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Desingularizing special generic maps into
3-dimensional space

Masayuki Nishioka

Abstract

A smooth map between smooth manifolds is called a special generic map
if it has only definite fold points as its singularities. In this thesis, we study
the desingularization problem of special generic maps of closed orientable
n-dimensional manifolds M into R3 for n ≥ 5. We say that a smooth map
f : M → Rp is lifted to an immersion or an embedding F : M → Rk (k > p)
if f is factorized as f = π ◦ F for the standard projection π : Rk → Rp.
In this thesis, we first prove that if n = 5 or 6 and M is simply connected,
then a special generic map f : M → R3 can be lifted to an embedding into
Rn+1 if and only if the normal bundle ν f of the singular point set of f in M
is trivial as a vector bundle. Second, we prove that for a special generic map
f : M → R3 of a closed orientable n-dimensional manifold M, if n ≥ 5,
k ≥ (3n + 3)/2 and ν f is trivial, then f can be lifted to an embedding into Rk.

1 Introduction
Haefliger [8] proved that for a generic smooth map f : M → R2 of a closed

surface, there exists an immersion F : M → R3 such that f = π◦F for the standard
projection π : R3 → R2 if and only if the number of cusps on each component C
of the singular point set of f is even or odd according as the tubular neighborhood
of C in M is orientable or non-orientable. Here, a smooth map f : M → R2 is
generic if it has only fold points and cusp points as its singularities. In particular,
not every generic smooth map can be so lifted.

Based on Haefliger’s result mentioned above, let us consider the following
problem: “Given a smooth map f : M → Rp of a closed n-dimensional manifold
and an integer k with k > n ≥ p, determine whether or not f can be factorized
as f = π ◦ F for an immersion or embedding F : M → Rk and for the standard
projection π : Rk → Rp.” Such a non-singular map F is called a lift of f . We can
consider F as a desingularization of f . This lifting problem has been studied in
various situations.
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Yamamoto [19] proved that a generic smooth map of a closed surface into R2

can always be lifted to an embedding into R4. Saito [16] proved that a special
generic map f : M → Rn of a closed orientable n-dimensional manifold can
always be lifted to an immersion into Rn+1. Here, special generic maps are smooth
maps with only definite fold points as their singularities. Blank and Curley [1]
studied the condition for a generic smooth map f : M → N between smooth
manifolds of the same dimension to be lifted to an immersion into a line bundle
π : E → N. Note that these results concern the desingularization of generic maps
between manifolds of the same dimension.

Let us recall the definition of a special generic map. A smooth map f : M →
Rp of a closed n-dimensional manifold with n ≥ p is called a special generic map
if it has only definite fold points as its singularities (for details, see Section 2).
Note that a special generic map into the line is nothing but a Morse function with
only critical points of minimum or maximum indices; in particular, the source
manifold of such a map is homeomorphic to the sphere if it is connected.

Special generic maps were first defined by Burlet and de Rham [3], who
showed that a closed 3-dimensional manifold M admits a special generic map
into the plane if and only if M is diffeomorphic to the 3-sphere or to the connected
sum of a finite number of total spaces of S 2-bundles over S 1. Porto and Furuya
[12] studied the condition for a closed n-dimensional manifold M to admit a spe-
cial generic map into the plane. Saeki [13] proved that a closed n-dimensional
manifold M with n ≥ 3 admits a special generic map into the plane if and only if
M is diffeomorphic to the n-dimensional homotopy sphere (n-dimensional stan-
dard sphere for n ≤ 6) or to the connected sum of a finite number of total spaces
of homotopy (n − 1)-sphere bundles ((n − 1)-sphere bundles for n ≤ 6) over S 1

and a homotopy n-sphere (for n ≥ 7).
Èliašberg [7] proved that a closed orientable n-dimensional manifold admits a

special generic map into Rn if and only if M is stably parallelizable, that is, the
Whitney sum of the tangent bundle of M and the trivial line bundle over M is
trivial as a vector bundle.

Let us now return to the lifting problem. Let us first review some results
about the lifting problem for smooth functions. Burlet and Haab [4] proved that
a Morse function f : M → R of a closed surface can always be lifted to an
immersion into R3. Saeki and Takase [15] proved that a special generic map
f : M → R of a closed orientable n-dimensional manifold with n ≥ 1 can always
be lifted to an immersion into Rn+1. They also proved that a special generic map
f : M → R of a closed connected n-dimensional manifold with n ≥ 2 can be lifted
to an embedding into Rn+1 if and only if M is diffeomorphic to the n-dimensional
sphere with the standard smooth structure. Yamamoto [20] gave a necessary and
sufficient condition for a Morse function on the circle to be lifted to an embedding
into R2.
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Let us now review some results about the lifting problem for smooth maps into
the plane. Kushner, Levine and Porto [10] studied the lifting problem for generic
smooth maps of 3-dimensional manifolds into R2. Levine [11] gave a necessary
and sufficient condition for a generic smooth map f : M → R2 of a closed ori-
entable 3-dimensional manifold to be lifted to an immersion into R4. Saeki and
Takase [15] proved that a special generic map f : M → R2 of a closed orientable
n-dimensional manifold with n ≥ 2 can always be lifted to an immersion into
Rn+1. They also proved that a special generic map f : M → R2 of a closed non-
orientable n-dimensional manifold with n ≥ 2 can be lifted to an immersion into
Rn+1 if and only if n = 2, 4 or 8, and the tubular neighborhood of the singular point
set in M is orientable. On the other hand, they also proved that a special generic
map f : M → R2 of a closed connected n-dimensional manifold with n ≥ 3 can be
lifted to an embedding into Rn+1 if and only if M is diffeomorphic either to S n or
to the connected sum of a finite number of copies of S 1×S n−1. Note that this result
does not hold for n = 2. Actually, in [15], it is proved that there exists a special
generic map f : S 2 → R2 which cannot be lifted to any embedding F : S 2 → R3

(but which can be lifted to an immersion F : S 2 → R3, since S 2 is orientable).
When n − p = 1, Saeki and Takase [15] proved that a special generic map

f : M → Rp of a closed orientable n-dimensional manifold can be lifted to an
immersion into Rn+1 if and only if the homology class [S ( f )] ∈ Hp−1(M;Z) rep-
resented by S ( f ) vanishes. Here, S ( f ) is the set of all singular points of f in
M. Note that for a special generic map f : M → Rp, the Z2-homology class
[S ( f )]2 ∈ Hp−1(M;Z2) is Poincaré dual to the Stiefel-Whitney class wn−p+1(M)
(see [18]). Therefore, if f can be lifted to an immersion into Rn+1, then M is spin,
that is, the second Stiefel-Whitney class w2(M) ∈ H2(M;Z2) of M vanishes.

