九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Abstract collision systems on groups

Ito，Takahiro
Graduate School of Mathematics，Kyushu University

https：／／hdl．handle．net／2324／16325

出版情報：MI Preprint Series．2010－8，2010－04－08．九州大学大学院数理学研究院 バージョン：
権利関係：

MI Preprint Series

Kyushu University
The Global COE Program
Math-for-Industry Education \& Research Hub

Abstract collision systems on groups

Takahiro Ito

MI 2010-8
(Received February 10, 2010)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

Abstract collision systems on groups

Takahiro Ito

Abstract

We discuss about abstract collision systems(ACS) on groups which is an extension of ACS $[5,6]$. The ACS is a kind of frameworks of unconventional computing which includes collision based computing, cellular automata (CA), chemical reaction systems and so on. In this paper, we define ACS on groups. When a group G and its subset is given, we create a set of collisions and a local transition function of an ACS from the group G and its operation. First, we describe definitions of components of ACS. Next, we introduce ACS on groups. Finally, we investigate properties of operations of ACS, union, division and composition.

Keywords. collision based computing, cellular automata.

1. Introduction

Recently, there are many investigations about unconventional computing based on the frameworks of the collisionbased computing [1], which include cellular automata (CA) and reaction-diffusion systems. Our purpose is to construct computational models and to investigate computational capabilities of those models.

Conway introduced 'The Game of Life' which is one of two dimensional cellular automata [2]. On 'The Game of Life', there are some special patterns called "gliders". He showed that it can simulate any logical circuit by using collisions of gliders. Wolfram and Cook [11, 3] found glider patterns in the one dimensional elementary cellular automaton CA110. Cook introduced cyclic tag systems (CTS) as Turing universal systems. He proved that CTS was simulated by CA110 by using collisions of gliders in CA110. Recently, Martínez et. al. investigated glider phenomena from the view point of regular language [7]. Morita [8] introduced a reversible one dimensional CA which simulated CTS.

We introduced the notion of abstract collision systems (ACS) as tools to discuss about collision phenomena including the phenomena of glider collisions in 'The Game of Life' and 'CA110'. We proved that it is universal for computation [5]. Moreover, we investigated about simulations of ACS by CA. We found some conditions of ACS to be simulated by CA [6].

Notion of automata on groups was first treated as special cases for automata on graphs named Cayley graphs which represent groups [10, 9, 12]. Fujio [4] introduced the composition of CA on groups in order to reduce a complex behaved dynamics into simpler ones. As an example, he showed the rule 90 (3 neighborhood) CA is factorized into the composition of double XORs, which are rule 6 (2 neighborhood) CA.

In this paper, we define ACS on groups, and we investigate properties about this extended systems. Generally, the set of collisions, which is domain of local transition function, is very large set. However, in notion of ACS on groups, we use small set V and a function l named "base function". By using V and l, we induce the set of collisions \mathcal{C} and local transition function f_{l}.

Next, we consider operation of ACS such as "union", "division" and "composition". We showed one of sufficient conditions that ACS on a group is dividable. Furthermore, we proved that the operation "composition" is right distributive over "union". The operation "composition" is not left distributive. We give a counter-example about this left distributive laws. In addition, we re-formalize CA on groups by using ACS on groups.

This paper consists of the following sections. In Section 2, we introduce abstract collision systems. Let S be a nonempty set. First, we define a set of collisions \mathcal{C} on S. The set \mathcal{C} specifies all combinations of elements which cause collisions. Moreover, we define an abstract collision system.

In Section 3, we define ACS on groups. Let G be a group, and G operates to S. When only $V \subseteq G$ and a map from 2^{V} to 2^{S} is given, we construct a set of collisions \mathcal{C} on S and a local transition function $f: \mathcal{C} \rightarrow 2^{S}$ by using the operation of G. Moreover, we investigate behavior of the global transition function of such an ACS.

In Section 4, we define new operations "union" and "division" of ACS. Moreover, we prove that a sufficient condition to divide an ACS on a group.

In Section 5, we discuss about composition of ACS on groups. We define composition of ACS on groups by an operation of base functions of two ACS and we prove that the definition induce the composition of local (resp. global) transition functions.

In Section 6, we prove that composition is right distributive over union. But they are not left distributive. We give
a counter-example.

2. ABSTRACT COLLISION SYSTEMS

In this section, we define an abstract collision system. Let S be a non-empty set. First, we define a set of collisions on S.
Definition 1 (Set of collisions). A set $\mathcal{C} \subseteq 2^{S}$ is called a set of collisions on S iff it satisfies
(SC1) $\{s\} \in \mathcal{C}$ for all $s \in S$,
(SC2) For all $\mathcal{X} \subseteq \mathcal{C},(\cup \mathcal{X}) \in \mathcal{C}$ if $(\cap \mathcal{X}) \neq \phi$,
where $\cap \mathcal{X}=\cap\{X \mid X \in \mathcal{X}\}$ and $\cup \mathcal{X}=\cup\{X \mid X \in \mathcal{X}\}$, respectively.
Proposition 1. Let \mathfrak{C} be a family of sets of collisions on S. Then a set

$$
\bigcap \mathfrak{C}=\bigcap_{\mathcal{C} \in \mathfrak{C}} C
$$

is a set of collisions on S.
Proof. We check conditions (SC1) and (SC2).
We prove (SC1). We have $\{s\} \in \mathcal{C}$ for all $s \in S$ and $\mathcal{C} \in \mathfrak{C}$. Therefore we have $\{s\} \in(\cap \mathfrak{C})$.

We prove (SC2). For all $\mathcal{X} \subseteq(\cap \mathfrak{C})$, and $\mathcal{C} \in \mathfrak{C}$, we assume that $(\cap \mathcal{X}) \neq \phi$. The set $\overline{\mathcal{C}}$ satisfies the assumption of (SC2), i.e.,

$$
\begin{aligned}
\mathcal{X} \subseteq & (\cap \mathfrak{C}) \subseteq \mathcal{C} \\
(\cap \mathcal{X}) & \neq \phi
\end{aligned}
$$

Therefore we have $(\cup \mathcal{X}) \in \mathcal{C}$ from (SC2). Hence we have $(\cup \mathcal{X}) \in(\cap \mathfrak{C})$.

Definition 2. For a subset $\widetilde{\mathcal{C}}$ of 2^{S}, we put
(1) $\mathfrak{C}(\widetilde{\mathcal{C}})=\bigcap\{\mathcal{C} \mid \mathcal{C}$ is a set of collisions on $S, \widetilde{\mathcal{C}} \subseteq \mathcal{C}\}$.

From the above proposition, this set is a set of collisions on S, and it includes the set $\widetilde{\mathcal{C}}$. Moreover, this set is a smallest set in all of sets of collisions on S which includes $\widetilde{\mathcal{C}}$.

Next, we define abstract collision systems. To define a global transition function, we divide a configuration into elements of \mathcal{C}.

For all $A \in 2^{S}$ and $p \in A$, we define

$$
\begin{equation*}
[p]_{\mathcal{C}}^{A}=\bigcup\{X \mid X \in \mathcal{C}, p \in X, X \subseteq A\} \tag{2}
\end{equation*}
$$

Proposition 2. Let \mathcal{C} be a set of collisions on S. For all $A \in 2^{S}$ and $p, q \in A$, we have the following:
(1) $[p]_{\mathcal{C}}^{A} \neq \phi$.
(2) $[p]_{\mathcal{C}}^{A} \in \mathcal{C}$
(3) If $[p]_{\mathcal{C}}^{A} \cap[q]_{\mathcal{C}}^{A} \neq \phi$, then $[p]_{\mathcal{C}}^{A}=[q]_{\mathcal{C}}^{A}$.

Proof. First, we prove (1). Since $\{p\} \in \mathcal{C}, p \in\{p\}$ and $\{p\} \subseteq A$, we have $\{p\} \subseteq[p]_{\mathcal{C}}^{A}$. Hence $[p]_{\mathcal{C}}^{A} \neq \phi$.

Next we prove (2). Let

$$
\mathcal{X}=\{X \mid X \in \mathcal{C}, p \in X, X \subseteq A\}
$$

Since $p \in(\cap \mathcal{X})$, we have $(\cap \mathcal{X}) \neq \phi$. Therefore $[p]_{\mathcal{C}}^{A}=$ $(\cup \mathcal{X}) \in \mathcal{C}$ by $(\mathrm{SC} 2)$.

Finally, we prove (3). Since $[p]_{\mathcal{C}}^{A} \in \mathcal{C},[q]_{\mathcal{C}}^{A} \in \mathcal{C}$ and $[p]_{\mathcal{C}}^{A} \cap[q]_{\mathcal{C}}^{A} \neq \phi$, we see that

$$
[p]_{\mathcal{C}}^{A} \cup[q]_{\mathcal{C}}^{A} \in \mathcal{C}
$$

Moreover since $p \in A$ and $[p]_{\mathcal{C}}^{A} \cup[q]_{\mathcal{C}}^{A} \subseteq A$, we have $[p]_{\mathcal{C}}^{A} \cup$ $[q]_{\mathcal{C}}^{A} \subseteq[p]_{\mathcal{C}}^{A}$. Hence we have

$$
[p]_{\mathcal{C}}^{A} \cup[q]_{\mathcal{C}}^{A}=[p]_{\mathcal{C}}^{A}
$$

Similarly, we have $[p]_{\mathcal{C}}^{A} \cup[q]_{\mathcal{C}}^{A}=[q]_{\mathcal{C}}^{A}$. Hence $[p]_{\mathcal{C}}^{A}=[q]_{\mathcal{C}}^{A}$.
Definition 1 is different from the definition of [5]. The original definition is Definition 3. However, from Lemma 1, The statements of these definitions are equivalent. Since Definition 1 is more simple than Definition 3, we use Definition 1 as a definition of the set of collisions in this paper.
Definition 3. A set $\mathcal{C} \subseteq 2^{S}$ is called a set of collisions on S iff it follows that;
(SC1) $\{s\} \in \mathcal{C}$ for all $s \in S$.
(SC' ${ }^{\prime}$) For all X_{1} and $X_{2} \in \mathcal{C}, X_{1} \cup X_{2} \in \mathcal{C}$ if $X_{1} \cap X_{2} \neq \phi$.
(SC'3) $[p]_{\mathcal{C}}^{A} \in \mathcal{C}$ for all $A \in 2^{S}$ and $p \in A$.
Lemma 1. The statements of Definition 1 and Definition 3 are equivalent, i.e.,

$$
(S C 2) \Leftrightarrow\left(\left(S C^{\prime} 2\right) \wedge\left(S C^{\prime} 3\right)\right)
$$

Proof. First, We prove (SC'2) from (SC2). Suppose that $X_{1}, X_{2} \in \mathcal{C}, X_{1} \cap X_{2} \neq \phi$. Let $\mathcal{X}=\left\{X_{1}, X_{2}\right\} \subseteq \mathcal{C}$. Since $(\cap \mathcal{X})=X_{1} \cap X_{2} \neq \phi$, we have $X_{1} \cup X_{2}=(\cup \mathcal{X}) \in \mathcal{C}$ by (SC2). Therefore we have(SC'2).

