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Abstract. The thesis consists of two chapters. In Chapter 1, we give a for-
mula for the trivializing numbers of all minimal diagrams of positive 2-bridge
knots and study the relationship between the trivializing number and the un-

knotting number for such knots. In particular, we show that for a certain class
of positive 2-bridge knots, the trivializing number equals twice the unknotting
number. We also give a related result for a certain class of positive pretzel
knots. In Chapter 2, we show that a link which has a positive and almost

alternating diagram is alternating. We also show that the Montesinos links
with positive standard diagrams admit diagrams which turn into a positive
and alternating diagram by one crossing change.
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Preface

The diagrams of knots and links are fundamental tools and important objects of
study in Knot Theory. In this thesis, we focus on positive links and their diagrams.

In Chapter 1, we determine the trivializing numbers of all the standard dia-
grams of positive 2-bridge knots. The trivializing number of a diagram is defined
as follows. First, we consider the associated projection, which has several double
points without over/under information. We call such double points pre-crossings.
On the other hand, the double points of a diagram have over/under information ,
and such double points are called crossings. Hanaki [5] introduced a new object,
called a pseudo-diagram, which is a plane curve each of whose double points is either
a pre-crossing or a crossing. Such a pseudo-diagram is said to be trivial if every di-
agram obtained by assigning arbitrary over/under information to the pre-crossings
is a diagram of a trivial knot. Then, the trivializing number of a projection is
the minimum number of pre-crossings to which over/under information should be
assigned to get a trivial pseudo-diagram. The trivializing number of a diagram is
that of the associated projection. One of the motivations for studying the trivi-
alizing number is the existence of DNA-knots, which can be observed by electron
microscopes: the images do not have high resolution and often the over/under in-
formation of some double points is missing. Moreover, we give some results about
the relationship between the trivializing number and the unknotting number. In
fact, it is known that twice the unknotting number is smaller than or equal to the
trivializing number, and Hanaki [5] conjectures that the equality holds for positive
knots. We prove this conjecture affirmatively for some positive 2-bridge knots and
pretzel knots.

In Chapter 2, we consider positive and almost alternating links. In particular,
we consider their diagrams, and show that a link which has a positive and almost
alternating diagram is alternating. Furthermore, we introduce a notion of an “al-
most PA-link”. A diagram which is positive and alternating is called a PA-diagram
and a link which admits such a diagram is called a PA-link. A diagram which turns
into a PA-diagram by one crossing change is called an almost PA-diagram. A link
is an almost PA-link if it admits an almost PA-diagram but does not admit a PA-
diagram. Then, we show that Montesinos links with positive standard diagrams
are either PA-links or almost PA-links.

Throughout the thesis, we work in the PL category. All knots and links are
oriented, and all diagrams are considered on S2. Note that a knots consists of one
component, while a link consists of one or more components.

4



Contents

Acknowledgements 3

Preface 4

Chapter 1. Trivializing number of positive knots 6
1. Introduction 6
2. Preliminaries 6
3. Positive 2-bridge knots 7
4. Standard diagrams of positive 2-bridge knots 9
5. Main theorem 14
6. Trivializing number and unknotting number 24
7. Positive pretzel knots 26

Chapter 2. Diagrams of positive and almost alternating links 29
1. Introduction 29
2. Preliminaries 29
3. Positive and almost alternating diagrams 30
4. Montesinos links with positive standard diagrams 35

44

Bibliography 45

5



CHAPTER 1

Trivializing number of positive knots

1. Introduction

The trivializing number is a numerical invariant of knots, similar to the un-
knotting number, which measures certain complexity of a knot. In general, it is
known that the trivializing number is greater than or equal to twice the unknotting
number in general. Furthermore, Hanaki [5] has conjectured that the trivializing
number of a positive knot always coincides with twice the unknotting number. In
fact, Hanaki showed that for every positive knot K up to 10 crossings, the equality
tr(K) = 2u(K) holds, where tr(K) is the trivializing number of K and u(K) is
the unknotting number of K. Our result in this chapter will give a partial positive
answer to the conjecture.

Chapter 1 is organized as follows. In Section 2, we define the trivializing number
of a diagram and the trivializing number of a knot. In Section 3, we shortly review
the definitions and elementary properties of positive knots, 2-bridge knots, and
their diagrams. In Section 4, we determine the standard diagrams of positive 2-
bridge knots. In Section 5, we determine the trivializing numbers of standard (and
hence, minimal) diagrams of positive 2-bridge knots. In Section 6, we show that
for some positive 2-bridge knots K, the equality tr(K) = 2u(K) holds. In Section
7, we consider positive pretzel knots, and show that the equality above also holds
for some of them.

2. Preliminaries

A projection of a knot K in R3 is a regular projection image of K in R2∪{∞} =
S2. A diagram of K is a projection endowed with over/under information for its
double points. A crossing is a double point with over/under information, and a
pre-crossing is a double point without over/under information. A pseudo-diagram
of K is a projection of K whose double points are either crossings or pre-crossings.
See Figure 1 for some examples.

A pseudo-diagram is said to be trivial if we always get a diagram of a trivial
knot after giving arbitrary over/under information to all the pre-crossings. An
example is given in Figure 2. It is known that we can change every projection into
a trivial pseudo-diagram by giving appropriate over/under information to some of
the pre-crossings.

The trivializing number has been defined by Hanaki [5] as follows.

Definition 1.2.1. The trivializing number of a projection P , denoted by tr(P ),
is the minimal number of pre-crossings of P which should be transformed into
crossings for getting a trivial pseudo-diagram.
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3. POSITIVE 2-BRIDGE KNOTS 7

projection diagram

pre-crossing crossing

pseudo-diagram

Figure 1. Projection, diagram, and pseudo-diagram

Figure 2. Example of a trivial pseudo-diagram

Definition 1.2.2. The trivializing number of a diagram D, denoted by tr(D), is
by definition the trivializing number of the associated projection which is obtained
from D by ignoring the over/under information.

For example, for the diagram D as shown in Figure 3, we get a trivial pseudo-
diagram by transforming two pre-crossings c1 and c2 of the associated projection
P into crossings. Furthermore, it can be easily checked that we cannot get a
trivial pseudo-diagram by transforming only one pre-crossing of P into a crossing.
Therefore, we have tr(D) = tr(P ) = 2.

Definition 1.2.3. The trivializing number of a knot K, denoted by tr(K), is the
minimum of tr(D), where the minimum is taken over all diagrams D of K.

3. Positive 2-bridge knots

In general, the trivializing number of a knot is not always realized by its minimal
diagram (a diagram that has the minimum number of crossings); in fact, we have
counter examples (see [5]). Moreover, even for a given diagram, determining its
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D P

tr ( )D tr ( )= 2=P

c c1 2

Figure 3. An operation for getting a trivial pseudo-diagram

Figure 4. Sign of a crossing and an example of a positive diagram

trivializing number is not so easy in general. In Section 5, we give the trivializing
numbers of all minimal diagrams of positive 2-bridge knots.

Let D be an oriented diagram of a link. To each of its crossings, we associate
sign + or − as shown in Figure 4 (1). If all the crossings in D have the same sign
+ (resp. −), then we say that D is a positive diagram (resp. negative diagram).

When D is a positive diagram, the mirror image of D, which is obtained by
changing the over/under information of all crossings of D and is denoted by D∗, is
a negative diagram. Since D and D∗ correspond to the same projection, we have
tr(D) = tr(D∗). A positive link is a link which has a positive diagram.

For a finite sequence a1, a2, . . . , am of integers, let us consider the link diagram
D(a1, a2, . . . , am) as shown in Figure 5. In the figure, a rectangle in the upper
row (resp. lower row), depicted by double lines (resp. simple lines), with integer
a represents a left hand (resp. right hand) horizontal half-twists if a ≥ 0, and |a|
right hand (resp. left hand) horizontal half-twists if a < 0. See Figure 6 for some
explicit examples. We call a rectangle in the upper row (resp. lower row) an upper
rectangle (resp. a lower rectangle) for short. A knot (or link) which is represented
by such a diagram is called a 2-bridge knot (resp. 2-bridge link).

