21V (6D = 6P| 21,
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(ii) 1ES, (u™) = F (u®)] o
< O{lldiva® [z |6 — 6@ s + ([ |z iy (1) — w®) | i
1 1 2
+ 1V [ llw® = w® | rer + 0] |V (@5 = ¢ e},

(i) [ Fe(u®,g) = Fu ( u®, 9))l -2
< C{llo" = | gpms ([ [z V| s + 050 || g1 + gl o)
+ ™ = w g [V s + ([0 [V (0 = 0| -
+ 16PNz 10 (w0 = w ) s
+ IV [ ggm-r + V6P 1) 67 — ¢ pm—s
6V V(60 = ¢2)| g2}

um’formly for ul) = (gb(j),w(j)) = ul +ul) with u,ij) (gzbk LW ) (k =1, 00) satisfying
oDz < 5 and [uP||gm <1 (5 = 1,2).

Proposition 1.7.2 directly follows from Lemmas 1.1.1-1.1.3.

To prove Theorem 1.2.1, we next show the existence of a solution {uy, us} of (0.0.21)-
(0.0.22) on [0, T satisfying u;(0) = u;(T) (j = 1,00) by an iteration argument.

For ¢ = 0, we define u§°) = T(¢§O), w§°)) and ulY = (cboo , é?,)) by

ug?}(t) = S0 (t)(I SOOO(T>>_1L¢OO,O(T>[G00] n yOO,O(t)[GooL (1.7.1)

{ uf(t) = SO = $UT) 1G] + A1(1)[G],
where t € [0,T], G = T(0, %g(az,t)), G, = PG and G, = P,G. Note that u§0)(0) =
u(T) (j =1,00).

For ¢ > 1, we define uﬁf) =T( §“,w§“) and ul = (gboo : wéo) inductively, by

W) = Si) ST — Si(T)) " Fi(u®D, )] + 1 (0)[F1 (uD, g)],
ug@ (t) = Soo,u“*l) (t) (I - Soo,u“*l) (T))_lyoo,u(Z*U (T) [FOO (u(é—l)’ g)] (172>
o ot () [Foo (u), 9)],
where ¢ € [0, 7] and w1 = u{™
?>1.

+ u((f;_l). Note that uge)(O) = uge) (T') for j = 1,00 and

Proposition 1.7.3. There exists a constant 6; > 0 such that if [gl,, < 01, then there
holds the estimates

(1) I{ul?, uH 20 < Cilgln
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for all £ >0, and

™ = g, D —

uH gt oy

/ /—1 —
< Cilghnll{ud? = w0l = ul M ] g g,

for £ > 1. Here C is a constant independent of g and (.

(i)

Proof. The estimate (i) follows from Propositions 1.4.4, 1.5.9, 1.7.1 and Lemma 1.3.3
(ii).
Let us consider the estimate of the difference between !tV and u®. For ¢ > 0, we

set qgg-é) = ¢§e+1) — (bg@ and w(z) w(eﬂ) w'? for j = 1,00. Then by using (1.7.1) and

(1.7.2), we see that ¢j and w (€ >1) satlsfy

8tg5( ydlvw = (= )),
¢ o . (1.7.3)
8tw1 — VAwl — qulvwl +9Vey’ = Fia(aY, g),
0oL + v Pa (0 - V(ﬁ(f;) + ~ydival) = Foor (a=1), (1.7.4)
ol — vAwY) — pvdive + ”yV(ﬁoo = Fooo(a™Y, g), o
where
Fu(a'Y) = F)(u) = FY(u),
Fio(@Y, g) = Fi(uY,9) = Fi(u"V, g),
Fro(a ) F3(u ()) FL(u™Y) =y P (0 —w™Y) - Vo)),
Fap(@, g) = Foe(u”, g) = Fu(u“"Y, g).
The desired inequality (ii) can be obtained by applying Propositions 1.4.4, 1.5.9, 1.7.2
1.7.3 (i) and Lemma 1.3.3 (ii). This completes the proof. D

We introduce a notation. We denote by B 5 () (r) the closed unit ball of 27 (a,b)
centered at 0 with radius 7, i.e., ’

Bgyk(a,b)(r) = {{ul,uoo} € 2%(a,b); ”{U“UOO}H%I“(a,b) < r} ,

Proposition 1.7.4. There exists a constant 6y > 0 such that if [g],, < d2, then the system
(0.0.21)-(0.0.22) has a unique solution {uy,us} on [0,T] in Bgm g T)(Cl [g]m) satisfying
u;(0) = uj(T) (j = 1,00). The uniqueness of solutions of (0.0.21)-(0.0.22) on [0,T]
satisfying u;(0) = u;(T) (j = 1,00) holds in B%m(QT)(Cl(SQ).

Proof. Let §; = min{d;, Qé } With 01 given in Propositions 1.7.3. By Propositions 1.7.3,

we see that if [g],, < 02, then u = ((b(g) (g)) (j = 1,00) converges to u; = ' (¢;,w;)
( = 1,00) in the sense

{49} — {ur,us} in 2™7H0,7),
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uld) = T(0Q wl)) = too = (P, weo) +-weakly in L>(0,7H{%, ),

o0 oo ? [e.9]

w® — we weakly in L20,T; H™ )N HY(0,T; H" 1),

o0 (00)71 (00)71

It is not difficult to see that {u;,u} is a solution of (0.0.21)-(0.0.22) satistying u;(0) =
uy(T) (j = 1,00).

It remains to prove s = | (Goo, W) € C([0,T]; H™), which implies {u1,us} €
Bﬁi’m(o,T)(Cl[g]m> with u;(0) = u;(T) (j = 1,00).

As for wy, since L*(0,T; H™)Y N HY(0,T; H™ ') C C([0,T]; H™), we find that w, €
c([o,T]; H™).

As for ¢o, note that ¢, € C([0,T]; H') and ¢, is the solution of

Orpoo +v(w - Vo) = ga,
{ Doolt=0 = Pocos (1.7.5)

where
Joo = —7diVwe + F3 (u) € L*(0,T; H™), doss € H™.

On the other hand, by Lemma 1.5.1, we see that there exists a solution of (1.7.5) which be-
longs to C'([0, T]; H™) and that the uniqueness of solutions of (1.7.5) holds in C'([0,T; H').
Therefore, we find that

$oo € C([0,T]; H™).
To prove that us = (oo, Weo) € C([0, T]; H), we note that u., is written as
Uso(t) = Soou(t)(I — SOO,U(T))_lyOO,U(T) [Foo(u, 9)] + 7 o ,u(t) [Foo(u, 9)]

with u = u; + us. By Proposition 1.7.1 and Lemma 1.3.3 (ii), we see that F(u,g) €

L*(0,T; Hi) 1 % H(’:o_)’l). It then follows from Proposition 1.5.6 that if dy is small such

that C1dy < 8, then to = " (¢oo, Woo) € C([0, T]; H). This completes the proof. O

To complete the construction of a time periodic solution of (0.0.1), we use the following
proposition on the unique existence of solutions to the initial value problem.

Proposition 1.7.5. Let s € R and let Uy = Uy + Upse with Uy, € ,%”(11)71 and Uy €
HEZO)J. Then there exist constants 63 > 0 and Cy > 0 such that if

M (Uot, Upoo, 9) = ||U01||Jf(11)71 + [1Uosolazgn, | + Lg]m < 33,
there exists a solution {Uy, Us} of the initial value problem for (0.0.21)-(0.0.22) on [s, s+

T] in Bgm S+T)(C'QJW(UM,UOOO,g)) satisfying the initial condition Uj|i—s = Uy; (j =
1,00). The uniqueness for this initial value problem holds in B%m(s S+T)(C'253).
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Proof. Let i = " (¢,w) be a given function in C([s,s + T); H™) N L?(s, s + T; H™1).
We define Sy 4(t, $)upeo and % a(t, s)Fise by the solution operators for

8tuoo + Auoo + Poo(B['a]uoo) = Fooa uoo|t:s = Upoo-

with F,, = 0 and up, = 0, respectively. As in the proof of Proposition 1.5.6, one can see
that if w satisfies

||711||C([s,s+T};Hm)mL?(s,s+T;Hm+1) <4, (1.7.6)
then it holds that S (%, s) and % a(t, s) satisfy the estimates

||S<>O,ﬂ(t7 S)UOOOHHZCOO)J S C'e_a(t_S)||Uv000||H(kOO> ) (177>

,1

t 3
| watte Bl < O [N i) (175)

for t € [s,5 + T, Foco € H{\oy 1> Foo € LP(s,5 + T Hf | X H(’;){l) and k=m —1orm
with C'= C(6,T) > 0 uniformly for s € R and @ = ' (¢, ) satisfying (1.7.6).
To prove Proposition 1.7.5, it now suffices to show the unique existence of the solution

{U1,Ux} € By, oy (CoM (Unt, Uns, ) of

{ Ur(t) = Si(t = s)Uo + Z1(t = s)[F1(U, g)],
UOO(t) = oo,U(ta S)“Ooo + yoo7U<t7S)[FOO(U> g)]a

with U = U; + Uy for a constant Cy > 0, provided that M (Up;, Uy, g) is sufficiently
small. We solve this problem by an iteration argument as in the proof of Proposition
1.7.4.

(1.7.9)

For ¢ = 0, we define U;O) = T(<I>(O) W-(O)) (j =1,00) by

jg oty
UP(t) = S1(t — 8)Upr + Z1(t — 5)[G4],
UL (t) = Sa0(t, $)Uos + Fo00(t, ) [Go),

where t € [s,5s+T], G = (0, %g(w,t)), G, = PG and G, = P,G.
0 _ Q) Oy : :
For £ > 1, we define U;” = T(ij ,W37) (j = 1, 00), inductively, by

UL (t) =81t — s)Ugt + Z1(t — $)[FL(UCD, g)],
UL (1) = o1 (t, $)Uooo + -7 o e (t, 8) [Foo (U, )],

where ¢ € [s, s + T] and UD = g~ 4 g,

As in the proof of Proposition 1.7.3, by using Proposition 1.4.1, (1.7.7), (1.7.8), Propo-
sitions 1.7.1, 1.7.2 and Lemma 1.3.3 (ii), we can inductively show that if M (Up;, Upso, g)
is sufficiently small, then there hold the estimates

HUL, UD 9 iy < CoM (Ut Unoe, 9)
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for all £ > 0, and
¢ ¢
U = 01, 08D = UQH g
< C2M(U01, UOooag)H{Ul(E) - U1(€_1)7 Uéﬁ) - Uéﬁ_l)}”%m*l(s,wﬂ

for all £ > 1. Hence, in a similar manner to the proof of Proposition 1.7.4, we see that there
exists a solution {Uy, Uy} € B(%/””(s’s_"_T)(CQM(UOl, Uoeo, g)) of (0.0.21)-(0.0.22) satistying
Ujli=s = Uy, (j = 0, 00), provided that M (Up:, Upso, g) < 05 for a small constant 65 > 0. In

view of the iteration argument, we can see that the uniqueness holds in B g (5.5 +T)(C’253).
O

This completes the proof.
We are now in a position to prove Theorem 1.2.1.

Proof of Theorem 1.2.1. It suffices to prove the unique existence of a time periodic
solution of (0.0.15). By Proposition 1.7.4, we see that if [g],, < d2, then (0.0.21)-(0.0.22)

has a unique solution {ug‘”,ué‘;’} € Bgm T)(C’1 [g]m) satisfying u( '(0) = u§0)(T) (j =
1,00). In particular, it holds that

sup {nu%‘”(t)n o, ||ug%><t)||Hggo>,l} < Cilghn. (1.7.10)

te[0,7
Therefore, if g satisfies (C’l 1)[g]m < 63, then, by Proposition 1.7.5, we see that there
exists a umque solution {u{", uY} € BW(T,2T)(CQ(C'1 + 1)[g]m) of (0.0.21)-(0.0.22) sat-
isfying u | 7 = ug()) (T) = u§0)(0) (j=1,00).
We introduce u§ ) (j = 1,00) and @@ by

i) =u(t+ 1), V() =a () +al(t) for teo,T).

Then we find that
~(1 1 0 0
a"(0) = u{(T) = u(T) = u{”(0),

() + AaV () = 0Vt + T) + AVt +T) = RVt +T),9t+7T))

Similarly, we see that
) (0) = uf)(0),

Oy (t) + AT () + Pu (B[ﬂ(l)(t)]ﬂ(l)(t)) = Foo(a'V(t), g(t).
Therefore, if (g, < d4 := min{ds, Cé—‘f‘"’ (7Em)) +1 93}, then, by the uniqueness of the solution,

we find that {a§”( t), ~<(>l,)( )} = {u(o)( t), oo( )} for t € [0,T]. Consequently, we have
{u”(0), uld (O} = {u”(t = T),uld (¢t = T)} for t € [T, 27].

We define {uy(t), use(t)} (¢t € [0,27]) by {ur(t), use(t)} = {u{” @), v @)} for ¢ €
kT, (k + 1)T], k = 0,1. It then follows that {uy(t + T),uxo(t + T)} = {ui(t), uso(t)}
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for t € [0,7]. Furthermore, we see from Proposition 1.7.5 and (1.7.10) that there exists
a unique solution {v1, v} € Bgm z ar)(C2(Cr + 1)[glw) of (0.0.21)-(0.0.22) on [3, %]
27 2

27 2
satisfying ’Uj’t:% = u§0)(%> (j = 1,00). By the uniqueness, it follows that {v;, v} =
{ur, us} on [£, 2F], which implies that {u;, us} is a solution of (0.0.21)-(0.0.22) on [0, 27
in 27 (0,27). Repeating this argument on intervals [kT, (k+1)T] for k = £1,4+2---, we
obtain a solution {uy, us} of (0.0.21)-(0.0.22) in 27! (R) satisfying |[{u1, Uoo}||ggm(07T) <
C1g]m that gives a time periodic solution u = (¢, w) of (0.0.15) by setting u = u; + Uso,
where u; = "(¢j,w;) (j =1,00), ¢ = ¢1 + oo and w = Wy + Wee.

In view of the iteration argument in Propositions 1.7.3 and 1.7.4, one can see that the
uniqueness of time periodic solutions for (0.0.15) holds in {u = "(¢,w); {Pu, Pxu} €

L perR), [{ Pru, PooU}Heggm(o’T) < 164} if [g]m < 64. This completes the proof. O

per
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Chapter 2

On the existence and stability of
time periodic solution to the
compressible Navier-Stokes equation
on the whole space

The existence of a time periodic solution of (0.0.1) on the whole space is proved for
sufficiently small time periodic external force when the space dimension is greater than
or equal to 3. The proof is based on the spectral properties of the time-T-map associated
with the linearized problem around the motionless state with constant density in some
weighted L> and Sobolev spaces. The time periodic solution is shown to be asymptotically
stable under sufficiently small initial perturbations and the L* norm of the perturbation
decays as time goes to infinity.

2.1 Preliminaries

In this chapter we use the following notation.

For a given Banach space X, the norm on X is denoted by || - || x-

Let 1 < p < 0o. We denote by LP the usual L? space over R". The inner product of L?
is denoted by (-,+). For a nonnegative integer k, we denote by H* the usual L?-Sobolev
space of order k. (As usual, H' = L))

We simply denote by LP the set of all vector fields w = " (wy,- -+ ,w,) on R" with
wj € LP (j = 1,---,n), ie, (L))" and the norm || - |[(zs)= on it is denoted by || - ||1»
if no confusion will occur. Similarly, for a function space X, the set of all vector fields
w="(wy, - ,w,) on R" with w; € X (j =1,---,n), i.e., X", is simply denoted by X;

and the norm || - || x» on it is denoted by || - || x if no confusion will occur. (For example,
(H*)™ is simply denoted by H* and the norm || - || s is denoted by || - || )
Let u = "(¢,w) with ¢ € H* and w = " (w1, ,w,) € H™. We denote the norm of
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won H* x H™ by ||ul| gy gm:

1
lall s = (111770 + Nl ) -

When m = k, the space H* x (H*)" is simply denoted by H* and the norm ||ul] g (zeyn
by ||u|| g+ if no confusion will occur :

HY = H* x (B, [ulle = [ull g (0= T(6,0)).

Similarly, for v = "(¢,w) € X x Y with w = "(wy,--- ,w,) , we denote its norm by
[l x5y

1
lullxsy = (lo1% + lwli)®  (w="(6,w)).
If Y = X™ we simply denote X x X" by X, and, its norm ||ul|xxx» by ||ul|x:

X=X x X" ullx = [lullxxxn (u="(6,w)).

We will work on function spaces with spatial weight. For a nonnegative integer ¢ and
1 < p < oo, we denote by L) the weighted L? space defined by

Ly = {u € L7 Jlullp = |1+ |2])ull o < o0}.
We denote the Fourier transform of f by f or F[f]:
f& =FIfl&)= | fla)e™*dz (£€R").
R
The inverse Fourier transform of f is denoted by F~![f]:

FHf(x) = (2m)™" Rnf(é)e’f"”dé“ (z € R").

Let £ be a nonnegative integer and let r; and r,, be positive constants satisfying
r1 < Tso. We denote by H(’“OO) the set of all u € H” satisfying supp @ C {|¢| > r1}, and by
L%l) the set of all u € L? satisfying supp @ C {|£| < 7o }. Note that H* N L%l) = L%l) for
any nonnegative integer k. (Cf., Lemma 1.3.3 (ii).)

Let k and ¢ be nonnegative integers. We define the spaces Hy and H, (koo),e by

HE = {u € HY |lull gy < +o0},
where

¢ 3
||U||H§ = (Z’U‘%) )

J=0

N

Julpy = 0w |72 )
|la|<k
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and
HE,), = {u € s llull g < +oo}.
Let ¢ be a nonnegative integer. We denote L?l),e by
L%n,z ={felyfe L%n}-
For —0o < a < b < oo, we denote by C*([a,b]; X) the set of all C* functions on
[a,b] with values in X. We denote the Bochner space on (a,b) by L”(a,b; X) and the

L?-Bochner-Sobolev space of order k by H*(a,b; X).
We define the space 271y by

={p € L1, Vo € Lizsupp ¢ C {[¢] < 7oc}, 4ll g < +oo},
where

9l 27, = 19l 2, . + 16l
ol gz, . = L+ e e ||¢||3{ = (1 + | V2.

The space %) is defined by
= {w € L35, Vw € H'ssupp & C {[¢] <7}, wllgy, < +oo},
where

lollgy, = lwlg, . +lvly,

1
lwllg, .= I+ 2" Vo] e,

=0

2
g, =S+ o) Ve,
P

The space Z1)(a,b) is defined by
Zy(a,b) = ([, b Zw) x [ Clla, 0l Z ) N H 0, 5: %)
Let ¢ be a nonnegative integer and let s be a nonnegative integer satisfying s > [%} +1.
For k = s — 1, s, the space ,@” )0(@,b) is defined by

Py ila,b) = [C([a,b]; HE,y ) N C([a, b]; LT)]
x [L*(a,b;5 HEES ) 0 C([a,B]; Hy o) 0V H (a,0; HES )]
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Let s be a nonnegative integer satisfying s > [%} + 1 and let k = s — 1,s. The space
X*(a,b) is defined by
X*(a,b)
= {{ur, usc};u1 € Z1y(a,b),us € ff](foo),n_l(a, b),

at¢oo € C([a,b];L%),uj = T(¢j7wj) (] = 1700)}’

equipped with the norm

o, o ooy =l gy + el g
+ 10:bocllcanizzy + 10l eqan;c2) + [10:V || o(ra,piz2)-

We also introduce function spaces of T-periodic functions in t. We denote by C,.,(R; X)
the set of all T-periodic continuous functions with values in X equipped with the norm
I leo.r):x); and we denote by L2 . (R; X) the set of all T-periodic locally square integrable
functions with values in X equipped with the norm || - ||z2or,x). Similarly, H),,.(R; X)
and X* (R), and so on, are defined.

per
For operators Ly and Lo, [L1, Ls] denotes the commutator of L; and Ls:

(L1, Lo f = Li(Laf) — La(Ly f).

2.2 Main results of Chapter 2

In this section, we state our main results on the existence and stability of a time-periodic
solution for system (0.0.1).

Recall that the following operators are introduced which decompose a function into its
low and high frequency parts in Chapter 1. The operators P, and Py, on L? are defined
by

Pif = F (G FUf) (fel?j=1,00),
where

Xi(§) € C*(R") (j=1,00), 0<x; <1 (j=1,00),

: (g <),
Xl@‘{o (el > 1),

Xoo(§) = 1= X1(8),

0<r <re.-

We fix 0 <1 < 1o < % in such a way that the estimate (2.4.6) in Lemma 2.4.3 below
holds for [£] < 7.

Our result on the existence of a time periodic solution is stated as follows.
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} 4+ 1. Assume that

Theorem 2.2.1. Let n > 3 and let s be an integer satisfying s > E
. Set

3
g(z,t) satisfies (0.0.2) and g(z,t) € Cper(R; L' N L) N L2, (R; Hy77)

l9ls = llglleqorprrnrz) + 9l a1y

Then there exist constants § > 0 and C' > 0 such that if [g]s < 0§, then the system
(0.0.15) has a time-periodic solution u = uy + Ue satisfying {ur, use} € X;,(R) with
[{u1, oo} xs0,ry < Clgls.  Furthermore, the uniqueness of time periodic solutions of

(0.0.15) holds in the class {u = " (¢, w); { Pru, Pou} € X5, (R), [[{u1, o } || xs00) < C6}.

We next consider the stability of the time-periodic solution obtained in Theorem 2.2.1.

Let " (pper, Uper) be the periodic solution given in Theorem 2.2.1. We denote the
perturbation by u = (¢, w), where ¢ = p — pper, W = U — Vpe,. Substituting p = ¢ + pper
and v = W + Ve, into (0.0.1), we see that the perturbation u = T (¢, w) is governed by

0D + Vper - V& + ¢divupe, + pperdivi +w - Vppe, = f2,
D + Vper - V0 + 1w - Ve, — S Aw — BHEV dive (2.2.1)

per

+#¢6T(MAUP57’ + (” + M/)Vdivvper) + V(Mgb) — f,

Pper

__ ¢
Pper(Pper +¢)

0 ¢ ¢ A
Avper + + 1) Vdivue,
Pper (Pper + ¢) (Pper e Pper <’u : ) ! )

¢ (2) ¢2 1 (3) 2
—V er s —V 'per V per )
+ R (0" (pper, #)P) + (o ¥ 9) (p(pper + @) + P (2" (pper, @) 97)

1
D (pyor, ) = / P (0pen + 000,
0

(pAw + (p+ p')Vdivw)

1
PO ersd) = [ (1= O s+ 0010
0
We consider the initial value problem for (2.2.1) under the initial condition

uli=o = uo = (¢, wo). (2.2.2)
Our result on the stability of the time-periodic solution is stated as follows.

Theorem 2.2.2. Let n > 3 and let s be an integer satisfying s > [%} + 1. Assume that
g(x,t) satisfies (1.2) and g(x,t) € Cper(R; L N L) N L2, (R; Hy 1) Let (pper, Vper) be
the time-periodic solution obtained in Theorem 2.2.1, and let ug € H®. Then there exist

constants €, > 0 and €5 > 0 such that if

[9)s+1 < €1, |uollms < e,
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there exists a unique global solution u = " (¢, w) of (2.2.1)-(2.2.2) satisfying
u € C([0,00); H?),

()% + / IVu(r)]

|u(t)||pe — 0 (t — o0).

to-tppsdT < Clluolls (¢ € [0, 00)),

It is not difficult to see that Theorem 2.2.2 can be proved by the energy method
([16], [26]), since the Hardy inequality works well to deal with the linear terms including
(Ppers Uper) due to the estimate for (pper, Vper) in Theorem 2.2.2; and so the proof is omitted
here.

2.3 Reformulation of the problem

In this section, we reformulate problem (0.0.15). As in Chapter 1, to solve the time
periodic problem for (0.0.15), we decompose u into a low frequency part u; and a high
frequency part u.,, and then, we rewrite the problem into a system of equations for u,
and Ug.

As in Chapter 1, we set
uy = Piu,  Us = Pyou.
Applying the operators P; and Py, to (0.0.15), we obtain,

Opuy + Auy = Fi(ur + too, 9),
Oplloo + Ao + Poo (Blug + tso|tine) = Foo(U1 + Uso, g)-

Here

Fi(ug 4 toe, g) = Pi[—Blui + o] (u1 + us) + G(uy + toe, 9)],
Foo(u1 + oo, 9) = Pso[—Blui + us]us + G(u1 + oo, 9)]-

Suppose that (2.3.1) and (2.3.2) are satisfied by some functions u; and u.. Then by
adding (2.3.1) to (2.3.2), we obtain

at(ul + uoo) + A(”l + uoo) = _Poo<B[u1 + uoo]uoo) + (Fl + Foo)(ul + uoo,g)
= —Blu1 + too) (1 + ) + G(u1 + Uso, 9).

Set u = U1 + U, then we have
Owu + Au+ Blulu = G(u, g).

Consequently, if we show the existence of a pair of functions {u;, us } satisfying (2.3.1)-
(2.3.2), then we obtain a solution u of (0.0.15).
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In this chapter, we consider the low frequency part u; in a weighted L*>-space. To do
so, the velocity formulation is not suitable, and, instead, we use the momentum formula-
tion for the low frequency part.

Before introducing the momentum formulation, we prepare some inequalities for the
low frequency part. The following inequality is concerned with the estimates of the
weighted LP norm for the low frequency part.

Lemma 2.3.1. Let x be a function which belongs to the Schwartz space on R™. Then for
a nonnegative integer £ and 1 < p < oo, there holds

=l Oc* Hlle < CUN Xzl Fllze + Xzl fllze}  (F € L))

Here” %7 denotes the convolution and C' is a positive constant depending only on (.

Proof. Let x be a function which belongs to the Schwartz space on R™. Then
lafGes £l < lel [ e = sy
< C/ v —yl'Ix(@ = y)llf(y)ldy + 0/ Ix(@ = y)ly||f (v)|dy.
R7 R"

Therefore, the Young inequality gives

=l Oc Hlle < CUN Xzl f e + Izl Flle} (f € ZF).

This completes the proof. 0

Applying Lemma 2.3.1, we have the following inequality for the weighted L” norm of
the low frequency part.

Lemma 2.3.2. Let k and ¢ be nonnegative integers and let 1 < p < oo. Then there holds
the estimate

N2V fille < Clllzl* fulle (fr € Ly 0 LY).

Proof. We define a cut-off function yo = F~1xo with Y, satisfying
Xo € CP[R"), 0<x0<1, xo=1 on {[{| <7}, suppxo C {[{| < 2ry}. (2.3.3)
Since f; € L%l), we see that V¥, = (VFxo) * fi (k > 0). Therefore, by Lemma 2.3.1, we

obtain the desired estimate. This completes the proof. O

Since n > 3, applying the Hardy inequality and Lemma 2.3.2, we have the following
inequality for the weighted L? norm of the low frequency part.
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Lemma 2.3.3. Let ¢ € Z'(1) and wy € ¥ (1). Then, it holds that
IP(6wn)ly, , < Cloll, IVwpe

Here C' > 0 is a constant depending only on n.