Next, we see (SC'3) from (SC2) by (2) of Proposition 2.
Finally, we prove (SC2) from (SC'2). For all $\mathcal{X} \subseteq \mathcal{C}$, we assume that $(\cap \mathcal{X}) \neq \phi$. Let $x_{0} \in(\cap \mathcal{X})$ and

$$
\begin{equation*}
A=\bigcup \mathcal{X} \tag{3}
\end{equation*}
$$

Since $x_{0} \in A$, we have

$$
\begin{equation*}
\left[x_{0}\right]_{\mathcal{C}}^{A} \in \mathcal{C} \tag{4}
\end{equation*}
$$

from (SC'3). We see that $\left[x_{0}\right]_{\mathcal{C}}^{A} \subseteq A$ from the definition of $\left[x_{0}\right]_{\mathcal{C}}^{A}$. On the other hand, for all $X \in \mathcal{X}$, since $X \in \mathcal{X} \subseteq \mathcal{C}$, we have $X \in \mathcal{C}$. Moreover, since $x_{0} \in(\cap \mathcal{X})$ and $A=(\cup \mathcal{X})$, we have $x_{0} \in X$ and $X \subseteq A$. Hence we have

$$
X \subseteq \bigcup\left\{X \mid X \in \mathcal{C}, x_{0} \in X, X \subseteq A\right\}=\left[x_{0}\right]_{\mathcal{C}}^{A}
$$

Therefore we have

$$
\begin{equation*}
A=\left[x_{0}\right]_{\mathcal{C}}^{A} . \tag{5}
\end{equation*}
$$

Hence we have

$$
(\bigcup \mathcal{X})=A=\left[x_{0}\right]_{\mathcal{C}}^{A} \in \mathcal{C}
$$

by (3), (4) and (5). Therefore we have (SC2).
Definition 4 (An abstract collision system). Let S be a non-empty set and \mathcal{C} be a set of collisions on S. Let $f: \mathcal{C} \rightarrow 2^{S}$. We define an abstract collision system M by $M=(S, \mathcal{C}, f)$. We call the function f and the set 2^{S} a local transition function and a configuration of M, respectively. We define a global transition function $F_{M}: 2^{S} \rightarrow 2^{S}$ of M by

$$
F_{M}(A)=\bigcup_{p \in A}\left(f\left([p]_{\mathcal{C}}^{A}\right)\right)
$$

The following of this paper, for each abstract collision system M, we denote the global transition function of M by F_{M}.
Lemma 2. Let F_{M} be the global transition function of an abstract collision system $M=(S, \mathcal{C}, f)$. If $A \in \mathcal{C}$, we have

$$
F_{M}(A)=f(A) .
$$

Proof. Since $A \in \mathcal{C}$, we see that $[p]_{\mathcal{C}}^{A}=A$ for any $p \in A$. Therefore we have

$$
F_{M}(A)=\bigcup_{p \in A}\left(f\left([p]_{\mathcal{C}}^{A}\right)\right)=\bigcup_{p \in A}(f(A))=f(A)
$$

Definition 5. Let $M_{1}=\left(S, \mathcal{C}_{1}, f_{1}\right)$ and $M_{2}=\left(S, \mathcal{C}_{2}, f_{2}\right)$ be abstract collision systems. Let $F_{M_{1}}$ and $F_{M_{2}}$ be global transition functions of M_{1} and M_{2}, respectively. We say that M_{1} and M_{2} are equivalent if they satisfy

$$
F_{M_{1}}(A)=F_{M_{2}}(A)
$$

for all $A \in 2^{S}$. When M_{1} and M_{2} are equivalent, we write $M_{1} \equiv M_{2}$.
Lemma 3. Let M_{1} and M_{2} be abstract collision systems

$$
M_{1}=\left(S, \mathcal{C}_{1}, f_{1}\right), M_{2}=\left(S, \mathcal{C}_{2}, f_{2}\right)
$$

Suppose that $\mathcal{C}_{1}=\mathcal{C}_{2}$. Moreover, we assume that $f_{1}=f_{2}$. Then we have $M_{1} \equiv M_{2}$.

Proof. Let $\mathcal{C}=\mathcal{C}_{1}=\mathcal{C}_{2}$. Let $F_{M_{1}}$ and $F_{M_{2}}$ be global transition functions of M_{1} and M_{2}, respectively. Suppose that $A \in 2^{S}$. Then we see that

$$
\begin{aligned}
& F_{M_{1}}(A) \\
= & \bigcup_{p \in A} f_{1}\left([p]_{\mathcal{C}}^{A}\right) \\
= & \bigcup_{p \in A} f_{2}\left([p]_{\mathcal{C}}^{A}\right) \\
= & F_{M_{2}}(A) .
\end{aligned}
$$

Therefore we have $M_{1} \equiv M_{2}$.

3. Abstract collision systems on GROUPS

In this section, we consider an operation of a group. Let G be a group, and S be a non-empty set.

A map from $G \times S$ to G,

$$
\begin{equation*}
G \times S \rightarrow S \quad((g, s) \mapsto g s) \tag{6}
\end{equation*}
$$

is called an operation of G to S, iff it satisfies:
(1) $(g h) s=g(h s) \quad(g, h \in G, s \in S)$
(2) $e s=s \quad(e$ is an identity element of $G)$.

Then we say that the group G operates the set S.
When a group G operates a set S, we define an operation of G to 2^{S} by

$$
\begin{equation*}
g X=\{g x \mid x \in X\} \quad\left(g \in G, X \in 2^{S}\right) \tag{7}
\end{equation*}
$$

We have the following proposition about this operation.
Proposition 3. For all $g \in G$ and $X, Y \subseteq S$, we have:

$$
\begin{align*}
& \text { If } X \subseteq Y \text {, then }(g X) \subseteq(g Y) . \tag{8}\\
& g(X \cup Y)=(g X) \cup(g Y) \\
& g(X \cap Y)=(g X) \cap(g Y)
\end{align*}
$$

Proof. (8) is clear.
Next prove (9). Since $X, Y \subseteq X \cup Y$, we have $g X \subseteq$ $g(X \cup Y)$ and $g Y \subseteq g(X \cup Y)$. Therefore we have

$$
(g X) \cup(g Y) \subseteq g(X \cup Y)
$$

On the other hand, for all $z \in g(X \cup Y)$, there exists $w \in$ $X \cup Y$ such that $z=g w$. Then w satisfies $w \in X$ or $w \in Y$. If $w \in X$ (resp. $w \in Y$), we have $z \in g X$ (resp. $z \in g Y$). Therefore $z \in(g X) \cup(g Y)$. Hence we have

$$
g(X \cup Y) \subseteq(g X) \cup(g Y)
$$

Finally, we prove (10). Since $X \cap Y \subseteq X, Y$, we have $g(X \cap Y) \subseteq(g X)$ and $g(X \cap Y) \subseteq(g Y)$. Therefore we have

$$
g(X \cap Y) \subseteq(g X) \cap(g Y)
$$

On the other hand, for all $z \in(g X) \cap(g Y)$, there exists $x \in X$ and $y \in Y$ such that $z=g x$ and $z=g y$. Since $g^{-1} z=x=y$, we have $x=y \in X \cap Y$, which implies

$$
z=g x=g y \in g(X \cap Y)
$$

Hence we have

$$
(g X) \cap(g Y) \subseteq g(X \cap Y)
$$

All claims of Proposition 3 are proved.
Definition 6. Let S be a non-empty set, V be a nonempty subset of S, G be a group, $l: 2^{V} \rightarrow 2^{S}$ and the group G operates to the set S. Then let

$$
\begin{equation*}
\widetilde{\mathcal{C}}_{V}=\left\{g X \mid g \in G, X \in 2^{V}\right\} \tag{11}
\end{equation*}
$$

and \mathcal{C} be a set of collisions on S which includes $\widetilde{\mathcal{C}}_{V}$. Then we define a local transition function $f_{l}: \mathcal{C} \rightarrow 2^{S}$ by

$$
\begin{equation*}
f_{l}(X)=\bigcup_{g \in G} g l\left(\left(g^{-1} X\right) \cap V\right) \tag{12}
\end{equation*}
$$

We call an abstract collision system $M=\left(S, \mathcal{C}, f_{l}\right)$ an abstract collision system on G made by V and l. Moreover, we call the function l a base function of M. In addition, we call f_{l} a induced local transition function by V and l on G, and denoted by $f_{l}=\operatorname{Ind}(G, V, l)$.
Definition 7. Let $V^{\prime} \subseteq V$. We call the set V^{\prime} essential domain of l iff it satisfies

$$
l(X)=l\left(X \cap V^{\prime}\right)
$$

for all $X \in 2^{V}$. We denote the essential domain V^{\prime} by $V^{\prime}=\operatorname{ess} l$.

We investigate the behavior of the global transition function of the abstract collision system on G. We prove a theorem with respect to the global transition function of an abstract collision system on a group. We prepare the following lemmas.
Lemma 4. Let $A \in 2^{S}$ and $g \in G$. If

$$
g^{-1}[p]_{\mathcal{C}}^{A} \cap V=\phi
$$

for all $p \in A$, then we have

$$
g^{-1} A \cap V=\phi
$$

Proof. We show by indirect proof. We assume that $g^{-1} A \cap$ $V \neq \phi$. Then there exists $x \in g^{-1} A \cap V$. Let $p=g x$. Since $p=g x \in A$ and $x \in V$, we have

$$
x=g^{-1} p \in g^{-1}[p]_{\mathcal{C}}^{A} \cap V .
$$

Hence we have $g^{-1}[p]_{\mathcal{C}}^{A} \neq \phi$, this contradicts the assumption of the lemma.

Lemma 5. Let $A \in 2^{S}, p \in A$ and $g \in G$. If

$$
g^{-1}[p]_{\mathcal{C}}^{A} \cap V \neq \phi
$$

then we have

$$
g^{-1}[p]_{\mathcal{C}}^{A} \cap V=g^{-1} A \cap V
$$

Proof. From the definition of $[p]_{\mathcal{C}}^{A}$, it is clear that $[p]_{\mathcal{C}}^{A} \subseteq A$ Hence we have

$$
g^{-1}[p]_{\mathcal{C}}^{A} \cap V \subseteq g^{-1} A \cap V
$$

Let $x \in g^{-1} A \cap V$ and $q \in[p]_{\mathcal{C}}^{A} \cap g V$. We show

$$
x \in g^{-1}[p]_{\mathcal{C}}^{A} \cap V
$$

Since $q \in[p]_{\mathcal{C}}^{A} \cap[q]_{\mathcal{C}}^{A} \neq \phi$, we have $[p]_{\mathcal{C}}^{A}=[q]_{\mathcal{C}}^{A}$ by Proposition 2. Let

$$
\begin{align*}
X_{1} & =[q]_{\mathcal{C}}^{A} \\
X_{2} & =\left([q]_{\mathcal{C}}^{A} \cap g V\right) \cup\{g x\} . \tag{13}
\end{align*}
$$

Then it is clear that $X_{1} \in \mathcal{C}$ by (2) of Proposition 2. Since

$$
[q]_{\mathcal{C}}^{A} \cap g V \subseteq g V, \quad g x \in A \cap g V \subseteq g V
$$

we have $X_{2} \subseteq g V$. Hence we have

$$
X_{1}, X_{2} \in \widetilde{\mathcal{C}}_{V} \subseteq \mathcal{C}
$$

Since $q \in[q]_{\mathcal{C}}^{A}$ and $q \in g V$, we have $q \in X_{1}$ and $q \in X_{2}$. Hence $X_{1} \cap X_{2} \neq \phi$. Therefore we have $X_{1} \cup X_{2} \in \mathcal{C}$ by (SC2). Moreover, since $x \in g^{-1} A \cap V$, we have $g x \in A$, i.e., $\{g x\} \subseteq A$. Since

$$
X_{1} \cup X_{2} \in \mathcal{C}, \quad q \in X_{1} \cup X_{2}, \quad X_{1} \cup X_{2} \subseteq A
$$

we have $[q]_{\mathcal{C}}^{A} \supseteq X_{1} \cup X_{2}$ by (2). Hence $g x \in[q]_{\mathcal{C}}^{A}$, which implies $x \in g^{-1}[q]_{\mathcal{C}}^{A}$. Moreover, since $x \in g^{-1} A \cap V$, it is clear that $x \in V$. Therefore we have

$$
x \in g^{-1}[q]_{\mathcal{C}}^{A} \cap V=g^{-1}[p]_{\mathcal{C}}^{A} \cap V
$$

Lemma 6. For all $g \in G, A \in 2^{S}, p, q \in A$, we assume that

$$
\left(g^{-1}[p]_{\mathcal{C}}^{A} \cap V\right) \neq \phi, \quad\left(g^{-1}[q]_{\mathcal{C}}^{A} \cap V\right) \neq \phi
$$

Then we have

$$
[p]_{\mathcal{C}}^{A}=[q]_{\mathcal{C}}^{A}
$$

Proof. By Lemma 5, we see that

$$
\left(g^{-1}[p]_{\mathcal{C}}^{A} \cap V\right)=\left(g^{-1}[q]_{\mathcal{C}}^{A} \cap V\right)=\left(g^{-1} A \cap V\right)
$$

Hence for all $x \in\left(g^{-1}[p]_{\mathcal{C}}^{A} \cap V\right)$, since $g x \in[p]_{\mathcal{C}}^{A},[q]_{\mathcal{C}}^{A}$, we have $[p]_{\mathcal{C}}^{A} \cap[q]_{\mathcal{C}}^{A} \neq \phi$. Therefore we have $[p]_{\mathcal{C}}^{A}=[q]_{\mathcal{C}}^{A}$ by Proposition 2.