When (n, p) = (5, 3), (6, 3), (6, 4) or (7, 4), Saeki and Takase [15] proved that
a special generic map f : M → Rp of a closed orientable n-dimensional manifold
can be lifted to an immersion into Rn+1 if and only if M is spin. They also showed
that one can take an embedding as a lift if (n, p) = (6, 3).

In this thesis, we study the lifting problem for special generic maps of closed
n-dimensional manifolds into R3 for n ≥ 5. First, we prove that a special generic
map f : M → R3 of a closed simply connected n-dimensional manifold M, n = 5
or 6, can be lifted to an embedding into Rn+1 if and only if the singular point set
of f has a trivial normal bundle in M. Second, we show that for a special generic
map f : M → R3 of a closed orientable n-dimensional manifold with n ≥ 5, the
map f can be lifted an embedding into Rk, if k ≥ (3n+3)/2 and the normal bundle
of the singular point set S ( f ) of f in M is trivial.

The thesis is organized as follows. In Section 2, we review various topological
properties of special generic maps. In Section 3, we give a necessary condition for
a special generic map to be lifted to a codimension two immersion in terms of the
normal bundle of the singular point set. In Section 4, we construct an embedding

4



lift F : M → Rn+1 for a special generic map f : M → R3 of a closed simply
connected n-dimensional manifold (n = 5, 6) with trivial normal bundle of S ( f )
in M, by using the fact that O(n − 2) is a deformation retract of Diff(S n−3), where
Diff(S n−3) is the space of all self-diffeomorphisms of S n−3. This last fact has been
proved by Smale [17] (n = 5) and Hatcher [9] (n = 6). By using a similar method,
we construct an embedding lift F : M → Rk for a special generic map f : M → R3

of a closed orientable n-dimensional manifold (n ≥ 5 and k ≥ (3n + 3)/2) with
trivial normal bundle of S ( f ) in M, by using the fact that Emb(S n−3,Rk−3) is 2-
connected, where Emb(S n−3,Rk−3) is the space of all embeddings of S n−3 into
Rk−3. This last fact has been proved by Budney [2].

Throughout this thesis, all manifolds and maps are of class C∞, unless other-
wise indicated. For groups G1 and G2, “G1 � G2” means that they are isomorphic;
for smooth manifolds M1 and M2, “M1 � M2” means that they are diffeomorphic;
and for vector bundles E1 and E2, “E1 � E2” means that they are isomorphic. The
symbol Rn denotes the n-dimensional Euclidean space; Dn denotes the closed unit
disk in Rn; and S n denotes the n-dimensional unit sphere in Rn+1. For a mani-
fold M with boundary, Int M and ∂M denote the interior and the boundary of M,
respectively.

2 Preliminaries
In this section, we review several results about topological properties of spe-

cial generic maps and their Stein factorizations, which will be necessary in the
proof of our main theorems.

2.1 Special generic maps
Let f : M → Rp be a smooth map of a closed n-dimensional manifold, n ≥

p. A point q ∈ M is called a singular point of f if the rank of the differential
d fq : TqM → T f (q)R

p is strictly less than p. We denote by S ( f ) the set of all
singular points of f and call it the singular point set of f . A point q ∈ M is called
a definite fold point if there exist local coordinates x = (x1, x2, . . . , xn) around q
and y = (y1, y2, . . . , yp) around f (q) such that{

yi ◦ f = xi, 1 ≤ i ≤ p − 1,
yp ◦ f = x2

p + x2
p+1 + · · · + x2

n.

When f has no singular points except for definite fold points, f is called a special
generic map.

When p = 1, special generic maps are nothing but Morse functions with only
critical points of indices 0 or n.
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Note that for a special generic map f : M → Rp, the singular point set S ( f ) is
a closed (p − 1)-dimensional submanifold of M and the restriction of f to S ( f ) is
a codimension one immersion into Rp.

2.2 Stein factorization
Let f : X → Y be a continuous map between topological spaces. For two

points x1 and x2 in X, we define x1 ∼ x2 if x1 and x2 are in the same connected
component of the pre-image f −1(y) for a point y in Y . This relation “∼” is an
equivalence relation, and therefore, we can take the quotient space W f and the
quotient map q f : X → W f with respect to this relation. Then it is not difficult to
prove that there exists a unique continuous map f̄ : W f → Y such that the diagram

X
f

  @
@
@
@
@
@
@
@

q f

��
W f

f̄
// Y

commutes. The above diagram is called the Stein factorization of f .
In general, the quotient space in the Stein factorization of a smooth map is not

always a topological manifold. However, for a special generic map f : M → Rp

of a closed n-dimensional manifold, n > p, we can give a structure of a smooth p-
dimensional manifold with boundary to W f so that f̄ : W f → R

p is an immersion
and q f : M → W f is a smooth map.

Note that for a special generic map f : M → Rn of a closed n-dimensional
manifold into the Euclidean space of the same dimension, we have M = W f , since
the pre-image f −1(y) is a finite set for any y ∈ Rn. So the Stein factorization does
not give any new information. The following result is very useful to study special
generic maps (see [3, 13]).

