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Introduction

The purpose of this thesis is to establish error estimates of generalized particle methods for
the Poisson and heat equations.

A particle method is a class of numerical methods that approximate partial differential
equations by using particles distributed in the spatial domain; for example, we can refer to
Diffuse Element Method (DEM) [34, 45], Element Free Galerkin Methods (EFGM) [5, 6],
Reproducing Kernel Particle Method (RKPM) [14, 39], Local Radial Basis Function Collo-
cation Method (LRBFCM) [23, 49], Smoothed Particle Hydrodynamics (SPH) [26, 38, 40],
and Moving Particle Semi-implicit (MPS) [32, 33, 52]. The particle method defines connec-
tivities among the particles by using distance of each other. Therefore particle methods do
not require mesh and grid in advance to define the connectivity among the particles, which
is much different from other numerical methods such as Finite Difference Method (FDM)
[24, 54, 59], Finite Element Method (FEM) [11, 16, 27], Boundary Element Method (BEM)
[13, 50], and Finite Volume Method (FVM) [22, 35, 60]. This difference becomes the strong
point in case of numerical methods for problems with large deformations and destructions;
for example, astrophysics [40], collapses [43], brittle solids [9], flow problems with free surface
[33, 42, 44, 53], fluid-structure interaction [15, 20], electronic structure calculations [55].

We can find many mathematical analysis of numerical methods like FDM, FEM, BEM,
and FVM; for example, in case of FEM, elliptic problems [16, 30], parabolic problems [4, 21],
Navier-Stokes equations [27, 46, 56], natural convection equations [57, 58], and references
therein. On the other hands, we encounter a few researches on the numerical analysis of
the particle methods; for example, error estimates of a particle method based on the vortex
method have been established in case of parabolic and hyperbolic systems in unbounded do-
mains [41, 48], in case of nonlinear conservation lows in unbounded domains [8], and in case of
nonlinear conservation lows in bounded domains [7]. However, since the particle distributions
and particle volumes in [7, 8, 41, 48] are defined by solutions of differential equations derived
from given flow fields. Therefore, the dependence of their particle distributions and particle
volumes on flow fields is different from those in practical computations such as SPH and MPS.
As another example, there is a truncation error estimate of approximate gradient operators
of MPS [29]. However, since the indicator of the particle distributions used in the regularity
that is a sufficient condition of the truncation error estimate cannot be generally computed, it
is difficult to confirm whether the particle distributions are valid. Moreover, as related results
on error estimates of interpolants of particle methods, there exist truncation error estimates
of interpolants by Radial Basis Function (RBF) [51, 61] and by Moving Least-Squares (MLS)
[36]. However, there are differences in the methods of determining the coefficients of linear
combinations. RBF sets the coefficients by solving linear equations derived from the condi-
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iv Introduction

tion of the Lagrange interpolants and MLS sets by solving linear equations derived from the
condition to minimize a weighted least-square error. On the other hand, SPH and MPS give
the coefficients by particle volumes based on the volume of domain. Therefore the truncation
error estimates of RBF and MLS cannot be applied to that of the interpolant of SPH or MPS.
Error estimates of SPH or MPS applicable for practical computations have been discussed
only from the engineering point of view; for example, numerical tests of truncation errors
of interpolants and approximate differential operators of first derivatives in one dimensional
space [25, 47] and in three dimensional space [1, 2].

Therefore, as the first step of establishment of mathematical framework of the particle
methods, we do investigate the numerical analysis of the particle methods. In this thesis,
we introduce a generalized particle method, which can describe a class of particle methods
including SPH and MPS, and analyze its truncation errors of interpolants and approximate
differential operators. Moreover we apply the generalized particle method to the Poisson and
heat equations and analyze its errors of the approximate solutions.

At first, we introduce the generalized particle method for an interpolant and approximate
differential operators. The interpolant and the approximate differential operators are con-
structed by the particle distribution, a set of particle volumes, a weight functions, and an
influence radius. In order to obtain error estimates, we introduce three conditions of these
parameters. The first is a regularity of the family of the particle distributions, the particle
volume set, and the influence radius. This regularity clarifies a uniform distribution of the
particle distributions, a determination method of the particle volumes, and a decrement rate
of the influence radius corresponding to an increment of number of particles. The second are
some hypotheses of the weight function. These hypotheses clarify a usable range of weight
functions from the mathematical point of view. The third is an h-connectivity among the
particles corresponding to the influence radius h. This h-connectivity is a new concept of
connectivity among the particles and provides a necessary length of the influence radius for
the particle distributions. Since these conditions can be computed practically, we can verify
whether these parameters are valid or not. Under these conditions, we show truncation error
estimates of the interpolant and the approximate differential operators with the maximum
norm; see [28]. Then the convergence rates with respect to the influence radius depend on
the decrement rates of influence radius in the regularity and the choice of the parameters;
for example, in case of the approximate operators in SPH, the convergence rates are at most
second order.

Next, we establish error estimates of the Poisson equation discretized by the generalized
particle method. Under the h-connectivity condition and the hypotheses of the weight func-
tions, we prove the unique solvability and the discrete maximum principle of the discrete
Poisson equation. As the truncation error estimates and the discrete maximum principle lead
to the stability of the discrete Poisson equation, we obtain the error estimate with a discrete
L∞ norm. The convergence rates with respect to the influence radius are at most second
order.

Moreover, we establish error estimates of the heat equation discretized by the general-
ized particle method in space and the θ-method in time. We show the unique solvability of
the discrete heat equation. Furthermore, we prove the discrete maximum principle and the
stability of the discrete heat equation with a condition of time step in case of θ ∈ [0, 1) and
without in case of θ = 1. Therefore we obtain the error estimates with the discrete L∞ norm
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in space and time, and the convergence rates with respect to the time step are first order
(θ ̸= 1/2) and second order (θ = 1/2), and with respect to the influence radius are at most
second order. Moreover, by considering an discrete L2 norm in space, we show a stability of
the discrete heat equation with a condition of time step in case of θ ∈ [0, 1/2) and without
in case of θ ∈ [1/2, 1]. Then we establish error estimates with the discrete L2 norm in space
and the discrete L∞ norm in time, where these convergence rates agree with that of the error
estimates with the discrete L∞ norm.

Finally, we show some numerical results corresponding to the theoretical ones. We con-
sider parameters satisfying the sufficient conditions of the error estimates. Then we compute
numerically truncation errors of the interpolant and the approximate differential operators
and relative errors of the approximate solutions of the generalized particle methods for the
Poisson and heat equations. We confirm convergence of the errors under the sufficient con-
ditions of each theorem and almost agreements between numerical convergence rates and
theoretical ones.

An outline of this thesis is as follows. In Chapter 1, we formulate a generalized particle
method, prepare some conditions of parameters, and prove truncation error estimates of
an interpolant and approximate differential operators of the generalized particle method. In
Chapter 2, we derive a generalized particle method for the Poisson equation and prove its error
estimates. In Chapter 3, we introduce a generalized particle method for the heat equation and
prove its error estimates. In Chapter 4, we present some numerical results corresponding to
our results. In Appendix A, we introduce conventional particle methods, which are SPH and
MPS, and show these error estimates by clarifying the relationship between the generalized
particle method and these conventional particle methods.
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Chapter 1

Generalized particle method

The purpose of this chapter is to formulate a generalized particle method and prepare some
conditions and theorems used in the subsequent numerical analysis. Section 1.1 prepares
notation and function spaces used later on. Section 1.2 introduces approximate operators
of the generalized particle method: an interpolant, an approximate gradient operator, and
an approximate Laplace operator. Section 1.3 gives some conditions of parameters of the
generalized particle method used in the subsequent numerical analysis. Section 1.4 shows
truncation error estimates for the approximate operators. The truncation error estimates of
the interpolant was presented in Imoto and Tagami [28].

1.1 Preliminaries

We prepare notation and function spaces used later on. Let R+ and R+
0 be the set of positive

real numbers and the set of nonnegative real numbers, respectively. Let N0 be the set of
nonnegative integers.

Let S be an open set in Rd (d ∈ N). Let C(S) be the space of real continuous functions
defined in S. The norm of C(S) is define dy

∥v∥C(S) := max
x∈S

|v(x)| .

For k ∈ N, let Ck(S) be the space of functions in C(S) with derivatives up to the kth order
and |.|Ck(S) and ∥.∥Ck(S) denote their semi-norm and norm defined by

|v|Ck(S) := max
|α|=k

∥Dαv∥C(S) ,

∥v∥Ck(S) := max
j=0,1,...,k

|v|Cj(S) ,

respectively. Here |.|C0(S) coincides with ∥.∥C(S).

1



2 Chapter 1. Generalized particle method

1.2 Formulations

Let Ω be a bounded domain in Rd (d ∈ N) with piecewise Lipschitz continuous boundary. For
Ω and H ∈ R+, a domain ΩH is defined by

ΩH :=
{
x ∈ Rd; ∃y ∈ Ω s.t. |x− y| < H

}
.

For H and N ∈ N, let XN,H be a set of points xi ∈ ΩH (i = 1, 2, . . . , N) satisfying xi ̸=
xj (i ̸= j). Hereafter we call xi and XN,H a particle and a particle distribution, respectively.
Figure 1.1 shows an example of the particle distribution XN,H .

H

Ω

ΩH

xi

R2

Figure 1.1: An example of the particle distribution XN,H .

For H and N ∈ N, let VN,H be a set of positive numbers Vi ∈ R+ (i = 1, 2, . . . , N)
satisfying

N∑
i=1

Vi = meas(ΩH). (1.1)

Here, meas(S) denotes the volume of S ⊂ Rd. Hereafter we call Vi and VN,H a particle volume
and a particle volume set, respectively.

An admissible set of weight functions W is defined by

W :=

{
w ∈ C1(R); supp(w) = [0, 1],

∫
Rd

w(|x|)dx = 1

}
.

For w ∈W and h (0 < h < H), set wh by

wh(r) :=
1

hd
w
( r
h

)
, r ∈ R+

0 .

Hereafter we call w and h a weight function and an influence radius, respectively. For i =
1, 2, . . . , N , a function ϕi ∈ C(ΩH) is given by ϕi(x) := wh(|x−xi|) (x ∈ ΩH). Let Wh be the
linear span of ϕi.

For S ⊂ Rd, let ΛS and Λ∗
S be

ΛS := {i;xi ∈ XN,H ∩ S, i = 1, 2, . . . , N} ,
Λ∗
S := {i;xi ∈ XN,H \ S, i = 1, 2, . . . , N} ,
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respectively. For XN,H , VN,H , w, and h, the interpolant Πh : C(ΩH) →Wh, the approximate
gradient operator ∇h : C(ΩH) →W d

h , and the approximate Laplace operator ∆h : C(ΩH) →
Wh are defined by

Πhv(x) :=
N∑
i=1

Viv(xi)wh(|x− xi|), (1.2)

∇hv(x) := d
∑
i∈Λ∗

x

Vi
v(x)− v(xi)

|x− xi|
x− xi
|x− xi|

wh(|x− xi|), (1.3)

∆hv(x) := −2d
∑
i∈Λ∗

x

Vi
v(x)− v(xi)

|x− xi|2
wh(|x− xi|), (1.4)

respectively. We call numerical methods discretizing these approximate operators in space
generalized particle methods because the approximate operators can describe ones of conven-
tional particle methods such as SPH or MPS (see Appendix A).

1.3 Conditions of parameters

This section prepares some conditions of parameters of the generalized particle method: the
particle distributionXN,H , the particle volume set VN,H , the influence radius h, and the weight
function w. Subsection 1.3.1 defines a regularity of the family {XN,H , VN,H , h}. Subsection
1.3.2 introduces some conditions of the weight function w. The regularity and the conditions
of the weight function appear everywhere in the subsequent numerical analysis. Subsection
1.3.3 defines a connectivity of the particle distribution XN,H , which required in Chapter 2.

1.3.1 Regularity

For XN,H , let σi be the Voronoi cell defined by

σi := {x ∈ ΩH ; ∀xj( ̸= xi) ∈ XN,H , |xi − x| < |xj − x|}.

The decomposition of ΩH by σ = {σi}Ni=1 is called the Voronoi decomposition and its example
is shown in Figure 1.2. For XN,H , the covering radius rc is defined by

xi

σi

Figure 1.2: The Voronoi decomposition of ΩH for the particle distribution XN,H in Figure
1.1.
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rc := max
i=1,2,...,N

max
x∈σi

|xi − x|. (1.5)

For i = 1, 2, . . . , N , let Ṽi be

Ṽi := meas(σi).

Let ω = {ωi ⊂ ΩH ; i = 1, 2, . . . , N} be a decomposition of ΩH satisfying

meas(ωi) = Vi (i = 1, 2, . . . , N),

N∪
i=1

ωi = ΩH , ωi ∩ ωj = ∅ (i ̸= j). (1.6)

For XN,H and VN,H , the Voronoi deviation dv is defined by

dv := inf
ω

 max
i=1,2,...,N


N∑
j=1

meas(σi ∩ ωj) + meas(σj ∩ ωi)

meas(σi)
|xi − xj |


 .

Definition 1.1. A family {(XN,H , VN,H , h)} is said to be regular if there exists a constant
c0 (> 0) and m (≥ 1) such that for all the elements in {(XN,H , VN,H , h)}

hm ≥ c0(rc + dv). (1.7)

In addition, m in (1.7) is said to be a regular order of {(XN,H , VN,H , h)}.

Proposition 1.2. If Vi = Ṽi (i = 1, 2, . . . , N), then dv = 0.

Proof. From the definition of dv, we have dv ≥ 0. Since Vi = Ṽi (i = 1, 2, . . . , N), taking
ωi = σi (i = 1, 2, . . . , N), we find that ω (= {ωi}) satisfies (1.6). Then, since meas(σi ∩ ωj) =

Ṽi (i = j), 0 (i ̸= j), we obtain dv = 0.

Remark 1.3. Being able to compute the covering radius rc and the Voronoi deviation dv, we
can numerically confirm whether (XN,H , VN,H , h) satisfies (1.7) or not for given c0 and m.

We can compute the covering radius rc as follows: By using construction methods of
the Voronoi decomposition such as the increment method [10], we first decompose ΩH by the
Voronoi decomposition. Next, for each particle, we compute the maximum distances from the
particle to the boundary of its Voronoi cell. Finally, we obtain rc by computing the maximum
of the distances.

We can compute the Voronoi deviation dv as follows: Let A = {aij ∈ R+
0 ; i, j =

1, 2, . . . , N} be a matrix satisfying

N∑
j=1

aij = Ṽi,

N∑
j=1

aji = Vi, i = 1, 2, . . . , N. (1.8)

For XN,H , VN,H , and A, let q and si (i = 1, 2, . . . , N) be positive numbers satisfying

q = si +
N∑
j=1

aij + aji

Ṽi
|xi − xj |, i = 1, 2, . . . , N. (1.9)
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Then, dv is equivalent to the minimum of q. Let b ∈ RN2+N+1, z ∈ RN2+N+1, and v ∈ R3N

be

b := (0, 0, . . . , 0, 1)T ,

z := (a11, a12, . . . , aNN , s1, s2, . . . , sN , q)
T ,

ζ := (Ṽ1, Ṽ2, . . . , ṼN , V1, V2, . . . , VN , 0, 0, . . . , 0)
T ,

respectively. Let M ∈ R(N2+N+1)×3N be a matrix such that the equation Mz = ζ replaces
(1.8) and (1.9). Then, we consider the following minimizing problem:

Minimize bT z Subject to Mz = ζ, z ≥ 0. (1.10)

Since b, M , and ζ are unique for (XN,H , VN,H , h), the minimizing problem is a linear pro-
graming problem. Since the solution (1.10) is agree with dv, by using numerical methods for
linear programing problems such as the simplex method [18], we can compute dv.

1.3.2 Conditions of weight functions

Now we prepare four hypotheses of weight functions as follows:

Hypothesis 1.1. There exists a positive integer k such that for all multi-index α such that
1 ≤ |α| ≤ k, ∫

Rd

xαw(|x|)dx = 0. (1.11)

Hypothesis 1.2. There exists ŵ ∈ C1(R+
0 ) such that

ŵ(r) =
1

r
w(r), r ∈ R+.

Hypothesis 1.3. There exists ŵ ∈ C1(R+
0 ) such that

ŵ(r) =
1

r2
w(r), r ∈ R+.

Hypothesis 1.4. w satisfies w(r) > 0, r ∈ (0, 1).

We call k in Hypothesis 1.1 an order of w. Now we show some results.

