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Abstract As a solution to gain high performance computation, a large-scale reconfigurable data-path (LSRDP) processor is 

introduced in this paper. LSRDP is implemented by virtue of single-flux quantum circuits and integrated to a general purpose 

processor to accelerate the execution of data flow graphs (DFGs) extracted from scientific applications. Design procedure of the 

LSRDP and particularly the process of mapping DFGs onto the LSRDP are discussed and our techniques for optimizing the area of 

accelerator will be presented as well.  
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1. Introduction 

Providing high computational power to individual researchers 

is crucial for progress of the research and development. Although, 

recent advances on chip design and fabrication provide the 

possibility for producing high-performance computers, there is 

still a high demand to meet the required performance for specific 

applications.  As a solution, a hybrid architecture comprising a 

general purpose processor (GPP) and an accelerator can be 

exploited for special purpose computations. The accelerator 

should be designed such that can feature high performance, and 

low power consumption [1] [2] [6].  

Undoubtedly, there are some serious barriers in realizing 

powerful computing systems using recent finer CMOS 

technologies. The most important issues are high heat radiation, 

long interconnection delays and memory-wall problem  [10]. To 

overcome those barriers, a new architecture has been introduced 

which consists of a CMOS general purpose processor, a memory 

and a single-flux quantum  (SFQ)- based Reconfigurable Large-

Scale Data-Path processor (SFQ-LSRDP) as an accelerator ( Fig. 

1)  [10]. The proposed architecture is expected to be a high-

performance desk-side computer with low-power consumption 

and it is suitable for execution of scientific applications 

demanding massive computations.  

A SFQ circuit relies on the superconducting technology 

which includes extremely lower power consumption and high-

speed compared to the CMOS counterparts. A basic SFQ element 

uses a 1mV extremely low-width pulse as an information carrier 

that is propagated at very high speed (up to light speed) in the 

circuit. High-speed switching and signal transmission, low power 

consumption, compact implementation (small area), suitability 

for pipeline processing of data stream are the main features of the 

SFQ technology  [5]. Since the LSRDP as a main component of 

the target architecture is implemented by SFQ circuits; obviously, 

it can address the abovementioned issues originating from CMOS 

technology. 

Developing necessary tools for compiling applications, 

generating data flow graphs (DFGs) and configuration bit-

streams as well as designing and fabricating the LSRDP 

architecture are the main phases of implementation of such 

computing system. In the architecture side, the main components 

of LSRDP as well as structure of routing resources which all are 

implemented by SFQ circuits will be discussed in this paper. In 

addition, we will concentrate on the DFG mapping tool as a basic 

component of the tool chain, and will describe how it is exploited 

during the design procedure of the LSRDP. Basic properties of 

the LSRDP architecture and constraints originating from the SFQ 

circuits ought to be taken into account within the tool 

development and LSRDP design procedure.  

Placing input nodes on appropriate locations is a key step in 

the placement procedure which highly impacts the final cost in 

terms of on the total connection length. Connection length is also 

a key factor in turn which strongly influences the routing 

resources and overall area of the accelerator. We propose an 

algorithm based on proximity factor of input node pairs to reduce 

the maximum connection length. In addition, an alternative to 

connection length measurement is proposed that can be effective 

in reducing the implementation cost. We evaluate the proposed 

techniques during the LSRDP design procedure. Moreover, a 

benchmark of computational-intensive scientific applications are 

introduced which are attempted for designing the target hardware. 

The extracted DFGs demonstrate a huge flow of operations 

which needs a sophisticated mapping tool to map them onto the 

LSRDP and satisfy the constraints as well. 

 

Fig. 1. Overall architecture of the SFQ-LSRDP computer  



 

2. LSRDP General Architecture and 

Specifications 

Generally, LSRDP is a pipelined architecture comprising a 

two-dimensional array of processing elements (PEs) such that 

one PE can be connected through operand routing networks 

(ORNs) to a number of PEs in the next row.  Fig. 1 displays the 

overall architecture of the proposed high-performance computer 

consisting of a GPP, an LSRDP as accelerator and memory 

elements. 

