
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Holomorphic maps into the complex Grassmannian
manifold induced by orthogonal product of a
holomorphic line bundle

古賀, 勇

https://doi.org/10.15017/1654670

出版情報：九州大学, 2015, 博士（数理学）, 課程博士
バージョン：
権利関係：全文ファイル公表済



Holomorphic maps into the complex
Grassmannian manifold induced by
orthogonal product of a holomorphic

line bundle

Isami Koga

Graduate School of Mathematics

Kyushu University

2016





Acknowledgements

I am deeply grateful to my supervisor Professor Atsushi Katsuda for his constant ad-
vice and continuous encouragements. I am indebted to my former supervisor Professor
Yasuyuki Nagatomo for sharing his deep insights and idea, and frequent coming from
Kanagawa to Fukuoka for our discussion.

I am also grateful to Professors Miyuki Koiso, Yukio Otsu, Shouhei Honda, Masaro
Takahashi for their valuable comments and encouragements. In addition I am would
like to thank my roommates of student room 515 in Kyushu University for many helpful
discussion.

Finally I would like to thank to my family for their support over the years of this
study.

Isami Koga
February, 2016, Fukuoka





Contents

1 Introduction 1

2 Preliminaries 3
2.1 The complex Grassmannian manifold . . . . . . . . . . . . . . . . . . . . . 3
2.2 Holomorphic vector bundles and holomorphic maps into the complex Grass-

mannian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Homogeneous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Projectively flat immersions of Hermitian symmetric space of compact
type 16
3.1 Definition of projectively flatness . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Normal decompsition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 A proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Application: with parallel second fundamental form . . . . . . . . . . . . . 20
3.5 A proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Strongly projectively flat maps of compact homogeneous Kähler mani-
folds 28
4.1 Definition of Strongly projectively flatness . . . . . . . . . . . . . . . . . . 28
4.2 Strongly projectively flat maps of compact homogeneous Kähler manifolds 28

i



Chapter 1

Introduction

Let (M, g) and (M ′, g) be Riemannian manifolds. A smooth map f : M −→ M ′ is
called harmonic if its tension field vanishes. Let Sn−1 ⊂ Rn is the standard sphere
in Rn and x1, · · · , xn the standard coordinate functions on Rn, which are regarded as
functions on Sn−1 by restriction. In [28] Takahashi has shown that an isometric immersion
f : M −→ Sn−1 is harmonic if and only if f satisfies ∆(xA ◦ f) = λ · xA ◦ f for some
constant λ and A = 1, · · · , n, where ∆ is the Laplace operator of (M, g). We focus on
this result.

Pulling the tangent bundle TRn on Rn back by ι, we obtain the following short exact
sequence of vector bundles over Sn−1:

0 −→ TSn−1 −→ ι∗TRn −→ N −→ 0, (1.1)

where the bundle N → Sn−1 is the normal bundle, which is isomorphic to orthogonal
complement bundle of TSn−1 → Sn−1. Since N → Sn−1 is trivial, so is the pull-back
bundle f ∗N →M . An arbitrary function onM can be regarded as a section of f ∗N →M .
Thus for each A = 1, · · · , n xA ◦ f is a section of f ∗N →M . In Takahashi’s theorem, the
properties that each xA ◦f is an eigenfunction of the Laplacian of (M, g) can be expressed
in terms of a section of f ∗N →M .

In this regard, Nagatomo [19] generalized the above result to the following: Let
Grp(W ) be the oriented Grassmannian manifold of p-planes in a vector space W . We
fix an inner product (·, ·)W on W . Then we have the following short exact sequence of
vector bundles over Grp(W ).

0 −→ S −→ Grp(W )×W −→ Q −→ 0,

where S → Grp(W ) is the tautological bundle and Q → Grp(W ) the universal quotient
bundle over Grp(W ). (When p = n − 1, this short exact sequence of vector bundles
coincides with (1.1). For a detail, see the next chapter.)

Theorem 1 ([19]). Let f : (M, g) −→ Grp(W ) be a smooth map of a Riemannian
manifold (M, g) into the oriented Grassmannian manifold of real p-planes in vector space
W . We fix an inner product (·, ·)W on W . Then, the followings are equivalent.

(i) The map f :M −→ Grp(W ) is harmonic.

(ii) W has the zero property for Laplacian. (which is explained below)
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Under these conditions, we have for an arbitrary vector t ∈ W ,

∆t = −At, |df |2 = −trace A, (1.2)

where the vector space W is regarded as a space of sections of the pull-back bundle f ∗Q→
M and A is a certain operator which is determined by the second fundamental forms of
the above short exact sequence of vector bundles.

In this theorem we say that W has the zero property for the Laplacian if for an
arbitrary section t ∈ W the zero locus of t is included that of ∆t.

Moreover, Nagatomo [19] proved another theorem which is an extension of a result of
do Carmo and Wallach [7] concerning classification of minimal immersions of spheres into
another spheres.

In this thesis, we develop study of holomorphic maps of Kähler manifolds into the
complex Grassmannian manifolds using these theorems as a main tool.

A typical example of the complex Grassmannian manifold is the complex projective
space CP n. This case has been studied for a long time. For example, Calabi [4] has shown
that full holomorphic isometric immersions f :M −→ CP n of a Kähler manifold (M,hM)
into CP n is unique up to equivalence of holomorphic automorphisms. Takeuchi [29]
constructed all full holomorphic isometric immersions of homogeneous Kähler manifold
into the complex projective spaces.

Inspiring by these results, we consider holomorphic maps of Kähler manifolds into
the complex Grassmannian manifold of higher rank. There exist some results [9] and
[17] for Kähler submanifold in 2-plane complex Grassmannian manifold using matrix
computation. However there exist few papers about complex submanifolds of complex
Grassmannian manifold of rank ≥ 2.

Main focus of this thesis is study of holomorphic maps from the viewpoint of holo-
morphic vector bundle theory.

In Chapter 2, we introduce the geometry of complex Grassmannian manifold and
relation between holomorphic maps and holomorphic vector bundles. In Chapter 3 we
define projectively flat maps and show the rigidity of holomorphic isometric projectively
flat immersion of Hermitian symmetric space of compact type. In Chapter 4 we define
strongly projectively flat maps, which are inspired by a key of a proof of a theorem in
Chapter 3 and we show the rigidity of holomorphic equivariant strongly projectively flat
map of compact simply connected homogeneous Kähler manifold.
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Chapter 2

Preliminaries

2.1 The complex Grassmannian manifold

Let (Cn, (·, ·)n) be an n-dimensional complex vector space with Hermitian inner product.
Let p be the integer which satisfy the inequality 0 < p < n. We denote by Grp(Cn) the set
of all complex p-dimensional subspaces in Cn. This is called the complex Grassmannian
manifold of p-planes. We have a homogeneous metric hGr which is induced by (·, ·)n. We
denote by Cn := Gr×Cn → Gr the trivial bundle over Grp(Cn). We denote a subbundle
of Cn by

S := {(x, v) ∈ Cn|v ∈ x}. (2.1)

This is called the tautological vector bundle over Grp(Cn). Since S → Gr is a subbundle
of Cn → Gr, we can take the quotient bundle Q := Cn/S. These bundle satisfy the
following short exact sequence of vector bundles:

0 −→ S −→ Cn −→ Q −→ 0. (2.2)

The bundle Q→ Gr is called universal quotient bundle.
The trivial bundle Cn → Gr has a Hermitian fibre metric induced by the Hermitian

inner product (·, ·)n, which is denoted by the same notation. Then we obtain an orthogonal
complement bundle S⊥ → Gr of S → Gr in Cn → Gr. As C∞-complex vector bundle
S⊥ → Gr is naturally isomorphic to Q→ Gr.

Since S → Gr and S⊥ → Gr are subbundles of Cn → Gr, they have a Hermitian fibre
metric hS and hS⊥ induced from a Hermitian fibre metric of Cn → Gr. The universal
quotient bundle Q → Gr also have a Hermitian fibre metric hQ by using the natural
isomorphism between Q→ Gr and S⊥ → Gr. We denote by iS : S −→ Cn the inclusion
of S → Gr into Cn → Gr and by πS : Cn −→ S the orthogonal projection of Cn → Gr
onto S → Gr. Similarly we have the inclusion and the orthogonal projection with respect
to S⊥ → Gr and Cn → Gr. The projection πQ is nothing but the third map in (2.2).
Their relations are expressed as the following:

0 −−−→←−−− S
iS
−−−→←−−−
πS

Cn
πQ
−−−→←−−−
iQ

Q −−−→←−−− 0. (2.3)

These vector bundles are all homogeneous: let G̃ be the special unitary group SU(n)
and K̃0 = S(U(p) × U(q)) a subgroup of G̃. Then the complex Grassmannian manifold
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of p-planes Grp(Cn) is expressed as the homogeneous manifold G̃/K̃0. We assume that G̃
and K̃0 acts on Cn and Cn = Cp⊕Cq is natural decomposition with respect to the action
of K̃0. Then we obtain

S = G̃×K̃0
Cp, S⊥ = G̃×K̃0

Cq, Q = G̃×K̃0
(Cn/Cp). (2.4)

We denote by πp : Cn −→ Cp and πq : Cn −→ Cq the orthogonal projections onto Cp and
Cq respectively. Then maps iS, iQ, πS, πQ are expressed as the followings:

iS([g, u]) = ([g], gu), (2.5)

iQ([g, v]) = ([g], gv), (2.6)

πS([g], w) = [g, πp(g
−1w)], (2.7)

πQ([g], w) = [g, πq(g
−1w)], (2.8)

for g ∈ G, u ∈ Cp, v ∈ Cq ∼= Cn/Cp and w ∈ Cn.
The Hermitian connection on Cn → Gr is the canonical exterionr derivative d since

this is a trivial bundle. When s ∈ Γ(S) be a section of S → Gr, iS(s) is regarded as a
Cn-valued function. Then diS(s) is a Cn-valued 1-form. The 1-form diS(s) is decomposed
to the S-component and Q-component by

diS(s) = πS(diS(s)) + πQ(diS(s)). (2.9)

We set
∇Ss := πS(diS(s)), Hs := πQ(diS(s)). (2.10)

The symbol ∇S is a connection of S → Gr. This is nothing but the canonical connec-
tion of S → Gr.