By these lemmas, we see the following, immediately.
Lemma 7. For all $g \in G$ and $A \in 2^{S}$, suppose that $A \notin \mathcal{C}$. Then we have

$$
\begin{equation*}
\bigcup_{p \in A} g l\left(g^{-1}[p]_{\mathcal{C}}^{A} \cap V\right)=g\left(l\left(g^{-1} A \cap V\right) \cup l(\phi)\right) \tag{14}
\end{equation*}
$$

Proof. Suppose that $g^{-1}[p]_{\mathcal{C}}^{A} \cap V=\phi$ for all $p \in A$. Then we have $g^{-1} A \cap V=\phi$ by Lemma 4. Hence the left hand side of (14) equals to

$$
\bigcup_{p \in A} g l(\phi)=g l(\phi)=g(l(\phi) \cup l(\phi))=g\left(l\left(g^{-1} A \cap V\right) \cup l(\phi)\right) .
$$

This equals to the right hand side.
Next, we assume that there exists $p_{1} \in A$ such that $g^{-1}\left[p_{1}\right]_{\mathcal{C}}^{A} \cap V \neq \phi$. Let

$$
\begin{aligned}
A^{\prime} & =\left\{p \in A \mid g^{-1}[p]_{\mathcal{C}}^{A} \cap V \neq \phi .\right\} \\
A^{\prime \prime} & =\left\{p \in A \mid g^{-1}[p]_{\mathcal{C}}^{A} \cap V=\phi .\right\}
\end{aligned}
$$

Then we have $p_{1} \in A^{\prime}$, which implies $A^{\prime} \neq \phi$. Since $A \notin \mathcal{C}$, there exists $q_{1} \in A$ such that $\left[p_{1}\right]_{\mathcal{C}}^{A} \neq\left[q_{1}\right]_{\mathcal{C}}^{A}$. Hence we have
$q_{1} \in A^{\prime \prime}$ by Lemma 6 . This implies $A^{\prime \prime} \neq \phi$. Therefore the left hand side of (14) equals

$$
\begin{aligned}
& \bigcup_{p \in A} g l\left(g^{-1}[p]_{\mathcal{C}}^{A} \cap V\right) \\
= & \bigcup_{p \in A^{\prime}} g l\left(g^{-1}[p]_{\mathcal{C}}^{A} \cap V\right) \cup \bigcup_{p \in A^{\prime \prime}} g l\left(g^{-1}[p]_{\mathcal{C}}^{A} \cap V\right) \\
= & \bigcup_{p \in A^{\prime}} g l\left(g^{-1} A \cap V\right) \cup \bigcup_{p \in A^{\prime}} g l(\phi) \quad(\text { by Lemma 5) } \\
= & g l\left(g^{-1} A \cap V\right) \cup g l(\phi) .
\end{aligned}
$$

This equals the right hand side of (14).
This lemma induces the following theorem.
Theorem 1. Let $M=\left(S, \mathcal{C}, f_{l}\right)$ be an abstract collision system on G made by V and l. Let F_{l} be the global transition function of M. If $A \in \mathcal{C}$, then F_{l} satisfies

$$
\begin{equation*}
F_{l}(A)=\bigcup_{g \in G} g l\left(g^{-1} A \cap V\right) \tag{15}
\end{equation*}
$$

If $A \notin \mathcal{C}$, then

$$
\begin{equation*}
F_{l}(A)=\bigcup_{g \in G} g\left(l\left(g^{-1} A \cap V\right) \cup l(\phi)\right) . \tag{16}
\end{equation*}
$$

Proof. First, suppose that $A \in \mathcal{C}$. (15) is clear by Lemma 2 and (12). Next, suppose that $A \notin \mathcal{C}$. By Lemma 7, we have

$$
\begin{aligned}
F_{l}(A) & =\bigcup_{p \in A}\left(f_{l}\left([p]_{\mathcal{C}}^{A}\right)\right) \\
& =\bigcup_{p \in A} \bigcup_{g \in G}\left(g l\left(g^{-1}[p]_{\mathcal{C}}^{A} \cap V\right)\right) \\
& =\bigcup_{g \in G} \bigcup_{p \in A}\left(g l\left(g^{-1}[p]_{\mathcal{C}}^{A} \cap V\right)\right) \\
& =\bigcup_{g \in G} g\left(l\left(g^{-1} A \cap V\right) \cup l(\phi)\right) .
\end{aligned}
$$

Hence the theorem follows.
Corollary 1. Especially, if $l(\phi)=\phi$, then we have

$$
F_{l}(A)=\bigcup_{g \in G} g l\left(g^{-1} A \cap V\right)
$$

for all $A \in 2^{S}$.
Corollary 2. We assume that $(\phi)=\phi$. Let \mathcal{C}_{1} and \mathcal{C}_{2} be sets of collisions on S. Suppose that $\widetilde{\mathcal{C}}_{V} \subseteq \mathcal{C}_{1}$ and $\widetilde{\mathcal{C}}_{V} \subseteq \mathcal{C}_{2}$. We make abstract collision systems $M_{1}=\left(S, \mathcal{C}_{1}, f_{l}\right)$ and $M_{2}=\left(S, \mathcal{C}_{2}, f_{l}\right)$. Then we have

$$
M_{1} \equiv M_{2} .
$$

Proof. Let $F_{M_{1}}$ and $F_{M_{2}}$ be global transition functions of M_{1} and M_{2}, respectively. By Corollary 2,

$$
F_{M_{1}}(A)=F_{M_{2}}(A)=\bigcup_{g \in G} g l\left(g^{-1} A \cap V\right)
$$

for all $A \in 2^{S}$. Hence the corollary follows.

In the following of this paper, we suppose that $l(\phi)=\phi$. Let $M=\left(S, \mathcal{C}, f_{l}\right)$ be an abstract collision system on G made by V and l. From Theorem 1, the abstract collision system M is determined by only G, S, V and l, i.e., M does not depend on the set of collisions \mathcal{C}. Therefore we denote the abstract collision system M by $M=G A C S(G, S, V, l)$

Then from Corollary 2, we have the following proposition.
Proposition 4. We have

$$
G A C S\left(G, S, V_{1}, l_{1}\right) \equiv G A C S\left(G, S, V_{2}, l_{2}\right)
$$

if $V_{1}=V_{2}$ and $l_{1}=l_{2}$.
By Definition 7 and Theorem 1, we show the following proposition.
Proposition 5. Let $V^{\prime}=$ ess l. Suppose that $l(\phi)=\phi$. Then we have

$$
G A C S(G, S, V, l) \equiv G A C S\left(G, S, V^{\prime}, l^{\prime}\right)
$$

where l^{\prime} is restriction of l onto $2^{V^{\prime}}$.
Proof. Let M and M^{\prime} be abstract collision systems on G,

$$
M=G A C S(G, S, V, l), \quad M^{\prime}=G A C S\left(G, S, V, l^{\prime}\right)
$$

respectively. Let F_{M} and $F_{M^{\prime}}$ be global transition functions of M and M^{\prime}, respectively. By Definition 7 and Theorem 1, we see that

$$
\begin{aligned}
F_{M}(A) & =\bigcup_{g \in G} g l\left(g^{-1} A \cap V\right) \\
& =\bigcup_{g \in G} g l\left(\left(g^{-1} A \cap V\right) \cap V^{\prime}\right) \\
& =\bigcup_{g \in G} g l\left(g^{-1} A \cap V^{\prime}\right) \\
F_{M^{\prime}}(A) & =\bigcup_{g \in G} g l^{\prime}\left(g^{-1} A \cap V^{\prime}\right)
\end{aligned}
$$

for all $A \in 2^{S}$.
In the following of this section, we will discuss about cellular automata by using an abstract collision system on a group.
Definition 8. Let G be a group, V be a subset of G and l be a map from 2^{V} to 2^{G}. We assume that

$$
\begin{aligned}
l(X) & \subseteq 2^{\{e\}} \quad\left(\text { for all } X \in 2^{V}\right) \\
l(\phi) & =\phi
\end{aligned}
$$

Then we call $G A C S(G, G, V, l)$ a cellular automaton on the group G.

Let $Q=\{0,1\}$ and $f_{C A}: Q^{n+1} \rightarrow Q$. Suppose that $f_{C A}(0, \ldots, 0)=0$. We consider the following one-to-one mapping:

$$
\left(x_{0}, \ldots, x_{n}\right) \leftrightarrow\left\{i \in V \mid x_{i}=1\right\} .
$$

We denote a map l by

$$
l\left(\left\{i \in V \mid x_{i}=1\right\}\right)=l\left(x_{0}, \ldots, x_{n}\right),
$$

for example $l(\{0,1,3\})=l(1,1,0,1,0, \ldots, 0)$. Moreover, we denote ϕ by 0 and \{0\} by 1, i.e,

$$
\begin{cases}l\left(x_{0}, \ldots, x_{n}\right)=0 & l\left(\left\{i \in V \mid x_{i}=1\right\}\right)=\phi \tag{17}\\ l\left(x_{0}, \ldots, x_{n}\right)=1 & l\left(\left\{i \in V \mid x_{i}=1\right\}\right)=\{0\}\end{cases}
$$

Example 1. Let $G=\mathbb{Z}, V=\{0,1\}$. We define l by

$$
\begin{array}{ll}
l(\{0,1\})=\phi, & l(\{0\})=\{0\}, \\
l(\{1\})=\{0\}, & l(\phi)=\phi .
\end{array}
$$

By using notation of (17), we denote this function by

$$
\begin{array}{ll}
l(1,1)=0, & l(1,0)=1 \\
l(0,1)=1, & l(0,0)=0
\end{array}
$$

i.e., $l\left(x_{0}, x_{1}\right)=x_{0} \oplus x_{1}$. Then an abstract collision system $M=G A C S(\mathbb{Z}, \mathbb{Z},\{0,1\}, l)$ is a 1 dimensional, 2 state, 2 neighborhood cellular automaton rule 6 .
Example 2. Similarly, we can construct other 1 dimensional, 2 states, n neighborhood cellular automata. Let $Q=\{0,1\}$ and $f_{n C A-k}: Q^{n} \rightarrow Q$. Suppose that

$$
f_{C A}(0, \ldots, 0)=0
$$

Let $G=\mathbb{Z}$ and $V=\{0,1, \ldots, n-1\}$.
We define $l_{k}^{(n)}: 2^{V} \rightarrow 2^{\mathbb{Z}}$ by

$$
l_{k}^{(n)}\left(x_{0}, \ldots, x_{n-1}\right)= \begin{cases}\phi & f_{n C A-k}\left(x_{0}, \ldots, x_{n-1}\right)=0 \\ \{0\} & f_{n C A-k}\left(x_{0}, \ldots, x_{n-1}\right)=1\end{cases}
$$

for all $\left(x_{0}, \ldots, x_{n-1}\right) \in Q^{n}$.
By using notation of (17), we denote $l_{k}^{(n)}$ by

$$
\begin{aligned}
l_{k}^{(n)}\left(x_{0}, \ldots, x_{n-1}\right) & = \begin{cases}0 & f_{n C A-k}\left(x_{0}, \ldots, x_{n-1}\right)=0 \\
1 & f_{n C A-k}\left(x_{0}, \ldots, x_{n-1}\right)=1\end{cases} \\
& =f_{n C A-k}\left(x_{0}, \ldots, x_{n-1}\right)
\end{aligned}
$$

Then an abstract collision system on group

$$
M_{n C A-k}=G A C S\left(\mathbb{Z}, \mathbb{Z}, V, l_{k}^{(n)}\right)
$$

is a 1 dimensional 2 states n neighborhood cellular automaton rule number k .

In the above definition and example, we can construct only 2 -state cellular automata. We describe how to make other general cellular automata.
Example 3. Let Q be a non-empty set, $G=\mathbb{Z}$ and $S=$ $\mathbb{Z} \times Q$. We define

$$
z_{1}\left(z_{2}, q\right)=\left(z_{1}+z_{2}, q\right)
$$

for all $z_{1} \in G$ and $\left(z_{2}, q\right) \in S$. We choose a subset $H \subseteq \mathbb{Z}$. and define $V=H \times Q$. Suppose that

$$
l(X) \subseteq\{0\} \times Q
$$

for all $X \in 2^{V}$ and $l(\phi)=\phi$. Then an abstract collision system

$$
M=G A C S(\mathbb{Z}, \mathbb{Z} \times Q, H \times Q, l)
$$

is a 1 dimensional, Q state, H neighborhood cellular automaton.

Since $l(\phi)=\phi$, we note that we can construct any cellular automata which has the rule $f_{C A}(0,0, \ldots, 0)=1$.

If $l(\phi) \neq \phi$, we can not construct cellular automata on groups. By Theorem 1, the behavior of the global transition function depends on configurations.

First of all, we describe a theorem with respect to the set $\mathfrak{C}\left(\widetilde{\mathcal{C}}_{V}\right)$. From this theorem, we can evaluate the set $\mathfrak{C}\left(\widetilde{\mathcal{C}}_{V}\right)$.

For all subsets $X, Y \subseteq G$, we define

$$
X \otimes Y^{-1}=\left\{x y^{-1} \mid x \in X, y \in Y\right\} .
$$

We define a set \mathcal{C}_{V} by

$$
\mathcal{C}_{V}=\left\{\begin{array}{c|c}
\text { for all } Y_{1} \text { and } Y_{2} \subseteq X \tag{18}\\
X & \left(Y_{1} \otimes V^{-1}\right) \cap\left(Y_{2} \otimes V^{-1}\right) \neq \phi \\
\text { if } Y_{1} \neq \phi, Y_{2} \neq \phi \text { and } Y_{1} \cup Y_{2}=X .
\end{array}\right\}
$$

Then, we can show the following two lemmas.
Lemma 8. \mathcal{C}_{V} is a set of collisions on G.
Proof. We check the condition (SC1). For all $s \in S$, let $X=\{s\}$. For all $Y_{1}, Y_{2} \subseteq X$, we assume that $Y_{1} \neq \phi$, $Y_{2} \neq \phi$, and $Y_{1} \cup Y_{2}=X$. Then, since $Y_{1}=Y_{2}=\{s\}=X$, we have

$$
\left(Y_{1} \otimes V^{-1}\right) \cap\left(Y_{2} \otimes V^{-1}\right)=X \otimes V^{-1} \neq \phi
$$

Hence $\{s\} \in \mathcal{C}_{V}$.
We check the condition (SC2). Let $\mathcal{X} \subseteq \mathcal{C}_{V}$. We assume that $(\cap \mathcal{X}) \neq \phi$. We show that $(\cup \mathcal{X}) \in \mathcal{C}_{V}$ by indirect proof. We assume that

$$
\left(Y_{1} \otimes V^{-1}\right) \cap\left(Y_{2} \otimes V^{-1}\right)=\phi
$$

Then, since $(\cap \mathcal{X}) \neq \phi$, there exists $s_{0} \in(\cap \mathcal{X})$. We can assume that $s_{0} \in Y_{1}$ without loss of generality.

