
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Developing an Architecture for a Single-Flux
Quantum Based Reconfigurable Accelerator

Mehdipour, Farhad
School of Information Science and Electrical Engineering, Department of Informatics, Kyushu
University

Honda, Hiroaki
Institute of Systems, Information Technologies and Nanotechnologies

Kataoka, Hiroshi
School of Information Science and Electrical Engineering, Department of Informatics, Kyushu
University

Inoue, Koji
School of Information Science and Electrical Engineering, Department of Informatics, Kyushu
University

他

https://hdl.handle.net/2324/16334

出版情報：電子情報通信学会技術研究報告, ICD2009-111. 109 (405), pp.99-104, 2010-01. 電子情報通
信学会
バージョン：
権利関係：

社団法人 電子情報通信学会 信学技報

THE INSTITUTE OF ELECTRONICS, IEICE Technical Report

INFORMATION AND COMMUNICATION ENGINEERS

Developing an Architecture for a Single-Flux Quantum Based

Reconfigurable Accelerator

Farhad Mehdipour
1

Hiroaki Honda
2

Hiroshi Kataoka
1

Koji Inoue
1
 and Kazuaki Murakami

1

1
School of Information Science and Electrical Engineering, Department of Informatics, Kyushu University, Fukuoka, Japan

2
 Institute of Systems, Information Technologies and Nanotechnologies, Fukuoka, Japan

Email: {farhad, dahon, kataoka}@c.csce.kyushu-u.ac.jp, {inoue, murkami}@ait.kyushu-u.ac.jp

Abstract As a solution to gain high performance computation, a large-scale reconfigurable data-path (LSRDP) processor is

introduced in this paper. LSRDP is implemented by virtue of single-flux quantum circuits and integrated to a general purpose

processor to accelerate the execution of data flow graphs (DFGs) extracted from scientific applications. Design procedure of the

LSRDP and particularly the process of mapping DFGs onto the LSRDP are discussed and our techniques for optimizing the area of

accelerator will be presented as well.

Keyword Reconfigurable accelerator, single-flux quantum, data flow graph, placement and routing

1. Introduction

Providing high computational power to individual researchers

is crucial for progress of the research and development. Although,

recent advances on chip design and fabrication provide the

possibility for producing high-performance computers, there is

still a high demand to meet the required performance for specific

applications. As a solution, a hybrid architecture comprising a

general purpose processor (GPP) and an accelerator can be

exploited for special purpose computations. The accelerator

should be designed such that can feature high performance, and

low power consumption [1] [2] [6].

Undoubtedly, there are some serious barriers in realizing

powerful computing systems using recent finer CMOS

technologies. The most important issues are high heat radiation,

long interconnection delays and memory-wall problem [10]. To

overcome those barriers, a new architecture has been introduced

which consists of a CMOS general purpose processor, a memory

and a single-flux quantum (SFQ)- based Reconfigurable Large-

Scale Data-Path processor (SFQ-LSRDP) as an accelerator (Fig.

1) [10]. The proposed architecture is expected to be a high-

performance desk-side computer with low-power consumption

and it is suitable for execution of scientific applications

demanding massive computations.

A SFQ circuit relies on the superconducting technology

which includes extremely lower power consumption and high-

speed compared to the CMOS counterparts. A basic SFQ element

uses a 1mV extremely low-width pulse as an information carrier

that is propagated at very high speed (up to light speed) in the

circuit. High-speed switching and signal transmission, low power

consumption, compact implementation (small area), suitability

for pipeline processing of data stream are the main features of the

SFQ technology [5]. Since the LSRDP as a main component of

the target architecture is implemented by SFQ circuits; obviously,

it can address the abovementioned issues originating from CMOS

technology.