Proposition 1.4. Any weight function w satisfies Hypothesis 1.1 with at least k = 1. More-
over, Hypothesis 1.1 with k ≥ 2 is equivalent to∫ 1

0
rd−1+lw(r)dr = 0, ∀l ∈ {2n; n ∈ N, 2n ≤ k}. (1.12)

Proof. We consider T = (T1, T2, . . . , Td) : [0, π]d−2 × [0, 2π) → {x ∈ Rd; |x| = 1} such that

T1(ϑ) := cos θ1,
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Ti(ϑ) := sin θ1 sin θ2 · · · sin θi−1 cos θi, i = 2, 3, . . . , d− 1,

Td(ϑ) := sin θ1 sin θ2 · · · sin θd−2 sin θd−1,

where ϑ = (θ1, θ2, . . . , θd−1). Then rT (θ1, θ2, . . . , θd−1) represents the polar coordinates with
respect to (r, θ1, θ2, . . . , θd−1) ∈ R+

0 × [0, π]d−2 × [0, 2π). By considering the coordinate trans-
formation x = rT , since the Jacobian is

rd−1 sind−2 θ1 sin
d−3 θ2 · · · sin2 θd−3 sin θd−2,

we obtain ∫
Rd

xαw(|x|)dx =

∫ 1

0

∫
[0,π]d−2×[0,2π)

T (ϑ)αJ(ϑ)rd−1+|α|w(r)dϑdr

=

∫
[0,π]d−2×[0,2π)

T (ϑ)αJ(ϑ)dϑ

∫ 1

0
rd−1+|α|w(r)dr.

Here J is

J(ϑ) := sind−2 θ1 sin
d−3 θ2 · · · sin2 θd−3 sin θd−2.

For all multi index α such that |α| is odd, we have∫
[0,π]d−2×[0,2π)

T (ϑ)αJ(ϑ)dϑ = 0. (1.13)

Therefore the first statement of the proposition holds. On the other hand, when |α| is even,
(1.13) is not always true. Therefore, if∫ 1

0
rd−1+kw(r)dr = 0 (1.14)

for the even integer k, then (1.11) holds for all α such that |α| = k. Since (1.14) is required
if and only if k is even, the second statement of the proposition is obtained.

Lemma 1.5. If w satisfies Hypothesis 1.4, then w can not satisfy Hypothesis 1.1 with k ≥ 2.

Proof. For k ≥ 2, assume that w satisfies both Hypothesis 1.1 with k and Hypothesis 1.4. By
Proposition 1.4, w at least satisfies ∫ 1

0
rd+1w(r)dr = 0.

Then w needs some negative part in (0, 1). However, since w(r) satisfies Hypothesis 1.4, the
assumption does not hold. Therefore we obtain this lemma.

Lemma 1.6. Suppose that w satisfies Hypothesis 1.1 with k. Then, for all even integer l and
all multi-index α such that 1 + l ≤ |α| ≤ k + l, we have∫

Rd

|x|−lxαw(|x|)dx = 0. (1.15)
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Proof. Since |α| ≥ 1 + l, the left side of (1.15) is integrable. In case that k = 1, since the
integrand of the left side of (1.15) is even with respect to the origin, then (1.15) is true.

In case that k ≥ 2, by considering the coordinate transformation, we have∫
Rd

|x|−lxαw(|x|)dx =

∫
[0,π]d−2×[0,2π)

T (ϑ)αJ(ϑ)dϑ

∫ 1

0
rd−1+|α|−lw(r)dr. (1.16)

Here r, ϑ, T , J are same as in the proof of Proposition 1.4. In case that |α| is odd, since∫
[0,π]d−2×[0,2π)

T (ϑ)αJ(ϑ)dϑ = 0,

(1.16) equals zero. In case that |α| is even, by Proposition 1.4, if 1 ≤ |α| − l ≤ k, then∫ 1

0
rd−1+|α|−lw(r)dr = 0.

Therefore (1.15) holds.

For any k ∈ N, we can construct weight functions satisfying Hypothesis 1.1 with k. Now,
we show some example of the weight functions.

Example 1.7. Let us construct weight functions satisfying Hypothesis 1.1 with k by polyno-
mial functions in d = 2, 3. When k = 1, since w ∈W , w requires

w(1) = 0,
d

dr
w(1) = 0,

∫
Rd

w(|x|)dx = 1. (1.17)

Then the weight function with minimum degree is constructed by the quadric function:

w(r) := γd

{
(1− r)2, 0 ≤ r < 1,

0, r ≥ 1.

Here γd = 6/π (d = 2), 15/2π (d = 3).
When k ≥ 2, in addition of (1.17), w requires (1.12). Then, for example, the weight

function satisfying Hypothesis 1.1 with k = 3 is construct by the cubic function:

w(r) :=
35

7π

{
(1− r)2(4− 7r), 0 ≤ r < 1,

0, r ≥ 1,

in d = 2 and

w(r) :=
15

2π

{
(1− r)2(5− 8r), 0 ≤ r < 1,

0, r ≥ 1,

in d = 3.
Similarly, we can construct the weight functions 1.1 with k ≥ 4.

For Hypothesis 1.2 and Hypothesis 1.3, we obtain the following propositions.
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1.3.3 Connectivity

Definition 1.8. For the influence radius h, we call that a particle distribution XN,H satisfies
the h-connectivity if for all xi ∈ XN,H∩Ω, there exists an integer m and a sequence {xij}mj=1 ⊂
XN,H such that

xi1 = xi, |xij − xij+1 | < h (j = 1, 2, . . . ,m− 1), xim∈ Γ ∪ ΓH . (1.18)

Now, we consider the graph G = (V, E) such that

V = XN,H , E = {(xi, xj); |xi − xj | < h, i, j = 1, 2, . . . , N, i ̸= j} .

By Definition 1.8, we notice that if the particle distribution XN,H satisfies the h-connectivity,
then all the vertex of G on Ω has a path to a vertex of G on Γ ∪ ΓH .

Example 1.9. Figures 1.3–1.4 show examples of the particle distributions satisfying and not
satisfying the h-connectivity. In each figure, the left part shows an example of the particle
distribution XN,H , the center bottom shows the bulk of the influence h, and the right part
shows the graph G for XN,H and h. In case of G in Figure 1.3, all the vertex on Ω has a path
to the vertex on Γ ∪ ΓH . Therefore the particle distribution XN,H in Figure 1.3 satisfies the
h-connectivity. On the other hand, in case of G in Figure 1.4, since there exists an isolated
sub-graph on Ω in the left-center of G, the vertex on the sub-graph does not have a path to
any vertex on Γ∪ ΓH . Therefore the particle distribution XN,H in Figure 1.4 does not satisfy
the h-connectivity.

h

GXN,H

Figure 1.3: An example the particle distribution XN,H satisfying the h-connectivity.

h

XN,H G

Figure 1.4: An example the particle distribution XN,H not satisfying the h-connectivity.
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Lemma 1.10. If a particle distribution XN,H and an influence radius h satisfy

h > 2rc, (1.19)

then the particle distribution XN,H satisfies the h-connectivity

Proof. Because ΩH is connected, by the definition of Voronoi decomposition, for all xi ∈ XN,H ,
there exists a sequence {xij}mj=1 ⊂ XN,H such that

xi1 = xi, σij ∩ σij+1 ̸= ∅ (j = 1, 2, . . . ,m− 1), xim∈ Γ ∪ ΓH .

By the definition of rc, we find |xij − xij+1 | ≤ 2rc (j = 1, 2, . . . ,m − 1). Therefore, if XN,H

and h satisfy (1.19), then {xij}mj=1 satisfies (1.18). Therefore this concludes the result.

1.4 Truncation error estimates

In this section, let c be a generic positive constant independent of h and N .

1.4.1 Interpolant

First, we state the theorem with respect to a truncation error of the interpolant (1.2).

Theorem 1.11. Suppose that {(XN,H , VN,H , h)}h↓0 is a regular family with order m (≥ 1)
and w satisfies Hypothesis 1.1 with k. Then there exists a positive constant c independent of
h and N such that for all v ∈ Ck+1(ΩH),

∥v −Πhv∥C(Ω) ≤ c
(
hk+1 |v|Ck+1(ΩH) + hm−1 ∥v∥Ck+1(ΩH)

)
. (1.20)

Next, before beginning the proof of Theorem 1.11, we show the following lemma.

Lemma 1.12. There exists a positive constant c independent of h and N such that for all
multi-index α,

∥M1,α∥C(Ω) ≤ c
(
1 + 2

rc
h

)d(
rc + dv +

rc + dv
h

)
. (1.21)

Here,

M1,α(x) :=

N∑
i=1

Vi(xi − x)αwh(|x− xi|)−
∫
Rd

yαw(|y|)dy.

Proof. Fix x ∈ Ω. Fix any ω(= {ωi}) satisfying (1.6). Let ξij := meas(σi ∩ ωj) (i, j =
1, 2, . . . , N). Set Ek(x) (k = 1, 2, 3) by

E1(x) :=
N∑
i=1

N∑
j=1

(xj − x)α
∫
σi∩ωj

{wh(|x− xi|)− wh(|x− y|)} dy,
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E2(x) :=

N∑
i=1

N∑
j=1

∫
σi∩ωj

{(xj − x)α − (y − x)α}wh(|x− y|)dy,

E3(x) :=
N∑
i=1

N∑
j=1

ξij(xj − x)α {wh(|x− xj |)− wh(|x− xi|)} ,

respectively. Since

|M1,α(x)| =

∣∣∣∣∣
3∑

k=1

Ek(x)

∣∣∣∣∣ ≤
3∑

k=1

|Ek(x)| ,

we estimate each Ek.
First, we consider E1. For y ∈ Rd and r ∈ R+, let Br(y) be an open ball with center y

and radius r:

Br(y) :=
{
z ∈ Rd; |z − y| < r

}
.

If i ∈ ΛBh+rc (x)
, then we have

wh(|x− y|) = 0, ∀y ∈ σi. (1.22)

Then we can write

E1(x) =
∑
i∈Ξ

N∑
j=1

(xj − x)α
∫
σi∩ωj

{wh(|x− xi|)− wh(|x− y|)} dy.

Here Ξ denotes ΛBh+rc (x)
. By Taylor expansion, we have

|E1(x)| ≤
∑
i∈Ξ

N∑
j=1

|(xj − x)α|
∫
σi∩ωj

|wh(|x− xi|)− wh(|x− y|)| dy

≤ diam(ΩH)|α|
∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|wh(|x− xi|)− wh(|x− y|)| dy

≤ diam(ΩH)|α| |wh|C1(R+
0 )

∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|xi − y|dy

≤ diam(ΩH)|α|
rc
hd+1

|w|C1(R+
0 )

∑
i∈Ξ

∫
σi

dy

≤ meas(B)diam(ΩH)|α|
(
1 + 2

rc
h

)d rc
h
|w|C1(R+

0 ) .

Here, diam(S) denotes the diameter of S ⊂ Rd:

diam(S) := sup
x,y∈S

|x− y|
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and B := B1(0).
Next we consider E2. Since E2 = 0 when |α| = 0, then we estimate when |α| ≥ 1. By

(1.22), we can write

E2(x) =
∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

{(xj − x)α − (y − x)α}wh(|x− y|)dy.

Fix a multi-index α. Let {βk}
|α|
k=1 be multi-indexes such that

|βk| = 1 (k = 1, 2, . . . , |α|), α =

|α|∑
k=1

βk.

Then, for all x, y, z ∈ Rd, we have

|(y − x)α − (z − x)α| ≤

∣∣∣∣∣∣(y − x)β1

|α|∏
k=2

(y − x)βk − (z − x)β1

|α|∏
k=2

(y − x)βk

∣∣∣∣∣∣
+

∣∣∣∣∣∣(z − x)β1

|α|∏
k=2

(y − x)βk − (z − x)β1

|α|∏
k=2

(z − x)βk

∣∣∣∣∣∣
≤ |y − z||y − x||α|−1 + |z − x|

∣∣∣∣∣∣
|α|∏
k=2

(y − x)βk −
|α|∏
k=2

(z − x)β2

∣∣∣∣∣∣
...

≤ |y − z|
|α|∑
l=1

|z − x|l−1|y − x||α|−l. (1.23)

Therefore, we have

|E2(x)| ≤
∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|(xj − x)α − (y − x)α| |wh(|x− y|)|dy

≤
∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|y − xj |
|α|∑
l=1

|xj − x|l−1|y − x||α|−l|wh(|x− y|)|dy

≤ |α|diam(ΩH)|α|
∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|y − xj ||wh(|x− y|)|dy

≤ |α|diam(ΩH)|α|
∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

(|y − xi|+ |xi − xj |)|wh(|x− y|)|dy

≤ |α|diam(ΩH)|α|h−d ∥w∥C(R+
0 )

∑
i∈Ξ

N∑
j=1

ξij(rc + |xi − xj |)
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≤ |α|diam(ΩH)|α|h−d ∥w∥C(R+
0 )

(∑
i∈Ξ

Ṽi

)rc + max
i=1,2,...,N

 N∑
j=1

ξij

Ṽi
|xi − xj |


≤ |α|meas(B)diam(ΩH)|α|

(
1 + 2

rc
h

)d
∥w∥C(R+

0 )

×

rc + max
i=1,2,...,N

 N∑
j=1

ξij + ξji

Ṽi
|xi − xj |

 .

Since ω is arbitrary, we obtain

|E2(x)| ≤ |α|meas(B)diam(ΩH)|α|
(
1 + 2

rc
h

)d
(rc + dv) ∥w∥C(R+

0 ) .

Finally, we consider E3. We estimate

|E3(x)| ≤
N∑
i=1

N∑
j=1

ξij |(xj − x)α| |wh(|x− xj |)− wh(|x− xi|)|

≤ diam(ΩH)|α|
N∑
i=1

N∑
j=1

ξij |wh(|x− xj |)− wh(|x− xi|)| .

By Taylor expansion, we have

N∑
i=1

N∑
j=1

ξij |wh(|x− xi|)− wh(|x− xj |)|

≤
∑

xi∈Bh(x)

N∑
j=1

ξij |wh(|x− xi|)− wh(|x− xj |)|

+

N∑
i=1

∑
xj∈Bh(x)

ξij |wh(|x− xi|)− wh(|x− xj |)|

≤ |wh|C1(R+
0 )

 ∑
xi∈Bh(x)

N∑
j=1

ξij |xi − xj |+
N∑
i=1

∑
xj∈Bh(x)

ξij |xi − xj |


=

1

hd+1
|w|C1(R+

0 )

∑
xi∈Bh(x)

N∑
j=1

(ξij + ξji)|xi − xj |

=
1

hd+1
|w|C1(R+

0 )

∑
xi∈Bh(x)

Ṽi

N∑
j=1

ξij + ξji

Ṽi
|xi − xj |

≤
(
1 +

rc
h

)d 1

h
|w|C1(R+

0 ) max
i=1,2,...,N

 N∑
j=1

ξij + ξji

Ṽi
|xi − xj |

 .
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Since ω is arbitrary, we obtain

N∑
i=1

N∑
j=1

ξij |wh(|x− xi|)− wh(|x− xj |)| ≤
(
1 +

rc
h

)d dv
h
|w|C1(R+

0 ). (1.24)

Therefore, we estimate

|E3(x)| ≤ meas(B)diam(ΩH)|α|
(
1 +

rc
h

)d dv
h
|w|C1(R+

0 ).

By estimates of Ek (k = 1, 2, 3), we obtain (1.21).

Finally, using the lemma above, we obtain the following proof of Theorem 1.11.
Proof of Theorem 1.11. Fix x ∈ Ω. By h < H, we have Bh(x) ⊂ ΩH . Then, for all
xi ∈ XN,H ∩Bh(x), we obtain Taylor expansion of v ∈ Ck+1(ΩH):

v(xi) =
∑

0≤|α|≤k

Dαv(x)

α!
(xi − x)α +

∑
|α|=k+1

(xi − x)αRα[v](xi;x). (1.25)

Here, Rα is defined by

Rα[v](y;x) :=
|α|
α!

∫ 1

0
(1− t)|α|−1Dαv(ty + (1− t)x)dt.

We multiply both side of (1.25) by Viwh(|x− xi|) and take the sum of these over i ∈ ΛBh(x).
Then, we have

Πhv(x) =
∑

0≤|α|≤k

Dαv(x)

α!

∑
i∈ΛBh(x)

Vi(xi − x)αwh(|x− xi|)

+
∑

|α|=k+1

Rα[v](xi;x)
∑

i∈ΛBh(x)

Vi(xi − x)αwh(|x− xi|).

By Hypotheses 1.1, we obtain

Πhv(x)− v(x) =
∑

0≤|α|≤k

Dαv(x)

α!
M1,α(x)

+
∑

|α|=k+1

Rα[v](xi;x)

(
M1,α(x) +

∫
Rd

yαw(|y|)dy
)
.

Since

|Dαv(x)| ≤ |v|C|α|(ΩH) ,

|Rα[v](xi;x)| ≤ |v|C|α|(ΩH) ,

we have

|Πhv(x)− v(x)| ≤
∑

0≤|α|≤k+1

|M1,α(x)| |v|C|α|(ΩH) +
∑

|α|=k+1

∣∣∣∣∫
Rd

yαwh(|y|)dy
∣∣∣∣ |v|Ck+1(ΩH) .
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Moreover, since ∣∣∣∣∫
Rd

yαwh(|y|)dy
∣∣∣∣ = h|α|

∣∣∣∣∫
B
yαw(|y|)dy

∣∣∣∣ ,
we estimate

|Πhv(x)− v(x)| ≤ c

 ∑
0≤|α|≤k+1

|M1,α(x)| |v|C|α|(ΩH) + hk+1 |v|Ck+1(ΩH)

 . (1.26)

Applying (1.7) into Lemma 1.12, we have

∥M1,α∥C(Ω) ≤ chm−1.

Therefore, applying this into (1.26), we obtain (1.20). □

1.4.2 Approximate gradient operator

First, we state the theorem with respect to a truncation error of the approximate gradient
operator (1.3).

