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Abstract: In this paper a novel predictive control design method is proposed. Using a modified 
subspace state-space identification algorithm, lifted state-space models for general dual-rate sys-
tems is identified from the input-output data. Based on the estimated lifted system matrices, we 
establish two predictors which realize the prediction of the output of general dual-rate systems. 
Then the predictors are applied to predictive control design subject to a linear quadratic cost 
function for general dual-rate systems. 
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 1. Introduction 
 Owing to the need arising in practical indus-

tries, there has been a steady stream of research on 
the topic of general dual-rate sampled-data control, 
mostly based upon optimal control theory. Some 
of the most popular contributions include the ref-
erences 1)'2). On the other hand, the developments 
had little impact on the process industry. During 
the last decade, the process control research com-
munity and industry have witnessed the emergence 
of a new control technique called model predictive 
control (MPC). Some good reviews of developments 
in MPC are in survey papers3)A). 

MPC designates a wide range of control algo-
rithms which make an explicit use of a process 
model in a cost function minimization to obtain the 
control signal. From the process plant model, pre-
dictors can be obtained ( for example, by solving 
Diophantine equations iteratively3)). The predic-
tors are used to obtain predictions of the plant out-
put which are used in the control design. Hence a 
model of the process plant is the crucial requirement 
for the predictive control design. 

 System identification techniques are the most 
popular methods to obtain a plant model based 
on the experimental data. Typical identification 
techniques include the classical least square (LS) 
method, the instrumental variables (IV) method, 
etc'. In the decade, Subspace State-Space IDentifi-
cation (4SID) methods, such as MOESP7), N4SID8), 
are attractive not only because of their numerical
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simplicity and stability, but also for their state-
space representation that is very convenient for op-
timal estimation, filtering and prediction. 

 Recently, the researchers and engineers use the 
experimental data in conjunction with various 4SID 
techniques to form predictors for predictions of the 
output of the plant. The predictors are then used 
with the predictive control design to synthesize the 
so-called subspace predictive control (SPC) law9). 
Although an SPC law is designed for a special class 
of dual-rate systems where the sampling frequency 
of the the plant input is M times that of the plant 
output m), it cannot be extended to the whole scope 
of dual-rate sampled-data systems. Because for 
such a system, the typical SPC law can be used 
directly without considering any constraints associ-
ated with most dual-rate sampled-data system13). 

 Therefore, we are motivated to perform SPC de-
sign for dual-rate systems. To explain why the 
SPC is used for dual-rate systems, the term 'model 
free' should be discussed. Model free denote that 
in stead of traditional explicit plant models, only 
the predictors obtained by subspace methods are 
used to predict the output (although model free is 
somewhat of a misnomer for that the predictors ob-
tained by subspace methods can be considered as 
a high order plant model, the terminology is re-
tained corresponding to previous literature). On 
the other hand, Dual-rate systems are a class of pe-
riodically time-varying (PTV) systems"), they are 
difficult to quantify by analytic modeling from first 

principles. Hereby, control problems with dual-rate 
sampled-data systems can receive the most benefit 
from model free attributes of the SPC. 

 It is well known that the SPC is only available to 
single-rate systems. However, as a class of PTV sys-



tems, an linear time-invariant(LTI) single-rate  iso-
morphism can be derived for general dual-rate sys-
tem by lifting technique. The isomorphism is the 
so-called lifted model. Unfortunately, typical 4SID 

type algorithms cannot handle the causality con-
straints raised by the lifting technique. Therefore, 
a modified 4SID algorithm is proposed to identify 
the lifted state-space models from dual-rate sam-

pled data. Based on the identified lifted system 
matrices, predictors are established to predict the 
dual-rate system output. With the predictors, the 

predictive control design is performed for general 
dual-rate systems. 

 The paper is organized as follows. Section 2 pro-
vides the problem formulation. The modified 4SID 

algorithm is provided in section 3. The predic-
tive control design is provided in section 4. Sec-
tion 5 provides numerical examples. Conclusions 
are stated in section 6. 

 2. Problem Statement

Fig. 1 A general dual-rate system.

 Consider a general dual-rate system depicted in 
Fig.1. Here u(kTi) is the input; ZOH is the 
zero order holder with period T1; Pc represents a 
linear time-invariant(LTI) continuous-time process 
with the following state-space representation: 

 ±(t) = Acx(t)+ Bu(t) (1) 
 y(t) = Cx(t) + Du(t) 

where x(t) E Rn u(t) E Rr , y(t) E Rm, Ac, Bc, C 
and D are the matrices of appropriate dimensions; 
ADC represents a sampler with period T2; The out-
put y(t) is sampled by a sampler ADC with period 
T2; The sampled output is corrupted by a stochas-
tic measurement noise v(kT2) which will be specified 
later; The measurement of the output is denoted by 
z(kT2). 
 All the samplers and zero order holders are syn-

chronized at time t = 0. For the general dual-
rate system, without loss of generality, it is as-
sumed that the sampling periods satisfy T1 pTb 
and T2 = qTb(p and q are coprime integers), where 
Tb E R and Tf pqTb are respectively the base 
period and the frame period"). 