Developing necessary tools for compiling applications,

generating data flow graphs (DFGs) and configuration bit-

streams as well as designing and fabricating the LSRDP

architecture are the main phases of implementation of such

computing system. In the architecture side, the main components

of LSRDP as well as structure of routing resources which all are

implemented by SFQ circuits will be discussed in this paper. In

addition, we will concentrate on the DFG mapping tool as a basic

component of the tool chain, and will describe how it is exploited

during the design procedure of the LSRDP. Basic properties of

the LSRDP architecture and constraints originating from the SFQ

circuits ought to be taken into account within the tool

development and LSRDP design procedure.

Placing input nodes on appropriate locations is a key step in

the placement procedure which highly impacts the final cost in

terms of on the total connection length. Connection length is also

a key factor in turn which strongly influences the routing

resources and overall area of the accelerator. We propose an

algorithm based on proximity factor of input node pairs to reduce

the maximum connection length. In addition, an alternative to

connection length measurement is proposed that can be effective

in reducing the implementation cost. We evaluate the proposed

techniques during the LSRDP design procedure. Moreover, a

benchmark of computational-intensive scientific applications are

introduced which are attempted for designing the target hardware.

The extracted DFGs demonstrate a huge flow of operations

which needs a sophisticated mapping tool to map them onto the

LSRDP and satisfy the constraints as well.

Fig. 1. Overall architecture of the SFQ-LSRDP computer

2. LSRDP General Architecture and

Specifications

Generally, LSRDP is a pipelined architecture comprising a

two-dimensional array of processing elements (PEs) such that

one PE can be connected through operand routing networks

(ORNs) to a number of PEs in the next row. Fig. 1 displays the

overall architecture of the proposed high-performance computer

consisting of a GPP, an LSRDP as accelerator and memory

elements.

Data flow graphs are automatically or manually pulled-out

from critical segments of applications and configuration bit-

streams are generated by using a dedicated tool. During execution

of an application, configurations associated with the critical

segments are loaded onto the LSRDP and executed in favor of

achieving higher performance and lower power consumption.

Since the cascaded PEs can generate a final result without

temporally memorizing intermediate data, the number of memory

load/store operations corresponding to spill codes can be reduced.

Therefore, memory bandwidth required to gain a high

performance computation might decrease as well. Furthermore,

as a loop-body mapped onto the PE array is executed in a

pipeline fashion, LSRDP can provide a high computing

throughput.

In the design procedure except the basic properties of the

LSRDP architecture, it is intended to obtain the specifications of

the architecture including following ones.

Layout: Layout of the LSRDP indicates the type of

functional units and their distribution. Tow types of layout are

examined for the LSRDP during the design procedure. In a

normal layout (Layout-I), each FU can implement any operation

including ADD/SUB and MUL. Layout-II is similar to a checker

pattern, i.e. only one of operations ADD/SUB or MUL is

implemented in each PE.

Input/Output ports: I/O ports are located on top and bottom

boundaries of the LSRDP. The limitation on the number of ports

depends on the available memory bandwidth, LSRDP operation

frequency, width of data bus and the number of memory

read/write channels.

LSRDP dimensions: Fig. 1 shows that LSRDP is a matrix of

PEs in which the height and width of LSRDP are the number of

rows and columns, respectively.

PE types: Three types of PE architecture are examined for

the LSRDP (Fig. 1). Most suitable PE is selected during the

design procedure. The basic PE architecture includes an FU for

implementing desired operation and a TU (transfer unit). As

ORNs provide only routing resources between consecutive rows,

TUs are utilized to connect two PEs locating on inconsecutive

rows. It is possible to use an FU for implementing a transfer unit

as well. In addition, each PE has three inputs (two inputs for FU

and one for the TU) and two outputs (one from FU and another

from TU). The second PE architecture (PE arch. I) has one

addioninal TU for increasing the flexibility of routing and it has

4-inps/3-outs. The third type of PE architecture (PE arch. II) has

a similar architectue to the first one, the difference is in extending

capability of implementing two simultaneous TUs by the FU

(totally three TUs). An additional mux should be used inside the

PE to choose between FU’s output and the input.