Theorem 1.13. Suppose that {(XN,H , VN,H , h)}h↓0 is a regular family with order m (≥ 1)
and w satisfies Hypothesis 1.1 with k and Hypothesis 1.2. Set k ∈ N0 by k0 or less if w satisfies
Hypothesis 1.1 with order k. Then there exists a positive constant c independent of h and N
such that for all v ∈ Ck+2(ΩH),

∥∇v −∇hv∥[C(Ω)]d ≤ c
(
hk+1 |v|Ck+2(ΩH) + hm−1 ∥v∥Ck+2(ΩH)

)
. (1.27)

Next, before beginning the proof of Theorem 1.13, we show the following lemma.

Lemma 1.14. Suppose that w satisfies Hypothesis 1.2. Then there exists a positive constant
c independent of h and N such that for all multi-index α such that |α| ≥ 2,

∥M2,α∥C(Ω) ≤ c
(
1 + 2

rc
h

)d rc + dv
h

. (1.28)

Here,

M2,α(x) :=
∑
i∈Λ∗

x

Vi
(xi − x)α

|xi − x|2
wh(|x− xi|)−

∫
Rd

yα

|y|2
wh(|y|)dy.

Proof. Fix x ∈ Ω. Fix any ω(= {ωi}) satisfying (1.6). Let ξij := meas(σi ∩ ωj) (i, j =
1, 2, . . . , N). For a multi-index α, let ψα : Rd × Rd → R be

ψα(y, z) :=


(y − z)α

|y − z|2
, y ̸= z,

0, y = z.
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Set Ek(x) (k = 1, 2, 3) by

E4(x) :=

N∑
i=1

N∑
j=1

ψα(xj , x)

∫
σi∩ωj

{wh(|x− xi|)− wh(|x− y|)} dy,

E5(x) :=
N∑
i=1

N∑
j=1

ψα(xj , x)

∫
σi∩ωj

wh(|x− y|)dy −
∫
Rd

yα

|y|2
wh(|y|)dy,

E6(x) :=

N∑
i=1

N∑
j=1

ξijψα(xj , x) {wh(|x− xj |)− wh(|x− xi|)} ,

respectively. Since

|M2,α(x)| =

∣∣∣∣∣
6∑

k=4

Ek(x)

∣∣∣∣∣ ≤
6∑

k=4

|Ek(x)| ,

we estimate each Ek.
First, we consider E4. By (1.22), we have

|E4(x)| =

∣∣∣∣∣∣
∑
i∈Ξ

N∑
j=1

ψα(xj , x)

∫
σi∩ωj

{wh(|x− xi|)− wh(|x− y|)} dy

∣∣∣∣∣∣
≤
∑
i∈Ξ

N∑
j=1

|ψα(xj , x)|
∫
σi∩ωj

|wh(|x− xi|)− wh(|x− y|)| dy

≤ diam(ΩH)|α|−2
∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|wh(|x− xi|)− wh(|x− y|)| dy.

Here, Ξ denotes ΛBh+rc (x)
. By Taylor expansion and (1.5), we estimate

|E4(x)| ≤ diam(ΩH)|α|−2 |wh|C1(R+
0 )

∑
i∈Ξ

∫
σi

|xi − y|dy

≤ meas(B)diam(ΩH)|α|−2
(
1 + 2

rc
h

)d rc
h
|w|C1(R+

0 )

≤ c
(
1 + 2

rc
h

)d rc
h
.

Next, we consider E5. By (1.23), for all x, y, z ∈ Rd such that x ̸= y and x ̸= z, we have

|ψα(y, x)− ψα(z, x)|

≤
∣∣∣∣(y − x)α

|y − x|2
− (z − x)α

|y − x|2

∣∣∣∣+ ∣∣∣∣(z − x)α

|y − x|2
− (z − x)α

|y − x||z − x|

∣∣∣∣+ ∣∣∣∣ (z − x)α

|y − x||z − x|
− (z − x)α

|z − x|2

∣∣∣∣
≤ |y − z|

|α|∑
l=1

|z − x|l−1|y − x||α|−l−2 + |y − z||z − x||α|−1|y − x|−2 + |y − z||z − x||α|−2|y − x|−1
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≤ 2|y − z|
|α|∑
l=1

|z − x|l−1|y − x||α|−l−2

Moreover, for all x, y, z ∈ Rd such that x ̸= y and x = z, we get

|ψα(y, x)− ψα(z, x)| = |ψα(y, x)| ≤ |y − x||α|−2 = |y − z|
|α|−1∑
l=1

|z − x|l−1|y − x||α|−l−2.

Therefore, by using these estimates and (1.5), we obtain

|E5(x)| ≤
∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|ψα(xj , y)− ψα(xj , x)|wh(|x− y|)dy

≤ 2
∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|y − xj |
|α|−1∑
l=1

|xj − x|l−1|y − x||α|−1−l |wh(|x− y|)|
|x− y|

dy

≤ 2|α|diam(ΩH)|α|
∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|y − xj |
|wh(|x− y|)|

|x− y|
dy

≤ 2|α|diam(ΩH)|α|
∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

(|y − xi|+ |xi − xj |)
|wh(|x− y|)|

|x− y|
dy

≤ 2|α|diam(ΩH)|α|

rc
h

∫
B

|w(|y|)|
|y|

dy +
∑
i∈Ξ

N∑
j=1

|xi − xj |
∫
σi∩ωj

|wh(|x− y|)|
|x− y|

dy

 .

By Hypothesis 1.2, we have ∫
B

|w(|y|)|
|y|

dy ≤ c

and

∑
i∈Ξ

N∑
j=1

|xi − xj |
∫
σi∩ωj

|wh(|x− y|)|
|x− y|

dy ≤ c
1

hd+1

∑
i∈Ξ

N∑
j=1

ξij |xi − xj |

≤ c
1

hd+1

∑
i∈Ξ

Ṽi

N∑
j=1

ξij + ξji

Ṽi
|xi − xj |

≤ c
(
1 + 2

rc
h

)d 1

h
max

i=1,2,...,N

 N∑
j=1

ξij + ξji

Ṽi
|xi − xj |

 .

Since ω is arbitrary, we obtain

|E5(x)| ≤ c
(
1 + 2

rc
h

)d rc + dv
h

.
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Finally, we have

|E6(x)| ≤
N∑
i=1

N∑
j=1

ξij |ψα(xj , x)| {wh(|x− xj |)− wh(|x− xi|)}

≤ diam(ΩH)|α|−2
N∑
i=1

N∑
j=1

ξij |wh(|x− xj |)− wh(|x− xi|)| .

By (1.24), we estimate

|E6(x)| ≤ diam(ΩH)|α|−2
(
1 +

rc
h

)d dv
h
|w|C1(R+

0 )

≤ c
(
1 +

rc
h

)d dv
h
.

By estimates of Ek (k = 4, 5, 6), we obtain (1.28).

Finally, using the lemma above, we prove Theorem 1.13.
Proof of Theorem 1.13. Fix x ∈ Ω. By h < H, we have Bh(x) ⊂ ΩH . Then, for all
xi ∈ XN,H ∩Bh(x), we obtain Taylor expansion of v ∈ Ck+2(ΩH):

v(xi) =
∑

0≤|α|≤k+1

Dαv(x)

α!
(xi − x)α +

∑
|α|=k+2

(xi − x)αRα[v](xi;x). (1.29)

Multiplying both side of (1.29) by dVi(x − xi)|x − xi|−2wh(|x − xi|) and taking the sum of
these over i ∈ Λ∗

x, we have

∇hv(x) = d
∑

1≤|α|≤k+1

(−1)|α|+1D
αv(x)

α!

∑
i∈Λ∗

x

Vi
(x− xi)(x− xi)

α

|x− xi|2
wh(|x− xi|)

+ d
∑

|α|=k+2

(−1)|α|+1Rα[v](xi;x)
∑
i∈Λ∗

x

Vi
(x− xi)(x− xi)

α

|x− xi|2
wh(|x− xi|).

For all multi-indexes α1, α2 such that |α1| = |α2| = 1, we have

d

∫
Rd

yα1yα2

|y|2
wh(|y|)dy =

{
1, α1 = α2,

0, α1 ̸= α2.

Then we obtain

d
∑
|α|=1

Dαv(x)

∫
Rd

yyα

|y|2
wh(|y|)dy = ∇v(x).

Moreover, by Lemma 1.6, for all α such that 3 ≤ |α| ≤ k + 2, we have∫
Rd

yα

|y|2
wh(|y|)dy = 0.



18 Chapter 1. Generalized particle method

Therefore, we obtain

|∇v(x)−∇hv(x)| ≤ d
∑

2≤|α|≤k+3

|M2,α(x)| |v|C|α|−1(ΩH)

+ d
∑

|α|=k+2

∣∣∣∣∫
Rd

yyα

|y|2
w(|y|)dy

∣∣∣∣ |v|Ck+2(ΩH) .

Since ∣∣∣∣∫
Rd

yyα

|y|2
w(|y|)dy

∣∣∣∣ = h|α|−1

∫
B
|y||α|−1|w(|y|)|dy,

we estimate

|∇v(x)−∇hv(x)| ≤ c

 ∑
2≤|α|≤k+2

|M2,α(x)| |v|C|α|−1(ΩH) + hk+1 |v|Ck+2(ΩH)

 . (1.30)

Applying (1.7) into Lemma 1.14, for all multi-index α such that 2 ≤ |α| ≤ k + 2, we have

∥M2,α∥C(Ω) ≤ chm−1.

Applying this into (1.30), we obtain (1.27). □

1.4.3 Approximate Laplace operator

First, we state the theorem with respect to a truncation error of the approximate Laplace
operator (1.4).

Theorem 1.15. Suppose that {(XN,H , VN,H , h)}h↓0 is a regular family with order m (≥ 1)
and w satisfies Hypothesis 1.1 with k and Hypothesis 1.3. Then there exists a positive constant
c independent of h and N such that for all v ∈ Ck+3(ΩH),

∥∆v −∆hv∥C(Ω) ≤ c
(
hk+1 |v|Ck+3(ΩH) + hm−2 ∥v∥Ck+3(ΩH)

)
. (1.31)

Next, before beginning the proof of Theorem 1.15, we show the following lemma.

Lemma 1.16. Suppose that w satisfies Hypothesis 1.3. Then there exists a positive constant
c independent of h and N such that for all multi-index α such that |α| ≥ 1,

∥M2,α∥C(Ω) ≤ c
(
1 + 2

rc
h

)d rc + dv
h2

. (1.32)

Proof. If w satisfies Hypothesis 1.3, then w satisfies also Hypothesis 1.2. Therefore, by Lemma
1.14, for all α such that |α| ≥ 2, we have

∥M2,α∥C(Ω) ≤ c
(
1 + 2

rc
h

)d rc + dv
h

.
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Moreover, by h ∈ (0,H), we obtain

∥M2,α∥C(Ω) ≤ c
(
1 + 2

rc
h

)d rc + dv
h2

.

Hereafter, we prove the case of |α| = 1. Fix x ∈ Ω. Fix any ω(= {ωi}) satisfying (1.6).
Let ξij := meas(σi ∩ ωj) (i, j = 1, 2, . . . , N). For a multi-index α, let ψα be a function on
Rd × Rd defined by

ψα(y, z) :=


(y − z)α

|y − z|
, y ̸= z,

0, y = z.

Since w satisfies Hypothesis 1.2, we can take ŵ ∈ C1(R+
0 ) such that

ŵ(r) =
1

r
w(r), r ∈ R+.

For ŵ and h, let ŵh be

ŵh(r) :=
1

hd
ŵ
( r
h

)
, r ∈ R+

0 .

Set Ek(x) (k = 7, 8, 9) by

E7(x) :=
1

h

N∑
i=1

N∑
j=1

ψα(xj , x)

∫
σi∩ωj

{ŵh(|x− xi|)− ŵh(|x− y|)} dy,

E8(x) :=
1

h

N∑
i=1

N∑
j=1

ψα(xj , x)

∫
σi∩ωj

ŵh(|x− y|)dy −
∫
Rd

yα

|y|
ŵh(|y|)dy,

E9(x) :=
1

h

N∑
i=1

N∑
j=1

ξijψα(xj , x) {ŵh(|x− xj |)− ŵh(|x− xi|)} ,

respectively. Since

|M2,α(x)| =

∣∣∣∣∣
9∑

k=7

Ek(x)

∣∣∣∣∣ ≤
9∑

k=7

|Ek(x)| ,

we estimate each Ek.
First, we consider E7. By (1.22), we have

|E7(x)| ≤
1

h

∑
i∈Ξ

N∑
j=1

|ψα(xj , x)|
∫
σi∩ωj

|ŵh(|x− xi|)− ŵh(|x− y|)| dy

≤ 1

h

∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|ŵh(|x− xi|)− ŵh(|x− y|)| dy.
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Here, Ξ denotes ΛBh+rc (x)
. By Taylor expansion, we estimate

|E7(x)| ≤
1

h
|ŵh|C1(R+

0 )

∑
i∈Ξ

∫
σi

|xi − y|dy

≤ meas(B)
(
1 + 2

rc
h

)d rc
h2

|ŵ|C1(R+
0 )

≤ c
(
1 + 2

rc
h

)d rc
h2
.

Next, we consider E8. For all x, y, z ∈ Rd such that x ̸= y and x ̸= z, we have

|ψα(y, x)− ψα(z, x)| ≤
∣∣∣∣(y − x)α − (z − x)α

|y − x|

∣∣∣∣+ ∣∣∣∣( 1

|y − x|
− 1

|z − x|

)
(z − x)α

∣∣∣∣
≤ 2

|y − z|
|y − x|

.

Moreover, for all x, y, z ∈ Rd such that x ̸= y and x = z, we get

|ψα(y, x)− ψα(z, x)| = |ψα(y, x)| ≤ 1 =
|y − z|
|y − x|

.

Therefore, by using these estimates, we obtain

|E8(x)| ≤
1

h

∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|ψα(xj , x)− ψα(xj , y)|ŵh(|x− y|)dy

≤ 2

h

∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

|y − xj |
|ŵh(|x− y|)|

|x− y|
dy

≤ 2

h

∑
i∈Ξ

N∑
j=1

∫
σi∩ωj

(|y − xi|+ |xi − xj |)
|ŵh(|x− y|)|

|x− y|
dy

≤ 2

h

rc
h

∫
B

|ŵ(|y|)|
|y|

dy +
∑
i∈Ξ

N∑
j=1

|xi − xj |
∫
σi∩ωj

|ŵh(|x− y|)|
|x− y|

dy

 .

By Hypothesis 1.3, for all y ∈ Rd, we have

|ŵ(|y|)|
|y|

≤ c.

Then we estimate

|E8(x)| ≤ c

 rc
h2

+
1

hd+2

∑
i∈Ξ

N∑
j=1

ξij |xi − xj |


≤ c

 rc
h2

+
(
1 + 2

rc
h

)d 1

h2
max

i=1,2,...,N

 N∑
j=1

ξij + ξji

Ṽi
|xi − xj |


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Since ω is arbitrary, we obtain

|E8(x)| ≤ c
(
1 + 2

rc
h

)d rc + dv
h2

.

Finally, we consider E9. We have

|E9(x)| ≤
1

h

N∑
i=1

N∑
j=1

ξij |ψα(xj , x)| {ŵh(|x− xj |)− ŵh(|x− xi|)}

≤ 1

h

N∑
i=1

N∑
j=1

ξij |ŵh(|x− xj |)− ŵh(|x− xi|)| .

By (1.24), we estimate

|E9(x)| ≤
(
1 +

rc
h

)d dv
h2

|ŵ|C1(R+
0 )

≤ c
(
1 +

rc
h

)d dv
h2
.

By estimates of Ek (k = 7, 8, 9), we obtain (1.32).

Finally, using the lemma above, we obtain the following proof of Theorem 1.15.
Proof of Theorem 1.15. Fix x ∈ Ω. By h < H, we have Bh(x) ⊂ ΩH . Then, for all
xi ∈ XN,H ∩Bh(x), we obtain Taylor expansion of v ∈ Ck+3(ΩH):

v(xi) =
∑

0≤|α|≤k+2

Dαv(x)

α!
(xi − x)α +

∑
|α|=k+3

(xi − x)αRα[v](xi;x). (1.33)

Multiplying both side of (1.33) by 2dVi|x−xi|−2wh(|x−xi|) and taking the sum of these over
i ∈ Λ∗

x, we get

∆hv(x) = 2d
∑

1≤|α|≤k+2

Dαv(x)

α!

∑
i∈Λ∗

x

Vi
(x− xi)

α

|x− xi|2
wh(|x− xi|)

+ 2d
∑

|α|=k+3

Rα[v](xi;x)
∑
i∈Λ∗

x

Vi
(xi − x)α

|x− xi|2
wh(|x− xi|).

Since for all multi-index α such that |α| = 2, we have

d

∫
Rd

yα

|y|2
wh(|y|)dy =

{
1, α! = 2,

0, α! ̸= 2.

Then we have

d
∑
|α|=2

Dαv(x)

∫
Rd

yα

|y|2
wh(|y|)dy = ∆v(x).
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For all multi-index α such that |α| = 1, we get∫
Rd

yα

|y|2
wh(|y|)dy = 0.

