
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Development of a Thread Scheduler for Global
Aggregation of Sibling Threads

Yamada, Satoshi
九州大学大学院システム情報科学府情報知能工学専攻

Kusakabe, Shigeru
九州大学大学院システム情報科学研究院情報知能工学部門

https://doi.org/10.15017/1654544

出版情報：九州大学大学院システム情報科学紀要. 13 (2), pp.69-74, 2008-09-26. 九州大学大学院シス
テム情報科学研究院
バージョン：
権利関係：

九州大学大学院

システム情報科学紀要

第13巻 第2号 平成20年9月

Research Reports on Information Science and

Electrical Engineering of Kyushu University

 Vol.13, No.2, September 2008

Development of a Thread Scheduler for Global Aggregation of Sibling Threads

 Satoshi YAMADA* and Shigeru KUSAKABE**

 (Received June 15, 2008)

Abstract: Chip-level multiprocessors (CMP) have multiple processing cores (Cores) and gen-
erally have their cache shared by each Core. On CMP, the combination of threads running
simultaneously on different Cores as well as the order of threads running on one Core influences
the utilization of the cache. We consider that an OS level thread scheduler for concurrent and

parallel thread execution is the key to utilize the cache and reduce the memory accesses. Previ-
ously, we have developed a thread scheduler which recognizes the memory address space of each
thread for concurrent execution and investigated its effect on a single processor environment. In
this paper, we demonstrate the extension of our previous scheduler for parallel execution on CMP.
Our scheduler is composed of the independent schedulers per Core and is able to let them coop-
erate with little cost. According to our investigation with Sysbench benchmark, this extension
enhances the effect of our previous scheduler and results in the more reduction of the execution
time.

Keywords: Thread scheduling, Multi-threaded application, Parallel execution, Cache misses,
Chip Multi-Processing, Memory address space

 1. Introduction

 The memory access latency remains one of the
major bottlenecks on CMP as well as in con-
ventional single processors1)'4) . CMP has multi-
ple Cores and each Core generally shares a cache,
mostly the level 2 cache (L2 cache). Therefore, the
data contention occurs on the L2 cache and de-
grades the performance when simultaneously run-
ning threads on different Cores consume a large
amount of different memory area. Therefore, the
key to utilize the L2 cache is not only the order of
threads executed on each Core but also the combi-
nation of threads executed simultaneously on differ-
ent Cores on CMP4> . In general, the combination
and the order of threads is controlled by a thread
scheduler inside Operating System (OS). To utilize
the L2 caches, an efficient OS level thread scheduler
is necessary 1),4)

 Previously, we have developed a thread scheduler
for the efficient concurrent execution on a commod-
ity single processor2> . Our scheduler gives higher
priority for threads sharing the same address space
(sibling threads) and executes sibling threads in se-
quence. We expect our scheduling is effective be-
cause we presume that the sibling threads share
a certain amount of memory area to be accessed

* Department of Computer Science and Communication

Engineering, Graduate Student

** Department of Computer Science and Communication

Engineering

(working set). If we sequentially execute the threads
sharing their working set, we can expect that the

previously executed threads leave their working set

on the L2 cache, which will be accessed by the fol-

lowing threads. Therefore, the following threads

can reduce the amount of working set to load from

the memory. We call this scheduling as "time ag-

gregation" . We have confirmed the efficiency of the

time aggregation scheduler in reducing the memory

access frequencies with little cost.

 In this paper, we extend the idea of the time ag-

gregation to "global aggregation" and investigate
its effect. The global aggregation scheduler exe-

cutes the sibling threads nearly simultaneously on

different Cores of CMP. As we presume that the sib-

ling threads share the working set, we expect that

the data contention is mitigated by the global ag-

gregation and the L2 cache misses decrease. As a
matter of course, accesses to the same working set

from different Cores can cause the data conflicts and

the data coherence problem, which could have the

processor stall. However, we presume the utiliza-
tion of the L2 cache to reduce the memory access

is the top priority because of the previous research

indicationl),3),4)