Note that in the case of links, the signs of crosings in D may change if the
orientation of a component is reversed, while in the case of knots, they do not
change even if the orientation is reversed. Therefore, we choose an orientation and
fix it for the orientation of D.

If ai > 0 for all i with 1 ≤ i ≤ m or if ai < 0 for all i, then the diagram
D(a1, a2, . . . , am) is reduced and alternating, and hence is a minimal diagram (see
[10]). We call such a diagram a standard diagram of the 2-bridge knot or link.

It is known that every 2-bridge link has a unique standard diagram (see, for
example, [10]). Therefore, a positive (resp. negative) 2-bridge link is a positive
(resp. negative) alternating link. A positive alternating link may not have a diagram
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Figure 5. 2-bridge link diagrams

Figure 6. Examples of 2-bridge knot diagrams

which is both positive and alternating in general. However, Nakamura has shown
the following.

Theorem 1.3.1 (Nakamura [11]). A reduced alternating diagram of a positive
alternating link is positive.

By the theorem above, the standard diagram of a positive (or negative) 2-bridge
link is necessarily positive (resp. negative).

In order to study the trivializing number of the standard diagramD of a positive
or negative 2-bridge knot, by taking the mirror image, we may assume ai > 0 for
all i. Note that a positive knot may turn into a negative one by this operation.

4. Standard diagrams of positive 2-bridge knots

In this section, we determine the standard diagrams of positive 2-bridge knots.

Proposition 1.4.1. Let D = D(a1, a2, . . . , am) be a standard diagram of a 2-bridge
link such that ai > 0 for all i with 1 ≤ i ≤ m. Then D is a positive knot diagram
or a negative knot diagram if and only if one of the following holds.

(1) When m is even, say m = 2n, we have either
(a1) a2i is even, 1 ≤ ∀i ≤ n− 1,
(a2) a2n is odd, and
(a3)

∑n
i=1 a2i−1 is even,

or
(b1) a1 is odd,
(b2) a2i−1 is even, 2 ≤ ∀i ≤ n, and
(b3)

∑n
i=1 a2i is even.

(2) When m is odd, say m = 2n+ 1, we have either
(c1) a2i−1 is even, 2 ≤ ∀i ≤ n,
(c2) a1 and a2n+1 are odd, and
(c3)

∑n
i=1 a2i is odd,
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upper row

lower row

odd odd even even

even or odd even or odd

(1) (2) (3) (4)

(5) (6)

Figure 7. Orientations of two arcs with positive crossings

lower row

upper row

even or oddeven or odd

oddodd even even

(1)

(3)

(2)

(4) (5) (6)

Figure 8. Orientations of two arcs with negative crossings

i iis even is odd

i is even or odd

( 1 ) ( 2 )

( 3 )

a

a

a

Figure 9. Symbolic conventions for depicting (ai)

or
(d1) a2i is even, 1 ≤ ∀i ≤ n, and

(d2)
∑n+1

i=1 a2i−1 is odd.

Let us consider a rectangle with integer ai > 0, as appearing in Figure 5,
which corresponds to ai left hand (resp. right hand) half-twists if it is in the upper
(resp. lower) row. In the following, such a rectangle will sometimes be denoted by
(ai). If its crossings all have the same sign +, then the orientation of the two arcs
are of a form as in Figure 7. If the crossings all have sign −, then they are of a
form as in Figure 8. Furthermore, we adopt the symbolic convention as depicted
in Figure 9.

These four forms are as shown in Figure 10 (a), (b), (c) and (d), up to orien-
tation.
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(a)

(b)

(c)

(d)

Figure 10. Four forms for D

Figure 11. Orientation of diagram D = D(a1, a2, . . . , am) with
m = 2n

Proof of Proposition 1.4.1. (1) Suppose that D is a positive or negative
knot diagram. We may assume that the orientation of the diagram is as depicted
in Figure 11, since it is a diagram of a knot.

When the crossings in (ai) with 1 ≤ i ≤ 2n all have the same sign +, the
orientations of the two arcs of (a2n) are as shown in Figure 12 (1) or (2). Then the
orientation of the diagram is as shown in Figure 12 (4). Since the orientations of
the arcs of (a2n−1) must be as shown in Figure 12 (3), the orientations of the arcs of
(a2n) must be as in Figure 12 (1). In particular, a2n is necessarily odd. Due to the
orientation of (a2n−1), we see that the orientations of the other (a2i−1), 1 ≤ i ≤ n,
are of the form as in Figure 12 (3). Furthermore, by chasing the oriented arcs, we
can determine the orientations of all arcs in the remaining rectangles. Hence, the
oriented diagram is as depicted in Figure 13.

Then, we see that a2i, 1 ≤ i ≤ n− 1, are all even. Since this is a knot diagram,
the oriented strand passing through x and then y in Figure 13 needs to pass through
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2n-1

2n

a

a

(1) (2) (3)

(4)

Figure 12. Orientations of arcs in rectangles

y

x

z

Figure 13. Orientations of arcs in D

z. Therefore,
∑n

i=1 a2i−1 must necessarily be even. This shows that the conditions
(a1), (a2) and (a3) are satisfied.

On the other hand, when the signs of crossings in (ai) are all −, by rotating the
diagram as shown in Figure 14 (1) on the plane by 180 degrees, we get the diagram
as in Figure 14 (2). Then, by isotoping the bottom arc on S2 = R ∪ {∞}, we get
the diagram as in Figure 14 (3). Then, by reversing the orientaitions of all arcs,
we get the diagram as in Figure 14 (4). Finally, by applying the crossing change to
all the crossings, we get the positive diagram as shown in Figure 14 (5), which is
of the form treated in the proof above. Consequently, we see that conditions (b1),
(b2) and (b3) are satisfied.

(2) Let us now consider the case with m = 2n + 1. We may assume that the
orientation of the diagram is as shown in Figure 15.

Let us first consider the case where all crossings in (ai) with 1 ≤ i ≤ 2n + 1,
have the same sign +. Since the orientations of the two arcs of (a2n+1) are as shown
in Figure 16 (1) or (2), the orientation of the diagram must be as in Figure 16 (4).
Furthermore, since the orientations of the arcs of (a2n) are as shown in Figure 16
(3), the orientations of the arcs of (a2n+1) must be as shown in Figure 16 (1). In
particular, a2n+1 is necessarily odd. Due to the orientation of (a2n), we see that
the orientations of the other (a2i), 1 ≤ i ≤ n − 1, are of the form as in Figure 16
(3).

Hence, the oriented diagram must be as depicted in Figure 17, since this is a
diagram of a knot. This shows that conditions (c1), (c2) and (c3) are satisfied.