Note that the integrand is integrable by Hypothesis 1.3. Moreover, by Lemma 1.6, for all
multi-index α such that 3 ≤ |α| ≤ k + 2, we have∫

Rd

yα

|y|2
wh(|y|)dy = 0.

Therefore, we obtain

|∆v(x)−∆hv(x)| ≤ 2d
∑

1≤|α|≤k+3

|M2,α(x)| |v|C|α|(ΩH)

+ 2d
∑

|α|=k+3

∣∣∣∣∫
Rd

yα

|y|2
w(|y|)dy

∣∣∣∣ |v|Ck+3(ΩH) .

Since ∣∣∣∣∫
Rd

yα

|y|2
w(|y|)dy

∣∣∣∣ = h|α|−2

∫
B
|y||α|−2|w(|y|)|dy,

we estimate

|∆v(x)−∆hv(x)| ≤ c

 ∑
1≤|α|≤k+2

|M2,α(x)| |v|C|α|(ΩH) + hk+1 |v|Ck+3(ΩH)

 . (1.34)

Applying (1.7) into Lemma 1.16, for all α such that |α| ≥ 1, we have

∥M2,α∥C(Ω) ≤ chm−2.

Applying this into (1.34), we obtain (1.31). □



Chapter 2

Generalized particle method for the
Poisson equation

This chapter considers a generalized particle method for the Poisson equation with Dirichlet
boundary conditions. In Section 2.1, the Poisson equation and the discrete Poisson equation
are introduced. In Section 2.2, error estimates with a discrete L∞ norm of the generalized
particle method for the Poisson equation are established.

2.1 Formulations

Let Ω be a bounded domain in Rd (d ≥ 2) with a piecewise smooth boundary Γ. We consider
the Poisson equation with Dirichlet boundary conditions:∥∥∥∥∥∥

Find u : Ω → R s.t.{
−∆u = f, in Ω,

u = g, on Γ.
(2.1)

Here f ∈ C(Ω) and g ∈ C(Γ) are given functions.

Assume that there exists a unique solution u of the Poisson equation [31]. Now we intro-
duce an expanded solution on ΩH for the solution u of (2.1). Let ΓH be ΓH := ΩH \ Ω. Set
g̃ ∈ C(ΓH) such that g̃ = g on Γ. Let ũ be an expansion of the solution of (2.1) defined by

ũ =

{
u, x ∈ Ω,

g̃, x ∈ ΓH .

We consider the generalized particle method for the Poisson equation with Dirichlet bound-
ary conditions: ∥∥∥∥∥∥

Find U : XN,H → R s.t.{
−∆hUi = fi, i ∈ ΛΩ,

Ui = g̃i, i ∈ ΛΓ∪ΓH
.

(2.2)

Here vi denotes v(xi).

23
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2.2 Error estimates with a discrete L∞ norm

In this section, let c be a generic positive constant independent of h and N . For v : XN,H → R
and S ⊂ Rd, a discrete L∞ norm ∥.∥ℓ∞(S) is defined by

∥v∥ℓ∞(S) := max
i∈ΛS

|vi| .

Now, we state the theorem of the error estimates by the discrete L∞ norm.

Theorem 2.1. (Error estimate of the discrete Poisson equation by the discrete L∞

norm) Let u and U be solutions of (2.1) and (2.2), respectively. Suppose that the expanded
solution ũ satisfies ũ ∈ C4(ΩH), {(XN,H , VN,H , h)}h↓0 is a regular family with order m (> 2),
and w satisfies Hypothesis 1.3 and Hypothesis 1.4. Then there exists a positive constant c and
h0 independent of h and N such that for all {(XN,H , VN,H , h)} with h < h0

∥ũ− U∥ℓ∞(ΩH) ≤ c hmin{2,m−2} ∥ũ∥C4(ΩH) . (2.3)

Before beginning the proof of Theorem 2.1, we show some results.

Theorem 2.2. (Unique solvability) Suppose that w satisfies Hypothesis 1.4. Then the
necessary and sufficient condition that (2.2) has a unique solution is that XN,H satisfies the
h-connectivity.

Proof. First, assume XN,H satisfies the h-connectivity. Let NΩ be a number of particles
included in Ω. We renumber the index of particles so that i ∈ ΛΩ (i = 1, 2, . . . , NΩ) and
i ∈ ΛΓ∪ΓH

(i = NΩ + 1, NΩ + 2, . . . , N). Let bij ∈ R+
0 (i, j = 1, 2, . . . , N) be

bij :=

0, i = j,

2d
wh(|xi − xj |)
|xi − xj |2

, i ̸= j.

Let A,D ∈ RNΩ×NΩ and f ,u ∈ RNΩ be

Aij :=


N∑
k=1

Vk
Vi
bik, i = j,

−bij , i ̸= j,

D := diag(Vi),

f i := fi −
N∑

j=NΩ+1

Vj g̃jbij , i = 1, 2, . . . , N,

ui := Ui, i = 1, 2, . . . , N,

respectively. Then we can write (2.2) as

ADu = f .
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By Vi ∈ R+ (i = 1, 2, . . . , N), D is the regular matrix. Then it is sufficient to prove that
A is a regular matrix. Since A is symmetric, we prove that A is a positive definite. For all
a ∈ RNΩ \ {0}, we have

NΩ∑
i,j=1

aiajAij = 2
∑

1≤i<j≤NΩ

aiajAij +
∑

1≤i≤NΩ

a2iAii

= −2
∑

1≤i<j≤NΩ

aiajbij +

NΩ∑
i=1

a2i

N∑
k=1

Vk
Vi
bik

=
∑

1≤i<j≤NΩ

(Vjai − Viaj)
2

ViVj
bij +

NΩ∑
i=1

a2i

N∑
k=NΩ+1

Vk
Vi
bik (2.4)

Since bij is nonnegative, (2.4) is nonnegative. For a ∈ RNΩ \ {0}, we set i such that ai ̸= 0.
Since XN,H satisfies the h-connectivity, there exists ij ∈ N (j = 1, . . . ,m) such that

i1 = i,
ij ∈ ΛΩ and |xij − xij+1 | < h (j = 1, 2, . . . ,m− 1),
im ∈ ΛΓ∪ΓH

.

Since the all terms of the last equation in (2.4) are nonnegative, for the subsequence, we have

NΩ∑
i,j=1

aiajAij ≥
m−1∑
k=1

(
Vik+1

aik − Vikaik+1

)2
VikVik+1

bikik+1
+

Vim
Vim−1

a2imbim−1im .

Since bikik+1
(k = 1, 2, . . . ,m) is positive, the right hand side of this inequality is positive.

Therefore, for all a ∈ RNΩ \ {0}, we have

NΩ∑
i,j=1

aiajAij > 0.

Consequently, A is the positive definite.
Next, in order to show the proposition that XN,H satisfies the h-connectivity if there exists

uniquely the solution of (2.2), we will prove the contrapositive. Suppose that XN,H does not

satisfy the h-connectivity. Then there exists Λ̂ ⊂ ΛΩ such that

∀i ∈ Λ̂, ∀j ∈ ΛΩH
\ Λ̂, |xi − xj | ≥ h.

We fix i ∈ Λ̂ and consider the i-th column of the matrix AD. For all j ∈ Λ̂, we have

(AD)ji = −
∑
k∈Λ̂

(AD)jk.

Moreover, for all j ∈ ΛΩ \ Λ̂ and k ∈ Λ̂, we get

(AD)jk = 0.
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By these, for all j ∈ ΛΩ, we have

(AD)ji = −
∑
k∈Λ̂

(AD)jk.

Therefore, we find

det(AD) = 0.

Then AD is not the regular matrix. Consequently, since the contrapositive are proved, XN,H

satisfies the h-connectivity if there exists uniquely the solution of (2.2).

Lemma 2.3. Suppose that vi ∈ R (i = 1, 2, . . . , N) satisfy{
−∆hvi ≥ 0, i ∈ ΛΩ,

vi ≥ 0, i ∈ ΛΓ∪ΓH
,

(2.5)

w satisfies Hypothesis 1.4, and XN,H satisfies the h-connectivity. Then, for all i = 1, 2, . . . , N ,
we obtain

vi ≥ 0. (2.6)

Proof. Set k by

k := arg min
i=1,2,...,N

vi.

If k ∈ ΛΓ∪ΓH
, then (2.6) is obviously true.

Suppose that k ∈ ΛΩ. SinceXN,H satisfies the h-connectivity, there exists {xkl}ml=1 ⊂ XN,H

such that

xk1 = xk, |xkl − xil+1
| < h (l = 1, 2, . . . ,m− 1), xkm ∈ Γ ∪ ΓH .

By Hypothesis 1.4, we have

−∆hvk1 = 2d
∑
j ̸=k

Vj
vk − vj

|xk − xj |2
wh(|xk − xj |) ≤ 2dVk2

vk1 − vk2
|xk1 − xk2 |2

wh(|xk1 − xk2 |) ≤ 0.

After all, by (2.5), we obtain

−∆hvk1 = 0.

Since |xk1 − xk2 | < h, we have vk1 = vk2 . By repeating the argument above with l =
2, 3, . . . ,m − 1, we obtain vk1 = vk2 = · · · = vkm . Since vk = vkm ≥ 0, we find that (2.6) is
true.

Lemma 2.4. (Discrete maximum principle) Suppose that vi ∈ R (i = 1, 2, . . . , N) satisfy

−∆hvi ≤ 0, i ∈ ΛΩ,

w satisfies Hypothesis 1.4, and XN,H satisfies the h-connectivity. Then we obtain

vi ≤ max
j∈ΛΓ∪ΓH

{vj} i = 1, 2, . . . , N. (2.7)
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Proof. Let φi (i = 1, 2, . . . , N) be

φi := −vi + max
j∈ΛΓ∪ΓH

{vj}.

Then we have

−∆hφi = ∆hvi ≥ 0, i ∈ ΛΩ

and

φi ≥ 0, i ∈ ΛΓ∪ΓH
.

Hence, by Lemma 2.3, we have

φi ≥ 0, i = 1, 2, . . . , N.

Consequently, we obtain (2.7).

Lemma 2.5. (Stability) Suppose that for ϕ : XN,H → R, v : XN,H → R satisfies{
−∆hvi = ϕi, i ∈ ΛΩ,

vi = ϕi, i ∈ ΛΓ∪ΓH
,

{(XN,H , VN,H , h)} is a regular family with orderm (> 2) whose XN,H satisfies the h-connectivity,
and w satisfies Hypothesis 1.3 and Hypothesis 1.4. Then there exists a positive constant c and
h0 independent of h and N such that for all {(XN,H , VN,H , h)} with h < h0,

∥v∥ℓ∞(ΩH) ≤ c ∥ϕ∥ℓ∞(ΩH) . (2.8)

Proof. We first show

vi ≤ c ∥ϕ∥ℓ∞(ΩH) , i = 1, 2, . . . , N. (2.9)

Set z ∈ Rd such that

|x− z| ≤ diam(ΩH), ∀x ∈ ΩH .

Let Φ : ΩH → R be

Φ(x) := − 1

2d
(x− z)2 +

1

2d
diam(ΩH)2 + 1.

Since Φ ∈ C∞(ΩH) and |Φ|Cl(ΩH) = 0 (l ≥ 3), by Theorem 1.15, there exists a positive
constant c1 independent of XN,H , VN,H , and h such that

∥∆Φ−∆hΦ∥C(Ω) ≤ c1h
m−2.

Therefore, by ∆Φ ≡ −1, we have

−∆hΦi ≥ 1− c1h
m−2, i = 1, 2, . . . , N. (2.10)
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Take h0 satisfying

0 < hm−2
0 <

1

c1
.

By (2.10), for all h < h0, we have

−∆hΦi ≥ 1− c1h
m−2
0 > 0, i = 1, 2, . . . , N. (2.11)

Let φi (i = 1, 2, . . . , N) be

φi := vi − (1− c1h
m−2
0 )−1 ∥ϕ∥ℓ∞(Ω)Φi.

By (2.11), for all h < h0 and i = 1, . . . , NΩ, we have

−∆hφi = −∆hvi + (1− c1h
m−2
0 )−1 ∥ϕ∥ℓ∞(Ω)∆hΦi

≤ ϕi − ∥ϕ∥ℓ∞(Ω)

≤ 0.

Since Φ ≥ 1 and by Theorem 2.4, we estimate

φi ≤ max
j∈ΛΓ∪ΓH

{
vj − (1− c1h

m−2
0 )−1 ∥ϕ∥ℓ∞(Ω)Φj

}
≤ max

j∈ΛΓ∪ΓH

{vj} − (1− c1h
m−2
0 )−1 ∥ϕ∥ℓ∞(Ω) min

j∈ΛΓ∪ΓH

{Φj}

≤ ∥ϕ∥ℓ∞(Γ∪ΓH) − (1− c1h
m−2
0 )−1 ∥ϕ∥ℓ∞(Ω) .

Therefore, since

Φi ≤
1

2d
diam(ΩH)2 + 1, i = 1, 2, . . . , N, (2.12)

for all i = 1, 2, . . . , N , we obtain

vi ≤ ∥ϕ∥ℓ∞(Γ∪ΓH) +
Φi − 1

1− c1h
m−2
0

∥ϕ∥ℓ∞(Ω)

≤ ∥ϕ∥ℓ∞(Γ∪ΓH) +
diam(ΩH)2

2d(1− c1h
m−2
0 )

∥ϕ∥ℓ∞(Ω)

≤ max

{
1,

diam(ΩH)2

2d(1− c1h
m−2
0 )

}
∥ϕ∥ℓ∞(ΩH) .

Then (2.9) is proved.
Next, we show

vi ≥ −c ∥ϕ∥ℓ∞(ΩH) , i = 1, 2, . . . , N. (2.13)

Let ψi (i = 1, 2, . . . , N) be

ψi := −vi −
(
1− chm−2

0

)−1 ∥ϕ∥ℓ∞(Ω)Φ(xi).
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By (2.11), for all h < h0, i = 1, . . . , NΩ, we have

−∆hψi = ∆hvi +
(
1− chm−2

0

)−1 ∥ϕ∥ℓ∞(Ω)∆hΦ(xi)

≤ −ϕi − ∥ϕ∥ℓ∞(Ω)

≤ 0.

Since Φ ≥ 1 and Theorem 2.4, we estimate

ψi ≤ max
j∈ΛΓ∪ΓH

{
−vj − (1− c1h

m−2
0 )−1 ∥ϕ∥ℓ∞(Ω)Φj

}
≤ max

j∈ΛΓ∪ΓH

{−vj} − (1− c1h
m−2
0 )−1 ∥ϕ∥ℓ∞(Ω) min

j∈ΛΓ∪ΓH

{Φj}

≤ ∥ϕ∥ℓ∞(Γ∪ΓH) − (1− c1h
m−2
0 )−1 ∥ϕ∥ℓ∞(Ω) .

Therefore, by (2.12), for all i = 1, 2, . . . , N , we have

vi ≥ −∥ϕ∥ℓ∞(Γ∪ΓH) −
Φi − 1

1− c1h
m−2
0

∥ϕ∥ℓ∞(Ω)

≥ −∥ϕ∥ℓ∞(Γ∪ΓH) −
diam(ΩH)2

2d(1− c1h
m−2
0 )

∥ϕ∥ℓ∞(Ω)

≥ −max

{
1,

diam(ΩH)2

2d(1− c1h
m−2
0 )

}
∥ϕ∥ℓ∞(ΩH) .

Then (2.13) is shown. Consequently, we obtain (2.8).

Utilizing the results above, we prove Theorem 2.1.
Proof of Theorem 2.1. Since m > 2, by the definition of the regular (1.7), there exists a
positive constant h1 such that

h > 2rc, ∀h < h1.

By Lemma 1.10 and Lemma 2.2, for all h < h1, the discrete Poisson equation (2.2) is solvable.
Let ei (i = 1, 2, . . . , N) be

ei := ũi − Ui.

For all i ∈ ΛΩ, we have

−∆hei = −∆hũi +∆hUi = −∆hũi − fi = ∆ũi −∆hũi.

Moreover, for all i ∈ ΛΓH
, we get

ei = 0.

Then, by Lemma 2.5, we obtain

∥u− U∥ℓ∞(ΩH) = ∥e∥ℓ∞(Ω)

≤ c ∥∆ũ−∆hũ∥C(Ω) .

By Lemma 1.5 and Theorem 1.15, we have

∥∆ũ−∆hũ∥C(Ω) ≤ c hmin{2,m−2} ∥ũ∥C4(ΩH) .

Consequently we obtain (2.3). □





Chapter 3

Generalized particle method for the
heat equation

This chapter deals with a heat equation with Dirichlet boundary conditions discretized by
a generalized particle method in space and the θ-method in time for the heat equation. In
Section 3.1, the heat equation and the discrete heat equation are formulated. In Section
3.2, error estimates with a discrete L∞ norm in space and time of approximate solutions of
the discrete heat equation are established. Moreover, in Section 3.3, error estimates with an
discrete L2 norm in space and the discrete L∞ norm in time are also obtained.

