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Introduction

The purpose of this thesis is to establish error estimates of generalized particle methods for
the Poisson and heat equations.

A particle method is a class of numerical methods that approximate partial differential
equations by using particles distributed in the spatial domain; for example, we can refer to
Diffuse Element Method (DEM) [34, 45], Element Free Galerkin Methods (EFGM) [5, 6],
Reproducing Kernel Particle Method (RKPM) [14, 39], Local Radial Basis Function Collo-
cation Method (LRBFCM) [23, 49], Smoothed Particle Hydrodynamics (SPH) [26, 38, 40],
and Moving Particle Semi-implicit (MPS) [32, 33, 52]. The particle method defines connec-
tivities among the particles by using distance of each other. Therefore particle methods do
not require mesh and grid in advance to define the connectivity among the particles, which
is much different from other numerical methods such as Finite Difference Method (FDM)
[24, 54, 59], Finite Element Method (FEM) [11, 16, 27], Boundary Element Method (BEM)
[13, 50], and Finite Volume Method (FVM) [22, 35, 60]. This difference becomes the strong
point in case of numerical methods for problems with large deformations and destructions;
for example, astrophysics [40], collapses [43], brittle solids [9], flow problems with free surface
[33, 42, 44, 53], fluid-structure interaction [15, 20|, electronic structure calculations [55].

We can find many mathematical analysis of numerical methods like FDM, FEM, BEM,
and FVM; for example, in case of FEM, elliptic problems [16, 30], parabolic problems [4, 21],
Navier-Stokes equations [27, 46, 56], natural convection equations [57, 58], and references
therein. On the other hands, we encounter a few researches on the numerical analysis of
the particle methods; for example, error estimates of a particle method based on the vortex
method have been established in case of parabolic and hyperbolic systems in unbounded do-
mains [41, 48], in case of nonlinear conservation lows in unbounded domains [8], and in case of
nonlinear conservation lows in bounded domains [7]. However, since the particle distributions
and particle volumes in [7, 8, 41, 48] are defined by solutions of differential equations derived
from given flow fields. Therefore, the dependence of their particle distributions and particle
volumes on flow fields is different from those in practical computations such as SPH and MPS.
As another example, there is a truncation error estimate of approximate gradient operators
of MPS [29]. However, since the indicator of the particle distributions used in the regularity
that is a sufficient condition of the truncation error estimate cannot be generally computed, it
is difficult to confirm whether the particle distributions are valid. Moreover, as related results
on error estimates of interpolants of particle methods, there exist truncation error estimates
of interpolants by Radial Basis Function (RBF) [51, 61] and by Moving Least-Squares (MLS)
[36]. However, there are differences in the methods of determining the coefficients of linear
combinations. RBF sets the coefficients by solving linear equations derived from the condi-
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iv  Introduction

tion of the Lagrange interpolants and MLS sets by solving linear equations derived from the
condition to minimize a weighted least-square error. On the other hand, SPH and MPS give
the coefficients by particle volumes based on the volume of domain. Therefore the truncation
error estimates of RBF and MLS cannot be applied to that of the interpolant of SPH or MPS.
Error estimates of SPH or MPS applicable for practical computations have been discussed
only from the engineering point of view; for example, numerical tests of truncation errors
of interpolants and approximate differential operators of first derivatives in one dimensional
space [25, 47] and in three dimensional space [1, 2].

Therefore, as the first step of establishment of mathematical framework of the particle
methods, we do investigate the numerical analysis of the particle methods. In this thesis,
we introduce a generalized particle method, which can describe a class of particle methods
including SPH and MPS, and analyze its truncation errors of interpolants and approximate
differential operators. Moreover we apply the generalized particle method to the Poisson and
heat equations and analyze its errors of the approximate solutions.

At first, we introduce the generalized particle method for an interpolant and approximate
differential operators. The interpolant and the approximate differential operators are con-
structed by the particle distribution, a set of particle volumes, a weight functions, and an
influence radius. In order to obtain error estimates, we introduce three conditions of these
parameters. The first is a regularity of the family of the particle distributions, the particle
volume set, and the influence radius. This regularity clarifies a uniform distribution of the
particle distributions, a determination method of the particle volumes, and a decrement rate
of the influence radius corresponding to an increment of number of particles. The second are
some hypotheses of the weight function. These hypotheses clarify a usable range of weight
functions from the mathematical point of view. The third is an h-connectivity among the
particles corresponding to the influence radius h. This h-connectivity is a new concept of
connectivity among the particles and provides a necessary length of the influence radius for
the particle distributions. Since these conditions can be computed practically, we can verify
whether these parameters are valid or not. Under these conditions, we show truncation error
estimates of the interpolant and the approximate differential operators with the maximum
norm; see [28]. Then the convergence rates with respect to the influence radius depend on
the decrement rates of influence radius in the regularity and the choice of the parameters;
for example, in case of the approximate operators in SPH, the convergence rates are at most
second order.

Next, we establish error estimates of the Poisson equation discretized by the generalized
particle method. Under the h-connectivity condition and the hypotheses of the weight func-
tions, we prove the unique solvability and the discrete maximum principle of the discrete
Poisson equation. As the truncation error estimates and the discrete maximum principle lead
to the stability of the discrete Poisson equation, we obtain the error estimate with a discrete
L™ norm. The convergence rates with respect to the influence radius are at most second
order.

Moreover, we establish error estimates of the heat equation discretized by the general-
ized particle method in space and the f-method in time. We show the unique solvability of
the discrete heat equation. Furthermore, we prove the discrete maximum principle and the
stability of the discrete heat equation with a condition of time step in case of § € [0,1) and
without in case of § = 1. Therefore we obtain the error estimates with the discrete L°° norm



in space and time, and the convergence rates with respect to the time step are first order
(0 # 1/2) and second order (f = 1/2), and with respect to the influence radius are at most
second order. Moreover, by considering an discrete L? norm in space, we show a stability of
the discrete heat equation with a condition of time step in case of 6 € [0,1/2) and without
in case of 6 € [1/2,1]. Then we establish error estimates with the discrete L? norm in space
and the discrete L> norm in time, where these convergence rates agree with that of the error
estimates with the discrete L>° norm.

Finally, we show some numerical results corresponding to the theoretical ones. We con-
sider parameters satisfying the sufficient conditions of the error estimates. Then we compute
numerically truncation errors of the interpolant and the approximate differential operators
and relative errors of the approximate solutions of the generalized particle methods for the
Poisson and heat equations. We confirm convergence of the errors under the sufficient con-
ditions of each theorem and almost agreements between numerical convergence rates and
theoretical ones.

An outline of this thesis is as follows. In Chapter 1, we formulate a generalized particle
method, prepare some conditions of parameters, and prove truncation error estimates of
an interpolant and approximate differential operators of the generalized particle method. In
Chapter 2, we derive a generalized particle method for the Poisson equation and prove its error
estimates. In Chapter 3, we introduce a generalized particle method for the heat equation and
prove its error estimates. In Chapter 4, we present some numerical results corresponding to
our results. In Appendix A, we introduce conventional particle methods, which are SPH and
MPS, and show these error estimates by clarifying the relationship between the generalized
particle method and these conventional particle methods.
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Chapter 1

Generalized particle method

The purpose of this chapter is to formulate a generalized particle method and prepare some
conditions and theorems used in the subsequent numerical analysis. Section 1.1 prepares
notation and function spaces used later on. Section 1.2 introduces approximate operators
of the generalized particle method: an interpolant, an approximate gradient operator, and
an approximate Laplace operator. Section 1.3 gives some conditions of parameters of the
generalized particle method used in the subsequent numerical analysis. Section 1.4 shows
truncation error estimates for the approximate operators. The truncation error estimates of
the interpolant was presented in Imoto and Tagami [28].

1.1 Preliminaries

We prepare notation and function spaces used later on. Let RT and Rar be the set of positive
real numbers and the set of nonnegative real numbers, respectively. Let Ny be the set of
nonnegative integers.

Let S be an open set in R? (d € N). Let C(S) be the space of real continuous functions
defined in S. The norm of C(S) is define dy

v < = Imax |(vlx)|.
vl es) = max o)

For k € N, let C*(S) be the space of functions in C(S) with derivatives up to the kth order
and |.[cx(g) and ||| ok (g) denote their semi-norm and norm defined by
‘U’ck(g) = g'fi)]i ‘|Dav‘|c(§) )

[l = max  Ploie)

respectively. Here |.|qo (g coincides with ||| g).-

1



2 Chapter 1. Generalized particle method

1.2 Formulations

Let 2 be a bounded domain in R¢ (d € N) with piecewise Lipschitz continuous boundary. For
Q and H € RT, a domain Qp is defined by

Qp = {xeRd;Elyer.t. \x—y\<H}.

For H and N € N, let Xy be a set of points x; € Qy (i = 1,2,...,N) satisfying x; #
xj (i # j). Hereafter we call z; and Xy g a particle and a particle distribution, respectively.
Figure 1.1 shows an example of the particle distribution Xy z.

O R®

Figure 1.1: An example of the particle distribution Xn g.

For H and N € N, let Vxg be a set of positive numbers V; € RT (i = 1,2,...,N)
satisfying

N
ZV} = meas(Qp). (1.1)
i=1

Here, meas(S) denotes the volume of S C R<. Hereafter we call V; and V. a particle volume
and a particle volume set, respectively.
An admissible set of weight functions W is defined by

W= {w € CY(R); supp(w) = [0, 1],/ w(|z|)dr = 1}.
R4
Forw e W and h (0 < h < H), set wy, by
_ 1 r +
wp(r) == 7a% (ﬁ) , rekRy.

Hereafter we call w and h a weight function and an influence radius, respectively. For i =
1,2,...,N, a function ¢; € C(Qp) is given by ¢;(x) := wi(|x — z;|) (x € Qg). Let W}, be the
linear span of ¢;.

For S C R?, let Ag and A§ be

AS 2:{i;$i€XN,HﬂS, iZl,Q,...,N},
sz = {i;xiGXN7H\S, iZl,Q,...,N},



1.3. Conditions of parameters 3

respectively. For Xn g, Vg, w, and h, the interpolant IT; : C(Qp) — W}, the approximate
gradient operator Vy, : C(Qp) — W,‘f, and the approximate Laplace operator Ay : C'(Qp) —
Wi, are defined by

N
Mpv(x) == Z%v(mi)wh(]x —x)), (1.2)
i=1
Viwv(z) :=d Z V;U(T‘i : i(fl) ‘i : zl’wh(p} — x4]), (1.3)
iEAL ¢ ¢
Apv(x) = —2d Y ‘/}thﬂx —zi), (1.4)

€A

respectively. We call numerical methods discretizing these approximate operators in space
generalized particle methods because the approximate operators can describe ones of conven-
tional particle methods such as SPH or MPS (see Appendix A).

1.3 Conditions of parameters

This section prepares some conditions of parameters of the generalized particle method: the
particle distribution X 7, the particle volume set Vi f7, the influence radius h, and the weight
function w. Subsection 1.3.1 defines a regularity of the family {Xn g, Vi p,h}. Subsection
1.3.2 introduces some conditions of the weight function w. The regularity and the conditions
of the weight function appear everywhere in the subsequent numerical analysis. Subsection
1.3.3 defines a connectivity of the particle distribution Xy g, which required in Chapter 2.

1.3.1 Regularity
For Xn m, let o; be the Voronoi cell defined by
oi:=A{x € Qn; Vo;(# x;) € Xnm,|vi — x| < |zj — x|}

The decomposition of Qj by o = {Ui}f\il is called the Voronoi decomposition and its example
is shown in Figure 1.2. For Xy p, the covering radius r. is defined by

Figure 1.2: The Voronoi decomposition of €2y for the particle distribution Xy g in Figure
1.1.



4 Chapter 1. Generalized particle method

Te = max max|z; — x| (1.5)
1=1,2,...,N z€0;

Fori=1,2,..., N, letf/ibe

V; := meas(o;).

Let w={w; C Qp;i=1,2,...,N} be a decomposition of Q satisfying

N
meas(w;) =V; (i=1,2,...,N), |Jwi=Qu, winuw=0 (i#j. (L6)
=1

For Xy p and Vi g, the Voronoi deviation d, is defined by

dy = inf max

imeas oi Nw;) + meas(o; ﬁwz)| . |
w i=1,2,....N — v mj

meas(o;)

Definition 1.1. A family {(Xnu, VN, h)} is said to be reqular if there exists a constant
co (>0) and m (> 1) such that for all the elements in {(Xnm, VNu,h)}

h™ > co(re + dy). (1.7)
In addition, m in (1.7) is said to be a reqular order of {(Xnu,VNH,h)}.

Proposition 1.2. IfV; = Vi (t=1,2,...,N), then d, = 0.

Proof. From the definition of dy, we have dy, > 0. Since V; = V; (i =1,2,...,N), taking
wi =0; (1=1,2,...,N), we find that w (= {w;}) satisfies (1.6). Then, since meas(c; Nw;) =
Vi (i=17), 0 (i # j), we obtain d, = 0. O

Remark 1.3. Being able to compute the covering radius r. and the Voronoi deviation d, we
can numerically confirm whether (Xnw, VN, h) satisfies (1.7) or not for given ¢y and m.

We can compute the covering radius r. as follows: By using construction methods of
the Voronoi decomposition such as the increment method [10], we first decompose Qp by the
Voronoi decomposition. Next, for each particle, we compute the maximum distances from the
particle to the boundary of its Voronoi cell. Finally, we obtain r. by computing the mazximum
of the distances.