Data flow graphs are automatically or manually pulled-out 

from critical segments of applications and configuration bit-

streams are generated by using a dedicated tool. During execution 

of an application, configurations associated with the critical 

segments are loaded onto the LSRDP and executed in favor of 

achieving higher performance and lower power consumption. 

Since the cascaded PEs can generate a final result without 

temporally memorizing intermediate data, the number of memory 

load/store operations corresponding to spill codes can be reduced. 

Therefore, memory bandwidth required to gain a high 

performance computation might decrease as well. Furthermore, 

as a loop-body mapped onto the PE array is executed in a 

pipeline fashion, LSRDP can provide a high computing 

throughput.  

In the design procedure except the basic properties of the 

LSRDP architecture, it is intended to obtain the specifications of 

the architecture including following ones.  

Layout: Layout of the LSRDP indicates the type of 

functional units and their distribution. Tow types of layout are 

examined for the LSRDP during the design procedure. In a 

normal layout (Layout-I), each FU can implement any operation 

including ADD/SUB and MUL. Layout-II is similar to a checker 

pattern, i.e. only one of operations ADD/SUB or MUL is 

implemented in each PE.  

Input/Output ports:  I/O ports are located on top and bottom 

boundaries of the LSRDP. The limitation on the number of ports 

depends on the available memory bandwidth, LSRDP operation 

frequency, width of data bus and the number of memory 

read/write channels.  

LSRDP dimensions:  Fig. 1 shows that LSRDP is a matrix of 

PEs in which the height and width of LSRDP are the number of 

rows and columns, respectively.  

PE types: Three types of PE architecture are examined for 

the LSRDP ( Fig. 1). Most suitable PE is selected during the 

design procedure. The basic PE architecture includes an FU for 

implementing desired operation and a TU (transfer unit). As 

ORNs provide only routing resources between consecutive rows, 

TUs are utilized to connect two PEs locating on inconsecutive 

rows. It is possible to use an FU for implementing a transfer unit 

as well. In addition, each PE has three inputs (two inputs for FU 

and one for the TU) and two outputs (one from FU and another 

from TU). The second PE architecture (PE arch. I) has one 

addioninal TU for increasing the flexibility of routing and it has 

4-inps/3-outs. The third type of PE architecture (PE arch. II) has 

a similar architectue to the first one, the difference is in extending 

capability of implementing two simultaneous TUs by the FU 

(totally three TUs). An additional mux should be used inside the 

PE to choose between FU’s output and the input.  

Type and granularity of functional units: Each FU can 

implement basic 64-bit double-precision floating point operations 

e.g. ADD, SUB and MUL. Control instructions (branches) and 

direct memory accesses via PEs are not supported.  

Operand routing network (ORN): PEs of each row are 

connected to the PEs in the next row through ORNs as routing 

resources.  Fig. 2 shows the definition of the connection length 

and the maximum connection length (MCL) on a piece of 

LSRDP architecture. It can be seen that the connection length of 

two PEs is the horizontal distance of the PEs. Correspondingly, 

the MCL size is the maximum horizontal distance of two PEs 

located in two subsequent rows ( Fig. 2). ORNs should provide all 

outputs of a PE with totally no_of_inputs x (2 x MCL+ 1) 

connections to the PEs in consequent row. ORNs’ functionality is 

similar to a multiplexer however; ORNs are composed of cross-

bar switches (CBs). Similar to other components of the LSRDP, 

CBs are also implemented by means of Josephson Junctions as 

the basic elements of the SFQ circuits  [4].  

An ORN for the PE architecture consisting of FUs and TUs is 

displayed in  Fig. 3. The crossbar-based ORN has a regular 

pipelined structure that does not limit the performance of the 

LSRDP and can be reconfigured on the fly. It can also be easily 

re-designed for any given complexity by adding a necessary 

number of extra rows of crossbars  [4].  