3.1 Formulations

Let Ω be a bounded domain in Rd (d ≥ 2) with a piecewise smooth boundary Γ. We consider
the heat equation with Dirichlet boundary conditions:∥∥∥∥∥∥∥∥

Find u : Ω× (0, T ) → R s.t.
∂tu+ Lu = f, in Ω× (0, T ),

u = g, on Γ× (0, T ),
u = a, in Ω, at t = 0.

(3.1)

Here, f ∈ C(Ω×[0, T )) is an external heat source, g ∈ C(Γ×(0, T )) is a boundary temperature,
a ∈ C(Ω) is an initial temperature. Moreover ∂t := ∂/∂t, L := −κ∆, and κ ∈ R+ is the
thermal conductivity.

Assume that there exists a unique solution u of the heat equation [31]. Set g̃ ∈ C(ΓH ×
(0, T )) such that g̃ = g on Γ× (0, T ) and ã ∈ C(ΩH) such that ã = a on Ω and ã = g̃ |t=0 on
ΓH . Let ũ be an expanded solution on ΩH × (0, T ) for the solution u of (3.1) defined by

ũ :=

{
u, (x, t) ∈ Ω× (0, T ),

g̃, (x, t) ∈ ΓH × (0, T ).

Set a positive integer K and time step ∆t by ∆t := T/K. For k = 0, 1, . . . ,K, let us
denote k∆t as tk . Let IK be IK := {tk; k = 0, 1, . . . ,K}. For v : IK → R, the approximate

31
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operator D∆t is defined by

D∆tv
k :=

vk+1 − vk

∆t
, k = 0, 1, . . . ,K − 1.

Here we denote v(tk) as vk.
Let Lh be Lh := −κ∆h. Then we consider the generalized particle method for the heat

equation with Dirichlet boundary conditions:∥∥∥∥∥∥∥∥
Find U : XN,H × IK → R s.t.D∆tU

k
i + LhU

k+θ
i = fk+θ

i , i ∈ ΛΩ, k = 0, 1, . . . ,K − 1,
Uk
i = g̃ki , i ∈ ΛΓ∪ΓH

, k = 1, 2, . . . ,K,
U0
i = ãi, i ∈ ΛΩH

.

(3.2)

Here θ ∈ [0, 1], vk+θ = θvk+1 + (1− θ)vk, and vki := v(xi, t
k).

3.2 Error estimates with a discrete L∞ norm

For a set S ⊂ R and Banach space X, a discrete L∞ norm in time ∥.∥ℓ∞(S;X) is defined by

∥v∥ℓ∞(S;X) := max
{
∥vk∥X ; k = 0, 1, . . . ,K, tk ∈ IK ∩ S

}
.

Now, we state the theorem with respect to the errors between solutions of (3.1) and (3.2) by
the maximum norm ∥.∥ℓ∞([0,T ];ℓ∞(ΩH)).

Theorem 3.1. (Error estimate of the discrete heat equation by the discrete L∞

norm) Let u and U be solutions of (3.1) and (3.2), respectively. Suppose that the expanded
solution ũ satisfies ũ ∈ C2([0, T ];C4(ΩH)), {(XN,H , VN,H , h)}h↓0 is a regular family with order
m (> 2), and w satisfies Hypothesis 1.3 and Hypothesis 1.4. Moreover, when θ ∈ [0, 1), suppose
that for any fixed δ ∈ (0, 1), ∆t satisfies

∆t ≤ min

{
δ

2dκ(1− θ)

(∫
Rd

1

|x|2
w(|x|)dx

)−1

h2,
1

1− θ

}
. (3.3)

Then there exists a positive constant c and h0 independent of h, N , and ∆t such that for all
{(XN,H , VN,H , h)} with h < h0,

∥ũ− U∥ℓ∞([0,T ];ℓ∞(ΩH)) ≤ c (∆t+ hmin{2,m−2}) ∥ũ∥C2([0,T ];C4(ΩH)) . (3.4)

Furthermore, if ũ ∈ C3([0, T ];C4(ΩH)) and θ = 1/2, then

∥ũ− U∥ℓ∞([0,T ];ℓ∞(ΩH)) ≤ c (∆t2 + hmin{2,m−2}) ∥ũ∥C3([0,T ];C4(ΩH)) . (3.5)

Here,

∥v∥Cm([0,T ];Cn(ΩH)) := max
k=0,1,...,m

max
t∈[0,T ]

∥∂kt v(·, t)∥Cn(ΩH).
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Hereafter, in this section, let c be a generic positive constant independent of h, N , and
∆t. Before beginning the proof of Theorem 3.1, we show some results

Theorem 3.2. (Unique solvability) Suppose that w satisfies Hypothesis 1.4 if θ ∈ (0, 1].
Then (3.2) has a unique solution.

Proof. Let NΩ be a number of particles included in Ω. We renumber the index of particles
so that i ∈ ΛΩ (i = 1, 2, . . . , NΩ) and i ∈ ΛΓ∪ΓH

(i = NΩ + 1, NΩ + 2, . . . , N). Let bij ∈
R+
0 (i, j = 1, 2, . . . , N) be

bij :=

0, i = j,

2dκ∆t
wh(|xi − xj |)
|xi − xj |2

, i ̸= j.

Set A ∈ RNΩ×NΩ , D ∈ RNΩ×NΩ , and fk+θ ∈ RNΩ (k = 0, 1, . . . ,K, θ ∈ [0, 1]) by

Aij :=


N∑
k=1

Vk
Vi
bik, i = j,

−bij , i ̸= j,

D := diag(Vi),

fk+θ
i := ∆tfk+θ

i +
∑

j∈ΛΓ∪ΓH

Vj g̃
k+θ
j bij , i = 1, 2, . . . , N,

respectively. Then we can write (3.2) as{
(I + θAD)uk+1= (I − (1− θ)AD)uk + fk+θ, k = 0, 1, . . . ,K − 1

u0= u0.

Here, uk := (Uk
1 , U

k
2 , . . . , U

k
NΩ

)T , u0 := (ã1, ã2, . . . , ãNΩ
)T , and I ∈ RNΩ×NΩ is the identity

matrix. Therefore, if (I + θAD) is the regular matrix, then (3.2) has a unique solution. In
case that θ = 0, then (I + θAD) is obviously the regular matrix.

Hereafter, we consider case that θ ∈ (0, 1]. Let R be R := D−1 + θA. Then we have
(I + θAD) = RD. Since D is the regular matrix and R is symmetric, it is sufficient to show
that R is the positive definite. For all a ∈ RNΩ , we have

NΩ∑
i,j=1

aiajRij =

NΩ∑
i,j=1

aiaj([D
−1]ij + θAij)

=

NΩ∑
i=1

a2i

(
1

Vi
+ θAii

)
+ 2θ

∑
1≤i<j≤N

aiajAij

=

NΩ∑
i=1

a2i
Vi

1 + θ

NΩ∑
l=1

Vlbil + θ
N∑

l=NΩ+1

Vkbik

− 2θ
∑

1≤i<j≤N

aiajbij

=

NΩ∑
i=1

a2i
Vi

1 + θ

N∑
l=NΩ+1

Vlbil

+ θ
∑

1≤i<j≤N

(Vjai − Viaj)
2

ViVj
bij .
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By Hypothesis 1.4, the equation is 0 if and only if a = 0. Then R is the positive definite
matrix. Therefore, (3.2) has a unique solution.

Lemma 3.3. Suppose that vki ∈ R (i = 1, 2, . . . , N, k = 0, 1, . . . ,K) satisfy
D∆tv

k
i + Lhv

k+θ
i ≥ 0, i ∈ ΛΩ, k = 0, 1, . . . ,K − 1,

vki ≥ 0, i ∈ ΛΓ∪ΓH
, k = 1, 2, . . . ,K,

v0i ≥ 0, i ∈ ΛΩH

(3.6)

and w satisfies Hypothesis 1.4. Moreover, when θ ∈ [0, 1), suppose that ∆t satisfies

∆t ≤ 1

2dκ(1− θ)

max
i∈ΛΩ

∑
j ̸=i

Vj
wh(|xi − xj |)
|xi − xj |2


−1

. (3.7)

Then for all i ∈ ΛΩH
and k = 0, 1, . . . ,K, we obtain

vki ≥ 0. (3.8)

Proof. For k = 0, 1, . . . ,K, let αk be

αk := min
i=1,2,...,N

vki .

We will prove inductively that

αk ≥ 0, ∀k = 0, 1, . . . ,K. (3.9)

By (3.6), we have α0 ≥ 0. Let n be a positive integer not greater than K. Suppose that (3.9)
holds when k = n− 1. Let l be an integer so that vnl = αn. For i, j = 1, 2, . . . , N , we set λij
by

λij :=

0, i = j,

2dκ∆tVj
wh(|xi − xj |)
|xi − xj |2

i ̸= j.

In case that θ = 1, by Hypothesis 1.4, we have

αn−1 ≤ vn−1
l

≤ vnl +∆tLhv
n
l

= vnl

1 +
∑
j ̸=l

λlj

−
∑
j ̸=l

λljv
n
j

≤ αn

1 +
∑
j ̸=l

λlj

− αn

∑
j ̸=l

λlj

= αn.
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Moreover, in case that θ ∈ [0, 1), by Hypothesis 1.4 and (3.7), we get

αn−1 = αn−1

1− (1− θ)
∑
j ̸=l

λlj

+ αn−1(1− θ)
∑
j ̸=l

λlj

≤ vn−1
l

1− (1− θ)
∑
j ̸=l

λlj

+ (1− θ)
∑
j ̸=l

λljv
n−1
j

= vn−1
l − (1− θ)∆tLhv

n−1
l

≤ vnl + θ∆tLhv
n
l

= vnl

1 + θ
∑
j ̸=l

λlj

− θ
∑
j ̸=l

λljv
n
j

≤ αn

1 + θ
∑
j ̸=l

λlj

− αnθ
∑
j ̸=l

λlj

= αn.

Therefore, (3.9) also holds when k = n. Consequently, since (3.9) is true, we obtain (3.8).

Lemma 3.4. (Discrete maximum principle) Suppose that vki ∈ R (i = 1, 2, . . . , N, k =
0, 1, . . . ,K) satisfies

D∆tv
k
i + Lhv

k+θ
i ≤ 0, i ∈ ΛΩ, k = 0, 1, . . . ,K − 1,

and w satisfies Hypothesis 1.4. Moreover, suppose (3.7) if θ ∈ [0, 1). Then for all i =
1, 2, . . . , N and k = 0, 1, . . . ,K, we obtain

vki ≤ ∥v0∥ℓ∞(ΩH) + max
l=0,1,...,k

∥vl∥ℓ∞(Γ∪ΓH). (3.10)

Proof. Let φk
i (i = 1, 2, . . . , N, k = 0, 1, . . . ,K) be

φk
i := −vki + ∥v0∥ℓ∞(ΩH) + max

l=0,1,...,k
∥vl∥ℓ∞(Γ∪ΓH).

We prove that φk
i ≥ 0 for all i = 1, 2, . . . , N and k = 0, 1, . . . ,K. By the definition of φk

i , we
have

φk
i ≥ 0, i ∈ ΛΓ∪ΓH

, k = 0, 1, . . . ,K,

φ0
i ≥ 0, i ∈ ΛΩH

.

Moreover, for all i ∈ ΛΩ, k = 0, 1, . . . ,K − 1, we get

D∆tφ
k
i = −D∆tv

k
i +

1

∆t

(
max

l=0,1,...,k+1
∥vl∥ℓ∞(Γ∪ΓH) − max

l=0,1,...,k
∥vl∥ℓ∞(Γ∪ΓH)

)
≥ −D∆tv

k
i
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≥ Lhv
k+θ
i

= −Lhφ
k+θ
i .

Therefore, by Lemma 3.3, for all i = 1, 2, . . . , N and k = 0, 1, . . . ,K, we obtain

φk
i ≥ 0.

Then (3.10) holds.

Lemma 3.5. Suppose that v : XN,H × IK → R and ϕ : XN,H ∩ Ω× IK → R satisfyD∆tv
k
i + Lhv

k+θ
i = ϕki , i ∈ ΛΩ, k = 0, 1, . . . ,K − 1,
vki = 0, i ∈ ΛΓ∪ΓH

, k = 1, 2, . . . ,K,
v0i = 0, i ∈ ΛΩH

,

{(XN,H , VN,H , h)}h↓0 is a regular family with order m (> 2), and w satisfies Hypothesis 1.3 and
Hypothesis 1.4. Moreover, when θ ∈ [0, 1), suppose that ∆t satisfies (3.3). Then there exists a
positive constant c and h0 independent of h, N , and ∆t such that for all {(XN,H , VN,H , h)}h↓0
with h < h0,

∥v∥ℓ∞([0,T ];ℓ∞(ΩH)) ≤ c ∥ϕ∥ℓ∞([0,T );ℓ∞(Ω)). (3.11)

Proof. First, we consider the case that θ = 1. Fix any z ∈ Rd satisfying

|x− z| ≤ diam(ΩH), ∀x ∈ ΩH .

Let Φ : ΩH → R be

Φ(x) := − 1

2dκ
(x− z)2 +

1

2dκ
diam(ΩH)2 + 1.

Since |Φ|Cl(ΩH) = 0 (l ≥ 3) and by Theorem 1.15, there exists a positive constant c2 indepen-
dent of h and N such that

∥∆Φ−∆hΦ∥C(Ω) ≤ c2h
m−2.

Therefore, since ∆Φ ≡ −κ−1, we have

LhΦi ≥ 1− c2κh
m−2, i = 1, 2, . . . , N. (3.12)

Set h0 ∈ R+ such that

h0 < (c2κ)
(2−m)−1

.

By (3.12), for all {(XN,H , VN,H , h)}h↓0 with h < h0, we have

LhΦi ≥ 1− c2κh
m−2
0 > 0, i = 1, 2, . . . , N. (3.13)

Let φk
i (i = 1, 2, . . . , N, k = 0, 1, . . . ,K) be

φk
i := vki − (1− c2κh

m−2
0 )−1F kΦi.
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Here,

F k :=

0, k = 0,

max
l=0,1,...,k−1

∥ϕl∥ℓ∞(Ω), k = 1, 2, . . . ,K.

By (3.13) and Φ ≥ 1, for all i = 1, . . . , NΩ and k = 0, 1, . . . ,K − 1, we have

D∆tφ
k
i = D∆tv

k
i −

(
1− c2κh

m−2
0

)−1
ΦiD∆tF

k

= −Lhv
k+θ
i + ϕki −

(
1− c2κh

m−2
0

)−1
ΦiD∆tF

k

= −Lhφ
k+θ
i + ϕki −

(
1− c2κh

m−2
0

)−1
F k+θLhΦi −

(
1− c2κh

m−2
0

)−1
ΦiD∆tF

k

≤ −Lhφ
k+θ
i + ϕki − F k+θ −

(
1− c2κh

m−2
0

)−1
ΦiD∆tF

k

≤ −Lhφ
k+θ
i + ϕki − F k+θ −D∆tF

k.

Since ∆t ≤ (1− θ)−1, we find

F k+θ +D∆tF
k ≥ (θ +∆t−1)F k+1 + (1− θ −∆t−1)F k

≥ F k+1 (3.14)

Hence we have

D∆tφ
k
i + Lhφ

k+θ
i ≤ 0.

Therefore, by Lemma 3.4, for all i = 1, 2, . . . , N and k = 0, 1, . . . ,K, we obtain

φk
i ≤ ∥φ0∥ℓ∞(ΩH) + max

l=0,1,...,k
∥φl∥ℓ∞(Γ∪ΓH)

≤ ∥v0∥ℓ∞(ΩH) + (1− c2κh
m−2
0 )−1 max

l=0,1,...,k−1
F l∥Φ∥ℓ∞(Γ∪ΓH).

Since

∥Φ∥ℓ∞(ΩH) ≤
diam(ΩH)2 + 1

2dκ
, (3.15)

for all i = 1, 2, . . . , N and k = 0, 1, . . . ,K, we have

vki ≤ c max
l=0,1,...,k−1

∥ϕl∥ℓ∞(Γ∪ΓH). (3.16)

Let ψk
i (i = 1, 2, . . . , N, k = 0, 1, . . . ,K) be

ψk
i := −vki − (1− c2κh

m−2
0 )−1F kΦi.

Since (3.13) and Φ ≥ 1, for all i = 1, . . . , NΩ and k = 0, 1, . . . ,K − 1, we have

D∆tψ
k
i = −D∆tv

k
i −

(
1− c2κh

m−2
0

)−1
ΦiD∆tF

k

= Lhv
k+θ
i − ϕki −

(
1− c2κh

m−2
0

)−1
ΦiD∆tF

k
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= −Lhψ
k+θ
i − ϕki −

(
1− c2κh

m−2
0

)−1
F k+θLhΦi −

(
1− c2κh

m−2
0

)−1
ΦiD∆tF

k

≤ −Lhψ
k+θ
i − ϕki − F k+θ −

(
1− c2κh

m−2
0

)−1
ΦiD∆tF

k

≤ −Lhψ
k+θ
i − ϕki − F k+θ − ΦiD∆tF

k.

By (3.14) we have

D∆tψ
k
i + Lhψ

k+θ
i ≤ 0.