We can compute the Voronoi deviation dy as follows: Let A = {a;; € ]Ra'; 1,] =
1,2,...,N} be a matriz satisfying

N N N
> ai; =V, > aji =V, i=1,2,...,N. (1.8)
j=1 J=1

For Xnu, VNu, and A, let ¢ and s; (i =1,2,...,N) be positive numbers satisfying

N
g=si+y —L—Tlw—ayl, i=12...,N. (1.9)
=1 ¢
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Then, dy is equivalent to the minimum of q. Let b € RN +N+1 5 c RN* 4N+l 4nq 4 ¢ R3N
be

._ T
b:=(0,0,...,0,1)7,

o T
z:= (a11,012,...,ANN, 51,52, ---,5N,q)",

C:=(V,Va, ..., VN, Vi, Va, ..., VN, 0,0,...,0)7,

respectively. Let M € RWHN+1D)X3N be o matriz such that the equation Mz = ( replaces
(1.8) and (1.9). Then, we consider the following minimizing problem:

Minimize bTz Subject to Mz =¢, z > 0. (1.10)

Since b, M, and ¢ are unique for (Xnu,VNm,h), the minimizing problem is a linear pro-
graming problem. Since the solution (1.10) is agree with d, by using numerical methods for
linear programing problems such as the simplex method [18], we can compute d..

1.3.2 Conditions of weight functions

Now we prepare four hypotheses of weight functions as follows:
Hypothesis 1.1. There exists a positive integer k such that for all multi-index o such that
L<]a| <k,

/ z®w(|z|)dx = 0. (1.11)
Ra

Hypothesis 1.2. There exists W € C*(R]) such that

1
w(r) = ;w(r), r € R,

Hypothesis 1.3. There exists W € C*(R]) such that

1
w(r) = T—Qw(r), r e RT.

Hypothesis 1.4. w satisfies w(r) >0, r € (0,1).
We call k in Hypothesis 1.1 an order of w. Now we show some results.

Proposition 1.4. Any weight function w satisfies Hypothesis 1.1 with at least k = 1. More-
over, Hypothesis 1.1 with k > 2 is equivalent to

1
/ rd= 1w (rYdr = 0, Vi€ {2n; neN, 2n <k}, (1.12)
0

Proof. We consider T = (71, Ta2,...,7q) : [0,7]972 x [0,27) = { € R%; |z| = 1} such that

T1(¥) := cos by,
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Ti(¥) :==sinfy sinfy - - -sin O; 1 cos b;, 1=2,3,...,d—1,
Ta(¥) :=sinf sinfy - - -sinfy_osinfy_1,

where ¥ = (01,02,...,04_1). Then 7T (01,02, ...,04_1) represents the polar coordinates with
respect to (r,01,0s,...,04_1) € R§ x [0,7]972 x [0, 27). By considering the coordinate trans-
formation x = 7T, since the Jacobian is

r¢ 1 sin?2 ¢, sin? 3 0 - - - sin® 04_3sinfy_o,

we obtain

1
/ 2ow(|2)dz = / / T(9)° J(9)rd= ol (1) d9dr
R4 0 J[0,m]4—2x[0,27)

1
= / T (9)*J(9)dv / ra ey () dr.
[0,7]9=2x[0,27) 0

Here J is
J(9) = sin?™2 6, sin? 36y - - - sin O4_5 sin O_».

For all multi index « such that || is odd, we have
/ T(9)*J(9)dv = 0. (1.13)
[0,7]4—2x[0,27)

Therefore the first statement of the proposition holds. On the other hand, when |«| is even,
(1.13) is not always true. Therefore, if

1
/ rd= Ry (rYdr = 0 (1.14)
0

for the even integer k, then (1.11) holds for all « such that || = k. Since (1.14) is required
if and only if k is even, the second statement of the proposition is obtained. O

Lemma 1.5. If w satisfies Hypothesis 1.4, then w can not satisfy Hypothesis 1.1 with k > 2.

Proof. For k > 2, assume that w satisfies both Hypothesis 1.1 with & and Hypothesis 1.4. By
Proposition 1.4, w at least satisfies

1
/ r L (r)dr = 0.
0

Then w needs some negative part in (0,1). However, since w(r) satisfies Hypothesis 1.4, the
assumption does not hold. Therefore we obtain this lemma. O

Lemma 1.6. Suppose that w satisfies Hypothesis 1.1 with k. Then, for all even integer | and
all multi-index o such that 1 +1 < |a| < k41, we have

/ 22w (|| )d = 0. (1.15)
]Rd
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Proof. Since |a| > 1+ 1, the left side of (1.15) is integrable. In case that k = 1, since the
integrand of the left side of (1.15) is even with respect to the origin, then (1.15) is true.
In case that k > 2, by considering the coordinate transformation, we have

1
/ o[~z w(|z))da = / T(ﬂ)aJ(ﬁ)dﬁ/ P+l (N (1.16)
Rd [0,7]4—2x[0,27) 0
Here r, ¢, T, J are same as in the proof of Proposition 1.4. In case that || is odd, since
/ T(9)*J(9)d9¥ = 0,
[0,7]9—2x[0,27)

(1.16) equals zero. In case that |a] is even, by Proposition 1.4, if 1 < |a| —1 < k, then
1
/ rd*1+|°“*lw(r)dr =0.
0

Therefore (1.15) holds. O

For any k£ € N, we can construct weight functions satisfying Hypothesis 1.1 with k. Now,
we show some example of the weight functions.

Example 1.7. Let us construct weight functions satisfying Hypothesis 1.1 with k by polyno-
mial functions in d = 2,3. When k =1, since w € W, w requires

w(1) =0, %w(l) _o, /R w(lz|)dz = 1. (1.17)

Then the weight function with minimum degree is constructed by the quadric function:

(1-7)% 0<r<l,
w(r) =4
0, r > 1.

Here vg = 6/m (d =2), 15/27 (d = 3).
When k > 2, in addition of (1.17), w requires (1.12). Then, for example, the weight
function satisfying Hypothesis 1.1 with k = 3 is construct by the cubic function:

35 {(1 —r)24-Tr), 0<r<l,
w(r) = —
7 o, r>1,
ind=2 and
15 {(1 —r)2(5 - 8r), 0<r<l1,
w(r) = —
2m | o, r>1,
ind=3.

Similarly, we can construct the weight functions 1.1 with k > 4.

For Hypothesis 1.2 and Hypothesis 1.3, we obtain the following propositions.
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1.3.3 Connectivity

Definition 1.8. For the influence radius h, we call that a particle distribution Xy g satisfies
the h-connectivity if for all x; € XN N, there exists an integer m and a sequence {x;, };”:1 C
Xn,u such that

T = Xy, |.%'ij —.%'ij_H‘ <h (j:1,2,...,m—1), :L'imEFUFH. (1.18)
Now, we consider the graph G = (V, ) such that
V:XN,H, 52{(£Ei,$j); ‘l’i—xj|<h, i,j:1,2,...,N,i§£j}.

By Definition 1.8, we notice that if the particle distribution Xy p satisfies the h-connectivity,
then all the vertex of G on 2 has a path to a vertex of G on I' UT'y.

Example 1.9. Figures 1.3-1.4 show examples of the particle distributions satisfying and not
satisfying the h-conmectivity. In each figure, the left part shows an example of the particle
distribution Xy g, the center bottom shows the bulk of the influence h, and the right part
shows the graph G for Xy and h. In case of G in Figure 1.3, all the vertex on € has a path
to the vertex on I' UT'y. Therefore the particle distribution Xn g in Figure 1.3 satisfies the
h-connectivity. On the other hand, in case of G in Figure 1.4, since there exists an isolated
sub-graph on Q in the left-center of G, the vertex on the sub-graph does not have a path to
any vertex on I' UL'y. Therefore the particle distribution Xy g in Figure 1.4 does not satisfy
the h-connectivity.

Figure 1.4: An example the particle distribution Xy 5 not satisfying the h-connectivity.
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Lemma 1.10. If a particle distribution Xn g and an influence radius h satisfy
h > 2r, (1.19)

then the particle distribution Xn g satisfies the h-connectivity

Proof. Because Qg is connected, by the definition of Voronoi decomposition, for all x; € Xy g,
there exists a sequence {z;; };”:1 C Xn g such that

T = Xy, EijﬂﬁijJrl#@ (j:1,2,...,m—1), zi, € 'UT'y.
By the definition of r¢, we find |z;;, — 2, ;| < 2r¢ (j = 1,2,...,m — 1). Therefore, if Xy g
and h satisfy (1.19), then {z;;}., satisfies (1.18). Therefore this concludes the result. O
1.4 Truncation error estimates

In this section, let ¢ be a generic positive constant independent of A and V.

1.4.1 Interpolant

First, we state the theorem with respect to a truncation error of the interpolant (1.2).

Theorem 1.11. Suppose that {(Xn.u, VN, )} hio is a reqular family with order m (> 1)
and w satisfies Hypothesis 1.1 with k. Then there exists a positive constant ¢ independent of
h and N such that for all v € C*1(Qy),

||U - HhUHC(ﬁ) <c (hk+1 |U‘Ck+1(§H) + hmil ||UHCk+1(§H)) . (1'20)
Next, before beginning the proof of Theorem 1.11, we show the following lemma.

Lemma 1.12. There exists a positive constant ¢ independent of h and N such that for all
multi-index o,

e\ 4 re + dy
— < _ . .
Mol < e (1+25) (rc+dv+ - ) (1.21)
Here,
N
(@) 1= 3 Vilai =) wnllo =) = [ il
=1

Proof. Fix z € Q. Fix any w(= {w;}) satisfying (1.6). Let &; = meas(co; Nwj) (4,7 =
1,2,...,N). Set Ey(z) (k =1,2,3) by

Ei(e) =33 (- o) / {wn(jz - :l) — wn(z — y)} dy,

i=1 j=1 oiNw;
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N N
Ba)i= Y30 [ ey — )"~ (=) un(le — .

i=1 j=1
N N
Ba(z) = > &jla; — 2)* {wn(|z — 25]) — wa(jw — zi])},
i=1 j=1
respectively. Since

3

> Ei(x)

k=1

| A1 ,0 ()] =

3
<> |Bi(@)],
k=1

we estimate each FEJ,.
First, we consider Ey. For y € R? and » € R, let B,(y) be an open ball with center y
and radius r:

B(y)i={z € RY =yl <r}.
Ifi ABh+rC(:v)’ then we have
wp(lz—yl) =0,  Vy€o (1.22)

Then we can write
N
Eu@) =33 oy — 2)° / wnlle =) = wn(lz = o) .
; : iNw;

Here = denotes Ap, +r(z)- By Taylor expansion, we have

N
[E1(@)] <D0 (@) — ) lwh(lz — i) — wn(|z —y|) dy
€2 j=1

oiNw;

N
< diam(@)* S5 S" [ June = ail) ~ wne ~ o)l dy

i€E j=1 oiNw;

N
< diam(Qp)l! \wh|Cl(R0+) Z Z/ |lzi — yldy

€= j=1 0iNw;
. r
< dlam(QH)m‘th_l |w|cl(1R§) Z/ dy
i€z V%

d
< meaS(B)diam(QH)M <1 + 2%) % ‘wlcl(Rg) :

Here, diam(S) denotes the diameter of S C R%:

diam(S) := sup |z — y|
T,yeS
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and B := B1(0).
Next we consider Ey. Since Es = 0 when |a| = 0, then we estimate when |a| > 1. By
(1.22), we can write

N
Baw) =% [ ey =)~ (- 2" wnlle ~ g
i€z j=1"7iMwj
Fix a multi-index «. Let {516}!1:11 be multi-indexes such that

|a|

Bel=1 (k=12,...,]a)), a=> B
k=1

Then, for all z,y, z € R?, we have

ol af
(y—2)*—z-o) < |- [Jy—2)» = z—2)” [y — )™
k=2 k=2
o ol
T 8 | R Ety | (B
k=2 k=2
af o
<ly—zlly— o/ 4z — 2| ] — o) - [](z — 2)*
k=2 k=2
af
<ly—2) lz—afty -zl (1.23)

=1

Therefore, we have

N
Ba(@)| <D (25 — 2)* = (y — )% fwn |z — yl)|dy

i€= j=1"7iMwj
N |
ly =251 Y lag = al' =y — 2] 1 wn (|2 — y))ldy
=1

N
< Jofdiam(Qs)* 35 / 1y — a;llwn (| — )| dy

icZ j=1 0iNw;

N
< |afdiam(Qy)!*! ZZ/ (ly = @il + i — ;) [wn (|2 - y[)|dy

=c) ]:1 O'imw]'

N
< Jafdiam(Q) = lwll gy D Y &(re + |z — 2j])

€2 j=1
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N
< \a|diam(QH)|a|h’dHw||C(R3) (Zv) re +  max Z%xz—x]

—v i=1,2,....N
€= J=1

. 1e% Tc d
< |o|meas(B)diam(Q)e! (1 + 2E> ||w||c(R0+)

i=12,....N

N
X { Te 4+ max g M\xi—xﬂ
=V
Since w is arbitrary, we obtain

. o re\ @
|Ex(2)] < |a|meas(B)diam (). '(1+2ﬁ) (re + dy) [0l o) -

Finally, we consider F3. We estimate

| E3(x \<ZZ&J )*[Nwn(|z = 2;]) — wn(|z — i)

=1 j=1

N N
< diam(Qg)le! Z Z&j lwp(lz — z;]) — wi(|lz — xi])] -

i=1 j=1

By Taylor expansion, we have

N N
DY G lwn(z — @il) — wn(|z — )]

i=1 j=1

< ¥ Z&] il — 2i]) — wi(fe - a5])

xzeBh(

+Z S & lwn(lz — 25]) — wh(jz — a5))]

i=1 J,‘jeBh(J,’)

S‘“’M@(Rj) Z Z&J‘xl CCJH‘Z Z 5@]’331 Ly

ZB'LEBh(.CB)j 1 i= IIJGB}L

1
= g vlown 2. Z(&‘ﬂrfﬁ)lxi—xﬂ

:CZ‘EBh(CC) j=1

N
1 o gyt
= gltlowgy 2. Vi) e—lai—al

z,€Bp(z) J=1 t

Tc

N
41 §ij + &
< (1+5) plvlop g, D
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Since w is arbitrary, we obtain

NN re\ e d
SN lwn(lz = aif) = wallz — 2] < (1+55)" Flelor - (1.24)
h) h (Rg)
i=1 j=1
Therefore, we estimate
dd

. o Tc v
By ()| < meas(B)diam(Qu) ! (1+ ﬁ) wl o g
By estimates of Ey (k= 1,2,3), we obtain (1.21). O

Finally, using the lemma above, we obtain the following proof of Theorem 1.11.
Proof of Theorem 1.11. Fix x € Q. By h < H, we have By(x) C Qp. Then, for all
z; € Xy N By(x), we obtain Taylor expansion of v € C*1(Qp):

v(z;) = Z Da;!(x) (x; —x)* + Z (x; — ) Ra|v](24; ). (1.25)
0<|al <k la|=k-+1

Here, R, is defined by

Raol( ’/ B DOy (g 4 (1 = £)ar)d.