Type and granularity of functional units: Each FU can

implement basic 64-bit double-precision floating point operations

e.g. ADD, SUB and MUL. Control instructions (branches) and

direct memory accesses via PEs are not supported.

Operand routing network (ORN): PEs of each row are

connected to the PEs in the next row through ORNs as routing

resources. Fig. 2 shows the definition of the connection length

and the maximum connection length (MCL) on a piece of

LSRDP architecture. It can be seen that the connection length of

two PEs is the horizontal distance of the PEs. Correspondingly,

the MCL size is the maximum horizontal distance of two PEs

located in two subsequent rows (Fig. 2). ORNs should provide all

outputs of a PE with totally no_of_inputs x (2 x MCL+ 1)

connections to the PEs in consequent row. ORNs’ functionality is

similar to a multiplexer however; ORNs are composed of cross-

bar switches (CBs). Similar to other components of the LSRDP,

CBs are also implemented by means of Josephson Junctions as

the basic elements of the SFQ circuits [4].

An ORN for the PE architecture consisting of FUs and TUs is

displayed in Fig. 3. The crossbar-based ORN has a regular

pipelined structure that does not limit the performance of the

LSRDP and can be reconfigured on the fly. It can also be easily

re-designed for any given complexity by adding a necessary

number of extra rows of crossbars [4].

Fig. 2. Definition of the connection length and the maximum connection

length (MCL)

Fig. 3. Structure of a CB-based ORN for the PE basic arch. (MCL= 2)

Fig. 4. Detailed architecture of a reconfigurable PE

N
u
m
b
er o

f ro
w
s =

 1
.5
×
W

Number of columns = 4×MCL

Throughout the LSRDP architecture, a united ORN is

implemented between each two rows rather than implementing

separate ORNs for each PE. In Fig. 3 it is assumed that the MCL

is equal to two, therefore, each PE in the left side (a row of PEs)

can be connected to any of five (2x MCL+ 1) PEs in the right

side (consecutive row). Two factors including the number of PEs

in a row and MCL are the main factors which affect the ORN

size. Moreover, the number of input/outputs for each PE is an

important factor which can influence the ORN structure and its

size. For the PE including one FU and one TU which totally has

three inputs and two outputs, the ORN architecture is as Fig. 3.

Assuming W as the number of PEs in each row, the ORN will

totally consist of 2 x W x (4 x MCL) CBs.

Internal memory: 64-bit immediate registers are located in

each PE in order to handle immediate values (Fig. 4).

Reconfiguration mechanism: LSRDP is a reconfigurable

hardware that can be configured within run-time using the bit-

stream generated for DFGs. Fig. 4 shows the architecture of a PE

and how it can be reconfigured during the configuration phase.

Apart initializing immediate registers, the multiplexers, PEs and

ORN micro-routing network should also be programmed using

the configuration bits. In order to configure each component, the

configuration bit-stream is serially transferred to the

configuration registers.

3. LSRDP Design Procedure and Mapping Tool

Entire design procedure is an iterative process of gathering

statistics and analysis of results. We used a quantitative approach

for designing the LSRDP architecture and determining its

detailed architectural specifications. To determine each design

parameter, DFGs should be mapped onto the LSRDP and the

outcome is analyzed. The mapping process is performed without

forcing any constraint except the constraints originated from the

LSRDP architecture e.g. unidirectional data flow over the PE

rows, availability of routing resources between subsequent rows

and etc. In the next stage, the results of mapping should be

analyzed by the designer to decide an appropriate value for the

intended parameter.

3-1. DFG Extraction

Extracting data flow graphs from applications is performed

manually or automatically by means of a sophisticated high-level

profiling tool. In the former case, programmer needs to have a

sufficient knowledge on the application and its detailed

characteristics. Four applications are attempted as scientific

benchmark applications including: one-dimensional heat

(referred as Heat) and vibration equations (Vibration), two-

dimensional Poisson equation (Poisson) [8], and recursion

calculation part of electron repulsion integral (ERI [7]) as a

quantum chemistry application. All calculations consist of ADD,

SUB, and MUL operations and DFGs have been extracted

manually.