The symbol H is a 1-form with values in Hom(S,Q) ∼= S∗ ⊗ Q. This is called the
second fundamental form of S → Gr into Cn → Gr.

Similarly let t ∈ Γ(Q) be a section of Q→ Gr. Then we obtain a connection ∇Q and
the second fundamental form K of Q→ Gr in Cn → Gr:

diQ(t) = Kt+∇Qt. (2.11)

Proposition 1 ([10]). For each x ∈ Grp(Cn) the second fundamental form H and K
satisfy

hQ(HXs, t) + hS(s,KXt) = 0, (2.12)

for s ∈ Sx, t ∈ Qx, X a (1, 0)-tangent vector at x and X is the complex conjugate of X.

Proof. we extend s and t to local holomorphic sections of S → Gr and Q → Gr respec-
tively. Then we obtain

hQ(HXs, t) = (∇S
Xs+HXs, t)n = d(s, t)n − (s,KXt+∇

Q

X
t)n

= −hS(s,KXt).

Proposition 2 ([10]). The second fundamental form H is a (1, 0)-form and K is a (0, 1)-
form.
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Proof. Let s be a local holomorphic section of S → Gr. Since iS : S −→ Cn preserves
holomorphic structure, iS(s) is a local holomorphic section of Cn →M . It follows that if
X is a (0, 1)-tangent vector on Grp(Cn), then the covariant derivative dXiS(s) vanishes.
Therefore we obtain

HXs = 0.

Since any element of S → Gr can be locally extended to a holomorphic section, the second
fundamental form H is a (1, 0)-form.

For the second fundamental form K, it follows from (2.12) that it is a (0, 1)-form.

By using the orthogonal projection πS and πQ, for any w ∈ Cn we obtain a smooth
section

s := πS(w) ∈ Γ(S), t := πQ(w) ∈ Γ(Q)

of S → Gr and Q→ Gr respectively.

Proposition 3 ([19]). For any w ∈ Cn, we set s := πS(w) and t := πQ(w). Then for any
(1, 0)-tangent vector X we have

∇S
X
s = −KXt, (2.13)

∇Q
Xt = −HXs. (2.14)

Proof. Since iS(s([g])) + iQ(t([g])) = ([g], w), we obtain

0 = diS(s) + diQ(t) = ∇Ss+Hs+Kt+∇Qt.

Therefore we obtain the above equations.

Sections in Proposition 3 are sometimes called the sections corresponding to w.
Let g̃ be the Lie algebra of G̃ and k̃ the Lie algebra of K̃0, which is a subalgebra of g̃.

We have a standard decomposition of g̃:

g̃ = k̃⊕ m̃. (2.15)

Then the real tangent bundle TGr of Grp(Cn) can be expressed as

TGr = G̃×K̃0
m̃. (2.16)

Since the complex Grassmannian manifold is a Hermitian symmetric space, there exists
a complex structure on m̃. Thus the complexification m̃C of m̃ is decomposed to the
eigenspaces of the complex structure:

m̃C = m̃(1,0) ⊕ m̃(0,1), (2.17)

where m̃(1,0) (resp. m̃(0,1)) is the eigenspace with the eigenvalue
√
−1 (resp. −

√
−1). The

holomorphic tangent bundle T(1,0)Gr of Grp(Cn) is expressed as

T(1,0)Gr = G̃×K̃ m̃(1,0). (2.18)
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Let πm̃ be the orthogonal projection of g̃ onto m̃. For w ∈ Cn, we compute the covariant
derivative and the second fundamental form of the sections s ∈ Γ(S) and t ∈ Γ(Q) by
using (2.10), (2.11), and (2.13) - (2.15). Sections s and t is expressed as the following:

s([g]) = [g, πp(g
−1w)], (2.19)

t([g]) = [g, πq(g
−1w)], (2.20)

for g ∈ G. Then we compute the covariant derivative ∇Ss as follows:

∇Ss = πSdiS(s) = πSd([g], gπp(g
−1w))

= πS([g], dgπp(g
−1w)− gπp(g−1dgg−1w))

= [g, πp(g
−1dgπp(g

−1w))]− [g, πp(g
−1dgg−1w)],

(2.21)

where we use the equation d(g−1) = g−1dgg−1. Since g−1dg is the Maurer-Cartan form,
the first term of the last side of (2.21) vanishes.

On the other hand, Hs is computed as follows:

Hs = [g, πq(g
−1dgπp(g

−1w))]. (2.22)

The Maurer-Cartan form g−1dg is a 1-form with values in g̃. The Lie algebra g̃ = su(n) is
the set of all trace-free skew-Hermitian matrices. m̃ ⊂ g̃ is expressed as the all elements
vanishing entries of u(p)⊕ u(q) in g̃. Thus (2.22) is rewriten as

Hs = [g, πm̃(g
−1dg)πp(g

−1w)]. (2.23)

Similarly for a section t of Q→ Gr we obtain the following computation:

Kt = [g, πm̃(g
−1dg)πq(g

−1w)], (2.24)

∇Qt = −[g, πq(g−1dgg−1w)]. (2.25)

The holomorphic tangent bundle T(1,0)Gr → Gr is naturally isomorphic to S∗ ⊗Q→
Gr, where S∗ → Gr is the dual bundle of S → Gr. Since the 1-form H is an homomor-
phism of T(1,0)Gr → Gr to S∗ ⊗Q→ Gr, this is also considered as an endomorphism of
T(1,0)Gr → Gr by using the natural identification.

Proposition 4 ([19]). The second fundamental form H is the identity automorphism of
T(1,0)Gr.

Proof. We use Killing vector fields.

Corollary 1. The second fundamental forms H and K are parallel.

From this proposition, any (1, 0)-vector X at x ∈ Grp(Cn) is identified with the
homomorphism HX of Sx into Qx, where Sx and Qx is fibres of S → Gr and Q→ Gr at
x respectively.

The natural identification induce a Hermitian metric hGr of Grp(Cn) from the metric
hS∗ ⊗ hQ of S∗⊗Q→ Gr. We call this metric the Hermitian metric of Fubini study type.

Let e1, · · · , en be the canonical unitary basis of Cn and sA, tA the corresponding
sections of S → Gr, Q→ Gr for A = 1, · · · , n respectively.
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Proposition 5 ([19]). For any (1, 0)-tangent vectors X and Y at x ∈ Grp(Cn), we have

hGr(X,Y ) =
n∑

A=1

hS(KY tA, KXtA) =
n∑

A=1

hQ(HXsA, HY sA). (2.26)

This proposition implies the following equation:

hGr(X,Y ) = −traceQHXKY = −traceSKYHX , X, Y ∈ T(1,0)xGr, (2.27)

where x ∈ Grp(Cn) and the symbol traceQ and traceS means to take the trace of the
linear homomorphism of Q→ Gr and S → Gr respectively.

Proposition 6 ([19],[15]). The curvatures RS and RQ of ∇S and ∇Q are expressed as

RS(X, Y ) = KYHX , (2.28)

RQ(X, Y ) = −HXKY , (2.29)

for (1, 0)-tangent vectors X, Y .

Proof. If necessary we extend a (1, 0)-tangent vector (resp.(0, 1)-tangent vector) to a local
holomorphic section (resp. local anti-holomorphic sction). By definition of a curvature
we have

RS(X, Y )s = ∇S
X∇S

Y
s−∇S

Y
∇S

Xs−∇S
[X,Y ]

s, X, Y ∈ T(1,0)xGr, (2.30)

where s ∈ Γ(S) is a local section around x ∈ Grp(Cn) corresponding to a certain vector
w ∈ Cn. (We can take such a w since πS : Cn −→ S is surjective.) From general theory
of complex manifolds the third term in right hand side vanishes. It follows from (2.13),
(2.14) and Corollary 1 that we obtain

RS(X, Y ) =∇S
X(∇S

Y
s)−∇S

Y
(∇S

Xs) = −∇S
X(∇S

Y
s)∇S

Y
(KXt)

=− (∇XK)Y t−K∇XY t−KY (∇
Q
Xt)

=KYHXs.

Similarly we also obtain (2.29).

Remark 1. It follows from (2.27), (2.28) and (2.29) that we obtain

hGr = traceRQ = −traceRS. (2.31)

Proposition 7 (cf.[15]). The curvature RGr of ∇Gr is expressed as the following:

RGr(X, Y )Z = −HZKYHX −HXKYHZ , (2.32)

for (1, 0)-tangent vectors X,Y, Z at x ∈ Grp(Cn).
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Proof. Since the metric hGr of Grp(Cn) is equivalent to the product metric hS∗ ⊗ hQ of
S∗⊗Q→ Gr, the Hermitian connection is equivalent to the product connection hS∗⊗hQ,
and the corresponding curvature RGr is equivalent to RS∗ ⊗ IdQ + IdS∗ ⊗Q, where Id is
the identity automorphism. Therefore for (1, 0)-tangent vectors X, Y , Z at x ∈ Grp(Cn),
we obtain

RGr(X, Y )Z = (RS∗
(X, Y )⊗ IdQ)HZ + (IdS∗ ⊗RQ(X, Y ))HZ . (2.33)

We compute each terms of right hand side respectively.
Since HZ is an element in S∗

x ⊗ Qx, this is expressed as
∑
fi ⊗ ti, where fi ∈ S∗

x and
ti ∈ Qx for finite integers i. For an arbitrary element s ∈ Sx it follows from (2.28) that
we compute

(RS∗
(X, Y )⊗ IdQ)(HZ)(s) =(RS∗

(X, Y )⊗ IdQ)(
∑

fi ⊗ ti)(s)

=(RS∗
(X, Y )fi)⊗ ti(s)

=(RS∗
(X, Y )fi)(s)ti

=− fi(RS(X, Y )s)ti

=− (fi ⊗ ti)(RS(X, Y )s)

=−HZKYHXs,

(2.34)

where we omit the symbol
∑

to compute clearly.
Similarly we also compute

(IdS∗ ⊗RQ(X, Y ))(HZ)(s) =fi ⊗ (RQ(X, Y )ti)(s)

=− fi(s)HXKY ti

=−HXKY (fi(s)ti)

=−HXKY (fi ⊗ ti)s
=−HXKYHZs.