Theorem 2.1. Let f : M → Rp be a special generic map of a closed connected
n-dimensional manifold M into Rp, n > p. Then the following holds.

1. The quotient space W f has the structure of a smooth p-dimensional mani-
fold with non-empty boundary.

2. The map q f : M → W f is a smooth map.

3. The map f̄ : W f → R
p is a smooth immersion.

4. The singular point set S ( f ) is a closed (p − 1)-dimensional submanifold of
M, and the restriction of q f to S ( f ) is a diffeomorphism onto ∂W f .
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5. The induced map (q f )∗ : π1(M)→ π1(W f ) is a group isomorphism.

6. We have q f (M \ S ( f )) = Int W f and q f |M\S ( f ) : M \ S ( f ) → Int W f is a
smooth S n−p-bundle over Int W f .

The above theorem is essentially proved for (n, p) = (3, 2) in [3]. We can
prove it for general (n, p), n > p, by using a similar method.

We say that a Dn-bundle (or an S n-bundle) is linear if its structure group can
be reduced to the orthogonal group O(n). Saeki [13] proved the following theorem
about the topology of the source manifolds of special generic maps.

Theorem 2.2. Suppose a closed n-dimensional manifold M admits a special
generic map into Rp with n > p. Then there exists a topological Dn−p+1-bundle E
over W f with M being homeomorphic to ∂E. Furthermore, if n − p ≤ 3, then we
can arrange so that E is a linear Dn−p+1-bundle over W f and that M is diffeomor-
phic to ∂E.

By using Theorem 2.2, Saeki [13, 14] classifies the diffeomorphism types of
the simply connected n-dimensional manifolds (n = 5, 6) which admit special
generic maps into R3. That is, the following result holds.

Theorem 2.3. Let M be a closed simply connected n-dimensional manifold with
n = 5, 6. Then M admits a special generic map into R3 if and only if M is diffeo-
morphic to S n or to the connected sum of S n−2-bundles over S 2.

3 Normal bundle of the singular point set
In this section, we give a necessary condition for a special generic map f :

M → Rp of a closed orientable n-dimensional manifold M with n > p to be lifted
to a codimension two immersion.

Proposition 3.1. Let M be a closed orientable manifold of dimension n and let
F be an immersion of M into Rn+2 such that f = π ◦ F is a special generic map,
where π : Rn+2 → Rp is the standard projection, n > p ≥ 1. Then the normal
bundle ν f of S ( f ) in M is stably trivial. Furthermore, if n > 2p − 2, then ν f is
trivial.

Here, a vector bundle E over a topological space B is said to be stably trivial
if the Whitney sum of E and a finite dimensional trivial vector bundle over B is
trivial as a vector bundle.

Proof of Proposition 3.1. Let i∗(T M) be the pullback of T M induced by the in-
clusion map i : S ( f ) → M and let ĩ : i∗(T M) → T M be the natural map over i.
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Then ν f is identified with ker(d f ◦ ĩ), which is an (n − p + 1)-plane subbundle of
i∗(T M).

On the other hand, since f̄ : W f → R
p is an immersion of a p-dimensional

manifold and q f |S ( f ) : S ( f ) → ∂W f is a diffeomorphism, we have that S ( f ) is
orientable. Therefore, since M is orientable and i∗(T M) � TS ( f ) ⊕ ν f , we have
that ν f is orientable.

Let G be the restriction of dF ◦̃i to ν f . Since f = π◦F and F is an immersion, G
is a fiberwise monomorphism of the (n− p+1)-plane bundle ν f into the (n− p+2)-
plane bundle ker(dπ), which is trivial. Note that G is a bundle morphism over F◦i.
Therefore, ν f is a subbundle of ζ = (F ◦ i)∗(ker(dπ)). By using an inner product
on ζ, we find a 1-dimensional subbundle ξ of ζ such that ν f ⊕ ξ � ζ. Since ν f is
an orientable (n− p + 1)-plane bundle and ζ is the trivial (n− p + 2)-plane bundle,
we have that ξ is an orientable line bundle and hence is trivial. This means that ν f

is stably trivial.
Furthermore, if n > 2p − 2, i.e. if n − p + 1 > p − 1, then the dimension of the

base space of ν f is strictly less than the dimension of the fibers of ν f . Therefore,
the stable triviality of ν f implies the triviality of ν f . This completes the proof. �

4 Lifting problems for special generic maps
In this section, we consider the problem of lifting special generic maps into

R3 to codimension one embeddings. Recall that if n = 5 or 6, a closed simply
connected n-dimensional manifold M admits a special generic map f : M → R3

if and only if M is diffeomorphic to S n or to the connected sum of S n−2-bundles
over S 2 (see Theorem 2.3). Now we prove the following theorem.

Theorem 4.1. Let f : M → R3 be a special generic map of a closed simply
connected n-dimensional manifold, n = 5 or 6, such that the singular point set
S ( f ) of f has trivial normal bundle in M. Then there exists an embedding F :
M → W f ×R

n−2 such that P◦F = q f , where P : W f ×R
n−2 → W f is the projection

to the first factor.

We use the following terminologies in the proof of Theorem 4.1.

Definition 4.2. Let X, Y and Z be smooth manifolds and let f : X → Y , F : X → Z
and P : Z → Y be smooth maps. We say that F is a lift of f with respect to P if
f = P ◦ F. In this case, we also say that f is lifted to F with respect to P.

Proof of Theorem 4.1. We may assume that M is connected. Then, by Theo-
rem 2.1, the quotient space W f has the structure of a smooth compact simply
connected 3-dimensional manifold with non-empty boundary, since M is simply
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connected. By the solution to the Poincaré conjecture, this implies that W f is dif-
feomorphic to the 3-manifold obtained by removing the interior of the union of
mutually disjoint finitely many 3-balls from the 3-sphere.