Proof. By Lemma 2.3.2, we see that

||P1(€Z5U11)||@(1)7L2 < Ollgpwr ||z (2.3.4)
Since n > 3, by the Hardy inequality, we find that

lpwillzz < CllellLee , Vw2 (2.3.5)
By (2.3.4) and (2.3.5), we obtain the desired estimate. This completes the proof. O

Let us now reformulate the system (2.3.1)-(2.3.2) by using the momentum. We set m;
and uy ,,, by

mi = Wy + P1(¢w), ul,m = T(¢1,m1), (236)

where ¢ = ¢1 + ¢oo and w = w; + ws. Then, we see that {uy m, us} defined by (2.3.6)
satisfies the following system of equations.

Lemma 2.3.4. Assume that {uy, us} satisfies the system (2.3.1)-(2.3.2). Then {u1 m, oo }
satisfies the following system.:

atul,m + Aul,m = Fl,m<u1 + u<>07g)7 (237>
Here
Fl,m(ul + uoo;Q) = T(07 Fl,m(ul + uoo7g>>7
Fin(un +ussg) = =Pr{pA(ow) + iVdiv (u) + V(00 (6)67)
. 1
+ydiv (1 + p)w @ w) — ;((1 +¢)g)}- (2.3.8)

Proof. If {u;, u.} satisfies the system (2.3.1)-(2.3.2), then u = u; + us satisfies (0.0.15).
Hence, we see that

1+ ¢)w-Vw = div((1+ ¢)w @ w) — wdiv ((1 + ¢)w)
= div((1+ d)ww) + %&gb. (2.3.9)

Therefore, substituting (2.3.9) into (2.3.1), we obtain the equation (2.3.7). This completes
the proof. H
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Conversely, one can see that the momentum formulation (2.3.2), (2.3.6) and (2.3.7)
gives the solution {uy, u} of (2.3.1)-(2.3.2) if ¢ = ¢1 + ¢ is sufficiently small. In fact,
we have the following Lemma.

Lemma 2.3.5. (i) Let s be an integer satisfying s > [2] + 1 and let uy, = T(¢1,m1)
and Use = " (Poo, Woo) SAtiSFY {U1m, Uso } € X*(a,b). Then there exists a positive constant
do such that if ¢ = ¢1 + doo satisfies supepe ) 9llee, < do, then there uniquely ewists
wy € C([a,b]; Z1y) N H (a,b; %)) that satisfies

wy =my — P(¢(w; + wy)), (2.3.10)

where ¢ = 1 + G- Furthermore, there hold the estimates

leHC([a,b];@/(l)) < C<||m1||c([a7b];@(1))+HwOOHC([a,b];LQ))’ (2.3.11)

| loan(r)iy, i

IN

CU0V 1 1E a2y + 10eboc|Eapra) w01 asizes o)

+Hat¢H%’([a,b};L2) le Hé([a,b};%l)!Lw))

= [ c(10m )y, + 108 unan oDl

n—1

0w (7) 32 ) (2:3.12)

(ii) Let s be an integer satisfying s > [2] + 1 and let wi,m = " (¢1,m1) and us =
T (Goos Woo) satisfy {ur m, uoo} € X*(a,b). Assume that ¢ = ¢p1+¢n satisfies SUDyelq,4] [9lze | <
do and {uy m, U} satisfies

Oty g + Aty = Fi (1 + oo, 9),
w1 my — P1<(bw)7

Here w = w; + ws with wy defined by (2.3.10). Then {u1,us} with uy = (g1, w;)
satisfies (2.3.1)-(2.3.2).

Proof. (i) Let uy,, = "(¢1,m1) and s = " (Goo, Weo) satisfy {u1m, s} € X*(a,b). For
Fi € %y, we set Z[¢|F := Pi(¢F1). By Lemma 2.3.2 and Lemma 2.3.3, we see that
@[(b]Fl € @(1) and

12101 F gy, < CoolllFullpee + [[VFY] 2}
Hence, if 0y < £, then (I+22[¢]) is boundary invertible on &y and (I+ 2 [¢]) ! satisfies

I+ 26D Fillgy, <CliFilg, - (2.3.13)
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By Lemma 1.1.1 and Lemma 2.3.2, we see that m; — P (¢ws) € #(1) and
Iy = Prowllay, < Cllmallgy, + lhonlso) (2314)

We define w; by
Wy = ([-'- 9[¢])71[m1 — P1(¢ww)]

Then, by (2.3.13) and (2.3.14), wy € #(y) satisfies (2.3.10) and
lwillgy,, < Clllmallgy, + llweollz2)- (2.3.15)

It directly follows from (2.3.15) that wy € C([a,b]; % (1)) and w, satisfies (2.3.11).

We next show that dyw, € L?*(a,b; % (1)) and dyw; satisfies (2.3.12). We set K; :=
my — Py (¢ws). By Lemma 1.1.1 and Lemma 2.3.2, we see that —22[0,¢|w, + 0K, € 4y
and

| = 20l + 0kl < C{lIamllgy, + 100lleelwilly,

+(19:Voull 2 + [10r¢ocl 2) wn gz,

HS

n—1

2w s, + NOpwecllzz }-

Therefore,

(I + 2[9])0yw1 = =P [0pplwy + 0K

and hence, dw; = (I + 2[¢]) - P [0plwr + 0, K] € L*(a,b; (1)) and dyw; satisfies
(2.3.12).

(ii) We see from (i) that there uniquely exists w1 € C([a,b]; Z(1)) N H'(a,b; % 1))
satisfying (2.3.10). Then substituting (2.3.10) into (2.3.7), we see that

01 + ywy = —yP(div (pw)). (2.3.16)
On the other hand, by (2.3.2);, we have
Droo + YWoo = —7 P (div (pw)). (2.3.17)
Hence, by adding (2.3.16) to (2.3.17), we see that
06 + ~div (1 + d)w) = 0, (2.3.18)

where ¢ = @1 + P and w = wy + we. Substituting (2.3.10) into (2.3.7), and by using
a similar computation as (2.3.9) based on (2.3.18), we see that u; = " (¢, w;) satisfies
(2.3.1). This completes the proof. O

By Lemma 2.3.5, if we show the existence of a pair of functions {1 ,, ux} € X*(a,b)
satisfying (2.3.2), (2.3.7) and (2.3.10), then we obtain a solution {ui,u~} € X*(a,b)
satisfying (2.3.1)-(2.3.2). Therefore, we will consider (2.3.2), (2.3.7) and (2.3.10) instead
of (2.3.1)-(2.3.2).
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We look for a time periodic solution u for the system (2.3.2), (2.3.7) and (2.3.10). To
solve the time periodic problem for (2.3.2), (2.3.7) and (2.3.10), we introduce solution
operators for the following linear problems:

atul,m + Aul,m - Fl,m7 (2 3 19)
Ut m |t=0 = Uo1,m, -
and
Ortig + At + Poo(Blii]uss) = Fc, (2.3.20)
Uoo|t:0 = UQco -

where @ = (¢, 1), Uo1.m, Uooo, F1.m and Fy, are given functions.

To formulate the time periodic problem, we denote by S;(t) the solution operator for
(2.3.19) with Fy,, = 0, and by .#(¢) the solution operator for (2.3.19) with ug;,, = 0.
We also denote by Sy 4(t) the solution operator for (2.3.20) with F, = 0 and by .%o a(t)
the solution operator for (2.3.20) with up = 0. (The precise definition of these operators
will be given later.)

As in Chapter 1, we will look for {u ,, ux} satisfying

Ut (t) = S1(t)torm + L 1(H)[Fim(u, 9)],
{ Uoo () = Soou(t) oo + 7 cou(t)[Foo(u, )], (2.3.21)
where
uorm = (I — S1(T)) 21T [Fim(u, g)],
{ Upoo = (I — Soovu(T))*ljﬂOO’u(T) [Foo (u, )], (2.3.22)

u = "(¢,w) is a function given by Uy = T(1,m1) and Use = ' (Poo; Weo) through the
relation
O =1+ Pooy, W=W1+ Weo, Wy ="My _Pl((bw)-

Let us explain the relation between (2.3.21)-(2.3.22) and the time periodic problem
(2.3.2), (2.3.7) and (2.3.10) for the reader’s convenience.

If {u1m, us} satisfies (2.3.2), (2.3.7) and (2.3.10), then uy,,(t) and u(t) satisfy
(2.3.21). Suppose that {uym,, U} is a T-time periodic solution of (2.3.21). Then, since
Ut (1) = u1,m(0) and ue (1) = us(0), we see that

{ (L = 51(T))urm(0) = S (T) [Frm(u, )],
(I = Soou(T)t10(0) oo, u(T) [Foo (1, 9)],

where u = (¢, w) is a function given by u,, = "(é1,m1) and Us = " (Poo, Weo) through
the relation
¢ =01+ b, W=wW1+ W, w1 =my— Pi(ow).

Therefore if (I — S;(T)) and (I — Sou(T)) are invertible in a suitable sense, then one
obtains (2.3.21)-(2.3.22). So, to obtain a T-time periodic solution of (2.3.2), (2.3.7) and
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(2.3.10), we look for a pair of functions {u; m, us } satisfying (2.3.21)-(2.3.22). We will in-
vestigate the solution operators Sy (t) and .#(¢) in section 5; and we state some properties
of Seou(t) and .7 . (t) in section 6.

In the remaining of this section we introduce some lemmas which will be used in the
proof of Theorem 2.2.1.

For the analysis of the low frequency part, we will use the following well-known in-
equalities.

Lemma 2.3.6. Let a and 3 be positive numbers satisfying n < o+ 8. Then there holds
the following estimate.
(1+ [z~ (max{a, B} < n),
| tle = ay e ) Ry < 08 (1 fal) e log o] (max{a B) = n),
" (1+ laf)~" ) (max{a, 8} > n)

for x € R™.

The following lemma is related to the estimates for the integral kernels which will
appear in the analysis of the low frequency part.

Lemma 2.3.7. Let { be a nonnegative integer and let E(x) = F0, (x € R™), where
®, € C°(R" — {0}) is a function satisfying
08d e L' (la] <n—3+0),
07| < CIE* (€ £0, 18] > 0).
Then the following estimate holds for x # 0.
|B(2)] < Cla|~ =249,

Lemma 2.3.7 easily follows from a direct application of [31, Theorem 2.3]; and we omit
the proof.

We will also use the following lemma for the analysis of the low frequency part.

Lemma 2.3.8. (i) Let E(z) (z € R") be a scalar function satisfying

C
(1 + [z])leltn—2

00 E(2)] < (la] = 0,1,2). (2.3.23)

Assume that f is a scalar function satisfying || f||peenzr < oo. Then there holds the
following estimate for |a| =0, 1.

C
Ha:?E* f](l’)’ < (1 n ‘I|)|a|+n_2 HfHL%oﬁLl-
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(i) Let E(x) (z € R™) be a scalar function satisfying (2.3.23). Assume that f is
a scalar function of the form: f = 0., f1 for some 1 < j < n satisfying |0y, f1|lee +
| fillzee | < 00. Then there holds the following estimate for |a| = 0,1.

C

Ha?E * f](l’)’ S (1 + |x|>|a\+n—2<’|a‘rjf1HL%° + HleLﬁo_l)'

(iii) Let E(z) (z € R™) be a scalar function satisfying

C
(1 + [z])lettn1

|07 E(2)] < (laf = 0,1).

Assume that f is a scalar function satisfying || f||Le < 0o. Then there holds the following
estimate for |a =0, 1.

C'log |z

025 1)) < oy

1 fll e

Lemma 2.3.8 (i) and (ii) is given in [32, Lemma 2.5] for n = 3 and the case n > 4 can
be proved similarly; the assertion (iii) can be proved by a direct computation based on
Lemma 2.3.6; and so the details are omitted here.

The following inequalities will be used to estimate the low frequency part of nonlinear
terms.

Lemma 2.3.9. (i) Let ¢ be a nonnegative integer satisfying ¢ > n — 1 and E(z) be a
scaler function satisfying
C

|E(x)] < m

for x € R™

Then for f € L2 |, it holds that

1B fllzze, < CUIA+ D™ Nl ez, + 1z, 3

n—1 n—1

(ii) Let E(x) be a scaler function satisfying

C

W fOT x € R™

|E(x)] <

Then for f € L |, it holds that
1E s flleee, < Cllfllzs_,

Lemma 2.3.9 easily follows from direct computations; and we omit the proof.

The following lemma is related to the weighted L*° estimate for the low frequency
part.
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Lemma 2.3.10.
|Eillg,, . < ClIFilL, .

1),L° -1’

for Fy € L%l),n—l'
Proof. We see that Fy = o * Fi, where xo = F %0, %o is the cut-off function defined
by (2.3.3). Since g belongs to the Schwartz space on R", we find that

10%x0(z)| < C(1 4+ |z))~ D for |al > 0. (2.3.24)

Therefore, applying Lemma 2.3.2 and Lemma 2.3.9, we obtain the desired estimate. This
completes the proof. O

As for the high frequency part, we have the following inequality.

Lemma 2.3.11. Let ¢ € N. Then there exists a positive constant C' depending only on £
such that

[P fllrz < CIV | L2-

Lemma 2.3.11 follows from the inequalities
2
7,‘ —
2"V foslZ2 > ?1H|x|kfoo||%2 Ol |2 (k=11 ,0)

for fo € H (loo),e which are proved in Lemma 1.3.6 by using the Plancherel theorem.

(1) (2)

To estimate nonlinear and inhomogeneous terms, we need to estimate w; ’ — w;” in
terms of ¢§” — 52), . ff}, mgl) — m?) and wt) — w2
Let s be an integer satisfying s > [5] + 1. Let ugk,zl = T(¢§’“),m§’“)) and ul) =

T( ® wé’é)) satisfy {u@n, ugﬁ)} € X*(a,b). Assume that ¢*) = ¢§’“> + % satisfies
SUDye0,4] [¢")|| = | < &9, where &y is the one used in Lemma 2.3.5 for (k = 1,2). Then by
Lemma 2.3.5 (i), there uniquely exist wgk) € C(la,b); %)) N H'(a,b; # 1) satisfying

w® = m® L Py (M ™),

where w*) = wgk) +w® for k=1,2 . Then wgl) - w?) satisfies
w®) — @
= m{Y —=mP = P (¢W(w® — w®)) = P (w® (¢ — ¢@). (2.3.25)

We obtain the following estimate for wgl) — wf) .
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Lemma 2.3.12. It holds that
[ e O
C([a,b], (1))OH (a)bv (1))

2
k 1 2
< C (1 + > I, w2 Xs@,b)) [t = i, wld — w23
k=1

Xsfl(a”b) .

Lemma 2.3.12 directly follows from Lemma 1.1.1, Lemma 1.1.2, Lemma 2.3.2, Lemma
2.3.10 and (2.3.25); and we omit the proof.

2.4 Properties of Si(t) and .7(t)
In this section we investigate S;(t) and .#(¢) and establish estimates for a solution u; of
Ouy + Auy = Fy (2.4.1)
satisfying u; (0) = uy(T) where Fy = T(0, ).
We denote by A; the restriction of A on 271y X #(y).

Proposition 2.4.1. (i) A is a bounded linear operator on Z 1y x %1y and S;(t) = e~*4
is a uniformly continuous semigroup on 2 1y X ¥ (1). Furthermore, Sy (t) satisfies

Sityur € CH[0,T']; Zy X D)), 0:S1(-)us € C([0,T"); L?)
for each u € X1y x %1y and all T" > 0,
0pS1(t)ur = —A1S1(H)uy (= —AS 1 (H)ur), S1(0)ur =uy for uy € Zqy x Zy,
107 S1C)ul 0,20, 2 1y oo x Wiy o) < Cllunl 27 oy oo
H@fsl(')ulHc([o,T/];%mLQX@(Mz,) <Cllullg .« ..
foruy € Zqy x %y, k=0,1,
18:Sy (B urlloqoryezy < Cllull 27, .

and

18,9 S: (sl oqoizresy < Cllull 27, a7,

for up € 'y x ¥y, where T" > 0 is any given positive number and C' is a positive
constant depending on T".

(ii) Let the operator .#1(t) be defined by
t
yl(t)Fl = / Sl(t - T)Fl(T) dr
0
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for Fy € C([0,T]: 2 1)) x L2(0,T; @y). Then
()P € CH[0,T]; Zwy) x [C([0,T); Z 1)) x H'(0,T: %))
for each Fy € C([0,T); Z' 1)) x L*(0,T; %)) and
01 (t)FL + A S (t) Fy = Fi(t), Z1(0)Fy =0,

”‘yl(')Fl“cqo,ﬂ;%n,mx%m) < C“Fl”c([o,T];%n,Lp)xLQ(&T;%),LP)7

”atyl(')FlHC([O,T};%(U,LP)xL?(o,T;%),Lp) < CHFl”C([o,T};%m,Lp)xL?(O,T;%),Lm>

for p = 2,00, where C' is a positive constant depending on T. If, in addition, F| €
C([0,T); L?), then 0,.%1(-)Fy € C([0,T); L?), 0,V 1(-)Fy € C([0,T]; L?),

10:1() Fillco.r;zey < CllFleqo,m;c2)s

and
10:VZ1C) Filleqoiez) < CllFloqory;e2),
where C'is a positive constant depending on T.

(iii) It holds that
S1) () = Z1(8)[S1() F]

foranyt >0, ¢ €[0,T] and Fy € C([0,T]; Z 1)) x L*(0,T; % 1)).

Proof of Proposition 2.4.1. Let

A 0 Z’yTé- n
Af‘(ws u|5|2fn+ﬁ€§) (£ e RY).

Then, F(Auy) = Actiy. Hence, if supp @iy C {&; €] < roo}, then supp Aty € {€;]€] < roo}.
Furthermore, we see from Lemma 2.3.2 that

HAulH«%(l),Lnga),w < C||U1||%(1)7pr@<1>,m

for p = 2, 00. Therefore, A; is a bounded linear operator on 2 ;) X #(3). It then follows
that —A; generates a uniformly continuous semigroup S;(t) = e~ that is given by

Sl(t)ul = F_l(e_tA‘EF'Lh) (Ul € %(1) X @(1))

Furthermore, Si(t) satisfies Si(-)u; € C1([0,T"]; Z 1) X Z (1) for each u € X1y X X1y ,
and

8t51(t)ul = —Alsl(t)ul (: —ASl(t)ul), Sl(O)Ul = Uy for U € %(1) X @(1)

It easily follows from the definition of S;(¢) that
||Sl(‘)u1||C([07Tl];:%'(1>’LpX%1)7Lp) < O||UI||%(1),LPX@(1),LP (p =2, OO) for u; € %(1) X @(1),
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and hence, by the relation 0y (t)u; = —A151(t)u; and Lemma 2.3.2,
HatSl(')ulHC([O,T’];%(U,LPx@(l),w) < CHMH%(I),LPX%U,LP (p=2,00) for uy € 21y x ¥,

where T > 0 is any given positive number and C' is a positive constant depending on 7”. In
addition, we see from the relation 9;S; (t)u; = —A1S;(t)u; that 9,51(-)u; € C([0,T"]; L?),
0,V Si(u € C([0,T7; LY),

10:51(Yurlleqoryezy < Cllunll 2, v,

and
101 Cmlloqorn) < Cllurll g7, -

The assertion (ii) follows from Lemma 2.3.2, the assertion (i) and the relation 0,71 (t)[F1] =
—A1.71 () [F1] + Fi(t). The assertion (iii) easily follows from the definitions of S; () and
Z1(t). This completes the proof. O

We next investigate invertibility of I — S;(7T).
Proposition 2.4.2. If F satisfies the conditions given in either (i)-(iii), then there

uniquely exists uw € 2’1y X Xy that satisfies (I — S1(T))u = Fy and u satisfies the
estimates in (1)-(iii), respectively.
(i) e Ly, nL=NLY;

I 27w S CUIF e + 1Pl (242)
a2, o, 0 < COIF + 1 Filz2), (243)

(ii) L =0°FY e Lo L%lm with Fl(l) € L?l) N L, for some « satisfying |a| = 1;

1
lull g7, oty e < CUIR L + IF e, )
1
lull 2, w0 < CUE Nz + [ Fillz):

(iii) Fy = ajFl(l) € L%l) with Fl(l) € L%, N L for some « satisfying |a| > 1;

1)1
1
lull 27, s oo < CIE iz, (2.4.4)
1
lull g, ey 0 < CIE iz (2.4.5)

To prove Proposition 2.4.2, we prepare some lemmas. Recall that we have the following
lemmas related to the linearized semigroup in Chapter 1.
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Lemma 2.4.3. ([26]) (i) The set of all eigenvalues of —Ae consists of \;(€) (§ = 1,4),
where

{ M(6) = _V|§|2
Ae(6) = =5 (v + D) £ 34/ (v +0)2[E]* — 4y2[¢]>

If €] < 7%, then

)

Rexiz—; PP, ImAi—mf\\/l— Y fefe.

(ii) For €] < V%:Lw et has the spectral resolution

eftAg _ Z o123 (6)

j=1,%

where 11;(§) are eigenprojections for X\;(§) (j =1, %), and IL;(€) (j = 1, £) satisfy

0 0
11, (5) = 0 I, A
1€
1 —Ax —iy'¢
II =t+— . e | .
+(§) A — A (—zfyf )\i%
Furthermore, if 0 < roo < %, then there exists a constant C' > 0 such that the estimates

L) <C(j=1,%) (2.4.6)
hold for |€| < reo.

Hereafter we fix 0 < r; < re < f—;’y so that (2.4.6) in Lemma 2.4.3 holds for || < re.

Lemma 2.4.4. Let a be a multi-index. Then the following estimates hold true uniformly
for & with |§] < ro and t € [0,T].

(i) [0gA] < CIEPI, |oga<] < Clgl=1l (Jaf > 0).
(i) |(eTL)E| < Cle[7o B, |(0¢TLe) Fi| < CIel 9B (o] > 0), where Fy = (P, F).
(i) [9g(eM?)] < ClEP (Jof > 1).
(iv) [9g(e*)] < Clel*1l (Ja] > 1).
(v) |(9ge M) By < C(IE| 1 FD] + €7 (] > 1), where Fy = T(FY, Fy).
(vi) [9g(1 — M)~ < Cl¢[=27°l (Jal > 0).
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(vii) |0g(I — X))~ < Clg|~ 71 (Ja| > 0).

Lemma 2.4.5. Set
Eyj(z) = F (R — ML) (j=1,4) (z€R"),

where xo is the cut-off function defined by (2.3.3). Let o be a multi-index satisfying
la| > 0. Then the following estimates hold true uniformly for x € R™,

(i) 102 E1 1 (2)] < C(L+ |o])~(=2+eb,

(ii) |02E1+(2)| < C(1 + |z])~(n-ttlah,

Proof. It follows from Lemma 2.4.4 that

J

S 08By (2)| < © L .l @ em),

Since f| |€]72d¢ < oo for n > 3, we see that

£|<roo

Z 00F, ;(z)| < C (z € RY), (2.4.7)

J

where C' > 0 is a constant depending on «, 7" and n. By Lemma 2.4.4, we have

102 ((i€)*Xo(I — M) IL)| < Cle[>H8 for |B] > 0,
107 ((1€)* %o(I — 1)) < Clg[~HH=P for || > 0.

It then follows from Lemma 2.3.7 that
09E, 1 (z)] < Cla|~=2HeD and |02 F) 4 (z)| < C|a| (= tHeD, (2.4.8)

From (2.4.7) and (2.4.8), we obtain the desired estimates. This completes the proof. [J

Let us now prove Proposition 2.4.2.

Proof of Proposition 2.4.2. We define a function u by
w=F (I - e TA) [,
(i) By using Lemma 2.4.4, one can easily obtain (2.4.3). As for (2.4.2), note that

u= .7-"71(([ — eiTAAf)flpl) = ZEl,j * I,
J
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where F; are the ones defined in Lemma 2.4.5. Then by Lemma 2.4.5, we see that
> B j satisfies

|m§3&3|<01+m>”wﬂ<mzm.

Therefore, applying Lemma 2.3.8 (i), we obtain (2.4.2).

The assertion (ii) follows similarly from Lemma 2.3.8 (ii), Lemma 2.4.4 and Lemma
2.4.5.

(iii) By using Lemma 2.4.4, one can easily obtain (2.4.5). As for (2.4.4), if there exists
a function Fl(l) € L%l) N Lge satisfying Fy = 8"‘F for some « satisfying |o| > 1, then

U= <Z @?Eu) * Fl(l)
J
Lemma 2.4.5 yields

Zﬁ“%l (2)] < C(1+ |y~ (1418

for x € R", |a] > 1 and |B| > 0. It then follows from Lemma 2.3.8 (iii) that

Hu”'%/(l),moxgm,LOO - OHF ”LOO
This completes the proof. 0
In view of Proposition 2.4.2 (i), I — S1(T) has bounded inverse (I —S;(T))™*: L%l)’l N
L>*NL"— Z1) x ) and it holds that

(I - Sl(T))_1F1||%<1),LooX@m,m < C{IIFullee + I Frller ),
1L — Sl(T))_lFlﬂgg(l) o, e < CURL + 1 Fallg).

If i = agFf” e LN L%l),l with Fl(l) € L?l) N Lg° , for some « satistying |a] = 1,

then (I — Sl<T))_1F1 c %(1) X @(1) and

I = SUT) Bl sl e < OB e + 1P i )
_ 1
Hu—&aw1ﬂw%m%@mﬂscmﬂwm+wmma

Furthermore, if F, = 0°F") € L with FY e 12
’CY‘ Z 1, then ([ — Sl(T))_lFl < %(1) X @(1) and

ma Ly for some « satisfying

_ 1
I = ST Fill g, oy e < CIF g,
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10 =S R, < ORIz

We next estimate Sy (t)1(T)(I — Si(T)) ™' F, and .7 (t)Fy. Let Ey(t,0) and Esy(t,7)
be defined by
( ) 1{X e t/l5 ([ 7TA5)7167(T70)A§}’
BEy(t,m) = F ' {{oe™ "4}
t <
)

for o € [0,7],0 <7 < T, where xq is the cut-off function defined by (4.9). Then
(T

y1<t>F1 and Sl( ) (T (I Sl )) 1F1 are giVGD by

S1(#)-S (T — Sy (T)) "' Fy = /0 ' Ei(t,0) * Fi(o)do, (2.4.9)

t t
y1<t>F1 _/ Sl(t—T)Fl(T)dT_/ Eg(t,’T)*Fl(T)dT. (2410)
0 0
We have the following estimates for F1(t,0) * Fy and Es(t,7) * F}.
Lemma 2.4.6. If F satisfies the conditions given in either (i)-(iii), then Ey(t,0) x Fy €

%(1) X @(1), EQ(t,T)*Fl € %(1) X@(l) (t,O', T E€ [O,T],j = 1, 2) and El(t, O')*Fl, EQ(t,T)*
Fy satisfy the estimates in (1)-(iii), respectively.