Since $(\cup \mathcal{X})=Y_{1} \cup Y_{2}$ and $Y_{2} \neq \phi$, we have

$$
(\bigcup \mathcal{X}) \cap Y_{2}=\left(Y_{1} \cup Y_{2}\right) \cap Y_{2}=Y_{2} \neq \phi
$$

Hence there exists $X \in \mathcal{X}$ such that $Y_{2} \cap X \neq \phi$.
Since $X \in \mathcal{X} \subseteq \mathcal{C}_{V}$, we have

$$
\begin{equation*}
X \in \mathcal{C}_{V} . \tag{19}
\end{equation*}
$$

Since $s_{0} \in(\cap \mathcal{X}) \subseteq X, s_{0} \in Y_{1}$, we have

$$
\begin{equation*}
s_{0} \in Y_{1} \cap X \neq \phi \tag{20}
\end{equation*}
$$

Let $Y_{1}^{\prime}=Y_{1} \cap X, Y_{2}^{\prime}=Y_{2} \cap X$. Then we have $Y_{1} \cap X \neq \phi$, $Y_{2} \cap X \neq \phi$. Moreover, we see that

$$
\begin{aligned}
& Y_{1}^{\prime} \cup Y_{2}^{\prime} \\
= & \left(Y_{1} \cup Y_{2}\right) \cap X \\
= & (\cup \mathcal{X}) \cap X=X, \\
& \left(Y_{1}^{\prime} \otimes V^{-1}\right) \cap\left(Y_{2}^{\prime} \otimes V\right) \\
\subseteq & \left(Y_{1} \otimes V^{-1}\right) \cap\left(Y_{2} \otimes V^{-1}\right) \\
= & \phi .
\end{aligned}
$$

Hence $X \notin \mathcal{C}_{V}$, this contradict (19).

Lemma 9. The set \mathcal{C}_{V} includes the set $\widetilde{\mathcal{C}}_{V}$, i.e.,

$$
\tilde{\mathcal{C}}_{V} \subseteq \mathcal{C}_{V}
$$

Proof. For all $g \in G$ and $X \in 2^{V}$, we show that $g X \in \mathcal{C}_{V}$. If $X=\phi$ or $\# X=1$, then we can see easily. We assume that $\# X \geq 2$. Let Y_{1} and Y_{2} be subsets of $g X$. Suppose that

$$
Y_{1} \neq \phi, \quad Y_{2} \neq \phi, \quad Y_{1} \cup Y_{2}=g X
$$

For all $y_{1} \in Y_{1}$, we have

$$
y_{1} \in Y_{1} \subseteq g X \subseteq g V
$$

Therefore there exists $h_{1} \in V$ such that $y_{1}=g h_{1}$. Hence we have

$$
g=y_{1} h_{1}^{-1} \in Y_{1} \otimes V^{-1}
$$

Similarly, we have $g \in Y_{2} \otimes V^{-1}$. Therefore we have

$$
\left(Y_{1} \otimes V^{-1}\right) \cap\left(Y_{2} \otimes V^{-1}\right) \neq \phi
$$

Hence $g X \in \mathcal{C}_{V}$. Therefore we have $\widetilde{\mathcal{C}}_{V} \subseteq \mathcal{C}_{V}$.
From these two lemmas, we can prove the following proposition, immediately.
Proposition 6. We have

$$
\mathfrak{C}(V) \subseteq \mathcal{C}_{V}
$$

Let $V=\{0,1,2\}, l(\phi) \neq \phi$, Let M be an abstract collision system $M=\left(S, \mathfrak{C}\left(\widetilde{\mathcal{C}}_{V}\right), f_{l}\right)$ made by V and l. Let F_{l} be the global transition function of M. For example, a configuration $\mathbf{c}_{1}=\{0\}$ is an element of $\mathfrak{C}\left(\widetilde{\mathcal{C}}_{V}\right)$. Therefore by Theorem 1 , we see that

$$
F_{l}\left(\mathbf{c}_{1}\right)=f_{l}\left(\mathbf{c}_{1}\right) .
$$

However, we consider another configuration $\mathbf{c}_{2}=\{0,3\}$. By Proposition 6, we can see $\mathbf{c}_{2} \notin \mathfrak{C}\left(\widetilde{\mathcal{C}}_{V}\right)$. Therefore by Theorem 1, we see that

$$
F_{l}\left(\mathbf{c}_{2}\right)=\bigcup_{g \in \mathbb{Z}} g\{0\}=\mathbb{Z}
$$

4. UNION AND DIVISION OF ABSTRACT COLLISION SYSTEMS

In this section, we discuss about union and division of abstract collision systems.
Definition 9 (Union). Let M_{1} and M_{2} be abstract collision systems $M_{1}=\left(S_{1}, \mathcal{C}_{1}, f_{1}\right)$ and $M_{2}=\left(S_{2}, \mathcal{C}_{2}, f_{2}\right)$. We define $f_{1} \cup f_{2}$ by

$$
\left(f_{1} \cup f_{2}\right)(X)=F_{M_{1}}\left(X \cap 2^{S_{1}}\right) \cup F_{M_{2}}\left(X \cap 2^{S_{2}}\right)
$$

where $F_{M_{1}}$ and $F_{M_{2}}$ are global transition functions of M_{1} and M_{2}, respectively. We define union of M_{1} and M_{2}, which is denoted by $M_{1} \cup M_{2}$, by

$$
\begin{equation*}
M_{1} \cup M_{2}=\left(S_{1} \cup S_{2}, \mathfrak{C}\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right), f_{1} \cup f_{2}\right) \tag{21}
\end{equation*}
$$

Definition 10 (Division). Let M be an abstract collision system $M=(S, \mathcal{C}, f)$. We say that M is dividable iff there exists two abstract collision systems $M_{1} \neq M$ and $M_{2} \neq M$ such that $M \equiv M_{1} \cup M_{2}$.

Proposition 7.

$$
\begin{aligned}
& G A C S\left(G, S, V, l_{1}\right) \cup G A C S\left(G, S, V, l_{2}\right) \\
\equiv & G A C S\left(G, S, V, l_{1} \cup l_{2}\right),
\end{aligned}
$$

where

$$
\left(l_{1} \cup l_{2}\right)(X)=l_{1}(X) \cup l_{2}(X)
$$

for all $X \in 2^{V}$.
Proof. We choose arbitrary set of collisions \mathcal{C}_{1} and \mathcal{C}_{2} includes $\widetilde{\mathcal{C}}_{V}$. Let

$$
\begin{aligned}
f_{l_{1}} & =\operatorname{Ind}\left(G, V, l_{1}\right), \\
f_{l_{2}} & =\operatorname{Ind}\left(G, V, l_{2}\right), \\
f_{l_{1} \cup l_{2}} & =\operatorname{Ind}\left(G, V, l_{1} \cup l_{2}\right) .
\end{aligned}
$$

Let $M_{1}=\left(S, \mathcal{C}_{1}, f_{l_{1}}\right)$ and $M_{2}=\left(S, \mathcal{C}_{2}, f_{l_{2}}\right)$. For all $X \in 2^{V}$, we see that

$$
\begin{aligned}
& f_{l_{1} \cup l_{2}}(X) \\
= & \bigcup_{g \in G} g\left(l_{1} \cup l_{2}\right)\left(g^{-1} X \cap V\right) \\
= & \bigcup_{g \in G} g\left\{l_{1}\left(g^{-1} X \cap V\right) \cup l_{2}\left(g^{-1} X \cap V\right)\right\} \\
= & \bigcup_{g \in G} g l_{1}\left(g^{-1} X \cap V\right) \cup \bigcup_{g \in G} g l_{2}\left(g^{-1} X \cap V\right) \\
= & F_{l_{1}}(X \cap S) \cup F_{l_{2}}(X \cap S) \\
= & \left(f_{l_{1}} \cup f_{l_{2}}\right)(X)
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& M_{1} \cup M_{2} \\
= & \left(S, \mathfrak{C}\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right), f_{l_{1}} \cup f_{l_{2}}\right) \\
\equiv & \left(S, \mathfrak{C}\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right), f_{l_{1} \cup l_{2}}\right) .
\end{aligned}
$$

Moreover, since $\widetilde{\mathcal{C}}_{V} \subseteq \mathcal{C}_{1}, \mathcal{C}_{2}$, we have $\widetilde{\mathcal{C}}_{V} \subseteq \mathfrak{C}\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right)$. Hence we have

$$
\begin{aligned}
& \left(S, \mathfrak{C}\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right), f_{l_{1} \cup l_{2}}\right) \\
\equiv & G A C S\left(G, S, V, l_{1} \cup l_{2}\right)
\end{aligned}
$$

Therefore we have

$$
M_{1} \cup M_{2} \equiv G A C S\left(G, S, V, l_{1} \cup l_{2}\right)
$$

Corollary 3. Let

$$
M_{1} \equiv G A C S\left(G, S, V, l_{1}\right), \quad M_{2} \equiv G A C S\left(G, S, V, l_{2}\right)
$$

Let $F_{M_{1}}, F_{M_{2}}$ and $F_{M_{1} \cup M_{2}}$ be global transition functions of M_{1}, M_{2} and $M_{1} \cup M_{2}$, respectively. Then we have

$$
F_{M_{1} \cup M_{2}}(A)=F_{M_{1}}(A) \cup F_{M_{2}}(A)
$$

for all $A \in 2^{S}$

Proof. Let $A \in 2^{S}$. From Proposition 7, we have

$$
\begin{equation*}
M_{1} \cup M_{2} \equiv G A C S\left(G, S, V, l_{1} \cup l_{2}\right) \tag{26}
\end{equation*}
$$

by Theorem 1 .
Corollary 4. Let

$$
\begin{aligned}
& M_{1}=G A C S\left(G, S, V, l_{1}\right), \\
& M_{2}=G A C S\left(G, S, V, l_{2}\right), \\
& M_{3}=G A C S\left(G, S, V, l_{3}\right) .
\end{aligned}
$$

We have

$$
M_{1} \cup M_{3} \equiv M_{2} \cup M_{3}
$$

if $M_{1} \equiv M_{2}$.
Proof. Let $F_{M_{1}}, F_{M_{2}}, F_{M_{3}} F_{M_{1} \cup M_{3}}$ and $F_{M_{1} \cup M_{3}}$ be global transition functions of $M_{1}, M_{2}, M_{3}, F_{M_{1} \cup M_{3}}$ and $F_{M_{2} \cup M_{3}}$ respectively. Then we have $F_{M_{1}}=F_{M_{2}}$. For all $A \in 2^{S}$, we see that

$$
\begin{aligned}
& F_{M_{1} \cup M_{3}}(A) \\
= & F_{M_{1}}(A) \cup F_{M_{3}}(A) \\
= & F_{M_{2}}(A) \cup F_{M_{3}}(A) \\
= & F_{M_{2} \cup M_{3}}(A)
\end{aligned}
$$

from Corollary 3. Hence we have $M_{1} \cup M_{3}=M_{2} \cup M_{3}$.
Next, we consider that divide the set \mathcal{C} into some partitions.
Proposition 8. Let \mathcal{C} be a set of collisions on S. The following three conditions are equivalent.
(a) There exists two sets of collisions on $S \mathcal{C}_{1}$ and \mathcal{C}_{2} which satisfies:

$$
\begin{align*}
& \mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \tag{22}\\
& \text { for all } X_{1} \in \mathcal{C}_{1}, X_{2} \in \mathcal{C}_{2} \tag{23}\\
& \text { if } \# X_{1} \geq 2 \text { and } \# X_{2} \geq 2 \\
& \text { then } X_{1} \cap X_{2}=\phi
\end{align*}
$$

(b) There exists subsets $\widetilde{\mathcal{C}_{1}}$ and $\widetilde{\mathcal{C}_{2}}$ of 2^{S} which satisfy

$$
\begin{align*}
& \mathcal{C}=\widetilde{\mathcal{C}}_{1} \cup \widetilde{\mathcal{C}}_{2} \tag{24}\\
& X_{1} \in \widetilde{\mathcal{C}}_{1}, X_{2} \in \widetilde{\mathcal{C}}_{2} \Rightarrow X_{1} \cap X_{2}=\phi
\end{align*}
$$

$$
\begin{align*}
& S_{1} \cup S_{2}=S \\
& S_{1} \cap S_{2}=\phi \tag{27}\\
& \left(\mathcal{C} \cap 2^{S_{1}}\right) \cup\left(\mathcal{C} \cap 2^{S_{2}}\right)=\mathcal{C} \tag{28}
\end{align*}
$$