 It is well known that most typical identifica-
tion algorithms and control laws are confined to

single-rate sampled-data system. However, to the 
m x r dual-rate system in Fig.1, one can associate 
a pm x qr LTI system with the frame period Tf. 
And, such an LTI system defines the dual-rate sys-
tem. Moreover, the LTI system preserves the alge-

braic and analytic properties of the dual-rate sys-
tem. This is the idea of lifting techniquell). The 
LTI system in the frame period Tf is called lifted 
system. 

 In order to obtain the lifted system in the frame 

period Tf, the dual-rate system input-output data 
are lifted. The lifted system input data can be ob-
tained by the q-fold lifting operator Lq11). Lq maps 
u(kTi) to u(kTf) (underline denotes lifting) as 

                   u(kTf) 
                  u(kTf + T1) 

u(kTf) Lqu(kTi) =(2) 

u(kTf + (q — 1)T1) 

where u(kTf) E Rrq. And L-q-11" maps u back to u. 
The lifting operator and the inverse lifting operator 
have the identities") 

LqLq = I, L L-1 = I 

Similarly, the real output, output measurement and 
noise of the lifted system are given as follows 

                 y(kTf) 
y(kTf + 1'2) 

y(kTf) = LpY(kT2) =(3) 

y(kTf +(p-1)T2) 
z(kTf) 
                   z(kTf + 7'2) 

z(kTf) Lpz(kT2) =(4) 

z(kTf + (p-1)7'2) 
v(kTf) 

v(kTf +T2) 
v(kTf) Lpv(kT2)(5) 

                                                                                                                            • v(kTf + (p — 1)T2) 

where y(kTf) ERmP,z(kTf) E Rmi) and v(kTf) E 
RrnP. 
  It is obvious that the system in Fig.2 is equiv-

alent to the dual-rate system in Fig.1. Then the 

part in the rectangle is the so-called lifted system. 
  Suppose the state-space representation of the 

lifted system is as follows 
 x((k + 1)Tf) = Aix(kTf) + Biu(kTf) (6) 

y(kTf) = Cix(kTf)+ Diu_(kTf) 
where A1 E R"n ,B1 E R"rq,C1 E RmP" and 

E RrnP"q Replacing the lifted output y(kTf)



Fig. 2 Lifted system.

by the lifted noise corrupted output measurement 
 z(kTf) and omitting Tf, we have 

 x(k + 1) = Aix(k) + Biu(k) (7) 
 z(k) = Cix(k) + Dru(k) + L(k) 

Note that (A1, B1, C1, D1) in (6) can be derived from 
the continuous-time state-space model (1)11). 
Remark 1Notice that the output element y(kT f + 
(a — 1)T2) (a = 1, 2, ... ,p) in y(kTf) depends on the 
input element u(kTf + (b —1)T1) = 1, 2, .. , in 
u(kTf) when kT f + (a — 1)T2 > kT f + (b — 1)T1. 
This is the so-called causality constraints of 'the 
lifted state-space model. To ensure the causality 
constraints, the feedthrought term DI should be a 
block lower triangular structure". 

 Because of the causality constraints, the typical 
4SID type algorithm cannot be used to identify the 
lifted state-space model (6) directly. 

 For a dual-rate system in Fig.1, the objective of 
this paper is two-fold: 

 • Identify the lifted state-space model (6) by us-
   ing a modified 4SID algorithm. 

 • Based on the identified lifted model, establish 
   predictors which can predict the output of the 

   dual-rate system in Fig.1. Then by using the 
   predictors, perform the predictive control de-
   sign for the dual-rate system in Fig.1. 

 3. Identification of Lifted State-space 
    Models 

 In this section, a modified 4SID algorithm is pro-
posed to identify the lifted state-space model (6). 
In order to identify the lifted state-space model (6), 
we make the following assumption 
Assumption 1 1. The eigenvalues of A1 are 

   strictly inside the unit circle. 
 2. The lifted noise vector v(k) is a stationary, 

   zero mean white noise. 
 3. The lifted input vector u(k) and the lifted noise 

   vector v(j) are uncorrelated for Vk and V j. 
4. The input signal is quasi-stationary') and is 

   persistently exciting of order 2i, where i is both 
   future and past horizons to be defined later. 