(2.35)

Remark 2. Let us compute the holomorphic sectional curvature Hol of Grn−1(Cn), the
complex projective space with the metric of Fubini Study type. In this case, the rank of
the universal quotient bundle Q→ Gr is one. Thus it follows from (2.31) that we have

−HXKY = RQ(X, Y ) = hGr(X, Y )IdQx , X, Y ∈ T(1,0)xGr. (2.36)

Therefore we obtain

RGr(X, Y )Z = −HZKYHX −HXKYHZ = hGr(Z, Y )X + hGr(X, Y )Z. (2.37)

for (1, 0)-tangent vectorsX, Y , Z. This implies that the complex GrassmannianGrn−1(Cn)
with the metric of Fubini-Study type is the complex space form. Moreover for unit (1, 0)-
tangent vector X we can compute that

Hol(X) = hGr(R
Gr(X,X)X,X) = hS∗⊗Q(−2HXKXHX , HX) = 2. (2.38)
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For general complex Grassmannian manifold we obtain the following proposition:

Proposition 8. Let Grp(Cn) be the complex Grassmanifold of complex p-planes in Cn

with the metric of Fubini-Study type. We set q := n− p. Then the holomorphic sectional
curvature Hol of Grp(Cn) satisfies the following inequality:

2

min{p, q}
≦ Hol ≦ 2. (2.39)

Proof. For a unit (1, 0)-tangent vector X at x ∈ Grp(Cn), the holomorphic sectional
curvature H(X) is expressed as

H(X) = 2traceHXKXHXKX (2.40)

since the Hermitian metric hGr satisfies (2.27). It follows from Proposition 1 that HXKX

is a Hermitian operator on Qx. Thus HXKX has non-positive eigenvalues λ1, · · · , λq. The
Hermitian operator HXKX is the composition of HX and KX :

Qx

KX

−−−→ Sx

HX

−−−→ Qx. (2.41)

It follows that the number of nonzero eigenvalues is less than or equal to min{p, q}.
Here we assume that q ≦ p. Then we obtain

H(X) = 2(λ21 + · · ·+ λ2q). (2.42)

Since X is a unit vector, we have

1 = hGr(X,X) = −traceHXKX = −(λ1 + · · ·+ λq). (2.43)

It follows from the method of Lagrange multiplier that we obtain (2.39).

2.2 Holomorphic vector bundles and holomorphic maps

into the complex Grassmannian

Let M be a m-dimensional compact Kähler manifold, V → M a holomorphic Hermitian
vector bundle of rank q and V →M and W a finite-dimensional subspace of the space of
sections.

Definition 1 ([19]). The vector bundle V → M is called globally generated by W if the
bundle homomorphism

ev :M ×W −→ V : (x, t) 7−→ t(x) (2.44)

is surjective. Here the bundle homomorphism ev is called an evaluation map.

When V →M is globally generated by W , we define a map

f0 :M −→ Gr(W ) : x 7−→ Ker evx, (2.45)
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where evx := ev(x, ∗) : W −→ Vx and Ker evx = {t ∈ W |t(x) = 0}. The map f0 is called
an induced map by (V →M,W ).

Let W be the space of holomorphic sections. Since M is compact, W is a finite
dimensional complex vector space, denoted by N := dim W . We set a Hermitian inner
product (·, ·)W of W by

(t1, t2)W =

∫
M

hV (t1(x), t2(x))dx, t1, t2 ∈ W, (2.46)

where hV is the Hermitian fibre metric of V → M and dx is the volume form of M . In
this case, the induced map f0 :M −→ GrN−q(W ) by (V →M,W ) is called the standard
map induced by V →M .

Proposition 9. The standard map f0 :M −→ GrN−q(W ) is a holomorphic map.

Proof. Since the bundle homomorphism ev : W −→ V is surjective, we have a short exact
sequence

0 −→ Ker ev −→ W −→ V −→ 0, (2.47)

where Ker ev → M is the holomorphic vector bundle of fibre Ker evx at x ∈ M . Let
(s1, · · · , sN−q) be a local holomorphic frame of Ker ev → M . By using the bundle
injection Ker ev −→ W , s1, · · · , sN−q are regarded as holomorphic maps into W which is
linearly independent at each point x ∈M . Therefore we obtain a local holomorphic map
x 7−→ (s1, · · · , sN−q) of M into GrN−q(Cn), which is nothing but f0.

On the other hand, let f : M −→ Grp(Cn) be a holomorphic map. Then we have
a pull-back bundle f ∗Q → M of Q → Gr by f . Since the complex vector space Cn

is regarded as the space of holomoprhic sections of Q → Gr, we obtain a linear map
ι : Cn −→ H0(f ∗Q), where H0(f ∗Q) is the space of holomorphic sections. Since Cn −→ Q
is surjective, the evaluation map

ev :M × Cn −→ f ∗Q : (x, t) 7−→ ι(t)(x) (2.48)

is also surjective. Thus we obtain an induced map by (f ∗Q → M,Cn). This is nothing
but f .

Definition 2 ([19]). A holomorphic map f : M −→ Grp(Cn) is called full if the linear
map ι : Cn −→ H0(f ∗Q) is injective.

Let us consider the case that a holomorphic map f :M −→ Grp(Cn) is NOT full.
We denote by ev :M×Cn −→ f ∗Q an evaluation map inducing f . Then the linear map

ι : Cn −→ H0(f ∗Q) has non-trivial kernel Ker ι. Let W ′ be the orthogonal complement
of Ker ι in Cn. An evaluation map ev′ :M ×W ′ −→ f ∗Q is surjective. We obtain an full
induced map

f ′ :M −→ Gr(W ′) : x 7−→ Ker ev′x. (2.49)

Then the holomorphic map f is expressed as the following:

f :M
f ′
−→ Gr(W ′)

ι−→ Grp(Cn) : x 7−→ f ′(x) 7−→ f ′(x)⊕Ker ι. (2.50)
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It follows that a not-full map into Grp(Cn) is realized by a full map into the proper
subspace in Grp(Cn).

This notion is the same as fullness of maps into the complex projective space.
LetM be a compact Kähler manifold, V →M a holomorphic Hermitian vector bundle

and W the space of holomorphic sections of V → M with L2-Hermitian inner product
(·, ·)W .

Definition 3. A map f : M −→ Grp(Cn) is called induced by (V → M, (Cn, (·, ·)n) if
the pull-back bundle f ∗Q → M is holomorphic isomorphic to V → M with metrics and
connections.

In this definition, (·, ·)n is the standard Hermitian inner product of Cn and Grp(Cn)
is considered as the Kähler manifold with the Kähler metric induced by (·, ·)n.

Let f : M −→ Grp(Cn) be a full holomorphic map induced by V → M . Since Cn

is regarded as the space of holomorphic sections of Q → Gr, there exists a complex
linear map ι : Cn −→ W . By using ι, Cn is regarded as the subspace of W . We notice
that in general ι does not preserve Hermitian inner products. Thus now there exist two
Hermitian inner products (·, ·)n and (·, ·)W in Cn. Let T : Cn −→ Cn be the positive
Hermitian endomorphism of Cn which satisfies the following equality:

(Tw1, Tw2)n = (w1, w2)W , w1, w2 ∈ Cn. (2.51)

This induces an isometry

T−1 : (Grp(Cn), (·, ·)n) −→ (Grp(Cn), (·, ·)W ) : x 7−→ T−1x, (2.52)

which is denoted by the same notation of the inverse map of T .
We denote by evC : Cn −→ V and ev : W −→ V evaluation maps. Then evC is

considered as the restriction of ev to C. Since f : M −→ (Grp(Cn), (·, ·)n) is considered
as the induced map by (V →M,Cn) by the evaluation map evC, we obtain

f(x) = Ker evCx = Ker evx ∩ Cn, x ∈M. (2.53)

It follows from (2.52) that f is congruent to the following holomorphic map:

f :M −→ (Grp(Cn), (·, ·)W ) : x 7−→ T−1(f0(x) ∩ Cn), (2.54)

where f0 :M −→ Grp(W ) is the standard map induced by V →M . When we denote by
π : W → Cn the orthogonal projection onto Cn, we denote by T := T ◦ π a semi-positive
Hermitian endomorphism of W . Then Cn is expressed as the orthogonal complement of
Ker T in W .

This means that holomorphic maps induced by V →M is expressed as a deformation
of the standard map induced by V →M by a semi-positive Hermitian endomorphism.

At the end of this section, we define a equivalence of holomorphic maps into the
complex Grassmannian manifold.

Definition 4 ([19]). (i) Let f1 and f2 be holomorphic sections of a compact complex
manifold M into the complex Grassmannian. Then f1 and f2 are called image
equivalent if there exists an isometry ψ : Grp(Cn) −→ Grp(Cn) such that f1 = f2◦ψ,
where the right hand side of the equality is the composition of f2 and ψ.
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(ii) Let V → M be a holomorphic vector bundle, f : M −→ Grp(Cn) a holomorphic
map, ϕ : V −→ f ∗Q a holomorphic bundle isomorphism. Then pairs (f1, ψ1) and
(f2, ψ2) are called gauge equivalent if there exists an isometry ϕ : Grp(Cn) −→
Grp(Cn) such that f1 = f2 ◦ ϕ and ψ1 = ψ2 ◦ ϕ̃, where ϕ̃ : Q −→ Q is the bundle
isomorphism induced by ϕ.

By definition gauge equivalence induces image equivalence.

2.3 Homogeneous case

In this section we assume that the compact Kähler manifold M = G/K0 is homogeneous,
where G is a compact Lie group and K0 a closed subgroup.

Let V0 be an K0-representation space and V := G ×K0 V0 → M the holomorphic
homogeneous vector bundle. A point in V →M is expressed as the following:

[g, v] ∈ V, g ∈ G, v ∈ V0. (2.55)

The Lie group G acts on V :

g · [g0, v] := [gg0, v], g, g0 ∈ G, v ∈ V0. (2.56)

For a section t ∈ Γ(V ) of V →M and g ∈ G, we have a new section g · t ∈ Γ(V ):

(g · t)(x) := g(t(g−1x)), x ∈M, (2.57)

where g−1x is the natural action of G to M .
We denote by W the space of holomorphic sections of V → M . Since for g ∈ G and

t ∈ W g · t is also holomorphic sections of V →M , W is a G-representation space.
We assume that the evaluation map ev :M ×W −→ V is surjective.