We multiply both side of (1.25) by Vwp(|z — x;|) and take the sum of these over i € Ap, ().
Then, we have

Myv(x) = Z

Z Vi(zi — x)%wp(|x — x4))

0< el <k . 16A3h<z)
+ Y Rall(@isz) Y Vilwi— o) wa(le - ai)).
‘O{| k+1 ZEABh(z)

By Hypotheses 1.1, we obtain

DO[
Myv(z) —v(x) = Z oz( )//lla( )
0<|al<k
+ 5 Rabl(eao) (a0 + [ ruluay).
|oo|=k+1
Since
[D%(z)| < |vlciaigy,)
[Ra[v](zi; 2)| < |vlcier@y,) »
we have

/ywmw@

po(x) —v(z)] < Z | M o (2 )HU|C\&|(QH + Z

0<|a|<k+1 o =k+1

|U|ck+1 Qn) -
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Moreover, since

)

/Rd yawh(|y|)dy' — plel

/ yew(lyl)dy
B

we estimate
po(z) —v(z)| < c Z | 1,0 ())| ‘”’c\a\(ﬁH) + Rt "U’Ck-H(ﬁH) . (1.26)
0< o <k+1
Applying (1.7) into Lemma 1.12, we have
|l < ch™ .

Therefore, applying this into (1.26), we obtain (1.20). O

1.4.2 Approximate gradient operator

First, we state the theorem with respect to a truncation error of the approximate gradient
operator (1.3).

Theorem 1.13. Suppose that {(Xn.u, VN, h)}hio is a reqular family with order m (> 1)
and w satisfies Hypothesis 1.1 with k and Hypothesis 1.2. Set k € Ny by ko or less if w satisfies
Hypothesis 1.1 with order k. Then there exists a positive constant ¢ independent of h and N
such that for all v € C*+2(Qy),

va - vhUH[C(ﬁ)]d <c (hk+1 |U|Ck+2(§H) + hm_l ||v||ck+2(§H)> . (1'27)

Next, before beginning the proof of Theorem 1.13, we show the following lemma.

Lemma 1.14. Suppose that w satisfies Hypothesis 1.2. Then there exists a positive constant
¢ independent of h and N such that for all multi-index o such that |a| > 2,

dr.+d,
h

Tc
[ Aaallc@) < ¢ (1 + 23) . (1.28)

Here,

M = Vi—% —z4|) — = dy.

2ala) = S V(o — ) = [ L (al)ay

Proof. Fix z € Q. Fix any w(= {w;}) satisfying (1.6). Let &; := meas(o; Nw;) (i,j =
1,2,...,N). For a multi-index a, let 1, : R? x R? — R be

(y —2)*

5 Y#Z
1/1a(y72) = ‘y—Z’Q

0, Yy =2z.
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lon

Set Fi(x) (k=1,2,3) by

N N
Bi(@)i= 323 valaya) [ {wnlle — ) ~ wnlle — y)} dy,
i=1 j=1 gillw;
N N a
Bifa) = 3 valapea) [ e =y = [ Low(ia,
i=1 j=1 0iNw;
N N
Eo(x) = Y &ijthalaj, ) {wn(|z — z;]) — wh(lz — 2:))},
i=1 j—1
respectively. Since
6 6
| Mo 0 ()] = ZE x SZ]E x
k=4 k=4

we estimate each FEj.
First, we consider Ey. By (1.22), we have

|&|—ZZ%%,ﬂymmﬂme~M@

€= j=1

N
<D Ialaj @)l wn(lz = 2i]) — w (e —yl)| dy

ieE j=1 oiNw;
<dmmsmwa2§:§:/' w2 = i]) = wi(lz — y)| dy.
€= j=1 oiNwj

Here, = denotes Ap, , (1)- By Taylor expansion and (1.5), we estimate

|Ey(z)] < diam(QH)\a|—2 ’wh‘cl(Rg) Z |z; — yldy

i€ee v o

d
< meas(B)diam(Qg)!1~2 (1 + 2%) % |w|Cl(R§{)

re\4 Te
142%) I,
c(1+2y) %
Next, we consider Fs. By (1.23), for all z,y, 2 € R? such that = # y and = # z, we have

W)a(y’x) - wa(za 1:)|
<|lmar oo

‘ (z—2)* (z—2)
ly—allz—2| |z —af

(-2 (-

ly—z2 |y — x|z — x|

ly—x2 |y —xf?

|a|

<ly =z le—al My =22y — 2|l — 2y — 27 4 |y — 2]z - 2]y — 2
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|

<2y—=2) |-zl My -l

Moreover, for all z,y,z € R? such that  # y and = = z, we get

la—1

Yaly, %) = Yalz,2)| = [aly, @) < |y — |72 = |y — 2| Z |z — | Ty — 2l

Therefore, by using these estimates and (1.5), we obtain

B <3y / a5, ) — oy, 2)wn(|z — yl)dy

'le J 1 O"me]
- jwnllz — )
_ 1 |wp(lr —y
2> [ s 3 Iy oty il
icE j=1 Y oiNw; — Ix—y\
< 2|a|diam () lalzz / et Gt 1) Y
i€E j=1 ‘TW“’J |z —y|
w xr —
< ol Y [ (= + s ) 05y
icE j=1 " oiNw; ’$—y|
re [ |w(ly))l l (| — y])]
< 2|a|diam(Qg)lel | =< dy + | — ;| 1ontl =~ Y 4,
hJs Iyl %;; b o, eyl
By Hypothesis 1.2, we have
[ bt
B vl
and
3 (| — yl)| 1 e
Wz —
ZZ’@"Z’—%W Wdyﬁchdﬂzz&ﬂxi—xj
i€ j=1 aifw; o= j—1
&i +§
hd+1Z Z At
€=
Te 1 i+ &5
1425 )7 Sij + &y
e(1+23) 7, z 8y

)

Since w is arbitrary, we obtain

dre+dy
o

|Es(x)| < c(1+2%>
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Finally, we have

|Es(2)] < ZZ&;I% g, x) | {wn(|z —z)[) —wa(|z —zi)}

=1 j=1

N N
< diam(QH)la‘_2 Zz&j lw(|x — x5]) — wa(lz — 2:i])] .
i=1 j=1

By (1.24), we estimate

Tec

. af— ddy
|E6(l‘)| < dlam(QH)| =2 (1 + E) F!wbl(Rg)
re\ ¢ dy
By estimates of Ey (k =4,5,6), we obtain (1.28). O

Finally, using the lemma above, we prove Theorem 1.13.
Proof of Theorem 1.13. Fix x € Q. By h < H, we have By(z) C Qp. Then, for all
z; € Xy N By(x), we obtain Taylor expansion of v € C*+2(Qp):

)= Y 2 a;"(” (@i -0+ 3 (21— ) Ralo)(zs 7). (1.29)

0<|a|<k+1 ) |o|=k+2

Multiplying both side of (1.29) by dV;(z — x;)|z — ;| 2wp(]z — x;]) and taking the sum of
these over i € A}, we have

Vi@ =d Y -yl 22U sy o m@ m)t, g )

— 2
1<|al<k+1 ieAs @ — 3]
+d Z DR, [v] (24; 2 Z V — i) Jc_xi)awhﬂx—wi\).
la|=k42 ieAx @ — a2
e
For all multi-indexes a1, ag such that |a;| = |ae| = 1, we have

yalyaz ]-a a1 = g,
d [ L iy =
R4 |y| 0, a1 # as.

Then we obtain

43 Doua / fj‘;whuyndyzwm.

|lal=1

Moreover, by Lemma 1.6, for all « such that 3 < |a| < k + 2, we have

ya
“—wp(|ly|)dy = 0.
/R s
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Therefore, we obtain

Vo@) - Vi@ <d Y [ taa@)| [olow-r )

2<|a|<k+3
/ (i)

+d )

|a|=k+2

‘v’0k+2(QH)'

Since

‘/ WY w(|yl) dy'h'a 1/ [ fw(ly])|dy,

we estimate
Vo) - Vi@ e | 3 [ loal@) olow i, + B olore,, | - (130)
2<|a|<k+2
Applying (1.7) into Lemma 1.14, for all multi-index « such that 2 < |a| < k + 2, we have
|20l ey < ch™

Applying this into (1.30), we obtain (1.27). O

1.4.3 Approximate Laplace operator

First, we state the theorem with respect to a truncation error of the approximate Laplace
operator (1.4).

Theorem 1.15. Suppose that {(Xnu, Vnu,h)}nio is a reqular family with order m (> 1)
and w satisfies Hypothesis 1.1 with k and Hypothesis 1.3. Then there exists a positive constant
c independent of h and N such that for all v € C*+3(Qp),

||A'U - Ah“”c(ﬁ) <c (hk+1 |U|Ck+3(§H) + hm_2 ||UHCk+3(§H)) . (1'31)
Next, before beginning the proof of Theorem 1.15, we show the following lemma.

Lemma 1.16. Suppose that w satisfies Hypothesis 1.3. Then there exists a positive constant
¢ independent of h and N such that for all multi-index o such that |a| > 1,

re\d e + dy
[ Aaall o) < ¢ (1 + 2%) < o (1.32)

Proof. 1f w satisfies Hypothesis 1.3, then w satisfies also Hypothesis 1.2. Therefore, by Lemma
1.14, for all v such that |a| > 2, we have

e\ Te + dy
[ 2.0l @y < ¢ (1 + Qg) o
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Moreover, by h € (0, H), we obtain

re\4 re +dy
| oallo@ < e (1+27) .
Hereafter, we prove the case of |a| = 1. Fix z € Q. Fix any w(= {w;}) satisfying (1.6).
Let &; := meas(o; Nwj) (4,5 = 1,2,...,N). For a multi-index «, let ¥, be a function on
R? x R? defined by

(y —2)° B
Valy,2) =14 ly—2|’ y#

0, Yy = z.

Since w satisfies Hypothesis 1.2, we can take @ € C*(R{) such that

w(r) = ;w(r), r e RT.
For w and h, let wy, be
1
(7)== mA(%) . reRf

Set Ex(x) (k=17,8,9) by

1 N N
Vim0 D valasa) [ (@l )~ (e~ y)} dy

i=1 j=1 gifw;

1 N N
:hzzwa(l‘j,ﬂf)/

i=1 jfl aillw;

- y*
@n(|z — yl)dy - / Y an(yl)dy,
Rd |3/|

Zzama z5,2) {n(lz — a3]) — @llo — wi])}
i=1 j=1
respectively. Since

<> |Bx(x)

k=7

| M,0(2)] =

> Ei(x)
k=T

we estimate each F.
First, we consider E7. By (1.22), we have

/\

|E7(2)] < *ZZ Va2, | |[Wn(lz = i) — wh(lz —y))] dy

€2 j=1 Nw;

ghzz/ (|2 — 24]) — (2 — y1)] dy.

icE j=1 oiNw;
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Here, = denotes Ap, . (x). By Taylor expansion, we estimate

|E7(z)] < \whlcl(w > i —yldy
i€z v Ii

Te | ~
< meas(DB) (1 + 2%) h—; |w|Cl(Ra')

re\4 Te
c(1+2ﬁ) o

Next, we consider Eg. For all z,y, z € R? such that = # y and = # 2, we have

+’(Iyim B |Zix’)(2—$)o‘

«

(y —2)* — (2 —z)
ly — x|

N

w—ﬂ

Wl @) — Ya(e, )] < \

Moreover, for all z,y,z € R? such that x # y and = = z, we get

ly — 2|
ly — |

[Ya(y, 2) = Yalz,2)| = [Yaly,z)| < 1=

Therefore, by using these estimates, we obtain

By(a)| < hZZ | Walesa) = valeglande — yldy

I€E j= o;iNw;
<3 ZZ A T
B o=yl Y
16 j=1 O'Zﬂw]
N o~
2 Bnlle —
ieE j=17oiNw; B
2 [ re |@p (|2 — y|)]
< Z | = d 3 [@n(lz = o)l
T h\h / +ZZ|% ;] P y

ez j=1

By Hypothesis 1.3, for all y € R?, we have

[w(lyl)|
lyl

<c

Then we estimate

N
Te 1
|Bs(z)] < cf 75+ WZZ&H% — ]

ieE j=1

Tc

re\ ¢
<edle i (1 2—)
=¢ m+<'*h B2 X T

N
57,_] + f]z
25

=1 Vi
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Since w is arbitrary, we obtain

dre+dy

|Eg(z)] < c(l—l—Q%) 2

Finally, we consider Eg9. We have

[Eo(x)] < *ZZ&J\% j, &) {wn (e — z5]) — Wa(lz — @i])}
i=1 j=1
LN
<z DO & lwn(lz — xy]) — @n (| — @il
i=1 j=1
By (1.24), we estimate
re\4 dy
Bo(@)| < (1+ %) Sldlor g
()t
=V
By estimates of Ej (k=17,8,9), we obtain (1.32). O