3-2. Placement and Routing

Mapping process consists of two sub-procedure i.e.

placement and routing. Throughout the mapping process, DFG

nodes are placed on appropriate positions (PEs) over the LSRDP.

This is similar to the well-known placement problem [9].

Generally, minimizing the total connection length or the

maximum connection length are main objectives, however in

designing LSRDP, the mail goal is to minimize the maximum

connection length (MCL) that directly impacts the ORN sizes and

the LSRDP area as well.

Routing process is the next stage that establishes connections

between the PEs in the LSRDP by means of routing resources

including ORNs and transfer units [9]. As aforementioned, it is

supposed that each PE can impelemt one or a couple of transfer

units for routing data to inconsequent rows. For each connection

it is aimed to find a shortest path between the source and

destination PEs.

3-3. I/O Nodes Placement

Input/output nodes of the DFG should be assigned to

appropriate input/output ports of the LSRDP on the boundaries

(Fig. 5). Between the first/last LSRDP rows and input/output

ports, ORNs are avaiable as routing resources. The main

objective is to reduce the connection legnth between input/output

ports and PEs in the first/last row of the LSRDP. Since DFG

nodes are placed based on the location of their parents inside the

LSRDP, placing input nodes is perfomed in a different manner

from the placing output ports and it has more imapct in the

quality of final placement. Afterward, propoer locations for

output nodes can be determined based on the position of parent

nodes which have already been placed.

We propose two approaches for the input nodes placement.

1. fan-out based placement: I/O nodes are placed with

respect to their fan-out or the total number of children. Input

nodes of DFG are prioritized with repsect to their fan-out and

then the placement algorithm looks for proper input ports to

minimize the longest horizontal connection length. In this case,

the DFG nodes should be initially placed onto the PEs prior to the

input ports placement. Fig. 5 shows three cases (depending on the

input node fan-out which might be one, two or more than two)

for placing an input node on the ports. It is attempted to find the

closest unoccupied port to the input node’s children. DFG nodes

should be remapped according to the location of input nodes.

2. proximity-factor based placement: placing input nodes

considering solely the location of their direct descendants (in the

closes vicinity in the DFG) might result in large MCLs as shown

in Fig. 6. In a piece of mapping result displayed in Fig. 6,

input nodes ‘0’ and ‘24’ are located in a close distance to their

children (located in the first row) however they have a long

distance to each other and to a common descendant node which is

positioned in the third row as well. This placement without

paying attention to the location of descendants make some long

connections which affects the MCL size. One solution to cope

with this issue is to locate input nodes which have strong

connections to each other in a closer distance. We define a factor

referred as proximity factor to represent the strength of forces

that PEs can exert to each other. This factor is used as a basis of

the input nodes placement algorithm.

Proximity factor: for each pair of inout nodes i and j the

proximity factor is calculated as:

∑
∈

=

jiSk ik
ji

D
p

,
,

,

1
 (1)

while ikD , is the distance of common descendant node k to the

input ports i (and j). The distance of a node to its related input

port can be calculated as its ASAP (As soon as posssible [3])

{ } 08.1
4

1

3

1

2

1
,7,6,4 1,22,11,22,1 =++==== ppSS

{ } 25.0,7 1,33,11,33,1 ==== ppSS ,

{ } 25.0,7 2,33,22,33,2 ==== ppSS

∞=== 3,32,21,1 SSS

..
.

..
.

..
.

..
.

..
.

..
.

Fig. 5. Input nodes positioning (fan-out based)

input nodes i and j. Larger number of common descendants with

smaller distance to the parents pair result in larger proximity

factor and therefore, coressponding nodes should be placed in a

closer distance to each other. Proximity factors for different pairs

of the sample DFG in Fig. 7 have been calculated as well.