If the signs of the crossings in (ai) are all negative, then the orientation of
(a2n+1) is as shown in Figure 18 (1). Therefore, the orientations of the other
(a2i+1), 1 ≤ i ≤ n− 1, must be of the same form as shown in Figure 18 (2). Thus
the diagram must be of the form as shown in Figure 18 (3), and we can easily see
that conditions (d1) and (d2) are satisfied.
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1
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( 2 )
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a
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a

a

a

a a

a

a

1

2

3

m

m-1

m-2

a

a

a

a a

a

a

a

a

aa

a

a

a a

a a

a

Figure 14. The transformation of D with all signs −

1

2

3

a

aaa

a

a m

m-1

m-2

Figure 15. Orientation of diagram D = D(a1, a2, . . . , am) with
m = 2n+ 1

Finally, we see easily that if D is of one of the four forms (a), (b), (c) and (d),
then D is a positive knot diagram or a negative knot diagram. This completes the
proof. �

In the following, we refer to the diagram as in Proposition 1.4.1 (1) (a1)–(a3)
as type A. Simillarly, we refer to the diagram as in (1) (b1)–(b3) as type A’, that
in (2) (c1)–(c3) as type B, and that in (2) (d1)–(d2) as type B’.
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2n+1

2n

a

a

(1) (2) (3)

(4)

Figure 16. Orientations of arcs in rectangles

Figure 17. Orientations of arcs in D = D(a1, a2, . . . , am) with
m = 2n+ 1

2n+1

2n

2n-1 a

a

a
(1) (2)

(3)

Figure 18. Orientations of arcs in D = D(a1, a2, . . . , am) with
m = 2n+ 1

5. Main theorem

For determining the trivializing number of a diagram, we can use chord dia-
grams. Let P be a projection of a knot with n pre-crossings. We may regard P as
the image of an immersion φ : S1 → S2 with normal crossings, and each double
point corresponds to a pre-crossing of P . A chord diagram of P , denoted by CDP ,
is a circle with n chords, depicted by dotted line segments or solid line segments,
where the pair of points in the pre-image by φ of each pre-crossing are connected
by a chord (see [5]). Furthermore, a chord diagram of a diagram D is by definition
the chord diagram of the associated projection which is obtained from D. We give
an example of the chord diagram of a knot projection in Figure 19.

A chord diagram is said to be parallel if the chords have no intersection. For
example, the chord diagram in Figure 20 is parallel.

The following is known.
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Figure 19. A chord diagram

Figure 20. A parallel chord diagram

Theorem 1.5.1 (Hanaki [5]). Let P be a knot projection. Then, tr(P ) is equal
to the minimum number of chords which must be deleted from CDP for getting a
parallel chord diagram. Moreover, tr(P ) is always even.

A sub-chord diagram is a partial chord diagram correponding to a subset of
a projection. For a diagram D = D(a1, a2, . . . , am), we consider the sub-chord
diagram correponding to each (ai) by regarding (ai) as a subset of a diagram.

Lemma 1.5.2. Let D = D(a1.a2, . . . , am) be the standard diagram of a 2-bridge
knot K. Let SCai be the sub-chord diagram corresponding to the diagram (ai) in
D.

(1) If the two arcs of (ai) enter from the same side as shown in Figure 21 (1)
or (2), then every pair of distinct chords in SCai intersect each other as
shown in Figure 21 (7).

(2) If the two arcs of (ai) enter from opposite sides as shown in Figure 21
(3), (4) when ai is odd and (5), (6) when ai is even, then there are no
intersections in SCai as shown in Figure 21 (8). In other words, SCai is
parallel.

Proof. Let c1, c2, . . . , ck be the crossings in the diagram (ai), situated from
left to right in this order.

If an arc enters from the left-hand side (resp. from the right-hand side), then
it passes through the crossings c1, c2, . . . , ck (resp. ck, ck−1, . . . , c1) in this order.
Since the other arc enters from the left-hand side (resp. from the right-hand side)
again, it passes through the crossings in the same order. Therefore, the sub-chord
diagram corresponding to (ai) must be as shown in Figure 22 (1).

Similarly, we see easily that when the arcs enter from opposite sides of (ai), the
sub-chord diagram corresponding to (ai) must be as shown in Figure 22 (2). �
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a i

a i

a i

a i

a i

a i

(1) (2)

(3) (4)

(5) (6)

(7)

(8)

Figure 21. Orientations of two arcs in (ai) and the sub-chord
diagram corresponding to (ai)

( 1 ) ( 2 )

c c c12kck c2 c1

X-chord I-chord

Figure 22. Sub-chord diagram corresponding to (ai)

By the above lemma, we may regard the sub-chord diagram corresponding
to (ai) as a “bunch” of chords. In other words, we can gather all chords in the
sub-chord diagram corresponding to (ai) into one chord group denoted by ai. Fur-
thermore, in the case of Lemma 1.5.2 (1), we call the chord group an X-chord,
which we depict by a dotted line, while in the case of Lemma 1.5.2 (2) we call the
chord group a I-chord, which we depict by a solid line (see Figure 22).

Let us now consider the chord diagram CDP corresponding to the positive (or
negative) standard diagram D of a 2-bridge knot K. We will use Theorem 1.5.1 to
determine the trivializing number tr(D) of the diagram D.

(1) The case of type A; WhenD is of type A of Proposition 1.4.1, by considering
the orientations of arcs in each rectangle, we see that a2i for all i with 1 ≤ i ≤ n,
is an I-chord, and a2i−1 for all i with1 ≤ i ≤ n, is an X-chord. If every a2i−1,
1 ≤ i ≤ n, is even, then we obtain the diagram as shown in Figure 23 (1), and the
associated chord diagram as in Figure 23 (2). (For convenience, we often represent
a chord diagram not by a circle, but by a quadrangle.)

In general, the order of the rectangles that we pass through depends on whether
a2i−1 are odd or even. Let us rename the lower rectangles which consist of an odd
number of half-twists (the number of such rectangles is even), as (b1), (b2), . . . , (b2r)
from left to right. Moreover, we also rename all the upper rectangles as follows:

• the upper rectangles on the left hand side of (b1); (c10), (c
2
0), . . . , (c

q0
0 ),

• the upper rectangles between (bj) and (bj+1); (c1j ), (c
2
j ), . . . , (c

qj
j ),

• the upper rectangles on the right hand side of (b2r); (c12r), (c
2
2r), . . . , (c

q2r
2r ),

always from left to right.
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2n

1

2

3

4

5

6

2n-

2n-

2n-

2n-

2

3

4

5 2n-1

_

( 1 )

( 2 )

a

_
a

_
a

_
a

_
a

_
a

_
a

_
a

_
a

_
a

_
a

_
a

Figure 23. Diagram D of type A with every a2i−1 even, and the
associated chord diagram

Then we can obtain the sub-chord diagram corresponding to the rectangles

between (bj) and (bj+1) as shown in Figure 24, where ckj (1 ≤ k ≤ qj) consists of

some parallel chords which correspond to the crossings in the rectangle (ckj ).

Furthermore, any two I-chords in c1j , c
2
j , . . . , c

qj
j do not cross each other, so we

can bundle them again into one I-chord. Now we represent them by a solid line. In
other words, we consider that cj = c1j + c2j + · · ·+ c

qj
j . Since the chord groups which

correspond to the lower rectangles between (bj) and (bj+1) are all X-chords, in the
situation of Theorem 1.5.1, the number of chords which we can leave is at most one.
Furthermore, among the X-chords in Figure 24(1),we have only bj+1 that does not

intersect cj : in Figure 24 (2), we have only bj . Note that all the chords which are

out of this sub-chord diagram cross either all the X-chords between bj and bj+1 or

no X-chord between bj and bj+1. So we have only to consider the chord diagram

in which all the X-chords between bj+1 and bj are delated as shown in Figure 25.
(2)The case of type A’; In the case of a diagram of type A’, we can proceed

in a similar fashion. When every a2i is even, the diagram is as shown in Figure 26
(1), and the associated chord diagram is as shown in Figure 26 (2). Otherwise, the
sub-chord diagram between (bj) and (bj+1) is also as shown in Figure 24 (1) or (2),
and we get the chord diagram as shown in Figure 27.

(3)The case of type B or B’; On the other hand, in the case of a diagrams of
type B or type B’, when j is even, the sub-chord diagram is as shown in Figure 24
(1), and when j is odd, the sub-chord diagram is as shown in Figure 24 (2). Thus,
we get the chord diagrams as shown in Figure 28 and 29.