 

 
Fig. 2. Definition of the connection length and the maximum connection 

length (MCL)  

 
 

Fig. 3. Structure of a CB-based ORN for the PE basic arch. (MCL= 2) 

 
Fig. 4. Detailed architecture of a reconfigurable PE 
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Throughout the LSRDP architecture, a united ORN is 

implemented between each two rows rather than implementing 

separate ORNs for each PE. In  Fig. 3 it is assumed that the MCL 

is equal to two, therefore, each PE in the left side (a row of PEs) 

can be connected to any of five (2x MCL+ 1) PEs in the right 

side (consecutive row). Two factors including the number of PEs 

in a row and MCL are the main factors which affect the ORN 

size. Moreover, the number of input/outputs for each PE is an 

important factor which can influence the ORN structure and its 

size. For the PE including one FU and one TU which totally has 

three inputs and two outputs, the ORN architecture is as  Fig. 3. 

Assuming W as the number of PEs in each row, the ORN will 

totally consist of 2 x W x (4 x MCL) CBs.  

Internal memory: 64-bit immediate registers are located in 

each PE in order to handle immediate values ( Fig. 4).  

Reconfiguration mechanism: LSRDP is a reconfigurable 

hardware that can be configured within run-time using the bit-

stream generated for DFGs.  Fig. 4 shows the architecture of a PE 

and how it can be reconfigured during the configuration phase. 

Apart initializing immediate registers, the multiplexers, PEs and 

ORN micro-routing network should also be programmed using 

the configuration bits. In order to configure each component, the 

configuration bit-stream is serially transferred to the 

configuration registers.  

3. LSRDP Design Procedure and Mapping Tool 

Entire design procedure is an iterative process of gathering 

statistics and analysis of results. We used a quantitative approach 

for designing the LSRDP architecture and determining its 

detailed architectural specifications. To determine each design 

parameter, DFGs should be mapped onto the LSRDP and the 

outcome is analyzed. The mapping process is performed without 

forcing any constraint except the constraints originated from the 

LSRDP architecture e.g. unidirectional data flow over the PE 

rows, availability of routing resources between subsequent rows 

and etc. In the next stage, the results of mapping should be 

analyzed by the designer to decide an appropriate value for the 

intended parameter.  

3-1. DFG Extraction 

Extracting data flow graphs from applications is performed 

manually or automatically by means of a sophisticated high-level 

profiling tool. In the former case, programmer needs to have a 

sufficient knowledge on the application and its detailed 

characteristics. Four applications are attempted as scientific 

benchmark applications including: one-dimensional heat 

(referred as Heat) and vibration equations (Vibration), two-

dimensional Poisson equation (Poisson)  [8], and recursion 

calculation part of electron repulsion integral (ERI  [7]) as a 

quantum chemistry application. All calculations consist of ADD, 

SUB, and MUL operations and DFGs have been extracted 

manually.  

3-2. Placement and Routing 

Mapping process consists of two sub-procedure i.e. 

placement and routing. Throughout the mapping process, DFG 

nodes are placed on appropriate positions (PEs) over the LSRDP. 

This is similar to the well-known placement problem  [9]. 

Generally, minimizing the total connection length or the 

maximum connection length are main objectives, however in 

designing LSRDP, the mail goal is to minimize the maximum 

connection length (MCL) that directly impacts the ORN sizes and 

the LSRDP area as well.  

Routing process is the next stage that establishes connections 

between the PEs in the LSRDP by means of routing resources 

including ORNs and transfer units  [9]. As aforementioned, it is 

supposed that each PE can impelemt one or a couple of transfer 

units for routing data to inconsequent rows. For each connection 

it is aimed to find a shortest path between the source and 

destination PEs.  