So we have a handle decomposition of W f as follows:

W f = (∂W f × [0, 1]) ∪
( s⋃

i=1

h1
i

)
∪ h3,

where h1
i , i = 1, 2, . . . , s, are 1-handles and h3 is a 3-handle. Let C (= ∂W f ×[0, 1])

be the collar neighborhood of ∂W f in W f , where ∂W f corresponds to ∂W f × {0}.
Fix orientations of M and R3. Since f̄ : W f → R3 is an immersion, we

can orient W f in such a way that f̄ is orientation preserving. Then, for each
w ∈ Int W f , we can orient q−1

f (w)(� S n−3) in such a way that if U is a small open
neighborhood of w in Int W f , and φ : q−1

f (U)→ U ×q−1
f (w) is a local trivialization

with φ(x) = (w, x) for every x ∈ q−1
f (w), then φ is orientation preserving, where the

orientations of q−1
f (U) and U are induced from those of M and W f , respectively.

By the assumption that S ( f ) has trivial normal bundle in M, the composition
of the restriction q f |q−1

f (C) : q−1
f (C)→ C with the natural projection

pC : C(= ∂W f × [0, 1])→ ∂W f

is a trivial Dn−2-bundle. Therefore, we have a bundle trivialization

HC : q−1
f (C)→ ∂W f × Dn−2.

We fix an orientation of Rn−2, which induces an orientation for Dn−2. Then, it
induces an orientation for S n−3 = ∂Dn−2. We may assume that the restriction of
HC to q−1

f (w) is an orientation preserving diffeomorphism onto {w′} × S n−3 for
every w ∈ ∂W f × {1}, where w′ is the point in ∂W f such that w = (w′, 1). Then the
map

e1 : q−1
f (C)→ C × Rn−2

defined by e1(x) = (q f (x), pr2 ◦ HC(x)), x ∈ q−1
f (C), is a smooth map, where the

map
pr2 : ∂W f × Dn−2 → Dn−2 ⊂ Rn−2

is the projection to the second factor.
Note that e1 is an embedding lift of q f |q−1

f (C) with respect to the restriction of P
to C × Rn−2. This is proved as follows. It is clear that e1 is a lift of q f |q−1

f (C) with
respect to P|C×Rn−2 by the construction of e1. Therefore, we have only to prove that
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e1 is an embedding. Note that the following diagram commutes:

q−1
f (C)

q f
//

HC ''OO
OO

OO
OO

OO
OO

C(= ∂W f × [0, 1]) pC
// ∂W f

∂W f × Dn−2,

pr1

77pppppppppppp

where pr1 is the projection to the first factor. Therefore, the composition

e1 ◦ H−1
C : ∂W f × Dn−2 → C × Rn−2 = ∂W f × [0, 1] × Rn−2

maps (x, y) to (x,K(x, y), y) for every x ∈ ∂W f and y ∈ Dn−2, where K is a smooth
map of ∂W f × Dn−2 into [0, 1]. This implies that e1 is an embedding.

We will extend e1 to an embedding lift of the restriction of q f to q−1
f (C ∪ h1

1)
with respect to the restriction

P|(C∪h1
1)×Rn−2 : (C ∪ h1

1) × Rn−2 → C ∪ h1
1.

Note that h1
1 is identified with D2 × D1 and is attached to C along D2 × S 0.

Let Diff+(S n−3) be the space of orientation preserving diffeomorphisms of
S n−3. By the results of Smale [17] and Hatcher [9], Diff+(S n−3) is homotopy
equivalent to SO(n − 2), which is connected.

Since the 1-handle h1
1 is contractible, we have a bundle trivialization

H1,1 : q−1
f (h1

1)→ h1
1 × S n−3

which induces an orientation preserving diffeomorphism of q−1
f (w) onto {w}×S n−3

for every w ∈ h1
1. We have the two end points (0,±1) of the core of the 1-handle

h1
1 = D2 × D1. Then, we define the orientation preserving diffeomorphism φ± :

S n−3 → S n−3 as the composition

S n−3 = {(0,±1)} × S n−3 → q−1
f ({(0,±1)})→ {(0,±1)} × S n−3 = S n−3,

where the first map is H−1
1,1 restricted to {(0,±1)} × S n−3, the second map is e1

restricted to q−1
f ({(0,±1)}), and the double-sign corresponds in the same order.

Since Diff+(S n−3) is connected, there is a continuous path between φ− and φ+

in Diff+(S n−3). This induces a homeomorphism

q−1
f ({0} × D1)(= ({0} × D1) × S n−3)→ ({0} × D1) × S n−3,

which is an orientation preserving diffeomorphism on each S n−3-fiber. This coin-
cides with

e1|q−1
f (D2×{−1,+1}) : q−1

f (D2 × {−1,+1})→ (D2 × {−1,+1}) × S n−3
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over q−1
f ({0} × {−1,+1}). Therefore, by gluing the two maps, we have a homeo-

morphism
q−1

f (X)(= X × S n−3)→ X × S n−3,

where X = (D2 × {−1,+1}) ∪ ({0} × D1). By composing this with the natural
projection, we have a continuous map

φ1 : q−1
f (X)(= X × S n−3)→ S n−3.