Finally, using the lemma above, we obtain the following proof of Theorem 1.15.
Proof of Theorem 1.15. Fix x € Q. By h < H, we have By(xz) C Qp. Then, for all
z; € Xy N By(x), we obtain Taylor expansion of v € C*3(Qp):

o)=Y Da”,() i~ )+ Y (@i~ 2)*Rafv](zs;2). (1.33)

(e%)
0<|a|<k+2 || =k+3

Multiplying both side of (1.33) by 2dV;|z — x;| 2wy (]x — 2;]) and taking the sum of these over
i€ Ay, we get

Apv(z)=2d ) DOZI(:E) D Vi (- xi)awh(lv’ﬂ — i)

D)
1<|a) <k+2 T e | = i
T —
+2d Z R [v](zi; x ZV . wp(|z — x4]).
|a|=k+3 1EAY

Since for all multi-index « such that |a| = 2, we have

y* 1, al =2,
d dy =
|, Ly = {0’ "y

Then we have

4 Y ute) [ Launlaiy = sota).

lal=2
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For all multi-index « such that |a| =1, we get

ya
“—wp(ly))dy = 0.
[, ol

Note that the integrand is integrable by Hypothesis 1.3. Moreover, by Lemma 1.6, for all
multi-index « such that 3 < |a| < k 4+ 2, we have

yOl
“—wp(|y|)dy = 0.
[, Lzontiv)
Therefore, we obtain

[Av(z) = Apv(z)| <2d ) | loa(@)] [Vlerei @y

1<|o|<k+3
w(|yl|)dy
/ ly[?

+2d Z

|o|=k+3

|U|Ck+3 Q)"

Since
] [, Ll dy] =12 [yl 2y

we estimate
Bo@) =A@ S| D ol oy + B oy, | - (134
1<]a]<k+2
Applying (1.7) into Lemma 1.16, for all a such that |o| > 1, we have
H%Q’QHC(E) S ChmiZ.

Applying this into (1.34), we obtain (1.31). O



Chapter 2

Generalized particle method for the
Poisson equation

This chapter considers a generalized particle method for the Poisson equation with Dirichlet
boundary conditions. In Section 2.1, the Poisson equation and the discrete Poisson equation
are introduced. In Section 2.2, error estimates with a discrete L® norm of the generalized
particle method for the Poisson equation are established.

2.1 Formulations

Let Q be a bounded domain in R? (d > 2) with a piecewise smooth boundary I'. We consider
the Poisson equation with Dirichlet boundary conditions:

Find u: Q — R s.t.
{—Au =f, inQ, (2.1)

U =g, on I'.

Here f € C(Q) and g € C(T) are given functions.

Assume that there exists a unique solution u of the Poisson equation [31]. Now we intro-
duce an expanded solution on Qg for the solution u of (2.1). Let 'y be I'yy := Qg \ Q. Set
g € C(I'y) such that g = g on I'. Let u be an expansion of the solution of (2.1) defined by

- u, T € €,
U= _
g, x ely.

We consider the generalized particle method for the Poisson equation with Dirichlet bound-
ary conditions:

Find U : XMH — R s.t.
{—AhUi = fi, 1€ Aq, (2.2)
Ui = g, i € Arury -

Here v; denotes v(z;).

23
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2.2 Error estimates with a discrete L°° norm

In this section, let ¢ be a generic positive constant independent of h and N. For v : Xypg — R
and S C R%, a discrete L> norm ||.|| () is defined by

10ll e s) = max o

Now, we state the theorem of the error estimates by the discrete L* norm.

Theorem 2.1. (Error estimate of the discrete Poisson equation by the discrete L
norm) Let u and U be solutions of (2.1) and (2.2), respectively. Suppose that the expanded
solution u satisfies u € C* (), {(Xn.m, Vg, h) tnio is a regular family with order m (> 2),
and w satisfies Hypothesis 1.3 and Hypothesis 1.4. Then there exists a positive constant ¢ and
ho independent of h and N such that for all {( Xnm,Vnm,h)} with h < hg

1T = Ullge () < ¢h™ 2 | cagy - (2.3)
Before beginning the proof of Theorem 2.1, we show some results.

Theorem 2.2. (Unique solvability) Suppose that w satisfies Hypothesis 1.4. Then the
necessary and sufficient condition that (2.2) has a unique solution is that Xy g satisfies the
h-connectivity.

Proof. First, assume Xy g satisfies the h-connectivity. Let No be a number of particles
included in Q. We renumber the index of particles so that i € Ag (1 = 1,2,...,Ng) and
i € Arury, (i=Nq+1,Nqg+2,...,N). Let b;; € R¢ (i,j =1,2,...,N) be

0, i =7,

g nllzi — 251) _x;"), i # 7.
|z — ]

bij =

Let A, D € RNoxNa and £, u € RVe be

N

Vi .

i Z 7bika =12,
Aij =93V
D := diag(V;),

N
fi::fi— Z ‘/Y]'gjbija i:1,2,...,N,
J=Nq+1
ui::Ui iIl,Q,...,N,

respectively. Then we can write (2.2) as

ADu =f.
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By V; € R (i = 1,2,...,N), D is the regular matrix. Then it is sufficient to prove that
A is a regular matrix. Since A is symmetric, we prove that A is a positive definite. For all
a € RV \ {0}, we have

Nq
Zaiainj:2 Z aiajAij + Z a; Ay

ij=1 1<i<j<Ngq 1<¢<NQ
I
1<i<j<Ngq i=1 =
N
Vja; — Viay) Vi,
-y ! e i) bm—i—Za PR (2.4)
1<i<j<Ng i=1  k=Ng+1 °

Since b;; is nonnegative, (2.4) is nonnegative. For a € R \ {0}, we set i such that a; # 0.

Since Xy g satisfies the h-connectivity, there exists i; € N (j = 1,...,m) such that
11 =1,
ij € Ag and |z, — x| <h (j=1,2,...,m—1),
im € AFUFH-

Since the all terms of the last equation in (2.4) are nonnegative, for the subsequence, we have

N, 1 2
R P> - lk+1aik - Vi aik+1) b Vi 2
Z ala] = Vi, Vi inine1 T Vi Ay Vi1 -
ij=1 k=1 Rag tm—1
Since b, ., (k = 1,2,...,m) is positive, the right hand side of this inequality is positive.

Therefore, for all a € RV \ {0}, we have

Nq

Z aiainj > 0.
4,j=1

Consequently, A is the positive definite.

Next, in order to show the proposition that Xy p satisfies the h-connectivity if there exists
uniquely the solution of (2.2), we will prove the contrapositive. Suppose that Xy g does not
satisfy the h-connectivity. Then there exists A C Ag such that

ViedA, VjedAo, \A, |z;—ax]>h
We fix i € A and consider the i-th column of the matrix AD. For all JjE 7\, we have

(AD)ji = = (AD);,

keh
Moreover, for all j € Ag \ Aand k € JA\, we get

(AD)j;, = 0.
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By these, for all j € Ag, we have

(AD)j; = =Y (AD)jp.

keA

Therefore, we find
det(AD) =0

Then AD is not the regular matrix. Consequently, since the contrapositive are proved, Xy g
satisfies the h-connectivity if there exists uniquely the solution of (2.2). O

Lemma 2.3. Suppose that v; € R (i =1,2,...,N) satisfy

{—Ahvi >0, i€Aq,

(% 2 07 1€ AFUFHa (25)

w satisfies Hypothesis 1.4, and Xy p satisfies the h-connectivity. Then, for alli =1,2,..., N,
we obtain

v; > 0. (2.6)
Proof. Set k by

k := arg min v;.
i=12,...,N

If k € Arury,, then (2.6) is obviously true.
Suppose that k € Aq. Since Xy g satisfies the h-connectivity, there exists {zy, };"; C Xnu
such that

Tk, = Tk, |xkl—xil+1\<h(l:1,2,...,m—1), Tk, €ETUTy.
By Hypothesis 1.4, we have

— Vi Vg, — Uk
_Ah’l}kl =2d E ‘/] | ]|2 h(|xk — .’Ej‘) S 2de2mwh(’xkl - $k2|) S 0.
j#k Ly 1 2

After all, by (2.5), we obtain

—Apvg, = 0.
Since |z, — xk,| < h, we have vy, = vg,. By repeating the argument above with [ =
2,3,...,m — 1, we obtain vy, = v, = -+ = v,,. Since vy = vy, > 0, we find that (2.6) is
true. O

Lemma 2.4. (Discrete mazimum principle) Suppose that v; € R (i =1,2,...,N) satisfy
—Ah’l)i < O) (RS AQa
w satisfies Hypothesis 1.4, and Xy satisfies the h-connectivity. Then we obtain

v; < max {v;} i=12,...,N. (2.7)
JEATUr g



2.2. Error estimates with a discrete L* norm 27

Proof. Let ¢; (i=1,2,...,N) be

; '= —v; +  max (vj;.
v ’ jGAruFH{ il

Then we have
—App; = Apv; > 0, i € Ag

and

Hence, by Lemma 2.3, we have

0:>0, i=1,2,...,N.
Consequently, we obtain (2.7). O
Lemma 2.5. (Stability) Suppose that for ¢ : Xng — R, v: Xyg — R satisfies

—Apv; = ¢, 1€ Ag,
v; = ¢, 1€ Arury,

{( XN, VNm, h)} is a regular family with order m (> 2) whose X n g satisfies the h-connectivity,
and w satisfies Hypothesis 1.3 and Hypothesis 1.4. Then there exists a positive constant ¢ and
ho independent of h and N such that for all {(Xnm, VN, h)} with h < hg,

[0llge (2) < €ll@llgse () - (2.8)
Proof. We first show
vi < cllgloayy s i=12..., 0. (2.9)
Set z € R? such that
|z — 2| < diam(Qg), Vz € Qg.

Let@:ﬁH%Rbe

1
O(z) = ——(z—2)° + 2—ddiam(QH)2 + 1.

Since ® € C*(Qp) and |¢‘CZ(§H) = 0 (I > 3), by Theorem 1.15, there exists a positive
constant c¢; independent of Xy 7, Vi g, and h such that

1A® — AL oy < crh™ 2.
Therefore, by A® = —1, we have

—Ap®; >1—c k™2 i=1,2,...,N. (2.10)
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Take hg satisfying

0<hr?< Cll
By (2.10), for all h < hg, we have
~Ap®; > 1—chl? >0, i=1,2,...,N. (2.11)
Let ¢; (i=1,2,...,N) be
i = vi = (1= c1hg™ ) 7 6]l oo () Pi-
By (2.11), for all h < hg and ¢ = 1,..., Ng, we have
—Anpi = =Apvi + (1= c1hg™ ) 7 @]l oo () An®i

< @i — @l g0 ()
<0.

Since ® > 1 and by Theorem 2.4, we estimate

p; < max {Uj —(1- Clh6n72)_1 H¢||e°<>(§2) (I)J'}

JEArUr
< max {v;}—(1—chm )7t . min {®;
_jEAFuFH{ it — (L —cahg ") I8l (Q)jEAFurH{ it

< 9 llgsoruryy — (1 = cihg =)~ @1l goo 02y -

Therefore, since
1
P; < ﬁdiam(QH)2 +1, i=1,2,...,N, (2.12)

forall it =1,2,..., N, we obtain

o, 1
— =2 9l
oy L
diam(Qg)?
< 18l goe rury) + 2d(1 — eth™ ) [l 4o ()
@) o
" 2d(1 — 1) o)

Vi < |8l goe(rury) T

< max{l

Then (2.9) is proved.
Next, we show

vi > =¢|fllpe(ay), i=1,2,-.., N (2.13)

Let ¢; (i=1,2,...,N) be

m—2y—1
i == —v; — (1 —chy 2) ”d’”ew(ﬂ) D(x;).
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By (2.11), for all h < hg, i =1,..., Ng, we have
megy—1
—Anthi = Apvi + (1= chg ) (0]l o () AP ()
< =6 — 9l (q)
<0.

Since ® > 1 and Theorem 2.4, we estimate

1; < max {—vj — (1 —crhg™)! @1l g0 () q)j}

JEATUr g

< max {—wv;}—(1—ch? )t 0o min {®;
< ame {5} = (1= k™) 6l oy uin {(#5)

< [@ll o iy — (1 — cthg =)~ 18]l 400 (1) -
Therefore, by (2.12), for all i = 1,2,..., N, we have
P, —1
Vi 2 = ||l goorury,) — 1= 2 [l g0 ()

diam(Qg)?
> =18l goeruryy) — 241 — ek D) 181l g0 ()

diam ()2

> - {1, O Aoy,
2d(1 — c1h{' ™)

Then (2.13) is shown. Consequently, we obtain (2.8). O

Utilizing the results above, we prove Theorem 2.1.
Proof of Theorem 2.1. Since m > 2, by the definition of the regular (1.7), there exists a
positive constant h; such that

h>2re, Vh<h.