3-3. I/O Nodes Placement 

Input/output nodes of the DFG should be assigned to 

appropriate input/output ports of the LSRDP on the boundaries 

( Fig. 5). Between the first/last LSRDP rows and input/output 

ports, ORNs are avaiable as routing resources. The main 

objective is to reduce the connection legnth between input/output 

ports and PEs in the first/last row of the LSRDP. Since DFG 

nodes are placed based on the location of their parents inside the 

LSRDP, placing input nodes is perfomed in a different manner 

from the placing output ports and it has more imapct in the 

quality of final placement. Afterward, propoer locations for 

output nodes can be determined based on the position of parent 

nodes which have already been placed.  

We propose two approaches for the input nodes placement. 

1. fan-out based placement: I/O nodes are placed with 

respect to their fan-out or the total number of children. Input 

nodes of DFG are prioritized with repsect to their fan-out and 

then the placement algorithm looks for proper input ports to 

minimize the longest horizontal connection length. In this case, 

the DFG nodes should be initially placed onto the PEs prior to the 

input ports placement.  Fig. 5 shows three cases (depending on the 

input node fan-out which might be one, two or more than two) 

for placing an input node on the ports. It is attempted to find the 

closest unoccupied port to the input node’s children. DFG nodes 

should be remapped according to the location of input nodes. 

2. proximity-factor based placement: placing input nodes 

considering solely the location of their direct descendants (in the 

closes vicinity in the DFG) might result in large MCLs as shown 

in  Fig. 6. In  a  piece  of  mapping  result displayed in  Fig. 6, 

input nodes ‘0’ and ‘24’ are located in a close distance to their 

children (located in the first row) however they have a long 

distance to each other and to a common descendant node which is 

positioned in the third row as well. This placement without 

paying attention to the location of descendants make some long 

connections which affects the MCL size. One solution to cope 

with this issue is to locate input nodes which have strong 

connections to each other in a closer distance. We define a factor 

referred as proximity factor to represent the strength of forces 

that PEs can exert to each other. This factor is used as a basis of 

the input nodes placement algorithm.  

Proximity factor: for each pair of inout nodes i and j the 

proximity factor is calculated as:  
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while ikD ,  is the distance of common descendant node k to the 

input ports i (and j). The distance of a node to its related input 

port can be calculated as its ASAP (As soon as posssible  [3]) 
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Fig. 5. Input nodes positioning (fan-out based) 

input nodes i and j. Larger number of common descendants with 

smaller distance to the parents pair result in larger proximity 

factor and therefore, coressponding nodes should be placed in a 

closer distance to each other. Proximity factors for different pairs 

of the sample DFG in  Fig. 7 have been calculated as well.  

Input nodes placement algorithm: A heuristic algorithm is 

introduced below which employs the proximity factor for 

positioning  input nodes of a DFG onto the LSRDP input ports. 

Here are some definitions. 

P: is the matrix of proximity factor for input node pairs.  
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L: is the input ports array which stores the list of placed nodes 

such that the indexes indicate the location of corresponding input 

node. 

l and r: denote the index of candidate locations in L for 

placing the under process input node.  

Cl,m and Cr,m: show the amount of proximity of an under 

process node m to the previously placed input nodes which have 

been located between l and r in array L. The node m will be 

placed in location l if Cl,m is larger than Cr,m otherwise, it will be 

located in location r. Cr,m and Cl,m are calculated as:  
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In Eq. 4 and 5, pi,j is the proximity factor of node m and node 

i that has already been placed. The second term is the inverse of 

distance of candidate location (l or r) to the location of node i. In 

this way, the amount of proximity to already placed nodes is 

examined and one of the candidate locations (l or r) is chosen. 

 

Placement alg.  

1. Construct matrix P including the proximity factors for 

each pair of input nodes (n is the number of input nodes). 

Initialize Φ=L . 

2. Find node m with the highest proximity factor from the 

first row of matrix P(i= 1) and place it in array L so that 

L[n/2]= m.  

3. Initialize l and r to n/2-1 and n/2+1, respectively.  

4. Find the next node (m) with the highest proximity factor 

from the first row of matrix P(i= 1). 