Proof. We prove (c) \Leftrightarrow (a) and (c) \Leftrightarrow (b).
$(\mathrm{c}) \Rightarrow(\mathrm{b})$ Let

$$
\widetilde{\mathcal{C}}_{i}=\mathcal{C} \cap 2^{S_{i}}
$$

Then we have

$$
\widetilde{\mathcal{C}}_{1} \cup \widetilde{\mathcal{C}_{2}}=\left(\mathcal{C} \cap 2^{S_{1}}\right) \cup\left(\mathcal{C}_{2} \cap 2^{S_{2}}\right)=\mathcal{C}
$$

(c) There exists S_{1} and S_{2} which satisfy

by (28). Hence we have (24).
Moreover, for all $X_{1} \in \widetilde{\mathcal{C}_{1}}, X_{2} \in \widetilde{\mathcal{C}_{2}}$, since

$$
X_{1} \in 2^{S_{1}}, X_{2} \in 2^{S_{2}}
$$

and (27) of (c), we have

$$
X_{1} \cap X_{2} \subseteq S_{1} \cap S_{2}=\phi
$$

Hence we have (25).
(b) \Rightarrow (c) Let

$$
S_{i}=\bigcup \widetilde{\mathcal{C}}_{i}
$$

We prove (26), i.e., $S_{1} \cup S_{2}=S$. It is clear that $S_{1} \cap S_{2} \subseteq$ S. On the other hand, for all $s \in S$, we have $\{s\} \in \mathcal{C}$. Therefore we have

$$
s \in\left(\cup \widetilde{\mathcal{C}_{1}}\right) \cup\left(\cup \widetilde{\mathcal{C}_{2}}\right)=S_{1} \cup S_{2}
$$

by (24). This implies $S \subseteq S_{1} \cup S_{2}$. Therefore we have (26).
Next, we prove (27), i.e., $S_{1} \cap S_{2}=\phi$. We suppose that $S_{1} \cap S_{2} \neq \phi$. Then, there exists $s \in S_{1} \cap S_{2}$. Therefore, there exists $X_{1} \in \widetilde{\mathcal{C}_{1}}$ and $X_{2} \in \widetilde{\mathcal{C}_{2}}$ such that $s \in X_{1}, s \in X_{2}$. This implies $s \in X_{1} \cap X_{2} \neq \phi$. This contradicts (25). Hence we have (27). Finally, we prove (28). It is clear that

$$
\left(\mathcal{C} \cap 2^{S_{1}}\right) \cup\left(\mathcal{C} \cap 2^{S_{2}}\right) \subseteq \mathcal{C}
$$

On the other hand, since $S_{1}=\left(\cup \widetilde{\mathcal{C}_{1}}\right)$, we have $X \subseteq\left(\cup \widetilde{\mathcal{C}}_{1}\right)=$ S_{1} for all $X \in \widetilde{\mathcal{C}_{1}}$. This implies $X \in 2^{S_{1}}$. Therefore $\widetilde{\mathcal{C}}_{1} \subseteq$ $2^{S_{1}}$. Hence we have

$$
\widetilde{\mathcal{C}_{1}} \subseteq \mathcal{C} \cap 2^{S_{1}}
$$

Similarly, we have $\widetilde{\mathcal{C}_{2}} \subseteq \mathcal{C} \cap 2^{S_{2}}$. Therefore we have

$$
\mathcal{C}=\widetilde{\mathcal{C}}_{1} \cup \widetilde{\mathcal{C}_{2}} \subseteq\left(\mathcal{C} \cap 2^{S_{1}}\right) \cup\left(\mathcal{C} \cap 2^{S_{2}}\right)
$$

Hence we have (28).
(c) \Rightarrow (a) Let

$$
\begin{equation*}
\mathcal{C}_{i}=\left(\mathcal{C} \cap 2^{S_{i}}\right) \cup\left\{\{s\} \mid s \in S_{3-i}\right\}, \quad(i=1,2) \tag{29}
\end{equation*}
$$

For all $X_{1} \in \mathcal{C}_{1}$ and $X_{2} \in \mathcal{C}_{2}$, suppose that $\# X_{1} \geq 2$ and $\# X_{2} \geq 2$. Since

$$
X_{i} \notin\left\{\{s\} \mid s \in S_{3-i}\right\}
$$

we have $X_{i} \in\left(\mathcal{C} \cap 2^{S_{i}}\right)$. By (27), we have (23) as following:

$$
X_{1} \cap X_{2} \subseteq S_{1} \cap S_{2}=\phi
$$

Moreover, we have (22) as following:

$$
\begin{aligned}
\mathcal{C}_{1} \cup \mathcal{C}_{2} & =\left(\mathcal{C} \cap 2^{S_{1}}\right) \cup\left(\mathcal{C} \cap 2^{S_{2}}\right) \cup\{\{s\} \mid s \in S\} \\
& =\mathcal{C} \cup\{\{s\} \mid s \in S\} \\
& =\mathcal{C}
\end{aligned}
$$

Finally, we show that \mathcal{C}_{1} and \mathcal{C}_{2} are sets of collisions on S. By (29), it is easy to show that \mathcal{C}_{i} satisfies the condition (SC1). We check the condition (SC2). We assume $\mathcal{X} \subseteq \mathcal{C}_{1}$ without loss of generality. Suppose that $(\cap \mathcal{X}) \neq \phi$.

We suppose that $\# \mathcal{X}=1$. Then there exists $X \in \mathcal{C}_{1}$ such that $\mathcal{X}=\{X\}$. Therefore $(\cup \mathcal{X})=X \in \mathcal{C}_{1}$.
We suppose that $\# \mathcal{X} \geq 2$. We assume that there exists $X \in \mathcal{X}$ such that $X \notin \mathcal{C} \cap 2^{S_{1}}$. Then there exists $s_{2} \in S_{2}$ such that $X=\left\{s_{2}\right\}$. Therefore $(\cap \mathcal{X}) \supseteq\left\{s_{2}\right\}$. However, by (29), we have

$$
X \in \mathcal{C}_{1}, X \neq\left\{s_{2}\right\} \Rightarrow s_{2} \notin X
$$

Therefore, $(\cap \mathcal{X})=\phi$. This contradicts $(\cap \mathcal{X}) \neq \phi$. Hence we have $X \in \mathcal{C} \cap 2^{S_{1}}$ for all $X \in \mathcal{X}$. This implies $\mathcal{X} \subseteq$ $\mathcal{C} \cap 2^{S_{1}}$. Since \mathcal{C} is a set of collisions on S, we have $(\cup \mathcal{X}) \in \mathcal{C}$ from $\mathcal{X} \subseteq \mathcal{C}$ and $(\cap \mathcal{X}) \neq \phi$. Moreover, we have $(\cup \mathcal{X}) \in 2^{S_{1}}$ from $\mathcal{X} \subseteq 2^{S_{1}}$. Therefore, $(\cup \mathcal{X}) \in \mathcal{C} \cap 2^{S_{1}}$. Hence the set \mathcal{C}_{1} satisfies the condition (SC 2).
$\underline{(\mathrm{a})} \Rightarrow$ (c) We assume there exists $s \in S$ such that

$$
X \in \mathcal{C}, s \in X \Rightarrow X=\{s\}
$$

Then we can easily prove (c), by putting $S_{1}=\{s\}$ and $S_{2}=S \backslash S_{1}$. In fact, it is clear that $S_{1} \cup S_{2}=S$ and $S_{1} \cap S_{2}=\phi$. Let $X \in \mathcal{C}$. If $s \in X$ then $X=\{s\} \subseteq S_{1}$. If $s \notin X$ then $X \subseteq S_{2}$. This implies that $X \in 2^{S_{1}} \cup 2^{S_{2}}$. Therefore we have

$$
X \in \mathcal{C} \cap\left(2^{S_{1}} \cup 2^{S_{2}}\right)=\left(\mathcal{C} \cap 2^{S_{1}}\right) \cup\left(\mathcal{C} \cap 2^{S_{2}}\right)
$$

Hence we have $\left(\mathcal{C} \cap 2^{S_{1}}\right) \cap\left(\mathcal{C} \cap 2^{S_{2}}\right)=\mathcal{C}$.
In the following, suppose that for all $s \in S$, there exists $X \in \mathcal{C}$ such that

$$
\begin{equation*}
s \in X, \quad \# X \geq 2 \tag{30}
\end{equation*}
$$

Let

$$
\begin{equation*}
S_{i}=\bigcup\left\{X \mid X \in \mathcal{C}_{i}, \# X \geq 2\right\}, \quad(i=1,2) \tag{31}
\end{equation*}
$$

First, it is clear that $S_{i} \neq \phi$ and $S_{1} \cup S_{2} \subseteq S$. We show that $S_{1} \cup S_{2} \supseteq S$. For all $s \in S$, there exists $X \in \mathcal{C}$ such that $s \in X, \# X \geq 2$. Since $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$, we have $X \in \mathcal{C}_{1}$ or $X \in \mathcal{C}_{2}$. If $X \in \mathcal{C}_{1}$ (resp. \mathcal{C}_{2}), we have $X \subseteq S_{1}$ (resp. $X \subseteq S_{2}$) by $\# X \geq 2$. Therefore we can conclude that $s \in X \subseteq S_{1} \cup S_{2}$. Next, we prove (27). We assume that $S_{1} \cap S_{2} \neq \phi$. There exist $X_{1} \in \mathcal{C}_{1}\left(\# X_{1} \geq 2\right)$ and $X_{2} \in \mathcal{C}_{2}\left(\# X_{2} \geq 2\right)$ such that $s \in X_{1}, s \in X_{2}$. This implies $X_{1} \cap X_{2} \neq \phi$. This contradicts (23). Finally, we prove (28).

Let $X \in \mathcal{C}$. Suppose that $\# X=1$. Since $S=S_{1} \cup S_{2}$, we have $X \subseteq S_{1}$ or $X \subseteq S_{2}$. Therefore $X \in 2^{S_{1}} \cup 2^{S_{2}}$. We suppose that $\# X \geq 2$. Then we have $X \subseteq S_{1}$ or $X \subseteq S_{2}$ by (31). This implies $X \in 2^{S_{1}} \cup 2^{S_{2}}$. Therefore we have

$$
X \in \mathcal{C} \cap\left(2^{S_{1}} \cup 2^{S_{2}}\right)=\left(\mathcal{C} \cap 2^{S_{1}}\right) \cup\left(\mathcal{C} \cap 2^{S_{2}}\right)
$$

Hence we see that

$$
\mathcal{C} \subseteq\left(\mathcal{C} \cap 2^{S_{1}}\right) \cup\left(\mathcal{C} \cap 2^{S_{2}}\right)
$$

On the other hand, it is clear that

$$
\left(\mathcal{C} \cap 2^{S_{1}}\right) \cup\left(\mathcal{C} \cap 2^{S_{2}}\right) \subseteq \mathcal{C}
$$

Hence we have (28).
Definition 11. Let \mathcal{C} be a set of collisions on S. We call the set \mathcal{C} is dividable iff it satisfies conditions of Proposition 8.
Proposition 9. Let $M=(S, \mathcal{C}, f)$ be an abstract collision system. If the set \mathcal{C} is dividable, then M is dividable.

Proof. Since the set \mathcal{C} is dividable, it satisfies the condition (c). Therefore, there exists S_{1} and S_{2} such that
(32) $S_{1} \cup S_{2}=S, \quad S_{1} \cap S_{2}=\phi, \quad\left(\mathcal{C} \cap 2^{S_{1}}\right) \cup\left(\mathcal{C} \cap 2^{S_{2}}\right)=\mathcal{C}$.