Proposition 10 ([19]). V0 is considered as a subspace of W .

Proof. We denote by e the unit element in G and K0-representation space V0 is identified
with V[e]. We set π0 := ev[e] : W −→ V0 a surjective linear map. For k ∈ K0 and t ∈ W
we have

π0(k · t) = ev([e], k · t) = (k · t)([e]) = k(t(k−1[e])) = k(t([e])) = kπ0(t). (2.58)

Thus π is K0-equivariant. Consequently Ker π0 and (Ker π0)
⊥ are K0-representation

space and (Ker π0)
⊥ is identified with V0 as K0-representation space.

By definition of π0 and identification between V0 and V[e], we compute as follows:

t([e]) = [e, π0(t)], t ∈ W. (2.59)

For g ∈ G and t ∈ W we can compute that

ev([g], t) =t([g]) = (gg−1)(t(g · [e]))
=g((g−1 · t)([e])) = g · [e, π0(g−1 · t)] = [g, π0(g

−1 · t)].
(2.60)
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Therefore we can define an adjoint map ev∗ : V −→ W of ev by

ev∗([g, v]) = ([g], gv). (2.61)

We set U0 := Ker ev[e]. Then it follows from (2.60) that we obtain

Ker ev[g] ={t ∈ W | π0(g−1t) = 0}
={t ∈ W | g−1t ∈ U0} = gU0.

(2.62)

This does not depend on the choice of a representative in [g].
Consequently the standard map f0 : M −→ Gr(W ) induced by V → M is the G-

equivariant map expressed as the following:

f0([g]) = gU0. (2.63)

Let f :M −→ Grp(Cn) be a holomorphic map induced by V →M . Then there exists
a semi-positive Hermitian endomorphism T : W −→ W such that f is congruent to the
following map by (2.54):

f :M −→ Gr(Ker T ) : [g] 7−→ T−1(gU0 ∩ (Ker T )⊥). (2.64)

The semi-positive Hermitian endomorphism T has some properties, which has been
shown by Nagatomo in [19]. To introduce them, we prepare some notations.

Let H(W ) be the space of all Hermitian endomorphism of W . The Lie group G acts
on W by the following way:

(g · A)(w) := g(A(g−1w)), g ∈ G, A ∈ H(W ), w ∈ W. (2.65)

We define an Hermitian inner product (·, ·)H on H(W ) by

(A,B)H := traceAB, A,B ∈ H(W ). (2.66)

For u, v ∈ W , we define a symmetric or Hermitain endomorphism H(u, v) by

H(u, v)w :=
1

2
{(w, v)Wu+ (w, u)Wv}, w ∈ W. (2.67)

For subspaces U, V ⊂ W , we define subspaces of H(W ) by the following:

H(U, V ) := SpanR{H(u, v)|u ∈ U, v ∈ V }, (2.68)

GH(U, V ) := SpanR{g · A|g ∈ G,A ∈ H(U, V )}. (2.69)

In [19] Nagatomo has shown the following theorem:

Theorem 2 ([19], Theorem 5.20). Let M := G/K0 be e a compact reductive Riemannian
homogeneous space with decomposition g = k ⊕ m. Fix a homogeneous vector bundle
V = G×K0 V0 → G/K0 of rank q.

Let f :M −→ Grp(Kn), where K is R or C, be a full harmonic map satisfying following
two conditions:

13



(i) The pull-back bundle f ∗Q → M with the pull-back metric and connection is gauge
equivalent to V → M with the invariant metric and the canonical connection.
(Hence, q = n− p.)

(ii) The mean curvature operator A ∈ Γ(EndV ) of a map f is expressed as −µIdV for
some positive real number µ.

Then there exists an eigenspaceW ⊂ Γ(V ) of the Laplacian of an eigenvalue µ equipped
with L2-scalar product (·, ·)W and a semi-positive symmetric or Hermitian endomorphism
T ∈ End(W ). Regard W as g-representation (ρ,W ). The pair (W,T ) satisfies the follow-
ing conditions.

(I) The vector space Kn is a subspace ofW with the inclusion ι : Kn −→ W and V →M
is globally generated by Kn.

(II) As a subspace, Kn = (KerT )⊥, and the restriction of T is positive endomorphism of
Kn.

(III) The endomorphism T satisfies

(T 2 − IdW , GH(V0, V0))H = 0, (T 2, GH(ρ(m)V0, V0))H = 0, (2.70)

where V0 is regarded as a subspace of W .

(IV) The endomorphism T gives an embedding of Grp(Kn) into Grp′(W ), where p′ =
n+ dim KerT and also gives a bundle isomorphism ϕ : V −→ f ∗Q.

Then, f :M −→ Grp(Kn) can be expressed as

f(x) = (ι∗Tι)−1
(
f0(x) ∩ (KerT )⊥

)
, (2.71)

where ι∗ denotes the adjoint operator of ι under the induced scalar product on Kn

from (·, ·)W on W and f0 the standard map induced by W .

The pairs (f1, ϕ1) and (f2, ϕ2) are gauge equivalent if and only if

ι∗1T1ι1 = ι∗2T2ι2, (2.72)

where (Ti, ιi) correspond to fi under the expression in (2.71) respectively.
Conversely, suppose that a vector space Kn, an eigenspace W ⊂ Γ(V ) with eigenvalue

µ and a semi-positive symmetric or Hermitian endomorphism T ∈ End(W ) satisfying
condition (I), (II) and (III) are given. Then there exists a unique embedding of Grp(Kn)
into Grp′(W ) and the map f : M → Grp(Kn) defined in (2.71) is a full harmonic map
into Grp(Kn) satisfying condition (i) and (ii) with bundle isomorphism V ∼= f ∗Q.

When we assume that M is a Hermitian symmetric space, V → M holomorphic and
f a holomorphic, we obtain the following corollary.

Corollary 2. Let M := G/K0 be a Hermitian symmetric space of compact type such
that (G,K0) is a Hermitian symmetric pair. Fix a holomorphic homogeneous Hermitian
bundle V := G ×K0 V0 → M with Hermitian connection and we denote by W the space
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of holomorphic sections of V →M with L2-inner product (·, ·)W . Let f :M −→ Grp(Cn)
be a full holomorphic isometric immersion with the condition that the pull-back bundle
f ∗Q → M is gauge equivalent to V → M . Regard W as g-representation (ρ,W ). Then
there exists a semi-positive Hermitian endomorphism T ∈ H(W ) of W such that T satis-
fies the following conditions.

(I) Cn is the subspace of W with the inclusion ι : Cn −→ W and V → M is globally
generated by K.

(II) As a subspace, Cn = (KerT )⊥, and the restriction of T to Cn is positive Hermitian
endomorphism of Cn.

(III) The endomorphism T satisfy

(T 2 − IdW , GH(V0, V0))H = 0, (T 2, GH(ρ(m)V0, V0))H = 0, (2.73)

where V0 is regarded as a subspace of W .

(IV) The endomorphism T gives an embedding of Grp(Cn) into Grp′(W ), where p′ =
n+ dim KerT and also gives a bundle isomorphism ϕ : V −→ f ∗Q.

Then, f :M −→ Grp(Cn) can be expressed as

f(x) = (ι∗Tι)−1
(
f0(x) ∩ (KerT )⊥

)
, (2.74)

where ι∗ denotes the adjoint operator of ι under the induced scalar product on Cn

from (·, ·)W on W and f0 the standard map induced by W .

The pairs (f1, ϕ1) and (f2, ϕ2) are gauge equivalent if and only if

ι∗1T1ι1 = ι∗2T2ι2, (2.75)

where (Ti, ιi) correspond to fi under the expression in (2.75) respectively.
Conversely, suppose that a vector space Cn, the space W of holomorphic sections of

V → M and a semi-positive Hermitian endomorphism T ∈ End(W ) satisfying condi-
tion (I), (II) and (III) are given. Then there exists a unique embedding of Grp(Cn) into
Grp′(W ) and the map f : M −→ Grp(Cn) defined in (2.74) is a full harmonic map into
Grp(Cn) satisfying condition (i) and (ii) with bundle isomorphism V ∼= f ∗Q.
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Chapter 3

Projectively flat immersions of
Hermitian symmetric space of
compact type

3.1 Definition of projectively flatness

First of all, we define a projectively flat map.

Definition 5. Let M be a complex manifold. A holomorphic map f :M −→ Grp(Cn) is
called projectively flat if the pull-back bundle f ∗Q→M of the universal quotient bundle
over Grp(Cn) is projectively flat with respect to the pull-back connection.

In the present paper, we use the following definition of the projectively flatness of
vector bundles.

Definition 6. Let M be a complex manifold, V → M a holomorphic Hermitian vector
bundle. The Hermitian connection∇V of V →M is called projectively flat if the curvature
RV of ∇V satisfy the following equality:

RV = αIdV , (3.1)

where α is a 2-form on M and IdV a identity isomorphism on V →M .

Remark 3. In the case that p = n−1, where Grn−1(Cn) is the complex projective space,
an arbitrary holomorphic map f : M −→ Grn−1(Cn) is projectively flat since the rank
of Q→ M is one. Thus projectively flatness is a kind of extension of holomorphic maps
into the complex projective space.

In this capter, our goal is to prove the following theorem.

Theorem 3. Let M be a Hermitian symmetric space of compact type and f : M −→
Grp(Cn) a full holomorphic isometric projectively flat immersion. Then there exists a
holomorphic line bundle L→M such that f is congruent to the standard map of L̃→M ,
where L̃→M is the orthogonal direct sum of copies of L→M .
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3.2 Normal decompsition

The argument in this section is introduced by Nagatomo in [19].
Let G be a compact Lie group and K0 a closed subgroup of G. Let W be a G-

representation space and V0 ⊂ W a K0-representation subspace of W .