Using the above notation, we can state the main theorem of this section as
follows.
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b j b j+1

b j b j+1

j even

j odd

c

c j
c j
c j
c j

c j

1

2

3

4

q j

qj-1
_

_ _

_

( 1 )

( 2 )

j

_

_

_

_

_

c

c j
c j
c j
c j

c j

1

2

3

4

q j

qj-1
_
j

_

_

_

_

_

:

:_

Figure 24. Sub-chord diagram corresponding to the part between
(bj) and (bj+1)

Theorem 1.5.3. Let D = D(a1, a2, . . . , am) be a positive diagram or a negative
diagram of a 2-bridge knot such that ai > 0 for all i with 1 ≤ i ≤ m. Then the
trivializing number tr(D) of D is given by the following formulas.

(1) When D is of type A (m = 2n).
(a) If every a2i−1 is even, then tr(D) =

∑n
i=1 a2i−1.

(b) Otherwise,

tr(D) = min{A0, A1, . . . , Ar},
where

Ar =
n∑

i=1

a2i−1 +
r∑

j=1

c2j−1,

A0 =
n∑

i=1

a2i−1 +
r∑

j=1

c2j − 1.

and for p = 1, 2, . . . , r − 1, we set

Ap =

n∑
i=1

a2i−1 +

p∑
j=1

c2j−1 +

r∑
j=p+1

c2j − 1.

(2) When D is of type A’ (m = 2n).
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b1 bb b b b2r
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c
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c

c2r
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_

_

_
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_

_ __ _ _
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Figure 25. The chord diagram corresponding to a diagram of
type A

(a) If every a2i is even, then tr(D) =
∑n

i=1 a2i.
(b) Otherwise,

tr(D) = min{A′
0, A

′
1, . . . , A

′
r},

where

A′
r =

n∑
i=1

a2i +
r∑

j=1

c2j−1,

and for p = 0, 1, . . . , r − 1, we set

A′
p =

n∑
i=1

a2i +

p∑
j=0

c2j +
r∑

j=p+2

c2j−1 − 1.

(3) When D is of type B (m = 2n+ 1).

tr(D) = min{B0, B1, . . . , Br+1},

where

Br+1 =

n∑
i=1

a2i +

r∑
j=0

c2j+1,

and for p = 0, 1, . . . , r, we set

Bp =
n∑

i=1

a2i +

p∑
j=0

c2j +
r∑

j=p+1

c2j+1.

(4) When D is of type B’ (m = 2n+ 1).

tr(D) = min{B′
0, B

′
1, . . . , B

′
r},

where

B′
r =

n∑
i=0

a2i+1 +
r∑

j=1

c2j − 1

and for p = 0, 1, . . . , r − 1, we set

B′
p =

n∑
i=0

a2i+1 +

p∑
j=0

c2j+1 +
r∑

j=p+2

c2j − 1.
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Figure 26. Diagram D of type A’ with every a2i even, and the
associated chord diagram

b1 bb b b b2c
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Figure 27. The chord diagram corresponding to a diagram of
type A’

Proof. 1) In the case where D is of type A.
If every a2i−1 is even, then we have the chord diagram as shown in Figure 23

(2). Since any two X-chords in this chord diagram cross each other, we can leave
at most one X-chord when we attempt to gain a parallel chord diagram. Moreover,
every two chords in any X-chord also cross each other. This means that the number
of the chords corresponding to the crossings in lower rectangles which we can leave
is at most one.

In addition, the I-chords corresponding to the crossings in upper rectangles
are all parallel and any I-chord crosses at least one X-chord. Hence, the minimal
number of the chords which we must delate in order to get a parallel chord diagram
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Figure 28. The chord diagram corresponding to a diagram of
type B
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Figure 29. The chord diagram corresponding to a diagram of
type B’

is the number of all the chords which correspond to the crossings in lower rectangles.
Therefore, we have the following.

tr(D) =
∑n

i=1 a2i−1

Otherwise, the chord diagram is as shown in Figure 25, and we can see the
I-chord represented by c2r crosses all I-chords represented by c2j−1 (1 ≤ j ≤ r)

and all X-chords represented by bk (1 ≤ k ≤ 2r). (This means that c2r crosses
all chords corresponding to the crossings in lower rectangles.) So if we leave c2r,
then we must delete all these chords which cross c2r. That is to say, the number of
chords we must delete is

Ar =
n∑

i=1

a2i−1 +
r∑

j=1

c2j−1

(see Figure 30 (1)).
When we delete c2r, we can leave all chords in I-chord c2r−1 and only one chord

in X-chord b2r−1. So the number of chords we need to delete is

Ar−1 =
n∑

i=1

a2i−1 +
r−1∑
j=1

c2j−1 + c2r − 1

(see Figure 30 (2)).
Next we attempt to delete the I-chords which correspond to c2j , (1 ≤ j ≤ r),

step by step in the way as following: c2r → c2r, c2r−2 → c2r, c2r−2, c2r−4 → · · · →
c2r, c2r−2, · · · , c2.
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Figure 30. The operation of deleting some I-chords

By these operations we can also get a trivial chord diagram even if we leave
the I-chords which correspond to c2j−1, (1 ≤ j ≤ r), step by step in the way as
following: c2r−1 → c2r−1, c2r−3 → c2r−1, c2r−3, c2r−5 → · · · → c2r−1, c2r−3 · · · c1.

There is an one-to-one correlation between these two operations. Consequently,
the minimum of these numbers is the trivializing number of the diagram, and the
following holds.

(1) If every a2i−1 is even, then tr(D) =
∑n

i=1 a2i−1.
(2) Otherwise,

tr(D) = min{A0, A1, . . . , Ar},

where

Ar =

n∑
i=1

a2i−1 +

r∑
j=1

c2j−1,
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A0 =
n∑

i=1

a2i−1 +
r∑

j=1

c2j − 1.

and for p = 1, 2, . . . , r − 1, we set

Ap =
n∑

i=1

a2i−1 +

p∑
j=1

c2j−1 +
r∑

j=p+1

c2j − 1.

2) In the case where D is of type A’.
If every a2i is even, then we can consider in a similar fashion to type A and

can easily see tr(D) =
∑n

i=1 a2i.
Otherwise, from the chord diagram as shown in Figure 27, we know the I-chord

c2r in Figure 25 is replaced by c0 in Figure 27. In this case, if we delete the I-chords
represented by c2j , (0 ≤ j ≤ s), step by step in the way c0 → c0, c2 → c0, c2, c4 · · · ,
then we can leave c1 → c1, c3 → c1, c3, c5 · · · , by way of compensation. Thus, the
following holds.

(1) If every a2i is even, then tr(D) =
∑n

i=1 a2i.
(2) Otherwise,

tr(D) = min{A′
0, A

′
1, . . . , A

′
r},

where

A′
r =

n∑
i=1

a2i +
r∑

j=1

c2j−1,

and for p = 0, 1, . . . , r − 1, we set

A′
p =

n∑
i=1

a2i +

p∑
j=0

c2j +
r∑

j=p+2

c2j−1 − 1.

3) In the case where D is of type B.
In this case, the chord diagram is as shown in Figure 28, and we see that every

X-chord which corresponds to (bj), (1 ≤ j ≤ 2r+1), necessarily crosses two I-chords
which correspond to (c0) and (c2r+1). So we can leave none of these X-chords unless
we delete both c0 and c2r+1. In addition, we consider the relation of I-chords which
correspond to (cj), (1 ≤ j ≤ 2r + 1). If we leave every c2j , (0 ≤ j ≤ r), then we
must delete every c2j+1, (0 ≤ j ≤ r). Hence, the number of chords which we need
to delete is the following:

Br+1 =

n∑
i=1

a2i +

r∑
j=0

c2j+1.