 As we mention above, our scheduler focuses on

the memory address space of each thread. There-

fore, our scheduler only works for applications us-

ing multiple OS level threads and it seems that

the range of application is limited. However, many

modern applications have become multi-threaded in

accordance with the spread of Simultaneous Multi-
Threaded (SMT) and CMP. In addition, many lan-

guages such as Java, Perl, Ruby, Python, and
Erlang now support the development of multi-
threaded applications. Moreover, we have the com-

piler support to develop multi-threaded applications
such as OpenMP, MPI, and Open64. Therefore, we
expect we will have more multi-threaded applica-
tions in the future and our scheduler will be effective
in more general cases.

 The rest of the paper is organized as follows. Sec-
tion 2. introduces several related works and clarifies

the position of our research. Section 3. explains the
implementation of our scheduler. Section 4. evalu-
ates the efficiency of our scheduler with "memory"

program in Sysbench benchmark suite5). Section 5.
concludes the paper.

 2. Related Works

 The utilization of many mechanisms, such as
caches, registers, pipelines, etc., influences the per-
formance of a parallel execution. An advantageous

thread scheduling is achievable if the OS could ob-
tain the information of how each thread uses those

mechanisms before scheduling the next thread. In

practice, the detailed behavior of a thread is plat-
form specific and the OS cannot obtain the informa-
tion beforehand. As we introduce later, it is popular
to sample the information of each thread during its

execution to guess the succeeding behavior of the
threads. However, sampling too much information
can be significantly large cost and degrade the per-
formance. Thus, an efficient thread scheduling is
a matter of balance between the cost of sampling
information and the effect from the scheduling.

 The approach of Fedoroval) is to reduce the over-
flow of the L2 cache. They sample the size of actual
memory space consumed by each thread during its
execution. According to this sampled information,
the OS selects the group of threads whose sum of
the memory consumption size would be within the

L2 cache size. Our approach also aims to reduce the
L2 cache misses. However, our approach does not
sample the information of each thread during its ex-
ecution. Our scheduler only recognizes the memory
address spaces, hence the mechanism of our schedul-
ing is simple and the cost of the scheduling is small.

 The approach of Ogawa4) also focuses on the L2
cache misses on SMT. They define the "affinity" of
threads as how much working set each thread shares
with other threads. This "affinity" is calculated by
counting the actual L2 cache misses during the exe-

cution of each thread. The OS scheduler selects the
combination of threads with high "affinity" and ex-
ecute them simultaneously on SMT. Although their
thread scheduler is similar to ours in that it is ef-
fective when one thread shares the working set with
others, our scheduler does not sample the informa-
tion of the threads during their execution.

 The basic idea of our scheduler is similar to that
of Chen'. Their scheduling idea is to run the
threads sharing the same working set simultane-
ously on different Cores of CMP. To recognize if a
thread is sharing the same working set with others,
they analyze the applications and schedule threads
statically. They logically certify the efficiency of
their scheduling and also demonstrate the effect on
their simulator. The difference from our work is
that our scheduler works dynamically and does not
require statical analysis of applications. Moreover,
our research investigates the efficiency of our sched-
uler on a real system with CMP.

 3. Thread Scheduler for Global Aggre-
 gation of Sibling Threads

 We implement our scheduler by modifying Com-
pletely Fair Scheduler (CFS) in Linux. We explain
CFS first in Section 3.1. Next, we show the imple-
mentation of our scheduler in Section 3.2.

 3.1 Completely Fair Scheduler
 The thread scheduler in Linux is altered from ker-

nel 2.6.23 and named as Completely Fair Sched-
uler. One of the most distinct changes from the
previous scheduler is the policy of setting the prior-
ity for each thread. The previous Linux scheduler,
so called vanilla scheduler, sets the static priority
based on the nice value and calculates the addi-
tive dynamic priority from the sleeping time of each
thread. In CFS, the scheduler counts the execution
time of each thread in nanoseconds and calculates
the priority as "vruntime" based on the execution
time. CFS sets the higher priority for the threads
with less vruntime to accomplish the fair usage of
CPU among the threads. The runqueue of CFS is
composed of Red-black tree, where each node rep-
resents the thread and the value of each node rep-
resents the vruntime of each thread. The leftmost
node in the runqueue has the smallest vruntime and
should be scheduled next by CFS. The vruntime of
a thread is updated during its execution and the
structure of the runqueue is updated when a thread
is enqueued. This runqueue exists per Core and
independent schedulers work on different Cores.