 5. The equation (6) is observable and control-
   lable.

 Like typical 4SID type algorithms, the identifica-
tion algorithm starts from defining the input and 
output block Hankel as follows 

u(0) u(1) • • • — 1) - 
          /1(1) u(2) • • • LI(j) 

uoii_i(8) 

               

• • • • • • • • • • • 

_71,(i —1) u(i) • • • 1_1(i +i — 1)_          - (o) 
_z(1) • • z(j —1) - 

g1) z(2) • • • z(j) z
oii_i :=(9) 

                

• • • • • • • . • • • 

—1) z(i) • • • gi + j — 1)_ 
      and Zil2i_1 can be defined in the similar 

way. i and j are user-defined indexes which are 
large enough. i should at least be larger than the 
maximum order of the lifted state-space model, i.e. 
i > n. j is typically equal to N — 2i + 1 where N 
is the data length of all available data samples. In 
any case, j should be larger than 2i — 1. 

 By performing LQ decomposition and singular 
value decomposition (SVD), the following two state 
sequcences 

Xi := x(i) x(i + 1) • • • x(i + j — 1) (10) 
[x(i + 1) x(i + 2) • • • x(i + j)] (11) 

can be estimated. For the details of the estimation 

of the state sequences, the readers are refered to the 

reference 12). 

 For the typical 4SID type algorithms, once the 

state sequences are determined, the system matri-

ces can be estimated by solving the following LS 

problem: 
   - 

_ - - 

AlB1Xi                         (12) 
           C1 D1 

- 

_ 

 As mentioned in Remark 1, D1 should be 
block lower triangular structure with respect to the 
causality constraints of the lifted state-space model 

(6). However, solution of the LS problem (12) can-
not ensure that DI is a block lower triangular ma-
trix. That is, a non-causal lifted state-space model 
is identified. A non-causal lifted model will lead to 
the erroneous prediction of output of the dual-rate 
system') in Fig.1. Therefore, before solve the LS 
problem (12), the feedthrough term DI should be 
parameterized to be a block lower triangular matrix 
according to the causality constraints. The follow-
ing proposition clarifies this problem. See the proof 
in the reference 13). 
Proposition 1 The causality constraints of the 
lifted state-space model (6) are ensured if and only



if the subblock matrices Dab (a = 1,  2,  .  .  . , p; b = 
1, 2, . . . , q) in Di satisfy 

 Dab = 0, for (a — 1)q < (b — 1)p. 

Remark 2For convenience of the readers, we illus-
trate a simple example here. If p = 3 and q = 5, D1 
is parameterized as 

     D11 0 0 0 0 
Di = D21 D22 0 0 0(13) 

D31 D32 D33 D34 0 _ 

Fianlly, the lifted system matrices (A1, B1, C1, Di) 
can be estimated by solving the LS problem (12) 
subject to the block lower triangular structure of 

 Taking the causality constraints into considera-
tion, the modified 4SID algorithm for general dual-
rate systems is summarized as follows 

 1. Construct input and output block Hankel ma-
    trices. 

 2. By performing LQ decomposition and SVD 
   decomposition, estimate the state sequences Xi 

   and Xi+1. 
 3. According to Proposition 1, the feedthrough 

   term is parameterized as a block lower triangu-
   lar matrix. 

 4. Finally, the matrices (A1, B1, C1, D1) of the 
   lifted state-space model (6) are determined by 
   solving the LS problem (12) subject to the pa-

   rameterized DI. 

 4. Predictive Control Design 
 The predictive control design strategy is charac-

terized as following: 
 1. Finding a model to predict the output of the 

   plant under control. 
 2. Then the control inputs are attained by op-

   timizing a given criterion called cost function 
   in order to keep the plant output as close as 

   possible to the reference trajectory. 
Figure 3 shows the predictive control design strat-
egy. In this paper, the predictive control problem 
for a dual-rate plant is stated as: Given a set of 
open-loop measurements of the input u(kTi) and 
the output y(kT2) of the unknown dual-rate plant 
in Figure 2.1, find the lifted control input u, such 
that the following cost function is minimized over 
the hori7on

Fig. 3 Predictive Strategy.

Jn+i-1  E { _-_,(k)Te(k) + y,(k)T Rk'u(k)} (14) 
k=n 

where 

f(k) = y(k) — r(k) 

matrices Rk E RPm)<Pm is the user-defined weighted 
matrices of the lifted future incremental input vec-
tors and r(k) is attained by lifting the output refer-
ence. 