Therefore, by Lemma 3.4, for all i = 1, 2, . . . , N, k = 0, 1, . . . ,K, we obtain

ψk
i ≤ ∥ψ0∥ℓ∞(ΩH) + max

l=0,1,...,k
∥ψl∥ℓ∞(Γ∪ΓH)

≤ ∥v0∥ℓ∞(ΩH) + (1− c2κh
m−2
0 )−1 max

l=0,1,...,k−1
F l∥Φ∥ℓ∞(Γ∪ΓH).

Hence, by (3.15), we obtain

−vki ≤ c max
l=0,1,...,k−1

∥ϕl∥ℓ∞(Γ∪ΓH). (3.17)

Consequently, by (3.16) and (3.17), we obtain (3.11) when θ = 1.
Next we consider case that θ ∈ [0, 1). Since w satisfies Hypothesis 1.3, we can take ŵ ∈W

such that

ŵ(r) =
c−1
w

r2
w(r) ∀r ∈ R+.

Here,

cw :=

∫
Rd

1

|x|2
w(|x|)dx.

For ŵ and h, let ŵh ∈ C1(R+
0 ) be

ŵh(r) :=
1

hd
ŵ
( r
h

)
, r ∈ R+

0 .

By Theorem 1.11, there exists a positive constant c3 independent of h and N such that for
all x ∈ Ω ∣∣∣∣∣∣

N∑
j=1

Vjŵh(|x− xj |)− 1

∣∣∣∣∣∣ ≤ c3h
m−1.

Therefore, since

∑
j ̸=i

Vj
wh(|xi − xj |)
|xi − xj |2

≤
N∑
j=1

Vj
wh(|xi − xj |)
|xi − xj |2

=
cw
h2

N∑
j=1

Vjŵh(|x− xj |)
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≤ cw
h2

(1 + c3h
m−1),

by taking h1 satisfying

0 < hm−1
1 <

1− c1
c1c3

,

for all h < h1 and i = 1, 2, . . . , N , we have∑
j ̸=i

Vj
wh(|xi − xj |)
|xi − xj |2

≤ cw
h2

(1 + c3h
m−1
1 )

≤ cw
c1h2

.

Hence, since for all h < h1

1

2dκ(1− θ)

max
i∈ΛΩ

∑
j ̸=i

Vj
wh(|xi − xj |)
|xi − xj |2


−1

≥ c1
2dκ(1− θ)cw1

h2,

(3.7) holds. Consequently, by taking h0 such that

0 < h0 < min
{
(c2κ)

(2−m)−1

, h1

}
,

Theorem 3.4 is true for h < h0. Then, by the similar arguments the case that θ = 1, we
obtain (3.11).

Utilizing the results above, we prove Theorem 3.1.
Proof of Theorem 3.1. e : XN,H × IK → R and R : XN,H × (IK \ {tK}) → R are defined by

eki := ũki − Uk
i ,

Rk
i := D∆tũ

k
i + Lhũ

k+θ
i − θ

(
∂tũ

k+1
i − κ∆ũk+1

i

)
− (1− θ)

(
∂tũ

k
i − κ∆ũki

)
,

respectively. Then, by (3.1) and (3.2), we haveD∆te
k
i + Lhe

k+θ
i = Rk

i , i ∈ ΛΩ, k = 0, 1, . . . ,K − 1,
eki = 0, i ∈ ΛΓ∪ΓH

, k = 1, 2, . . . ,K,
e0i = 0, i ∈ ΛΩH

.

Then by Lemma 3.5, we obtain

∥e∥ℓ∞([0,T ];ℓ∞(ΩH)) ≤ c ∥R∥ℓ∞([0,T );ℓ∞(Ω)). (3.18)

Now, since

|Rk
i | ≤

∣∣∣D∆tũ
k
i −

{
θ∂tũ

k+1
i + (1− θ)∂tũ

k
i

}∣∣∣
+ κθ

∣∣∣∆ũk+1
i −∆hũ

k+1
i

∣∣∣+ (1− θ)κ
∣∣∣∆ũki −∆hũ

k
i

∣∣∣ ,
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we estimate the each term. Assume ũ ∈ C2([0, T ];C4(ΩH)). By Taylor expansion, we have

∂tũ
k+1
i =

ũk+1
i − ũki
∆t

+∆t

∫ 1

0
(1− t)

∂2

∂t2
ũ(xi, (k + s)∆t)ds,

∂tũ
k
i =

ũk+1
i − ũki
∆t

+∆t

∫ 1

0
(1− t)

∂2

∂t2
ũ(xi, (k + 1− s)∆t)ds.

Hence, we find∣∣∣D∆tũ
k
i −

{
θ∂tũ

k+1
i + (1− θ)∂tũ

k
i

}∣∣∣ ≤ ∆t

2
max
0≤s≤1

∣∣∣∣ ∂2∂t2 ũ(xi, (k + s)∆t)

∣∣∣∣
≤ c∆t ∥ũ∥C2([0,T ];C(ΩH)) .

Since {(XN,H , VN,H , h)} is the regular family, by Lemma 1.5 and Theorem 1.15, for all i ∈ ΛΩ

and k = 0, 1, . . . ,K, we have

|∆ũki −∆hũ
k
i | ≤ chmin{2,m−2} ∥ũ∥C([0,T ];C4(ΩH)) .

Therefore, for all i ∈ ΛΩ, k = 0, 1, . . . ,K − 1, and θ ∈ [0, 1], we obtain

|Rk
i | ≤ c(∆t+ hmin{2,m−2}) ∥ũ∥C2([0,T ];C4(ΩH)) . (3.19)

Moreover, when ũ ∈ C3([0, T ];C4(ΩH)) and θ = 1/2, by Taylor expansion, we have

∂tũ
k+1
i =

ũk+1
i − ũki
∆t

+
∆t

2

∂2

∂t2
ũk+1
i +

∆t2

2!

∫ 1

0
(1− t)2

∂3

∂t3
ũ(xi, (k + s)∆t)ds,

∂tũ
k
i =

ũk+1
i − ũki
∆t

− ∆t

2

∂2

∂t2
ũki +

∆t2

2!

∫ 1

0
(1− t)2

∂3

∂t3
ũ(xi, (k + 1− s)∆t)ds.

Since

∂2

∂t2
ũk+1
i − ∂2

∂t2
ũki = ∆t

∫ 1

0

∂3

∂t3
ũ(xi, (k + s)∆t)ds,

we estimate ∣∣∣∣D∆tũ
k
i −

1

2

(
∂tũ

k+1
i + ∂tũ

k
i

)∣∣∣∣ ≤ 5∆t2

12
max
0≤s≤1

∣∣∣∣ ∂3∂t3 ũ(xi, (k + s)∆t)

∣∣∣∣
≤ c∆t2 ∥ũ∥C3([0,T ];C(ΩH)) .

Therefore, for all i ∈ ΛΩ, k = 0, 1, . . . ,K − 1, we estimate

|Rk
i | ≤ c (∆t2 + hmin{2,m−2}) ∥ũ∥C3([0,T ];C4(ΩH)) . (3.20)

Consequently, by (3.18), we obtain (3.4) and (3.5). □
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3.3 Error estimates with a discrete L2 norm

For v : XN,H → R and S ⊂ Rd, a discrete L2 norm ∥.∥ℓ2(S) is defined by

∥v∥ℓ2(S) :=

∑
i∈ΛS

Vi |vi|2
1/2

,

and a discrete H1 semi-norm |.|h1(S) is defined by

|v|h1(S) :=

d∑
i∈ΛS

Vi
∑
j ̸=i

Vj
|vi − vj |2

|xi − xj |2
wh(|xi − xj |)

1/2

.

Note that the discreteH1 semi-norm satisfies the axioms of semi-norm if w satisfies Hypotheses
1.4 andXN,H satisfies the h-connectivity. First, we show an inequality with respect to ∥.∥ℓ2(ΩH)

and |.|h1(ΩH).

Lemma 3.6. Suppose that {(XN,H , VN,H , h)}h↓0 is a regular family with order m (≥ 1) and
that w satisfies Hypothesis 1.3 and Hypothesis 1.4. Then there exists a positive constant c2
independent of h and N such that for all v : XN,H → R,

|v|h1(ΩH) ≤
c2
h
∥v∥ℓ2(ΩH) . (3.21)

Proof. Set ŵ ∈ C(R+
0 ) satisfying

ŵ(r) =
1

cwr2
w(r), r ∈ R+.

Here

cw :=

∫
Rd

1

|x|2
w(|x|)dx.

Then, by Hypothesis 1.3, we have ŵ ∈W . Then, by Hypothesis 1.4, we estimate

|v|2h1(ΩH) = d

N∑
i=1

Vi
∑
j ̸=i

Vj
|vi − vj |2

|xi − xj |2
wh(|xi − xj |)

=
dcw
h2

N∑
i=1

Vi
∑
j ̸=i

Vj |vi − vj |2ŵh(|xi − xj |)

≤ 2dcw
h2

N∑
i=1

Vi
∑
j ̸=i

Vj
(
|vi|2 + |vj |2

)
ŵh(|xi − xj |)

≤ 4dcw
h2

N∑
i=1

Vi|vi|2
N∑
j=1

Vjŵh(|xi − xj |).
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Now, fix any ω = {ωi} satisfying (1.6) and set ξij (i, j = 1, 2, . . . , N) by ξij := meas(σi ∩ ωj).
Then we have

N∑
j=1

Vjŵh(|xi − xj |) =
∫
ΩH

ŵh(|xi − y|)dy +
N∑
j=1

N∑
k=1

∫
σj∩ωk

{ŵh(|xi − xj |)− ŵh(|xi − y|)}dy

+
N∑
j=1

N∑
k=1

ξjk{ŵh(|xi − xk|)− ŵh(|xi − xj |)}. (3.22)

For i = 1, 2, . . . , N , let Ni(r) (r ∈ R+) be

Ni(r) := {j; j = 1, 2, . . . , N, |xi − xj | < r}.

By ŵ ∈W and Hypothesis 1.4, the second term of (3.22) is estimated by∫
ΩH

ŵh(|xi − y|)dy ≤ 1.

By Taylor expansion, the second term of (3.22) is estimated by

N∑
j=1

N∑
k=1

∫
σj∩ωk

{ŵh(|xi − xj |)− ŵh(|xi − y|)}dy

=
∑

j∈Ni(h+rc)

N∑
k=1

∫
σj∩ωk

{ŵh(|xi − xj |)− ŵh(|xi − y|)}dy

≤ rc
hd+1

|ŵ|C1(R+
0 )

∑
j∈Ni(h+rc)

∫
σj

dy

≤ c
(
1 + 2

rc
h

)d rc
h
.

The third term of (3.22) is estimated by

N∑
j=1

N∑
k=1

ξjk{ŵh(|xi − xk|)− ŵh(|xi − xj |)}

≤
∑

j∈Ni(h)

N∑
k=1

(ξjk + ξkj)|ŵh(|xi − xk|)− ŵh(|xi − xj |)|

≤ 1

hd+1
|ŵ|C1(R+

0 )

∑
j∈ΛNi(h)

N∑
k=1

(ξjk + ξkj)|xj − xk|

=
1

hd+1
|ŵ|C1(R+

0 )

∑
j∈Ni(h)

meas(σj)

N∑
j=1

ξjk + ξkj
meas(σj)

|xi − xj |

≤
(
1 +

rc
h

)d 1

h
|ŵ|C1(R+

0 ) max
j=1,2,...,N

(
N∑
k=1

ξjk + ξkj
meas(σj)

|xj − xk|

)
,
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and, since ω is arbitrary, we have

N∑
j=1

N∑
k=1

ξjk{ŵh(|xi − xk|)− ŵh(|xi − xj |)} ≤ c
(
1 +

rc
h

)d dv
h
.

Therefore, we have

|v|2h1(ΩH) ≤
4dcw
h2

{
1 + c

(
1 + 2

rc
h

)d rc + dv
h

}
∥v∥2ℓ2(ΩH) .

By the regularity, we therefore obtain (3.21).

Now, we state error estimates with the discrete L2 norm in space of the approximate
solutions.

Theorem 3.7. Let u and U be solutions of (3.1) and (3.2), respectively. Suppose that the
expanded solution ũ satisfies ũ ∈ C2([0, T ];C4(ΩH)), {(XN,H , VN,H , h)}h↓0 is a regular family
with order m (> 2), and w satisfies Hypothesis 1.3 and Hypothesis 1.4. Moreover, when
θ ∈ [0, 1/2), suppose that for any fixed δ ∈ (0, 1), ∆t satisfies

∆t ≤ δ

κ (1− 2θ) c22
h2. (3.23)

Here c2 is the positive constant in (3.21). Then there exists a positive constant c independent
of h, N , and ∆t such that for all {(XN,H , VN,H , h)}

∥ũ− U∥ℓ∞([0,T ];ℓ2(ΩH)) ≤ c (∆t+ hmin{2,m−2}) ∥ũ∥C2([0,T ];C4(ΩH)) . (3.24)

Furthermore, if ũ ∈ C3([0, T ];C4(ΩH)) and θ = 1/2, then

∥ũ− U∥ℓ∞([0,T ];ℓ2(ΩH)) ≤ c (∆t2 + hmin{2,m−2}) ∥ũ∥C3([0,T ];C4(ΩH)) . (3.25)

Hereafter, in this section, let c be a generic positive constant independent of h, N , and
∆t. Before beginning the proof of Theorem 3.7, we show the following lemma.

Lemma 3.8. (Stability) Suppose that for ϕ : XN,H ∩ Ω × IK → R, v : XN,H × IK → R
satisfies D∆tv

k
i + Lhv

k+θ
i = ϕki , i ∈ ΛΩ, k = 0, 1, . . . ,K − 1,
vki = 0, i ∈ ΛΓ∪ΓH

, k = 1, 2, . . . ,K,
v0i = 0, i ∈ ΛΩH

,

(3.26)

{(XN,H , VN,H , h)}h↓0 is a regular family with order m (≥ 1), and w satisfies Hypothesis 1.4.
Moreover, if θ ∈ [0, 1/2), suppose that w satisfies Hypothesis 1.3 and ∆t satisfies (3.23). Then
there exists a positive constant c independent of h, N , and ∆t such that

∥v∥ℓ∞([0,T ];ℓ2(ΩH)) ≤ c ∥ϕ∥ℓ∞([0,T );ℓ2(Ω)). (3.27)
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Proof. Multiplying both side of the fist term of (3.26) by Viv
k+1/2
i and taking the sum of these

over i ∈ ΛΩ, we have∑
i∈ΛΩ

Viv
k+1/2
i D∆tv

k
i +

∑
i∈ΛΩ

Viv
k+1/2
i Lhv

k+θ
i =

∑
i∈ΛΩ

Viv
k+1/2
i ϕki . (3.28)

The first term of the left hand side of (3.28) yields

∑
i∈ΛΩ

Viv
k+1/2
i D∆tv

k
i =

1

2∆t

N∑
i=1

Vi{(vk+1
i )2 − (vki )

2}

=
1

2∆t
(∥vk+1∥2ℓ2(ΩH) − ∥vk∥2ℓ2(ΩH))

and the second term gives∑
i∈ΛΩ

Viv
k+1/2
i Lhv

k+θ
i

= 2κd
∑
i∈ΛΩ

Viv
k+1/2
i

∑
j ̸=i

Vj
vk+θ
i − vk+θ

j

|xi − xj |2
wh(|xi − xj |)

= dκ
N∑
i=1

∑
j ̸=i

ViVj
(v

k+1/2
i − v

k+1/2
j )(vk+θ

i − vk+θ
j )

|xi − xj |2
wh(|xi − xj |)

= dκ

N∑
i=1

∑
j ̸=i

ViVj
(v

k+1/2
i − v

k+1/2
j )2

|xi − xj |2
wh(|xi − xj |)

+
dκ

2

(
θ − 1

2

) N∑
i=1

∑
j ̸=i

ViVj
(vk+1

i − vk+1
j )2 − (vki − vkj )

2

|xi − xj |2
wh(|xi − xj |)

= κ|vk+1/2|2h1(ΩH) +
κ

2

(
θ − 1

2

)
(|vk+1|2h1(ΩH) − |vk|2h1(ΩH)).

Therefore we obtain

1

2∆t
(∥vk+1∥2ℓ2(ΩH) − ∥vk∥2ℓ2(ΩH)) + κ|vk+1/2|2h1(ΩH) +

κ

2

(
θ − 1

2

)
(|vk+1|2h1(ΩH) − |vk|2h1(ΩH))

=
∑
i∈ΛΩ

Viv
k+1/2
i ϕki . (3.29)

For l = 0, 1, . . . ,K, let El be

El := ∥vl∥2ℓ2(ΩH) + κ∆t

(
θ − 1

2

)
|vl|2h1(ΩH).

By (3.29), for all s ∈ (0, 1), we have

El+1 − El = ∥vl+1∥2ℓ2(ΩH) − ∥vl∥2ℓ2(ΩH) +∆tκ

(
θ − 1

2

)
(|vl+1|2h1(ΩH) − |vl|2h1(ΩH))
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= −2∆tκ|vl+1/2|2h1(ΩH) + 2∆t
∑
i∈ΛΩ

Viv
l+1/2
i ϕli

≤ −2∆tκ|vl+1/2|2h1(ΩH) +∆t
∑
i∈ΛΩ

Vi(|vl+1
i |+ |vli|)|ϕli|

≤ −2∆tκ|vl+1/2|2h1(ΩH) + s∥vl+1∥2ℓ2(ΩH) + (1− s)∥vl∥2ℓ2(ΩH) +
∆t2

4s(1− s)
∥ϕl∥2ℓ2(Ω)

By Hypothesis 1.4, we have |vl+1/2|h1(ΩH) ≥ 0. Then we obtain

El+1 − El ≤s∥vl+1∥2ℓ2(ΩH) + (1− s)∥vl∥2ℓ2(ΩH) +
∆t2

4s(1− s)
∥ϕl∥2ℓ2(Ω).