Let

$$
\begin{equation*}
M_{1}=\left(S_{1}, \mathcal{C} \cap 2^{S_{1}}, f_{1}\right), \quad M_{2}=\left(S_{2}, \mathcal{C} \cap 2^{S_{2}}, f_{2}\right) \tag{33}
\end{equation*}
$$

where f_{1} and f_{2} is restriction of f onto $\mathcal{C} \cap 2^{S_{1}}$ and $\mathcal{C} \cap 2^{S_{2}}$, respectively. Since \mathcal{C} is a set of collision on S, we have

$$
\mathfrak{C}\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right)=\mathfrak{C}(\mathcal{C})=\mathcal{C}
$$

Therefore for all $X \in \mathcal{C}$, we have $X \in\left(\mathcal{C} \cap 2^{S_{1}}\right)$ or $X \in$ $\left(\mathcal{C} \cap 2^{S_{2}}\right)$. We suppose that $X \in\left(\mathcal{C} \cap 2^{S_{1}}\right)$. Since $X \subseteq S_{1}$, we have $X \cap S_{2}=\phi$. Hence we have

$$
\begin{equation*}
\left(f_{1} \cup f_{2}\right)(X)=f_{1}(X) \cup \phi=f_{1}(X)=f(X) \tag{34}
\end{equation*}
$$

We can also prove (34) in the same way for $X \in\left(\mathcal{C} \cap 2^{S_{2}}\right)$.
Hence we have

$$
M_{1} \cup M_{2}=\left(S_{1} \cup S_{2}, \mathfrak{C}\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right), f_{1} \cup f_{2}\right)=\left(S, \mathcal{C}, f_{1} \cup f_{2}\right)
$$

Therefore we have $M_{1} \cup M_{2} \equiv M$ by Lemma 3 and (34).
The converse of Proposition 9 does not hold. We show that there exists an abstract collision system $M=(S, \mathcal{C}, f)$ such that \mathcal{C} is not dividable but M is dividable.
Proposition 10. Let G be a cyclic group and its generator be an element a, i.e.,

$$
G=<a>=\left\{a^{n} \mid n \in \mathbb{Z}\right\}
$$

We assume that $V \supseteq\left\{a^{0}, a^{1}\right\}$. Then any set of collisions \mathcal{C} which includes $\widetilde{\mathcal{C}}_{V}$ is not dividable.

Proof. First we prove that

$$
X_{n}=\left\{a^{0}, a^{1}, \ldots, a^{n}\right\}
$$

is an element of \mathcal{C} for all $n \in \mathbb{N}$. We prove this by using mathematical induction. When $n=1$, since

$$
X_{1}=\left\{a^{0}, a^{1}\right\} \in 2^{V}
$$

we have $X_{1} \in \widetilde{\mathcal{C}}_{V} \subseteq \mathcal{C}$. Let $k \geq 1$ and we assume that $X_{k} \in \mathcal{C}$. Since $\left\{a^{0}, a^{1}\right\} \in 2^{V}$ and $a^{k} \in G$, we have

$$
X_{k+1}^{\prime}=\left\{a^{k}, a^{k+1}\right\}=a^{k}\left\{a^{0}, a^{1}\right\} \in \widetilde{\mathcal{C}}_{V} \subseteq \mathcal{C} .
$$

Therefore we have

$$
X_{k} \in \mathcal{C}, X_{k+1}^{\prime} \in \mathcal{C}, X_{k} \cap X_{k+1}^{\prime}=\left\{a^{k}\right\} \neq \phi
$$

Hence we have

$$
X_{k} \cup X_{k+1}^{\prime}=X_{k+1} \in \mathcal{C}
$$

by (SC2).
Next, we show that \mathcal{C} is not dividable. We assume that \mathcal{C} is dividable. Then there exist two set S_{1} and S_{2} such that they satisfy 3 conditions of (c) in Proposition 8.

We assume $a^{0} \in S_{1}$ without loss of generality. Since $S_{2} \neq \phi$, we can take an element $a^{n} \in S_{2}$.

Then the set

$$
Y_{n}=\left\{a^{-|n|}, \ldots, a^{0}, \ldots, a^{n}\right\}
$$

is an element of \mathcal{C}. Since $a^{0} \in S_{1}, a^{n} \in S_{2}$ and $S_{1} \cap S_{2} \neq \phi$, we have

$$
Y_{n} \notin 2^{S_{1}} \cup 2^{S_{2}}
$$

This implies

$$
\left(\mathcal{C} \cap 2^{S_{1}}\right) \cup\left(\mathcal{C} \cap 2^{S_{2}}\right) \neq \mathcal{C} .
$$

This contradicts (28). Hence \mathcal{C} is not dividable.
Example 4. We consider a 1 dimensional, 2 states, 2 neighborhood cellular automaton rule number 6 :

$$
f_{C A 6}\left(x_{0}, x_{1}\right)=x_{0} \oplus x_{1}
$$

We note that

$$
x_{0} \oplus x_{1}=\left(x_{0} \wedge \neg x_{1}\right) \vee\left(\neg x_{0} \wedge x_{1}\right)
$$

Let $G=\mathbb{Z}$. We define $l_{6}^{(2)}$ by

$$
\begin{aligned}
& l_{6}^{(2)}(\{0,1\})=\phi, \quad l_{6}^{(2)}(\{0\})=\{0\}, \\
& l_{6}^{(2)}(\{1\})=\{0\}, \\
& l_{6}^{(2)}(\phi)=\phi
\end{aligned}
$$

By using notation of (17), we denote $l_{6}^{(2)}$ by

$$
\begin{array}{ll}
l_{6}^{(2)}(1,1)=0, & l_{6}^{(2)}(1,0)=1, \\
l_{6}^{(2)}(0,1)=1, & l_{6}^{(2)}(0,0)=0,
\end{array}
$$

i.e., $l_{6}^{(2)}\left(x_{0}, x_{1}\right)=x_{0} \oplus x_{1}$. Let $V=\operatorname{ess} l_{6}^{(2)}=\{0,1\}$. Then we see that the set of collisions $\mathfrak{C}\left(\widetilde{\mathcal{C}}_{V}\right)$ is not dividable from Proposition 10.

Moreover, we define two functions $l_{2}^{(2)}$ and $l_{4}^{(2)}$ by

$$
\begin{array}{ll}
l_{2}^{(2)}(1,1)=0, & l_{2}^{(2)}(1,0)=0, \\
l_{2}^{(2)}(0,1)=1, & l_{2}^{(2)}(0,0)=0 \\
l_{4}^{(2)}(1,1)=0, & l_{4}^{(2)}(1,0)=1, \\
l_{4}^{(2)}(0,1)=0, & l_{4}^{(2)}(0,0)=0,
\end{array}
$$

i.e.,

$$
\begin{aligned}
& l_{2}^{(2)}\left(x_{0}, x_{1}\right)=\neg x_{0} \vee x_{1}, \\
& l_{4}^{(2)}\left(x_{0}, x_{1}\right)=x_{0} \vee \neg x_{1} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& M_{2 C A-6}=G A C S\left(\mathbb{Z}, \mathbb{Z}, V, l_{6}^{(2)}\right), \\
& M_{2 C A-2}=G A C S\left(\mathbb{Z}, \mathbb{Z}, V, l_{2}^{(2)}\right), \\
& M_{2 C A-4}=G A C S\left(\mathbb{Z}, \mathbb{Z}, V, l_{4}^{(2)}\right)
\end{aligned}
$$

Then have $M_{2 C A-6} \equiv M_{2 C A-2} \cup M_{2 C A-4}$.
The results of 1 dimensional 2 states 2 neighborhood cellular automata are listed in Table 1. From this table, we see that cellular automata which is dividable are rule 6 , 10,12 and 14.

Example 5. We consider a 1 dimensional 2 state 3 neighborhood cellular automaton CA 222, i.e.,

$$
\begin{aligned}
V & =\{0,1,2\} \\
l_{222}^{(3)}\left(x_{0}, x_{1}, x_{2}\right) & =\left(x_{0} \oplus x_{2}\right) \vee x_{1}, \\
M_{3 C A-222} & =G A C S\left(\mathbb{Z}, \mathbb{Z}, V, l_{222}^{(3)}\right) .
\end{aligned}
$$

Then we see that ess $l_{222}^{(3)}=\{0,1,2\}$ and \mathcal{C} is not dividable.
On the other hand, we define two functions

$$
\begin{aligned}
& l_{90}^{(3)}\left(x_{0}, x_{1}, x_{2}\right)=x_{0} \oplus x_{2}, \\
& l_{204}^{(3)}\left(x_{0}, x_{1}, x_{2}\right)=x_{1} .
\end{aligned}
$$

We make abstract collision systems

$$
\begin{aligned}
M_{3 C A-90} & =G A C S\left(\mathbb{Z}, \mathbb{Z},\{0,2\}, l_{90}^{(3)}\right), \\
M_{3 C A-204} & =G A C S\left(\mathbb{Z}, \mathbb{Z},\{1\}, l_{204}^{(3)}\right)
\end{aligned}
$$

Then we can easily prove that

$$
M_{3 C A-222} \equiv M_{3 C A-90} \cup M_{3 C A-204}
$$

Finally, we show a sufficient condition with which ACS is dividable.

Theorem 2. Let G be a group. We consider an abstract collision system on $G, G A C S(G, G, V, l)$. We assume that there exists a normal subgroup H of G and $d \in G$ such that $H \neq G$ and $d V \subseteq H$. Then the set $\mathfrak{C}\left(\widetilde{\mathcal{C}}_{V}\right)$ is dividable.

Proof. Without loss of generality, we can assume that $d=e$ (e is the identity element of G), and the index $\#(G / H)$ is

Table 1: union of two 2 neighborhood CA

$l_{2} \backslash l_{1}$	0	2	4	6	8	10	12	14
0	0	2	4	6	8	10	12	14
2	2	2	6	6	10	10	14	14
4	4	6	4	6	12	14	12	14
6	6	6	6	6	14	14	14	14
8	8	10	12	14	8	10	12	14
10	10	10	14	14	10	10	14	14
12	12	14	12	14	12	14	12	14
14	14	14	14	14	14	14	14	14

2. In other cases, we can prove similarly. We prove (c) of Proposition 8.

Let $h \in G \backslash H$, and

$$
S_{1}=H, \quad S_{2}=h H
$$

It is clear that $S=S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}=\phi$.
Next, we prove that $\mathfrak{C}(\widetilde{\mathcal{C}}) \subseteq 2^{H} \cup 2^{h H}$. To prove above, we show that $2^{H} \cup 2^{h H}$ is a set of collisions on S and

$$
\begin{equation*}
\widetilde{\mathcal{C}}_{V}=\left\{g X \mid g \in G, X \in 2^{V}\right\} \subseteq\left(2^{H} \cup 2^{h H}\right) \tag{35}
\end{equation*}
$$

It is clear that $2^{H} \cup 2^{h H}$ is a set of collisions on S. We prove (35). Let $Y \in \widetilde{\mathcal{C}}_{V}$. There exists $g \in G, X \in 2^{V}$ such that $Y=g X$. Since $V \subseteq H$, we have $X \in 2^{H}$, i.e., $X \subseteq H$.

Hence $Y=g X \subseteq g H$. Since $g H$ equals to H or $h H, 2^{g H}$ equals to 2^{H} or $2^{h H}$. Therefore we have

$$
Y \in 2^{g H} \subseteq 2^{H} \cup 2^{h H}
$$

Hence we have $Y \in\left(2^{H} \cup 2^{h H}\right)$ for all $Y \in \widetilde{\mathcal{C}}_{V}$. This implies (35). Let $C_{1}=\mathfrak{C}(\widetilde{\mathcal{C}}) \cap 2^{H}$ and $C_{2}=\mathfrak{C}(\widetilde{\mathcal{C}}) \cap 2^{h H}$. Then we see that

$$
\begin{aligned}
C_{1} \cup C_{2} & =\left(\mathfrak{C}(\widetilde{\mathcal{C}}) \cap 2^{H}\right) \cup\left(\mathfrak{C}(\widetilde{\mathcal{C}}) \cap 2^{h H}\right) \\
& =\mathfrak{C}(\widetilde{\mathcal{C}}) \cap\left(2^{H} \cup 2^{h H}\right) \\
& =\mathfrak{C}(\widetilde{\mathcal{C}}) .
\end{aligned}
$$

Hence we have (28).
Example 6. We consider a 1 dimensional 2 state 3 neighborhood cellular automata CA 90 . Let $l_{90}^{(3)}$ be

$$
l_{90}^{(3)}\left(x_{0}, x_{1}, x_{2}\right)=x_{0} \oplus x_{2}
$$

First,it seems to be able to divide cells into cells which position are even and odd. We see intuitively that this division is able if the number of cells is infinite or even. We describe this facts by using Theorem 2.

First, we suppose that the number of cells is infinite, i.e., $G=\mathbb{Z}$. Let $V=\{0,1,2\}$, then we can see that

$$
\operatorname{ess} l_{90}^{(3)}=\{0,2\}
$$

Therefore we choose $H=2 \mathbb{Z}$, we see that ess $l_{90}^{(3)} \subseteq H$. Hence the abstract collision system $G A C S\left(\mathbb{Z}, \mathbb{Z}\right.$, ess $\left.l_{90}^{(3)}\right)$ is dividable.

Next, we suppose that the number of cells is finite and even i.e., $G=\mathbb{Z} /(2 n) \mathbb{Z}$. Similarly, we choose $H=\{2 n \mid$ $n \in G\}$. Then H is a normal subgroup and we have $H \neq G$ and ess $l_{90}^{(3)} \subseteq H$.