Furthermore, there exists a relation among the I-chords in this chord diagram.
That is, if we delete c0 then we can leave c1, if we delete c0, c2 then we can leave
c1, c3, and so on. Because of this, the following holds.

tr(D) = min{B0, B1, . . . , Br+1},
where

Br+1 =

n∑
i=1

a2i +

r∑
j=0

c2j+1,
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and for p = 0, 1, . . . , r, we set

Bp =
n∑

i=1

a2i +

p∑
j=0

c2j +
r∑

j=p+1

c2j+1.

4) In the case where D is of type B’.
In this case, the chord diagram is as shown in Figure 29. In this chord diagram,

c0 and c2r+1 dose not cross each other. Moreover, they dose not cross any other I-
chord or X-chord. Therefore, we can leave both c0 and c2r+1. However, for X-chords
bj , (1 ≤ j ≤ 2r + 1), any two of them cross each other, so we can leave at most

one X-chord among {bj}. Thus, if we leave all I-chords corresponding to (c2k+1),
(1 ≤ k ≤ r), we must delete all I-chords corresponding to (c2k), (1 ≤ k ≤ r). Hence,
the number of all chords which we must delete is

B′
r =

n∑
i=0

a2i+1 +
r∑

j=0

c2j − 1.

Besides that, if we orderly delete some I-chords step by step such as c2r →
c2r, c2r−2 → c2r, c2r−2, c2r−4 · · · , we can leave other I-chords such as c2r−1 →
c2r−1, c2r−3 → c2r−1, c2r−3, c2r−5 · · · by way of compensation. Finally, the following
holds.

tr(D) = min{B′
0, B

′
1, . . . , B

′
r},

where

B′
r =

n∑
i=0

a2i+1 +
r∑

j=1

c2j − 1

and for p = 0, 1, . . . , r − 1, we set

B′
p =

n∑
i=0

a2i+1 +

p∑
j=0

c2j+1 +

r∑
j=p+2

c2j − 1.

We have just completed the proof of Theorem 1.5.3. �

6. Trivializing number and unknotting number

In this section, we study the relation between the trivializing number and the
unknotting number. The definitions of the unknotting number of a diagram and
the unknotting number of a knot are the following:

Definition 1.6.1. The unknotting number of a diagram D, denoted by u(D), is the
minimal number of crossings of D whose over/under information should be changed
for getting a diagram of a trivial knot.

Definition 1.6.2. The unknotting number of a knot K, denoted by u(K), is the
minimum of u(D), where the minimum is taken over all diagrams D of K.

There is some relationship between the unknotting number and the signature.
The signature σ(D) of a diagram D is defined by using the Seifert matrix M of D.
Let A be the matrix such that A = (M + MT ), where M is the Seifert matrix of
D and MT is the transposed matrix of M, and let B be a diagonal matrix obtained
from A. Then σ(D) := (the number of positive elements in the diagonal elements
of B) − (the number of positive elements in the diagonal elements of B). (About
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Figure 31. An example of the checkerboard coloring and local writhes

the signature, there is a detailed explanation in [10]). The signature is an invariant
of knots, and in general the following holds.

Theorem 1.6.3 (Murasugi [10]). Let K be a knot and D be a diagram of K. Then
the following holds.

1

2
|σ(D)| = 1

2
|σ(K)| ≤ u(K) ≤ u(D),

where σ(K) is the signature of K.

In addition, for a alternating diagram, it is known ([14]) that

σ(D) = −w(D)/2 + (W −B)/2,

where w(D) is the sum of local writhes of all crossings, B is the number of do-
mains colored with a grayish color when we give checkerboard coloring as shown in
Figure 31, and W is the number of domains which are not colored. For example,
in the case as shown in Figure 31, the number of + crossings is 2, and that of −
crossings is 4, then σ(D) = 2 + (−4) = −2, and W = 5, B = 3. Therefore, we can
get σ(D) = σ(K) = −(−2)/2 + (5 − 3)/2 = 2, and |σ(D)|/2 = 1 ≤ u(K) ≤ u(D).
In actually, we can obtain a diagram of a trivial knot with one crossing change,
hence u(D) = u(K) = 1.

About the relation between the trivializing number and the unknotting number,
it is known that 2u(D) ≤ tr(D) and 2u(K) ≤ tr(K) hold in general. However,
particularly for positive knots, there exists a conjecture that 2u(K) = tr(K) ([5]).
And as the partial positive answer of this, we have the next corollary to Theorem
1.5.3 and Theorem 1.6.3.

Corollary 1.6.4. Let K be a positive 2-bridge knot and D be the standard diagram
of K such that D = D(a1, a2, . . . , a2n) ai > 0 for all i with 1 ≤ i ≤ 2n. If a2i−1

is even for all i with 1 ≤ i ≤ n, or a2i is even for all i with 1 ≤ i ≤ n, then
2u(K) = tr(K).

Proof. First we prove the case where any a2i−1 is an even number. In this
case, D is a minimal diagram of K, so by Theorem 1.3.1, D is a positive-alternating
diagram. Besides that, by the Proposition 1.4.1, a2n must be an odd number and
other a2i (1 ≤ i ≤ n − 1) are necessarily all even numbers. Moreover, the sign of

any crossing is +, thereby w(D) =
∑2n

i=1 ai. The checkerboard coloring is like as
shown in Figure 32, and we know W =

∑n
i=1 a2i + 1, B =

∑n
i=1 a2i−1 + 1.
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Figure 32. The checkerboard coloring of a 2-bridge knot diagram
in which any a2i−1 is an even number

Figure 33. By some crossing changes, we can obtain a trivial knot diagram.

Therefore, next equality holds.

σ(D) = −1

2
(w(D)) +

1

2
(W −B)

=
1

2
(−

2n∑
i=1

ai +
n∑

i=1

a2i −
n∑

i=1

a2i−1)

= −
n∑

i=1

a2i−1

Furthermore, by Theorem 1.6.3, we can see (|σ(D)|)/2 = (
∑n

i=1 a2i−1)/2 ≤ u(K) =
u(D). In actually, as shown in Figure 33, we can obtain a trivial diagram by
some crossing changes of the crossings which correspondent to lower tangles, and
the number of these crossing changes is (

∑n
i=1 a2i−1)/2. Hence, u(D) = u(K) =

(
∑n

i=1 a2i−1)/2. Finally, we can get the inequality 2u(K) ≤ tr(K) ≤ tr(D) and the
equality 2u(K) = tr(D). Thus, 2u(K) = tr(K) holds.

In the case that every a2i is an even number, we can also gain this equality in
a similar fashion. �

This result is for the special case of positive 2-bridge knots. So whether
2u(D) = tr(D) holds for any minimal diagram of positive 2-bridge knots or not,
and whether 2u(K) = tr(K) holds or not, these questions are our theme of the
future.

7. Positive pretzel knots

In this section, we consider positive pretzel knots, and for some type of them,
we can get the following theorem.
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Figure 34. The standard diagram D of K

123 2m2m-1 2m-2 2m-3

1232m 2m-1 2m-2 2m-3
- - --- --

- - - ----i
-
chordeach is

-p
p pp pp p p

p pppp p p

X

Figure 35. The chord diagram of K

Theorem 1.7.1. Let K be a pretzel knot P (p1, p2, . . . , p2n) pi > 0 for all i with
1 ≤ i ≤ 2n, p2n is even and other pis are all odd (1 ≤ i ≤ 2n−1), then the following
holds.

tr(K) = 2u(K) =
∑2n

i=1 pi − 2n+ 1

Proof. The standard diagram D of K is as shown in Figure 34, and we know
this diagram is positive and alternating. Moreover, the sub-chord diagram which
corresponds to each pi is an X-chord. So the chord diagram of D is as shown in
Figure 35.