 CFS does not recognize the memory address

space of each thread because its efficiency is not

well investigated yet. We assume we will have more

multi-threaded applications as we mention above.

We have confirmed that considering the memory

address space can be effective in executing multi-

threaded applications. Therefore, we decide to

modify CFS to recognize the memory address space.

We show the implementation of our scheduler in

Section 3.2.

 3.2 Implementation

 First, we show the implementation of the time

aggregation in Section 3.2.1. Next, we show the ex-

tension to achieve the global aggregation in Section

3.2.2.

 3.2.1 Time Aggregation

 The basic idea of implementing the time aggrega-

tion in CFS is similar to our previous implementa-

tion in vanilla scheduler2). First, we insert a flag in

the thread structure to recognize if the thread has

the sibling threads or not. When a thread creates

a sibling thread, the OS sets the flag and link the

thread with the list of its sibling threads. In the

previous implementation of the time aggregation in
vanilla scheduler, we just link the enqueued sibling

thread at the end of the list. In case of CFS, we

create the list of sibling threads according to the

order of the vruntime of each thread. We show the

example of our implementation in Fig. 1.

 Figure 1 shows the runqueue of CFS and the

additional links of the sibling threads for the time

aggregation. The circles in Fig. 1 represents the

threads. Each thread in the runqueue is linked with

the solid lines. The numbers in the threads show

the vruntime. The currently executed thread A is

dequeued from the runqueue. Notice the vruntime

of thread A is increased during its execution and

is now more than that of the leftmost node. The

pattern of the node represents the memory address
space. The color of red or black in Red-black tree is

ignored. We link the sibling threads in the order of

their vruntime and the link is shown with the dotted

lines. The link of the sibling threads begins with the

structure of the memory address space, mm_struct.

When we enqueue a thread X with vruntime of 17,

we look for the point to link the thread with the

list of its sibling threads. In case of thread X, it

has the same memory address space with thread D

and E. According to its vruntime, thread X is linked

between thread D and E.

 After executing thread A, CFS chooses thread B

as the next thread. Our scheduler for the time ag-

gregation recognizes thread C as another candidate.
We set the bonus vruntime for the time aggregation

(time_bonus) in advance and calculate the expres-
sion below (Vrun_Z shows the vruntime of thread
Z).

Vrun_B > Vrun_C — time_bonus(1)

 If the expression (1) is true, then we choose thread

C. If we set the bonus vruntime more than 6, we
choose thread C as the next thread. Otherwise, we
choose thread B. We can also tune the vruntime
manually using a system call we implement.

Fig. 1 Implementing the time aggregation in CFS.

 3.2.2 Global Aggregation
 We extend the idea of the time aggregation

to accomplish the global aggregation. First, we
run independent schedulers per Core as CFS does

and each scheduler runs for the time aggrega-
tion. When the scheduler on Core 0 finds the
chance of the time aggregation, it sets the pointer

(global_mm) to its memory address space of those
sibling threads. Otherwise, global_mm is NULL.

Only one global_mm exists per OS. The schedulers
on the other Cores can only refer to global_mm.
When global_mm is set, the other schedulers look
for the sibling threads with the memory address
space of global_mm from their own runqueue. If
there exists a sibling thread, the scheduler consid-

ers the thread as the third candidate with bonus
vruntime. We show the example in Fig. 2.

 Figure 2 shows the example on a dual core plat-
form. Thread A is running on Core 0 and thread E
is running on Core 1. Threads enqueued into each
runqueue is shown in the order of their vruntime

from the left. In other words, thread B on Core 0
and thread F on Core 1 are to be scheduled by CFS.