Definition 7 ([19], Definition 7.1). Let g and k Lie algebras of G and K0 respectively.
We assume that there exists a decomposition g = k ⊕ m. We denote by N1 = V ⊥

0 ⊂ W
the orthogonal complement of V0. We define B1 : m⊗ V0 −→ N1 as

B1(ξ ⊗ t) = π1(ξt), ξ ∈ m, t ∈ V0, (3.2)

where π1 : W −→ N1 is the orthogonal projection into N1. Inductively we denote by Nk

the orthogonal complement of L0⊕
⊕k−1

i=1 ImBi and by πk orthogonal projection into Nk.
Bk : S

km⊗ V0 → Nk is defined as

Bk(ξ1 · · · ξk ⊗ t) := πk

(
1

k!

∑
σ∈Sk

ξσ(1) · · · ξσ(k)t

)
. (3.3)

Since Bk isK0-equivariant, ImBk is aK0-representation space. If there exists a positive
integer k such that

W = V0 ⊕ ImB1 ⊕ · · · ⊕ ImBk, (3.4)

then (W,V0) is said to have a normal decomposition.

Proposition 11 ([19], Lemma 7.5). If (G,K0) is a symmetri pair, then for ξ1, · · · , ξk ∈ m
and v ∈ V0 we have

Bk(ξ1 · · · ξk ⊗ v) = πk(ξ1(· · · (ξk ⊗ v) . . .)). (3.5)

Proof. we compute that

ξ1ξ2ξ3 · · · ξkv − ξ2ξ1ξ3 · · · ξk = [ξ1, ξ2]ξ3 · · · ξk. (3.6)

By assumption for an arbitrary ξ, η ∈ m we have [ξ, η] ∈ k. Therefore the right hand side
in (3.6) is an element in V0 ⊕ ImB1 ⊕ · · · ⊕ ImBk−2. It follows that πk(ξ1ξ2ξ3 · · · ξkv) =
πk(ξ2ξ1ξ3 · · · ξkv). Consequently we obtain the assigned equality.

Proposition 12 ([19], Proposition 7.9). Let W be an irreducible G-representation space
and V0 ⊂ W a K0-representation subspace of W . Since W is irreducible, (W,V0) has a
normal decomposition. We assume that if i ̸= j, then ImBi and ImBj has no common
irreducible K0-representation subspaces.

Let W̃ be a direct sum of N -copies of W and Ṽ0 be a direct sum of N -copies of V0
which is regarded as a subspace of W̃ in a natural way. Then an arbitrary class one
representations of (G,K0) in H(W̃ ) is a submodule of GH(Ṽ0, Ṽ0).

Proof. See [19].
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3.3 A proof of Theorem 3

Let M = G/K0 be a Hermitian symmetric space of compact type such that (G,K0) be a
Hermitian symmetric pair and f :M −→ Grp(Cn) be a holomorphic isometric projectively
flat immersion. By definition of the projectively flatness there exists a complex (1, 1)-
differential form α on M such that

Rf∗Q(X, Y ) = α(X, Y )IdQf(x)
. (3.7)

Since f is isometric, we have hM(X, Y ) = hGr(df(X), df(Y )). It follows from (2.31) that
we obtain

q · α(X, Y ) = traceRf∗Q(X, Y ) = traceRQ(df(X), df(Y ))

= hGr(df(X), df(Y )) = hM(X, Y ).
(3.8)

Consequently

Rf∗Q(X, Y ) = −1

q

√
−1ωM(X, Y )IdQf(x)

, (3.9)

where ωM is the Kähler form on M .
Since ωM is parallel with respect to the Kähler connection, it follows from Holonomy

theorem that there exists a holomorphic Hermitian line bundle L→M with the curvature
tensor

RL(X, Y ) = −1

q

√
−1ωM(X, Y )IdQf(x)

(3.10)

such that f ∗Q → M is holomorphic isomorphic to L̃ → M with metrics and curvatures,
where L̃→M is orthogonal direct sum of copies of L→M .

Since M = G/K0 is a Hermitian symmetric space of compact type, holomorphic line
bundle is homogeneous. Thus there exists a 1-dimensional K0-representaiton space L0

such that
L = G×K0 L0. (3.11)

When we denote by L̃0 the direct sum of L0, L̃→M is regarded as L̃ = G×K0 L̃0.
We denote by W and W̃ the spaces of holomorphic sections of L → M and L̃ → M

respectively, which are G-representation spaces. It follows from Borel-Weil theory that
W is irreducible since L0 is irreducible as a K0-representation space and W̃ is regarded
as a orthogonal direct sum of W as a G-representation space. We set N = dim W .

Lemma 1 ([19], Proposition 7.7). W has a normal decomposition W = L0 ⊕ ImB1 ⊕
· · · ⊕ ImBk.

Proof. Since the dimension ofW is finite, there exists a positive integer k such that Bk̂ = 0

for an arbitrary integer k̂ > k. Therefore we have a g-module L0 ⊕ ImB1 ⊕ · · · ⊕ ImBk̂.
Since W is an irreducible G-representation space, this is also an irreducible g-module,
which implies the result.

Since M is a Hermitian symmetric space of compact type, M is decomposed to direct
product of irreducible Hermitian symmetric spaces by a theorem of de Rham. We denote
by M ∼= M1 × · · · ×Ml the de Rham decomposition of M , where Mi is an irreducible
Hermitian symmetric space of compact type for i = 1, · · · , l. G and K0 are also decom-
posed to G ∼= G1 × · · · ×Gl and K0

∼= K1 × · · · ×Kl respectively such that (Gi, Ki) is an
irreducible Hermitian symmetric pair and Mi = Gi/Ki.
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Lemma 2 (cf. Theorem 7.18 in [19]). If i ̸= j, then ImBi and ImBj has no common
irreducible K0-representation subspace.

Proof. Let gi and ki be Lie algebras of Gi and Ki respectively. Let gi = ki ⊕ mi be the
standard decomposition of Lie algebras. Since (Gi, Ki) is an Hermitian symmetric pair,
then ki can be decomposed to kki = ui ⊕ k′i, where ui ∼= u(1) is the center of ki. Let mC

i

be the complexification of mi and mi,(0,1) (resp. mi,(1,0)) the eigenspace of the complex
structure on mi corresponding to the eigenvalue −

√
−1 (resp.

√
−1). Since mi,(0,1) is

an irreducible ki-module, then it can be expressed as mi,(0,1) = Cdi ⊗ Ti, where Cdi is a
1-dimensional ui-module with weight di ̸= 0 and Ti is an irreducible k′i-module. Thus the
tangent space of type (0, 1) at o ∈M is expressed as

l⊕
i=1

mi,(0,1) =
l⊕

i=1

(Cdi ⊗ Ti) . (3.12)

Then j-th symmetric tenser space of
⊕l

i=1mi,(0,1) can be expressed as

Sj

(
l⊕

i=1

mi,(0,1)

)
=

⊕
r1+···+rl=j

ri≥0

(
l⊗

i=1

Cridi

)
⊗ Tr1,··· ,rl , (3.13)

where Cridi is a 1-dimensional ui-module with weight ridi and Tr1,··· ,rl is a k′1 ⊕ · · · ⊕ k′l-
module.

Since L0 is a 1-dimensional (K1 × · · · ×Kl)-representation space, L0 is expressed as

L0 =

(
l⊗

i=1

Cki

)
⊗ V,

where Cki is a 1-dimensional ui-module with weight ki ̸= 0 and V is a 1-dimensional
(k′1 ⊕ · · · ⊕ kl)-module.

We denote by ev : W −→ L an evaluation map of L → M . Then B1 : (mC
1 ⊕ · · · ⊕

mC
l ) ⊗ L0 → N1 ⊂ W is nothing but the second fundamental form of vector bundle of

L→M in W →M . Thus

B1((m1,(1,0) ⊕ · · · ⊕ml,(1,0))⊗ L0) = {0}. (3.14)

It follows from Propositon 11 that we can ignore mi,(1,0) for i = 1, · · · , l. Since

Bj : S
j

(
l⊕

i=1

mi,(0,1)

)
⊗ L0 −→ Nj (3.15)

is K0-equivariant, ImBj can be expressed as

ImBj =
⊕

r1+···+rl=j
ri≥0

(
l⊗

i=1

Cridi+ki

)
⊗ Ur1,··· ,rl , (3.16)

where Ur1,··· ,rl is a k′1 ⊕ · · · ⊕ k′l-module. It follows that ImBi and ImBj has no common
irreducible (K1 × · · · ×Kl)-submodule if i ̸= j.
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It follows from Lemma 2 and Proposition 12 that an arbitrary class one representations
of (G,K0) in H(W̃ ) is a submodule of GH(L̃0, L̃0).

On the other hand, the following result has proved in [19].

Theorem 4 ([19], Theorem 7.19). Let G/K0 be a compact simply connectet homogeneous
Kähler manifold and L → G/K0 a holomorphic homogeneous line bundle. We denote
by W the space of holomorphic sections of L → G/K0. If L → G/K0 is a positive
line bundle, then the set of Hermitian endomorphisms H(W ) on W consists of class one
representations of (G,K0).

Thus we otainH(W̃ ) = GH(L̃0, L̃0). It follows from equation (2.73) in Corollary 2 that
the semi-positive Hermitian endomorphism T ∈ H(W̃ ) obtained by f : M −→ Grp(Cn)
is the identity endomorphism. This implies that f :M −→ Grp(Cn) is the standard map
induced by L̃→M .

Since L̃ is orthogonal direct sum of q-copies of L → M , the space W̃ of holomorphic
sections of L̃ → M is decomposed to the orthogonal direct sum of q-copies of W . We
denote by ev :M ×W −→ L an evaluation map of L→M and by ẽv :M × W̃ −→ L an
evaluation map of L̃→M . The evaluation map ẽv is expressed as the following:

ẽv :M × (W ⊕ · · · ⊕W ) −→ L⊕ · · · ⊕ L : (x, t1 + · · ·+ tq) 7→ t1(x) + · · ·+ tq(x),

where W ⊕ · · · ⊕W = W̃ and L ⊕ · · · ⊕ L = L̃. Thus Kerẽvx = Kerevx ⊕ · · · ⊕ Kerevx
for any x ∈ M . Let f0 : M −→ GrN−1(W ) be the standard map induced by L → M ,
where N = dimW . Since f :M −→ Grp(Cn) is the standard map induced by L̃→M , f
is expressed as

f(x) = Kerẽvx = Kerevx ⊕ · · · ⊕Kerevx = f0(x)⊕ · · · ⊕ f0(x). (3.17)

This is the composed map of the following two maps:

f1 :M −→ GrN−1(W )× · · · ×GrN−1(W ) : x 7−→ (f0(x), · · · , f0(x)), (3.18)

f2 : GrN−1(W )× · · · ×GrN−1(W ) −→ Grq(N−1)(

q⊕
W ) :

(U1, · · · , Uq) 7−→ U1 ⊕ · · · ⊕ Uq.