(i) e L), NLeNLY;
1BVt o) * Bill 2o e TIERET) * Bill g oo < OB g + I}
and

1t o)« Bl o, I <l g, < COlRl + 172
uniformly for o € [0,T]) and 0 <7 <t <T.

(i) Fy = 0§F1(1) eLxXn L%lm with Fl(l) € L2, N Ly, for some « satisfying |a| = 1;

1)
|Bv(to) il gy oy o HIB6 D) Rl g, o < CIR g + 1Ol )

and
IBto) s Billa, o , HIB0) * Rl e, < COF I+ Rlls)

uniformly for o € [0,T] and 0 <7 <t <T.

(iii) [y = 0§‘F1(1) € L?l) with Fl(l) € L%1),1 N L for some a satisfying |a| > 1;

1Bt o) * Bl 2 oy oo TIEGT) x Bill g o < ClIF" g
and

|E(t,0) < Fill g, < IR

(1),L2

+ || Ea(t, ) * F1||3{(1) %

(1),L2

uniformly for o € [0,T) and 0 <7 <t <T.
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Proof of Lemma 2.4.6. By Lemmas 2.4.3 and 2.4.4, we see that
97 (Roli€) e 4e(1 — e~ Te)Tem M) < O[4I,
9 (Roli€) e 7A)| < Ol
forc € [0,7],0 <7<t <T and || > 0. It then follows from Lemma 2.3.7 that
2 Fu(@)] < C(1+ [a]) 246D 92 By(w)] < C(1+ ey 1D (2.411)

for |a| > 0. Therefore, in a similar manner to the proof of Proposition 2.4.2, we obtain
the desired estimate by using Lemma 2.3.8 and Lemma 2.4.5. This completes the proof.
O

We see from Proposition 2.4.1 (i), (ii) and Lemma 2.4.6 that the following estimates
hold for Sl(t)YI(T)(I - Sl(T))_l and Yl(t)
Proposition 2.4.7. Let I'y and I'y be defined by

DVA() = S$i(0)A T - S,(T)) ( 21) TR0 = () ( 21) (412)

If Fy satisfies the conditions given in either (1)-(iii), then T;[F\] € CY([0,T); Z 1)) x
[C([0,T); %)) NH0,T;%))] (7 =1,2) and I';[F\] satisfy the estimates in (1)-(iii) for
7 = 1,2, respectively.

(i) Fy € L20,T; L3y, N L® N LE NP y));

HFl[Fl]Hc([o,ﬂ;%(l)xﬁi/(l)) < CHFlHLQ(D,T;L%OﬂLlﬂL%)?

||atr1[F1]HC([O,T];%(I))xL2(0,T;@/(1)) < CHFIHL?(O,T;L;golemLf),

and
||F2[F1]|’C([07T];%(1>XZZ/(1>) < CHFIHL?(O,T;LgolemL%)a
HatFQ[Fl]Hc([o,ﬂ;3{(1))XL2(0,T;@(1)) < C(HF1HL2(O,T;L§;OQL1QL§) + HF1HL2(07T;Z?/(1)))'
(i) /= 02" € L¥0, T, L N L2, N ¥ y) with K € L2(0,T;L%, N L) for

some « satisfying |a| = 1;
||F1[F1]||c ([0,7]; %(1>X%1> (HFlHL2 0,T:LeenL?) T ||F ||L2(0TL°° 10L2))7

||atF1[F1]||C ([0,T7; ,%(1))XL2 OT@(U (||F1||L2(0TLoomL2) + ||F ||L2(0TL°o mL2))

and
~ ~ 1
T2l Moo, 2 <@y < CUE20 ey + IF 2 0.minee ),
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ad ~ 1
102 Flll oo 2127 ez < CUE 20 rmsenz + 1 20000 nr2)
([7 ]7 (1)) ( IR} (1))
+HF1HL2(07T;0](1)))'

(iii) £y = 0°F™Y e L*(0,T; L}y N ) with FY e 12(0, T L}y, N LY) for some o
satisfying || > 1;

HFl[Fl]HC (10,7); %(UXJJ(U CHF HLQ(OTLoomL?)

Hatrl[ﬁl]||c([o7T];%(1))XL2(07T;@<1 < C“F HL2 (0,T;LgNL2)

and

HF2[F1]||C(0T]%(UX@(1) CHF ||L20TL°°ﬂL2)7
10T oo s 2 perzors iy < CUR Naominsnss) + 1l o rar, )

As for HF1||L2(0,T;@(1) . (p = 2,00), we have the following proposition.
Proposition 2.4.8. If Fy satisfies the conditions given in either (i)-(ii), then Fy €
L*(0,T; %)) and Fy satisfies the estimates in (1)-(iil), respectively.

(i) Fy € L*0,T; L3, , N L= N LY,

Y P R el 121 PP
||F1||L2 0,T; ?,7/1) 12) S C||F1||L2(0,T;L1mL§)-

(ii) Fy = 9oF" e L2(0,T; L N L2

20 1) with KY€ L2(0,T; L3 N L) for some o

satisfying |a| =1 ;
- - 1
1B oo r. )y, oy < CUIER 20 7050) + I 22020 ),

18l o, ) < CUE lzomias) + |1 Billzzra):

(iii) Fy = aﬁFl(l) e L*0,T; L%l)) with Fl(l) e L*0,T; L%l) LNLY) for some « satisfying
o > 1;

12 < O 2,

2 0.1:% 1y 1) =

HFlHLz(o,T;Q/l) 12) = CHF ”L2 (0,T;L3)"

Proof of Proposition 2.4.8. We see that F} = yo * F}, where yo = F X0, Yo is the
cut-off function defined by (2.3.3) satisfying (2.3.24). Therefore, in a similar manner to
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the proof of Proposition 2.4.2, we obtain the desired estimates. This completes the proof.
OJ

We will also need another type of estimates for I'y and I's. We set

T[] = (I — Si(T)) ™" (121) |

Proposition 2.4.9. (i) Let a be a multi-index satisfying || > 0. Suppose that F e
Ly N LY. Then To[0gFi] € 2’y x @1y and it holds that

||F0[3§F1]||%<1>ng<l) < C|Flp

If [y € L2(0,T; L, N L%)), then, for j = 1,2, T;[0°Fy] € % 1,(0,T) and it holds that
n—1 (1) JlY% (1)

In; RO 2, 0y < ClEix0ras

(ii)~ Let o be a multi-index satisfying |a| > 1. Suppose that F, € L(21),n_1- Then
[o[0SF1) € Z' 1y x #(1y and it holds that

||Fo[aﬁﬁl]||%<l>xgym < CllFillgz_,-

If Fy € L*(0,T; LY, _,), then, for j =1,2, T;[00Fy] € 2Z1)(0,T) and it holds that

IS0 B O 2, 00y < CllEA 20,72 -

Proof of Proposition 2.4.9. (i) We have already obtained the estimate for || T'o[0%F}]| Doy x P,
1),L2 1),L2
in (2.4.3). We see from Lemma 2.4.5 and Lemma 2.3.9 (ii) that

ITo[05 Flll e, < ClIF Iz,

n—1 —

Therefore, by Lemma 2.3.2, we find that
T P Eyel 121 P

Similarly, the estimates of I'; (j = 1, 2) follow from (2.3.24), Lemma 2.3.9 (ii), Propo-
sition 2.4.1, (2.4.9), (2.4.10) and (2.4.11).

The assertion (ii) can be proved similarly from (2.3.24), Lemma 2.3.9 (i), Proposition
2.4.1, (2.4.9), (2.4.10) and (2.4.11). This completes the proof. O

We are now in a position to give estimates for a solution of (2.4.1) satisfying u,(0) =
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For Fy = T(0, F}) we set
T[F] = S1(t).Z1(T)(I — Sy (T)) " Fy 4+ .71 (t)Fy.
Then T[F] is written as
L[F](t) = 1 [F1] + Dol £, (2.4.13)
where I'; and I'y were defined by (2.4.12).

Proposition 2.4.10. If F} satisfies the conditions given in either (1)-(v), then INIIRE
a solution of (2.4.1) with Fy = 7(0,Fy) in Z1)(0,T) satisfying T[F1](0) = T[Fy)(T) and
[[F1] satisfies the estimate in (1)-(v), respectively.

(i) Fy € L*0,T; L3, , N L= N LY,
ITEN 2 o < CIE 200 ni)- (2.4.14)
(1)(0,T)

(i) Fy = 02 FY € L2(0, Ty Ly N L2 ) with F{Y € L*(0,T; L3, N L2 ,) for some o
satisfying |a| = 1,

ad ~ 1
I 2, 02y < CUE 2072003 + I 2025 o)): (2.4.15)

(iii) Fy = 8§‘F1(1) e L*0,T; L%l)) with Fl(l) e L*0,T; L%lmﬂL;’f) for some « satisfying
o] > 1;

TP Tl BA—— (2416
(iv) Fy =9oFY € L2(0,T: L | n L) for some a satisfying || > 0;

I 1
ITIEI 2, 0 < CIE lleoin_y- (24.17)

(v) Fy = a;;Ff” e L*(0,T; L%l),n—l) for some « satisfying o] > 1;

ad 1
IPIE 2, o) < CIF Ni0mirz_. (2.4.18)

Proof. We find from Proposition 2.4.1 (iii), Proposition 2.4.2 and Proposition 2.4.9 that
I[F}] is a solution of (2.4.1) with Fy = T(0, F}) satisfying T[F1](0) = T[Fy](T). The
estimates of I'[Fy] in (i)-(iii) follow from Proposition 2.4.7 and Proposition 2.4.8. We
obtain the estimates of I'[F}] in (iv) and (v) by Proposition 2.4.9. This completes the
proof. O
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2.5 Properties of S ;(t) and 7 4(?)

In this section we state some properties of Sy 4(t) and .7 4(t) in weighted Sobolev spaces
which were obtained in Chapter 1.

Let us consider the initial value problem (2.3.20). Concerning the solvability of
(2.3.20), we have the following

Proposition 2.5.1. Let n > 3 and let s be an integer satisfying s > [5]+1. Setk = s—1
or s. Assume that

Vi € C([0,T']; HS 1) N L*(0,T'; H®),
Upoo = T(¢0007w000) € H(koo)a

_T 0 7 2 . k k—1
Foo = "(FY, Fyo) € L*(0,T'; HE ) < HELY).

(o0

Here T' is a given positive number. Then there exists a unique solution s = ' (oo, Woo)
of (1.3.2) satisfying

9o € C([0,T"]; HE,),
weo € C([0, T HE ) VIR0, T HEE) 0 HY (0,77 HEL)).

(o0 (o0
Proposition 2.5.1 can be verified in a similar manner to the proof of Proposition 1.5.4.

Remark 2.5.2. Concerning the condition for w, it is assumed in Proposition 1.5.4 that
w e C([0,T"]; H5)NL2(0, T'; H*™1). However, by taking a look at the proof of Proposition
1.5.4, it can be replaced by the condition that Vw € C([0,T']; H¥~') N L*(0,T"; H®).

In view of Proposition 2.5.1, Sy 4(t) (t > 0) and . a(t) (t € [0,7]) are defined as
follows.

We fix an integer s satisfying s > [5] + 1 and a function @ = T(¢,w) satisfying

¢ € Coor(R; H®), Vb € Cper(R; H*Y) N L2, (R; H?). (2.5.1)

per

Let k =s— 1 or s. The operator S 4(?) : H(koo) — H(koo) (t > 0) is defined by
T(¢0007w000) € H(koo)a

where u.(t) is the solution of (1.3.2) with F,, = 0; and the operator ., 4(t) : L*(0, T} H(’“OO) X
Hi}) — H,, (t €[0,T)) is defined by

uoo{t) = Soo,ﬁ(t)uooo for Uooo =

o0

Uoo(t) = L soi(1)[Foo) for Foo = T(FY, i) € L*(0,T; Hy x H{S)),
where (%) is the solution of (1.3.2) with g = 0.

The operators Se 4(t) and .« z(t) have the following properties.
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Proposition 2.5.3. Let n > 3 and let s be a nonnegative integer satisfying s > [5] + 1.

Let k =s—1 ors and let ¢ be a nonnegative integer. Assume that u = (gb, D) satisfies
(2.5.1). Then there exists a constant § > 0 such that the following assertions hold true if

IV oo, 55 vynL20,1305) < 9.

(1) It holds that Sea(+)uos € C([0, oo);H(koo)’g) for each ugss = " (Poso, Wooo) € H(koo),e
and there exist constants a > 0 and C' > 0 such that Sy 4(t) satisfies the estimate

||Soo,a(t)U00o||H(k y <Ce” atHuOooHHk e

for allt >0 and up € H(OO)

(ii) It holds that 7 s a(+) Foo € C([0,T; HE, ) for each Fog = T(FY, Fio) € L*(0,T; HY

Hg“ 1) and i (t) satisfies the estimate

1
t 2
H%,a<t>[Foon|H&)’esc{ [y e ;[df}

fort €[0,T] and F, € L*(0,T; HE ) , X H(k ).0) with a positive constant C' depending on
T.

(iii) It holds that T} )Z(SOO7Q<T)) < 1. Here ") )Z(SOO7Q<T)) denotes the spectral
radius of Sea(T) on H ,.

(iv) I = Seoa(T) has a bounded inverse (I —Swa(T))™" on HE ) , and (I — S a(T)) ™"
satisfies

I~ SooaT) Mulle < Cllully, for e H,

Proposition 2.5.3 can be verified in a similar manner to the proof of Proposition 1.5.6

Remark 2.5.4. In Proposition 1.5.6, it is assumed that

||/LDHC([O,T];HS)HLQ(O,T;HS+1) S (5

However, by taking a look at the proof of Proposition 1.5.6 and Proposition 1.6.1, it can
be replaced by the condition

V@l cqo,;ms-1ynz2 0,505y < 0.

Applying Proposition 2.5.3, we easily obtain the following estimate for a solution .,
of (1.3.2) satisfying e (0) = ueo (7).
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Proposition 2.5.5. Let n > 3 and let s be a nonnegative integer satisfying s > [5] + 1.

Assume that )
Fo = "(FY F) € L*0,T; 151(’*;O)m_1 x HEL )

(00),n—1

with k = s — 1 or s. Assume also that i = " (¢, ) satisfies (2.5.1). Then there eists a
positive constant 6 such that the following assertion holds true if

V@ || oy m5-1)nL2 0,715 < 6.
The function
Uoo(t) 1= Sooa (D) = Sooa(T)) ™S 0,0 (T)[Fo] + 7 o0, (1) [Fix] (2.5.2)
is a solution of (1.3.2) in 5’;00),71,1(0,T) satisfying ueo(0) = us(T) and the estimate

Huwuﬂw,n_l(o,m < ClFsellpzorims i

(c0),n (oo),nfl).

2.6 Proof of Theorem 2.2.1

In this section we give a proof of Theorem 2.2.1.

We first establish the estimates for the nonlinear and inhomogeneous terms F} ,,(u, g)
and F(u, g):

Fim(u, g) = <F1,m(()u,g)) ’

Futing) = P (S FO) < (R0,

F(u,g) Foo(u, g)

where Fy,,(u,g), FO(u) and F(u,g) were defined in (2.3.8), (0.0.19) and (0.0.20), re-
spectively, u = T(¢,w) is the function given by uy,, = "(¢1,m1) and te = " (Poo, Weo)
through the relation

O =1+ Py, W=W1 + Weo, w1 =my — Pi(opw).

We first state the estimates for Fi ,,(u, g) and Fy(u, g).
For the estimates of the low frequency part, we recall that

DIE(E) = Sy (0.1 (T)(I — S1(T)) ™" < £1> + A1) < £1> .

We first show the estimate of ||I[Fy,(u, g)]||§p(l>(0 )
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Proposition 2.6.1. Let uy,, = ' (¢1,m1) and ts = (oo, Weo) satisfy

P
Sup Tl 27, )+ S92 Mool + sup [6(0)][z < minddo, 31,

0<t<T

where g is the one in Lemma 2.3.5 (1) and ¢ = ¢1 + ¢oo. Then it holds that

0T)> [9]

ICEm (1, Dl 2, oy S Cltttms e Heiory + € (14 I{unm,

uniformly for uy , and ts.

Proof. For ul) = T(¢W w0)) (j =1, 00), we set
G (uV,u?) = —P(ydivw® @ w®?),
Go(u,u®) = =Py (pA(¢Mw®) + Vdiv (¢ w®)),
Galo. 0, 0®) =~ (ZT(PD(0)06%) 1 div (0 & u)),
Hk<u(1)7u(2)) = Gk(u(l)au(2)) + Gk<u(2) u(l)>7 (k = 172)5
Hy(¢,uV,u®) = Ga(g,ulV,u®) + G3(,u®, uD).

Then, D[Fy . (u, g)] is written as

2
F[Flym(uv g)] = Z (F[Gk(ula ul)] + F[Hk(ulv uoo)] + F[Gk(uom uoo)])
k=1
+D[G3(0, w1, wr)] + T[Hz (), w1, uoo)] + [ G3(0, oo, too)]
+I {1(1 - ¢1)g} +T {lqﬁo@g} .
v Y
Applying (2.4.15) to I'|G;(uq, u1)], we have
TG (ur, )l 2 o) < Cll{u, tocH 0,1y

As for I'[Ga(u1,u1)] and I'[G3(¢, w1, u1)], we apply (2.4.16) with F1(1) = prw (Ja| = 2),
FY = PO($)¢? (|a| = 1), and FIY = ¢w;, @ wy (Ja| = 1) to obtain

2
Xs(0,T)

PG, )]l 7, iy < Cll{m, s}

HF[G3<¢7 U, ul)] “f‘f(l)(O,T) < CH{ulﬂ UOOH g(S(O,T)'

By (2.4.17), we have

2

I3 PG, uso)lll 22, 0y < ClHun, B

X5(0,T)3
k=1
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2
X5(0,T)"

IT[Gs (8 toos uo)lll 2, (0,1 < ClH{t, ioc}

By (2.4.18), we also have

2
| TG, w0l 22, oy < Cll{n, s}

k=1

IP[Gs(6, w1, use)lll 22, iy < Ol o}z

2
X5(0,T)3

Concerning I'[(1 + ¢1)g] and I'[pg], we see from (2.4.14) and (2.4.17) that

1[0+ 60l 22, iy + Tl 2, 0y < L+ {0 s

Therefore, we find that

P 9] 2, 0y < Ol e} Besiomy + € (14 a0 ) ol
Applying Lemma 2.3.5 (i), we obtain the desired estimate. This completes the proof. [

We next show the estimates for the nonlinear and inhomogeneous terms of the high
frequency part.

Proposition 2.6.2. Let uy,, = ' (¢1,m1) and ts = (oo, Weo) satisfy

, 1
p a7, S99 o), sup [10(0) s < minf, 3,

0<t<T

where &y is the one in Lemma 2.3.5 (i) and ¢ = ¢1 + ¢oo. Then it holds that

| Foo (1, 9) ||L2(0,T;H;_1 xH; 1)

< Clleurm oo} o) + C (14 [t ms s}

XS(O,T)> [Q]s
uniformly for uy , and ts.
Proof. We here estimate only P, (w - Vw), since the computation is not straightforward
due to the slow decay of w; as |x| — co. By Lemma 2.3.11, we see that
[Poc(w - Vw)llzz_, < [[V(w-Vw)lrz_,
< CIVw-Vuwllpz | +llw- Vil

< OO A+ |2 Vwl| e [Vl 2
(L + J2)" P wllze [ (1 + [z VAwlz2). (2.6.1)

For 1 < |a| < s — 1, by Lemma 1.1.1, Lemma 1.1.3 Lemma 1.3.4 and Lemma 2.3.2, we
see that

[ Poc (w - Vw)|r2_,
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< lw- Vwl[pz | +[][07, w] - Vwllzz_
1

L3 + el Vo +

J=0
8

It follows from (2.6.1) and (2.6.2) that

IN

i)}

10+ L) g + ) (26.2)

n—1

-

<
Il
-

|| Poo (w - Vw)

s—1
n—1

1
< D210+ )V

7=0

.
{ZH (14 Jal P gz + el ) -

Similarly to (2.6.2), the remaining terms can be estimated by a straightforward application
of Lemma 1.1.1, Lemma 1.1.3 Lemma 1.3.4 and Lemma 2.3.2. We thus arrive at

1% ()l
< LA+ 2D Pullz= + VLl 2 + | doollar; )
<1+ 2" V| + [Vwi]lze + [[wollz+1)
+H(I(L A+ |2)"Pwill e + [ Vewrllze + wsoll; )

<(IA+ 12" dullze + 111+ |2 Venl|z2)},

and

s—1
H n—1

1o, 9))]

{(Z 1+|(L’| n 2+7V3w1||,;oo

=0
2

(Z (1 + Ja] Pt v

i)

H(IA + 2" Pullz + [l doo] et + || O]

;) ([IV]

H)}

Integrating these inequalities on (0,7") and applying Lemma 2.3.5 (i), we obtain the
desired estimate. This completes the proof. 0

w1 + |9l

We next estimate FLm(u(l), g) — Fl,m(u(2)7 g).
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Proposition 2.6.3. Let U1 m = (¢1 ,m ) and ul) = T(qb(k) w(()o)) satisfy
(k) (®) (*) IR
sup ||ug,, (% + sup ||lu(t)||gs .+ su t)||L~ < min{d, =},
ogth” 1.m )H%(UX@(U ogthH s, ogthHd) @)l {do 2}

where &y is the one in Lemma 2.3.5 (i) and ¢ = §’“) + o) (k =1,2). Then it holds
that

”F[FI m(u(l),g) - FLm(u(z)’g)]Hg(l)(O’T)

1 2
< OZH{ulm, Y s {ud, = ul), uld) — u@}|

Xs-1(0,T)

1 2
+C[g)sll{ull), = ul, ul) — u@Y | xo-10m)

(k)

uniformly for uy,, and u®)

Proposition 2.6.3 can be proved in a similar manner to the proof of Proposition 2.6.1;
and we omit the proof.
We next estimate Fiyo(u?), g) — Fyo(u®, g).

Proposition 2.6.4. Let u

5kr)n I gk),mﬁk)) and u%) = T Efé),wéo)) satisfy

1
sup |ju + sup ||uP@)||gs  + su ®) ()| oo < min{dg, =},
sup [l (27, e, + 00 08 @z, + s 6001 < min{do, 3}

where & is the one in Lemma 2.3.5 (i) and ¢*) = ﬁ’“) + o) (k =1,2). Then it holds
that

||Foo(“(1)v 9) — Foo(u@), 9)]||L2(0,T;H2111xHii?)

X==1(0,7)

2
k 1 2
< Y Hul) e o I{uth, — ul, vl —u@}|

1) 2
Clgloll{ui, — ui, ul) — ul2}|

X-1(0,T)

(k)

1,m

(k)

uniformly for uy, and use ®

Proposition 2.6.4 directly follows from Lemmas 1.1.1-1.1.3, Lemma 1.3.4, Lemma 2.3.2
and Lemma 2.3.11 in a similar manner to the proof of Proposition 2.6.2.

We next show the following estimate which will be used in the proof of Proposition
2.6.6.
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Proposition 2.6.5. (i) Let uy,, = " (¢d1,m1) and e = " (Poo, Weo) satisfy

1
up funm®ll 27y, + S92 Moz, + sup {l6(8)][z < min{do, 5},

0<t<

where g is the one in Lemma 2.3.5 (1) and ¢ = ¢1 + ¢oo. Then it holds that

1 Fm (1 Dlleoiryey < Cllunms o ey + (1 1ot ms e Hlxsiom )l

uniformly for uy ,, and us.

(ii) Let WP = T(¢§k),m§’“)) and ul) = (¢oo ,wc(x))) satisfy

1,m

() (k) (k) : 1
Su Uy (T + su us () ||gs -+ su )| pee < min{dy, =},
ogé)T” LDl 2 <2, OSthll s ()l Ogthngb (1)) < min{5y, 5}

where & is the one in Lemma 2.3.5 (i) and ¢®) = 5’“) + o) (k =1,2). Then it holds
that

[ £ (u ),9) Fym(u®, g)ll12

1
< cZH{ulm, uP Y xsom {ulh, = ui?, u®) — u@Y | xe10m)

+ [g]SH{ul,m u§27)n? ’U/g)) - uoo }’ Xs—1(0,T)

(k)

uniformly for uy,, and ul).

Proof. As for (i), since n > 3, we see from the Hardy inequality that

¢ n— n—
Ipgllzz < C||—|||L2H(1 +12)"gllze < OVl + [2))" gl

|z

Similarly, we can estimate the remaining terms by using Lemma 1.1.1, Lemma 2.3.2 and
the Hardy inequality to obtain

1Fym (s 9) [l 22
< C{(Il(l +[a))" Bl + 11+ |2 )willze + weo|

HIVOIlL2 (11 + |2)" du | e

;) ([[Vwr ||z + [[Vioso]| 22)

LI ) g l) + Dz |

Applying Lemma 2.3.5 (i), we obtain the desired estimate (i).
The desired estimate in (ii) can be similarly obtained by applying Lemma 1.1.1, Lemma
1.1.2, Lemma 2.3.2 and the Hardy inequality. This completes the proof. O

To prove Theorem 2.2.1, we next show the existence of a solution {uy m, s} of (2.3.2),
(2.3.7) and (2.3.10) on [0, 7] satistying u1m(0) = u1,,(T) and uw(0) = us(T) by an
iteration argument.
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For N =0, we define uﬁo,ll = T(¢§°), mgo)) and u'Y = T(qbgg), wég)) by

u () =SS 1(DI - Si(T)7'Gy] + .71 (1)[Gu),
w%o) = mgl) — Py (¢©w®), (2.6.3)
U (#) = San()I = S o(1)) 'S o00(T)[Goo] + F0(1)[Gcl,

where t € [0,7], G = (0, 1g(:E 1), Gy = PG , Gy = PG, ¢© = ¢§O) + gbé? and
w® = ! + . Note that 72,1(0) = ugozn(T) and w2 (0) = ul2(T).
For N > 1, we define ulN) =T( EN),mgN)) and v = (gboo ) wl ), inductively, by

,m

uin(t) = S1(OL DI = Si(T)) " Frum(u™ =, g)] + S () [Frm (D, g)],
w®™ =™ PN,

U (1) = S vy () (I = Se uv-) (T)) ™17 g aatv—1) (T) [Fos (uN =1, )]
+:7007U(N71)(t)[Foo(u(N_l), g)],

(2.6.4)

where ¢ € [0, 7], uN~ ) = § Dy (oo - ugN_l) = (¢5N_1);W§N_l))a o) = ¢§N) + o)
and w™ = w™ + ", Note that u{)(0) = %(T) and w2 (0) = ul2(T).

,m

Proposition 2.6.6. There exists a constant §; > 0 such that if [g]s < 01, then there holds
the estimates

(i) {ul), u@}|
for all N >0, and

xs0,1) < Chlgls

(i) H{ulN+1 ulm),7 ggﬂ) g)}nxs—l(o,T)
11
< gl {ulY) — a0 ul) — w0y

for N > 1. Here C is a constant independent of g and N.