Input nodes placement algorithm: A heuristic algorithm is

introduced below which employs the proximity factor for

positioning input nodes of a DFG onto the LSRDP input ports.

Here are some definitions.

P: is the matrix of proximity factor for input node pairs.





















∞

∞

∞

=

2,1,

,21,2

,12,1

......

...

...

nn

n

n

pp

pp

pp

P

(2)









≠

=∞

== ∑
∈

jiif
D

jiif

pp

jiSk ik

ijji

,
,

,,
1 (3)

L: is the input ports array which stores the list of placed nodes

such that the indexes indicate the location of corresponding input

node.

l and r: denote the index of candidate locations in L for

placing the under process input node.

Cl,m and Cr,m: show the amount of proximity of an under

process node m to the previously placed input nodes which have

been located between l and r in array L. The node m will be

placed in location l if Cl,m is larger than Cr,m otherwise, it will be

located in location r. Cr,m and Cl,m are calculated as:

∑
−

+=














−
×=

1

1

,,

1
r

li

miml
li

pC (4), ∑
−

+=














−
×=

1

1

,,

1
r

li

mimr
ir

pC (5)

In Eq. 4 and 5, pi,j is the proximity factor of node m and node

i that has already been placed. The second term is the inverse of

distance of candidate location (l or r) to the location of node i. In

this way, the amount of proximity to already placed nodes is

examined and one of the candidate locations (l or r) is chosen.

Placement alg.

1. Construct matrix P including the proximity factors for

each pair of input nodes (n is the number of input nodes).

Initialize Φ=L .

2. Find node m with the highest proximity factor from the

first row of matrix P(i= 1) and place it in array L so that

L[n/2]= m.

3. Initialize l and r to n/2-1 and n/2+1, respectively.

4. Find the next node (m) with the highest proximity factor

from the first row of matrix P(i= 1).

5. Calculate Cl,m and Cr,m using Eq. 4 and Eq. 5.

6. if Cl,m > Cr,m:

 l= l+1, L[l]= m (node m is placed in the location l)

else:

 r= r+1, L[r]= m (node m is placed in the location r)

7. if still there is any unplaced input node, go to step 4.

Fig. 6. A piece of mapping result for Poisson-3x3 DFG

1

I1 I2 I3

4

6

7

2 3

5

1

I1 I2 I3

4

6

7

2 3

5

Fig. 7. A sample DFG

3-4. Connection-length minimization

In the basic placement algorithm, connection length between

any source and destination nodes is evaluated as the horizontal

distance of two nodes (connection length= lh= dh: horizontal

distance). For two nodes located in two consecutive rows (dv= 1),

the only possible way for routing is through the available ORN

resources. On the other hand for two nodes placed in

inconsecutive rows (vertical distance: dv> 1), it is possible to use

intermediate TUs for routing. In this way, the connection can be

segmented to dv-1 connections between consecutive rows.

Considering above point, we use an alternative measurement

for the connection length as lhv=dh/dv. In Fig. 8 (left-side) the
two definitions of connection length have been displayed. In

right-side two connections (denoted by 1 and 2) can be seen so

that dh1= dh2= 3, while they have different vertical distances (dv1=

1, dv2= 3). For connection 1, connection length would be 3 and

the only possible way for routing from src to dest1 is via the

ORN switches. On the contrary, for connection 2, it is possible to

use available intermediate TUs and break it into three segmented

connections from src to dest2. This results in reducing connection

length to one.

By using above new definition for connection length

measurement, the placement algorithm was modified such that

the vertical connection length becomes effective in calculating

the cost function. Fig. 9 shows an example of placing a node

which has two parents (P1 and P2) already assigned to two PEs.