By Lemma 1.10 and Lemma 2.2, for all h < hy, the discrete Poisson equation (2.2) is solvable.
Let e; (i =1,2,...,N) be

e; = u; — Uj;.
For all i € Ag, we have
—Ape; = —Apu; + ARU; = —Apu; — fi = Auy — Apu,.

Moreover, for all i € Ar,,, we get

e; = 0.
Then, by Lemma 2.5, we obtain

[ = Ullgso gy = ll€llgoo ()

<cl|Au— AhﬂHC(ﬁ) .

By Lemma 1.5 and Theorem 1.15, we have
1AT — Ayl o < eh™ 272 ]| gag,, -

Consequently we obtain (2.3). O






Chapter 3

Generalized particle method for the
heat equation

This chapter deals with a heat equation with Dirichlet boundary conditions discretized by
a generalized particle method in space and the #-method in time for the heat equation. In
Section 3.1, the heat equation and the discrete heat equation are formulated. In Section
3.2, error estimates with a discrete L°° norm in space and time of approximate solutions of
the discrete heat equation are established. Moreover, in Section 3.3, error estimates with an
discrete L? norm in space and the discrete L> norm in time are also obtained.

3.1 Formulations

Let Q be a bounded domain in R? (d > 2) with a piecewise smooth boundary I'. We consider
the heat equation with Dirichlet boundary conditions:

Find u: Q x (0,7) — R s.t.
Owu + Lu = f, in Q x (0,7),
u=g, onI'x (0,7),
u = a, in Q, at t =0.

(3.1)

Here, f € C(Q2x[0,T)) is an external heat source, g € C(I'x (0, 7)) is a boundary temperature,
a € C() is an initial temperature. Moreover 0, := 9/0t, L := —xA, and k € RT is the
thermal conductivity.

Assume that there exists a unique solution u of the heat equation [31]. Set g € C(I'y x
(0, 7)) such that g =g on I x (0,7) and a € C(Q) such that @ =a on  and @ = g|;—¢ on
I'y. Let w be an expanded solution on Qg x (0,7) for the solution u of (3.1) defined by

u =

_ u, (z,t) € Q2 x(0,T),
g, (x,t) € Ty x (0,7).

Set a positive integer K and time step At by At := T/K. For k = 0,1,..., K, let us
denote kAt as t* . Let Ix be I := {t*; k=0,1,...,K}. For v : Ix — R, the approximate

31
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operator D is defined by

v
Dok =

Here we denote v(t*) as v*.
Let Ly be Ly := —kAp. Then we consider the generalized particle method for the heat

equation with Dirichlet boundary conditions:

Find U : XN,H x Igx — R s.t.

DaUF + LyUFT0 = fF00 4 ¢ Ag, k=0,1,...,K — 1, (3.2)
Uk =gk, i€ Arury, k=1,2,... K, '
Uio = aj, i€ Ay,

Here 6 € [0, 1], v*0 = goF L 4 (1 — 0)v*, and vF := v(x;, tF).

3.2 Error estimates with a discrete L°° norm

For a set S C R and Banach space X, a discrete L° norm in time ||.||s(s,x) is defined by
||/UH€°°(S;X) = maX{HkaX; k= Oa ]-a s aKy tk € IK N S} .

Now, we state the theorem with respect to the errors between solutions of (3.1) and (3.2) by
the maximum norm |[. | g (j0,77;6% (2))-

Theorem 3.1. (Error estimate of the discrete heat equation by the discrete L
norm) Let u and U be solutions of (3.1) and (3.2), respectively. Suppose that the expanded
solution u satisfies u € C?([0,T); C* (), {(Xn.m, Vg, h) thyo s a regular family with order
m (> 2), and w satisfies Hypothesis 1.3 and Hypothesis 1.4. Moreover, when 0 € [0,1), suppose
that for any fized 6 € (0,1), At satisfies

_ § 1 -1 1
At < min {M—G) (/Rd Ww(|x|)dm> R, 1_9} | (3.3)

Then there exists a positive constant ¢ and hg independent of h, N, and At such that for all
{(XNp, VN, h)} with h < hg,

1= Ulles o a1y < € (A + B2 [l o 0 7y, ca@iy ) - (3.4)

Furthermore, if u € C3([0,T]; C*(Qy)) and 6 = 1/2, then

= Ullgo 0,300 @)y < € (A + B2 ] o0 71,035 - (3.5)
Here,
. k o
lWllomqoryon@ay = x|, max 11050 C Olon @
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Hereafter, in this section, let ¢ be a generic positive constant independent of A, N, and
At. Before beginning the proof of Theorem 3.1, we show some results

Theorem 3.2. (Unique solvability) Suppose that w satisfies Hypothesis 1.4 if § € (0,1].
Then (3.2) has a unique solution.

Proof. Let Nq be a number of particles included in 2. We renumber the index of particles
so that i € Ag (1 = 1,2,...,Nq) and i € Arur, (i = No+1,Ng+2,...,N). Let b;; €
RS (i,j=1,2,...,N) be

0, i=j,
D N A ke | Y

|z — a5

bij =

Set A € RNVexNa D e RNexNa and f#0 ¢ RNe (k. =0,1,...,K, 0 € [0,1]) by

3 Vi, i=j
AZ] — V ik =D
_bl]7 Z#]a
D := diag(V}),
F0 = At > Vgt =12, N,
JEATUr g

respectively. Then we can write (3.2) as

{ (I +0AD)u* = (I —(1—-0)AD)u* +f** k=0,1,..., K —1
u0: ug.

Here, u := (Uf,Ué“,...,UJIS,Q)T, ug = (d1,0a9,...,an,)7, and I € RVN2*Na is the identity
matrix. Therefore, if (I + §AD) is the regular matrix, then (3.2) has a unique solution. In
case that # = 0, then (I + 0AD) is obviously the regular matrix.

Hereafter, we consider case that § € (0,1]. Let R be R := D! + #A. Then we have
(I +0AD) = RD. Since D is the regular matrix and R is symmetric, it is sufficient to show
that R is the positive definite. For all a € RV, we have

Z aa;R;j = Z a;a;([ U +0A;;5)

5,5=1 t,5=1

No 1

=Y <V+9A”)+20 > aiajAj
i=1 1<i<j<N
Nq a2 Nq

= V 1+02Vbu+0 Z Vibir | =20 > aia;bi
i=1 I=Ngo+1 1<i<j<N
No o

= % 1+6 Z Vib | +6 > Vaz—vaj)blj.
i=1 " I=Nq+1 1<i<j<N
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By Hypothesis 1.4, the equation is 0 if and only if ¢ = 0. Then R is the positive definite
matrix. Therefore, (3.2) has a unique solution. O

Lemma 3.3. Suppose that vf € R (i =1,2,...,N, k=0,1,...,K) satisfy

Dago¥ + Lot >0, i€ g, k=0,1,..., K — 1,
oF >0, i€ Arory,, k=1,2,... K, (3.6)
V) >0, i € Mgy,

and w satisfies Hypothesis 1.4. Moreover, when 0 € [0,1), suppose that At satisfies

-1

At < m 116112% Z%W . (3.7)
Then for alli € A, and k=0,1,..., K, we obtain
oF > 0. (3.8)
Proof. For k=0,1,..., K, let aj be
o = ZleI%mNUf
We will prove inductively that
ap >0, Vk=0,1,.... K. (3.9)

By (3.6), we have ag > 0. Let n be a positive integer not greater than K. Suppose that (3.9)
holds when k = n — 1. Let [ be an integer so that v]' = ay,. Fori,j =1,2,..., N, we set A;;
by

0, i =7,

adrtv; 0T = 25))
|2 — 2

)‘ij =

In case that 6 = 1, by Hypothesis 1.4, we have
n—1

ap—1 < U,
<"+ AtLpvy’

= 1+Z)\lj —Z)\ljv;-l

G il
San [T+ Mg | —an ) Ny
J#l J#l

= Q.



3.2. Error estimates with a discrete L norm 35

Moreover, in case that 6 € [0,1), by Hypothesis 1.4 and (3.7), we get

Op_1 =0p_141— (1 — (9) Z )\lj + Ozn_l(l — 9) Z )\lj
i j#l

IN

T = (=) Ay e+ (1=60)> Aoyt
j#l J#l

= vf_l - (11— G)Atthl"_l

<+ 0AtLpvp!

=of [ 1+0D> Ny | 0> N}

J#l j#l
§Ozn 1+92/\lj _angz/\lj
J#l J#l

= Q.
Therefore, (3.9) also holds when k = n. Consequently, since (3.9) is true, we obtain (3.8). O

Lemma 3.4. (Discrete maximum principle) Suppose that vf eR(=1,2,...,N, k=
0,1,...,K) satisfies

Dagof + Lot <o, i€hg, k=0,1,..., K —1,

and w satisfies Hypothesis 1.4. Moreover, suppose (3.7) if 8 € [0,1). Then for all i =
1,2,....,N and k=0,1,..., K, we obtain

oF < 00|y + ,_max 0! | goo (rur ) (3.10)

Proof. Let ¢F (i=1,2,...,N, k=0,1,...,K) be

oF == —0f + [Vl go ) + max 0! | g (rur )

=U,1,...,

We prove that go? >0foralli=1,2,...,N and k=0,1,..., K. By the definition of gpf, we
have

oF >0, i € Arury, k=0,1,..., K,

Moreover, for all t € Aq, k=0,1,..., K — 1, we get

1
k _ k l l
Dt = ~Dastt + 57 (g Iolwcrors) = o, o licron

> — Dol
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> Lpvft?
= Lok,
Therefore, by Lemma 3.3, for all t =1,2,..., N and k =0,1,..., K, we obtain
i > 0.
Then (3.10) holds. O

Lemma 3.5. Suppose that v: Xypg X Ix — R and ¢ : Xyg N x Ix — R satisfy

DAtvf+thf+Z =¢F,  icAq, k=0,1,...,K — 1,
v; =0, iGAFUFHa k=12,...,K,
V) =0, i € Aay,

{(XnH, VN, h)}hio is a regular family with order m (> 2), and w satisfies Hypothesis 1.3 and
Hypothesis 1.4. Moreover, when 6 € [0, 1), suppose that At satisfies (3.3). Then there exists a
positive constant ¢ and hy independent of h, N, and At such that for all {(Xnu, VN, h)}nhio
with b < ho,

[0l 0,770 (210)) < €I Dlle 0,705 (2)) - (3.11)
Proof. First, we consider the case that # = 1. Fix any z € R? satisfying
|z — 2| < diam(Qg), Vz € Qg.

Let ®: Qy — R be

Since |®|ci(g,,) = 0 (I = 3) and by Theorem 1.15, there exists a positive constant c; indepen-
dent of h and NN such that

IAD — AL oy < c2h™ 2.

1 we have

Therefore, since AP = —x~
Lp®; >1—coh™ 2, i=1,2,...,N. (3.12)
Set hg € RT such that
ho < (62/{)(2_"1)_1 :
By (3.12), for all {(Xn.u, VNH,h)}hio with b < hg, we have
Lp®; > 1 — carhy™2 > 0, i=1,2,...,N. (3.13)
Let ¥ (i=1,2,...,N, k=0,1,...,K) be

O = 0F — (1 — carhl ) FR Y,

7
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Here,

0, k=0

l
lzogféfk_llw ¢ () 12,

Fk .=

By (3.13) and ® > 1, foralli=1,...,Ng and k =0,1,..., K — 1, we have

Dargf = Dol — (1- 62&h0m72)71 ®; D FF

— Lot 4 gF — (1= corhl =) 7 @ DA F”

— L oF — (1= corh? ) T PR L,®, — (1= corhl ™) @, Dp FF
< — Lyl t? 4+ ¢F — PR — (1= corh? ) &, Dp FF
< —Lpptt0 gk — FPHO _ DaFP,

)

A

Since At < (1 —6)~!, we find
FMO 4 DAFRF > (0 + ATH)FF (1 — 0 — A FF
> phtl (3.14)
Hence we have
Dt + Lt < 0.

Therefore, by Lemma 3.4, for all i =1,2,...,N and £k =0,1,..., K, we obtain

3 0 I
o7 < [l e () +l:f()f}ﬁ?§’k||90 e (rur )

<[00l ) + (1 = carh )7 _max F!| @l (rur)-

S SR A

Since

diam(Qy)% + 1

D[ oo < 1
[P lee () < 2dr ; (3.15)
forallt=1,2,...,N and k=0,1,..., K, we have

vf <e, max @' lleerors): (3.16)

1=0,1,...k—1
Let ¥F (i=1,2,...,N, k=0,1,...,K) be
PF = —of — (1 — carh2) 7L FF ;.
Since (3.13) and ® > 1, foralli=1,...,Ng and k =0,1,..., K — 1, we have
D = —Daglf — (1= corh? ™) &, Dp FF

= Lyt — ¢F — (1= corhl*2) " @, Dp, F*

i
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— Lyt — o — (1= corh ™) T PO L0, — (1 — corhl ™) ;D F*
< — Lyt — g — FM (1 — o) @, D F*
< —Lpyft0 — ¢f — F*0 — &, D FF.
By (3.14) we have
Daghf + Lyt t? <.