(3.19)

Since f and f2 is isometric maps, f1 is also isometric. Therefore f0 is isometric up to
homothety.

3.4 Application: with parallel second fundamental

form

In this section, we show the following theorem.

Theorem 5. Let M be a compact Kähler manifold and f : M −→ Grp(Cn) be a holo-
morphic isometric immersion. Assume that f is projectively flat. Then the holomorphic
sectional curvature of M is greater than or equal to 1

q
if and only if f has parallel second

fundamental form.
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This is a kind of extension of a theorem of A. Ros in [24], which claimed that a
holomorphic map of a compact Kähler manifold into the complex projective space has
holomorhic sectional curvature greater than or equal to 1

2
if and only if it has parallel

second fundamental form. When q = 1, Theorem 5 claims that a holomorphic map of
a compact Kähler manifold into the complex projective space has holomorhic sectional
curvature greater than or equal to 1 if and only if it has parallel second fundamental form,
which is distinct from 1

2
.

This is because we take a metric of Fubini-Study type with constant holomorphic
sectional curvature 2 (see Remark 2) although holomorphic sectional curvature of complex
projective space in a theorem of Ros is identically 1.

It follows from Theorem 3 that we show the following theorem, which is a rigidity
theorem of holomorphic projectively flat immersions with parallel second fundamental
form.

Theorem 6. LetM be a compact Kähler manifold and f :M −→ Grp(Cn) a holomorphic
isometric immersion. If f is projectively flat and has parallel second fundamental form,
then f is expressed as the composed map of (3.18) and (3.19).

Proof. First of all, we show the following lemma.

Lemma 3. The compact Kähler manifold M is a Hermitian symmetric space of compact
type.

Proof. Since f has parallel second fundamental form, it follows from equation of Gauss
that M is locally symmetric. Let M̃ →M be the universal covering over M . Since M̃ is
simply connected and locally symmetric, M̃ is a Hermitian symmetric space. It follows
from Theorem 5 that M̃ has holomorphic sectional curvature greater than or equal to
1/q. It follows that M̃ is of compact type. M̃ has non-negative Ricci tensor and so is M .
It follows from [11] that M is simply connected.

It follows from Theorem 3 that f : M −→ Grp(Cn) is expressed as the composed
map of (3.18) and (3.19). Since f has parallel second fundamental form and f2 is totally
geodesic, f0 : M −→ GrN−1(W ) has parallel second fundamental form. Therefore a
holomorphic map f0 : M → GrN−1(W ) is an isometric immersion with parallel second
fundamental form, which is classified in [22].

3.5 A proof of Theorem 5

We have a short exact sequence of holomorphic vector bundles:

0 −→ T1,0M −→ T1,0Gr|M −→ N −→ 0, (3.20)

where T1,0Grp(Cn)|M → M is a holomorphic vector bundle induced by f from the holo-
morphic tangent bundle over Grp(Cn) and N → M is the quotient bundle. We obtain
second fundamental forms σ and A of TM and N in T1,0Gr|M :

∇Gr
X Y = ∇M

X Y + σ(X,Y ), X ∈ TCM, Y ∈ Γ(T1,0M), (3.21)

∇Gr
X ξ = −AξX +∇N

Xξ, U ∈ TCM, ξ ∈ Γ(N). (3.22)
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For each point x ∈ M , σ : T1,0xM × T1,0xM −→ Nx is a symmetric bilinear mapping.
This is called the second fundamental form of f . The second fundamental form A :
Nx × T0,1xM −→ T1,0xM is a bilinear mapping. This is called the shape operator of
M . We follow a convention of submanifold theory to define the shape operator. Second
fundamental forms σ and A satisfy the following formulas.

Formulas 1. For any X, Y, Z,W ∈ T1,0xM , we have

• σ(X,Y ) = 0, AξX = 0,

• hGr (σ(X, Y ), ξ) = hGr

(
Y,AξX

)
,

• hGr

(
RM(X, Y )Z,W

)
= hGr

(
RGr(X, Y )Z,W

)
− hGr (σ(X,Z), σ(Y,W )) ,

• hGr

(
RN(X, Y )ξ, η

)
= hGr

(
RGr(X, Y )ξ, η

)
+ hGr

(
AξY ,AηX

)
,

• (∇Y σ) (X,Z) = (∇Xσ) (Y, Z),

• (∇Y σ) (U,Z) = −
(
RGr(X, Y )Z

)⊥
.

Note that the quotient bundle N → M is isomorphic to the orthogonal complement
bundle T⊥

1,0M →M as a C∞ complex vector bundle. The third, fourth and fifth formulas
are called the equation of Gauss, the equation of Ricci and the equation of Codazzi
respectively. From the equation of Codazzi,

∇σ : T1,0xM ⊗ T1,0xM ⊗ T1,0xM −→ Nx (3.23)

is a symmetric tensor for any x ∈M .
Since f is holomorphic, isometric and projectively flat, we obtain

Rf∗Q(X, Y ) =
1

q
hM(X, Y )IdQf(x)

, for X,Y ∈ T1,0xM. (∗)

We denote by Hol the holomorphic sectional curvature of a Kähler manifold. By the
equation of Gauss , if X is a unit (1,0)-vector on M , then

HolM(X) = hM(RM(X,X)X,X) = hGr(R
Gr(X,X)X,X)− ∥σ(X,X)∥2

= HolGr(X)− ∥σ(X,X)∥2.
(3.24)

Lemma 4. Let f be a holomorphic isometric immersion. Then f is projectively flat if
and only if

HolGr(X) =
2

q
, for any unit (1, 0)−vector X. (3.25)

Proof. Let X be a unit (1,0)-vector at x ∈M . By the equation (∗), we have

−HXKX = Rf∗Q(X,X) =
1

q
IdQx . (3.26)

It follows from equations (2.37) and (3.26) that

HolGr(X) = hGr(R
Gr(X,X)X,X) = −2hS∗⊗Q(HXKXHX , HX)

=
2

q
hS∗⊗Q(HX , HX) =

2

q
.

(3.27)
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Lemma 5. For any (0, 1)-vector Y on M we have

∇M
Y
σ = 0. (3.28)

Proof. By the equation (2.32) and the equation (∗), it follows that

RGr(X, Y )Z = −HZKYHX −HXKYHZ

=
1

q
hGr(Z, Y )X +

1

q
hGr(X, Y )Z.

(3.29)

By the equation of Codazzi, we have

∇M
Y
σ(X,Z) = −(RGr(X, Y )Z)⊥ = 0. (3.30)

In [24] A.Ros has proved the following Lemma.

Lemma 6 (A.Ros,[24]). Let T be a k-covariant tensor on a compact Riemannian manifold
M . Then ∫

UM

(∇T )(X, · · · , X)dX = 0, (3.31)

where UM is the unit tangent bundle of M and dX is the canonical measure of UM
induced by the Riemannian metric on M .

For a proof, see [24].
We use the complexification of the above lemma.

Lemma 7. Let T be a (p, q)-covariant tensor on an m-dimensional compact Kähler man-
ifold (M,hM). We consider M as an 2m-dimensional real manifold with the almost com-
plex structure J . We denote by gM the Riemannian metric induced by hM . Then we have
the canonical measure dX of UM . We obtain the following equality:∫

UM

(∇T )(UX , UX , · · · , UX , UX , · · · , UX)dX = 0, (3.32)

where UX = 1√
2
(X−

√
−1JX) and UX = 1√

2
(X+

√
−1JX) and X is a real tangent vector

on M .

Proof. We define real valued k-covariant tensors on Riemannian manifold (M, gM) by

2K(X1, · · · , Xk) =T (U1, · · · , Up, Up+1, · · · , Uk) + T (U1, · · · , Up, Up+1, · · · , Uk), (3.33)

2L(X1, · · · , Xk) =
√
−1{T (U1, · · · , Up, Up+1, · · · , Uk)

− T (U1, · · · , Up, Up+1, · · · , Uk)},
(3.34)

where k = p + q, Ui = UXi
for i = 1, · · · , k. Then T , K and L satisfy the following

equation:

T (U1, · · · , Up, Up+1, · · · , Uk) = K(X1, · · · , Xk)−
√
−1L(X1, · · · , Xk). (3.35)
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We get the covariant derivative of both sides of this equation:

(∇UX
T )(UX , · · · , UX , · · · ) =

1√
2
(∇X+

√
−1JXK)(X, · · · , X)

−
√
−1√
2
(∇X+

√
−1JXL)(X, · · · , X).

(3.36)

Since the covariant derivative is linear, then

(∇X+
√
−1JXK)(X, · · · , X) = (∇XK)(X, · · · , X) +

√
−1(∇JXK)(X, · · · , X). (3.37)

Consequently it follows from Lemma 6 that we obtain∫
UM

(∇T )(UX , UX , · · · , UX , UX , · · · , UX)dX =

√
−1√
2

∫
UM

(∇JXK)(X, · · · , X)dX

+
1√
2

∫
UM

(∇JXL)(X, · · · , X)dX.

For the covariant tensor field K, we define a new covariant tensor fields K̃ by

K̃(X1, · · · , Xk) = K(JX1, · · · , JKk), X1, · · · , Xk ∈ TxM, x ∈M. (3.38)

Since the almost complex structure J is parallel and preserves the inner product and
orientation of each tangent space of M , it follows that∫

UM

(∇JXK)(X, · · · , X)dX = (−1)k
∫
UM

(∇JXK)(J(JX), · · · , J(JX))dX

= (−1)k
∫
UM

(∇JXK̃)(JX, · · · , JX)dX

= (−1)k
∫
UM

(∇XK̃)(X, · · · , X)dX

= 0.

(3.39)

The last equality follows from Lemma 6. Similarly we have∫
UM

(∇JXL)(X, · · · , X)dX = 0. (3.40)

Therefore we obtain the equality in Lemma 7.