Then we can easily obtain the trivializing number of D. Namely, tr(D) =∑2n
i=1 pi−2n+1. Furthermore, by the checkerboard coloring as shown in Figure 36,

the signature of K is the following:

σ(K) = σ(D) = −1

2
w(D) +

1

2
(W −B) = −(

2n∑
i=1

pi − 2n+ 1)

By the inequality |σ(K)| ≤ 2u(K) ≤ tr(K) ≤ tr(D), we can conclude that tr(K) =
2u(K). This completes the proof. �



7. POSITIVE PRETZEL KNOTS 28

Figure 36. An example of checkerboard coloring



CHAPTER 2

Diagrams of positive and almost alternating links

1. Introduction

In Chapter 1, we have seen that every positive and alternating link has a positive
and alternating (we say positive-alternating for short) diagram (Theorem 1.3.1). A
positive-alternating diagrarm is also called a PA-diagram, for short. A link is a
PA-link if it admits a PA-diagram. Then, we see that a positive and alternating
link is a PA-link. Note that when we say a link is positive, we always choose and
fix a suitable orientation for the link and its diagrams.

In Chapter 2, we consider positive and almost alternating diagrams and show
that show that if a link has a positive and almost alternating diagram, then it is
necessarily alternating (Theorem 2.3.2).

A diagram is called an almost PA-diagram if it turns into a PA-diagram after
one crossing change. It is known that every positive and almost alternating link
with eleven or less crossings has an almost PA-diagram (see [3]). Furthermore,
Jong and Kishimoto [6] have shown that every positive knot with genus one or two
admits a PA-diagram or an almost PA-diagram. On the other hand, Abe, Jong
and Kishimoto[1] have shown that every Montesinos link is either alternating or
almost alternating. As an analogue of these results, we will show that a Montesinos
link whose standard diagram is positive admits either a PA-diagram or an almost
PA-diagram (Theorem 2.4.2).

Chapter 2 is organized as follows. In Section 2, we briefly review almost alter-
nating links and positive alternating links. In Section 3, we prove Theorem 2.3.2. In
Section 4, we characterize Montesinos links whose standard diagrams are positive,
and prove Theorem 2.4.2.

2. Preliminaries

A diagram is almost positive if one crossing change makes it into a positive
diagram, and a link is almost positive if it has an almost positive diagram and no
positive diagram. In a similar way, a diagram is almost alternating if one crossing
change makes it into an alternating diagram, and a link is almost alternating if it
has an almost alternating diagram and no alternating diagram. Our concern at
the moment is a positive and almost alternating link, that is to say, a link which
has a positive diagram and an almost alternating diagram and has no alternating
diagram.

A flype is an isotopy move applied on a sub tangle of the form [±1] + t, and it
fixes the endpoints of the sub tangle (see Figure 1). A flype preserves the alternating
structure of a diagram ([7]). Moreover, we distinguish a positive tangle from a
positive diagram as the following: A tangle is positive if it is as shown in Figure 2
(1) and negative as shown in (2).

29
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Figure 1. A flype

( 1 ) ( 2 )positive tangle negative tangle

Figure 2. Examples of positive(negative) tangle

~ ~~d d
d

Figure 3. Almost alternating diagrams of a trefoil knot

Next, we introduce some results about almost alternating links. Every alter-
nating link involving a trivial link has an almost alternating diagram. Moreover,
any alternating link has infinite almost alternating diagrams(see [2]). For exam-
ple, we can make infinite almost alternating diagrams from a trefoil knot as shown
in Figure 3 . Every diagram turns into an alternating diagram if we change the
over/under information of the crossing point d.

3. Positive and almost alternating diagrams

When a link is positive or almost positive, alternating or almost alternating,
we can think these four types of links by combination, positive and alternating
link, positive and almost alternating link, almost positive and alternating link and
almost positive and almost alternating link. However, Stoimenow showed there are
no almost positive and alternating links.

Theorem 2.3.1 (Stoimenow, [13]). Let L be a link. If L is almost positive then L
is not alternating.

Besides that, we already know that a positive and alternating link is a PA-link.
Therefore, we can have Table 1.

Table 1. Property of the link

property of the link altenating almost alternating
positive PA-link (Nakamura) ?

almost positive There exist no links (Stoimenow) ?
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isotopy  on  
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2

Figure 4. Positive and almost alternating diagram

Then, naturally we have the following question: “Does a positive and almost
alternating link have a positive and almost alternating diagram? ” In this section,
we give the negative answer to this question.

Theorem 2.3.2. Let L be an oriented link. If L has a positive and almost alter-
nating diagram then L is alternating.

Proof of Theorem 2.3.2. By the assumption above, L has an almost alter-
nating diagram, so we can see L is alternating or almost alternating. Our claim is
that every positive and almost alternating diagram of L is equivalent to an alter-
nating diagram.

In general, positive and almost alternating diagrams are as shown in Figure 4,
where the diagram in every shaded portion is positive-alternating. Although we de-
pict four crossings around the crossing d, the over/under information of which must
be changed for getting a alternating diagram, these crossings are not necessarily
different four crossings, in other words, they may be duplicate.

The shaded portion in the rightmost figure is equivalent to a disk and we denote
this region by A. Note that there does not happen the case as shown in Figure 5,
because this diagram is not positive.

Assume disk A separates into disk A1 and disk A2. Since each diagram in A1

and A2 is alternating, then the diagram D is equivalent to an alternating diagram
D’ (see Figure 6). Hence, L is alternating.

Next we prove that diskA actually separates into diskA1 and disk A2. We name
five crossing points outside of A, α, α′, β, β′, d as shown in Figure 7. Moreover, α
denotes the strand which passes through α and enters into A, similarly β denotes
the strand which passes through β and enters into A.

When the strand which passed under the strand α at α crosses next strand,
there can be three cases as shown in Figure 8 (1), (2), (3).

Since the diagram D is positive and alternating in region A, in any case of
(1), (2), (3), the next strand passes under this strand from the right-hand side to
the left-hand side as shown in Figure 9(1). We name these crossing points p1, p2, · · · .
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Figure 5. This diagram is not positive

A
A

A1

2

A

A1

2 A

A1

2

~

~

~

D

D

=

=
'

Figure 6. D is equivalent to an alternating diagram D’

Figure 7. Five crossings α, α′, β, β′ and d

Furthermore, p0 denotes the arc from α to p1, and p1 denotes the arc from p1 to
p2, similarly p2, p3, · · · and so on. Besides that, we also consider the strand which
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Figure 8. There can be three cases when the strand which passed
under the strand α at α crosses next strand

Figure 9. The strand which passes under α and the strand which
passes over β

Figure 10. In the case where a strand crosses a loop or a strand
crosses by itself

passes over β as shown in Figure 9(2). Then we name the crossing points, q1, q2, · · ·
and the arcs, q0, q1, · · · and so on.

In the case where a strand crosses a loop or a strand crosses by itself, we regard
as shown in Figure 10.

Finally, there are two sequences of arcs in A and they are both oriented as
shown in Figure 11 (1). If pm and qn cross each other then pm passes over qn
from the left hand side to the right hand side as shown in Figure 11(2).

We denote this crossing point by c, then there is a polygon with vertices α, d,
β, q1, q2, . . ., qn, c, pm, pm−1, . . ., p2, p1. And two arcs pm, qn enter this polygon
as shown in Figure 12. This is the contradiction to The Jordan curve theorem ([5]).

Theorem 2.3.3. (Jordan curve theorem)
Let C be the image of the unit circle, that is C = {(x, y);x2+y2 = 1} under an

injective continuous mapping γ into R2. Then R2\C is disconnected and consists
of two component.

Furthermore, if pm or qn crosses some arc in {pi} or {qj} then next it crosses
the same arc and enter this polygon again. Because each pi is an arc from under
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Figure 11. The relation between pm and qn

Figure 12. This is the contradiction to The Jordan curve theorem

crossing to over crossing and each qj is an arc from over crossing to under crossing.
After all, we can see that pm and qn never cross each other in A.