Therefore, by Lemma 3.4, for all t =1,2,..., N,k =0,1,..., K, we obtain

— £°(Qy) X £°(Tul'y)
¥ < 190 +, max |y

< 00| ge gy + (1 = carhg ™) 7! lzoqlfﬁ_lFZH‘I)Hew(rurHy
Hence, by (3.15), we obtain

k I
—v; < € _max 16" [l e (rury)- (3.17)

Consequently, by (3.16) and (3.17), we obtain (3.11) when 6 = 1.
Next we consider case that 6 € [0, 1). Since w satisfies Hypothesis 1.3, we can take w € W
such that

Here,

By Theorem 1.11, there exists a positive constant cs independent of A and N such that for
all x € Q

N
> Vidp(|lz — a]) — 1] < esh™
Jj=1

Therefore, since
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< (14 egh™ ),

D‘

by taking h; satisfying

1—61

0<hpt< :
Cc1€3

forall h < hy and i =1,2,..., N, we have

2
J#i
Cw
< —.
= 1 2
Hence, since for all h < hy
-1
1 wp(|wi — ;) c1 2
S — v, e = 251 > 9y
2dr(1 — 0) |ican Z I w — 2 = 2dr(1 — O)cyl

(3.7) holds. Consequently, by taking hgy such that
0 < hp < min {(czfﬁ)@_mr1 ,hl} ,

Theorem 3.4 is true for h < hg. Then, by the similar arguments the case that 8 = 1, we
obtain (3.11). O

Utilizing the results above, we prove Theorem 3.1.
Proof of Theorem 3.1. e: Xnpg x Ik - Rand R: Xypg % (Ix \ {tK}) — R are defined by

el =k - UF,

R; = Dagitf + Dy ™ = 0 (9! — kAT — (1 - 0) (94t — AT )

(2

respectively. Then, by (3.1) and (3.2), we have

Dagef + Lpel™ = RF, i€ Aq, k=0,1,...,K — 1,
ek =0, i € Arury, k=1,2,...,K,
e? =0, 1€ AQH.
Then by Lemma 3.5, we obtain
l[elless (0, 7550% (1)) < € 1R [eso (0,756 (2))- (3.18)

Now, since
(RE| < [Daiit - {60t + (1 - o)ogat }|

+ K0 ‘Auk“ A ~k+1‘ (1- )k ’Aﬂf — Ayt
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we estimate the each term. Assume u € C?([0,T]; C*(Q)). By Taylor expansion, we have

a{f—l—l_ak 1 92
atﬂf-l—l:lAtl+At/(1—t)at Wz, (k + 5)Ab)ds,
0
~k+1 ~k 1 82
8a§:M+At/ 1—t zi, (k+1—s)At)ds.
s Az O( )5 i, ( )AL)

Hence, we find

82
ot?

[Daiit — {oogit + (1 - o)} < 2 max

2 O<s<1 (i, (k + 5)A)

< cAt HUHC2([0,T];C(§H)) )

Since {(Xn #, VN, h)} is the regular family, by Lemma 1.5 and Theorem 1.15, for all i € Aq
and £k =0,1,..., K, we have

|Aﬂ;€ _ Ahaﬂ < Chmin{Q,m—Q} ||17”C'([0,T];C4(§H)) ’
Therefore, for all i € Ag, k=0,1,..., K — 1, and 6 € [0, 1], we obtain
|RF| < (At + R 2N @) a0 o @) - (3.19)

Moreover, when u € C3([0,T]; C*(Qp)) and § = 1/2, by Taylor expansion, we have

~k+1 _ o~k 2 2 3
e A S ) —— 1—t iy (k At)ds,
Oy At T2ae" Ty 0( )\ g i (k + )A1)
~k+1 ~k 2 2 1 3
opu; = A 3 gl + — ; (1—1%) %u(xl, (k+1—s)At)ds.

Since

82 k1 82
52 i o) ul At/ P u(zq, (k4 s)At)ds,
we estimate

3
o3

5A 12

<
- 12 0<s<1

‘Dmﬁf - (a AR ataf) (as, (k + 8)At)

< A [l e o 0@ -

Therefore, for all i € A, k=0,1,..., K — 1, we estimate
|Rﬂ < C(At2 + hmin{?,m—Q}) Hﬁ“cg([QT];C‘L(ﬁH)) : (3.20)

Consequently, by (3.18), we obtain (3.4) and (3.5). O
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3.3 Error estimates with a discrete L? norm

For v: Xypm — R and S C R%, a discrete L? norm ||.||;2(s) is defined by

1/2

lolpgs = | D Vilil* |

i€Ag
and a discrete H' semi-norm |.| ni(s) is defined by

1/2

g = (43 v Tl o gl =)

i€Ns  jFi

Note that the discrete H' semi-norm satisfies the axioms of semi-norm if w satisfies Hypotheses
1.4 and X g satisfies the h-connectivity. First, we show an inequality with respect to ||.||;2(q )

and |'|h1(QH)'

Lemma 3.6. Suppose that {(Xn.u, VN H,h)}hio is a reqular family with order m (> 1) and
that w satisfies Hypothesis 1.3 and Hypothesis 1.4. Then there exists a positive constant ca
independent of h and N such that for allv: Xyg — R,

C2
i) = 7 1Vlle@) - (3.21)

Proof. Set @ € C(R{) satisfying

Here

1
Cw = /]Rd Ww(|:1:|)dx

Then, by Hypothesis 1.3, we have @w € W. Then, by Hypothesis 1.4, we estimate

-
i =43 T S )
Ly

i=1 j#i
dcy 9~
= ﬁzvizvjm—vj\ (| — )
i=1  j#i
2dcw
< ZVZV (loil? + [v; 1) @p(|2i — 25])
=1 Jj#i

< 4d"w§jvmr Zth i — ).
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Now, fix any w = {w;} satisfying (1.6) and set &; (4,5 =1,2,...,N) by &; := meas(o; Nwj).

Then we have

N
Viwp(lzi — x50) = | wn(lz —yl)dy + {@n(|2i — z4])
jz:; h / n( y|)dy ZZ/ h

j=1 k= 0 Nwy,

N N
+ > &nf@n(le — zul) — @ulla — )}

j=1 k=1
For i =1,2,...,N, let N;(r) (r € R") be
Ni(r)=={j; j=1,2,...,N, |zi —zj| <r}.

By @w € W and Hypothesis 1.4, the second term of (3.22) is estimated by

/ wp (s — y|)dy < 1.
Qp

By Taylor expansion, the second term of (3.22) is estimated by

S5 [ (@l D = Bl — Db

] 1 k=1 O']ﬂwk

D SR S BT R Ay

FEN; (htre) k=17 7iNWk

el Bloey dy
FEN; (h+rc) %I

c<1+2%> %

The third term of (3.22) is estimated by

Z {0 = ) = Bl = ;)

N
< 3 S+ &) @nlas — axl) — Bl — )

JENi(h) k=1

N
1.
< s ller ey Yo D (Gt bg)lzs —

_ 1 -~ éjk +§k]
N hdﬂ,w‘ol(m)je%;( )meaS v ]z:meas( )’ i

A

— wp(|z;

N
re\4 1 Eik +&kj |
= <1 + ﬁ) ﬁ‘wycl(Rar)j:{r,lz?).(.,N (Z meas(o;) 2 =l |

—y[)}dy

(3.22)
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and, since w is arbitrary, we have

Sy re\ 4 d
SN gl an(lai — anl) - @h(|xi—xj|)}§c<1+ﬁ) &~

7=1k=1

Therefore, we have

2 4de Tc drc+dv 2
ol gy € T {1+ (14255) 5 ol -

By the regularity, we therefore obtain (3.21). O

Now, we state error estimates with the discrete L? norm in space of the approximate
solutions.

Theorem 3.7. Let u and U be solutions of (3.1) and (3.2), respectively. Suppose that the
ezpanded solution U satisfies u € C*([0,T); C*(Qm)), {(Xnm, Vg, h) }nio is a reqular family
with order m (> 2), and w satisfies Hypothesis 1.3 and Hypothesis 1.4. Moreover, when
0 €[0,1/2), suppose that for any fixred § € (0,1), At satisfies

0 2

At< ——h
~ k(1—20)c3

(3.23)

Here co is the positive constant in (3.21). Then there exists a positive constant ¢ independent

of h, N, and At such that for all {(Xnu, VN, h)}

1T = Ull e o 17:02 0050 < € (AL + ™2™ 2H 3| o0 1108010 (3.24)
Furthermore, if u € C3([0,T); C*(Qu)) and 6 = 1/2, then

1= Ul o2y < € (A + R B2 ] o 71,003, - (3.25)

Hereafter, in this section, let ¢ be a generic positive constant independent of A, N, and
At. Before beginning the proof of Theorem 3.7, we show the following lemma.

Lemma 3.8. (Stability) Suppose that for ¢ : Xyg N QU x Igx - R, v : Xyg x Ig = R
satisfies

Dagvf +thk+0 ok, 1 € Aq, k=0,1,..., K -1,
oF =0, i € Arury,, k=1,2,...,K, (3.26)
v?zO, i € Aqy,

{(XnH, VNH, h)}hio is a reqular family with order m (> 1), and w satisfies Hypothesis 1.4.
Moreover, if 0 € [0,1/2), suppose that w satisfies Hypothesis 1.3 and At satisfies (3.23). Then
there exists a positive constant ¢ independent of h, N, and At such that

[vlle= 0,12 250)) < €@ lless(0,1)562(02))- (3.27)
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Proof. Multiplying both side of the fist term of (3.26) by Vivfﬂ/g and taking the sum of these
over i € Ag, we have

ST VT2 Dacl 4+ 3 Vol TP Ll = N vl TRk (3.28)
1€Aq i€Aq 1€EAQ

The first term of the left hand side of (3.28) yields

k+1/2p k+1 ky2
> Vi T Doy thV{ - (v)%}

i€EAq
1 k k
= 5a7 P e = 1012 0,)

and the second term gives

k+1/2 k+6
Z Viv, Lpv,

€A
k+1/2 vl — o te
1
=2rd Y VTNV z _mj‘Q wp(|x; — x;])
ZGAQ jF#i J
k+1/2 k+1/2\, k46 k46
(o2 20 )
SV 3) DUATE S M LA M)
i=1 j#i ¢ J
! k+1/2 UI;+1/2)2
— Yy v ol =)
i=1 j#i ’ J
k+1 k4132 k k)2
dk — v ) = (vf =)
+ T (6-3 ZZVV (i — )
2 |z — 4]

i=1 j#i

K 1

Therefore we obtain

1
2At HkaH?? Qu) — HUkH??(QH)) + ’i’ka/Q’h @em 13 (9 - ) (|Uk+1’i1(QH) - ‘Uk|i211(QH))
=Y Vil T2k, (3.29)
i€EAq

Forl=0,1,...,K, let E; be
E = 112 At (o _1 12
= ”e?(QH) Tk 9 v ’hl(QH)'
By (3.29), for all s € (0,1), we have

1
Eip1 — Er = [0 220 = 1V 120,y + Ats <6 a 2) ("™ Ry = 1070
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_ _2Am’vl+1/2‘2 o+ AL Z Viv l+1/2¢l

i€AQ
< 2At1~1]vl+1/2|2 (o) T AL Z Vil + (o)) ||
i€EAo
22, 2 12 At? 12
< =20tk V2R oy + sl0T R ) + (0= )0 22, + mw 720

By Hypothesis 1.4, we have ]vl+1/2\h1(QH) > 0. Then we obtain

At?
By — B <s[o"™ 2, + (1= )l 2q,, + m!lél!@(m'

Taking the sum of the both side with respect to [ from 0 to k — 1, since HUDH?Q(QH) =0, we
have

k1 A2 b
k|2 12 !
Ey, — Eo < sl[v*[72i0) + D 101720 + 15(1—5) 191172 6
1=0 1=0
Since Ey = 0, we obtain
k—1
AN S 2
Pl + 175 (9 5) 146 < 775 2 ¥ * e Z 16120
1=0
Taking s = At/(2T"), we have
26T At 1
k2 k—1|2
1V 200 + 57— A (9 - 2> V" )
k-1 k-1
At 2 2T3 At !
S ST AL ;0 [l QT —AD? Z 1611726
= k—1
S 11200y + 2TZAtH¢lH£2 (3.30)
1=0 1=0

When 6 € [1/2,1], since

2kT At 1
R Gy L T e L

forall k =0,1,..., K, we have

k—1
At !
[P Z 1172y + 2T D Atll¢H 170
1=0
Since ][1}0]]32(9}[) = 0, by applying Gronwall’s lemma into the inequality, for all k = 0,1, ...
we have
k—1

10172 0y < 2eT > At]|6 170
1=0
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Therefore we obtain
9]l o.1e2 (00 )) < V26T |lle (0.1)02(02))-
When 6 € [0,1/2), by (3.21) and (3.23), we have

25T At

1
I @) + 57— A7 <9 - 2) [V By = (08 gy + £AE(20 = 1) [0¥ s

2
kAL (20 — 1) 2
> {1 te—r 10"z 02

> (1= 9)lIo* 1%

Therefore, by (3.30), we have

el
|
-

k—1
At 2T
k|2 12 !
[v HEQ(QH) < (1-0T z Jv sz(QH 1-¢ E :AtHﬁb Hz?(Q

Il
=)

By applying Gronwall’s lemma into the inequality, for all K =0,1,..., K, we have

bo 1 (1- 6T .
¥ 10,0y < ZAtllqb 1720

Therefore we obtain

61/(1 5)
[Vl o 11020200 = A 75 T I9lleo.ry:e2(2))

Consequently, (3.27) holds.

Finally, using the lemma above, we prove Theorem 3.7.