Proof. If [g]; < §; for sufficiently small d;, the estimate (i) easily follows from Proposi-
tions 2.4.1, 2.5.5, 2.6.1, 2.6.2, and 2.6.5.
Let us Con81der the estlmate of the difference {U1 N+1) ugj\;z, uSy+Y —uéﬁf)}. For N > 0,

we set ¢j = QS;.NH) ¢j for 7 =1, 00, mgN) = m(NH) mgN) and w(N) w(NH) wéév).

Then by using (2.6.3) and (2.6.4), we see that (;5 ’( ) and o8 (N > 1) satisfy

8,0 + vdiva™ =0,
N) (V) — ﬁleVmgN) + ’YV%N) = Fl,m,Q(ﬂ(N_l)a 9)7 (265)

8)57’715 — VAml
@y = mi" = Pi(¢™ ™) — Pr(w™gM),
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{ 8105 + 4 Poo (W™ - Vo) 4 dival) = Foy (@™-1), 2.6

dwld) — vAwl) — pvdivel) + Vel = Fon(@®™-, g),
where

Fl,m,Q(a(Nil)hg) :Fl,m< 79) Fl ( 1)7g>7
Foor (@) = FO (utM) = FO (u" D) — Py (0™ — w™V) - v,
Foa(@™™Y, g) = Foo(u™), g) = Foo(u™ ™Y, ).

The desired inequality (ii) can be obtained by applying Lemma 2.3.12, Propositions 2.4.1,
2.5.5,2.6.3, 2.6.4, 2.6.5, and 2.6.6 (i). This completes the proof. O

Before going further, we introduce new notation. We denote by By, (r) the closed
unit ball in X*(a,b) centered at 0 with radius r, i.e.,

BXk(fhb)(r) = {{ul,mauoo} € Xk<a7 b)v ”{ul,rmuoo}HXk(a,b) S 7”} .

Proposition 2.6.7. There exists a constant 0 > 0 such that if [g]s < 0o, then the system
(2.3.2), (2.3.7) and (2.3.10) has a unique solution {uy m,, us} on [0,T] in Bxsomr)(Cilgls)
satisfying ui m(0) = w1 m(T) and us(0) = us(T"). The uniqueness of solutions of (2.3.2),
(2.3.7) and (2.3.10) on [0,T] satisfying u1m(0) = urm(T) and us(0) = us(T") holds in
BXS(O,T) (01(52)

Proof. Let §; = min{dy, ﬁ} with ; given in Proposition 2.6.6. By Propositions 2.6.6,

we see that if [g]; < 09, then ufﬁ,{ =1 EN) mg )) and ulY) = T(gbg),wg)) converge to

some Up, = | (¢1,m1) and U = | (Goo, Wao ), TEspectively, in the sense

(™) uY = {ur g, us} in X570, T),

1,m) Yoo
uM = TN W) 5 gy = T (oo, Weo) *-weakly in L=(0,T; Hi o) nm1)s

(N)

w) — wy, weakly in L*(0,T; H: )N HY0,T; H L ).

(00);n—1 (o0);n—1
It is not difficult to see that {uy,, us} is a solution of (2.3.2), (2.3.7) and (2.3.10) satis-
fying 1, (0) = w1 (7") and u(0) = ue (7).

It remains to prove ts, = ' (oo, Weo) € C([0,T); H:_,), which implies {uy,,us} €
Bxs0,1)(Cilgls) with u1,(0) = 1, (T) and us(0) = ue (7). But this can be shown in
the same way as in the proof of Proposition 1.7.4. This completes the proof. O

By Lemma 2.3.5 and Proposition 2.6.7, we can show the existence of the solution of
the system (2.3.1)-(2.3.2) satisfying u;(0) = u;(T) (j = 1,00) in terms of the velocity
field w;.

91



Corollary 2.6.8. There exists a constant 63 > 0 such that if [g]s < d3, then the sys-
tem (2.3.1)-(2.3.2) has a unique solution {ui,us} on [0,T] in Bxsqor1)(Cslgls) satisfying
u;(0) = u;(T) (j =1,00) where u; = "(¢j,w;) (j =1,00) and Cy is a constant indepen-
dent of g. The uniqueness of solutions of (2.3.1)-(2.3.2) on [0, T] satisfying u;(0) = u;(T")
(j = 1,00) holds in Bxs(o,r)(C203).

Proof. Let [g]s < d2. By Proposition 2.6.7, we see that the system (2.3.2), (2.3.7) and
(2.3.10) has a unique solution {1 m, us} on [0, 7] in Bxso,r)(Cilgls) satisfying uy ,,(0) =
U1,m(T) and us(0) = use(T). The uniqueness of the solution holds in Bxsr)(C102).
Therefore, by Lemma 2.3.5, the system (2.3.1)-(2.3.2) has a solution {uy, us} in X*(0,7)
on [0, T satisfying

[{un; uoc |

and u;(0) = u;(T) (j =1, 00).
We show the uniqueness of the solution. Let {U1 ,ugz)} (k = 1,2) be solutions of the
system (2.3.1)-(2.3.2) in X*(0,7") on [0, T] satisfying

xs0,1) < Calgls

H{ul”, ulH xe0.r) < Calgls
and u (k) (O) k (T) (j = 1,00). We set ugk)n = (gblk ,mgk) where mgk) = w%k)
P1(¢(k)w(k E’“) + 6% and w® = w(k)-I—w 5 (k =1,2). Then by Lemmas (1.1.1),

1,m>
(2.3.10) on [0,7] in Bys(or)(CCalgl,) satistying ui*), (0) = u{®) (T) and u& (0) = w&(T)
(k = 1,2). If 93 = mln{00262,62} and [g]s < 03, then {ulym,ugﬁ)} € Bxs(o,r)(C162)
(k = 1,2). Therefore, by the uniqueness of the solution of (2.3.2), (2.3.7) and (2.3.10),

we see that uﬁn = uﬁn and ul) = ul). It follows from Lemma 1.1.1 and Lemma 2.3.2

that m{¥ — Pi(¢®w®) € Y (k =1,2), hence,

), o
(2.3.2), (2.3.3) and (2.3.4), {u(k) u((x,} are solutions of the system (2.3.2), (2.3.7) and
0

w = (=2 mY - PeOel)
= (=21 m® - AP uld)
(2)

g wl s
Where 9 is the one in the proof of Lemma 2.3.5 (i). Therefore, we see that u(l) = ug )
and uoo = uoo . This completes the proof. O

We can now construct a time periodic solution of (2.3.1)-(2.3.2) by the same argument as
that in Chapter 1. As in Chapter 1, based on the estimates in sections 6-8, one can show
the following proposition on the unique existence of solutions of the initial value problem.

Proposition 2.6.9. Let h € R and let Uy = Uy + Upoo with Upy € 271y X #(1) and
Upso € H( Then there exist constants 64 > 0 and C3 > 0 such that if

o0),n—1"

M(Up1, Upso, 9) = HU01H%<1> T | Uooo | 5 + [g)s < 44,

(c0),n—1

92



there exists a solution {Uy, U} of the initial value problem for (2.3.1)-(2.3.2) on [h, h+T]
in Bxsp+r)(CsM (Uot, Unes, 9)) satisfying the initial condition Ujli—p, = Uy, (j = 0,00).
The uniqueness for this initial value problem holds in BXs(h,h+T)(C'354).

By using Corollary 2.6.8 and Proposition 2.6.9, one can extend {u;, u} periodically
on R as a time periodic solution of (2.3.1)-(2.3.2). Since the argument for extension is
the same as that given in Chapter, we omit the details here. Consequently, we obtain
Theorem 2.2.1. This completes the proof.
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Chapter 3

Existence and stability of time
periodic solution to the compressible

Navier-Stokes-Korteweg system on
RB

(0.0.3)-(0.0.5) is considered on R?. The existence of a time periodic solution is proved
for a sufficiently small time-periodic external force by using the time-T-map related to
the linearized problem around the motionless state with constant density and absolute
temperature. The spectral properties of the time-T-map is investigated by a potential
theoretic method and an energy method in some weighted spaces. The stability of the
time periodic solution is proved for sufficiently small initial perturbations. It is also shown
that the L*> norm of the perturbation decays as time goes to infinity.

3.1 Preliminaries

In this section we use the following notations.

For a given Banach space X, the norm on X is denoted by || - ||x. We denote by L?
the usual LP space over R?. The inner product of L? is denoted by (-, ). The symbol H*
stands for the usual L?-Sobolev space of order k. (As usual, H® = %))

We also denote by L the set of all vector fields w = T (w1, wq, w3) on R® with w; € LP

(j = 1,2,3), ie., (L)%, and the norm || - ||(zsys is denoted by || - ||ze, if no confusion
will occur. Similarly, for a function space X, we denote by X the set of all vector fields
w = "(wy,ws, w3) on R* with w; € X (j =1,2,3), i.e,, X?; and the norm || - || xs on it is

denoted by || - || x. (For example, (H*)? is simply denoted by H* and the norm || - ||(znys
is denoted by || - || gx-)

For u = "(¢,w,¥) with ¢ € H*, w = T (wy,wy,w3) € H™ and ¥ € H7, we denote the
norm of u on H* x H™ x H7 by ||| gk x grmx 15

1
lull e zrm s = (@1 + llwllzm + 19117)* -
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When m = k = j, the space H* x (H*)? x H* is simply denoted by H*, and, also, the
norm ||| gy (prysx e by ||ull g if no confusion will occur:

H* .= H" x (Hk)g x H", ||| g = HUHH’«x(Hk)Ska (u= T(¢>w>79))-

Similarly, for u = "(¢,w,9) € X x Y x Z with w = T (wy, ws, w3) , we denote its norm
by [lullxxyxz:

lullxxyxz = (lol% + lwly +191%)*  (uw="(6,w,9)).

If X =7 and Y = X3, we simply denote X x X3 x X by X, and, its norm ||u||xxx3xx

by Julx: 3 )
X =X xX’x X, HUHX = ||UHX><X3><X (u = (¢,w,19))

Similar expressions are used for norms of u = "(w,9) € Y x Z with w = T (wy, wy, ws).
The Fourier transform of f is denoted by f or F[f]:

f(&) = FIfIE) = g flw)e™™¢dx (£ € RY).

The inverse Fourier transform of f is denoted by F~1[f]:
F@) = @0 [ e (@ e’)
R

For —oo < a < b < oo, the symbols C*([a,b]; X), LP(a,b; X) and H*(a,b; X) stand
for the set of all C* functions on [a,b], the Bochner space on (a,b) and the L?>-Bochner-
Sobolev space of order k on (a,b) with values in X, respectively.

We next introduce function spaces with spatial weights. For a nonnegative integer ¢
and 1 < p < oo, the symbol L} stands for the weighted L? space defined by

Ly = {u € L7 Jlullzp = |1+ |2])ull» < o0}.
Let k and ¢ be nonnegative integers. The spaces Hy is defined by
HE = {u € HY; Jul s < +o0},

where
¢ 3
e = (z |u|z;) |
=0

fulgg = | D I el 0w |3

la|<k
We next introduce the weighted L> N L? space. We define 2" by

2 ={we L¥, Vwe H'; ||| g~ < +o0},
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where

1 2
lwll g =Y N1+ |z ™ Viw] e + > (1 + )~ Viw] 2.
=0 j=1
For a nonnegative integer s satisfying s > 2 we also define 2™ by

2 ={we Z;Vw € H*}

and the norm is defined by

[wll g7+ = [[wl]l g+ [Vw]

HS.

Let ¢ be a nonnegative integer and let s be a nonnegative integer satisfying s > 2. We
define the weighted L?-Sobolev space % (a,b) by

Y;(a,b) = [C(la, b); H;™) N L2(a, b;; H; )]
X [C([a, bl; H) N L*(a, b; Hfﬂ)}.

Recall that the following operators are introduced which decompose a function into its
low and high frequency parts in Chapter 1. The operators P, and P, on L? are defined
by

P]f = *F_lijf[f] (f € LZaj = 1700)7
where x; (j = 1,00) are the cut-off functions defined by

Xi(§) €CT(RY) (j=1,00), 0<x;<1 (j=1,00),

~ 1 (|£| S rl)a
()= { 0 (g > ro).

Xoo(§) = 1 = x1(§)
for constants r; and r., satisfying 0 < r; < ro,. Clearly, it holds that
u = Piu+ Pyu.

We fix the constants r; and r., in the definitions of P, and P, in such a way that the
estimate (3.3.1) in Lemma 3.3.2 below holds for |£] < 7.

Let s be a nonnegative integer satisfying s > 2. We define the space Z°*(a,b) by
Z*(a,b) = {u; Prue Cla,b; Z), Pu € #3(a,b)},

and the norm is defined by
Hu“c@ps(mw :HPluHc(mb;%) + ‘|Poou||@;(a7b)‘
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We also introduce function spaces of time periodic functions in ¢ with period T'. The
symbol Cp.,(R; X) stands for the set of all time periodic continuous functions with values
in X with period T; and the norm is defined by|| - |c(jo,7,x). We denote by L2, (R; X) the

per
set of all time periodic locally square integrable functions with values in X with period

T and the norm is defined by || - || 20/, x)- Similarly, H,,,.(R; X), XJ,.(R), and so on, are
defined.

For a bounded linear operator L on a Banach space X, the spectral radius of L is
denoted by rx(L).

By (r) stands for the closed ball of a norm space Z centered at 0 with radius r, i.e.,

By(r) = {ue Z: Julls <}
The commutator of L; and Ly is denoted by [Ly, L]

(L1, Lol f = Li(Laf) — La(L1 f).

3.2 Main results of Chapter 3

In this section, we state our results on the existence and stability of a time-periodic
solution for system (0.0.3)-(0.0.5). Our result on the existence of a time periodic solution
is stated as follows.

Theorem 3.2.1. Let s be an integer satisfying s > 2. Assume that g(x,t) satisfies (0.0.7)
and g € Cpe,(R; L* N LP) N L2, (R; H3™Y). Set

per
lg9ls = ||9||C([0,T];L1mL§O) + ||g||L2(0,T;H§’1)'

Then there exist constants § > 0 and C' > 0 such that if [g]s < 0§, then the system
(0.0.3)-(0.0.5) has a time periodic solution "(pper — P Mper, Eper — Fs) with period T
satisfying " (pper — P Mpery Eper — E.) € B gps (R)(C[g]s). Furthermore, the uniqueness of
time periodic solutions of (0.0.3)-(0.0.5) holds in the class {"(p, M, E); "(p — ps, M, E —
E,) e Bff;er(R)(Cd)'}

Our next issue to study the stability of the time periodic solution obtained in Theorem
3.2.1. Let T(,ope,«, Myper, Eper) be the time-periodic solution obtained in Theorem 3.2.1, let
the perturbation be denoted by @ = ' (z, M, E), where p = p — pper, M=M-— Myer, F =
E — E,., and let the initial perturbation be denoted by

Uy = ﬂ|t:0 = T(p(o) - pper(o)’ M(O) - Mper<0)’ E(O) - Eper(o))'

We have the following stability result of the time periodic solution.
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Theorem 3.2.2. Let s be an integer satisfying s > 2. Assume that g(x,t) satisfies (0.0.7)
and g € Cpep (R; L'NL°)NL2,, (R; HS). Let " (ppers Mper, Eper) be the time-periodic solution
obtained in Theorem 3.2.1 and let tg € H*T' x H*. Then there exist constants e; > 0 and

€a > 0 such that if

[9s+1 < €1, tollmstrxms < e,
then @(t) exists globally in time and u(t) satisfies
i€ C([0, 00); H x H?),
t
@) et e +/0 IVa(T) 31w pgedr < Clltio|[Ger s (¢ € [0,00)),
la(t)||pe — 0 (t — 00).
Theorem 3.2.2 is proved as follows. We write (0.0.3)-(0.0.5) into (0.0.8)-(0.0.10). Let

T(ppe,n, Myer, Eper) be the periodic solution given in Theorem 3.2.1. We set vy, Oper and
Uper by

Mper 1 |M er’g
67“:—7967‘:_<E6T_ - >>Uve7":T er eraeer-
o Pper b Cv P 2p12)er ? (pp o P )

It directly follows from Lemma 1.1.1 and Lemma 1.1.3 that U, satisfies the estimate
HT(UpeT? Oper — 0*)”0([03];%3) < Clg]s41- (3.2.1)

Let the perturbation be denoted by U = (¢, w, ), where ¢ = p — pper, 0 = v — Vpey, ) =
0 — Ope,. Then the perturbation U = (¢, w, ) is governed by

ath + Uper V¢ + deivvper + pperdivw +w- vpper = f17
Ow — - {pAw + (p+ p)Vdivw} + By(U, Uper) Vb = KVAG + Ba(U, Uper) VI = f13.2.2)
8,9 — @Bs(Upey) AV + By(U, Uper)divw = f3,

where
fH=—div(¢w),
f2 = —(Vper - V)W — (w - V) (Vper +w) = (B1(U, Uper) — B1(Uper))V pper

¢

— (B UaUe’r - B Uer veer_—
( 2( g ) 2( g )) g pper(pper+¢)

{,uA(vper +w) 4+ (p+ 1 )VAiv (vper + w)},

f3 = _(Uper ’ V>19 - (w ’ V)(eper + 19) + 5‘(33((]7 Uper) - BIS(UpeT))A(Qper + 19)
+ (B3(U, Uper) = B3(Uper)) (¥ (Vper) + ci)(ppw“v Uper) )
+ B3 (U, Uper){qj(v) - \I/(va) + i)(p, v) — é(ﬂperv Uper)} — (Ba(U, Uper) - B4(Upev“))div Uper»
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Pp(pper + ¢7 Qper + 9) P9(ppe7" + Qb, Hper + 9)
Pper + ¢ Pper + ¢
1 (Oper + 0) Po(pper + &, 0per 1 6)
) B U, U er) — b L P
Colpper + 97 10 Tier) Culbper + 9

Bl(Uu Uper) - ) B2(Uu Uper) -

b

B3(U> Uper) =

with

P ers 0 er P, er 0 er
o(Opers Op )’ By(Uyer) = o (Pper, O )’

Pper Pper

1 9 erPG(p er;e er)
c , B4(Uper) _ P - P per)
vPper vPper

Bl(Uper) =

B3(Uper) =

We consider the initial value problem for (3.2.2) under the initial condition
Uli=o = Up = T(¢0,w0,190).

Hs+1x s are sufficiently small, then U (t) exists globally

One can show that if [g]s11 and || Up|
in time and U(t) satisfies

U e O([0,00): H+ x H?),

t
?_Is+l><H5 +/0‘ HVU<7_)|
|Ut)||pe — 0 (t — 00).

”U(t)’ %{SHXHsdT < CHUU| %f5+1><HS (t € [07 OO>)7

These can be proved by similar methods as those in [4, 16], since the Hardy inequality
works well to deal with the linear terms including T(pper, Upers Oper) due to the estimates
for " (ppers Uper, Oper) in Theorem 3.2.1 and (3.2.1). We thus omit the details.

To prove Theorem 3.2.1, we rewrite (0.0.3)-(0.0.5) as follows. Let

C,P(ps, 05) Po(ps, 04)72

=1/P,(ps.,0,), = — =
g (P ), Y2=m Po(par 0) Y3 -,

We define ¢, m and € by ¢ = p — p,, m = % and € = (px + @) E;QE, respectively. Then
(0.0.3)-(0.0.5) is rewritten as

Ou+ Au = F(u,g), (3.2.3)
where
0 v, div 0
u="(p,m,e), A=|mV—-rVA —vA-pVdiv (V |, (3.2.4)
0 ¢div —apA
! P %9 0* * N
po M ke Pl ke 4
Px Px V2P g Ovp*
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and

0
(Fz(u, g)) : (3.2.5)
Fo(u)

—{%div (m ®m) + ydiv (P(l)(qzﬁ)qu ®m)
+p A(PY ($)dm) + p,rVdiv (PY () gm) + 15V (PY (¢)¢e)

T oo 1 __ilml®
+%V(P (0)d") %V<P9(p*’9*>20v(p*+¢)2)

L vlpe) lml® \? _atyelml® | pet
031% { . «;gg + ¢)i?|m2q§p* +0)2  (p. + ¢)2>}
v{P)( - ))

o pet @ 2(pe+9)?
1 1
~ v ®(6) = - (p. +0)g}. (3.2.6)

1 Ye€ 2 Im/[?
N E* + — —_ ],
Cy ( pst+ @ 71 2(px + ¢)2)

| rotroan )= 1 e,

/01(1 = )Py (pe +76,0)dr

/01(1 ) Bog(pe. 0.+ 70— 0.) )

/01 Ppg(p*,e* Y r0—0 ))dT

w{6AGT + (V0) - (V)T - '¢'1 Vo® Yo},

—{%div (em) + mdiv (PY(¢)ge) — aop.A(PY()de),

o Vilmf?

+CmA( 2p. + 0)? )+ 2 I (PL@)ImP(p. +,0))

L div (mP®)(4,0)9)

P72
2[00 [2
+Cup*’yz div (mp(6)(9)<(pjf¢) _ 2(’;1|T’¢)2>>
_%div <<S<pjlj_n¢) + K. +9)) p*nfr ¢) - %mg}, (3.2.7)

1
0
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1
PO@) = / Py(ps, 0. +7(0 — 0,))dr.
0
Let us introduce a semigroup S(t) = e~*4 generated by A;

S(t) = e = Fle e,

where
A 0 inTE 0
Ae = lim& 4 ikolé?¢ VIEPL, +0ETE igE (€ eR).
0 QS aolél?

Then S(t) has the following properties.

Proposition 3.2.3. Let s be a nonnegative integer satisfying s > 2. Then S(t) = e7'4 is

a contraction semigroup on H®x H~'x H*=1. In addition, for each uw € H®x H*~ ' x H*1
and all T" > 0, S(t) satisfies

S(Hu e C([0,T); H* x H* ' x H*™), S(0)u=u
and there hold the estimates
IS () w| s semrs—1xms—1 < ||w]| mrsxcms—1x o1 (3.2.8)
foru e H® x H=! x H! and t > 0.
Proof. Let F = T(F', F? F®) € H* x H*~! x H*"'. We consider the following resolvent
problem
Au+ Au=F, (3.2.9)

where A € C is a parameter. Here we regard A as an operator on H® x H5 ! x H*~! with
domain D(A) = H*"? x H**! x H*T!. Taking the Fourier transform of (3.2.9), we obtain

A+ Agti = F. (3.2.10)

Then, by a similar manner to the proof of Proposition 3.4.4 below, one can see that

Rer 3 (1 (IGeyap + Z216e) e)dl)
ja|=0

< Y {lerfr+ 2igrao e}, (3.211)

|a|=0

ReAd Y (,ﬁ|(@'§)aa|2

|ae]=0

R1Ko

1(66)" (E)OP + (i8)* - (1€)°(1€))
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+ di( Y0168 T + Y 16 () )9F)
la] =0 la]=0

<o{ Y16 F" P+ i(!(if)“FZP + 16 F*P)}, (3.2.12)

|ar|=0 |ee|=0

for £ € R3, where k1 and d; are the same ones in Proposition 3.4.4. There{ore, if ReA > 0,
then (A + A¢) ™! exists for each £ € R® and 4 is given by @ = (A + A¢) "' F. We define the
norm ||| - |||s on H® x H*™! x H5! by

il = ( i {0z ulz: + %Hagwn;})é
jol=0

for u = T (¢, m, ). It follows from (3.2.11) and (3.2.12) that
ReA[[[ullls < [II#1]l5

and if ReA > 0, then it holds that

||u| Hst2x Hs+1lx Hs+1 S O|||F|HS

Hence
{A; ReX > 0} C p(—A),

where p(—A) denotes the resolvent set of —A and it holds that

1
A+ ALl < ——||F||]s.
A+ A)Fl]s < ReA||| Il

This implies that S(t) = e~ is a contraction semigroup on H*® x H*"! x H*"! and we
obtain (3.2.8). This completes the proof. O

We set an operator I' using the time-7T-map by
[[F]=St)(I - S(T)) ' AT)F+SF (te]0,T)), (3.2.13)
where

SH)F = / S(t — r)F(r)dr

To solve the time periodic problem for (3.2.3), as in Chapter 1, we look for a fixed
point u of I'[F(u, g)], i.e.,

w=T[F(u,g)] (te[0,T)), (3.2.14)

where u = (¢, m,¢) and F(u, g) is given by (3.2.5)-(3.2.7). From (3.2.13) and (3.2.14), it
holds that u(T") = u(0). Therefore, we will investigate properties of the map I'. Observe
that

PiT[F(u, g)] = U[PF(u, 9)] (j =1,00)
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and

—_

supp PiF(u,g) C {|¢] < 7},
supp P F(u, g) C {|¢] > r}.

So we will investigate the restriction of I' to the space of functions whose Fourier trans-
forms have support in {|{| < ro} and will then establish estimates for I'P;. Likewise, the
restriction of I' to the high frequency part will be investigated to establish estimates for
I'P, in section 5.

3.3 Estimates of I' for the low frequency part

In this section we estimate I' for the low frequency part. We begin with function spaces
for the low frequency part. R
The symbol L?) stands for the set of all u € L? satisfying supp f C {|¢| < 7} For

2 = L%, (CL, Lemma 1.3.3 (ii).)

any nonnegative integer k, we see that H* N L( )

We define the spaces 271y by
2wy =2 0{f €S R);supp f C{[¢] < rad,

where §'(R?) denotes the set of all of distributions on S(R?), S(R?®) denotes the Schwartz
space on R3.

We set operators S;(t) and .7 (t) by

$1(t) = Wl g, F1(OF = /O Si(t — 7)Fy(r) dr.

Then we have the following

Proposition 3.3.1. (i) Si(t) is a uniformly continuous semigroup on Z xy. In addition,
for each uy € X1y and all T" > 0, Si(t) satisfies

Sl(t)ul - Cl([O, T’]; %(1)),
8t51(t)u1 = —Alsl(t)ul (: —ASl(t)ul), 51(0>U1 = Uy,
and there hold the estimates
Hafsl(')ul||C([07T/];%<1)) < C’||u1||%<1)

forui € Zqy, k =0,1, where T" > 0 is any given positive number and C' is a positive
constant depending on T".

(i)
(1) L2(0,T; Zy) — C([0,T]; Z0y) N HY(0,T; 2wy
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is a bounded linear operator for t € [0,T] satisfying

3t471(t)F1 + Alyl(t)Fl - F1<t>, yl(O)Fl - O,

Ilfﬁl(-)Fl\lc([o,T};g{m < CHFlHLQ(O,T;%(I))7
10:71C) Pl 2o .27,y < ClFN 200,27,

for Fy € L*(0,T; Z 1)), where C' is a positive constant depending on T.

(iii) 1t holds that
Sl<t>y1(t/)F1 - yl(t’)[Sl(t)Fl]
for anyt >0, ¢ €[0,T] and Fy € L*(0,T; Z'1)).

Proposition 3.3.1 can be proved in a similar manner to the proof of Proposition 2.4.1;
and we omit the proof.

To investigate the invertibility of I — S;(T"), we prepare some lemmas. The following
lemma plays an important role to investigate the spatial decay properties of the time-T-
map.