For this reason, A must separate into A1 and A2, hence D is equivalent to an
alternating diagram D′. This completes the proof of Theorem 2.3.2. �

From the theorem above, we know that a positive and almost alternating link
has no positive and almost alternating diagram. Therefore, we think another ques-
tion: “How is the diagram of a positive and almost alternating link?” For answering
this question, we introduce a notion “almost PA”.

A diagram is almost positive-alternating if one crossing change makes it into a
PA-diagram. We call such a diagram an almost PA-diagram. Furthermore, we call
a link an almost PA-link if it has an almost PA-diagram and has no PA-diagram.
For almost PA-links, the following are known.
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Theorem 2.3.4 (Cromwell [3]). Every positive and almost alternating knot is al-
most positive-alternating with up to eleven crossings.

Theorem 2.3.5 (Jong–Kishimoto [6]). Positive knots up to genus two are positive-
alternating or almost positive-alternating.

4. Montesinos links with positive standard diagrams

In this section, we would like to study an oriented Montesinos link L, which has
the standard diagramD as shown in Figure 13 (1), where Ri represents the standard
diagram of a rational tangle. In general, Ri is represented Ri = T (ai1, ai2, . . . , aini),
where each aij is an integral which signifies the number of half-twists. Moreover,
the standard diagram means a diagram in which aij > 0 for all j with 1 ≤ j ≤ ni,
or aij < 0 for all j with 1 ≤ j ≤ ni. About rational tangles, see [10]. We show tha
standard diagram of a rational tangle with aij > 0forallaij in Figure13 (2) or (3).
By these ai1, ai2, . . . , aini , we can get the following continued fraction.

aini +
1

ai,ni−1 +
1

. . .
1

ai1

=
αi

βi

Note that αi/βi ∈ Q ∪∞ is either an irreducible fraction or an infinity. We some-
times represent Rı by this rational number (or∞). If αi = 0 then Ri is the standard
diagram of a 0-tangle, and if βi = 0 then Ri is the standard diagram of an ∞-tangle
(see Figure 14).

For Montesinos links, Abe and Kishimoto showed the following.

Theorem 2.4.1 (Abe–Jong–Kishimoto [1]). Non-alternating Montesinos links are
almost alternating.

By the theorem above, we know that a Montesinos link L is alternating or
almost alternating. Then we would like to consider the case where the standard
diagram D of L is positive. If L is alternating then L is positive and alternating,
that is to say, L is clearly a PA-link. Moreover, we show that if L is almost
alternating then L is an almost PA-link as the following.

Theorem 2.4.2. Let L be an oriented Montesinos link and be denoted by
C(α1/β1, α2/β2, . . . , αm/βm) where αi/βi ∈ Q ∪ ∞, and D the standard dia-

gram of L such that D(α1/β1, α2/β2, . . . , αm/βm). If D is positive then L has an
almost PA-diagram.

It is to be noted that in general if a link L has a PA-diagram, then L has also
an almost PA-diagram. Because we can transform a PA-diagram D of L into an
almost PA-diagram D′ (see Figure 15).

Before prooving the theorem above, we prove two propositions and one lemma
needed later.

Proposition 2.4.3. Let L be an oriented link and D be a diagram of L such that
D = D1♯D2♯ · · · ♯Dm where Dt is an alternating diagram for any t with 1 ≤ t ≤ m.
If D is positive, then L has a PA-diagram.
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is the standard diagram of a rational tangle

Figure 13. The standard diagram of a Montesinos link

8

tangle0 tangle －－
Figure 14. The standard diagrams of a 0-tangle and an ∞-tangle

Figure 15. An almost PA-diagram of a PA-link

Proof. Assume D = D1♯D2♯ · · · ♯Dm is positive and A = Ds♯Ds+1♯ · · · ♯Dm

(1 ≤ s ≤ m) is alternating as shown in Figure 16. We consider the orientations of
two arcs on the left hand side of A and the over/under informations of the leftmost
crossings of A and the rightmost crossings of Ds−1. Then we can see the four
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s-1

Figure 16. D = D1♯D2♯ · · · ♯Dm = D1♯D2♯ · · · ♯Ds−1♯A
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Figure 17. Four conditions of Ds−1♯A
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Figure 18. D1♯At is equivalent to a PA-diagram

conditions as shown in Figure 17 (1), (2), (3) and (4), where the simbol o (resp. u)
means that an over-crossing (resp. under-crossing) appears first when we traverse
the component from the end point ([1]). For the diagram of an alternating tagle,
we can check, for example by using the checkerboard coloring, that o and u appear
alternately when we make a round of the boundary of the disk. By repeating this
transformation we can finally obtain a PA-diagram of L as shown in Figure 17 (5)
and (6). �

Proposition 2.4.4. Let L be an oriented Montesinos link, and D be the standard
diagram of L denoted by D(α1/β1, α2/β2, . . . , αm/βm), αi/βi ∈ Q. Suppose that D
is positive, |αi/βi| ≥ 1 and βi ̸= 0 for any i with 1 ≤ i ≤ m. Then D is alternating.

Proof. First, we consider the case where the orientations of left-hand side arcs
of R1 are parallel. In this case, naturally the orientations of the right-hand side arcs
of Rm are also parallel as shown in Figure 19 (1). In addition, it is easy to see that
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Figure 19. The case where the orientations of left-hand side arcs
of R1 are parallel
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( 2 )
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~ ' R i ~ R i'

( 4 )

Figure 20. The case where the directions of left-hand side arcs
of R1 are oppsite

these orientations hold in the case of Rm−1, Rm−2, . . . , R2 as shown in Figure 19
(2). That is to say, the orientations of the left-hand side arcs of any tangle Ri are
all the same as shown in Figure 19 (3). Since each tangle Ri = R(ai1, ai2, . . . , ain)
is positive and alternating, we know that aij ≤ 0 for any j for any j with 1 ≤ j ≤ n.
Hence αi/βi < 0 for any i with 1 ≤ i ≤ m. Then D is necessarily alternating.

Next we consider the case where the orientations of the left-hand side arcs of
R1 are opposite. In this case, the orientations of the right-hand side arcs of Rm

are as shown in Figure 20 (1) or (2). So for any tangle Ri, the orientations of the
right-hand side arcs are as shown in Figure 20 (3) or (4). In any case, we know
that aij > 0 for any j with 1 ≤ j ≤ n, because any Ri is positive and alternating.
Therefore, αi/βi > 0 for any i with 1 ≤ i ≤ m and D must be positive. This
completes the proof of the proposition. �

In addition, when we meditate upon oriented rational tangles, we can classify
them into three types as shown in Figure 21. What is more, we can have the next
lemma.

Lemma 2.4.5. Let R be the standard diagram of an oriented rational tangle de-
noted by (α/β), where α/β ∈ Q, α ̸= 0, β ̸= 0. If any crossing in R has the same
sign +, then the following holds.
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Figure 21. Three types of oriented tangles

R i R i~ R i R i~

R i R i~

( 1 ) ( 2 )

( 3 ) ( 4 ) 

R i ~ R i

R i R i~ R i ~ R i

( 5 ) ( 6 )

even

odd

type

type

type

Ⅰ

Ⅱ

Ⅲ

Figure 22. The orientations of rightmost arcs of tangles of type
I, type II and type III

(1) If R is of type I, then α/β < 0.
(2) If R is of type II, then α/β > 0.
(3) If R is of type III and |α/β| ≥ 1, then α/β > 0.
(4) If R is of type III and |α/β| < 1, then α/β < 0.