O

Proof of Theorem 3.7. e: Xyu % Ix = Rand R: Xy x (Ix \ {t¥}) — R are defined by

k._ ~k k
e; i=u; — U,

(2
RF := Db + Lyt — 0 (atafﬂ - maf“) —(1-9) (ataf - maf) ,

(3

respectively. By (3.1) and (3.2), we find

Dagel + Lypef™ = RF i€ Ag, k=0,1,...,K —1,
ek =0, i € Arury, k=1,2,..., K,
e) =0, i € Aqy,.

By Lemma 3.8, for k =1,2,..., K, we have

llell o (jo,7:2 () < € l1Rlee (f0,1502(2)) -

Therefore, by (3.19) and (3.20), we obtain (3.24) and (3.25).



Chapter 4

Numerical results

The purpose of this chapter is to confirm theoretical results obtained in previous chapters
numerically. After preparations of particle distributions, Section 4.1 shows some numerical
results corresponding to the truncation error estimates of the approximate operators shown
in Section 1.4 and confirm the convergence rates for some weight functions of SPH and un-
conventional ones. Section 4.2 presents some numerical results corresponding to the error
estimates of the generalized particle method for the Poisson equation mentioned in Section
2.2 and confirm the convergence rates. Section 4.3 gives some numerical results corresponding
to the error estimates of the generalized particle method for the heat equation mentioned in
Section 3.3 and confirm the convergence rates and the stability conditions with respect to the
time step.

In this chapter, we set particle distributions as follows: Set Q = (0,1)? and H = 0.1. Let
Gz be a grid distribution with size Ax defined by

Gag = {(iAx, jAx) € Qp; i,j € Z}.
We set X g by a distribution constructed to disturb Ga, at random:

Xnir = (i + 1) Ax, (G + 02 Az) € Qs i,j € Z).

Here ngL) (i,j € Z,n = 1,2) are random numbers in (—0.25,0.25). Then we have N ~ Az~2
and 1.4Az < 7. < 1.8Az. Figure 4.1 shows a particle distribution with Az = 272,
We will state how to give a grid size Az, a weight function w, an influence radius h, and

particle volume V; in each section.

4.1 Truncation errors

We compute truncation error for two cases of functions v as follows:

Case 1: v(z,y) = (z —0.5)" + (y — 0.5)%,
Case 2: v(z,y) =sin(2r(x + y)).

47
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1l

1.0:.:.::.:.:.-... X X M

00: L I

R | NN S IS P T S D
-0.1 0.0 1.0 11

Figure 4.1: A particle distribution Xx g with Az =27° (N = 1,521). A gray area shows ().

4.1.1 Interpolants

We compute truncation errors of interpolants. First, we consider three weight functions: the
cubic B-spline

1
1 —6r2+ 613, 0<r<—,
40 1 2
CB(,.\ ._ Y
W)= 41— )2, 5 <r<l,
0, r>1

and the quintic B-spline

1
(3=3r)+6(2—-3r)°+15(1-3r)5, 0<r< 1
1 2
W () 63 | (3—3r)°+6(2—3r)°, 3Sr<3
5787 . 2
(3 —3r)°, §§r<1,
0, r>1

used in SPH [38] and a quadratic spike function defined by

™

0, r > 1.

These weight functions satisfy Hypothesis 1.1 with order £ = 1. Figure 4.2 shows the graph
of weight functions.
Set Az by 27°,276 ... 271 For Az, set h by h = {(3.1% x 2-10)Az}1/3. Set particle

volumes by V; = V; (i = 1,2,...,N). Under the settings above, Theorem 1.11 is valid with
O(h?).
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20F R — Quintic B-spline
1.5+
1.0+
0.5+
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Figure 4.2: The graph of weight functions: the cubic B-spline, the quintic B-spline, and the
quadratic spike function.

Figure 4.3 shows graphs of the relative errors

[ = Iav][ oo ()

HUHeoo(Q)

versus the influence radius h. The slopes of triangles show the theoretical convergence rates
derived from Theorem 1.11. Table 4.1 shows numerical convergence rates obtained from the
slopes of the relative errors between Az = 2719 and 27!!. Figure 4.3 and Table 4.1 show that
the numerical convergence rates agree well with theoretical ones.

101 101
Case 1 Case 2 J
—0O— Quaderatic spike —{O— Quadratic spike /
— < = Cubic B-spline — < = Cubic B-spline }?
----- O Quintic B-spline O Quintic B-spline 7
_ 102 _ 102 4
e ; e
@ g @
) S )
> : > Rk
£ &
g o E O
10° > 0 10° °.° 2
O/..Q*" (o)
ol 2 1
1
10* 10+
102 10 102 10t
h h

Figure 4.3: The graphs of the relative errors of interpolants versus h.

Next, we consider a cubic spike function defined by

w(r) :

i
7T

1—r)?(4—17r),

( 0<r<l,
0,

r>1,
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Table 4.1: Numerical convergence rates of interpolants obtained from Az = 2710 and 271! in
Figure 4.3.
Weight function Case 1 Case 2

Quadratic spike 1.93 2.00
Cubic B-spline 1.91 2.01
Quintic B-spline 1.91 2.02

in addition of the previous weight functions. The cubic spike function satisfies Hypothesis 1.1
with order k£ = 3. Figure 4.4 shows the graph of the quadratic spike function and the cubic
spike function.

w(r)

7.0+

6.0 A\\

50L \\ Quadratic spike
4.0 \\ — — — Cubic spike

3.0
2.0
1.0

0.0

Figure 4.4: The graphs of the weight functions: the quadratic spike and the cubic spike.

Set Az by 27°,276, ... 2712 For Az, set h by h = {(3.1% x 2710 Az}1/5. Set particle
volumes by V; = V; (i = 1,2,...,N). Under the settings above, Theorem 1.11 is valid with
O(h*) in case of the cubic spike function (4.1) and with O(h?) in case of the other functions.

Figure 4.5 shows graphs of the relative errors 4.1.1 versus the influence radius h. The
slopes of triangles show the theoretical convergence rates derived from Theorem 1.11. Table
4.2 shows numerical convergence rates obtained from the slopes of the relative errors between
Az = 2711 and 27!2. Figure 4.5 and Table 4.2 show that the numerical convergence rates
agree well with theoretical ones.

Table 4.2: Numerical convergence rates of interpolants obtained from Az = 27! and 2712 in
Figure 4.5.
Weight function Case 1 Case 2

Cubic B-spline 2.00 2.00
Quintic B-spline 2.00 2.00
Quadratic spike 2.00 2.00

Cubic spike 4.00 4.26
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Figure 4.5: The graphs of the relative errors of interpolants versus h.

4.1. Truncation errors

h

4.1.2 Approximate gradient and Laplace operators

10*

o1

We compute truncation errors of approximate differential operators. We consider the following
weight functions: the quartic polynomial

w9 (r)

the piecewise cubic polynomial

and the piecewise quintic polynomial

,wPCP (’I“) .

wF P (r):

60 {7’2(1 —7r)%

T om

0,

= - : iwCB (T)v

2 dr

rd
_ % ,.QB
2drw (r),

0<r<i,
r>1,

TGR(T,

reRT,

The approximate differential operators using the quartic polynomial, the piecewise cubic
polynomial, and the piecewise quintic polynomial agree with the approximate differential
operators in SPH using the bell-shaped function, the cubic B-spline, and the quintic B-
spline [38], respectively; see Appendix A.1. Set Az by 275,276 ... 271 For Az, set h by
h = {(3.1% x 27 10)Az}'/4. Set particle volumes by V; = V; (i = 1,2,...,N). Under the
settings above, Theorem 1.13 and Theorem 1.15 are valid with O(h?).

Figure 4.6 shows graphs of the relative errors

versus the influence radius h and Figure 4.7 shows graphs of the relative errors

Vv = Vo[ jgeo 2

VOl g ()2

1AV = Apv| oo ()

HAUHZOO(Q)
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versus the influence radius h. The slopes of triangles show the theoretical convergence rates
derived from Theorem 1.13 and Theorem 1.15. Table 4.3 shows numerical convergence rates
obtained from the slopes of the relative errors between Az = 2719 and 27!, Figures 4.6-4.7
and Table 4.3 show that the numerical convergence rates agree well with theoretical ones.

10* 10?
Case 2 Case 1
—0O— Quartic —0O— Quartic
— < = Piecewize cubic — < = Piecewize cubic a
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103 103
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Figure 4.6: The graphs of the relative errors of approximate gradient operators versus h.

h

h
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6 5
@ ]
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A> .>
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Figure 4.7: The graphs of the relative errors of approximate Laplace operators versus h.

h
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Table 4.3: Numerical convergence rates of approximate gradient operators and approximate
Laplace operators obtained from Az = 2719 and 27! in Figures 4.6-4.7.
gradient operators Laplace operators

Weight function Case 1 Case 2 Case 1 Case 2
Quartic polynomial 2.00 2.16 2.00 1.93

2.00 2.25 2.00 1.93
Piecewise quintic polynomial 2.00 2.52 2.00 1.93

4.2 Poisson equation
Set a manufactured solution of Poisson equation (2.1) by
u(z,y) =sin(2r(z +y)),  (z,y) €

Set g by g(z,y) = sin(2n(x +y)), (x,y) e TUTy.

We consider the weight functions wPe!, w and wItintic  Set Az by 272,276, ..., 279,
For Az, set h by h = {(2.6% x 2710)Az}/4. Set particle volumes by (A.10). Under the setting
above, Theorem 2.1 is valid with O(h?).

Figure 4.8 shows graphs of the relative errors

@ = Ullgeo ()
[l oo ()

versus the influence radius h. The slopes of triangles show the theoretical convergence rates
derived from Theorem 2.1. Table 4.4 shows numerical convergence rates obtained from the
slopes of the relative errors between Az = 27% and 27°. Figure 4.8 and Table 4.4 show that
the numerical convergence rates agree well with theoretical ones.

Table 4.4: Numerical convergence rates of the discrete Poisson equation.

Weight function convergence rates
Quartic polynomial 1.95
Piecewise cubic polynomial 1.99
Piecewise quintic polynomial 2.00

4.3 Heat equation

Set T'=0.1 and k = 0.5. Set a manufactured solution of the heat equation (2.1) by
u(z,y,t) = exp(—2km?t) sin(rz) sin(my), (z,y) €Q, t€(0,T).

Set g and a by

g(z,y,t) = exp(—2rmt) sin(mz) sin(ny), (x,y) €T ULy, t € (0,T),
a(z,y,t) = sin(mz) sin(my), (z,y) € Qm,
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Figure 4.8: The graphs of the relative errors of the discrete Poisson equation versus h.

respectively. We consider the weight functions we!l, we™i¢ and wantc  Set particle volumes

by (A.10).

First, setting At to satisfy (3.23), we confirm convergence of errors in case that § = 0,1/2,
and 1. Set Az =27°,276 . 278 h = {(2.6* x 2719 Az}/4 and At = 0.0025h%. Figure
4.9 shows graphs of the relative errors

l|u — UHZOO([O,T};ZQ(QH))

N (4.2)
||U”zoo([0,T];€2(ﬂH))

versus the influence radius h in case that § = 0,1/2, and 1. The slopes of triangles show
the theoretical convergence rates derived from Theorem 3.7. Table 4.5 shows numerical con-
vergence rates obtained from the slopes of the relative errors between Az = 277 and 278.
Though the convergences of errors are obtained, the numerical rates are not agree with ones
of Theorem 3.7. It is conjectured that we can not enough compute asymptotic estimates for
the limit of calculation environments.

Table 4.5: Numerical convergence rates of the discrete heat equation in case that At =
0.0025h2.

Weight function =0 6=1/2 60=1
Quartic polynomial 6.63 4.92 4.62
Piecewise cubic polynomial 6.64 5.43 5.66
Piecewise quintic polynomial  6.67 6.81 7.17

Next, in order to confirm unconditional stabilities when 6 € [1/2,1], we compute under a
sufficiently large time step At = 0.5h2. Set Az = 272,276 . 279 h = {(2.6*x2710)Az}!/4,
and 0 =0,1/2,1.
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Figure 4.9: The graphs of the relative errors of the discrete heat equation versus h in case
that At = 0.0025h% and 6 = 0,1/2, 1.

Figure 4.10 shows graphs of the relative errors (4.2) versus the influence radius h in case
that € = 1/2 and 1. The slopes of triangles show the theoretical convergence rates derived
from Theorem 3.7. Table 4.6 shows numerical convergence rates obtained from the slopes
of the relative errors between Az = 27 and 27°. From Table 4.6, we can confirm that the
stability conditions are valid when 6 = 0. Moreover, Figure 4.6 and Table 4.6 show, in case
that 6§ = 1, the numerical convergence rates agree with ones of Theorem 3.7. On the other
hand, in case that # = 1/2, the numerical convergence rates do not agree with ones of Theorem
3.7, although the errors convergence. In case that § = 1/2, it is also conjectured that we can
not enough compute asymptotic estimates for the limit of calculation environments.