Lemma 3.3.2. (i) Let

R 0 im'E 0
Ae = [ im€ +iroléP6 vIEPL, +0ETE iCE (€ eR?).
0 i "¢ al€)?

Then there exists 09 > 0 such that if 0 < ro < 0o, the set of all eigenvalues of —/lg
consists of \;(§) (j = 1,---4), where

M (&) = —vIE + O(IEF),

Mo(€) = =S| + O(I),

T R e €2 + O,
A (§) = A3 (complex conjugate).

(ii) For |¢] < &, e ¢ has the spectral resolution

4
6—tA£ — Z et)\j(f)
7j=1

where I1;(€) is eigenprojections for X\;(§) (7 =1,---,4), and 11;(§) (j = 1,--- ,4) satisfy

0 0 0
0 0 0
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7 _ ¢
1 Y +¢2 0 Yi+¢2
mEe= 0 o 0 |+o(e
__mg __¢
zra 01— e
73 i€ 71¢
V2 in/72+C2le] 1+
L) =5 | 725§ e | oD
3 i/V2+C2I€| I€] i/ +C21e| ’
1€ _ o i¢Te ¢?
1+ i/72+C2IE| M+
i in T¢ 71¢
1 7%4—(2 i\/’)’f‘i‘@\ﬂ ’Y%-‘réﬂ
_ img £'e e
H4(€) - 5 in/72+C2)¢| |€]2 in/v2+C2|¢] + O(|£|)
71¢ iCT¢ ¢?
1N+ i/ +C2Ie| M+

Furthermore, there exist a constant C > 0 such that the estimates

MO <C (G =1,

hold for €] < reo.

Lemma 3.3.2 is proved by the analytic perturbation theory ([21]). We set

§:|€|w7 w:ij _121527"121&
€]
where r = ||,
0 m'w 0
Ly = —i|nw 0 Cw |, Ly=~—
0 ('w 0
and
0
Ly =— | ikow
0

Applying the reduction process ([21, Section II-2-
[26, Lemma 3.1].

w O O O

4)

/15 = Ll —|—7“L2 +T2L37

0 0 0
0 vli+w'w 0
0 0 Qp

0
0
0

(3.3.1)

]), we can prove Lemma 3.3.2. See also

Hereafter we fix 0 < r; < ro < dp so that (3.3.1) in Lemma 3.3.2 holds for |¢]| < r.

Lemma 3.3.3. Let a be a multi-index. Then the following estimates hold true uniformly

for & with |§] < rs and t € [0,T].

(i) 10gX;| < ClEP ((Jal =0, j =1,2), [9gX;] < ClEIMN ((Ja] >0, j=3,4).

(i) [(9¢TL)E] < CIE[TNEY (laf 2 0).
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(iii) |0g (M| < CleP (Jaf > 1, j = 1,2).

(iv) [0g (V)] < Clel=l (lal > 1, j=3,4).

(v) [@ge™ ) F| < Clel~| | (Jo] = 1).

(vi) [0g(1 —eN) 7 < Cle[>7 (lo] 2 0, j=1,2).

(vii) |9 (I — M) < Clg~ 71 (Ja] 2 0, j =3,4).
Lemma 3.3.3 can be verified by direct computations based on Lemma 3.3.2.

Lemma 3.3.4. Set
Eyj(z) =F (R —e¥") L) (j=1,---,4), (zeR?

where xo is the one defined by (2.3.3). Then the following estimates hold true uniformly
for x € R3.

(i) 102y j(z)] < C(L+[a)) 0D (j =1,2),
(it) (03B ()] < C(L+ [a])~BHeD (5 =3,4).

In a similar manner to the proof of Lemma 2.4.5, Lemma 3.3.4 is proved by Lemma
2.3.7 and Lemma 3.3.3.

We are now in a position to investigate the invertibility of —S(7") for the low frequency
part. We consider the following equation

for a given F}. By using Lemma 2.3.8, Lemma 3.3.3, and Lemma 3.3.4, one can show the
following proposition in a similar manner to the proof of Proposition 2.4.2.

Proposition 3.3.5. (i) Assume that Fy € L3, N L N L'. Then there uniquely exists
the solution u; € Z 1y for (3.3.2) which satisfies

luill 2, < CUF g + 1 F e + (1 £ z2)-

(i) Let Fy = 0°F" € Ly ML, with FY e LML for some a satisfying |af = 1.
Then (3.3.2) has a unique solution uy € Z ) satisfying

1 1
ludll g, < CUR g + I1Fues + 1F og + 1F7c2).

(iii) Suppose that Fy = 8§F1(1 € L2 with F ) € L%l),l N LS° for some « satisfying

la| > 1. Then there uniquely exists the SOlUtZO’n uy € X'y for (3.3.2) satisfying

lnll g, < CUFPlles +1F)2)
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Proposition 3.3.5 (i) implies that I — S;(T") has a bounded inverse (I — S;(T))™":

Ly, NLEN LY — 2y and it holds that

I = SUT) " Fill g < CUIF g + 1l + 1 F1l2)-
)

In the case Fy, = 0°FY € L¥ N Ly, with FY e L3y N L5 for some « satisfying

la] =1, we have (I — S1(T))'F € 2y and

_ 1 1
I = SUT) ' Fill g, < CUIF g + 1Bz + I F g + IF ).

e also see that for f; = € wit € N with some « satistying
We al hat for F; = 02 F{" € L2 with K" € L2 | N L with isfyi
|| > 1, there hold (I — Sy(T))"'Fy € 27y and

1@ = $1T) " Fill 2, < CUF ez + 15 1z2).

By the above argument, I'[ P, F'| makes sense and satisfies the following estimates. We
set

DRI = S().7(T) (I — S(T) " (ALF), To[PF)(t) = #(W)(RF),  (3.33)
for given F'. By Proposition 3.3.1 (i), (ii) and Proposition 3.3.5, we have the following
estimates for I'; [P F| (j = 1,2).

Proposition 3.3.6. (i) Assume that F € L*(0,T;L3 N L N L'Y). Then I;[PF] €
C([0,T]; Zqy) (7 =1,2) and ;[P F] satisfy the estimates

HPJ[PIF]HC([QT];%) < CHFHLQ(O,T;L?lemL%) (] = 172)-
(ii) For each F € L*(0,T; L¥NL?) satisfying F = 0¢FW with FY) € L*(0,T; L*NLY)
for some o satisfying |a| = 1, T';[PF] € C([0,T); Zq)) (j = 1,2) and ;[P F] satisfy

the estimates

HFJ‘[PlF]Hc([O,T};%) < C(HFHL?(O,T;LgOmL%) + HF(I)HLQ(O,T;LgoﬁL2)> (1 =12).

iit) I;[P F] € C([0,T); Z)) (5 = 1,2) for F = 9°FY € L*(0,T; L?) with FY €
L*(0,T; L3N L) for some « satisfying |« > 1 and T;[PLF) satisfy the estimates

||FJ[P1F]||C([07T];%) < C”F(DHL?(O,T;LgOmL%) (.7 = 172)'

We have the following another type of estimates for I';[P F] (j = 1,2).
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Proposition 3.3.7. (i) In the case F = 0°FW € L*(0,T; L?) with FY € L*(0,T; L})
for some « satisfying |of > 0, I';[PF] € C([0,T]; Zy) (j = 1,2) and ;[P F| satisfy
the estimates

||Fj[P1F]||C([07T};,%') < C(HF(l)HL?(O,T;L%)-

(ii) Let F € L*(0,T;L?) and let F = 0°FWY with FY € L2(0,T;L3) for some a
satisfying || > 1. Then I';[PF] € C([0,T]; Z'y) (7 = 1,2) and T;[PF] satisfy the
estimates

”Fj[P1FH|C([0,T};%) < CHF(DHLQ(O,T;L%)-

Proposition 3.3.7 can be easily verified by Lemma 2.3.7, Lemma 2.3.9, Lemma 3.3.3
and Lemma 3.3.4.

We recall that
[[F]=S®)2(T)I - S(T)'F+.2t)F

for F' = T(0, Fy, F3). The following estimates for '[P, F] directly follow from Proposition
3.3.6 and Proposition 3.3.7.

Proposition 3.3.8. (i) Assume that F € L*(0,T; L3N L NLY). Then T'[PF] satisfies
the estimate

”F[PIFI]HC([(),T];%) < C“FHL?(O,T;Lg"lemL%)- (3.3.4)

(ii) For each F € L*(0,T; L¥NL?) satisfying F = 0°FM with FY) € L*(0,T; L>NLY)
for some « satisfying |a| = 1, it holds that

TP Fllogom, 2 < COFl ooz + IF orasos). (335

(iii) Let F = 0°F®M € L2(0,T; L?) with FM € L*(0,T; L? N L) for some o satisfying
la| > 1. Then U'[PyF] satisfies the estimate

||F[P1F]||C([07T];%) < OHF(I)”H(O,T;L?I’WL%)- (3.3.6)

(iv) In the case F = 0¢FW € L*(0,T; L?) with FV € L*(0,T; L}) for some « satis-
fying |a| > 0, T[PLF)] satisfies the estimate

HF[PIF]HC([()’T];(%) < C(HF(l)”L?(O,T;L%)- (3-3-7)

(v) Let F € L*(0,T;L?) and let F = 0°FWY with FY € L2(0,T;L32) for some «
satisfying |a| > 1. Then it holds that

||F[P1F]||o([o7T];,%) < OHF(U”L?(O,T;L%)- (3'3-8)
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3.4 Estimates of [' for the high frequency part

In this section we establish estimates I' for the high frequency part. We begin with to
introduce function spaces for the high frequency part.

Let k£ and ¢ be nonnegative integers. The symbol H (koo) stands for the set of all u € H*

satisfying supp @ C {|¢| > 1} and the space H (koo) , is defined by

H Z_{ueH lullgp < oo}

Let s be a nonnegative integer satisfying s > 2. By Proposition 3.2.3, for u., €
Hf+§ x Hi ) and Foo € L*(0,T; s Hi Hfo_oi), the operators
.opgstl s s+1 s
and

Foolt) : L*(0,T; Hiy x Hi)) — HD x Hiy (1€ [0, 7))

are defined by Sy (t)ueo = S(t)us and

L oo(t)Foo = /t Seolt — T) Foo(T) dT.

The operators S (t) and .7 (t) have the following properties in weighted L?-Sobolev
spaces.

Proposition 3.4.1. (i) It holds that Sy (-)ueee € C([0, 00); Hf;b x H{ o) for each
Ugso = | (Pooos Moo, E0s) € H(SJF; X H(SOO)2 and there exist constants a > 0 and C > 0
such that S (t) satisfies the estimate

||S<>O(t)u0<>o‘

t
s+1 s S 06 a uo s+1
H(OO% ><H<oo)2 H OO| H )2><H( 2,2

for allt > 0 and ups € HFOJSQ X Hiy) 5. Furthermore, rp; | )2(5' (T)) < 1; and I — Soo(T)

has a bounded inverse (I — Swo(T))™" on Hi Ly ) x Hi,) 5 and (I —Sxo(T))™" satisfies

I( = Soo(T)) ™ ]

s+1 s
HS+§2XH(S )2 S O||U| H5+; XH(S )2 fOT u e H(oo),Q X H(oo),Q‘

(ii) It holds that ./ () Fs € C([0,T7; H("”’;;szsoo) ,) foreach Fyy = T(FL, F2 F3) €
L*0,T; H? _,, x H5 1)) and .7 (t) satisfies the estimate
¢ 3
s+1 s < o 5—
1w Oy, < [ s

(00),2 (00),2
fort € [0,T] and F, € L*(0,T; Hi) o Hé;b) with a positive constant C depending on
T.
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Proposition 3.4.1 can be proved by the weighted energy method. In fact, Proposition
3.4.1 is an immediate consequence of the following proposition.

Proposition 3.4.2. Let s be a nonnegative integer satisfying s > 2. Assume that

T
Upoo = (¢0007m00075000) € Hf;ig X Hfoo)ga

Foo = "(Fr, FL, F3) € L0, T Hiy < Hi ) 5)
for all T" > 0. Assume also that ts = " (oo, Moo, Eco) Satisfies

{ atuoo +Auoo = Fom

Uoo |t:0 = Upoo-

(3.4.1)

and

doc € C([0. T HiZ)) 0 L0, T H), T (e ec) € C(0, T Hisg)) 0 L0, T HY)

Then us, satisfies

$oo € C([0, T HEL ) VL0, T HEES ), (oo, 200) € C([0,T'); Hiyy o) N L2(0, T HEES

(00),2 (00)

for all T" > 0 and there exists an energy functional E%[us| such that there holds the
estimate

& E e (0) + d(l60) 200 + s (t)
< O Fu(t)]

?q;ﬂ + [leae(t)] ?{gﬂ)

(3.4.2)

s s—1
SXH,

on (0,7") for allT' > 0. Here d is a positive constant; C' is a positive constant depending
on T but not on T'; E%[us] is equivalent to ||us| i.e,

2
Hyt > HS’

O el gy < E°[too] < Cllutcollygin g

and E%us](t) is absolutely continuous in t € [0,T"] for all T" > 0.

We prove Proposition 3.4.2 by a weighted energy method. We introduce some nota-
tions. We define the energy functional Ef[u] by

Rok1
T

Voo

Ellus] = (K1]tio %; +

H) + D (0o, [TV buc).

laf<s

Here k, is a positive constant to be determined later.
Note that there exists a constant xy > 0 such that if 1 > kg, then Ef[us] is equivalent

2 .
t0 |Uoo Dbt pper 1€,
J J

C_1|uoo|iI;+IXHJ§ S E]s[uoo] S Cf|u00|§{;+1><HJ5
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for some constant C' > 0.
We also define D$[us] by

Difuse] = [V

We begin with the estimate for Ef[us] and D§luco].
Proposition 3.4.3. Let s be a nonnegative integer satisfying s > 2. Assume that

Upeo € HP x H*,  F,, € L*(0,T'; H® x H*™1).

Here T' is a given positive number. Assume also that Us = " (Poo, Moo, Exo) 5 the solu-
tion of (3.4.1). Then tse = (oo, Moo, Exo) Satisfies that us, € C([0,T']; HSTL x H*) N
L*(0,T"; H*2 x H®) and that Ej[us)(t) is absolutely continuous in t € [0,T'] and there
exist positive constants k3 > ko and do > 0 such that the estimate

d . s 1
S Eiluse) + doDifuce] < Cfellusel3+ (142 ) Il

2
dt HSXHS_l}

holds on (0,T") for any ki > k3, where k1 is the constant in the definition of Efus]; Ko
1s the constant in p.24; € is any positive number; and C' is a positive constant independent
of T" and e.

Proposition 3.4.3 can be proved by the energy method as in [2, 13]. (In fact, the
estimate in Proposition 3.4.3 can be obtained by setting ¢ = 0 in the proof of Proposition
3.4.4 bellow.)

We next derive the estimate for Ef[us] and Dj[us] for £ = 1,2. We show the following

Proposition 3.4.4. Let s be a nonnegative integer satisfying s > 2 and let { = 1,2.
Assume that
Upoo = T(¢0007m00075000) S H;+1 X Hga

Fo="(FL, F2 F3) e L*0,T; H; x H;™).

Here T" is a given positive number. Assume also that us = " (Poo, Moo, Exe) 18 the solution
of (3.4.1) and that

hoo € C([0,T'); H™) N L2(0,T'; H¥?), T (Moo, £00) € C([0,T"]; H*) N L0, T'; H*).
Then tse = ' (Poos Moo, Eco) Satisfies
b € C([0,T]; Hi ™Y N LA0,T'; Hi ™), T (Moo, €00) € C([0,T'); Hy) N L2(0,T"; Hi ™).

Furthermore, Ej[u~|(t) are absolutely continuous in t € [0,T"] and there exist positive
constants Ky > ko and dy > 0 such that the estimate

d 1
%Ef[uoo] + d1Djlus] < C’{e|uoo|%§ + (1 + E>|Foo

2
HyxH;™!
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1
+52(1 + E) (lusclZys  + Vo ?f;,)} (3.4.3)
holds on (0,T") for any k1 > k4. Here ky is the constant in the definition of Ej|us]; Kk
1s the constant in p.24; € is any positive number; C' is a positive constant independent of
T, €.

Proof. For a multi-index « satisfying |a| < s, we take the inner product of 9%(3.4.1);
with |2|*0%¢ to obtain

1d , .
5 lllel O bucllfe + (D5 divme, 207 6s) = 1L, (344)
where
I = (O2FL o0 0u).

We take the inner product of 9%(3.4.1)y with |z|*0%m,, and integrate by parts to obtain

1d
5 M3 — 50027 A, L 0timc)
Hu|||2]* V%M ||22 + 7|||z| divoSme ||
] IZ2 + 2[l]] IZ2 (3.4.5)
—1(0% P, 2200 divineg, ) — C(0% e, |2 [*0%divime, )
= 1) + P ilux),
where
o [ (P[] (0= 0),
ot (0L [20r imee) (Jal > 1),
P 1l
= (—vdiVme — DO2divVine + 710%Peo + (0% 00, V(|2 [*)00mos)
—(05 'L, Ou(|2*) 0 mcs).
As for the second term on the left-hand side, we have
(09V Adpoo, 2|05 mcc)
= —(0%A¢ue, |2*0%div i) — (0% Ades, V(|2*)0%ms). (3.4.6)

By (3.4.1), we have
1divine, = —0;¢s + FL.
Substituting this into (3.4.6), we obtain
(09V Ados, |20 M)

— %(a;fmsoo, O Oyhoe) — (0 Ao, |00 FL)
1

1
71
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—(07 Moo, V(|2 *) 05 mcc)
- 1 d e 2 1 le’ 20 o ol

—(07 Ados, V(|2]*) 0 mcc).
This, together with (3.4.5), we obtain

1d ¢
S e AL

+1/\Hx|£V8§mOOHL2 + 1/H|x|édiv@§‘moo\|%z

Il Omec|[72 +

~Y1(0 Goo, |27 05 divimeg) — (08 €00, |00 divime) (3.4.7)

j=2
where .
%) = ~ (00 A, [2[*O0FL),
71
PC)lun] = (—v0Vinn — 002 diving + 1%

—ro0g Adoo + (0500, V(|2[*) 05 me0)
—(021FZ,, 0|2 *) 05 moc).
We take the inner product of 9%(3.4.1)3 with |z|*0%., and integrate by parts to
obtain

1d .,
x| 05exllz2 + aol||2|" VO es|72 + (05 ens, | 2K@”‘dwmm
5 7 1l 172 + aoll] =" 172 + ¢( || ) (348)

4 2
= é,z + ‘@fx}[uw]?

where
@ _ [ (F2, Jaen) (a = 0),
ol T (3 FE et en) (Jo] > 1),
Ps] = —ap(0Vew, V([2[2)02e0) — (027 FL, 8, (J2 ) 0% ).

By adding (3.4.4) and (3.4.7) to (3.4.8), we see that

1d

le' Ko L oo 2
37 { Nel 0l + llatorvon

el Omacl3s + ol Ogencll3s }
+VH 12|V O%mag ||22 + 7| || divSmes |22 + aol||z|* VOt e |2

Z U+ P Dl + 2 s (3.4.9)
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By using Lemma 1.1.2 and the Hoélder inequality, we obtain

\ZZI” < elusliz + el Vo

laf<s j=1

JZLIgfl + |A¢oo 2

ey
4

+62|Vmoo|12q; +63|V€oo\fqg

+C’< +1+l é)

€9

s s—1,
HjxH,

()
2.2 Zailull < eluslis + ([ Vouclims + A0l

;)
L

+62|Vmoo|qu + 63|Vaooﬁqs

2
Hj_

1111
O (14— +— S >|moo 1
2

+C | F|?

HyxH;~ '

Taking e > 0 and €3 > 0 suitably small, we have

Ko d v 9 v, . 9 o 9
§E|uoo|H; 2 dt| QSOO H; §|vmoo H; + §|dlvmoo H + ?|V500 H;
1
o+ €1(1900c g1+ 200ell) + O (Lt £+ =) Pl
11 )
+c(1 + -+ —) ol - (3.4.10)
€ €1 -1

We next estimate |||2]*VO2¢oo |22 + |||2]** A2 ¢os |32 for a with |a| < s. For a multi-
index « satisfying |a| < s, we take the inner product of 9%(3.4.1)y with |2|*V9%ps, to
obtain

(DD 0w [V O doc) + 71|V O Do 72 + 0|05 Moo = Z O+ 28] (3.4.11)
where
T = (0 VM, |2 V200 600,
JZ) = —5(00divinee, [2|* A0 du),
g0 _ [ (0, 2[*Vor T ds) (a>1),
ol T (F2, |2 Vo) (Ja] = 0),

T = (02 Vew, 2]V 0),

P us] = —ro(02 Ao, V(|2|*) VO b)) — V(02 Ve, V(|2|*) VI b
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— (07 div mee, V(|2[*) VO bo) — (057 FL, 0 (|2*) VO dec).

As for the first term on the left-hand side, we have

(0,00, || VO Do)

d
= (O, [0V 60) + (Dmee, V([ )02 0160c)

H(0%divimes, || 0% 0y ds ).
By (3.4.1), we have
Orpos = —1divime, + FL.

Substituting this into (3.4.12), we obtain

d >\
feY 20 feY _ feY 20 N 1

i=4
where
Jg)g = 1 (0%divine, |z 0%divm.),
T = —(Oxdivme, |[t*O}FL),
and

‘@S;[um] =
This, together with (3.4.11), gives

d

dt
6

5
DI ED DESVITSE
i=1 i=4

By Lemma 1.1.2 and the Holder inequality, we obtain

6
DIPIE

jo]<s i=1

Ko g
E|V2¢oo H; + Z|v¢oo qulf

+C <’yl + %) |Vime

11 )
+C(H—O + %) Feclysepgs1

(4) <
1Y 2Bl < 90

la|<s

Ko
?‘{g + €|v2¢oo

115

C
2
s—l-—VEoo
i+

T €l Vime

10 moc, V(J2[*) 07 divimee) — (97 mes, V(|2 ) 0T FL).

— (080, 2702V Pos) + 71| VOT doc| 12 + 0] 07 Ao |7

2
Hy

2
H

(3.4.12)

(3.4.13)



IR &

O(_ > v [o.¢] s F2 s—1
1 ey KO(IqﬁH + [ FL ),
1Y POl < ol + eVl
jal<s
el
+—= Mmool , + CUFL |

for any € > 0 with C' > 0 independent of €.
By integration by parts, we see that

V202 9ol 2 = |AO boo 12 + P &) fuce)

where

3
POlus] =Y (05,08 G0, O, (|21*) 0, 0, 0% )
i,j=1
3
= (02,08 000, O, (|2]*) s, 0, 0% 1)
i,j=1

V2o

<

s .
Hf—l

C

Ko 2 2 2
s Y ¢oo

6 i Ko |

Combining these estimates with (3.4.11) and (3.4.13), we see that

d

o 2 (Oma, [2P" 02V 0c) + Vo

|a|<s

Hi

2
HyxH; ™!

fqes_l} (3.4.14)

Ko
?{g + ?’v2¢oo 7
< €€|moo|%§ + C’{|VmOo

+c(£2 6){]77100

for any € > 0 with C' > 0 independent of €.
Consider now k; x (3.4.10) + (3.4.14) with a constant x; > 0. We take k4 > ko so large
that if k; satisfies k1 > Ky, then |Vimy, % + \Vsooﬁ{; on the right-hand side is absorbed

2 2

Hj_ + |V¢oo

into the left-hand side. Setting ¢; = min {4751 , 4';01 } and € = (~le, we arrive at

d S
2 B[] (8) + dD; e

e|uoo|L2 + C’(l + ) st

1
+C(1+ =) (uaclly , + |v¢oo|zgfl>

for anye > 0 with C' > 0 independent of e. The computation above is formal, but it can
be justified by using the cut-off argument as in Chapter 1. This completes the proof. [
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By Proposition 3.4.4 and Lemma 1.3.4, and Lemma 2.3.11, we obtain Proposition
3.4.2 in a similar argument to that in Proposition 1.5.8.

Proposition 3.4.1 yields the following estimate for I'.

Proposition 3.4.5. Let s be a nonnegative integer satisfying s > 2. Then for
F="(0,FF% ¢ L*0,T; H;)
I[P, F| satisfies the estimate

“F[POOF]HZI/;(QT) < C“PooF||L2(0,T;H§—1)-

3.5 Proof of Theorem 3.2.1

In this section we give a proof of Theorem 3.2.1.

We first establish the estimates for the nonlinear and inhomogeneous terms P, F'(u, g)
and P F(u,g). where F?(u,g), F*(u) are the same ones defined in (3.2.6), (3.2.7),
respectively.

For the estimates of the low frequency part, we recall that
L[PF)(t) := S(t)A(T)(I = S(T)) " (PLF) + Z(t) (P F).

We first show the estimate of ||I'[P, F(u, g)]||c([0 .2

Proposition 3.5.1. Suppose that u = "(p,m,e) € Z°(0,T) satisfies

DN | —

sup [[Pru(t)]| g7+ sup | Poaou(t)|| ey + sup [[o(1)] 2 <
0<t<T 0<t<T 0<t<T

Then there holds

IPCPF (9 oy 2y < Cllulispe oy + €1+ il g 1 )

uniformly for u.