From now on we show Theorem 5.
We define a (2,2)-covariant tensor T on M by

T (X, Y, Z,W ) = hGr (σ(X, Y ), σ(Z,W )) , (3.41)

where U , V , Z, W are (1,0)-vectors on M . Using the equation of Ricci and the equation
of Codazzi, we obtain

(∇2T )(X,X,X,X,X,X) = hM
(
(∇2σ)(X,X,X,X), σ(X,X)

)
+ ∥(∇σ)(X,X,X)∥2.

(3.42)
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Using the Ricci identity, we obtain

(∇2σ)(X,X,X,X)− (∇2σ)(X,X,X,X) = RN(X,X) (σ(X,X))− 2σ
(
RM(X,X)X,X

)
.

(3.43)
It follows from Lemma 5 that

(∇2σ)(X,X,X,X) = −RN(X,X) (σ(X,X)) + 2σ
(
RM(X,X)X,X

)
. (3.44)

Therefore, we obtain

(∇2T )(X,X,X,X,X,X) =− hGr

(
RN(X,X)(σ(X,X)), σ(X,X)

)
+ 2hGr

(
σ(RM(X,X)X,X), σ(X,X)

)
+ ∥(∇σ)(X,X,X)∥2.

(3.45)

From the equation of Ricci and (2.32), we have

hGr

(
RN(X,X)(σ(X,X)), σ(X,X)

)
=hGr

(
RGr(X,X)(σ(X,X)), σ(X,X)

)
+ ∥Aσ(X,X)X∥2

=hGr(−Hσ(X,X)KXHX , Hσ(X,X))

+ hGr(−HXKXHσ(X,X), Hσ(X,X))

+ ∥Aσ(X,X)X∥2.
(3.46)

In the following computation, we extend (1, 0)-vectors to local holomorphic vector fields
if necessary.

Lemma 8. For any (1, 0)-vectors X,Y,Z on M , we have

−Hσ(X,Z)KY =
(
∇ZR

f∗Q
)
(X, Y ) (3.47)

Proof. We have(
∇ZR

f∗Q
)
(X, Y ) = −∇Z(HXKY ) +H∇ZXKY = −(∇ZH)(U)KY . (3.48)

Since we can easily show that Hσ(X,Z) = (∇XH)(Z), we obtain

−Hσ(X,Z)KY = (∇XH)(Z)KY =
(
∇ZR

f∗Q
)
(X, Y ). (3.49)

It follows from (∗) that(
∇ZR

f∗Q
)
(X, Y ) =∇f∗Q

Z

(
Rf∗Q(X, Y )

)
−Rf∗Q(∇M

Z X, Y )

=
1

q
∇M

Z (hM(X, Y )) IdQ −
1

q
hM(∇M

Z X,Y )IdQ = 0,
(3.50)

where X, Y , Z are (1, 0)-vectors on M . Then it follows from Lemma 8, (3.26) and (3.46)
that

hGr

(
RN(X,X)(σ(X,X)), σ(X,X)

)
=hGr(−HXKXHσ(X,X), Hσ(X,X))

+ ∥Aσ(X,X)X∥2

=
1

q
∥σ(X,X)∥2 + ∥Aσ(X,X)X∥2.

(3.51)
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Using the equation of Gauss and the equation (3.29), we have

hGr

(
σ(RM(X,X)X,X), σ(X,X)

)
= hGr

(
RM(X,X)X,Aσ(X,X)X

)
= hGr

(
RGr(X,X)X,Aσ(X,X)X

)
−X∥Aσ(X,X)X∥2

= −2hGr(HXKXHX , HAσ(X,X)X
)− ∥Aσ(X,X)X∥2

=
2

q
∥σ(X,X)∥2 − ∥Aσ(X,X)X∥2.

(3.52)

Combining the equations (3.51) and (3.52) with (3.45), we obtain

(∇2T )(X,X,X,X,X,X) =−
(
1

q
∥σ(X,X)∥2 + ∥Aσ(X,X)X∥2

)
+ 2

(
2

q
∥σ(X,X)∥2 − ∥Aσ(X,X)X∥2

)
+ ∥(∇σ)(X,X,X)∥2

=
3

q

(
∥σ(U,U)∥2 − q∥Aσ(X,X)X∥2

)
+ ∥(∇σ)(X,X,X)∥2.

(3.53)

By integrating both sides of (3.53) (X = UX), Lemma 7 yields

3

q

∫
UM

(
∥σ(UX , UX)∥2 − q∥Aσ(UX ,UX)UX∥2

)
dX +

∫
UM

∥(∇σ)(UX , UX , UX)∥2dX = 0.

(3.54)
From now on we assume that the holomorphic sectional curvature ofM is greater than

or equal to 1
q
. Let us compute the first term of the left hand side of the equation (3.54).

We define ξ ∈ N as σ(X,X) = ∥σ(X,X)∥ξ. Then we have

Aσ(X,X)X = ∥σ(X,X)∥AξX. (3.55)

We denote by τ the involutive anti-holomorphic transformation of the complexification
TCM of TM having TM as the fixed point set. We set B := Aξ ◦ τ . Then B is an
anti-linear transformation and satisfies the following equation:

hGr(BX, Y ) = hGr(BY,X), X, Y ∈ T1,0xM, x ∈M. (3.56)

If we regard B as a real linear transformation on the real vector space with an inner
product Re(hGr(·, ·)), then B is a symmetric transformation. Let λ be the eigenvalue
of B whose absolute value is maximum and e the corresponding unit eigenvector. By
Cauchy-Schwarz inequality, we have

λ = hGr(Be, e) = hGr(Aξe, e) = hGr(ξ, σ(e, e)) ≤ ∥σ(e, e)∥. (3.57)

It follows from (3.24), Lemma 4 and the hypothesis that

∥AξX∥2 ≤ λ2 ≤ ∥σ(e, e)∥2 ≤ 1

q
. (3.58)
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It follows that

∥σ(X,X)∥2 − q∥Aσ(X,X)X∥2 = ∥σ(U,U)∥2(1− q∥AξX∥2)

≥ ∥σ(X,X)∥2(1− q · 1
q
) = 0.

(3.59)

Thus it follows from (3.54) that

∥(∇σ)(X,X,X)∥2 = 0. (3.60)

Since ∇σ is a symmetric tensor, ∇σ vanishes.
Conversely, we assume that M has parallel second fundamental form. From (3.24)

and Lemmas 4 and 5, it is enough to prove that ∥σ(X,X)∥2 ≤ 1
q
, where X is an arbitrary

unit (1, 0)-vector on M . Let T be a (2, 2)-covariant tensor on M defined by the equation
(3.41). Since the second fundamental form σ is parallel, T is also parallel and so ∇2T = 0.
It follows from (3.53) that

∥σ(X,X)∥2 − q∥Aσ(X,X)X∥2 = 0. (3.61)

The Cauchy-Schwarz inequality and (3.61) imply that

∥σ(X,X)∥2 = hGr (σ(X,X), σ(X,X)) = hGr

(
X,Aσ(X,X)X

)
≤ ∥Aσ(X,X)X∥ =

1
√
q
∥σ(X,X)∥.

(3.62)

Therefore, ∥σ(X,X)∥2 ≤ 1
q
.
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Chapter 4

Strongly projectively flat maps of
compact homogeneous Kähler
manifolds

4.1 Definition of Strongly projectively flatness

First of all, we define a strongly projectively flat map.

Definition 8. Let M be a compact complex manifold. A holomorphic map f : M −→
Grp(Cn) is called strongly projectively flat if there exists a holomorphic Hermitian line
bundle L → M such that the pull-back bundle f ∗Q → M of the universal quotient
bundle is holomorphic isometric to L̃→M preserving Hermitian metrics, where L̃→M
is the orthogonal direct sum of copies of L→M .

Remark 4. Since L→M is of rank 1, there exists a (1, 1)-form α such that the curvature
RL of the Hermitian connection ∇L on L → M is expressed as RL = αIdL. It follows
that the curvature RL̃ of the Hermitian connection ∇L̃ on L̃→M is also expressed as

RL = αIdL. (4.1)

Therefore L̃ → M is projectively flat and a holomorphic strongly projectively flat map
f :M −→ Grp(Cn) is projectively flat.

In general the inverse of the above assertion is not true. However If a holomorphic
map f : M −→ Grp(Cn) is an isometric immersion, then f is strongly projectively flat if
and only if it is strongly projectively flat by the observation in Section 3.3.

A holomorphic map f : M −→ Grn−1(Cn) is strongly projectively flat since the rank
of Q → M is one. Therefore strongly projectively flatness is also a kind of extension of
holomorphic maps into the complex projective space.