5. Calculate Cl,m and Cr,m using Eq. 4 and Eq. 5. 

6. if Cl,m > Cr,m: 

  l= l+1, L[l]= m (node m is placed in the location l) 

else:  

  r= r+1, L[r]= m (node m is placed in the location r) 

7. if still there is any unplaced input node, go to step 4. 
 

  

Fig. 6. A piece of mapping result for Poisson-3x3 DFG 
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Fig. 7. A sample DFG  

3-4. Connection-length minimization 

In the basic placement algorithm, connection length between 

any source and destination nodes is evaluated as the horizontal 

distance of two nodes (connection length= lh= dh: horizontal 

distance). For two nodes located in two consecutive rows (dv= 1), 

the only possible way for routing is through the available ORN 

resources. On the other hand for two nodes placed in 

inconsecutive rows (vertical distance: dv> 1), it is possible to use 

intermediate TUs for routing. In this way, the connection can be 

segmented to dv-1 connections between consecutive rows.  

Considering above point, we use an alternative measurement 

for the connection length as lhv=dh/dv. In  Fig. 8 (left-side) the 
two definitions of connection length have been displayed. In 

right-side two connections (denoted by 1 and 2) can be seen so 

that dh1= dh2= 3, while they have different vertical distances (dv1= 

1, dv2= 3). For connection 1, connection length would be 3 and 

the only possible way for routing from src to dest1 is via the 

ORN switches. On the contrary, for connection 2, it is possible to 

use available intermediate TUs and break it into three segmented 

connections from src to dest2. This results in reducing connection 

length to one.  

By using above new definition for connection length 

measurement, the placement algorithm was modified such that 

the vertical connection length becomes effective in calculating 

the cost function.  Fig. 9 shows an example of placing a node 

which has two parents (P1 and P2) already assigned to two PEs.  



 

Obviously due to the routing resource constraints (particularly of 

being unidirectional) descendant nodes can be placed on the PEs 

of their parents’ succeeding rows (indicated as candidate rows in 
 Fig. 9).  
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Fig. 8. Connection length definitions 
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Fig. 9. Examining different PEs of LSRDP for placing a DFG node  

The connection length has been calculated based on two 

abovementioned measurements for each candidate PE. By using 

lh for connection length measurement, PE2 is the best choice 

which gives the minimum MCL equal to two. In the second 

candidate row, choosing PE8 gives the same result, however PE2 

is proffered due to smaller vertical distance. On the other hand, 

connection length measurement based on lhv results in choosing 

PE2 which gives the least value of MCL equal to one in the first 

row. Although PE6, PE7 and PE8 in the second row give the 

same result, but due to smaller vertical distance, PE2 is chosen 

eventually. 

4. Experimental Results 

We conducted experiments to evaluate different LSRDP 

architectures by means of the proposed mapping techniques. 

Input DFGs ( Table 1) were extracted from the four target 

applications as mentioned in Section 3-1.  Three PE structures 

( Fig. 1) and two LSRDP layouts (introduced in Section 2) were 

examined. Due to various number of inputs and outputs of the PE 

architectures, three ORN structures were designed and their area 

were calculated as in  Table 2. In order to calculate PE area, it is 

assumed that the number of Josephson Juntions (JJs) required for 

implementing a TU or mux in a PE is almost %10 of a double-

precision functional unit  [4].  

 Table 3 shows results of evaluations of various LSRDP 

architectures. We used both techniques presented in Section 3-3 

for placing input nodes. In addition the MCL minimization 

technique introduced in Section 3-4 were exploited to reduce the 

MCL size. In  Table 3, S1 denotes first strategy including fan-out 

based input nodes placement and using lh as the cost of 

connection lengths. S2 stands for a strategy employing the 

proximity-factor based input nodes placement and lhv for the 

connection length measurement. Results of experiments show the 

effectiveness of the proposed techniques in reducing MCL, ORN 

size as well as the overall LSRDP size. It is observed from the 

implementation that each CB needs around 550JJs and each FU 

i.e. ADD/SUB or MUL requires around 40KJJs.  