5. COMPOSITION OF ABSTRACT COLLISION SYSTEMS ON GROUPS

In this section, we discuss composition of abstract collision systems.
Definition 12. Let $l: 2^{V} \rightarrow 2^{S}$. The range of l, which is denoted by Range l, is defined by

$$
\text { Range } l=\bigcup\left\{l(X) \mid X \in 2^{V}\right\} \subseteq S
$$

Let $S=G$.
Definition 13 (Composition). Let $V_{1} \subseteq G, V_{2} \subseteq G, l_{1}$: $2^{V_{1}} \rightarrow 2^{S}$ and $l_{2}: 2^{V_{2}} \rightarrow 2^{S}$. We define a set $V_{2}\left(l_{1}\right)$ by

$$
V_{2}\left(l_{1}\right)= \begin{cases}\left\{v_{2} \in G \mid\right. & \left.\left(v_{2}\left(\text { Range } l_{1}\right)\right) \cap V_{2} \neq \phi\right\} \tag{36}\\ & \text { if Range } l_{1} \neq \phi \\ V_{2}, & \text { if Range } l_{1}=\phi\end{cases}
$$

Moreover, we define a set $V_{2}\left(l_{1}\right) \otimes V_{1}$ and a function $l_{2} \diamond l_{1}$: $2^{V_{2}\left(l_{1}\right) \otimes V_{1}} \rightarrow 2^{S}$ by
(37) $V_{2}\left(l_{1}\right) \otimes V_{1}=\left\{v_{2} v_{1} \mid v_{2} \in V_{2}\left(l_{1}\right), v_{1} \in V_{1}\right\}$,

$$
\begin{equation*}
l_{2} \diamond l_{1}(X)=l_{2}\left(\bigcup_{v \in V_{2}\left(l_{1}\right)} v l_{1}\left(\left(v^{-1} X\right) \cap V_{1}\right) \cap V_{2}\right) \tag{38}
\end{equation*}
$$

Lemma 10. The two sets in the Definition 13 satisfy

$$
V_{2}\left(l_{1}\right) \neq \phi, \quad V_{2}\left(l_{1}\right) \otimes V_{1} \neq \phi
$$

Proof. We prove $V_{2}\left(l_{1}\right) \neq \phi$. If Range $l_{1}=\phi$, we have $V\left(l_{1}\right)=V_{2} \neq \phi$ from (36). Suppose that Range $l_{1} \neq \phi$. For all $x \in$ Range l_{1} and $y \in V_{2}$, let $v_{2}=y x^{-1}$. Then $y=v_{2} x$. Since $v_{2} x \in v_{2}\left(\right.$ Range $\left.l_{1}\right)$ and $y \in V_{2}$, we have

$$
y \in\left(v_{2}\left(\text { Range } l_{1}\right)\right) \cap V_{2} .
$$

This implies

$$
\left(v_{2}\left(\text { Range } l_{1}\right)\right) \cap V_{2} \neq \phi
$$

Hence $v_{2} \in V_{2}\left(l_{1}\right)$. Therefore we have $V_{2}\left(l_{1}\right) \neq \phi$.
Lemma 11. For all $v_{2} \in V_{2}\left(l_{1}\right)$, we have

$$
V_{1} \subset v_{2}^{-1}\left(V_{2}\left(l_{1}\right) \otimes V_{1}\right)
$$

Especially, we have

$$
\begin{equation*}
\left(v_{2}^{-1}\left(V_{2}\left(l_{1}\right) \otimes V_{1}\right)\right) \cap V_{1}=V_{1} . \tag{39}
\end{equation*}
$$

Proof. Let $v_{1} \in V_{1}$. We have $v_{1}=v_{2}^{-1}\left(v_{2} v_{1}\right)$. Since $v_{2} \in$ $V_{2}\left(l_{1}\right)$, we have

$$
\left(v_{2} v_{1}\right) \in V_{2}\left(l_{1}\right) \otimes V_{1}
$$

Therefore we have

$$
v_{1}=\left(v_{2}\right)^{-1}\left(v_{2} v_{1}\right) \in v_{2}^{-1}\left(V_{2}\left(l_{1}\right) \otimes V_{1}\right) .
$$

Hence we have

$$
V_{1} \subset v_{2}^{-1}\left(V_{2}\left(l_{1}\right) \otimes V_{1}\right)
$$

Lemma 12. Let $h \in G$. For all $g \in G \backslash h\left(V_{2}\left(l_{1}\right)\right)$ and $X \subset V_{1}$, we have

$$
\begin{equation*}
\left(h^{-1} g l_{1}(X)\right) \cap V_{2}=\phi . \tag{40}
\end{equation*}
$$

Proof. Suppose that Range $l_{1}=\phi$. Since $l_{1}(X)=\phi$ for all $X \subseteq V_{1}$, our claim is clear. Suppose that Range $l_{1} \neq \phi$. We show by indirect proof. We assume that

$$
\begin{equation*}
\left(h^{-1} g l_{1}(X)\right) \cap V_{2} \neq \phi . \tag{41}
\end{equation*}
$$

Since $l_{1}(X) \subseteq$ Range l_{1}, we have

$$
\left(h^{-1} g l_{1}(X)\right) \cap V_{2} \subset\left(h^{-1} g\left(\text { Range } l_{1}\right)\right) \cap V_{2} .
$$

Therefore we have

$$
\left(h^{-1} g\left(\text { Range } l_{1}\right)\right) \cap V_{2} \neq \phi
$$

from (41). Hence we can conclude that $h^{-1} g \in V_{2}\left(l_{1}\right)$. This implies $g \in h V_{2}\left(l_{1}\right)$. This contradicts $g \in G \backslash\left(h V_{2}\left(l_{1}\right)\right)$.

Theorem 3. Let $f_{l_{1}}, f_{l_{2}}$ and $f_{l_{2} \diamond l_{1}}$ be induced local transition functions by V_{1} and l_{1}, V_{2} and $l_{2}, V_{2}\left(l_{1}\right) \otimes V_{1}$ and $l_{2} \triangle l_{1}$, respectively, i.e.,

$$
\begin{aligned}
f_{l_{1}} & =\operatorname{Ind}\left(G, V_{1}, l_{1}\right), \\
f_{l_{2}} & =\operatorname{Ind}\left(G, V_{2}, l_{2}\right), \\
f_{l_{2} \diamond l_{1}} & =\operatorname{Ind}\left(G, V_{2}\left(l_{1}\right) \otimes V_{1}, l_{2} \diamond l_{1}\right) .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
f_{l_{2} \diamond l_{1}}=f_{l_{2}} \circ f_{l_{1}} . \tag{42}
\end{equation*}
$$

Proof. First, we assume that Range $l_{1} \neq \phi$. For all $X \in$
$2^{V_{2}\left(l_{1}\right) \otimes V_{1}}$, we compute $f_{l_{2} \diamond l_{1}}$ and $f_{l_{2}} \circ f_{l_{1}}$.

$$
\begin{aligned}
& f_{l_{2} \diamond l_{1}}(X) \\
= & \bigcup_{g_{2} \in G} g_{2}\left(l_{2} \diamond l_{1}\right)\left(g_{2}^{-1} X \cap\left(V_{2}\left(l_{1}\right) \otimes V_{1}\right)\right) \\
= & \bigcup_{g_{2} \in G} g_{2} l_{2}\left(\bigcup_{v \in V_{2}\left(l_{1}\right)} v\right. \\
& \left.l_{1}\left(v^{-1}\left(g_{2}^{-1} X \cap\left(V_{2}\left(l_{1}\right) \otimes V_{1}\right)\right) \cap V_{1}\right) \cap V_{2}\right) \\
= & \bigcup_{g_{2} \in G} g_{2} l_{2}\left(\bigcup_{v \in V_{2}\left(l_{1}\right)} v\right. \\
& \left.l_{1}\left(\left(g_{2} v\right)^{-1} X \cap v^{-1}\left(V_{2}\left(l_{1}\right) \otimes V_{1}\right) \cap V_{1}\right) \cap V_{2}\right) \\
= & \bigcup_{g_{2} \in G} g_{2} l_{2}\left(\bigcup_{v \in V_{2}\left(l_{1}\right)} g_{2}^{-1}\left(g_{2} v\right)\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{l_{2}} \circ f_{l_{1}}(X) \\
= & \bigcup_{g_{2} \in G} g_{2} l_{2}\left(g_{2}^{-1} f_{l_{1}}(X) \cap V_{2}\right) \\
= & \bigcup_{g_{2} \in G} g_{2} l_{2}\left(g_{2}^{-1}\right.
\end{aligned}
$$

$$
\left.\left(\bigcup_{g_{1} \in G} g_{1} l_{1}\left(g_{1}^{-1} X \cap V_{1}\right)\right) \cap V_{2}\right)
$$

$$
(44)=\bigcup_{g_{2} \in G} g_{2} l_{2}\left(\bigcup_{g_{1} \in G}\left(g_{2}^{-1} g_{1} l_{1}\left(g_{1}^{-1} X \cap V_{1}\right)\right) \cap V_{2}\right)
$$

To show that they are equal, we prove that

$$
\begin{align*}
& \bigcup_{v \in V_{2}\left(l_{1}\right)} g_{2}^{-1}\left(g_{2} v\right) l_{1}\left(\left(g_{2} v\right)^{-1} X \cap V_{1}\right) \cap V_{2} \\
= & \bigcup_{g_{1} \in G} g_{2}^{-1} g_{1} l_{1}\left(g_{1}^{-1} X \cap V_{1}\right) \\
= & \bigcup_{g_{1} \in g_{2} V_{2}\left(l_{1}\right)} g_{2}^{-1} g_{1} l_{1}\left(g_{1}^{-1} X \cap V_{1}\right) \\
\cup & \bigcup_{g_{1} \in G \backslash g_{2} V_{2}\left(l_{1}\right)} g_{2}^{-1} g_{1} l_{1}\left(g_{1}^{-1} X \cap V_{1}\right) \tag{45}
\end{align*}
$$

for all $g_{2} \in G$. Since we have

$$
\bigcup_{g_{1} \in G \backslash g_{2} V_{2}\left(l_{1}\right)} g_{2}^{-1} g_{1} l_{1}\left(g_{1}^{-1} X \cap V_{1}\right)=\phi
$$

by Lemma 12, we show

$$
\begin{align*}
& \bigcup_{v \in V_{2}\left(l_{1}\right)} g_{2}^{-1}\left(g_{2} v\right) l_{1}\left(\left(g_{2} v\right)^{-1} X \cap V_{1}\right) \cap V_{2} \\
= & \bigcup_{g_{1} \in g_{2} V_{2}\left(l_{1}\right)} g_{2}^{-1} g_{1} l_{1}\left(g_{1}^{-1} X \cap V_{1}\right) \tag{46}
\end{align*}
$$

instead of (45).
However, $v \in V_{2}\left(l_{1}\right)$ and $g_{1} \in g_{2}\left(V_{2}\left(l_{2}\right)\right)$ is one-to-one with $g_{1}=g_{2} v$. Hence we have (46).

Next, we assume that Range $l_{1}=\phi$. For all $X \in 2^{V_{2} \otimes V_{1}}$, (38) becomes

$$
\begin{equation*}
l_{2} \diamond l_{1}(X)=l_{2}(\phi) \tag{47}
\end{equation*}
$$

On the other hand, $f_{l_{1}}$ satisfies $f_{l_{1}}(Y)=\phi$ for all $Y \in 2^{S}$. Therefore we have

$$
f_{l_{2}} \circ f_{l_{1}}(Y)=f_{l_{2}}(\phi)
$$

Hence for all $Y \in 2^{V_{2} \otimes V_{1}}$, we have

$$
\begin{aligned}
f_{l_{2} \diamond l_{1}}(Y) & =\bigcup_{g \in G} g l_{2} \diamond l_{1}\left(\left(g^{-1} Y\right) \cap\left(V_{2} \otimes V_{1}\right)\right) \\
& =\bigcup_{g \in G} g l_{2}(\phi) \\
& =\bigcup_{g \in G} g l_{2}\left(\left(g^{-1} \phi\right) \cap V_{2}\right) \\
& =f_{l_{2}}(\phi) \\
& =f_{l_{2}} \circ f_{l_{1}}(Y) .
\end{aligned}
$$

That's our claim.

Definition 14. Let

$$
\begin{aligned}
& M_{1}=G A C S\left(G, G, V_{1}, l_{1}\right) \\
& M_{2}=G A C S\left(G, G, V_{2}, l_{2}\right)
\end{aligned}
$$

We define an abstract collision system $M_{2} \diamond M_{1}$ by

$$
M_{2} \diamond M_{1}=G A C S\left(G, G, V_{2}\left(l_{1}\right) \otimes V_{1}, l_{2} \diamond l_{1}\right)
$$

Theorem 4. Let

$$
\begin{aligned}
& M_{1}=G A C S\left(G, G, V_{1}, l_{1}\right) \\
& M_{2}=G A C S\left(G, G, V_{2}, l_{2}\right)
\end{aligned}
$$

Let $F_{M_{1}}, F_{M_{2}}$ and $F_{M_{2} \diamond M_{1}}$ be global transition functions of M_{1}, M_{2} and $M_{2} \diamond M_{1}$, respectively. Then we have

$$
F_{M_{2} \diamond M_{1}}(A)=F_{M_{2}} \circ F_{M_{1}}(A)
$$

for all $A \in 2^{G}$.