Proof. For ul9) = T(¢W) ml) W) (j =1,2) we set

0
G, u®) = —[Gi(®,u®) ],
G1,2(U(1), u(2))
0
GQ(¢,m,€,u(1),u(2)) = - G271(¢7m757u(1)7u(2)) )

G2,2(¢7 m,é&, u(1)7 u(2))
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G3<u(1)7 U(Q))

Gy(pp,m, e, uV, u(2))

G5(¢7 m, g)

Hk(u(”, u(2))
Hk(¢7 m,ég, u(1)7 U(Q))

where

G11( (2)) _
G12< (2)) _

G2,1(¢7 m7 57 u(1)7 /U'(Q)) =

G2,2(¢7 m? 87 u(1)7 U(Q)) -

G371(u(1), U(Q)) —

G4,1(¢7 m,ée, u(l)v U(Q)) =

G4,2(¢7 m? 57 u(1)7 u(2)) -

= Gp(u,u®) + Gp(u®,uM), (k=1,2),

Gi(p,m, e, u™ u®) + Gy(p,m, e,u® uV) (k=3,4),

M iy (mY @ m®),

Ps

M div (eW @ m),
Pe

p*VA(P(l) (¢)¢(1)m(2)) + poVdiv (p(l) (¢)¢(1)m(2))
FVPOIVEN) + ZV(PD ()0 0)
1

1 2eMe@ Yo pMe
+——V(P® ()2 - vV (PW(0)——
¥ (P0G or) e v (PO 5)

 Py(pe,0.) o (3 mD | [m®)]
M V< 2Cv(p* + ¢) )
ndiv (PM(8)0Me®) — agp. A(PY (¢)pMe®)

O
+ M’A(ﬁ“nlwn U+f“va’(¢M“)() P(p. + 6,0))

Coe 2(ps + 0)? Yo
(2)

T gio (D) pO) 2) ( (1) p(6) (g 122 )

+ div (m*V P (¢, 0)p") + d1V PY (60
(1) (2

M ;. yim m
——div (S ) ,

1
__dlvq)(¢(l)7 ¢(2))7

71

yydiv (P (¢)pm™ @ m@)

4 (D) |1y @) [ [2 A2 D)1 (2)
+—5 V{p(3)(9)(71|m [Im |4|m| _71726|m ||£ﬂ \)}
Com 4(ps + ) (- + 0)

1 Y lm D |Im® ]
———V(PW(g) :

_ g 1L 4@y ™
72ohv(/<;(¢ & )p*+¢)
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div (m(l)p(G) () (7% [m®||m| ) ) ’

Cvp*72 2(/)* + ¢)2
1 Yo , m?
0 = —(B. + -
Ov( et o 712(;)*+¢>2>

(60, 6%) = k{oVAGT + (Vo) - (Vo)1

M (2)
_w] — Vvl @ ng(?)}’

K@, 67) = SA{(p+0")(p. + )} = [VoP[VI NI — £V 0 V6.
Then, '[P, F(u, g)] is written as

MPF(g)] = Y {TIPGHPu, )] + T[PH(Pru, Pau)] + T[PGy(Pu, Poct)] |
ke{1,3}

+ Y { (PG (o, m, &, Pru, Pru)] + D[PHy (6, m, €, Pru, Poott)]
ke{2,4}

T[G(6,m, €, Poott, Put)] } + T [PGs(6,m, g)].
Applying (3.3.5) to I'[P,G1(Pu, Piu)], we have

IPPLG (P, Po)]l oz 27y < Cllull g

As for T[P,Gy(p, m, e, Piu, Piu)], we apply (3.3.5) with F = PM)(¢)PpPe, FV) =
PO () (Prg)?, FU = Vf‘P—W':, = PO(@)P¢PimP(p. + ¢,0), FV = p(&(g)@

20y (p«+) pxto
FO = POO) L2 FO = pmPO(,0)Pi6, FO = PmPO(0) Pre, FO = § (202 ) L

and we also apply (3.3.6) with F( = V(PW(¢)PioPrm) (|a] = 1), FY = div (PY(¢) Py Pym)

meQ o .
(la] = 1), FU = V(PO (@) PoPre) (o] = 1), FO = V(I (Ja] = 1) to obtain

IDIPGa(6,m,, Puat, Pl o 25 < Clllger
As for T[Gs(Pu, Pyu)], using (3.3.6) with FY) = ®(Py¢, P,¢) (Ja| = 1), we have
IPGa(Prt, Pl 2 < Cllulige o

As for T[P,Gy(¢, m, €, Pyu, Pyu)], we apply (3.3.6) with F(1) = P(l)(qb)qSle@le (laf =

Prm|“|m e|lPim Pim|?
0, £ = PO (o = 1), PO = 45 (ol = 1), PO = PO
Pym||lm
(lal = 1), FO = K(Pi¢, Pi¢) "5 (la] = 1), FO = PimP© >(9)(g('pj—+y)2‘) (la| = 1) to
obtain

|’F[P1@2(¢,m,€, Plu, Plu)]HC([O,T];%) S CHUH%S(O,T)
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By (3.3.7), we have

I Z F[Gk(Poo%Poou)]Hc([o,T};%) < CHUH%S(O,T)’

ke{1,3}

| Z [Gi(¢, m, e, Pxu, Poou)]”o([o,ﬂ;%) < CHUH%@PS(O’T)'
ke{2,4}

By (3.3.8), we also have

IY PP, Pot)lllogomy 2 < Cllullge o,
ke{1,3}

| > TlHk(ém.e, Pru, Pow)lll oo, 2 < Cllulges o 1
ke{2,4}

Concerning I'[P,G5(¢, m, g)], we see from (3.3.4) and (3.3.7) that
||F[P1@'5(¢,mag)]HC([O,T];%) < C(l + ||u||£”5(07T))[g]s-
Therefore, we find that
||F[P1F(u, g)]HC([O,T};%) < OHUHQD@PS(O,T) + C<1 + HUHQFS(O’TJ[Q]&

This completes the proof. O

We next show the estimates for the nonlinear and inhomogeneous terms of the high
frequency part.

Proposition 3.5.2. Assume that u = "(¢,m,e) € 2°(0,T) satisfies

[\3|,_.

sup [[Piu(t)|| g+ sup |[[Pocu(®)| gs+iipy + sup [[¢(t)][r~ <
0<t<T 0<t<T 0<t<T
Then there holds

| Poc F'(u, Q)HL?(O,T;ngH;*l)
< Cllules gz + C L+ llull 2.1y ) 9]
Z70,1) (0.7)

uniformly for u.

Proposition 3.5.2 directly follows from Lemma 1.1.1, Lemma 1.1.3, Lemma 1.3.4 (i)
and Lemma 2.3.2 (C.f., the proof of Proposition 2.6.2).

For the estimates P;F(uV), g) — P;F(u®, g) (j = 1,00), we have
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Proposition 3.5.3. Suppose that u® = T(¢®) m®*) k) e 250, T) (k = 1,2) satisfy

(NN

sup ||P1u<k> ()] o+ OiltlfT ||Poou(k) (t)|

s + sup 601~ <
0<t<T 0<t<T

Then there hold

ITPE (@, 9) = PLE @, 9)]l| o0, 25

2
< CY [
k=1

+C[g]s|’u(1) - u(2) ||st(07T)

X5(0,T) Hu(l) —ul® Hf’f‘g(oy)

and

||PooF(U(1)7 9) — PooF(u(2)7 9)]||L2(0,T;H5xH§*1)

2
< C Z “u(k)HQPS(o,T)HU(I) - u(2)”9@”‘§(0,T)
k=1
+Clglsllu™ = u®| g+ o )

uniformly for u® .

Proposition 3.5.3 directly follows from Lemma 1.1.1, Lemma 1.1.3, Lemma 1.3.4 (i).
Lemma 2.3.2 and Proposition 3.3.8.

Applying Lemma 1.1.1, propositions 3.4.5 and 3.5.1-3.5.3, we obtain the following
estimate for I' in 27°(0, 7).

Corollary 3.5.4. (i) Assume thatu = "(¢,m,e) € B T)(co), where ¢y = min{3, ﬁ},
Cy is the same one in Lemma 1.1.1. Then there holds

ICEF (s )l oy < Crllulges .0y + Cr (1 il gy ) L9

uniformly for u. Here Cy is a constant independent of g.
(ii) Suppose that u®) = T(p®) m*) k) ¢ BQFS(U,T)(CO) (k=1,2). Then there holds

ITFY, 9) = F(u®, 9)]ll 2 1)
2
< Gy g o et = u® ] g
k=1
+Cig)sllu™ = u? | ges o 1
uniformly for u® .
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By Corollary 3.5.4, one can show the following proposition for the existence of a
solution u of (3.2.3) on [0, T satisfying u(0) = w(T).

Proposition 3.5.5. There ezists a constant &, > 0 such that if [g]s < 1, then the
system (3.2.3) has a unique solution u on [0,T] in BQPS(O,T)(%Cl lg]s) satisfying u(0) =
w(T). The uniqueness of solutions of (3.2.3) on [0,T] satisfying u(0) = u(T) holds in
Bffs(o,T)@Cﬂsl)'

Proof. If g satisfies

. 260 1
<
lgls < mm{:scl’ 2C1(3C, + 2) }

then by Corollary 3.5.4, one can see that I' is a map on B g+, T)(%Cl lg]s) and T satisfies
the estimate

1
IT[F(u, ) — F(u(2)7g)]||gs(0’T) < §Hu(l) — “(2)||£Fs(o,T)'

Therefore, by the contraction mapping principle, we obtain Proposition 3.5.5. This com-
pletes the proof. O

We are now in a position to construct a time periodic solution of (0.0.3)-(0.0.5). By
using Proposition 3.5.5, we are able to extend u periodically on R as a time periodic
solution of (0.0.3)-(0.0.5) by the same way as that given in Chapter 1. Consequently, we
obtain Theorem 3.2.1. This completes the proof.

122



Chapter 4

Time periodic problem for the
compressible Navier-Stokes equation
on R? with antisymmetry

We show the existence of a time periodic solution of (0.0.1) on R” for sufficiently small
time periodic external force. We prove the result by using the time-T-map associated
with the linearized problem around the motionless state with constant density. In some
weighted L> and Sobolev spaces we investigate the spectral properties of the time-7-map
by a potential theoretic method and an energy method.

4.1 Preliminaries

In this chapter we use the following notations Furthermore, we introduce a lemma which
will be useful in the proof of the main results.

We define the norm on X by || - || x for a given Banach space X.

Let 1 < p < oo. LP stands for the usual L? space on R?. We define the inner product
of L? by (+,-). Let k be a nonnegative integer. H* denotes the usual L? Sobolev space of
order k. (As usual, we define that H° = L?.)

For simplicity, L? stands for the set of all vector fields w = T (wy,wy) on R? with

w; € LP (j = 1,2), and we define by || - [[z» the norm || - ||z»)2 if no confusion will occur.
Similarly, we denote by a function space X the set of all vector fields w = T (wy,ws) on
R? with w; € X (j = 1,2); and we define the norm || - ||x2 on it by || - ||x if no confusion
will occur.

We take u = ' (¢, w) with ¢ € H* and w = " (w;,ws) € H™. Then the norm of u on
H* x H™ is denoted by ||ul| gxx gm, that is, we define

1
lull rezrm = (611770 + lwllFm) * -

When m = k, we simply denote H* x (H*)? by H*. We also simply denote the norm
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||| i rrry2 by ||| gw, i-e., we define that
H* = H*x (H*)?, ullge = Nl (uw="(6,0)).
Similarly, for u = "(¢,w) € X x Y with w = T (wy,wy) , the norm ||ul| xxy stands for:

ety = (1015 + ol3)® (=T (6, w)).

If Y = X2, the symbol X stands for X x X2 for simplicity, and we define its norm ||u| x x x2

by [l 2 )
X=X x X% Jull= lullae (0="T(6,0),

A function space with spatial weight is defined as follows. For a nonnegative integer
¢ and 1 < p < oo, the symbol L) denotes the weighted L” space which is defined by

Ly = {u € L Jlullp = |1+ |2])ull» < o0}.
The notations f and F[f] denotes the Fourier transform of f:
F&) =FUe) = | flw)e ™ tdx (€ € R?),
R
In addition, we denote the inverse Fourier transform of f by F~![f]:

F A=) = (2m)~* RQf(é)e’f'”dS (z € R?).

Let k£ be a nonnegative integer and let r; and r,, be positive constants satisfying
71 < Too. The symbol H(koo) stands for the set of all u € H” satisfying supp @ C {|£] > r1},
and the symbol L?)) stands for the set of all u € L? satisfying supp @ C {|¢] < reo}. It
follows from Lemma 1.3.3 (ii) that H* N L%l) = L%l) for any nonnegative integer k.

Let k and ¢ be nonnegative integers. The weighted L? Sobolev space H} is defined by

Hy = {u € H* ||ull s < 400},
where

¢ 3
||U”H§ = (ZM%) )

j=0
lulgg = | D IHzlOu |17
|o|<k

Moreover, Hé“oo)j denotes the weighted L? Sobolev space for the high frequency part
defined by

H(koo),g ={ue H(koo); ||uHH§ < +o0}.
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Let ¢ be a nonnegative integer. The symbol L%l),é stands for the weighted L? space for
the low frequency part defined by

L%1)7£ ={feljfe L%1)}-

For —oo < a < b < 0o, the symbol C*([a,b]; X) denotes the set of all C* functions
on [a,b] with values in X. Similarly, L”(a,b; X) and H*(a,b; X) denote the LP-Bochner
space on (a,b) and the L?-Bochner-Sobolev space of order k respectively.

The time periodic problem is considered in function spaces with the following anti-
symmetry. I'; (j = 1,2,3) are defined by

(Myu)(z) = "(¢(—x), —wi (—z), wa(—x)), (Tau)(z) = "(¢(—x), wi(—x), —ws(—1)),
(Dsu) (21, 22) = (P22, 21), wawa, 1), w1 (22, 1))

for u(x) = T(¢(z), w1 (x), ws(z)), = € R% For a function space X on R?, X denotes the
set of all f € X satisfying

f(=z1,29) = f(1,22), fl21, —22) = f(71,22),
f(xa, 1) = f(21,72).

The subscript - denotes function spaces satisfying the antisymmetric condition. Exactly,
X4 denotes the set of all f = T(f1, fo) € X satisfying

fi(=z1,20) = = fi(w,02),  fi(z1, —22) = fi(21, 72),
fo(=21,22) = fo(x1,22), folx1, —22) = — fo(T1, 72),
fi(we, 1) = fo(w1,22), fa(za, 21) = fi(71, 72).

The space Xy, denotes the set of allu = (¢, w1, wq) € X satisfying [ju = u (j = 1,2, 3).
The space 271 is defined by

Zwy={9 € L¥ N L%supp ¢ C {l¢] <rec}, 9]l g, < o0},
where the norm is defined by

191l 2, = Ml 2y, e + 100 2, oo

1 1
Il 2 e = DIVl I8l 2, = D IVF 6z
' k=0

k=0

On the other hand, %) is defined by
Yy ={w e L¥",Vw € Hysupp i C {[¢] < 1o} [lwllgy < +oo},
where
lwllgy,, = ol gz, + gy,
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2
lwllgr =) 1+ [x) " V7wl
(1),L
, o

We define a weighted space for the low frequency part 2;(a,b) by

Zay(a,b) = CM[a,b); Z ) * [C([a,b];@(l)) N H a,b;% )|

Let s be a nonnegative integer satisfying s > 3. We denote by the space 2 lfoo)7l(a, b)
(k=s—1,s) the weighted space for the high frequency part defined by

Zhoa(@.) = [Cla, b HEgy ) N € ((a, bl L)
X [L*(a,bs; HEL ) N C(la, 0] Hyy o) N H (a,0; HEY )]

00),2

Let s be a nonnegative integer satisfying s > 3 and let k = s — 1, s. We define a space
X*(a,b) by

X*(a,b)
= {{ur, usc b u1 € Z1y(a,b),us € D@pﬁom(a,b),
0o € C[a,0]; L), uy = (5, w;) (j = 1,00) },

and we define the norm by

{1 too Ml oy =l g, q) + “““HQ‘”&),Q(a,b)
+ [|0boollotapyrz) + 10wl eapizz) + 10:Vurllogan;c2)-

Function spaces of time periodic functions with period T are introduced as follows.
Cher (R; X)) stands for the set of all time periodic continuous functions with values in X
and period T" whose the norm is defined by || - ||¢(jo,r7;x); Similarly, Lzer(R; X) denotes the
set of all time periodic locally square integrable functions with values in X and period T’

whose the norm is defined by || - || 20,7, x)- Similarly, H),.(R; X) and X (R), and so on,
are defined.
For operators L; and Ly, we denote by [L1, Ls| the commutator of L; and L i.e.,

(L1, Lo f := L1(Laf) — La(L1 f).

We next state a lemma which will be used in the proof of the main result. The
following Hardy inequality is known for a function satisfying the oddness conditions in
(0.0.30) on R?.

Lemma 4.1.1. Let u € H' and we assume that u satisfies
u(—x1, ) = —u(x1, x2) or u(zy, —x2) = —u(xy, T2) (4.1.1)

for x = T(x1,75). Then there holds the inequality
u
||| < cIvul
]
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See, e.g., [9] for the proof of Lemma 4.1.1.

4.2 Main result of Chapter 4

In this section, we state our main result on the existence of a time periodic solution for
(0.0.1).

To state our result, Recall that the following operators are introduced which decompose
a function into its low and high frequency parts respectively in Chapter 1. The operators
P, and P, on L? are defined by

Pif = F (g FIf) (fel?j=10),
where
X;(€) € CF(R?) (
. _ 1 (8 £m),
xld) { 0 (€] > o),
)200(5) =1- Xl(f%

:1700)7 OSXJSJ- (]:1,00),

.

r1 and 7 are positive constants satisfying 0 < 1 < re < —L in such a way that the

v+v
estimate (4.4.7) in Lemma 4.4.3 below holds for |£] < 7.

We are in a position to state our result on the existence of a time periodic solution.

Theorem 4.2.1. Let s be an integer satisfying s > 3. Assume that g(x,t) satisfies (0.0.2),
(0.0.30) and g € Cper(R; L} N L) N L2, (R; H3~). We define the norm of g by

[g]s = ||gHC([0,T];L%ﬁL§°) + HgHL?(O,T;H;’l)'

Then there exist constants § > 0 and C' > 0 such that if [g]s < 0§, then the system
(0.0.15) has a time periodic solution u = uy + Us satisfying {ui, U} € X3, 00 (R)
with |[{u1, oo} xs01) < Clgls. Furthermore, the uniqueness of time periodic solutions of
(0.0.15) holds in the class {u = T (¢, w); u = urttoo, {1, Uoso } € X5 rer(R), {11, tico }| x5 (0,1 <

Cs}.

4.3 Reformulation of the problem
In this section, we reformulate (0.0.15). we begin with to decompose u into a low frequency

part u; and a high frequency part u.,, and then, we rewrite (0.0.15) into equations for wu;
and us as in Chapter 1.
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Similarly to Chapter 1, we define
uy = Piu, Uy = Pyou.
Applying the operators P; and P, to (0.0.15), we see

Oyuy + Auy = Fi(ug + teo, 9), (4.3.1)

Here

Fi(ug + tuso,g) = Pi[—Blui + oo (w1 + o) + G(u1 + e, 9)],
Foo(ug + o, g) = Poo|—=Blus + usoJus + G(ug + teo, g)].

On the other hand, if some functions u; and wu satisfy (4.3.1) and (4.3.2), then adding
(4.3.1) to (4.3.2), we derive that

= —Blui + uso|(u1 + o) + G(u1 + U, g).

Defining u = uy + s, We get
Owu + Au+ Blulu = G(u, g).
Therefore, to obtain a solution u of (0.0.15), we look for a solution {u;,us} satisfying

(4.3.1)-(4.3.2).

Concerning antisymmetry of (0.0.15) and (4.3.1)-(4.3.2), We state the following lem-
mas. Recall that I'; (j = 1,2, 3) is defined by

(Tyu)(@) = " (¢(—a), —wi (=), wao(—2)), (Pu)(x) = T ($(—x), wi(~2), —wz(~1)),
(Csu) (21, 22) = (P22, 21), wo(we, 1), w1 (72, 1))
for u(z) = "(¢(z), w1 (x), wa(x)), v € R2

Lemma 4.3.1. We define g(z,t) = "(0,g(x,t)) and let g satisfy (L;9)(x,t) = g(z,t) (z €
R2, t€R, j=1,2,3).

(i) Tju (j = 1,2,3) is a solution of (0.0.15) if u = "(¢,w) is a solution of (0.0.15).
(i

i) {Tju, juse} (4 = 1,2,3) is a solution of (4.3.1)-(4.3.2) if {u1,uxc} is a solution
of (4.3.1)-(4.3.2).
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Lemma 4.3.2. Let g satisfy (I';g)(x,t) = g(x,t) (x € R% t € R, j=1,2,3).
(i) There holds
I'; (0w + Au + Blulu — G(u, 9))](x,t) = [Ou + Au+ Bluju — G(u, g)](x,t)
forz e R%t €R, j=1,2,34f (Tju)(x,t) =u(z,t) (reR* tER, j=1,2,3).
(ii) There hold
[Fj(f)tul + Au1 — Fl(ul + uoo,g))](x, t) = [8tu1 + AUl - Fl(ul + Uoo,g)](l'7t)

and

[0;(Optios + At + Poo(Blur + Uoo)tios) — Foo (1 + Uso, 9))] (2, 1)
= [tioe + At + Poo(Bluy + Uoo]tins) — Fio(us + oo, 9)](, 1)

forz e R"t € R, j =1,2,3 if {Tjui(z,t), juce(z, )} = {ui(z, 1), uso(x,t)} (x €R% t €
R, j=1,2,3).

Direct computations verify Lemma 4.3.1 (i) and Lemma 4.3.2 (i). As for Lemma 4.3.1
(ii) and Lemma 4.3.2 (ii), since it holds that FI'; = —I';F (j = 1,2), FI's = ['3F,

Xi(—61,&2) = x;(&1, —&2) = x;(&2,61) = xj(§1,&2) (7 = 1,00), we find that ', P; = Py
(k =1,2,3,j = 1,00). Hence Lemma 4.3.1 (ii) and Lemma 4.3.2 (ii) follow from the
above relation by a direct computation.

Therefore, we consider (4.3.1)-(4.3.2) in space of functions satisfying {I'jui, I'jus} =
{ur,us} (j =1,2,3) by Lemma 4.3.1 and Lemma 4.3.2.

To prove the existence of time periodic solution on R?, we use the momentum formu-
lation for the low frequency part due to the slow decay of the low frequency part u; in a
weighted L space. Applying the momentum formulation was used in Chapter 2 for the
low frequency part.

To state the momentum formulation, the following inequality holds for the weighted
L? norm of the low frequency part.

Lemma 4.3.3. Let ¢ € 21y and wy € ¥ (1y. Then, it holds that
||P1(q5w1)||@(1),L2 < C([¢llzze + [IVOllL2)(lwlzge + Vewn | 2)
uniformly for ¢ and w.

Lemma 4.3.3 follows directly from Lemma 2.3.2.

We are in a position to reformulate the system (4.3.1)-(4.3.2) by using the momentum
for the low frequency part as in Chapter 2.
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We introduce m; and u; ,,, by
mp = w + P1(¢W), ul,m = T(¢17 ml), (433)

where ¢ = ¢ + ¢ and w = w; + We. Here we write the vector w with values in R? as
w =T (wh,w?). We directly obtain the following Lemma from Lemma 2.3.4.

Lemma 4.3.4. Assume that {uy, us} satisfies the system (4.3.1)-(4.3.2). Then {uy m, too }
satisfies the following system:

atul,m + Aul,m = Fl,m(ul + uoo7g)a (434>
Oplloo + Ao + Poo (Blug + tso|tine) = Foo(U1 + Uoo, g)-
Here
Fl,m(ul + uooag) = T(Oa Fl,m(ul + uooag))v
Fin(un +usesg) = =Pi{ugw) + iVdiv (w) + =9 (o (9)¢?)

+ydiv (pw @ w) — %((1 +¢)9)

whtw?

#902 (( e) +70 ( iy ) + 1T 435)

Remark 4.3.5. Here we rewrite the convection term div (w ® w) by using the relation
. Lw? 0
div (w ® w) = 0y, ( 2)121) w(w1>2) + O0ny ( + V(w')?

(w*)* — w?w?
to estimate with the antisymmetry. See Proposition 7.1.
Similarly to Lemma 4.3.2, the following lemma follows from direct computations which
implies that the antisymmetry of (4.3.4) holds.

Lemma 4.3.6. (i) [jui,, (j = 1,2,3) is a solution of (4.3.4) if uim = "(¢1,m1) is a
solution of (4.3.4).

(ii) Let g satisfy (T;9)(z,t) = g(z,t) (z € R*, t € R, j = 1,2,3). Then there hold
1 (Opur,m + Aty m — Fim(U1m + Uso, 9))](2, 1) = [Ostiym + Aty m — Fin(U1m + Uso, 9))(2, 1)

forz e R"t € R, j = 1,2,3 if {Tjusm(z,t),Njusc(z,t)} = {uim(z,t), uso(z,t)} (x €
R% ¢t €R, j=1,23).

If ¢ = ¢1 + ¢ is sufficiently small, we obtain the solution {u;,u} of (4.3.1)-(4.3.2)
from the solution of (4.3.2), (4.3.3) and (4.3.4), i.e., we have the following.
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Lemma 4.3.7. (i) Let s be an integer satisfying s > 3 and We choose uy, = " (¢1,my)

and teo = (oo, Weo) satisfying {uim, o} € X3, (a,b). Then there exists a positive

constant &y such that there uniquely exists wy € C([a,b]; #(1)2) N H' (a,b; %1y ») and wy
satisfies the following inequality if ¢ = ¢1 + doo satisfies supyei, ([Pl g + VP £2) < do.

w1 =mq — Pl(qb(wl + U)OO)), (436)

where ¢ = 1 + ¢oo. Furthermore, we have the estimates

leHC([a,b];@(l)) < C(||m1||c([a7b];@(l))+HwoouC([a,b];Lf))v (4.3.7)

| loan(r)liy, i

IN

CNRT 11 oty + 165l Bany) 101 e

0Bl (ap7.22) ”wlué([a?b];%(l)yw))

= [ (10, + 1001 uaan (Ol

0w (7) 34 ) dr- (4.3.8)

(ii) Let s be an integer satisfying s > 3 and We choose Uy, = " (¢1,m1) and uy =
T(Goos Woo) satisfying {u1m, oo} € Xiym(a,b). We suppose that ¢ = ¢1 + ¢oo satisfies
SUPe(a ([0l Le + [Vl 12) < 0o and {urm, us} satisfies

Ot + Aty = Fim(ug + U, 9),
wp = MmMmyq — P1(¢w),

Here w = wy + woo and wy defined by (4.3.6). Then {uy,us} satisfies (4.3.1)-(4.3.2) with
T
ur = (g1, wr).

Lemma 4.3.7 can be proved by the same way as the proof of Lemma 2.3.5 using Lemma,
1.1.1 and Lemma 2.3.2 and we omit the details.

Therefore, we consider (4.3.2), (4.3.4) and (4.3.6) because if we show the existence of
a solution {1 m, Uso} € X3, (a,b) satisfying (4.3.2), (4.3.4) and (4.3.6), then by Lemma

4.3.7, we obtain a solution {u;,us} € X3,,,(a,b) satisfying (4.3.1)-(4.3.2).

As in Chapter 2, we formulate (4.3.2), (4.3.4) and (4.3.6) by using time-T-mapping to
solve the time periodic problem. We consider the following linear problems for the low
frequency part and the high frequency part respectively:

atul,m + Aul,m - Fl,m7 (4 3 9)
UL m|t=0 = Uo1,m, -
and
@uoo + AUOO + POO(B[a]uOO) = Fw, (4 3 10)
Uoo|t:0 = Upoo) -
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where @ = (¢, 1), Uo1.m, Uooo, F1.m and Fy, are given functions.

The solution operators are introduced as follows. (The precise definition of these
operators will be given later.) Si(¢) stands for the solution operator for (4.3.9) with
Fi,, =0, and .1(t) stands for the solution operator for (4.3.9) with w1, = 0. On the
other hand, S. () stands for the solution operator for (4.3.10) with i, = 0 and .7 4 (%)
stands for the solution operator for (4.3.10) with ugs = 0.

As in Chapter 2, we will look for {u ,, ux} satisfying

Uy () = S1(t)uorm + L1()[Fim(u, 9)],
{ Uoo(t) = Seo () Uooso + L v0u(t)[Foo (1, 9)], (4.3.11)
where
Uorm = (I — Sy (7))L 1(T)[Fim(u, g)],
{ Upoo = (I — Soovu(T))*ljﬂOO’u(T) [Foo (1, )], (4.3.12)

u = "(¢,w) is a function given by uy,, = "(¢1,m1) and Uy = T (¢o, Wso) through the
relation
=1+ Pooy W= W1+ Weo, w1 =My — Pi(Pw).