Obviously due to the routing resource constraints (particularly of

being unidirectional) descendant nodes can be placed on the PEs

of their parents’ succeeding rows (indicated as candidate rows in
 Fig. 9).

src

dest
dh

dv

src

dest1

dest2

1

2

Fig. 8. Connection length definitions

1, 3

1, 1

2, 2

2, 1

P1

3, 1

3,1

4, 0

4, 0

P2

0, 4

0, 2

1, 3

1, 1

2, 2

1, 1

3, 1

2, 1

4, 0

2, 0

0, 4

0, 1

…

PE1 PE2 PE3 PE4 PE5

PE6 PE7 PE8 PE9 PE10

Fig. 9. Examining different PEs of LSRDP for placing a DFG node

The connection length has been calculated based on two

abovementioned measurements for each candidate PE. By using

lh for connection length measurement, PE2 is the best choice

which gives the minimum MCL equal to two. In the second

candidate row, choosing PE8 gives the same result, however PE2

is proffered due to smaller vertical distance. On the other hand,

connection length measurement based on lhv results in choosing

PE2 which gives the least value of MCL equal to one in the first

row. Although PE6, PE7 and PE8 in the second row give the

same result, but due to smaller vertical distance, PE2 is chosen

eventually.

4. Experimental Results

We conducted experiments to evaluate different LSRDP

architectures by means of the proposed mapping techniques.

Input DFGs (Table 1) were extracted from the four target

applications as mentioned in Section 3-1. Three PE structures

(Fig. 1) and two LSRDP layouts (introduced in Section 2) were

examined. Due to various number of inputs and outputs of the PE

architectures, three ORN structures were designed and their area

were calculated as in Table 2. In order to calculate PE area, it is

assumed that the number of Josephson Juntions (JJs) required for

implementing a TU or mux in a PE is almost %10 of a double-

precision functional unit [4].

 Table 3 shows results of evaluations of various LSRDP

architectures. We used both techniques presented in Section 3-3

for placing input nodes. In addition the MCL minimization

technique introduced in Section 3-4 were exploited to reduce the

MCL size. In Table 3, S1 denotes first strategy including fan-out

based input nodes placement and using lh as the cost of

connection lengths. S2 stands for a strategy employing the

proximity-factor based input nodes placement and lhv for the

connection length measurement. Results of experiments show the

effectiveness of the proposed techniques in reducing MCL, ORN

size as well as the overall LSRDP size. It is observed from the

implementation that each CB needs around 550JJs and each FU

i.e. ADD/SUB or MUL requires around 40KJJs.

Table 1. specification of the extracted DFGs

 # of
nodes

of
inputs

of
outputs

of
ops

max. inp.
nodes
fan-out

Max.
fan-out

Heat-8x1 34 6 4 16 2 1

Heat-8x2 60 8 4 32 3 3

Heat-16x2 172 16 12 96 3 3
Poisson-3x3 62 18 1 33 3 2

Vibration-4x2 48 8 4 24 3 2
Vibration-8x2 136 16 12 72 4 4

ERI-1 20 8 3 9 3 1
ERI-2 76 16 9 51 3 3
ERI-3 89 14 9 66 3 6
ERI-4 67 19 1 47 4 3

Table 2. PE types and ORN area calculations

PE Area (x FU) # of inputs/

outputs Layout-I Layout-II

ORN Area (x CBs)

PE1 3/2 2.1 1.1 1.5xWx(4xMCL)

PE2 4/3 2.2 1.2 2xWx(6xMCL+2)

PE3 3/3 2.2 1.2 1.5xWx(4xMCL+1)

Table 3. Evaluation results for various architectures

Layout-I Layout-II

S1 S2 S1 S2

PE basic arch. 14 6 15 12

PE arch. I 8 3 9 4

MCL

PE arch. II 10 4 12 7

PE basic arch 25116 12600 29250 24336

PE arch. I 30600 13680 38080 17680

ORN size

(overall)

x CB PE arch. II 18696 8237 23520 14790

PE basic arch 580 683 330 344

PE arch. I 634 713 384 384

No. of FUs

 (overall)

x FU PE arch. II 627 669 360 384

PE basic arch 36923K 34193K 29200K 27040K

PE arch. I 48083K 35995K 36190K 25031K

Overall

LSRDP

Area (JJ) PE arch. II 35307K 31258K 27266K 23451K

The LSRDP area is composed of the area of ORNs and PEs.