Let φ2 : h1
1 × S n−3 → S n−3 be the continuous map defined by φ2(x, y) = φ1(r(x), y)

for x ∈ h1
1 and y ∈ S n−3, where r : h1

1 → X is a deformation retract. Then a
smooth approximation φ3 : h1

1 × S n−3 → S n−3 of φ2 such that φ3|D2×{−1,+1}×S n−3 =

φ2|D2×{−1,+1}×S n−3 induces a diffeomorphism of {x} × S n−3 to S n−3 for every x ∈ h1
1,

since so does φ2. Consequently, we have a smooth homeomorphism

φ4 : h1
1 × S n−3 → h1

1 × S n−3

given by φ4(x, y) = (x, φ3(x, y)), (x, y) ∈ h1
1 × S n−3. Since the derivative of φ4 at

each point is a linear isomorphism, by the inverse function theorem, we have that
φ4 is a diffeomorphism. Then the composition

e2 : q−1
f (h1

1)(= h1
1 × S n−3)→ h1

1 × S n−3 → h1
1 × R

n−2

is an embedding lift of q f |q−1
f (h1

1) with respect to the restriction of P to h1
1 × R

n−2,
where the first map is φ4 and the second map is the product of the identity map
of h1

1 and the standard inclusion. Since e1 and e2 coincide on the intersection of
their sources, by glueing the two maps e1 and e2, we have an embedding lift of
q f |q−1

f (C∪h1
1) with respect to P restricted to (C ∪ h1

1) × Rn−2.
By iterating this procedure, we construct an embedding lift e3 of the restriction

of q f to q−1
f (C ∪ (

⋃s
i=1 h1

i )) with respect to P restricted (C ∪ (
⋃s

i=1 h1
i )) × Rn−2.

Now, let us extend the lift e3 to the whole W f . Since the 3-handle h3 is con-
tractible, we have a bundle trivialization

H3 : q−1
f (h3)→ h3 × S n−3

which induces an orientation preserving diffeomorphism of q−1
f (w) onto {w}×S n−3

for every w ∈ h3.
We define the continuous map ρ1 : ∂h3 × S n−3 → S n−3 by the composition

∂h3 × S n−3 → q−1
f (∂h3)→ ∂h3 × S n−3 → S n−3,

where the first map is the restriction of H−1
3 to ∂h3 × S n−3, the second map is the

restriction of e3 to q−1
f (∂h3), and the last map is the projection to the second factor.
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Note that ρ1 induces an orientation preserving diffeomorphism of {w} × S n−3 onto
S n−3 for every w ∈ ∂h3.

Recall that Diff+(S n−3) is homotopy equivalent to SO(n − 2) (see [9, 17]);
hence, it is 2-connected. Therefore, the continuous map ρ1 extends to a con-
tinuous map ρ2 : h3 × S n−3 → S n−3 which induces an orientation preserving
diffeomorphism of {w} × S n−3 onto S n−3 for every w ∈ h3. Then a smooth approx-
imation ρ3 : h3 × S n−3 → S n−3 of ρ2 such that ρ3|∂h3×S n−3 = ρ2|∂h3×S n−3 induces a
diffeomorphism of {w} × S n−3 onto S n−3 for every w ∈ h3. So we have a smooth
homeomorphism

ρ4 : h3 × S n−3 → h3 × S n−3

given by ρ4(x, y) = (x, ρ3(x, y)) for x ∈ h3 and y ∈ S n−3.
Since the derivative of ρ4 at each point is a linear isomorphism, by the inverse

function theorem, we have that ρ4 is a diffeomorphism. Then the composition

e4 : q−1
f (h3)(= h3 × S n−3)→ h3 × S n−3 → h3 × Rn−2

is an embedding lift of q f |q−1
f (h3) with respect to the restriction of P to h3 × Rn−2,

where the first map is ρ4 and the second map is the product of the identity map of
h3 and the standard inclusion. Since e3 and e4 coincide on the intersection of their
sources, by gluing the two maps e3 and e4, we have an embedding lift of q f with
respect to P. This completes the proof. �

Remark 4.3. Note that the key ingredient in the proof of Theorem 4.1 is that
π2Diff+(S n−3) = 0 for n = 5, 6. On the other hand, Crowley–Schick [6] proved
that for every j ≥ 1, we have

π2Diff(D8 j−1, ∂) , 0,

where Diff(D8 j−1, ∂) is the space of diffeomorphisms of D8 j−1 which are the iden-
tity on some neighborhood of ∂D8 j−1. It is known (see Proposition 4 of Appendix
in [5], for example) that the following homotopy equivalence holds:

Diff+(S n) ' Diff(Dn, ∂) × SO(n + 1).

Therefore, the result mentioned above implies that

π2(Diff+(S 8 j−1)) , 0,

for every j ≥ 1. This means that the method in the proof of Theorem 4.1 does not
work in higher dimensions in general.

As a consequence of Theorem 4.1, we have the following result.
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Theorem 4.4. Let f : M → R3 be a special generic map of a closed simply
connected n-dimensional manifold with n = 5, 6 and let π : Rn+1 → R3 be the
standard projection. Then the following conditions are all equivalent to each
other:

1. There exists an embedding F1 : M → Rn+1 such that π ◦ F1 = f .

2. There exists an immersion F2 : M → Rn+1 such that π ◦ F2 = f .

3. The singular point set S ( f ) of f has a trivial normal bundle in M.

4. The manifold M is spin.

Proof. Assume that there exists an immersion F : M → Rn+1 such that π ◦ F = f .
Then the map F′ : M → Rn+1 × R defined by F′(x) = (F(x), 0), x ∈ M, is also an
immersion lift of f . Therefore, by Proposition 3.1, we conclude that the singular
point set S ( f ) of f has a trivial normal bundle in M.