Proof. In the case where R is of type I, the oriented tangle R is naturally
as shown in Figure 22 (1) or (2), and in both cases α/β < 0. If we reverse all
orientations, we can prove in exactly the same way. In the case where R is of type
II, R is as shown in Figure 22 (3) or (4), and it is easy to see in both cases α/β > 0.
Besides, when R is of type III and |α/β| ≥ 1, R is neccessarily as shown in Figure 22
(5), and α/β > 0. On the contrary if |α/β| < 1, R must be as shown in Figure 22
(6), and α/β < 0. We have thus proved the lemma. �

In fact, there are two types in type III as shown in Figure 22 (5) and (6). So
next we rename type III as shown in Figure 22 (5) type III+, and as shown in
Figure 22 (6) type III−. Now we are ready to prove Theorem 2.4.2

Proof of Theorem 2.4.2. Let L be a Montesinos link. Let D be the stan-
dard diagram of L, D = D(α1/β1, α2/β2, . . . , αm/βm), where each αi/βi represents
a rational number (or ∞) corresponding to Ri, which is the standard diagram of a
rational tangle.
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Figure 23. The case where some βj = 0
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Figure 24. The transformation of oriented tangles

First, we consider the case where some βj = 0. In this case, Ri is the standard
diagram of an ∞-tangle as shown in Figure 23 (1), and the diagram D is like as
shown in Figure 23 (2), where each Rk(1 ≤ k ≤ j − 1, j + 1 ≤ k ≤ m) is an
alternating tangle. This is similar to the figure in Proposition 2.4.3. Therefore, by
this proposition, L has a PA-diagram. Thus, L has also an almost PA-diagram.
For this reason, throughout the following argument, we assume that βi ̸= 0 for all
i with 1 ≤ i ≤ m. On the other hand, in the case where αi = 0, the diagram
is exactly equivalent to the diagram which is obtained by removing the standard
diagram of the tangle αi/βi. Hence, we may also assume that αi ̸= 0 for all i with
1 ≤ i ≤ m.

In general, a PA-link has an almost PA-diagram, so we may assume that D
is non-alternating. If there are at least one standard diagram of a rational tangle
of type I, then all the other standard diagrams of rational tangles must be type I
because of the orientations of arcs. Therefore, by Lemma2.4.5, αi/βi < 0 for all i
with i, 1 ≤ i ≤ m and D is naturally alternating. By the assumption, we see that
in D, there are no standard diagrams of rational tangles of type I. Moreover, if all
the standard diagrams of rational tangles are of type III−, then αi/βi < 0 for all i
with 1 ≤ i ≤ m and D must be alternating. Similarlly, if all the standard diagrams
of rational tangles are of type II or type III+, we can easily see that D is necessarily
alternating. Thus, there must be at least one standard diagram of a rational tangle
of type III− and at least one standard diagram of a rational tangle of type II or
type III+.

Since the standard diagrams of rational tangles, the rightmost arcs of which are
horizontal half-twists, are of type II or type III+, by Lemma2.4.5 for the rational
number αi/βi, which corresponds to the standard diagram of this tangle, αi/βi > 0.
By transforming the standard daiagrams of these tangles as shown in Figure 24
(1) and (2) (or the orientations of all the arcs are reversed), we can get rational
tangles without rightmost horizontal half-twists (these diagrams are not necessarily
standard diagrams).
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Figure 26. The transformation of diagram D

In the case of Figure 24 (2), tangle R′
i rotates vertically by 180◦, so we rename

this tangleR′′
i . Note that R′′

i is positive and alternating. Throughout these trans-
formations, the orientations of arcs with horizontal half-twists, which move from
the right-hand side of R′

i to the left-hand side, are both reversed and the sign of
each crossing is not changed, that is to say, the positivity is preserved in the case
of (1) and (2). Moreover, the alternativity is also preserved in this transformation.
By using these transformations, we can move all the horizontal half-twists in the
right-hand side of diagrams of rational tangles to the left-hand side, and D is equiv-
alent to D′ (or all the orientations of arcs are reversed) as shown in Figure 25 (1).
In the case of type II or type III+, tangle diagram Pi, 1 ≤ i ≤ m, is as shown in
Figure25 (2) or (3), and in the case of type III−, Pi is as shown in Figure 25 (4)
(or all the orientations of arcs are reversed). Furthermore, P ′

i is a PA-diagram.
Assume that Ps is the rightmost tangle of type II or type III+ in D′, then Pj

are of type III− for all j with s + 1 ≤ j ≤ m. Thus, when we denote the sum of
these tangles by T0 = Ps+1 + Ps+2 + · · · + Pm, T0 must be a PA-diagram and the
depicted symbols of T0 is as shown in Figure 25 (6). Moreover, we denote the sum
of tangles, which are on the left-hand side of Ps. Thereby, we can transform D′ as
shown in Figure 26, and have a diagram D′′, which is equivalent to D′ where T1 is
a PA-diagram.

The orientations of arcs on the left-hand side of T1 are as same as those of T0,
and it is obvious that if Ps−1 is of type III− then the tangle sum Ps−1 + T1 is a
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Figure 27. D′ is equivalent to an almost PA-diagram

PA-diagram. On the other hand, if Ps−1 is of type II or type III+, we can obtain a
PA-diagram T2 in a similar fashion like Figure 26. By using these transformations,
we can get the diagram as shown in Figure 27 (1) (or the orientations of all arcs
are reversed). Since there are no standard diagram of rational tangle of type I,
we can limit the orientations of the arcs on the left-hand side of R to this (or the
orientations of both arcs are reversed). Note that R is a PA-diagram.

Next, by moving the arc which is on the foot of the diagram, we can get the
diagram as shown in Figure 27 (2). Moreover, by crossing change of d, we can also
get a PA-diagram D′′′. Hence, we can see that the diagram as shown in Figure 27
(2) is an almost PA-diagram. This completes the proof. �

From the theorem above, we can see that there can be some almost PA-links
with over Genus 2. For example, let us think about pretzel knot K = P (2p+1, 2q+
1,−2r), p > 0, q > 0, r > 0, whose standard diagram D is as shown in Figure 28 (1)
(or the orientations of all the arcs are reversed), and D is positive. Besides that,
K is almost alternating (see [8]). For a positive knot K and a positive diagram D
of K, Nakamura [12] showed that

2g(K) = c(D)− s(D) + 1,

where g(K) is the genus of K, c(D) is the crossing number of D and s(D) is the
number of Seifert circles obtained from D. For the diagram D, we can easily see
that c(D) = 2p+2q+2r+2 and also see s(D) = 2r+1 from Figure 28 (2). Hence,
2g(K) = (2p + 2q + 2r + 2) − (2r + 1) + 1 = 2p + 2q + 2 and g(K) = p + q + 1.
Therefore, we can think infinitely great genus for K.

Next, we transform D into the diagram as shown in Figure 29 (2), (3) and
(4), where A is the diagram surrounded by a dotted line. In a similar fashion, we
can also obtain the diagram as shown in Figure 29 (6), where A′ is the diagram
surrounded by a dotted line, and it is obvious that A and A′ are both PA-diagrams.
Moreover, the form of the diagram as shown in Figure 29 (6) is as same as the form
of the diagram as shown in Figure 27 (1), and hence, we can see that this diagram is
an almost PA-diagram. Thus, we can make sure that there are infinite positive and
almost alternating links with genus greater than 2, which have almost PA-diagrams.
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Figure 28. The standard diagramD of pretzel knot P (2p+1, 2q+
1, −2r) and Seifert circles of D
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Figure 29. Pretzel knot P (2p+ 1, 2q + 2,−2r) is an almost PA-knot

If L is an almost PA-link, by Theorem 2.3.1 L is naturally positive and almost
alternating or almost positive and almost alternating. For almost positive and
almost alternating links, Stoimenow [13] showed that the mirror image of the knot
which is represented by 10145 on The Rolfsen Knot Table is an almost positive and
almost alternating link and has an almost PA-diagram.
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Figure 30. Venn diagram for almost PA-links

Finally, we can obtain a Venn diagram as shown in Figure 30, and have a newer
question, “Does there exist a region on which we put the question mark? ” This is
the problem which now confronts us.
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