Taking the sum of the both side with respect to l from 0 to k − 1, since ∥v0∥2ℓ2(ΩH) = 0, we
have

Ek − E0 ≤ s∥vk∥2ℓ2(ΩH) +
k−1∑
l=0

∥vl∥2ℓ2(ΩH) +
∆t2

4s(1− s)

k−1∑
l=0

∥ϕl∥2ℓ2(Ω).

Since E0 = 0, we obtain

∥vk∥2ℓ2(ΩH) +
κ∆t

1− s

(
θ − 1

2

)
|vk|2h1(ΩH) ≤

s

1− s

k−1∑
l=0

∥vl∥2ℓ2(ΩH) +
∆t2

4s(1− s)2

k−1∑
l=0

∥ϕl∥2ℓ2(Ω).

Taking s = ∆t/(2T ), we have

∥vk∥2ℓ2(ΩH) +
2κT∆t

2T −∆t

(
θ − 1

2

)
|vk−1|2h1(ΩH)

≤ ∆t

2T −∆t

k−1∑
k=0

∥vk∥2ℓ2(ΩH) +
2T 3∆t

(2T −∆t)2

k−1∑
l=0

∥ϕl∥2ℓ2(Ω)

≤ ∆t

T

k−1∑
l=0

∥vl∥2ℓ2(ΩH) + 2T

k−1∑
l=0

∆t∥ϕl∥2ℓ2(Ω) (3.30)

When θ ∈ [1/2, 1], since

∥vk∥2ℓ2(ΩH) +
2κT∆t

2T −∆t

(
θ − 1

2

)
|vk|2h1(ΩH) ≥ ∥vk∥2ℓ2(ΩH),

for all k = 0, 1, . . . ,K, we have

∥vk∥2ℓ2(ΩH) ≤
∆t

T

k−1∑
l=0

∥vl∥2ℓ2(ΩH) + 2T

k−1∑
l=0

∆t∥ϕl∥2ℓ2(Ω).

Since ∥v0∥2ℓ2(ΩH) = 0, by applying Gronwall’s lemma into the inequality, for all k = 0, 1, . . . ,K,
we have

∥vk∥2ℓ2(ΩH) ≤ 2eT

k−1∑
l=0

∆t∥ϕl∥2ℓ2(Ω).
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Therefore we obtain

∥v∥ℓ∞([0,T ];ℓ2(ΩH)) ≤
√
2eT ∥ϕ∥ℓ∞([0,T );ℓ2(Ω)).

When θ ∈ [0, 1/2), by (3.21) and (3.23), we have

∥vk∥2ℓ2(ΩH) +
2κT∆t

2T −∆t

(
θ − 1

2

)
|vk|2h1(ΩH) ≥ ∥vk∥2ℓ2(ΩH) + κ∆t (2θ − 1) |vk|2h1(ΩH)

≥
{
1 +

c22κ∆t (2θ − 1)

h2

}
∥vk∥2ℓ2(ΩH)

≥ (1− δ)∥vk∥2ℓ2(ΩH).

Therefore, by (3.30), we have

∥vk∥2ℓ2(ΩH) ≤
∆t

(1− δ)T

k−1∑
l=0

∥vl∥2ℓ2(ΩH) +
2T

1− δ

k−1∑
l=0

∆t∥ϕl∥2ℓ2(Ω).

By applying Gronwall’s lemma into the inequality, for all k = 0, 1, . . . ,K, we have

∥vk∥2ℓ2(ΩH) ≤
2e1/(1−δ)T

1− δ

k−1∑
l=0

∆t∥ϕl∥2ℓ2(Ω).

Therefore we obtain

∥v∥ℓ∞([0,T ];ℓ2(ΩH)) ≤

√
e1/(1−δ)

1− δ
T ∥ϕ∥ℓ∞([0,T );ℓ2(Ω))

Consequently, (3.27) holds.

Finally, using the lemma above, we prove Theorem 3.7.
Proof of Theorem 3.7. e : XN,H × IK → R and R : XN,H × (IK \ {tK}) → R are defined by

eki := ũki − Uk
i ,

Rk
i := D∆tũ

k
i + Lhũ

k+θ
i − θ

(
∂tũ

k+1
i − κ∆ũk+1

i

)
− (1− θ)

(
∂tũ

k
i − κ∆ũki

)
,

respectively. By (3.1) and (3.2), we findD∆te
k
i + Lhe

k+θ
i = Rk

i , i ∈ ΛΩ, k = 0, 1, . . . ,K − 1,
eki = 0, i ∈ ΛΓ∪ΓH

, k = 1, 2, . . . ,K,
e0i = 0, i ∈ ΛΩH

.

By Lemma 3.8, for k = 1, 2, . . . ,K, we have

∥e∥ℓ∞([0,T ];ℓ2(ΩH)) ≤ c ∥R∥ℓ∞([0,T );ℓ2(Ω)).

Therefore, by (3.19) and (3.20), we obtain (3.24) and (3.25). □



Chapter 4

Numerical results

The purpose of this chapter is to confirm theoretical results obtained in previous chapters
numerically. After preparations of particle distributions, Section 4.1 shows some numerical
results corresponding to the truncation error estimates of the approximate operators shown
in Section 1.4 and confirm the convergence rates for some weight functions of SPH and un-
conventional ones. Section 4.2 presents some numerical results corresponding to the error
estimates of the generalized particle method for the Poisson equation mentioned in Section
2.2 and confirm the convergence rates. Section 4.3 gives some numerical results corresponding
to the error estimates of the generalized particle method for the heat equation mentioned in
Section 3.3 and confirm the convergence rates and the stability conditions with respect to the
time step.

In this chapter, we set particle distributions as follows: Set Ω = (0, 1)2 and H = 0.1. Let
G∆x be a grid distribution with size ∆x defined by

G∆x := {(i∆x, j∆x) ∈ ΩH ; i, j ∈ Z}.

We set XN,H by a distribution constructed to disturb G∆x at random:

XN,H = {((i+ η
(1)
ij )∆x, (j + η

(2)
ij )∆x) ∈ ΩH ; i, j ∈ Z}.

Here η
(n)
ij (i, j ∈ Z, n = 1, 2) are random numbers in (−0.25, 0.25). Then we have N ≃ ∆x−2

and 1.4∆x ≤ rc ≤ 1.8∆x. Figure 4.1 shows a particle distribution with ∆x = 2−5.
We will state how to give a grid size ∆x, a weight function w, an influence radius h, and

particle volume Vi in each section.

4.1 Truncation errors

We compute truncation error for two cases of functions v as follows:

Case 1 : v(x, y) = (x− 0.5)4 + (y − 0.5)4,

Case 2 : v(x, y) = sin(2π(x+ y)).
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1.11.00.0-0.1

Figure 4.1: A particle distribution XN,H with ∆x = 2−5 (N = 1, 521). A gray area shows Ω.

4.1.1 Interpolants

We compute truncation errors of interpolants. First, we consider three weight functions: the
cubic B-spline

wCB(r) :=
40

7π


1− 6r2 + 6r3, 0 ≤ r <

1

2
,

2(1− r)2,
1

2
≤ r < 1,

0, r ≥ 1

and the quintic B-spline

wQB(r) :=
63

578π



(3− 3r)5 + 6(2− 3r)5 + 15(1− 3r)5, 0 ≤ r <
1

3
,

(3− 3r)5 + 6(2− 3r)5,
1

3
≤ r <

2

3
,

(3− 3r)5,
2

3
≤ r < 1,

0, r ≥ 1

used in SPH [38] and a quadratic spike function defined by

wQS(r) :=
6

π

{
(1− r)2, 0 ≤ r < 1,

0, r ≥ 1.
(4.1)

These weight functions satisfy Hypothesis 1.1 with order k = 1. Figure 4.2 shows the graph
of weight functions.

Set ∆x by 2−5, 2−6, . . . , 2−11. For ∆x, set h by h = {(3.13 × 2−10)∆x}1/3. Set particle
volumes by Vi = Ṽi (i = 1, 2, . . . , N). Under the settings above, Theorem 1.11 is valid with
O(h2).



4.1. Truncation errors 49

2.0

0.0 1.0

Quadratic spike

Cubic B-spline

Quintic B-spline

0.80.60.40.2
0.0

0.5

1.0

1.5

2.5

w(r)

r

Figure 4.2: The graph of weight functions: the cubic B-spline, the quintic B-spline, and the
quadratic spike function.

Figure 4.3 shows graphs of the relative errors

∥v −Πhv∥ℓ∞(Ω)

∥v∥ℓ∞(Ω)

versus the influence radius h. The slopes of triangles show the theoretical convergence rates
derived from Theorem 1.11. Table 4.1 shows numerical convergence rates obtained from the
slopes of the relative errors between ∆x = 2−10 and 2−11. Figure 4.3 and Table 4.1 show that
the numerical convergence rates agree well with theoretical ones.
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Figure 4.3: The graphs of the relative errors of interpolants versus h.

Next, we consider a cubic spike function defined by

w(r) :=
5

π

(1− r)2(4− 7r), 0 ≤ r < 1,

0, r ≥ 1,
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Table 4.1: Numerical convergence rates of interpolants obtained from ∆x = 2−10 and 2−11 in
Figure 4.3.

Weight function Case 1 Case 2

Quadratic spike 1.93 2.00
Cubic B-spline 1.91 2.01
Quintic B-spline 1.91 2.02

in addition of the previous weight functions. The cubic spike function satisfies Hypothesis 1.1
with order k = 3. Figure 4.4 shows the graph of the quadratic spike function and the cubic
spike function.

7.0

Quadratic spike

Cubic spike

w(r)

6.0

5.0

4.0

3.0

2.0

1.0

0.0
1.00.80.60.40.2 r

Figure 4.4: The graphs of the weight functions: the quadratic spike and the cubic spike.

Set ∆x by 2−5, 2−6, . . . , 2−12. For ∆x, set h by h = {(3.13 × 2−10)∆x}1/5. Set particle
volumes by Vi = Ṽi (i = 1, 2, . . . , N). Under the settings above, Theorem 1.11 is valid with
O(h4) in case of the cubic spike function (4.1) and with O(h2) in case of the other functions.

Figure 4.5 shows graphs of the relative errors 4.1.1 versus the influence radius h. The
slopes of triangles show the theoretical convergence rates derived from Theorem 1.11. Table
4.2 shows numerical convergence rates obtained from the slopes of the relative errors between
∆x = 2−11 and 2−12. Figure 4.5 and Table 4.2 show that the numerical convergence rates
agree well with theoretical ones.

Table 4.2: Numerical convergence rates of interpolants obtained from ∆x = 2−11 and 2−12 in
Figure 4.5.

Weight function Case 1 Case 2

Cubic B-spline 2.00 2.00
Quintic B-spline 2.00 2.00
Quadratic spike 2.00 2.00
Cubic spike 4.00 4.26



4.1. Truncation errors 51

Case 1

10-6

10-4

100

Re
la

tiv
e 

er
ro

r 10-2

10-2 10-1

h

10-5

10-3

10-1

1

2

Cubic B-spline
Quintic B-spline
Quadratic spike
Cubic spike

1

4

Case 2

10-7

Re
la

tiv
e 

er
ro

r

10-2 10-1

h

Cubic B-spline
Quintic B-spline
Quadratic spike
Cubic spike

10-4

100

10-2

10-5

10-3

10-1

10-6

1

2

1

4

Figure 4.5: The graphs of the relative errors of interpolants versus h.

4.1.2 Approximate gradient and Laplace operators

We compute truncation errors of approximate differential operators. We consider the following
weight functions: the quartic polynomial

wQP(r) :=
60

2π

{
r2(1− r)2, 0 ≤ r < 1,

0, r ≥ 1,

the piecewise cubic polynomial

wPCP(r) := −r
2

d

dr
wCB(r), r ∈ R+

0 ,

and the piecewise quintic polynomial

wPQP(r) := −r
2

d

dr
wQB(r), r ∈ R+

0 ,

The approximate differential operators using the quartic polynomial, the piecewise cubic
polynomial, and the piecewise quintic polynomial agree with the approximate differential
operators in SPH using the bell-shaped function, the cubic B-spline, and the quintic B-
spline [38], respectively; see Appendix A.1. Set ∆x by 2−5, 2−6, . . . , 2−11. For ∆x, set h by
h = {(3.14 × 2−10)∆x}1/4. Set particle volumes by Vi = Ṽi (i = 1, 2, . . . , N). Under the
settings above, Theorem 1.13 and Theorem 1.15 are valid with O(h2).

Figure 4.6 shows graphs of the relative errors

∥∇v −∇hv∥[ℓ∞(Ω)]2

∥∇v∥[ℓ∞(Ω)]2

versus the influence radius h and Figure 4.7 shows graphs of the relative errors

∥∆v −∆hv∥ℓ∞(Ω)

∥∆v∥ℓ∞(Ω)
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versus the influence radius h. The slopes of triangles show the theoretical convergence rates
derived from Theorem 1.13 and Theorem 1.15. Table 4.3 shows numerical convergence rates
obtained from the slopes of the relative errors between ∆x = 2−10 and 2−11. Figures 4.6–4.7
and Table 4.3 show that the numerical convergence rates agree well with theoretical ones.
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Figure 4.6: The graphs of the relative errors of approximate gradient operators versus h.
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Figure 4.7: The graphs of the relative errors of approximate Laplace operators versus h.
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Table 4.3: Numerical convergence rates of approximate gradient operators and approximate
Laplace operators obtained from ∆x = 2−10 and 2−11 in Figures 4.6–4.7.

gradient operators Laplace operators
Weight function Case 1 Case 2 Case 1 Case 2

Quartic polynomial 2.00 2.16 2.00 1.93
2.00 2.25 2.00 1.93

Piecewise quintic polynomial 2.00 2.52 2.00 1.93

4.2 Poisson equation

Set a manufactured solution of Poisson equation (2.1) by

u(x, y) = sin(2π(x+ y)), (x, y) ∈ Ω.

Set g̃ by g̃(x, y) = sin(2π(x+ y)), (x, y) ∈ Γ ∪ ΓH .
We consider the weight functions wbell, wcubic, and wquintic. Set ∆x by 2−5, 2−6, . . . , 2−9.

For ∆x, set h by h = {(2.64×2−10)∆x}1/4. Set particle volumes by (A.10). Under the setting
above, Theorem 2.1 is valid with O(h2).

Figure 4.8 shows graphs of the relative errors

∥ũ− U∥ℓ∞(Ω)

∥ũ∥ℓ∞(Ω)

versus the influence radius h. The slopes of triangles show the theoretical convergence rates
derived from Theorem 2.1. Table 4.4 shows numerical convergence rates obtained from the
slopes of the relative errors between ∆x = 2−8 and 2−9. Figure 4.8 and Table 4.4 show that
the numerical convergence rates agree well with theoretical ones.

Table 4.4: Numerical convergence rates of the discrete Poisson equation.
Weight function convergence rates

Quartic polynomial 1.95
Piecewise cubic polynomial 1.99
Piecewise quintic polynomial 2.00

4.3 Heat equation

Set T = 0.1 and κ = 0.5. Set a manufactured solution of the heat equation (2.1) by

u(x, y, t) = exp(−2κπ2t) sin(πx) sin(πy), (x, y) ∈ Ω, t ∈ (0, T ).

Set g̃ and ã by

g̃(x, y, t) = exp(−2κπ2t) sin(πx) sin(πy), (x, y) ∈ Γ ∪ ΓH , t ∈ (0, T ),

ã(x, y, t) = sin(πx) sin(πy), (x, y) ∈ ΩH ,
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Figure 4.8: The graphs of the relative errors of the discrete Poisson equation versus h.

respectively. We consider the weight functions wbell, wcubic, and wquintic. Set particle volumes
by (A.10).

First, setting ∆t to satisfy (3.23), we confirm convergence of errors in case that θ = 0, 1/2,
and 1. Set ∆x = 2−5, 2−6, . . . , 2−8, h = {(2.64 × 2−10)∆x}1/4, and ∆t = 0.0025h2. Figure
4.9 shows graphs of the relative errors

∥ũ− U∥ℓ∞([0,T ];ℓ2(ΩH))

∥ũ∥ℓ∞([0,T ];ℓ2(ΩH))

(4.2)

versus the influence radius h in case that θ = 0, 1/2, and 1. The slopes of triangles show
the theoretical convergence rates derived from Theorem 3.7. Table 4.5 shows numerical con-
vergence rates obtained from the slopes of the relative errors between ∆x = 2−7 and 2−8.
Though the convergences of errors are obtained, the numerical rates are not agree with ones
of Theorem 3.7. It is conjectured that we can not enough compute asymptotic estimates for
the limit of calculation environments.

Table 4.5: Numerical convergence rates of the discrete heat equation in case that ∆t =
0.0025h2.