Now, suppose that S ( f ) has a trivial normal bundle in M. Then by Theo-
rem 4.1, we get an embedding lift e : M → W f × R

n−2 of q f . Since W f can
be embedded into Rn−2, by using an embedding ē : W f → R

n−2 and the immer-
sion f̄ : W f → R

3, we get an embedding G = ( f̄ , ē) : W f → R
n+1 such that

G is an embedding lift of f̄ with respect to the natural projection Rn+1 → R3.
Since W f is compact, there exists an embedding H : W f × R

n−2 → Rn+1 such that
H(x, 0) = G(x) for every x ∈ W f and the diagram

W f × R
n−2

P
��

H // Rn+1

π

��
W f

f̄
// R3

commutes. Then the composition of e with H is an embedding lift of f .
It is trivial that the first condition implies the second one. Thus, the first three

conditions in Theorem 4.4 are equivalent to each other.
Saeki–Takase proved that the second and the last conditions are equivalent to

each other (see Theorem 6.1 in [15]). This completes the proof of Theorem 4.4.
�

Remark 4.5. Note that we can directly prove that items 3 and 4 in Theorem 4.4 are
equivalent to each other without using a result of Saeki–Takase [15] as follows.
Recall that M is diffeomorphic to ∂E for some linear Dn−2-bundle E over W f by
Theorem 2.2. Since W f is simply connected, we have

W f � W1\W2\ · · · \Wb,
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where the symbol “\” denotes boundary connected sum, Wi � S 2 × [0, 1] (i =

1, 2, . . . , b) and b ≥ 0 (when b = 0, W f � D3). Let Ei (i = 1, 2, . . . , b) be the
Dn−2-bundle over Wi induced from the inclusion Wi ↪→ W f . Then, we have

M � ∂E1 ] ∂E2 ] · · · ] ∂Eb.

Note that the manifold ∂Ei is the total space of an S n−2-bundle over S 2. This is a
spin manifold if and only if the bundle Ei is trivial. Therefore, the manifold M is
spin if and only if all the bundles Ei are trivial. Finally, it is easy to see that this
last condition is equivalent to the triviality of the normal bundle ν f of S ( f ) in M.

The following proposition shows that for n ≥ 4, there exist special generic
maps of closed simply connected n-dimensional manifolds into R3 with trivial
normal bundle of the singular point set. By virtue of Theorem 4.4, such special
generic maps for n = 5, 6 can be lifted to embeddings in codimension one.

Proposition 4.6. For n ≥ 3, there is a special generic map f : S n−2 × S 2 → R3

such that the normal bundle ν f of S ( f ) in S n−2 × S 2 is trivial.

Proof. Let h : S n−2 → R be the Morse function given by

h(x1, x2, . . . , xn−1) = xn−1

for (x1, x2, . . . , xn−1) ∈ S n−2 ⊂ Rn−1. Then the composition

S n−2 × S 2 h×id
−−−→ R × S 2 → R3

is a special generic map, where id is the identity map of S 2, and the last map is the
composition of a trivialization of the open tubular neighborhood of S 2 in R3 with
the inclusion map. Note that S ( f ) = {(0, 0, . . . , 0,±1)} × S 2 is the disjoint union
of two 2-spheres and it has trivial normal bundle in S n−2 × S 2. �

On the other hand, the following proposition implies that there exist special
generic maps of closed simply connected n-dimensional manifolds into R3 with
non-trivial normal bundle of the singular point set. By virtue of Theorem 4.4, such
special generic maps for n = 5, 6 cannot be lifted to embeddings in codimension
one.

Proposition 4.7. For n ≥ 4, there is a special generic map f : M → R3 such
that the normal bundle ν f of S ( f ) in M is non-trivial, where M is a non-trivial
S n−2-bundle over S 2.

Proof. For real numbers t with 0 ≤ t ≤ 2π, we define the diffeomorphism gt :
S n−2 → S n−2 by

gt(x1, x2, . . . , xn−1) = (x1 cos t − x2 sin t, x1 sin t + x2 cos t, x3, x4, . . . , xn−1)
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for (x1, x2, . . . , xn−1) ∈ S n−2. Note that we have g0 = g2π. By using this map, we
define the diffeomorphism Φ : S n−2 × ∂D2 → S n−2 × ∂D2 by

Φ(x, (cos t, sin t)) = (gt(x), (cos t, sin t))

for x ∈ S n−2 and 0 ≤ t ≤ 2π. Pasting S n−2 × D2 and its copy along the boundary
by Φ, we obtain the closed n-dimensional manifold M. It is easy to see that M is
a non-trivial S n−2-bundle over S 2.

Now, we define the special generic map h : S n−2 → R by

h(x1, x2, . . . , xn−1) = xn−1

for (x1, x2, . . . , xn−1) ∈ S n−2. Then we have

(h × id) ◦ Φ = h × id : S n−2 × ∂D2 → R × ∂D2.

Therefore, the map

(h × id) ∪ (h × id) : M = (S n−2 × D2) ∪Φ (S n−2 × D2)→ (R × D2) ∪ (R × D2)

is well-defined, where

(R × D2) ∪ (R × D2) = R × S 2

is the space obtained by pasting R × D2 and its copy along the boundary by the
identity map. So we obtain the composition map

f : M −→ R × S 2 → R3,

where the last map is the composition of a trivialization of the open tubular neigh-
borhood of S 2 in R3 with the inclusion map. Since the second Stiefel-Whieney
class of ν f does not vanish, we see that the map f : M → R3 is a special generic
map and that S ( f ) is the disjoint union of two 2-spheres with non-trivial normal
bundle in M �

The map f in the following proposition cannot be lifted to an embedding into
Rn+1 by a result in [15]. So Theorems 4.1 and 4.4 do not hold if we drop the
condition that M should be simply connected.

Proposition 4.8. For n = 5, 6, there exists a special generic map f : M → R3 of
a closed orientable n-dimensional manifold M such that the normal bundle ν f of
S ( f ) in M is trivial and that M is neither spin nor simply connected.
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Proof. Let π1 : E1 → S 2 be the projection of the non-trivial orientable linear Dn−2-
bundle over S 2 (such a bundle uniquely exists up to isomorphism since π1(SO(n−
2)) = Z2). Then the product map π2 = π1 × idS 1 : E1 × S 1 → S 2 × S 1 is a
non-trivial orientable linear Dn−2-bundle over S 2 × S 1. Set W = S 2 × S 1 \ Int D1,
E = π−1

2 (W) and π = π2|E : E → W, where D1 is a 3-ball in S 2 × S 1. Then,
π : E → W is a non-trivial orientable linear Dn−2-bundle over W. It is clear that
W can be immersed in R3. Then, by using the same method used in the proof of
[13, Proposition 2.1], we can construct a special generic map f : M → R3 such
that M = ∂E, W f = W and q f : M → W f coincide with π over q−1

f (C) for some
collar neighborhood C of ∂W f in W f . Note that the normal bundle ν f of S ( f ) in
M is trivial, since π : E → W is trivial over ∂W. This completes the proof. �

The following theorem is proved by a method similar to that used in the proofs
of Theorems 4.1 and 4.4.