 4.1 Predictors 
 In the predictive control design, it is important to 

predict the output of the plant by using a certain 
model. In this paper, we propose two predictors 
which predict the output of a dual-rate plant 

         y(n) - 
       y(n + 2) 

yf 

_ Y(n + — 1) 
based on input-output data in the past 

u(n — i) 
u(n — i — 1) 

u(n — 1) 
wp 

y(n — i) 
y(n — i — 1) 

_ y(n — 1) _ 
and input data in the future 

u(n) 
1/(n 2) 

uf := 

11(n + i — 1) 

where n denotes the present time. To derive the 

predictors, the following lemma is introduced:



Lemma 1A high order formulation of the lifted 
state-space model are as following 

 370 =F iX0 + HiUoli(15) 
Yi+112i rixi + Hiui+112i(16) 

X. = AiXo(17) 

where 

-  C Ai 
ri =(18) 

_ 1 - 

is an extended observability matrix, 

= Ail2B1 • • • AiBi B1](19) 

is a reverse extended controllability matrix, 

D, 0 0 0 

ClC1B1 D, 0 0 

   = C1A1B1 CIB1 • • 0(20) 

• 

• 

_ C1AB1 Cilq-3B1 C1101-4B1 • Di _ 
is a block lower triangular Toeplitz matrix. 

 The three equation in Lemma 1 directly follows 
from the lifted state-space equation (6) by iterative 
substitutions. Theorem 1 is very useful in insights 
in the predictors for the output of a dual-rate plant. 

 Then the predictors which can predict the output 
of a dual-rate plant is given in the following theo-
rem: 
Theorem 1 There exit two predictors which predict 
the output of a dual-rate plant based on w, and uf 
as follows 

y f = Ewwp + Euuf(21) 
where 

Ew = [ —(22) 
Eu = Hi(23) 

Theorem 1 can be proved from Lemma 1. For the 
details, the readers are refered to reference 13). 

 4.2 Control input 
 In the previous content, we discussed the predic-

tors which predict the output of the dual-rate plant 
under control. By using the predictors, the cost 
function (14) can be reformulated as

J= 

(Ewp + Euuf — r)T (EWp Euu f — r) (24) 
+u7; Ru f 

where 

       r(n) 
      r(n + 1) 

r := 

_r(n + — 1) 
Then the minimization problem of J can be solved 
by putting the derivative of J with respect to the 
input sequence u1 to be zero. Consequently, the 
control input tt, is determined as: 

u, = — (E„T Eu + EuT (Ewwy — r) (25) 

Then the predictive control design for a dual-rate 

plant is summarized as follows: 
 1. Identify the dual-rate plant under control by 

   using the 4SID algorithm in Section 3. 

 2. According to Lemma 1, construct the pre-

   dictors Ew and Eu from the estimated lifted 

   system matrices. 

 3. Finally, by using equation (25), the control in-
   put is obtained. 

 5. Numerical Results 
  Consider a continuous time process Pc in Fig.1 

as the following 

P(s) = 1(26)        2s2 + 3s + 1 
and T1 = 0.28, = 0.3s. Then we have the frame 
period Tf = 0.6 and the base period Tb = 0.1. 

 So the lifted input vector and the lifted output 
vector are given as follows 

            u(0.6k) - 
 u(0.6k) = u(0.6k + 0.2)(27) 

_ u(0.6k + 0.4) _ 
          y(0.6k)1  y(0.6k)=(28) 

_ y(0.6k + 0.3) 1 

 First, the lifted state-space model for such a dual-
rate system is identified. The input u(kTi) is a 
zero mean white signal (variance 1). v(kT2) is 
a zero mean white noise sequence. To show the 
performance of the N4SID method in the pres-
ence of considerable noise, the N4SID algorithm 

(i = 15, j = 5000) was implemented for 20 real-
izations of the measurement noise of NSR (noise to 
signal ratio)=20%. NSR was defined as the ratio 
of o-/o, where o-, and o-y are the standard devi-



ations of the measurement noise and of the noise-

free output, respectively. We plot the estimated

Fig. 4 The step response of the continuous-time process 

      (solid line) and the estimated lifted step response 
      of 20 realizations (dot).

lifted step response of 20 realizations together with 

the continuous-time step response in Fig.4. As ex-

pected, the points of the estimated lifted step re-
sponse sit on that of the continuous-time process. 

 Then based on the identified lifted system matri-

ces, we perform the predictive control for the dual-

rate plant by using the proposed predictive control 

design method. Figure 5 shows the control per-

Fig. 5 Predictive control performance.

formance. The numerical result indicates that the 

plant output tracks the reference very well by using 
the propose predictive control design method. 

 6. Conclusions 

 In this paper, we propose a modified 4SID algo-

rithm to identify the lifted state-space models for 

general dual-rate systems. The numerical results

indicates that the identified state-space models can 

capture the dynamics of the dual-rate systems un-

der study very well. Then we establish two pre-

dictors from the identified lifted system matrices 

and perform predictive control design for the gen-

eral dual-rate systems. To the best of our knowl-

edge, it is the first time to establish predictors from 

the system matrices to perform predictive control 

design in the literature. The numerical result indi-

cates that the output of the dual-rate plant under 

control tracks the reference quite well. 
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