4.2 Strongly projectively flat maps of compact ho-

mogeneous Kähler manifolds

Let M be a compact simply connected homogeneous Kähler manifold, G the identity
component of the isometry group ofM and K0 an isotropy subgroup of G. Let f :M −→
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Grp(Cn) be a full holomorphic strongly projectively flat map. By definition of strongly
projectively flatness there exists a Hermitian line bundle L→ M such that f ∗Q→ M is
isomorphic to L̃ → M as a Hermitian vector bundle, where L̃ → M is orthogonal direct
sum of q-copies of L→M . Since M is a compact simply connected homogeneous Kähler,
L→M is homogeneous. We set L0 the 1-dimensional K0-representation space such that
L = G×K0 L0. Then we have

L̃ = L⊕ · · · ⊕ L = G×K0 (L0 ⊕ · · · ⊕ L0) = G×K0 L̃0, (4.2)

where L̃0 is q-orthogonal direct sum of L0. We denote byW and W̃ the spaces of holomor-
phic sections of L→ M and L̃→ M respectively and we set N the dimension of W . By
definition of L̃→M , W̃ is regarded as q-orthogonal direct sum of W . Let πj : W̃ −→W
be the orthogonal projection onto the j-th component of W̃ . It follows from Proposition
10 that L0 is a subspace of W and L̃0 is a subspace of W̃ as a K0-representation space.
When we restrict πj to L̃0, πj|L̃0

is orthogonal projection of L̃0 onto the j-th component

of L̃0. We denote by

ev :M ×W −→ L, ẽv :M × W̃ −→ L̃ (4.3)

the evaluation maps respectively and by f0 : M −→ GrN−1(W ) and f̃0 : M −→
Grq(N−1)(W̃ ) the standard maps induced by L → M and L̃ → M respectively. Since

W̃ is orthogonal direct sum of q-copies of W , we have

ẽv([g], t) = ẽv([g], t1 ⊕ · · · ⊕ tq)
= ev([g], t1)⊕ · · · ⊕ ev([g], tq) ∈ L⊕ · · · ⊕ L,

(4.4)

where t = t1⊕· · ·⊕ tq is the orthogonal decomposition with respect to W̃ =W ⊕· · ·⊕W .
We set U0 := Kerev[e], where e is the unit element in G. Then it follows from (2.63) that

f0([g]) = gU0. It follows from (4.4) that the map f̃0 is expressed as

f̃0 :M −→ GrN−1(W )× · · · ×GrN−1(W ) −→ Grq(N−1)(W̃ ),

[g] 7−→ (gU0, · · · , gU0) 7−→ gU0 ⊕ · · · ⊕ gU0 = g · (U0 ⊕ · · · ⊕ U0).
(4.5)

Since f : M −→ Grp(Cn) is full, Cn is regarded as a subspace of W̃ . It follows
from Section 2.2 that there exists a semi-positive Hermitian endomorphism T of W̃ and a
bundle isomorphism ϕ : L̃ −→ f ∗Q such that maps f :M −→ Grp(Cn) and ϕ : L̃ −→ f ∗Q
are expressed as follows:

f([g]) = T−1
(
f̃0([g]) ∩ (KerT )⊥

)
, (4.6)

ϕ([g, v]) = ([g], T gv), (4.7)

for g ∈ G and v ∈ L̃0.
Our goal in this chapter is to show the following theorem.

Theorem 7. Let M be a compact simply connected homogeneous Kähler manifold and
G the unit isometry group of M . Let f : M −→ Grp(Cn) be a full holomorphic strongly
projectively flat map into the complex Grassmannian manifold. Then f is G-equivariant
if and onlyl if f is the standard map.

29



Here G-equivariance means that there exists a Lie group homomorphism ρ : G −→
SU(n) which satisfies the following equation:

f(gx) = ρ(g)f(x), g ∈ G, x ∈M. (4.8)

In order to prove this theorem, it is sufficient to show that the semi-positive Hermitian
endomorphism T : W̃ −→ W̃ is the identity map of W̃ .

From now on, we assume that f :M −→ Grp(Cn) is G-equivariant. Then there exists
a Lie group homomorphism ρ : G −→ SU(n) which satisfies the following equation:

f(g[g̃]) = ρ(g)f([g̃]), g, g̃ ∈ G. (4.9)

By definition Cn is G-representation space and a vector subspace of W̃ .

Lemma 9. f ∗Q→M is homogeneous.

Proof. The definition of the pull-back bundle f ∗Q→M is that

f ∗Q = {([g], v) ∈M ×Q|f([g]) = π(v)}, (4.10)

where π : Q → Grp(Cn) is the natural projection. For any ([g̃], v) ∈ f ∗Q and g ∈ G, we
have an action of G to f ∗Q→M by

g · ([g̃], v) = (g[g̃], ρ(g)v). (4.11)

Since G acts on M transitively, f ∗Q→M is homogeneous.

Since f ∗Q → M is homogeneous, the space of holomorphic sections of f ∗Q → M is
G-representation space. Let t be a holomorphic section of f ∗Q → M . For g ∈ G and
x ∈M , we have

(g · t)(x) = g
(
t(g−1x)

)
. (4.12)

For t ∈ Cn, we obtain a holomorphic section of f ∗Q→M which is expressed as

t(x) = (x, t(f(x))), for x ∈M. (4.13)

Thus for g, g̃ ∈ G we obtain

(g · t)(x) = g(t(g−1x)) = g
(
g−1x, t(f(g−1x))

)
,

=
(
x, ρ(g)t(ρ(g−1)f(x))

)
= (x, (ρ(g)t)(f(x))) ,

= (ρ(g)t)(x).

(4.14)

Therefore Cn is aG-representation subspace of the space of holomorphic sections of f ∗Q→
M .

Lemma 10. The holomorphic isomorphism ϕ : L̃ −→ f ∗Q is G-equivariant.

Proof. At first we show that f ∗Q → M is isomorphic to L̃ as a homogeneous vector
bundle. Since ϕ preserves Hermitian connections, bundles L̃ → M and f ∗Q → M have
same holonomy groups and ϕ is holonomy equivariant. Since the action ofK0 to f

∗Q→M
and L → M at [e], where e is the unit element in G, is expressed as a action of the
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holonomy group, ϕ is K-equivariant. Thus f ∗Q[e] is isomorphic to L0 ⊕ · · · ⊕L0 as a K0-

representation space. Therefore f ∗Q → M is isomorphic to L̃ → M as a homogeneous
vector bundle.

Finally we show that a holomorphic isomorphism ϕ : L̃ −→ L̃ is G-equivariant. We
denote by L̃ ∼= L1 ⊕ · · · ⊕ Lq and Lj = G×K0 L(j), where Lj →M is the j-th component
and L(j) is isomorphic to L0 as a K0-representation space for j = 1, · · · , q. Then we have

L̃ = G×K0 (L(1) ⊕ · · · ⊕ L(q)). (4.15)

Let ϕj : Lj −→ L̃ be the restriction of ϕ : L̃ −→ L̃ to Lj → M . Then ϕj is expressed
as the following:

ϕj([g, v]) = [g, φ1(g)(v)⊕ · · · ⊕ φq(g)(v)], for g ∈ G, v ∈ L(j), (4.16)

where φi(g) : L(j) −→ L(i) is a linear map for i = 1, · · · , q. Since L(i) and L(j) are
isomorphic 1-dimensional K0-representation spaces, there exists a complex number αi(g)
such that φi(g)(v) = αi(g)v. Thus we have

ϕj([g, v]) = [g, α1(g)v ⊕ · · · ⊕ αq(g)v], for g ∈ G, v ∈ L(j). (4.17)

Since ϕj is a bundle homomorphism, we obtain

ϕj([gk, v]) = [gk, α1(gk)v ⊕ · · · ⊕ αq(gk)v] = [g, α1(gk)kv ⊕ · · · ⊕ αq(gk)kv],

ϕj([g, kv]) = [g, α1(g)kv ⊕ · · · ⊕ αq(g)kv],

for g ∈ G, k ∈ K0 and v ∈ L(j). It follows that αi(gk) = αi(g) for i = 1 · · · , q, g ∈ G and
k ∈ K0. Therefore αi is a complex valued function on G/K0. Since ϕj is holomorphic, so
is αi for i = 1, · · · q, which implies that αi is a constant function for each i since G/K0 is
compact. We regard αi as a complex number. Then we have

ϕj([g, v]) = [g, α1v ⊕ · · · ⊕ αqv], for g ∈ G, v ∈ L(j). (4.18)

This is G-equivariant for each j = 1, · · · , q. Consequently ϕ : L̃ −→ L̃ is G-equivariant.

It follows from Lemma 9 and Lemma 10 that Cn is a G-representation subspace of Cn.

Lemma 11. The semi-positive Hermitian endomorphism T : W̃ −→ W̃ is G-equivariant.

Proof. Since ϕ : L̃ −→ f ∗Q is G-equivariant, it follows from (4.7) that we can compute
that

ϕ(g1 · [g2, v]) = ϕ([g1g2, v]) = ([g1g2], T g1g2v), (4.19)

ϕ(g1 · [g2, v]) = g1 · ϕ([g2, v]) = g1 · ([g2], T g2v) = ([g1g2], g1Tg2v). (4.20)

Therefore we have
Tgv = gTv, for g ∈ G, v ∈ L̃0. (4.21)

We denote by GL0 an subspace of W spanned by gv for any g ∈ G and v ∈ L0 and
similarly we denote by GL̃0. Then GL̃0 is regarded as q-orthogonal direct sum of GL0.
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GL0 is a G-representation subspace of W . Since W is irreducible and GL0 is not empty,
we obtain W = GL0. Consequently we obtain W̃ = GL̃0. It follows that for any w ∈ W̃
there exists αi ∈ C, gi ∈ G and vi ∈ L̃0 such that w =

∑
αigivi, where the right hand

side of this equation is a finite sum. For any g ∈ G, we have

Tgw = Tg
∑

αigivi =
∑

Tgαigivi =
∑

gTαigivi = gT
∑

αigivi = gTw. (4.22)

Therefore T is G-equivariant.

Since T : W̃ −→ W̃ is G-equivariant, T is also K0-eqivariant.

Lemma 12.
T (L̃0) ⊂ L̃0. (4.23)

Proof. Since the orthogonal projection πj : W̃ −→ W is K0-equivariant for each j =
1, · · · , q, πj ◦T : W̃ −→W is a K0-equivariant endomorphism. Thus πj ◦T (L̃0) ⊂ W is a
K0-representation subspace of W . It follows from Schur’s lemma and Borel-Weil theory
that πj ◦ T (L̃0) ⊂ L0. Concequently T (L̃0) ⊂ (L̃0).

We denote by the same notation T : L̃0 −→ L̃0 the restriction of T : W̃ −→ W̃ to L̃0.

Theorem 8. The endomorphism T : W̃ −→ W̃ is the identity map.

Proof. Since the bundle isomorphism ϕ : L̃ −→ f ∗Q preserves fiber metrics and T is
Hermitian, we have

(v1, v2)L̃0
= ([e, v1], [e, v2])L̃ = ([e, Tv1], [e, Tv2])L̃ = (Tv1, T v2)L̃0

= (T 2v1, v2)L̃0
,

for any v1, v2 ∈ L̃0. Therefore T 2 : L̃0 −→ L̃0 is the identity map. Since W is G-
irreducible and T is G-equivariant, T 2 : W̃ −→ W̃ is the identity map and so is T because
T is semi-positive Hermitian.

Consequently, a holomorphic strongly projectively flat G-equivariant map f : M −→
Grp(Cn) is the standard map induced by a q-orthogonal direct sum bundle of Hermitian
line bundle L→M , which is the end of the proof of Theorem 7.
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