Theorem 4.9. Let f : M → R3 be a special generic map of a closed orientable
n-dimensional manifold, n ≥ 5. Then the quotient map q f : M → W f lifts to an
embedding into W f ×R

k−3 with respect to the projection P : W f ×R
k−3 → W f if the

normal bundle ν f of the singular point set S ( f ) in M is trivial and k ≥ (3n + 3)/2.

We need the following proposition to prove Theorem 4.9.

Proposition 4.10 (Budney, [2]). The embedding space Emb(S n,Rk) is min{2k −
3n − 4, k − n − 2}-connected if k ≥ n + 2 ≥ 3.

Proof of Theorem 4.9. By Proposition 4.10, since k ≥ (3n + 3)/2 and n ≥ 5, we
have that the embedding space Emb(S n−3,Rk−3) is 2-connected. This is a key to
proving Theorem 4.9.

We may assume that M is connected. Then, by Theorem 2.1, the quo-
tient space W f has the structure of a smooth compact orientable connected 3-
dimensional manifold with non-empty boundary. So we have a handle decompo-
sition of W f as follows:

W f = (∂W f × [0, 1]) ∪
( s⋃

i=1

h1
i

)
∪

( t⋃
j=1

h2
j

)
∪ h3,

where h1
i , i = 1, 2, . . . , s, are 1-handles, h2

j , j = 1, 2, . . . , t, are 2-handles, and h3 is
a 3-handle. Let C(= ∂W f × [0, 1]) be the collar neighborhood of ∂W f in W f . Here,
∂W f corresponds to ∂W f × {0}.

By using the same method used in the proof of Theorem 4.1, we can construct
an embedding lift e1 of q f |q−1

f (C) with respect to P|C×Rk−3 .
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We will extend e1 to an embedding lift of the restriction of q f to q−1
f (C ∪ h1

1)
with respect to the restriction

P|(C∪h1
1)×Rk−3 : (C ∪ h1

1) × Rk−3 → C ∪ h1
1.

Note that h1
1 is identified with D2 × D1 and is attached to C along D2 × S 0.

Since the 1-handle h1
1 is contractible, we have a bundle trivialization

H1,1 : q−1
f (h1

1)→ h1
1 × S n−3.

We have two end points (0,±1) of the core of the 1-handle h1
1 = D2 × D1. Then,

we define the embeddings φ± : S n−3 → Rk−3 as the composition

S n−3 = {(0,±1)} × S n−3 → q−1
f ({(0,±1)})→ {(0,±1)} × Rk−3 = Rk−3,

where the first map is H−1
1,1 restricted to {(0,±1)} × S n−3, the second map is e1

restricted to q−1
f ({(0,±1)}) and the double-sign corresponds in the same order.

Since Emb(S n−3,Rk−3) is connected, there is a continuous path between φ− and
φ+ in Emb(S n−3,Rk−3). This induces a topological embedding

q−1
f ({0} × D1)(= ({0} × D1) × S n−3)→ ({0} × D1) × Rk−3,

which is an embedding on each S n−3-fiber. This coincides with

e1|q−1
f (D2×{−1,+1}) : q−1

f (D2 × {−1,+1})→ (D2 × {−1,+1}) × Rk−3

over q−1
f ({0}×{−1,+1}). Therefore, by gluing the two maps, we have a topological

embedding
q−1

f (X)(= X × S n−3)→ X × Rk−3,

where X = (D2 × {−1,+1}) ∪ ({0} × D1). By composing this with the natural
projection, we have a continuous map

φ1 : q−1
f (X)(= X × S n−3)→ Rk−3.

Let φ2 : h1
1×S n−3 → Rk−3 be the continuous map defined by φ2(x, y) = φ1(r1(x), y)

for x ∈ h1
1 and y ∈ S n−3, where r1 : h1

1 → X is a deformation retract. Then a
smooth approximation φ3 : h1

1 × S n−3 → Rk−3 of φ2 such that φ3|D2×{−1,+1}×S n−3 =

φ2|D2×{−1,+1}×S n−3 induces a smooth embedding of {x} × S n−3 into Rk−3 for every
x ∈ h1

1, since so does φ2. Consequently, we have a smooth injection

φ4 : h1
1 × S n−3 → h1

1 × R
k−3

defined by φ4(x, y) = (x, φ3(x, y)), (x, y) ∈ h1
1 × S n−3. Since the derivative of φ4 at

each point is injective and h1
1 × S n−3 is compact, we have that φ4 is an embedding.

17



Put e2 = φ4. Then e2 is an embedding lift of q f |q−1
f (h1

1) with respect to P restricted to
h1

1 ×R
k−3. Since e1 and e2 coincide on the intersection of their sources, by glueing

the two maps e1 and e2, we have an embedding lift of q f |q−1
f (C∪h1

1) with respect to P
restricted to (C ∪ h1

1) × Rk−3.
By iterating this procedure, we construct an embedding lift e3 of q f restricted

to q−1
f (C ∪ (

⋃s
i=1 h1

i )) with respect to P restricted to (C ∪ (
⋃s

i=1 h1
i )) × Rk−3.

Put W1 = C∪(
⋃s

i=1 h1
i ). We will extend e3 to an embedding lift of the restriction

of q f to q−1
f (W1 ∪ h2

1) with respect to the restriction

P|(W1∪h2
1)×Rk−3 : (W1 ∪ h2

1) × Rk−3 → W1 ∪ h2
1.