From (4.3.11) and (4.3.12), it holds that uy ,,,(T) = u1.m(0), tee(T) = uxe(0). Hence we
look for a pair of functions {uy ,, us } satisfying (4.3.11)-(4.3.12). The solution operators
S1(t) and .7(t) are investigated and we state the estimate of a solution for the low
frequency part in section 5; Some properties of Sy () and .« ,(t) will be stated and
we estimate a solution for the high frequency part in section 6.

In the remaining of this section some lemmas are stated which will be used in the proof
of Theorem 4.2.1. The following lemma prays important roles to estimate a convolution
with antisymmetry for the low frequency part.

Lemma 4.3.8. Let E(z) (z € R?) be a scalar function satisfying

C

(63 < - -
05 B ()| < (1 + |z|)lel+1

(o] > 0) (4.3.13)

and let f be a scalar function satisfying f € L3°. We assume that f satisfies

f(=z1,29) = —f(x1,22) o1 fa1, —22) = —f(21,22) 07 f(22,21) = — f(21,22)(4.3.14)

Then there holds the following estimate.

B gy < Wl

it (4.3.15)

Proof. We first assume |z| > 1. We set R = %‘ Then we see that

Bafe) = [ By
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- / E(x — ) (y)dy
lz—y|>R, |[y|>R

+ E(x — d + E - d
= ]1 + IQ + ]3,

where,

I = E(z— dy, I, = E(r— dy. Iy — Flo— .
/xy|>R,|y|>R (e=9)f W)y /|xy<R (2=y)f(y)dy / (—y) f(y)dy

ly|<R

Concerning the estimate for [y, since |y| < |z|+ |z —y| < 3|z —y| if |z —y| > R and
ly| > R, it follows from (4.3.13) that

| Ol lles
L] < c||f||Loo/ A P U
> Jiysr (14 y])? 1+ |z

We next derive the estimate of I5. Because it holds that |y| > |z| — |z —y| > R if
|z — y| < R, we obtain from (4.3.13) that

Cll fllrge / 1 < Cll fllzg
|z—y|>R

I < .
Bl < — 5 Arlz—o)™? =117

As for the estimate of I3, we consider the case such that f satisfies fi(—x1,22) =
—fi(z1,9). We define § = " (—yy, o) for y = "(y1,92) on R? satisfying ; > 0. Note that
f(y) = —f(y) due to (4.3.14). This implies that

I = / By / E(a — §)f(§)dy

ly|<R,y1>0

_ / . B —y) = Bl = )} ()dy.

In addition, we see from (4.3.13) that

Clyl . Clyl

Ex—-—y)—Ex—y) <

(4.3.16)

for |y| < R. Hence we arrive at

L] < C||f||Lg°/ 1 ay < Cl fllzg
~ (1+ R)? ‘y|ZR1+|y| 1+ |z

Similarly, we obtain (4.3.15) in the case such that f satisfies f(z1, —x2) = —f(x1, x2). If
f satisfies f(za,21) = —f(x1,22), by setting § = "(y2,y1) for y = "(y1,92) on R?, | 5] is
written as

3] =

/| o Bl iy + / E(x — )/ (5)dy

ly|<R,y2>11
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/|<R > {E(z—y) — E(x —9)}f(y)dy| .

This together with (4.3.16) yields the required estimate (4.3.15). By using the estimates
for I; (j =1,2,3), we get the required estimate (4.3.15) for |z| > 1.

As for the case |z| < 1, the required estimate (4.3.15) can be verified by direct com-
putations, hence we omit the details. This completes the proof. O

By Lemma 4.3.8, we have the following assertion which is useful for the estimate of a

convolution with external force.

Lemma 4.3.9. Let f € . (R") satisfying that supp f C {|¢] < reo} and Vf € L, where
S'(R™) denotes a set of all tempered distributions on R™. We assume that for j =1 or
2, Oy, [ salisfies

Op, f(—x1,22) = =0, f(x1,72) 01 O, f(21, —22) = — 0y, f(1, 72) (4.3.17)
Then f € L{° and it holds that

[ fllzee < OV fllLge-

Proof. We assume that 0,, f satisfies (4.3.17). We see that
_ 1 (X0 e nEL o1 XO
F=F () iy =77 (5 ) * 0ut,
where Yo is a cut-off function defined by xo = F'Xo and ¥y is the one defined by (2.3.3).

Note that
7 Gl <

where C' > 0 is a positive constant. This together with Lemma 2.3.7 implies that

27 (= e

for |a| > 0. Therefore, we derive from Lemma 4.3.8 that

[fllzge < CIV g

If 0., f satisfies (4.3.17), we obtain the required estimate similarly to the proof for d,, f.
This completes the proof. O

We use the following another type estimates for a convolution with antisymmetry.
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Lemma 4.3.10. (i) Let E(z) (x € R?) be a scalar function satisfying (4.3.13). Assume
that f is a scalar function satisfying || f| s + | fllr < co. We also assume that f satisfies
(4.3.14). Then there holds the following estimate.

|Ex f(z)] < S llege + 1 1lzy)-

(1 + [x])?

(ii) Let E(z) (z € R?) be a scalar function satisfying (4.3.13) and let f be a scalar
function which is written as f = 0., f1 for j = 1 or 2 and satisfy ||0x, f1llLse + || fillge < oo.
We assume that fi satisfies (4.3.14). Then the following estimate is true.

B f()] < —C

< W(Haxjflﬂw + [ f1llge)-

(iii) Let E(x) (r € R?) be a scalar function satisfying (4.3.13) and let f be a scalar
function of the form: f = 0, f1 for j =1 or 2 and it holds that ||0,, f1||se + | f1l|Lge < o0.
Then we have the following estimate.

0B+ f(z)| < —<

< @ el U0 fillg + [ llez).

Lemma 4.3.10 yields in a similar manner to the proof of Lemma 4.3.8 and we omit the
proofs.

The following L? estimates holds for the external force in the low frequency part.

Lemma 4.3.11. (i) Let E(€) (€ € R?) be a scalar function satisfying supp E C {|€] < roo}
and
C

[E(©)] < BE for €] <ree, [€] #0.

Let f belong to L?lm N L1 and we assume that the following case (1) or (2) hold ;

(1) f(—l"l,LEQ) = —f(z1,72), f(l”l, —332) = f(w1,22),
(2) f(=z1,22) = f(z1,22), [f(21, —72) = —f (21, 72).
Then we have the estimate

17N EPllg,,, < O lizous

(i) We suppose that E(£) (€ € R?) is a scalar function satisfying supp E C {|¢] < 7o}

and .
|E(§)] < T for |€] < reo, €] #0.
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and f belongs to L?,, N L} which satisfies the following case (1) or (2);
(1),1 1

(1) f(=z1,22) = —f(21,22), fl21, —22) = f(21, 22),
(2) f(=21,m2) = f(21,22), [(x1,—22) = —f(21, 72).
Then there hols the estimate

IFEN g, <Cllfllzzom-

(1),L2

Proof. (i) We assume that f satisfies (1) without loss of generality. Since f (&1, &) =
—f (&, &), we see that

IVF EDe < O]

L2

1 v,
< Oleglue ] tut e

< Cllafllz

L2(|§‘S7’oo)

Similarly, we obtain the estimate

IVHF N EN 2 < ClIf Nisnss-

The assertion (ii) can be proved by the same way as that for (i). This completes the
proof. O

We find the following estimate for the nonlinear term on the low frequency part in
weighted L? spaces.

Lemma 4.3.12. (i) Let wy € #(1y,4. Then, it holds that

ICwn)*llzz + llwrdeywrllzz < Cllunllgy - (G =1,2).

ii) Let ¢ € Z'(1y and wy € % (1y». Then, there holds the estimate
1) (1), #
léwnllzz + 1105, (Gwn) 2 < Clloll g7, lwnllgr, G =1.2).

Proof. Concerning the assertion (i), applying Lemma 4.1.1, we see that

w1

(w122 < Cllws oz
||

Lo S Cllwlze [V .

Similarly we derive that
2
w10z, wrllry < Cllwillgy, .

The assertion (ii) yields similarly to the proof of the estimate for (i). This completes the
proof. O
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4.4 Estimates for solution on the low frequency part
In this section we estimate a solution u; satisfying u;(0) = u1(7T") and
Oyuqr + Auq = Fi, (4.4.1)
where Fy, = (0, F}).
We define A; by the restriction of A on 27q) x #(1y. The symbol S} and .(t) are
defined by S (t) = e~ and

() = /t Si(t — 1) Fi(1)dr.
Recall that T'; (j = 1,2, 3) are defined by
(Tu)(z) = " (¢(—2), —wi(=2),ws(—2)), (Tau)(w) = "(6(—2), wi(—x), —ws(~2)),
(Cau)(w1,22) = " (922, 21), wa(22, 21), Wi (w2, 71))
for u(z) = T(¢(z), wy(z), wa(x)), = € R? We have the following.

Proposition 4.4.1. (i) Ay is a bounded linear operator on 2’1y x #(1y. Moreover, Sy(t)
is a uniformly continuous semigroup on 2’1y x ¥1y. and Si(t) satisfies the following
estimates for all T' > 0;

Sityur € CH[0,T); Zay x Zwy), 9Si(wn € C([0,T): L?),
0S1(t)ur = —A151(H)ur (= —AS 1 (H)ur), S1(0)ur =uy for uy € Zqy x #y,
107 S1C)unll oo, 2y« By < Cllall 2y sy o
foruy € Zayx %y, k=0,1
10:S1(t)ur || oo.m:2) < C||U1||%<1>ng<l>,

and
10V Sy (O lleqoaryey < Cllull 7, .

foruy € Z'qy x %y, where C is a positive constant depending on T".
(ii) It holds for each Fy € C([0,T]; Z 1)) x L*(0,T;% 1)) that

F1()F1 € CH0,T]; ') x [C([0,T]; # 1)) x H(0,T:% )],

and

8t<5ﬂ1(t)F1 + Alyl(t)Fl - F1<t), yl(O)Fl - 0,
14OV Ell oz 2y« < CMBleqory 2 xrz0r )y
Hgtyl(')Fl||C([07T};%<1))XL2(07T;@<1>) = OHFlHC([QT];%(MXLQ(OvT;‘@/(n)’
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where C' is a positive constant depending on T. In addition, 0,.1(-)Fy € C(|0,T]; L?),
NVS1(-)F, € C([0,T); L?) for Fy € C([0,T); L?) and we have

10:1() Fillco.r;zey < CllFleqo,m;c2)s
and
10:V 71 () Filleqoryizey < CIVEogorL2)
where C' is a positive constant depending on T'.

(iii) There holds the following relation between Sy and ..
S1(t)Z1(tVFy = Z1(¢)[S1(t) Fi]

foranyt >0, ¢ €[0,T] and Fy € C([0,T]; Zy) x L*(0,T; % 1)).

(iv) I';S1(t) = S1(t)Lj and ;.74 (t) = S1(8)L; for j = 1,2,3. Therefore the assertions
(i)-(iii) above hold with function spaces Z ) and %y replaced by (Z 1))o and (Zq))x,
respectively.

The assertion (i)—(iii) follows by the same way as that in Proposition 2.4.1. The
assertion (iv) is verified by the fact I'A; = A;I', which derive that I'S;(t) = S;(¢)I" and
we omit the details.

We next investigate invertibility of I — Sy (7).
Proposition 4.4.2. There uniquely exists u € (Z'1)y X Z1))sym that satisfies (I —

S1(T))u = Fy and u satisfies the estimate in each (i)- (1V) for Fy satisfying the condi-
tions given in either (i)-(iv), respectively.

(i) F1 € Ly N L, N Ly
lull 9, wow,, < CUIF e + [ Fally ) (4.4.2)
(i) [1 = aaF(l) € Lym N L%lm with Fl(l) € L%l) N L for some « satisfying |o = 1

and Fl(l) satisfies the following condition

Fl(l)(—xl,:cg) = —Fl(l)(xl,m) or Fl(l)(xl, —x9) = —Fl(l)(:cl,:cg)

or F1(1)<5U2a 1) = —F1(1)(5C1,372); (4.4.3)
1 1
lull g7, ) < CAIE g + IF g + IF e + 1123 (4.4.4)
(iii) Fy = T(0,VFY) € Lg,,, N L3, with F{V € L3 N Ly,
lull 9, vy, < CRUIE g + I g + 1F N2 + 1P 2} (4.4.5)
(1) (1)
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(iv) Fy = 8§F1( € L3%ym N L%l),l with Fl(l) € L%l) N L for some « satisfying |a| > 2;

1 1
lull g, v, < CUFg + IF g + 1 ]2 + | Fillz)- (4.4.6)

To prove Proposition 4.4.2, we use the following lemmas. Similarly to Lemmas 2.4.3
and 2.4.4, we have the following lemmas related to the linearized semigroup in two space-
dimensional case.

Lemma 4.4.3. ([26]) (i) The set of all eigenvalues of —A¢ consists of \;(€) (j = 1, %),
where

{Al(f) —v|€]?,
A(€) = =3 (v + D)EP + 51/ (v + 0)?[E]t — 492 €2,

If|¢] < 2%, then

Re)\iz—;( v)EP, ImAi—ivlﬂ\/l— f) €12

(ii) For €| < %, et has the spectral resolution

e_tAf — Z etkj(é)]:[](g)’

j=1+

where 11;(§) are eigenprojections for A\;(€) (7 = 1,£), and I1;(§) (j = 1, £) satisfy

I 0 0
1(5) 0 12 2 )
|£\
1 —Az —iv'¢
II =t+— . .
+(§) s — A (—z’yf )\ii—é
Furthermore, if 0 < ro < %, then there exists a constant C' > 0 such that the estimates

ML <C G =1,%), (4.4.7)

hold for |€] < reo.
Hereafter we fix 0 < r; < ro < % so that (4.4.7) in Lemma 4.4.3 holds for || < ra.

Lemma 4.4.4. Let « be a multi-index. Then the following estimates hold true uniformly
for & with |§] < rs and t € [0,T].

(1) [9gM] < CleP, [og Al < Clel1 (Ja] > 0).
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(i) |(2eTh)E| < Cle[o B, |(0gT) Fr| < CIEIe £ (o] > 0), where Fy = (), F).
(iii) |og(eM)] < CleP! (Jaf > 1).

(iv) [0 (X" < Ol (laf = 1).

(v) |(0ge ) Fy| < C(E[ 1| + €[ 7 Ey]) (o] > 1), where Fy = (), F).

(vi) [9g(I — M)~ < Clg[7l (a] = 0).

(vii) |9 (I — M)~ < Clg|~ el (|af > 0).

We define
Eij(x) = F ' (Ro(I —eN)TL) (j=1,%) (z€R?), (4.4.8)
where yo is the cut-off function defined by (2.3.3). We have the following estimates for
E, ;.
Lemma 4.4.5. There hold
02 By ()] < O(L+ |a) =00

for la| > 1,2 € R? and
105 By, ()] < C(L+ Jaf)~ (D

for |a| >0,z € R
By using Lemma 2.3.7 and Lemma 4.4.4, Lemma 4.4.5 can be proved in a similar
manner to the proof of Lemma 2.4.5 and we omit the details.

We derive the following property for II; from direct computations.

Lemma 4.4.6. It holds that

IL(EVEE) =0 (£#0, €] <rw),

where F' is a scalar function in H'.

We are now in a position to prove Proposition 2.4.2.

Proof of Proposition 4.4.2. (i) We define a function @ = ' (¢, @', @?) by
i = F Y (i&)(I — e TA) 1 ),

o can be rewrite as

U

F (&) (I — e T4 Fy) = €+ I,
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where

£ =F{(i& Z Ev)}, (4.4.9)

E; ; are the ones defined in (4.4.8). We obtain from Lemma 4.4.5 that
102E(z)| < C(1 + |z])~ D (4.4.10)

for |a| > 0, z € R% Hence, It follows from Lemma 2.3.2, Lemma 4.3.10 (i) and Lemma
4.4.4 that there uniquely exists @ € 2’1y x %y that satisfies (I — S1(T))t = 0,,F1 and
U satisfies the estimates

lall g7, o, < CUF Nz + 1Fil} (14.11)
and
i)l 2o < C{lIF1llzge + 1] 11 }- (4.4.12)

Note that 0,, F satisfies I'1(0,, F1) = 0., F1. Therefore, by Proposition ?? (i) and (iii) we
obtain that I'yu = u, especially,

W (—x1, 19) = =0 (21, 79) for x € R2 (4.4.13)
We set u = T (¢, w!, w?) by
w=F NI - e TA) [y,

Since @ = O,,u, we see from Lemma 4.3.9, (4.4.12) and (4.4.13) that w' € L$°, d,,w' €
Ly, W' = 0,,w' and w' satisfies the estimate

[w! |z < CllOmw! g < C{IIF g + [1F1 ]2t }- (4.4.14)
Replacing @ to
i =F (&) — e )R,
in a similar manner to the estimate for w', we derive that w? € L, 9,,w* € L,
[w? |z < Cl0mw? g < C{lIFallege + 1 F2ll2t} (4.4.15)
and
10z ullge < CLIFlege + 1 Fallze }- (4.4.16)

Concerning the estimate for ¢, We also obtain from Lemma 2.3.2, Lemma 4.3.10 (i) and
Lemma 4.4.5 that

ol 2, o < CUE e + 1 E1 1)
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This together with Lemma 4.3.11, (4.4.12), (4.4.14), (4.4.15) and (4.4.16), we get that
u € Zayx ¥y, (I=51(T))u = Fy and u satisfies the estimate (4.4.2). By the assumption
of Fy and Proposition 4.4.1 (i) and (iii) we see that I'ju = u (j = 1,2,3), ie., u €
(Z' ) X Z1))sym-

(ii) We suppose that F| = 0,, F} 1(1) without loss of generality. We define u = " (¢, w!, w?)
by
u o= F(I—e )R
= Fg)I - M) RY) =€+ FY
where £(x) is the same one used in (4.4.9). Therefore, by Lemma 4.3.8, Lemma 4.3.10
(ii), Lemma 4.4.4 and (4.4.10), we find the assertion (ii).
(iii) By Lemma 4.4.6, we derive that
u=FN (I - e )R = F Y Bk
jet£}
for F = T(0,VFY) € L3ym N L7y, with FY e L}y N L5°. Tt then follows from Lemma

4.3.10 (iii), Proposition 4.4.1, Lemma 4.4.4 and Lemma 4.4.5 that u € (Z 1) X Z(1))sym>
(I —S1(T))u=F, and u satisﬁes the estimate

1 1
lull g7, v, < CUF Nz + 1E g+ IED s + 1Rl

We arrive at the assertion (iv) from Lemma 4.3.10 (iii), Lemma 4.4.4 and Lemma 4.4.5
similarly to the assertion (iii). This completes the proof. 0.

In view of Proposition 4.4.2, if Fj satisfies the each condition (i)-(iv) bellow, the
I — 51(T) has bounded inverse (I —S1(T))™" in (2 1) X 1))sym satisfying the estimate
in (i)-(iv) respectively;

()Fl GL(I)mLiBsymmL%;

I = SuT) il g,y < CUIF g + 1 Fillis}

(i) A = 00 FY € Ly
and Fl(l) satisfies (4.4.3);

N L%l) | with Fl(l) € L?l) N L for some « satisfying |a| =1

I = SiT) Rl g,y vy, < CUFRNez + 1F g + 1E s + 1Pl

N L?

(1)1 With Fl(l) € L%, NLL;

(iii) Fy = T(0,VFY) e LE 2)

3,sym

I = S:(T) " Fill g, o, < CLUIFANl e + IE oge + I1FY |2 + | Fall e}
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(iv) Fy = 8§F1( € L3%ym N L%l) | with Fl(l) € L% 1y N L5° for some « satisfying |a| > 2;

1= S @) Fill gy vy, < O g + 1ED g + 1FO 12 + 1 Full )

We can write .71 (t)Fy and Sy (t).1(T)(I — S1(T))"'Fy as

T
S (B (T — Sy(T)"'Fy = / Ey(t,0) + Fy(c)do, (4.4.17)
0

t t
y1<t>F1 = / Sl(t — T)Fl(T)dT = / Eg(t,T) * Fl(T)dT, (4418)

0 0

where E(t,0) and Esy(t,7) are defined by
Bi(t,0) = F {oe (I — e o) Tem Ay,

Ey(t, 1) = FH{xoe -4}

(t
for o € [0,7], 0 < 7 <t < T, %o is the cut-off function defined by (2.3.3). Then
Ey(t,0) = Fy and Ey(t, ) * F} are estimated as follows.

Lemma 4.4.7. E;(t,0) x Fy € (Z'1) X Z1))sym (t,0,7 € [0,T],j = 1,2) if Fy satisfies
the conditions given in either (1)-(iv) and F1(t,0) = Fy, Es(t,7) * F satisfy the following
estimate in each (1)-(iv).

Z 1Bj(t,0)  Fill v, vy, < CUIF g + 1Bt}

J

NL;

uniformly for o € [0,T] and 0 <7 <t <T.

(ii) Fy = 0°FY e Ly Sym NV Ly 1 with rY e Ly N L3 for some a satisfying |af = 1
and Fl(l) satisfies (4.4.3);

1 1
Y IE (o)« Fill g,y < CUIR g + 1P g + IE e + |1 Fll22}
J
uniformly for o € [0,T] and 0 <7<t <T.

(iii) Fy = T(0,VFY) € L, N L3, with F{V € L} N Ly,

(1)
1 1
Y IE (o)« Fill g, Ly, < CHIELy + IF g + IF e + |1 Bz}

J

uniformly for o € [0 Tl and 0 <7<t <T.

3,sym

(iv) Fy = 09F, ) e Lgm N L?1),1 with Fl(l) € L?I) N L for some « satisfying |a| > 2;
1 1
Y IE (o)« Fillgr, Ly, < ClIE Ly + IF g + IF e + |1 Filz}
J

uniformly for o € [0,T) and 0 <7 <t <T.

143



Proof of Lemma 4.4.7. It follows from Lemmas 4.4.3 and 4.4.4 that
|a?()20(i§)a6_tA£<I _ G_TAE)_IG_(T_U)A£)| < C|€|_2+‘O‘|_|m7
107 (Xo(i€) e~ t=4e)| < Clglel=1A1,

for 0 €[0,7),0 <7<t <T and |af, |3| > 0. Hence by Lemma 2.3.7 we sce that

08By ()] < C(L+ [z~ (Ja| > 1), (4.4.19)
102 Ey(z)| < C(1 4 |z)~@HeD (ja| > 0). (4.4.20)

This together with Lemma 4.3.8, Lemma 4.3.9 and Lemma 4.3.10 we obtain the desired
estimate in a similar manner to the proof of Proposition 4.4.2. This completes the proof.

O
The symbol ¥, and ¥, stand for

U [F1)() = Si() S (T)(I — Sy(T))™! (121) L U[F1() = 21 (1) ( ]21) o (4.4.21)

For ¥, and W, we derive the following estimates.

Proposition 4.4.8. (i) For Fy € L*(0,T; L}, N L5, N L}) it holds that
V(R € CH[0, TT; Zay0) X [C([0, T P ay) N HH 0, T3 % 1) 4)]
for j=1,2 and ¥; (Y] satisfy the following.
. .
”at \Ijj [Fl] “C([O,T];%(l))><L2(O,T;@(1)) < O”FIHL?(O,T;LgOﬂLD
fork=20,1andj=1,2.

(ii) If Fy satisfies Fy = 0 F{Y € L2(0, Ty L% N L2 1) with F{V € L*(0,T; L3, N L)

for some « satisfying |a| = 1 and Fl(l) satisfies (4.4.3), then U;[F)] € CY([0,T); Zwy.0) X
[C([0,T); #y,2) N HY0,T; % 1)) (7 =1,2) and V;[Fy] satisfy the following estimates.
= > 1
105 R oy 2y 20B0y) < CURNz0mzgom + IR 0 riznr)

fork=0,1andj=1,2.
(iii) We hazie that \Ifj[ﬁl] € Cl([O,T]; 3{(1),0) X [C([O,T];@(l)’#) N Hl(O,T; @(1)7#)]
(j = 1,2) for Fy = VF\" € L*(0,T; Lg% N L2 ) with F{ € L*(0,T; L% N L§°) and
U;[F1] satisfy the estimates
= ~ 1
1075 P oo,y 20 yx 22000 0y < CUFL200,mizgem) + I N 20 min500)
fork=0,1andj=1,2.
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(iv) Let Fy = (?QF(1 e L*0,T; L3#HL% 1) with FM € L*(0, T; L?l)ﬂLSO) for some «

satisfying |a| > 2. Then U;[Fy] € CY([0,T); Z 1y.0) X [C([0,T); Zay ) NHY0,T; % 1 4)]
(7 =1,2) and V,[F}] satisfy the estimates

Haf [ ]HC[OT] X )xL20,1:% 1)) <C(HF1HL2 0,T;LNL2) +HF HLQOTL‘X’mL?))

fork=0,1andj=1,2.

Proof. As for the assertion (i), it follows from Proposition 4.4.1 (i), (ii) and Lemma 4.4.7

that . 3
H\Ijj [Fl]HC([QT];%(I))XL2(07T;@(1)) < CHFIHL?(O,T;L?MD
for j = 1,2,
H@t\lll[ﬁl]Hc([oj];%(l))XL2(0,T;@/(1)) < C”FIHLZ(O,T;LgOmL%)y
and

||8t\1]2[F1”|C (10,712 1) x L2 (0,157 1)) = < ClEillzorazenny + HFl”LQ(OT@(l) )

Note that Fy = xo * Fi, where yo = F X0, %o is the cut-off function defined by (2.3.3).
Since Yo belongs to the Schwartz space on R?, we get that

10 x0(z)| < C(1+ |z)~eD for |a] > 0.

Therefore, we derive the following estimate for || || L01:%) in a similar manner to the

proof of Proposition 4.4.2.
||F1||L2(07T;@<1)) < C||F1||L2(0,T;L§°mL})-

Consequently, we obtain the desired estimate in (i). Similarly, we can verify the assertion
(ii)-(iv). This completes the proof. O

By using Proposition 4.4.8, we give estimates for a solution of (4.4.1) satisfying u;(0) =

Proposition 4.4.9. Set
UER(t) = U1 [F] + o[ F], (4.4.22)

for Fy = (0, ), where Uy and U, were defined by (4.4.21). If F\ satisfies the condi-
tions given in either (i)-(iv), then W[Fi] is a solution of (4.4.1) with Fy = "(0,Fy) in
Z1).5ym(0,T) satisfying O[F1](0) = W[F](T) and V[F)] satisfies the estimate in each
(i)-(iv), respectively.