After executing thread A on Core 0, thread B and
thread C are the candidates to be scheduled next
because thread C is a sibling thread of thread A. If
thread C is scheduled, the scheduler on Core 0 sets

 global_mm to the memory address space of thread
A and C (solid arrow). On Core 1, the scheduler
checks the global_mm in scheduling (dotted arrow).
After executing thread E, thread F, G, and I are the
candidates because thread G is a sibling thread of
thread E and thread I is a sibling thread of thread
C. Thread I has the bonus vruntime against thread
F (global_bonus) and thread G (global_time_bonus).
If thread I satisfies the two equations below, thread
I is scheduled after thread E.

Vrun_F > Vrun_I — global_bonus(2)

Vrun_G > Vrun_I — global_time_bonus (3)

 Thus, our global aggregation scheduler can exe-
cute the sibling threads nearly simultaneously on
different Cores.

Fig. 2 Implementing the global aggregation in CFS.

 4. Experimental Evaluation

 We evaluate the effect of our scheduler with
"memory" program in Sysbench benchmark suite5) .
The specification of our experimental platform
is shown in Table 1. When we run "mem-
ory" programs, we apply several combinations of
bonus vruntime. We express the combinations of
bonus vruntime as (time_bonus, global_time_bonus,
global_bonus). We try (0, 0, 0), (4K, 0, 0), (4K, 4K,
4K), (5M, 0, 0), and (5M, 5M, 5M). The analysis
of using different values for global_time_bonus and
global_bonus is our future work.

 In this Section, we explain "memory" first. In
Section 4.2, we show the result in terms of the exe-
cution time, the fairness, and the L2 cache misses.

Table 1 Specification of our experimental platform.

 Processor Intel Core 2 Duo
L2 Cache Size / Latency 2 MB / 14 ns
Memory Size / Latency 1 GB / 149 ns

 4.1 "memory" program in Sysbench
 In "memory" program, a specified number of

threads are created to access a specified amount of
memory. Sysbench provides two types of memory

access, "read", reading a value from an address, and
"write , writing a value to an address. We show the
outline of "memory" program in Fig. 3. Each ar-
row represents the memory access of each thread.
This access is repeated until the total access size
of every thread exceeds a specified size. We mea-

sures the execution time for the threads to access
this specified size of memory.

 In this paper, we create 100 threads and let them
access the memory area of 50GB in total. We ex-

periment both "read" and "write" accesses. The de-
fault "memory" program lets one thread execute un-

til it expires its quantum time, which makes it hard
to understand the relationship with memory access
size and the effect of our scheduler. Therefore, we
modify "memory" program to let a thread yield af-

ter accessing a specified memory block size. When
a thread yields, its vruntime is recalculated and the
thread is enqueued again. We use 32KB, 512KB,
1.5MB, 2MB, and 4MB for the memory block size.

 The threads in one "memory" program share the

same address space. To show the effect of our sched-
uler clearly, we run multiple "memory" programs
simultaneously. In this paper, we show the result
when we run 10 "memory" programs. We run this
experiment 10 times and calculate the average exe-
cution time. In addition, we compare the maximum

time of running "memory" program to investigate
the influence on the fairness. We also measure the
L2 cache misses using the performance monitoring
counter of the processor.

 4.2 Result

 We show the result on the average execution time

(average) and the maximum execution time (max)
of "memory" program in Fig. 4. In Fig. 4, the
X axis shows the memory block size and the access
type. The Y axis shows the ratio between CFS.

 First of all, we can see the increase of the cost of

our scheduler is at most 1 % when we see the aver-
age of (0, 0, 0) in most of the cases. Therefore, we
consider the cost of our scheduler is little.

Fig. 3 Outline of "memory" program in Sysbench.

 When the bonus vruntime are (4K, 0, 0) and (4K,
4K, 4K), their results are almost the same as that
of CFS. When we compare (4K, 0, 0) and (4K, 4K,
4K), the average in (4K, 4K, 4K) is always the same
or less than that in (4K, 0, 0). Therefore, we can say
that the global aggregation can enhance the effect
of the time aggregation.