Note that h2
1 is identified with D1 × D2 and is attached to W1 along D1 × S 1.

Since the 2-handle h2
1 is contractible, we have a bundle trivialization

H1,2 : q−1
f (h2

1)→ h2
1 × S n−3.

We have the circle {0} × S 1 as the core of the attaching annulus of the 2-handle
h2

1 = D1 × D2. Then, we define the embedding ψt : S n−3 → Rk−3 (t ∈ S 1) as the
composition

S n−3 = {(0, t)} × S n−3 → q−1
f ({(0, t)})→ {(0, t)} × Rk−3 = Rk−3,

where the first map is H−1
1,2 restricted to {(0, t)} × S n−3 and the second map is e3

restricted to q−1
f ({(0, t)}). The family {ψt}t∈S 1 induces a continuous map ψ0 of S 1

into Emb(S n−3,Rk−3).
Since π1Emb(S n−3,Rk−3) = 0, the map ψ0 extends to a continuous map of D2

into Emb(S n−3,Rk−3). This induces a topological embedding

q−1
f ({0} × D2)(= ({0} × D2) × S n−3)→ ({0} × D2) × Rk−3,

which is an embedding on each S n−3-fiber. This coincides with

e3|q−1
f (D1×S 1) : q−1

f (D1 × S 1)→ (D1 × S 1) × Rk−3

over q−1
f ({0} × S 1). Therefore, by gluing the two maps, we have a topological

embedding
q−1

f (Y)(= Y × S n−3)→ Y × Rk−3,

where Y = (D1 × S 1) ∪ ({0} × D2). By composing this with the natural projection,
we have a continuous map

ψ1 : q−1
f (Y)(= Y × S n−3)→ Rk−3.
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Let ψ2 : h2
1×S n−3 → Rk−3 be the continuous map defined by ψ2(x, y) = ψ1(r2(x), y)

for x ∈ h2
1 and y ∈ S n−3, where r2 : h2

1 → Y is a deformation retract. Then a smooth
approximation ψ3 : h2

1 × S n−3 → Rk−3 of ψ2 such that ψ3|D1×S 1×S n−3 = ψ2|D1×S 1×S n−3

induces a smooth embedding of {x}×S n−3 into Rk−3 for every x ∈ h2
1, since so does

ψ2. Consequently, we have a smooth injection

ψ4 : h2
1 × S n−3 → h2

1 × R
k−3

defined by ψ4(x, y) = (x, ψ3(x, y)), (x, y) ∈ h2
1 × S n−3. Since the derivative of ψ4 at

each point is injective and h2
1 × S n−3 is compact, we have that ψ4 is an embedding.

Put e4 = ψ4. Then e4 is an embedding lift of q f |q−1
f (h2

1) with respect to P restricted to
h2

1 ×R
k−3. Since e3 and e4 coincide on the intersection of their sources, by glueing

the two maps e3 and e4, we have an embedding lift of q f |q−1
f (W1∪h2

1) with respect to
P restricted to (W1 ∪ h2

1) × Rk−3.
By iterating this procedure, we construct an embedding lift e5 of q f restricted

to q−1
f (W1 ∪ (

⋃t
j=1 h2

j)) with respect to P restricted to (W1 ∪ (
⋃t

j=1 h2
j)) × R

k−3.
Now, let us extend the lift e5 to the whole W f . Since the 3-handle h3 is con-

tractible, we have a bundle trivialization

H3 : q−1
f (h3)→ h3 × S n−3.

Then, we define the continuous map ρ1 : ∂h3 × S n−3 → Rk−3 by the composition

∂h3 × S n−3 → q−1
f (∂h3)→ ∂h3 × Rk−3 → Rk−3,

where the first map is the restriction of H−1
3 to ∂h3 × S n−3, the second map is the

restriction of e5 to q−1
f (∂h3) and the last map is the projection.

Recall that π2Emb(S n−3,Rk−3) = 0. Therefore, the continuous map ρ1 extends
to a continuous map ρ2 : h3 × S n−3 → Rk−3 which induces a smooth embedding
into Rk−3 on each S n−3-fiber. Then a smooth approximation ρ3 : h3 × S n−3 → Rk−3

of ρ2 such that ρ3|∂h3×S n−3 = ρ2|∂h3×S n−3 induces a smooth embedding on each S n−3-
fiber, since so does ρ2. So we have a smooth injection

ρ4 : h3 × S n−3 → h3 × Rk−3

defined by ρ4(x, y) = (x, ρ3(x, y)) for x ∈ h3 and y ∈ S n−3.
Since the derivative of ρ4 at each point is injective and h3×S n−3 is compact, we

have that ρ4 is a smooth embedding. Put e6 = ρ4. Then, since e5 and e6 coincide
on the intersection of their sources, by gluing the two maps e5 and e6, we have an
embedding lift of q f with respect to P. This completes the proof. �

As a consequence of Theorem 4.9, by using the same method as that in the
proof of Theorem 4.4, we have the following result.
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Theorem 4.11. Let f : M → R3 be a special generic map of a closed orientable
n-dimensional manifold, n ≥ 5. Then f lifts to an embedding into Rk with respect
to the natural projection π : Rk → R3 if the normal bundle ν f of the singular point
set S ( f ) in M is trivial and k ≥ (3n + 3)/2.

Furthermore, Theorem 4.11 can be generalized as follows.

Theorem 4.12. Let f : M → Rp be a special generic map of a closed orientable
n-dimensional manifold with n > p ≥ 1. Then f lifts to an embedding into Rk

with respect to the natural projection π : Rk → Rp if the normal bundle ν f of the
singular point set S ( f ) in M is trivial and k ≥ max{(3n + 3)/2, n + p + 1}.

This is proved by the (almost) same method as that in the proofs of The-
orems 4.9 and 4.11. The key ingredient to proving Theorem 4.12 is that
Emb(S n−p,Rk−p) is (p − 1)-connected.
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