(1) F1 S LQ(O, T L%l) N Lg?# N L%),‘
”\I/[ ]Hg )(0,7) C1||Fl||L20TL°°ﬁL1) (442?))
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with FY € 12 0,7; L%, N LYL) for some o
1 2

11 n (6% 1 . o0
(i) Fy = 02F") € L*(0,T; Ly, N L? 2)

(1)1
satisfying |o| =1 and Fl(l) satisfies (4.4.3);

7 - 1
I 2, 02 < CUE 20 mrz0mn) + I 2 ria500)- (4.4.24)

(i) / = VAV € L*(0,T; L, N L2

2 1) with F{Y € L*(0,T; L2, N L§°);

a - 1
I 2, 0m) < CUE 20 mrzms) + IF 2z 0e)- (4.4.25)

(iv) Fy = 00F" € L*(0,T; Lg% N L2 ,) with F{" € L2(0, T3 L2 N L§°) for some o

satisfying || > 2;

r- = 1
Il 5, 0.2y < CUR 20 mzmrn) + I iz 0mngnes)- (4.4.26)

Proof. By Proposition 4.4.1 (iii) and Proposition 4.4.2 we see that W[F] is a solution
of (4.4.1) with Fy = T(0,Fy) and satisfies W[F1](0) = ¥[F1](T). The estimates and
antisymmetry of W[Fy] in (i)-(iv) are verified by Proposition 4.4.8. This completes the
proof. O

4.5 Estimates for solution on the high frequency part

In this section we estimate a solution for the high frequency part. We begin with some
properties of S z(t) and . 4 (1).

As for the solvability of (4.3.10), we state the following proposition.

Proposition 4.5.1. Let s be an integer satisfying s > 3. Set k = s—1 or s. Assume that

Vi € C([0,T']; H 1) N L*(0,T'; H®),
Upso = ' (Pooos Woss) € H(koo)7
Foo = "(FY, Fx) € L*(0,T'; Hiy x H)).
Here T’ is a given positive number. Then there exists a unique solution tsy = ' (Poo, Woo)
of (1.3.2) satisfying
b € C(0.T'); HE),

weo € C([0,T'); HE,y) N L2(0,T; HEE) N HY(0,T'; Hi ).

(c0) (c0)

One can verify Proposition 4.5.1 in a similar manner to the proof of Proposition 1.5.4
and we omit the details.
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Remark 4.5.2. Concerning the space dimension n, in Proposition 1.5.4 we assume that
n > 3. But we can replace the space dimension to n = 2 by taking a look at the fact that
[16, Theorem 4.1] holds for the space dimension n = 2 and the proof of Proposition 1.5.4.
See also Remark 2.5.2 for the condition of w.

Therefore, it follows from Proposition 4.5.1 that we can define Sy 4(¢) (t > 0) and
S oa(t) (t €10,T)) as follows.

Let an integer s satisfy s > 3 and a function @ = ' (¢, ) satisfy

¢ € Coer(R; H®), Vb € Cper(R; H*Y) N L2, (R; H?). (4.5.1)

per

Let k= s—1 or s. We define and operator S., 4(t) : HF

Uoo(t) = Soe,a(t)ttose for Ugse = " (Pooe; Woss) € H{syy,

where () is the solution of (1.3.2) with F, = 0. Moreover, we define an operator

Fooalt) : L0, T; HE ) x HE ) — Hf ) (8 €[0,T]) by

Uoo(t) = Fooa(t)[Foo] for Foo = T(F3,, Fo) € L*(0,T; Hiy x Hi)),

where uq(t) is the solution of (1.3.2) with ugs = 0.

We have the following properties for S, 4(t) and .# 4(t) in the weighted L? Sobolev
spaces.

Proposition 4.5.3. Let s be a nonnegative integer satisfying s > 3 and let k = s —1 or
s. We suppose that @ = " (¢, w) satisfies (4.5.1). Then there exists a constant § > 0 such
that if ||V c(o,m;ms-)nL2 0,015y < 0, then the following assertions hold true.

(i) For s = " (G000, Woso) € H(koo),27 there holds Seo (- )Uoso € C([OvOO)QH(koo),z) and
there exist constants a > 0 and C' > 0 such that Sy a(t) satisfies the following estimate
forallt >0 and up € H(koom.

||Sw7ﬂ(t)u000||HE“ < Ce_atHuOooHH(’CO0

00),2 32

(i) For Foo = T(FY,Fx) € L*0,T; HE,, x Hi},), there holds 7o a(-)Fo €

C’([O,T];H(koom) and ¥ w.a(t) satisfies the following estimate for t € [0,T] and Fy €
L*0,T; H(koo)’2 X H(]“O;)IQ) with a positive constant C' depending on T .

1
t 2
. ) < —a(t—7) 2 )
H'Sﬂoo,u(]ﬁ)[FOO]HH("M))’2 <C {/0 e HFOOHHFOO)QXH(ICoo)I,sz}
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(iii) We define ") )Q(Soo,ﬁ(T)) by the spectral radius of Se (1) on H(koo),Q' Then it
holds that rp: )Q(Sm,ﬁ(T)) <1.

(iv) I — Se.a(T) has a bounded inverse (I — Seoa(T))™ on H(koo) , satisfying

I = Seca(T) M ully , < Cllulls_, for w€ Hyy,.

(v) Suppose that I';u = @ for j = 1,2,3. Then it holds that I';Ss a(t) = Seca(t)l;
and I';.7 . a(t) = Looa(t)Lj. Accordingly, the assertions (i)—(iv) hold true in function
spaces HE , and HE , x HE ) replaced by (HE 5)sym and (HY , x HY ) )sym, respectively
szu-u(j—l 2 3)

We can verify Proposition 4.5.3 in a similar manner to the proof of Proposition 1.5.6
and we omit the proof.

Remark 4.5.4. As for the space dimension n, in Proposition 1.5.6 it is assumed that
n > 3. But it is replaced by n = 2 due to taking a look at the proof of Proposition 1.5.6.
See also Remark 2.5.4 for the condition of w.

We are now in a position to give the following estimate for a solution wu,, of (4.3.10)

satisfying ue(0) = u(T).

Proposition 4.5.5. Let s be a nonnegative integer satisfying s > 3. We suppose that

Foo = "(FY, ) € L*(0,T; (Hfoyo X H{ ) sym),

with k = s —1 or s. We also assume that @ = " (¢, W) satisfies (4.5.1). Then there exists
a positive constant & such that if

V@ o, ms-1ynL20,13m5) <9,

then the following assertion holds true.

The function
Uoo (1) 1= Sooa(t) (I = Saoi(T)) 'L 0.a(T)[Foo] + -7 0. (t) [Fic] (4.5.2)
is a solution of (1.3.2) in E»’fk )2,5ym (0, 1) satisfying us.(0) = use(T') and the estimate
Hum“ﬁfw),g(o@ = CHFOOHLQ(O,T;H(’“OO)’QXH(’“;;J)'

Proposition 4.5.5 is directly derived by Proposition 4.5.3.

148



4.6 Proof of Theorem 4.2.1

In this section we prove Theorem 4.2.1.

The estimates for the nonlinear and inhomogeneous terms are established here. We
set F1m(u, g) and Fo(u, g) by

Fim(u, g) = (Fl,m(()u,g)) ’

Eﬂmngw(mw?%+fww):(fmw)’

F(u,g) Foo(u, 9)
where u = T (¢, w) is given by uy ,, = "(¢1,m1) and te = " (oo, Wao) through the relation
O =1+ ooy W= W1+ Weo, w1 =my— Pi(Qw),

Fim(u, ), FO(u) and F(u, g) were given in (4.3.5), (0.0.19) and (0.0.20), respectively,
As for the estimate Fy ,,(u,g), we use the notation ¥ introduced in section 5, i.e.,

- 0 0
1 1
We have the following estimate for \II[FLm(u? 9)] in Z(1),sym(0,T).

Proposition 4.6.1. Let uy,, = '(¢1,m1) € (Z1)y X D)) sym and o = (oo, Weo) €

H; . satisfying

su UL (T + su U (T
0 (@)l g, oy, + S [lue(0)

Hj
. 1
+ sup [[¢(t)][r= + sup [[Ve(t)]zz < min{do, 5}
0<t<T 0<t<T

where dy is the one in Lemma 4.3.7 (i) and ¢ = ¢1 + ¢oo. Then we obtain the following
estimate

121w )] g, 0 < It e H ooy + (1 et el ) ol

uniformly for uy , and ts.

Proof. Let u9) = T(¢), w) (j =1,00), w) = T(w! wl)?) and we define

(1,122 0
® @y — _ wlw
Gi(u™,u™) = Pl{Vaxz (w(1)72w<2>,2_w(1>,1w<2>71)+75’x1 (wu),lw@m) }
Go(uV,u?) = —P1(7V(w(1)’1w(2)’1))
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Gs(u, u?) = —P(pA(¢Ww®) + aVdiv (HDw®)),

Gl ) =~ (LW @606)),

v
Gs(¢,uV, u®) = —H(vdiv (pw & w@)))
Hi(uW u®) = Gy(u (2)) + Gi(u® (1)), (k: =1,2,3),

and we then write W[F} ,(u, g)] as

Moo

\I/[Flm(u?g)] = (W[Gr(ur, ur)] + U [H(u1, too )] + V]G (Uoos Uoo)])

=
Il

+
M«

\I/[Gk(¢ us, ul)] + \IJ[Hk(gba uhuOO)] + ‘;[I[Gk(gba Uoo,s uoo)]

—4
1 1

+v |:— 1 + ¢1 :| |:—(]5oog:| .
gl gl

Using Lemma 4.3.12 and (4.4.24) we have the following estimate for W[G1 (uy, uy)].

19[Gs (s, u)lll 2, o) < Cll{un, s}

X5(0,T)

Concerning the estimates W[Ga(uq, u1)] and W[G4(p, ur,uq)], applying Lemma 4.3.12 and
(4.4.25) with F\V = (w2 and F = p@)(¢)¢? we obtain the estimates

H\I}[G?(ulvul)]“g(l) 0,T) < CH{“M“OOH :

Xs(0,T)>

1966, 1, w0)lll 2, oy < ClH{un, o} Besioiry

By using Lemma 4.3.12 and (4.4.26) we arrive at the following estimate for W[G3(uy, uy)].

1[G (ur, un)lll 2, oy < Cll{un, oo }5

It follows from Lemma 2.3.2, Lemma 4.3.12 and (4.4.24) that we get

X5(0,T)

||qj[G1(u17um)]”ffm(oj) < C||{u17u00}| g(S(O,T)’
11 (g 1)l 2, 0y < Ol {1,113

2
X5(0,T)"
Similarly, by Lemma 2.3.2, Lemma 4.3.12 and (4.4.25) we obtain for k = 2,3 that
1[G (o) 7, g0y + 191G (61 ) 2, 0
W [Gr(too, oo )] HQP(U(QT) [W[G4(9, Uoo, Uso)] HQP(D((),T)
< Ol {ur, uso} I3

Xs(0,T)"
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G5(¢,u,u) is estimated by same way as that in the estimate for W[G1(u1, u;)] and we see
that

||\II[G5(¢7 U, u)] Ho@‘a(l)(oj) < O”{uh UOOH g(S(O,T)'
As for the estimates for U[(1 4 ¢;)g| and ¥[pg], it holds from (4.4.23) that

121+ 60)0lll 2, oy + W0l 2, 01 < O+ ({1, e -0 g

Therefore, we find that

19 90l 1, 0 < Il toeHB iy + C (1 s, e ) [0l

Consequently, we obtain the desired estimate by applying Lemma 4.3.7 (i). This completes
the proof. 0

We state the estimates for the nonlinear and inhomogeneous terms of the high fre-
quency part.

Proposition 4.6.2. Let ui, = ' (¢1,m1) € (Z 1) X Z1))sym and oo = " (Poo, o) €
HS satisfying

2,sym

su u ¢ + su Unr (T

H3

. 1
+ sup [o(t)[z= + sup [[Vo(t)]|r; < min{do, S},
0<t<T 0<t<T
where dy is the one in Lemma 4.3.7 () and ¢ = ¢1 + ¢oo. Then we have the estimate

[ Foo(us 9) ||L2(0,T;H5xH;*1)

< Cf{uwtm, oo} g(S(O,T) + C(l + [{w1,m; uoo}‘|Xs(07T)> [9]s,

uniformly for uy ,, and us.
Proposition 4.6.2 follows in a similar manner to the proof of Proposition 2.6.2 and we
omit the details.

By the same way as that in the proof of Proposition 4.6.1, we have the following
estimate for F,,,(uY, g) — F1.(u®, g).

Proposition 4.6.3. Let ugk)n =T( 5’“>,m§’“)) € (X W)y xX¥q))sym and ulk) = ( é’?,wé’é)) €
H3 satisfying

(k) )
5 t s (4 s
SltlgT 21 m ( )|’%<1)x@(1) +0§1t1£T||uOo ()]l g

0

) 1
+ sup [[6M (@)~ + sup [VOH 1)z < min{do, 5},
0<t<T 0<t<T

151



where & is the one in Lemma 4.3.7 (i) and ¢*) = §’“) + o) (k =1,2). Then it holds
that

1P (1D, 9) = Frn(@®, 9l 2. 0

1
< OZ H{ul™ u® Y xeom [[{ul), — uin, ud) — @}

2
+Clgls [ {u i — it ult) — u}|

Xs=10,T)

Xs=1(0,T)»

(k)

uniformly for uy,, and u®).

We next estimate Foo(u(l), g) — Foo(u(z)a q).

Proposition 4.6.4. Let u§’“2n =T mP) e (Z 1) X ¥ 1)) sym and u) = T(o®) wd)) e
H3 satisfying

(k) (k)
su U t + su uy’ (t
ogth” (Ol 2, 2, ogthH s (1)
. 1
+ sup [|¢® 1)z~ + sup [[Vo™(1)]2 < min{do, 7},
0<t<T 0<t<T

where & is the one in Lemma 4.3.7 (i) and ¢%) = " 4 o) (k =1,2). Then it holds
that

||Foo(u(1) g) - Foo(u(z)v g)] ||L2(O,T;H§71><H§72

+c[g1su{u1,m—u§2m uld) — uP} xo-100.1),

(2) MONS

XSOTH{ulm U s U g)}HXS*l(O,T)

(k)

1,m

k)

uniformly for uy, and use

Proposition 4.6.4 easily follows from Lemmas 1.1.1-1.1.3, Lemma 1.3.4, Lemma 2.3.2,
and Lemma 2.3.11 in a similar manner to the proof of Proposition 4.6.2.

The following estimate is concerned with to state Proposition 4.6.6.

Proposition 4.6.5. (i) Let w1, = " (¢1,m1) € (Z (1) X Z (1)) sym and oo = " (Poo, Weo) €
HS satisfying

2,sym

sup [urm(®)ll 7, v, + Sup [[ttoo (£) ] 5

0<t<T

) 1
+ sup [[¢(t)][r= + sup [[Ve(t)|pz < min{dy, 5},
0<t<T 0<t<T
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where g is the one in Lemma 4.3.7 (1) and ¢ = ¢1 + ¢oo. Then it holds that
1 E1m (ws 9)lloo ey + IV FLm(ws 9)leqo,r;e2)
< Cl{unms oo Moy + (14 Ittt m, s}
uniformly for uy , and ts.

(ii) Let u(k) = T(¢§’“),m§’“)) € (X' 1y x¥1))sym and u) =T Wl e H; satisfying

XS(O7T)> [g]su

sup [urm(@) 27, 2, + Sup [too ()]

H3
0<t<T

) 1
+ sup [[¢(t)]|z= + sup [[Vo(t)||zz < min{do, 5},
0<t<T 0<t<T

where & is the one in Lemma 4.3.7 (i) and ¢*) = §k) + o) (k =1,2). Then it holds
that

||F1m( )79) Flm(u(2)7g)||L2 + ||VF1,m(u(1)7g) _Fl,m(u@),g)HL%

1 2
< CZ H{Uma Uso }| Xs(0,T) ||{U(17)n - Uggm é? QH Xs=1(0,T)
(1) 2
+Clgl{ul, — uf, uld = Y10,
uniformly for ugk)n and ul).

Proposition 4.6.5 follows from direct computations based on Lemma 4.3.12.

We obtain the existence of a solution {uy m,, us } of (4.3.2), (4.3.4) and (4.3.6) on [0, 7]
satisfying 1 ,,(0) = w1, (T") and ueo(0) = us(T) by similar iteration argument to that in
28].

u§°)n = T(¢§°), mgo)) and ul = (ngoo ) ) are defined by
U (t) = ST = S1(1) G + Z1()[G,
W@ = P (3©0®), (4.6.1)
ud () = S 0(t) = Se0,0(T)) ' 5,0(T)[Goc] + L 0,0(t)[Goc),
where ¢t € [0,T], G = (O,Wg( 1), Gi = PG , Go = PG, ¢© = ¢\ 1 ¢ and

w® = w( '+ w?. Note that Uy 7)n( 0) = ul()?)n(T) and u' (0) = ugg)(T).
EAQL = (ngN),mg ) and uoo) = (¢oo ,wc(,]ov ) are defined, inductively for N > 1, by
(uf)(t) = SiOF D = Su(T) ™ Fron(@™ Y, )] + 71 (0)[FLm (¥, )],
w = mY = P ™),
us (8) = S0 (1 = S (T)) ™ v (1) [Foo (N, 9)]
\ uv-n () [Foo (1, g)),
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where ¢ € [0, 7], u™1 = "V 4 o™ WM = TNV w9 = i 4 o)
and w) = w(N) +wd. Note that u!" )(0) = UY\Q(T) and u )(0) =yl (T).

1,m
The symbol By (ap)(r) stands for the closed unit ball in X* a,b) centered at 0

with radius r, i.e.,

Bxk (ap {{u1 my Uso | € Xsym(a, b); [H{t1,m» too } || x(ap) < r} )

sym

sym (

We have the following proposition from Propositions 4.4.1, 4.5.5, 4.6.1, 4.6.2, and 4.6.5
by the same argument as that in Chapter 2.

Proposition 4.6.6. There exists a constant 6, > 0 such that if [g]s < &1, then it holds

that

(i) {ui, vl xom < Cilgls,

for all N >0, and

) It % = uf), ul D — Y[ o0y

(u) < Cilglal{uly) = u Yl — w0,

for N > 1. Here C is a constant independent of g and N.

Concerning the existence of a solution {uy,,, uw} of (4.3.2), (4.3.4) and (4.3.6) on
0, T satisfying u ,,(0) = 1, (7") and us(0) = us(T"), we state the following

Proposition 4.6.7. There exists a constant 5 > 0 such that if [g]s < 0o, then the system
(4.3.2), (4.3.4) and (4.3.6) has a unique solution {uym,us} on [0,T] in Bxs  0r)(Cilgls)
satisfying uy ,,(0) = uym(T) and us(0) = us(T). The uniqueness of solutions of (4.3.2),
(4.3.4) and (4.3.6) on [0,T] satisfying uim(0) = uym(T) and ux(0) = ux(T) holds in
Bx:,, 0.1)(C102).

Corollary 4.6.8. There exists a constant d3 > 0 such that if [g]s < d3, then the system
(4.3.1)-(4.3.2) has a unique solution {u1,uc} on [0,T] in Bxs (o1)(Calgls) satisfying
u;(0) = u;(T) (j = 1,00) where u; = "(¢j,w;) (j = 1,00) and Cy is a constant indepen-
dent of g. The uniqueness of solutions of (4.3.1)-(4.3.2) on [0,T] satisfying u;(0) = u;(T)
(] = 1, OO) holds in Bxgym(07T)(0253).

Proposition 4.6.7 and Corollary 4.6.8 follows from Lemma 4.3.7 (i) and Proposition
4.6.7 by the same way as that in Chapter 2 and we omit the proofs.

As for the unique existence of solutions of the initial value problem, (4.3.1)-(4.3.2),
the following proposition can be proved from the estimates in sections 6-8, as in chapters
1 and 2.
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Proposition 4.6.9. Let h € R and let Uy = Uy + Upso with Uyt € 2 (1),sym X Z(1),syn

and Uyse € H(Soo),Z' Then there exist constants 64 > 0 and C3 > 0 such that if

M (Uot1, Upes, g) = ||U01||(%(1)Xg;/(1))sym + [ Uoo| Hi o T [g]s < 04,

there exists a solution {Uy,Ux} of the initial value problem for (4.3.1)-(4.3.2) on [h, h+T]
in Bxgym(hﬁ_,_T)(CgM(UOl, Uoso, 9)) satisfying the initial condition U;|,—, = Uy; (j = 0, 00).
The uniqueness for this initial value problem holds in Bngm(h,h+T)(C354)-

Therefore, we can extend {u,u~} periodically on R as a time periodic solution of
(4.3.1)-(4.3.2) by using Corollary 4.6.8 and Proposition 4.6.9 in the same argument as
that given in Chapter 1. Consequently, we obtain Theorem 4.2.1. This completes the
proof.

155



Bibliography

1]

J. Brezina, Asymptotic behavior of solutions to the compressible Navier-Stokes equa-
tion around a time-periodic parallel low, STAM J. Math. Anal., 45 (2013), pp. 3514—
3574.

H. Cai, Z.Tan and Q. Xu, Time periodic solutions of the non-isentropic compressible
fluid models of Korteweg type, Kinet. Relat. Models., 8 (2015), pp. 29-51.

Z. Chen, Q. Xiao, and H. Zhao, Time periodic solutions of compressible fluid models
of Korteweg type, preprint, 2012, Analysis of PDEs.

Z. Chen and H. Zhao, Existence and nonlinear stability of stationary solutions to the
full compressible Navier-Stokes-Korteweg system, J. Math. Pures Appl., 101 (2014),
pp. 330-371.

P.H. Chiu and Y.T. Lin, A conservative phase field method for solving incompressible
two-phase flows, J. Comput. Phys., 230 (2011), pp. 185-204.

J.E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch.
Rational Mech. Anal., 88 (1985), pp. 95-133.

E. Feireisl, S. Matugu-Necasovd, H. Petzeltovd and Straskrava, On the motion of a
viscous compressible fluid driven by a time-periodic external force, Arch. Rational
Mech. Anal., 149 (1999), pp. 69-96.

E. Feireisl, P. B. Mucha, A. Novotny and M. Pokorny, Time-periodic solutions to
the full Navier-Stokes-Fourier system, Arch. Rational Mech. Anal., 204 (2012), pp.
745-786.

P. Galdi, Stationary Navier-Stokes problem in a two-dimensional exterior domain,
Stationary partial differential equations, Vol. I, pp.71-55, Handb. Differ. Equ., 2004.

P. Galdi, Existence and uniqueness of time-periodic solutions to the Navier-Stokes
equations in the whole plane, Discrete Contin. Dyn. Syst. Ser. S 6 (2013), pp. 1237—
1257.

H. Hattori and D. N. Li, Solutions for Two-Dimensional System for Materials of
Korteweg Type, SIAM J. Math. Anal., 25 (1994), pp. 85-98.

156



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

H. Hattori and D. N. Li, Global Solutions of a High Dimensional System for Korteweg
Materials, J. Math. Anal. Appl., 198 (1998), pp. 84-97.

H. Hattori and D. N. Li, The existence of global solutions to a fluid dynamic model for
materials for Korteweg type, J. Partial Differential Equations, 9 (1996), pp. 323-342.

M. Heida and J. Malek, On compressible Korteweg fluid-like materials, Internat. J.
Engrg. Sci., 48 (2010), pp. 1313-1324.

Y. Kagei, Asymptotic behavior of solutions to the compressible Navier-Stokes equa-
tion around a parallel flow, Arch. Rational Mech. Anal., 205 (2012), pp. 585-650.

Y. Kagei and S. Kawashima, Stability of planar stationary solutions to the compress-
ible Navier-Stokes equation on the half space, Commun. Math. Phys., 266 (2006),
pp- 401-430.

Y. Kagei and S. Kawashima, Local solvability of initial boundary value problem for
a quasilinear hyperbolic-parabolic system, J. Hyperbolic Differential Equations, 3
(2006), pp.195-232.

Y. Kagei and T. Kobayashi, Asymptotic Behavior of Solutions of the Compressible
Navier-Stokes Equation on the Half Space, Arch. Rational Mech. Anal., 177 (2005),
pp. 231-330.

Y. Kagei and K. Tsuda, Existence and stability of time periodic solution to the
compressible Navier-Stokes equation for time periodic external force with symmetry,
J. Differential Equations, 258 (2015), pp. 399-444.

S. Kaniel and M. Shinbrot, A reproductive property of the Navier-Stokes equations,
Arch. Rational Mech. Anal., 24 (1967), pp. 363-369.

T.Kato, Perturbation Theory for Liner Operators, Classics math., Springer-Verlag,
Berlin, 1995, reprint of the 1980 edition.

D.J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides
si 1’ on tient compte des forces capillaires causées par des variations de densité
considérables mais continues et sur la théorie de la capillarite dans 1~ hypothese d ’
une variation continue de la densité, Archives Néerlandaises des sciences exactes et
naturelles, Ser 2 (6) (1901), pp. 1-24.

M. Kotschote, Existence and time-asymptotics of global strong solutions to dynamic
Korteweg models, Indiana Univ. Math. J., 63 (2014), pp. 21-51.

H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in un-
bounded domains, Tohoku Math. J., 48 (1996), pp. 33-50.

H. Ma, S. Ukai, and T. Yang, Time periodic solutions of compressible Navier-Stokes
equations, J. Differential Equations, 248 (2010), pp. 2275-2293.

157



[20]

[27]

28]

[29]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion
of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A, 55

(1979), pp. 337-342.

M. Okita, On the convergence rates for the compressible Navier- Stokes equations
with potential force, Kyushu J. Math. 68 (2014), pp. 261-286.

K. Tsuda, On the existence and stability of time periodic solution to the compressible
Navier-Stokes equation on the whole space, Arch. Rational Mech. Anal., 216 (2016),
pp. 637-678.

K. Tsuda, Existence and stability of time periodic solution to the compressible
Navier-Stokes-Korteweg system on R?, to appear in Journal of Mathematical Fluid
Mechanics.

J. Serrin, A note on the existence of periodic solutions of the Navier-Stokes equations,
Arch. Rational Mech. Anal., 3 (1959), pp. 120-122.

Y. Shibata and S. Shimizu, A decay property of the Fourier transform and its appli-
cation to the Stokes problem, J. Math. Fluid Mech, 3 (2001), pp. 213 — 230.

Y. Shibata and K. Tanaka, On the steady flow of compressible viscous fluid and
its stability with respect to initial disturbance, J. Math. Soc. Japan, 55 (2003), pp.
797-826.

A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations
via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), pp. 607—647.

J.D. Van der Waals, Théorie thermodynamique de la capillarité, dans 1~ hypothese
d ’ une variation continue de la densité, Archives Néerlandaises des sciences exactes
et naturelles XXVIII (1893), pp. 121-2009.

Y. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Ko-
rteweg type, J. Math. Anal. Appl., 379 (2011), pp. 256-271.

M. Yamazaki, The Navier-Stokes equations in the weak-L" space with timedependent
external force, Math. Ann., 317 (2000), pp. 635-675.

M. Yamazaki, The stationary Navier-Stokes equation on the whole plane with exter-
nal force with antisymmetry. Ann. Univ. Ferrara Sez. VII Sci. Mat. 55 (2009), pp.
407-423.

158