Area of ORNs has been represented by the number of cross-bar

switches and the area of PEs is estimated by the number of

required FUs. Overall area of the LSRDP (the last row) has been

reported in terms of the number of Josephson Junctions (JJs).

Since each PE in Layout-I implements both ADD/SUB and MUL

operations, it needs larger overall area regardless of the strategy

of mapping. Comparing PE architectures, although PE arch. I

gives smaller MCL size, but it results in larger overall area for

both layout types. As PE arch. I has four inputs and three outputs

which are more than those of two other PE architectures,

therefore, ORN size would be bigger referring to the information

in Table 2. In Table 3 it can also be observed that the PE basic

arch. and PE arch. II both obtain smaller overall area for LSRDP,

however the MCL size for the first one is larger. Using mapping

strategy S2, Layout-II and the PE arch. II the smallest area is

achievable for the LSRDP.

lh= 3

lhv= 3/3=1 lh= dh
lhv= dh/ dv 

lh= 3

lhv=3/1=3

lh= dh

lhv=dh/dv

lh= dh

lhv=dh/dv

1st candidate row

2nd candidate row

5. Conclusion

A reconfigurable accelerator comprising of a large matrix of

PE implemented by SDFG circuits is a key component for a

computer featuring high performance and low power

consumption. That is also suitable for executing massive

computational-intensive scientific applications. A mapping tool

has been developed in which the main goal is to reduce the

LSRDP area. In future we intend to optimize the LSRDP

architecture in attempt to decrease the overall area through

exploring the design space. In the compiler side, the DFG

generation from scientific applications will be performed

automatically and the DFG customization for the underlying

accelerator architecture will be developed.

Acknowledgment

This research was supported in part by Core Research for

Evolutional Science and Technology (CREST) of Japan Science and

Technology Corporation (JST).

References

[1] Cell Broadband Engine, http://cell.scei.co.jp/index_j.html.

[2] ClearSpeed Processor, http://www.clearspeed.com/.

[3] De Micheli, G., Synthesis and Optimization of Digital Circuits,

McGraw-Hill, 1994.

[4] I. Kataeva et al., “An operand routing network for an SFQ

reconfigurable data-path processor,” IEEE Trans. Appl. Supercond.,

vol. 19, no. 3, pp. 665-669, 2009.

[5] K. Likharev and V. Semenov. RSFQ logic/memory family: a new

Josephson junction technology for sub-teraherz clock frequency

digital systems. IEEE Trans. on Appl. Supercond., vol. 1, no. 1, pp.

3-28, 1991.

[6] J. Makino, K. Hiraki and M. Inaba, GRAPE-DR: 2-Pflops

massively-parallel computer with 512-core, 512-Gflops processor

chips for scientific computing, SC07 2007.

[7] S. Obara and A. Saika, Efficient recursive computation of

molecular integrals over Cartesian Gaussian Functions, J. Chem.

Phys., vol.84, pp.3963, 1986.

[8] W.H. Press, B.P. Flannery, S.A. Teukolsky, and T.W. Vetterling,

Numerical Recipes in C, Cambridge University Press, 1988.

[9] N. Sherwani, Algorithms for VLSI physical design automation,

Kluwer-Academic Publishers, 1999.

[10] N. Takagi et al., “Proposal of a desk-Side Supercomputer with

Reconfigurable Data-Paths Using Rapid Single Flux Quantum

Circuits,” IEICE Trans. on Elec., E91-C(3):350-355, 2008.