Table 1. specification of the extracted DFGs 

 # of 
nodes 

# of 
inputs 

# of 
outputs 

# of 
ops 

max. inp. 
nodes 
fan-out 

Max. 
fan-out 

Heat-8x1 34 6 4 16 2 1 

Heat-8x2 60 8 4 32 3 3 

Heat-16x2 172 16 12 96 3 3 
Poisson-3x3 62 18 1 33 3 2 

Vibration-4x2 48 8 4 24 3 2 
Vibration-8x2 136 16 12 72 4 4 

ERI-1 20 8 3 9 3 1 
ERI-2 76 16 9 51 3 3 
ERI-3 89 14 9 66 3 6 
ERI-4 67 19 1 47 4 3 

Table 2. PE types and ORN area calculations 

PE Area (x FU)  # of inputs/ 

outputs Layout-I Layout-II 

ORN Area (x CBs) 

PE1 3/2 2.1 1.1 1.5xWx(4xMCL) 

PE2 4/3 2.2 1.2 2xWx(6xMCL+2) 

PE3 3/3 2.2 1.2 1.5xWx(4xMCL+1) 

Table 3. Evaluation results for various architectures 

Layout-I Layout-II  

S1 S2 S1 S2 

PE basic arch. 14 6 15 12 

PE arch. I 8 3 9 4 

 

MCL 

PE arch. II 10 4 12 7 

PE basic arch 25116 12600 29250 24336 

PE arch. I 30600 13680 38080 17680 

ORN size  

(overall) 

x CB PE arch. II 18696 8237 23520 14790 

PE basic arch 580 683 330 344 

PE arch. I 634 713 384 384 

No. of FUs 

 (overall) 

x FU PE arch. II 627 669 360 384 

PE basic arch 36923K 34193K 29200K 27040K 

PE arch. I 48083K 35995K 36190K 25031K 

Overall 

LSRDP 

Area (JJ) PE arch. II 35307K 31258K 27266K 23451K 

 

The LSRDP area is composed of the area of ORNs and PEs. 

Area of ORNs has been represented by the number of cross-bar 

switches and the area of PEs is estimated by the number of 

required FUs. Overall area of the LSRDP (the last row) has been 

reported in terms of the number of Josephson Junctions (JJs). 

Since each PE in Layout-I implements both ADD/SUB and MUL 

operations, it needs larger overall area regardless of the strategy 

of mapping. Comparing PE architectures, although PE arch. I 

gives smaller MCL size, but it results in larger overall area for 

both layout types. As PE arch. I has four inputs and three outputs 

which are more than those of two other PE architectures, 

therefore, ORN size would be bigger referring to the information 

in  Table 2. In  Table 3 it can also be observed that the PE basic 

arch. and PE arch. II both obtain smaller overall area for LSRDP, 

however the MCL size for the first one is larger. Using mapping 

strategy S2, Layout-II and the PE arch. II the smallest area is 

achievable for the LSRDP.  

lh= 3 

lhv= 3/3=1 lh= dh 
lhv=  dh/ dv   

lh= 3 

lhv=3/1=3 

lh= dh 

lhv=dh/dv 
 
lh= dh 

lhv=dh/dv 

1st candidate row 

2nd candidate row 



 

5. Conclusion 

A reconfigurable accelerator comprising of a large matrix of 

PE implemented by SDFG circuits is a key component for a 

computer featuring high performance and low power 

consumption. That is also suitable for executing massive 

computational-intensive scientific applications. A mapping tool 

has been developed in which the main goal is to reduce the 

LSRDP area. In future we intend to optimize the LSRDP 

architecture in attempt to decrease the overall area through 

exploring the design space. In the compiler side, the DFG 

generation from scientific applications will be performed 

automatically and the DFG customization for the underlying 

accelerator architecture will be developed. 
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