Weight function θ = 0 θ = 1/2 θ = 1

Quartic polynomial 6.63 4.92 4.62
Piecewise cubic polynomial 6.64 5.43 5.66
Piecewise quintic polynomial 6.67 6.81 7.17

Next, in order to confirm unconditional stabilities when θ ∈ [1/2, 1], we compute under a
sufficiently large time step ∆t = 0.5h2. Set ∆x = 2−5, 2−6, . . . , 2−9, h = {(2.64×2−10)∆x}1/4,
and θ = 0, 1/2, 1.
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Figure 4.9: The graphs of the relative errors of the discrete heat equation versus h in case
that ∆t = 0.0025h2 and θ = 0, 1/2, 1.

Figure 4.10 shows graphs of the relative errors (4.2) versus the influence radius h in case
that θ = 1/2 and 1. The slopes of triangles show the theoretical convergence rates derived
from Theorem 3.7. Table 4.6 shows numerical convergence rates obtained from the slopes
of the relative errors between ∆x = 2−8 and 2−9. From Table 4.6, we can confirm that the
stability conditions are valid when θ = 0. Moreover, Figure 4.6 and Table 4.6 show, in case
that θ = 1, the numerical convergence rates agree with ones of Theorem 3.7. On the other
hand, in case that θ = 1/2, the numerical convergence rates do not agree with ones of Theorem
3.7, although the errors convergence. In case that θ = 1/2, it is also conjectured that we can
not enough compute asymptotic estimates for the limit of calculation environments.

Table 4.6: Numerical convergence rates of the discrete heat equation in case that ∆t = 0.5h2

Weight function θ = 0 θ = 1/2 θ = 1

Quartic polynomial −281 4.31 1.94
Piecewise cubic polynomial −314 4.39 2.02
Piecewise quintic polynomial −416 4.55 2.06

Finally, setting ∆t by a first order of h, we confirm differences of convergence rates in case
that θ = 1/2 and 1. Set ∆x = 2−5, 2−6, . . . , 2−9, h = {(2.64 × 2−10)∆x}1/4, and ∆t = 0.5h.
Figure 4.11 shows graphs of the relative errors (4.2) versus the influence radius h in case
that θ = 1/2 and 1. The slopes of triangles show the theoretical convergence rates derived
from Theorem 3.7. Table 4.7 shows numerical convergence rates obtained from the slopes of
the relative errors between ∆x = 2−8 and 2−9. Figure 4.11 and Table 4.7 shows that the
numerical convergence rates agree with theoretical ones.
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Figure 4.10: The graphs of the relative errors of the discrete heat equation versus h in case
that ∆t = 0.5h2 and θ = 1/2, 1.

Table 4.7: Numerical convergence rates of the discrete heat equation in case that ∆t = 0.5h.
Weight function θ = 1/2 θ = 1

Quartic polynomial 2.01 0.84
Piecewise cubic polynomial 2.02 0.84
Piecewise quintic polynomial 2.03 0.83
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Figure 4.11: The graphs of the relative errors of the discrete heat equation versus h in case
that ∆t = 0.5h and θ = 1/2, 1.



Conclusion

A generalized particle method has been introduced for discretizing partial differential equa-
tions described by strong formulations and error estimates of the generalized particle method
have been established for the Poisson and heat equations.

At first we have introduced the generalized particle method and have made preparations
for subsequent analysis. The generalized particle method have been defined as a class of par-
ticle methods that discretize the partial differential equations that can describe conventional
particle methods such as SPH and MPS. For discrete parameters of the generalized particle
method, we have introduced a regularity, hypotheses of weight functions, and a connectivity
condition. The regularity has been a condition of a family of particle distribution, particle
volumes, and influence radii defined by a ratio among the influence radius and two indicators
of the particle distributions and the particle volumes. The one of the indicators, which is
called a covering radius, has been defined by a radius of circles whose centers are particles
when an union of the circles just covers the spatial domain. The another indicator, which
is called a Voronoi deviation, has been defined by a weighted deviation between the particle
volume and Voronoi volumes. Also we have been defined a regular order of the regularity by
this ratio. The hypotheses of weight functions have been given by four conditions; the first
condition is that an integration of the weight functions multiplied by polynomials vanishes;
the second and third conditions are properties around the origin; and the last condition is a
positivity within the support of the weight function. In the first condition, we call the max-
imum degree of polynomial an order of weight function. The connectivity condition, which
is called h-connectivity condition, has been defined by a property of a graph with respect to
the particle distributions and the influence radius h. After the introduction of the conditions
of the parameters, we have obtained truncation errors of the interpolant and the approx-
imate differential operators. Under the regularity and the some hypotheses of the weight
functions, we have established the truncation error estimates with the maximum norm that
are O(hmin{k+1,m−1}) in case of the interpolant and the approximate gradient operator and
O(hmin{k+1,m−2}) in case of the approximate Laplace operator for the regular order m and
the order of weight function k.

Next we have introduced the Poisson equation discretized by the generalized particle
method and have proved its error estimates. By using the connectivity condition, we have
shown the unique solvability and the discrete maximum principle of the discrete Poisson
equation. Utilizing the truncation error estimates and the discrete maximum principle, we
have established the stability and the error estimates with a discrete L∞ norm that are
O(hmin{2,m−2}).

Furthermore we have introduced the heat equation discretized by the generalized particle
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method in space and by the θ-method in time and have established its error estimates. We
first have proved the unique solvability and the discrete maximum principle of the discrete
heat equation. Utilizing the truncation error estimates and the discrete maximum principle,
we have established the stability with a condition of the time step in case of θ ∈ [0, 1) and
without in case of θ = 1 (backward Euler method), where θ is a discretize parameter of the
θ-method. Under the conditions of the stability, we have obtained the error estimates with
the discrete L∞ norm in space and time that are O(∆t + hmin{2,m−2}) in case of θ ̸= 1/2
and O(∆t2 + hmin{2,m−2}) in case that θ = 1/2 (Crank-Nicolson method). Furthermore, by
introducing a discrete L2 norm in space, we have obtained a stability with a condition of the
time step in case of θ ∈ [0, 1/2) and without in case of θ ∈ [1/2, 1]. Then we have established
the error estimates with the discrete L2 norm in space and the discrete L∞ norm in time,
which are same orders of the error estimates with the discrete L∞ norm.

Finally, we have shown some numerical results corresponding to the above results. Under
each condition derived from the theorems, we have confirmed that the errors have converged
and the convergence rates almost agree with theoretical ones.

In future work, as aiming to further establish mathematical framework of the generalized
particle method, we will investigate error estimates of the generalized particle method for the
partial differential equations including convections such as the convection-diffusion equation
and Navier-Stokes equations. Moreover, by utilizing knowledge obtained from numerical anal-
ysis, we will try to solve some problems in practical computations, for example, redistribution
methods of the particles and finding appropriate weight functions.
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Appendix A

Conventional particle methods

This appendix introduces conventional particle methods: Smoothed Particle Hydrodynamics
(in Section A.1) and Moving Particle Semi-implicit (in Section A.2) and shows numerical
analysis of these particle methods by utilizing the theoretical results in this thesis.

A.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a particle method developed for computing as-
trophysics in 1977 [26, 40]. Later on, SPH has been used for various problems, including the
fluid dynamics [42, 43]. In SPH, various types of approximate operators have been proposed
[12, 26, 38]. In this section, we introduce approximate operators used in SPH for incompress-
ible flow problems (Incompressible SPH) [3, 17, 53].

Let us define wS : R+
0 → R as a weight function of SPH (also called a smoothing function).

The weight functions satisfying the following conditions are often used [19, 25].

wS(r)

{
> 0, 0 ≤ r < 1,

= 0, r ≥ 1,
(A.1)∫

Rd

wS(|x|)dx = 1, (A.2)

wS ∈ C2(R+
0 ), (A.3)

lim
r↓0

∣∣∣∣1r ddrwS(r)

∣∣∣∣ <∞, (A.4)

d

dr
wS(r) < 0, 0 < r < 1. (A.5)

For example, the bell-shaped function, the cubic B-spline, the quartic B-spline, and the quintic
B-spline [37, 38] satisfy the conditions. For the weight function wS and the influence radius
h (also called a smoothing length), set wS

h : R+
0 → R by

wS
h(r) :=

1

hd
wS
( r
h

)
.
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Then, in SPH, the interpolant ΠS
h : C(ΩH) → C(ΩH), the approximate gradient operator

∇S
h : C(ΩH) → C(ΩH), and the approximate Laplace operator ∆S

h : C(ΩH) → C(ΩH) are
defined by

ΠS
hv(x) :=

N∑
i=1

Viv(xi)w
S
h(|x− xi|), (A.6)

∇S
hv(x) :=

N∑
i=1

Vi {v(xi)− v(x)}∇wS
h(|x− xi|), (A.7)

∆S
hv(x) := 2

∑
i∈Λ∗

x

Vi
v(x)− v(xi)

|x− xi|
x− xi
|x− xi|

· ∇wS
h(|x− xi|), (A.8)

respectively.

Remark A.1. The approximate operators of the generalized particle method (1.2), (1.3),
(1.4) can describe ones of SPH (A.6), (A.7), (A.8) by substituting the weight functions of the
generalized particle method. For example, by substituting w = wS, it holds that Πh = ΠS

h.
Moreover, by substituting

w(r) = −r
d

d

dr
wS(r), r ∈ R+

0 , (A.9)

it holds that ∇h = ∇S
h and ∆h = ∆S

h.

Remark A.2. In SPH, VN,H is well used such as

VN,H =

{
Vi; Vi =

meas(ΩH)

N
, i = 1, 2, . . . , N

}
(A.10)

or

VN,H =

{
Vi; Vi =

1∑N
j=1wh(|xi − xj |)

, i = 1, 2, . . . , N

}
. (A.11)

(A.10) obviously satisfies (1.1). On the other hand, (A.11) approximately satisfies (1.1).

Corollary A.3. Suppose that VN,H satisfies (1.1), {(XN,H , VN,H , h)}h↓0 is a regular family,
and wS satisfies (A.1)–(A.3). Then, for the interpolant of SPH (A.6), truncation error esti-
mates as same as Theorem 1.11 are obtained.

Proof. It is sufficient to prove that wS satisfies conditions of Theorem 1.11. Since wS satisfies
(A.1)–(A.3), we have wS ∈W . Moreover, by Proposition 1.4, wS satisfies Hypothesis 1.1 with
at least k = 1. Therefore the corollary is proved.

Corollary A.4. Suppose that VN,H satisfies (1.1), {(XN,H , VN,H , h)}h↓0 is a regular family,
and wS satisfies (A.1)–(A.4). Then, for the approximate gradient operator (A.7) and the
approximate Laplace operator (A.8), truncation error estimates as same as Theorem 1.13 and
Theorem 1.15 are valid.
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Proof. The weight function w is set by (A.9). It is sufficient to show that w satisfies conditions
of Theorem 1.13 and Theorem 1.15. By (A.1), (A.2), and using the integration by parts, we
have ∫

Rd

w(|x|)dx = −1

d

∫
Rd

|x| d
dr
wS(|x|)dx

= −1

d

∫
Rd

x · ∇wS(|x|)dx

=
1

d

∫
Rd

(∇ · x)wS(|x|)dx

=

∫
Rd

wS(|x|)dx

= 1.

Therefore we find w ∈W . By (A.3) and (A.4), w satisfies Hypothesis 1.2 and Hypothesis 1.3.
Moreover, by Proposition 1.4, w satisfies Hypothesis 1.1 with at least k = 1. Therefore the
corollary is true.

Corollary A.5. Suppose that VN,H satisfies (1.1), {(XN,H , VN,H , h)}h↓0 is a regular family
with order m (> 2), and wS satisfies (A.1)–(A.5). Then, for Poisson equation discretized by
the approximate Laplace operator (A.8), error estimates as same as Theorem 2.1 are derived.

Moreover, for the heat equation discretized by the approximate Laplace operator (A.8) in
space, error estimates as same as Theorem 3.7 are obtained under appropriate conditions with
respect to the time step.

Proof. The weight function w is set by (A.9). It is sufficient to prove that w satisfies conditions
of Theorem 2.1 and Theorem 3.7. By (A.5), w satisfies Hypothesis 1.4. Therefore, by Corollary
A.4, w satisfies assumptions of Theorem 2.1 and Theorem 3.7. Consequently the corollary is
obtained.

A.2 Moving Particle Semi-implicit

Moving Particle Semi-implicit (MPS) is a particle method developed for computing incom-
pressible flow in 1996 [33] and has been applied into various problems as same as SPH. Now
we introduce approximate differential operators of MPS. We define a weight function of MPS
by wM : R+

0 → R satisfying

wM(r)

{
> 0, 0 < r < 1,

= 0, r ≥ 1.
(A.12)

For example, the following unbounded weight function [19, 25] is often used.

wM(r) =


1

r
− 1, 0 < r < 1,

0, r = 0, r ≥ 1.
(A.13)
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For the weight function wM and the influence radius h, set wM
h : R+

0 → R by

wM
h (r) :=

1

hd
wM

( r
h

)
.

Then, in MPS, the approximate gradient operator ∇M
h : C(ΩH) → C(ΩH) and the approxi-

mate Laplace operator ∆M
h : C(ΩH) → C(ΩH) are defined by

∇M
h v(x) :=

d

n0

∑
i∈Λ∗

x

v(x)− v(xi)

|x− xi|
x− xi
|x− xi|

wM
h (|x− xi|), (A.14)

∆M
h v(x) := −2d

λ0

∑
i∈Λ∗

x

{v(x)− v(xi)}wM
h (|x− xi|), (A.15)

respectively, where an interpolant is not introduced in MPS. Here n0 and λ0 are regularized
parameters for each operator. For example, by setting a representative particle xi′ ∈ XN,H ,
these regularized parameters are given by

n0 =

N∑
i=1

wM
h (|xi′ − xi|),

λ0 =

N∑
i=1

|xi′ − xi|2wM
h (|xi′ − xi|).

Remark A.6. The approximate differential operators of the generalized particle method (1.3),
(1.4) can describe ones of MPS (A.14), (A.15) by substituting the particle volumes and the
weight functions. For example, substituting VN,H by (A.10) and w by

w(r) =

{∫
Rd

wM(|x|)dx
}−1

wM(r), r ∈ R+
0 , (A.16)

we have ∇h that is equivalent to ∇M
h with n0 given by

n0 =

(
meas(ΩH)

N

)−1 ∫
Rd

wM(|x|)dx. (A.17)

Also, by substituting VN,H by (A.10) and w by

w(r) =

{∫
Rd

|x|2wM(|x|)dx
}−1

r2wM(r), r ∈ R+
0 , (A.18)

we get ∆h that equals ∆M
h with λ0 given by

λ0 =

(
meas(ΩH)

N

)−1 ∫
Rd

|x|2wM(|x|)dx. (A.19)

Corollary A.7. Set VN,H by (A.10) and n0 by (A.17). Suppose that {(XN,H , VN,H , h)}h↓0 is a
regular family and wM satisfies wM ∈ C1(R+

0 ) and Hypothesis 1.2. Then, for the approximate
gradient operator of MPS (A.14), truncation error estimates as same as Theorem 1.13 with
k = 1 are obtained.
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Proof. The weight function w is set by (A.16). It is sufficient to prove that w satisfies con-
ditions of Theorem 1.13. Since wM satisfies wM ∈ C1(R+

0 ) and Hypothesis 1.2, w satisfies
w ∈W and Hypothesis 1.2. Moreover, by Lemma 1.5, w satisfies Hypothesis 1.1 with k = 1.
Therefore the corollary is true.

Corollary A.8. Set VN,H by (A.10) and λ0 by (A.19). Suppose that {(XN,H , VN,H , h)}h↓0
is a regular family and wM satisfies wM ∈ C1(R+

0 ). Therefore, for the approximate Laplace
operator of MPS (A.15), truncation error estimates as same as Theorem 1.15 with k = 1 are
obtained.

Proof. The weight function w is set by (A.18). It is sufficient to prove that w satisfies condi-
tions of Theorem 1.15. Since wM ∈ C1(R+

0 ), w satisfies w ∈W and Hypothesis 1.3. Moreover,
by Lemma 1.5, w satisfies Hypothesis 1.1 with k = 1. Therefore the corollary is proved.

Corollary A.9. Set VN,H by (A.10) and λ0 by (A.19). Suppose that {(XN,H , VN,H , h)}h↓0 is a
regular family with order m (> 2) and wM satisfies wM ∈ C(R+

0 ). Then, for Poisson equation
discretized by the approximate Laplace operator (A.15), error estimates as same as Theorem
2.1 are derived.

Moreover, for the heat equation discretized by the approximate Laplace operator (A.15) in
space, error estimates as same as Theorem 3.7 are established under appropriate conditions
with respect to the time step.

Proof. The weight function w is set by (A.18). It is sufficient to prove that w satisfies condi-
tions of Theorem 2.1 and Theorem 3.7. By (A.12), w satisfies Hypothesis 1.4. Therefore, by
Corollary A.8, w satisfies conditions Theorem 2.1 and Theorem 3.7. Therefore the corollary
is obtained.

Remark A.10. In case of using (A.13) as the weight function, since the weight function does
not belong to C(R+

0 ), the corollaries above are not obtained.
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