 When we increase the bonus, the effect of the
global aggregation on the average becomes clear.
When we set the bonus as (5M, 0, 0), we can see
the effect of the time aggregation especially in 32KB
and 512KB. However, when we set the memory
block size as 1.5MB and more, the effect gradually
declines. We consider this is because the L2 cache
is overflowed by the access from each Core and the
memory access size of around 1.5MB is the bound-
ary that employing only the time aggregation could
be effective. On the other hand, when we set the
bonus as (5M, 5M, 5M), we can see more reduc-
tion of the average even in 2MB and 4MB of the
memory block size. We consider that the chance of
sharing the same working set on the different Cores
increases by the global aggregation, which results
in the more reduction of the average. Furthermore,
we can see these positive effect in both "read" and
"write" access. From this results, we expect that
our scheduler can be effective in broad range of ap-
plications.
 To discuss the fairness, we compare the max. The

max is not changed or decreased in most of the
cases. Therefore, we consider that the possibility
that our scheduler disturbs the fairness is low.

 We see the exceptionally large increase of the
average in (0, 0, 0) and the max when we apply
"write" access for 1.5MB. However, we do not find
any rational explanation about this increase and we
consider this is a platform specific result.

 We show the result of the L2 cache misses in Fig.
5. In Fig. 5, the X axis shows the memory block
size and the access type. The Y axis shows the ac-

tual L2 cache misses. We see the totally big decline
of the L2 cache misses in 512KB. We consider this
is a processor specific result and is not related to
our scheduler.

 First of all, the increase of the L2 cache misses
of bonus (0, 0, 0) is little. Therefore, we can say
that the cost of our scheduler is small. In case of
bonus (4K, 0, 0) and (4K, 4K, 4K), the effect is un-
stable. We consider this unstable result comes from
the short of the bonus value because we see more
stable effect in (5M, 0, 0) and (5M, 5M, 5M). As we
can see, the L2 cache misses in (5M, 5M, 5M) is the
smallest in every case we measure. Even when the
bonus (5M, 0, 0) can not result in distinct reduction
of the L2 cache misses in 4M, the global aggregation
reduces the L2 cache misses by 14 - 19 %. Thus, we
can say that the global aggregation scheduler en-
hances the effect of the time aggregation and is an
effective thread scheduler on CMP.

 5. Conclusion
 In this paper, we propose the global aggregation

of the sibling threads and investigate its effect. Ac-
cording to our measurements with "memory" pro-
gram in Sysbench, we show the global aggregation
is effective in reducing the execution time on CMP.
In addition, the global aggregation does not cause
the significant problems on the fairness, rather it re-
duces the execution time of all applications in most
of the cases.

 Our future work includes the investigation of effi-
ciency in more practical applications, such as multi-
threaded web servers and database servers. Apply-
ing to the large distributed system, such as Hadoop
is also included.

 References
 1) Alexandra Fedorova, et al., Throughput-Oriented

 Scheduling On Chip Multithreading Systems, Technical
 Report TR-17-04, Division of Engineering and Applied

 Sciences, Harvard University, 2004.
 2) Satoshi Yamada, Shigeru Kusakabe, "Effect of Con-

 text Aware Scheduler on TLB", Proc. of Workshop on
Multi-Threaded Architectures and Applications, pub-

 lished in CD, 2008.
 3) Shimin Chen et al., "Scheduling Threads for Construc-

 tive Cache Sharing on CMPs" Proceedings of the nine-
 teenth annual ACM symposium on Parallel algorithms

 and architectures, pp. 105-115, 2007.
 4) Shugo Ogawa, Kei Hiraki, "A Speedup Technique with

 Scheduler Using Process Execution Information" Vol.46
 No.SIG 12 (ACS 11), pp. 161-169, 2005

 5) "SysBench: a system performance benchmark",
http://sysbench.sourceforge.net/

Fig. 4 Result of Executing 10 Sysbench.

Fig. 5 Result of the L2 cache misses,