Table 4.6: Numerical convergence rates of the discrete heat equation in case that At = 0.5h2

Weight function =0 6=1/2 60=1
Quartic polynomial —281 4.31 1.94
Piecewise cubic polynomial —-314 4.39 2.02
Piecewise quintic polynomial —416 4.55 2.06

Finally, setting At by a first order of h, we confirm differences of convergence rates in case
that @ = 1/2 and 1. Set Az =27°276 . 279 h = {(2.6* x 2719 Az}/4 and At = 0.5h.
Figure 4.11 shows graphs of the relative errors (4.2) versus the influence radius h in case
that # = 1/2 and 1. The slopes of triangles show the theoretical convergence rates derived
from Theorem 3.7. Table 4.7 shows numerical convergence rates obtained from the slopes of
the relative errors between Az = 278 and 279. Figure 4.11 and Table 4.7 shows that the
numerical convergence rates agree with theoretical ones.
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Figure 4.10: The graphs of the relative errors of the discrete heat equation versus h in case
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Weight function 0=1/2 60=1
Quartic polynomial 2.01 0.84
Piecewise cubic polynomial 2.02 0.84
Piecewise quintic polynomial 2.03 0.83
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that At = 0.5h and 6 = 1/2,1.



Conclusion

A generalized particle method has been introduced for discretizing partial differential equa-
tions described by strong formulations and error estimates of the generalized particle method
have been established for the Poisson and heat equations.

At first we have introduced the generalized particle method and have made preparations
for subsequent analysis. The generalized particle method have been defined as a class of par-
ticle methods that discretize the partial differential equations that can describe conventional
particle methods such as SPH and MPS. For discrete parameters of the generalized particle
method, we have introduced a regularity, hypotheses of weight functions, and a connectivity
condition. The regularity has been a condition of a family of particle distribution, particle
volumes, and influence radii defined by a ratio among the influence radius and two indicators
of the particle distributions and the particle volumes. The one of the indicators, which is
called a covering radius, has been defined by a radius of circles whose centers are particles
when an union of the circles just covers the spatial domain. The another indicator, which
is called a Voronoi deviation, has been defined by a weighted deviation between the particle
volume and Voronoi volumes. Also we have been defined a regular order of the regularity by
this ratio. The hypotheses of weight functions have been given by four conditions; the first
condition is that an integration of the weight functions multiplied by polynomials vanishes;
the second and third conditions are properties around the origin; and the last condition is a
positivity within the support of the weight function. In the first condition, we call the max-
imum degree of polynomial an order of weight function. The connectivity condition, which
is called h-connectivity condition, has been defined by a property of a graph with respect to
the particle distributions and the influence radius h. After the introduction of the conditions
of the parameters, we have obtained truncation errors of the interpolant and the approx-
imate differential operators. Under the regularity and the some hypotheses of the weight
functions, we have established the truncation error estimates with the maximum norm that
are O(hmin{k“’m_l}) in case of the interpolant and the approximate gradient operator and
O(hnlin{k+17m_2}) in case of the approximate Laplace operator for the regular order m and
the order of weight function k.

Next we have introduced the Poisson equation discretized by the generalized particle
method and have proved its error estimates. By using the connectivity condition, we have
shown the unique solvability and the discrete maximum principle of the discrete Poisson
equation. Utilizing the truncation error estimates and the discrete maximum principle, we
have established the stability and the error estimates with a discrete L*° norm that are
O(hmin{Q,m—Q})'

Furthermore we have introduced the heat equation discretized by the generalized particle

o7



58 Conclusion

method in space and by the -method in time and have established its error estimates. We
first have proved the unique solvability and the discrete maximum principle of the discrete
heat equation. Utilizing the truncation error estimates and the discrete maximum principle,
we have established the stability with a condition of the time step in case of § € [0,1) and
without in case of § = 1 (backward Euler method), where 6 is a discretize parameter of the
f-method. Under the conditions of the stability, we have obtained the error estimates with
the discrete L norm in space and time that are O(At 4+ h™™27m=2}) in case of § # 1/2
and O(A#? + p™in{2m=2}) in case that # = 1/2 (Crank-Nicolson method). Furthermore, by
introducing a discrete L? norm in space, we have obtained a stability with a condition of the
time step in case of 6 € [0,1/2) and without in case of § € [1/2,1]. Then we have established
the error estimates with the discrete L? norm in space and the discrete L> norm in time,
which are same orders of the error estimates with the discrete L*° norm.

Finally, we have shown some numerical results corresponding to the above results. Under
each condition derived from the theorems, we have confirmed that the errors have converged
and the convergence rates almost agree with theoretical ones.

In future work, as aiming to further establish mathematical framework of the generalized
particle method, we will investigate error estimates of the generalized particle method for the
partial differential equations including convections such as the convection-diffusion equation
and Navier-Stokes equations. Moreover, by utilizing knowledge obtained from numerical anal-
ysis, we will try to solve some problems in practical computations, for example, redistribution
methods of the particles and finding appropriate weight functions.
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Appendix A

Conventional particle methods

This appendix introduces conventional particle methods: Smoothed Particle Hydrodynamics
(in Section A.1) and Moving Particle Semi-implicit (in Section A.2) and shows numerical
analysis of these particle methods by utilizing the theoretical results in this thesis.

A.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a particle method developed for computing as-
trophysics in 1977 [26, 40]. Later on, SPH has been used for various problems, including the
fluid dynamics [42, 43]. In SPH, various types of approximate operators have been proposed
[12, 26, 38]. In this section, we introduce approximate operators used in SPH for incompress-
ible flow problems (Incompressible SPH) [3, 17, 53].

Let us define w® : RS — R as a weight function of SPH (also called a smoothing function).
The weight functions satisfying the following conditions are often used [19, 25].

S >07 0S7‘<1,
Al
w<7‘>{:0, o (A1)

/ wS(|z|)dx = 1, (A.2)
Rd

wS € C*(RY), (A.3)
lim 1iws(r) < 00 (A4)
ri0 |7 dr ’ '
d s

e (r) <0, 0<r<l. (A.5)

For example, the bell-shaped function, the cubic B-spline, the quartic B-spline, and the quintic
B-spline [37, 38] satisfy the conditions. For the weight function w® and the influence radius
h (also called a smoothing length), set w,% : R(T — R by
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Then, in SPH, the interpolant H}SL : C(Qy) — C(Qy), the approximate gradient operator
V5 C(y) — C(Qp), and the approximate Laplace operator AY : C(Qy) — C(Qp) are
defined by

v (x) ZVU z)wh (| — z4)), (A.6)
i=1

N
) 1= ZVi{v(%) —v(2)} Vuj(jz — ail), (A7)

—v(x;) v —x; g
=23 1Y : — 2]), A8
ZEEA:* _xz‘ ‘l’—.ﬁC,’ th("r € D ( )

respectively.

Remark A.1. The approximate operators of the generalized particle method (1.2), (1.3),
(1.4) can describe ones of SPH (A.6), (A.7), (A.8) by substitutmg the weight functions of the
generalized particle method. For example, by substituting w = wS, it holds that II;, = HS
Moreover, by substituting

w(r) = —=—uw(r), r e Ry, (A.9)

it holds that V), = V% and Ay, = A%.

Remark A.2. In SPH, Vi g is well used such as

Q
VMH:{Vi; y, = meas(@u) i:1,2,...,N} (A.10)
or
1% {V v, ! i=1,2 N} (A.11)
N.H — iy Vi = y b= L4000, . .
S wn (| — 5])

(A.10) obviously satisfies (1.1). On the other hand, (A.11) approzimately satisfies (1.1).

Corollary A.3. Suppose that Vi satisfies (1.1), {(Xnu, VNm, h)}hio is a reqular family,
and wS satisfies (A.1)~(A.3). Then, for the interpolant of SPH (A.6), truncation error esti-
mates as same as Theorem 1.11 are obtained.

Proof. Tt is sufficient to prove that w® satisfies conditions of Theorem 1.11. Since w® satisfies
(A.1)-(A.3), we have wS € W. Moreover, by Proposition 1.4, w® satisfies Hypothesis 1.1 with
at least k = 1. Therefore the corollary is proved. O

Corollary A.4. Suppose that Vi satisfies (1.1), {(Xnu, VNH, h)}hio is a reqular family,
and w5 satisfies (A.1)~(A.4). Then, for the approzimate gradient operator (A.7) and the
approximate Laplace operator (A.8), truncation error estimates as same as Theorem 1.13 and
Theorem 1.15 are valid.
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Proof. The weight function w is set by (A.9). It is sufficient to show that w satisfies conditions
of Theorem 1.13 and Theorem 1.15. By (A.1), (A.2), and using the integration by parts, we
have

_ 1 d S
[ wllede == [ fol 3w (o
:_cll/ z - VS (|z|)dz

_1 '$wSCC T
7 |7 ou(al)a

= [ w5 el
1.

Therefore we find w € W. By (A.3) and (A.4), w satisfies Hypothesis 1.2 and Hypothesis 1.3.
Moreover, by Proposition 1.4, w satisfies Hypothesis 1.1 with at least k = 1. Therefore the
corollary is true. O

Corollary A.5. Suppose that Vg satisfies (1.1), {(Xnw, VNH, h)}hio is a regular family
with order m (> 2), and wS satisfies (A.1)~(A.5). Then, for Poisson equation discretized by
the approximate Laplace operator (A.8), error estimates as same as Theorem 2.1 are derived.

Moreover, for the heat equation discretized by the approximate Laplace operator (A.8) in
space, error estimates as same as Theorem 3.7 are obtained under appropriate conditions with
respect to the time step.

Proof. The weight function w is set by (A.9). It is sufficient to prove that w satisfies conditions
of Theorem 2.1 and Theorem 3.7. By (A.5), w satisfies Hypothesis 1.4. Therefore, by Corollary
A4, w satisfies assumptions of Theorem 2.1 and Theorem 3.7. Consequently the corollary is
obtained. O

A.2 DMoving Particle Semi-implicit

Moving Particle Semi-implicit (MPS) is a particle method developed for computing incom-
pressible flow in 1996 [33] and has been applied into various problems as same as SPH. Now
we introduce approximate differential operators of MPS. We define a weight function of MPS
by wM : RE{ — R satisfying

0, 0 1
WMy d =% PSS (A.12)
=0, r > 1.

For example, the following unbounded weight function [19, 25] is often used.

1
-—1, 0<r<l,

wM(ry={r (A.13)
0, r=0,r>1
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For the weight function w™ and the influence radius h, set wh Ry — R by
1 r
M . M

Then, in MPS, the approximate gradient operator VhM : C(Qy) — C(Qy) and the approxi-
mate Laplace operator AM : C(Qpg) — C(Qp) are defined by

VM (z) = :0 ZA: “(T; : Z<|x) é : i‘ wM(jz — z4)), (A.14)
AMy(z) == Z {v(z) — v(z)} wil(jz — z4)), (A.15)
ZEA*

respectively, where an interpolant is not introduced in MPS. Here ng and \g are regularized
parameters for each operator. For example, by setting a representative particle zy € Xn m,
these regularized parameters are given by

ng = th (|wy — i),

Ao = Z |z — 22w (g — ).
i=1

Remark A.6. The approzimate differential operators of the generalized particle method (1.3),
(1.4) can describe ones of MPS (A.14), (A.15) by substituting the particle volumes and the
weight functions. For example, substituting Vg by (A.10) and w by

w(r) = {/R wM(]m\)dm}_le(T), reRYE, (A.16)

we have Vy, that is equivalent to VhM with ng given by

no = (meaj\(fmf))_l/w WM (|z])da (A17)

Also, by substituting Vy g by (A.10) and w by

w(r) = {/R ]:):\QwM(\dex}_l 2oM(r), e R, (A.18)

we get Ay, that equals Al}\f with \g given by

©
o — (meas H) / 2w (|2])d (A.19)

Corollary A.7. Set Vy g by (A.10) and ng by (A.17). Suppose that {(Xnu, VN w, h)}hio is a
reqular family and wM satisfies wM € C1 (]Ra') and Hypothesis 1.2. Then, for the approzimate
gradient operator of MPS (A.14), truncation error estimates as same as Theorem 1.13 with
k =1 are obtained.
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Proof. The weight function w is set by (A.16). It is sufficient to prove that w satisfies con-
ditions of Theorem 1.13. Since w™ satisfies wM € C1(R{) and Hypothesis 1.2, w satisfies
w € W and Hypothesis 1.2. Moreover, by Lemma 1.5, w satisfies Hypothesis 1.1 with k£ = 1.
Therefore the corollary is true. O

Corollary A.8. Set Vg by (A.10) and Ao by (A.19). Suppose that {(Xnw, VN H,h)}hio
is a regular family and w™ satisfies wM € Cl(Ra'). Therefore, for the approximate Laplace
operator of MPS (A.15), truncation error estimates as same as Theorem 1.15 with k =1 are
obtained.

Proof. The weight function w is set by (A.18). It is sufficient to prove that w satisfies condi-
tions of Theorem 1.15. Since wM € C*(R{), w satisfies w € W and Hypothesis 1.3. Moreover,
by Lemma 1.5, w satisfies Hypothesis 1.1 with & = 1. Therefore the corollary is proved. [

Corollary A.9. Set Vy g by (A.10) and Ao by (A.19). Suppose that {(Xnm, VN w, h)}hio is a
reqular family with order m (> 2) and wM satisfies w™ € C(RY). Then, for Poisson equation
discretized by the approximate Laplace operator (A.15), error estimates as same as Theorem
2.1 are derived.

Moreover, for the heat equation discretized by the approximate Laplace operator (A.15) in
space, error estimates as same as Theorem 3.7 are established under appropriate conditions
with respect to the time step.

Proof. The weight function w is set by (A.18). It is sufficient to prove that w satisfies condi-
tions of Theorem 2.1 and Theorem 3.7. By (A.12), w satisfies Hypothesis 1.4. Therefore, by
Corollary A.8, w satisfies conditions Theorem 2.1 and Theorem 3.7. Therefore the corollary
is obtained. O

Remark A.10. In case of using (A.13) as the weight function, since the weight function does
not belong to C(RY), the corollaries above are not obtained.
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