Proof. We see that

$$
\begin{aligned}
& F_{M_{2} \diamond M_{1}}(A) \\
= & \bigcup_{g_{2} \in G} g_{2}\left(l_{2} \diamond l_{1}\right)\left(g_{2}^{-1} A \cap\left(V_{2}\left(l_{1}\right) \otimes V_{1}\right)\right) \\
& F_{M_{2}} \circ F_{M_{1}}(A) \\
= & \bigcup_{g_{2} \in G} g_{2} l_{2}\left(g_{2}^{-1}\right. \\
& \left.\quad\left(\bigcup_{g_{1} \in G} g_{1} l_{1}\left(g_{1}^{-1} X \cap V_{1}\right)\right) \cap V_{2}\right)
\end{aligned}
$$

from Theorem 1. The right hand sides of these formulae are appeared in (43) and (44) in the proof of Theorem 3, and we proved they are equal. Hence we have

$$
F_{M_{2} \diamond M_{1}}(A)=F_{M_{2}} \circ F_{M_{1}}(A)
$$

Corollary 5. Let

$$
\begin{aligned}
& M_{1}=G A C S\left(G, G, V, l_{1}\right) \\
& M_{2}=G A C S\left(G, G, V, l_{2}\right) \\
& M_{3}=G A C S\left(G, G, V^{\prime}, l_{3}\right)
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& M_{3} \diamond M_{1} \equiv M_{3} \diamond M_{2} \\
& M_{1} \diamond M_{3} \equiv M_{2} \diamond M_{3}
\end{aligned}
$$

if $M_{1} \equiv M_{2}$.
Proof. Let $F_{M_{1}}, F_{M_{2}}, F_{M_{3}} F_{M_{3} \diamond M_{1}}$ and $F_{M_{3} \diamond M_{2}}$ be global transition functions of $M_{1}, M_{2}, M_{3}, M_{3} \diamond M_{1}$ and $M_{3} \diamond M_{2}$, respectively. Then we have $F_{M_{1}}=F_{M_{2}}$. Therefore for all $A \in 2^{S}$, we have

$$
\begin{aligned}
& F_{M_{3} \diamond M_{1}}(A) \\
= & F_{M_{3}} \circ F_{M_{1}}(A) \\
= & F_{M_{3}} \circ F_{M_{2}}(A) \\
= & F_{M_{3} \diamond M_{2}}(A)
\end{aligned}
$$

from Theorem 4. Hence we have $M_{3} \diamond M_{1} \equiv M_{3} \diamond M_{2}$. Similarly, we have $M_{1} \diamond M_{3} \equiv M_{2} \diamond M_{3}$.

Example 7. Let $M_{2 C A-i}, M_{2 C A-j}$ and $M_{3 C A-k}$ be cellular automata on groups

$$
\begin{aligned}
& M_{2 C A-i}=G A C S\left(\mathbb{Z}, \mathbb{Z},\{0,1\}, l_{i}^{(2)}\right) \\
& M_{2 C A-j}=G A C S\left(\mathbb{Z}, \mathbb{Z},\{0,1\}, l_{j}^{(2)}\right) \\
& M_{3 C A-k}=G A C S\left(\mathbb{Z}, \mathbb{Z},\{0,1,2\}, l_{k}^{(3)}\right)
\end{aligned}
$$

Table 2: The composition of 2 neighborhood CA, $l_{i} \Delta l_{j}$.

$l_{i} \backslash l_{j}$	0	2	4	6	8	10	12	14
0	0	0	0	0	0	0	0	0
2	0	34	68	66	8	34	12	2
4	0	12	48	24	64	68	48	16
6	0	46	116	90	72	102	60	18
8	0	0	0	36	128	136	192	236
10	0	34	68	102	136	170	204	238
12	0	12	48	60	192	204	240	252
14	0	46	116	126	200	238	252	254

Then we have

$$
\begin{aligned}
V\left(l_{j}^{(2)}\right) \otimes V & =\{0,1,2\}, \\
l_{i}^{(2)} \Delta l_{j}^{(2)}\left(x_{0}, x_{1}, x_{2}\right) & =l_{i}^{(2)}\left(l_{j}^{(2)}\left(x_{0}, x_{1}\right), l_{j}^{(2)}\left(x_{1}, x_{2}\right)\right),
\end{aligned}
$$

by Theorem 3. This means that we can construct a 3 neighborhood cellular automaton by composing two 2 neighborhood cellular automata.

The result of compositions of 2 neighborhood cellular automata are listed in Table 2. For example,

$$
\begin{aligned}
& M_{2 C A-6} \diamond M_{2 C A-6}=M_{3 C A-90} \\
& M_{2 C A-8} \diamond M_{2 C A-4}=M_{3 C A-0} .
\end{aligned}
$$

Since

$$
\begin{aligned}
l_{6}^{(2)}\left(x_{0}, x_{1}\right) & =x_{0} \oplus x_{1}, \\
l_{90}^{(3)}\left(x_{0}, x_{1}, x_{2}\right) & =x_{0} \oplus x_{2},
\end{aligned}
$$

the farmer example shows

$$
\begin{aligned}
& \left(x_{0} \oplus x_{1}\right) \oplus\left(x_{1} \oplus x_{2}\right) \\
= & l_{6}^{(2)}\left(l_{6}^{(2)}\left(x_{0}, x_{1}\right), l_{6}^{(2)}\left(x_{1}, x_{2}\right)\right) \\
= & l_{90}^{(3)}\left(x_{0}, x_{1}, x_{2}\right) \\
= & x_{0} \oplus x_{2} .
\end{aligned}
$$

Similarly, the latter example shows

$$
\begin{aligned}
& \left(x_{0} \wedge \neg x_{1}\right) \wedge\left(x_{1} \wedge \neg x_{2}\right) \\
= & l_{8}^{(2)}\left(l_{4}^{(2)}\left(x_{0}, x_{1}\right), l_{4}^{(2)}\left(x_{1}, x_{2}\right)\right) \\
= & l_{0}^{(3)}\left(x_{0}, x_{1}, x_{2}\right) \\
= & 0 .
\end{aligned}
$$

We assumed that $S=G$ in order to simplify the discussion. The following of this section, we extend the definition of composition in the case of $S \neq G$.
In Definition 13, we would like to reset $V_{1}, V_{2} \subseteq G$ by $V_{1}, V_{2} \subseteq S$. However, since the set S has no operation, (37) is not well-defined. We would like to define (37) by
using the operation of G to S. First, let $V \subseteq S$ and $H \subseteq G$, we define

$$
\begin{equation*}
H V=\{h v \mid h \in H, v \in V\} . \tag{48}
\end{equation*}
$$

Next, we take $H_{1}, H_{2} \subseteq G$. We replace V_{1} and V_{2} by $H_{1} V$ and $H_{2} V$, respectively.
Definition 15. Let $V \subseteq S, H_{1} \subseteq G, H_{2} \subseteq G, l_{1}: 2^{H_{1} V} \rightarrow$ 2^{S} and $l_{2}: 2^{H_{2} V} \rightarrow 2^{S}$. We define a set $H_{2}\left(l_{1}\right)$ by

$$
H_{2}\left(l_{1}\right)= \begin{cases}\left\{h \in G \mid\left(h\left(\text { Range } l_{1}\right)\right) \cap H_{2} V \neq \phi\right\}, \tag{49}\\ & \text { if Range } l_{1} \neq \phi \\ H_{2}, & \text { if Range } l_{1}=\phi\end{cases}
$$

Moreover, we define a sets $H_{2}\left(l_{1}\right) \otimes H_{1}$ and a function $l_{2} \diamond l_{1}$: $2^{H_{2}\left(l_{1}\right) \otimes H_{1} V} \rightarrow 2^{S}$ by

$$
\begin{align*}
& H_{2}\left(l_{1}\right) \otimes H_{1} \\
= & \left\{h_{2} h_{1} \mid h_{2} \in H_{2}\left(l_{1}\right), h_{1} \in H_{1}\right\}, \tag{50}\\
& l_{2} \diamond l_{1}(X) \\
= & l_{2}\left(\bigcup_{h \in H_{2}\left(l_{1}\right)} h l_{1}\left(\left(h^{-1} X\right) \cap H_{1} V\right) \cap H_{2} V\right)
\end{align*}
$$

Theorem 5. Let $f_{l_{1}}, f_{l_{2}}$ and $f_{l_{2} \diamond l_{1}}$ be induced local transition function by $H_{1} V$ and $l_{1} H_{2} V$ and $l_{2},\left(H_{2}\left(l_{1}\right) \otimes H_{1}\right) V$ and $l_{2} \diamond l_{1}$, respectively, i.e.,

$$
\begin{aligned}
f_{l_{1}} & =\operatorname{Ind}\left(G, H_{1} V, l_{1}\right), \\
f_{l_{2}} & =\operatorname{Ind}\left(G, H_{2} V, l_{2}\right), \\
f_{l_{2} \diamond l_{1}} & =\operatorname{Ind}\left(G,\left(H_{2}\left(l_{1}\right) \otimes H_{1}\right) V, l_{2} \diamond l_{1}\right) .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
f_{l_{2} \diamond l_{1}}=f_{l_{2}} \circ f_{l_{1}} . \tag{52}
\end{equation*}
$$

Example 8. Let $H=\{0,1\}$ Let M_{1} and M_{2} be 1 dimensional Q state, H neighborhood cellular automata, defined by Example 3. Then we have

$$
\begin{equation*}
l_{2} \diamond l_{1}\left(x_{0}, x_{1}, x_{2}\right)=l_{2}\left(l_{1}\left(x_{0}, x_{1}\right), l_{1}\left(x_{1}, x_{2}\right)\right) \tag{53}
\end{equation*}
$$

by composing M_{1} and M_{2}.

6. Distributive Law

In this section, we consider that two operations, union and composition of abstract collision systems on groups, and check the distribution law. We consider the most easy case, cellular automata on groups.
Example 9. Let $M_{2 C A-i}$ and $M_{3 C A-j}$ be cellular automata on groups

$$
\begin{aligned}
& M_{2 C A-i}=G A C S\left(\mathbb{Z}, \mathbb{Z},\{0,1\}, l_{i}^{(2)}\right), \\
& M_{3 C A-j}=G A C S\left(\mathbb{Z}, \mathbb{Z},\{0,1,2\}, l_{j}^{(3)}\right),
\end{aligned}
$$

respectively. From Table 1 and Table 2, we have $M_{2 C A-2} \cup$ $M_{2 C A-4}=M_{2 C A-6}$ and $M_{2 C A-6} \diamond M_{2 C A-6}=M_{3 C A-90}$. Moreover, we have

$$
\begin{aligned}
& M_{2 C A-6} \diamond M_{2 C A-2}=M_{3 C A-46}, \\
& M_{2 C A-6} \diamond M_{2 C A-4}=M_{3 C A-116} \\
& M_{2 C A-2} \diamond M_{2 C A-6}=M_{3 C A-66} \\
& M_{2 C A-4} \diamond M_{2 C A-6}=M_{3 C A-24}
\end{aligned}
$$

from Table 2. Furthermore, we can compute easily

$$
\begin{aligned}
M_{3 C A-46} \cup M_{3 C A-116} & =M_{3 C A-126} \\
M_{3 C A-66} \cup M_{3 C A-24} & =M_{3 C A-90}
\end{aligned}
$$

Therefore we see that

$$
\begin{aligned}
& M_{2 C A-6} \diamond\left(M_{2 C A-2} \cup M_{2 C A-4}\right) \\
= & \left(M_{2 C A-2} \cup M_{2 C A-4}\right) \diamond M_{2 C A-6} \\
= & M_{2 C A-6} \diamond M_{2 C A-6} \\
= & M_{3 C A-90}, \\
& \left(M_{2 C A-6} \diamond M_{2 C A-2}\right) \cup\left(M_{2 C A-6} \diamond M_{2 C A-4}\right) \\
= & M_{3 C A-46} \cup M_{3 C A-116} \\
= & M_{3 C A-126}, \\
& \left(M_{2 C A-2} \diamond M_{2 C A-6}\right) \cup\left(M_{2 C A-4} \diamond M_{2 C A-6}\right) \\
= & M_{3 C A-66} \cup M_{3 C A-24} \\
= & M_{3 C A-90} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& M_{2 C A-6} \diamond\left(M_{2 C A-2} \cup M_{2 C A-4}\right) \\
\neq & \left(M_{2 C A-6} \diamond M_{2 C A-2}\right) \cup\left(M_{2 C A-6} \diamond M_{2 C A-4}\right), \\
& \left(M_{2 C A-2} \cup M_{2 C A-4}\right) \diamond M_{2 C A-6} \\
= & \left(M_{2 C A-2} \diamond M_{2 C A-6}\right) \cup\left(M_{2 C A-4} \diamond M_{2 C A-6}\right) .
\end{aligned}
$$

Similarly, we can prove that

$$
\begin{aligned}
& M_{2 C A-k} \diamond\left(M_{2 C A-i} \cup M_{2 C A-j}\right) \\
\neq & \left(M_{2 C A-k} \diamond M_{2 C A-i}\right) \cup\left(M_{2 C A-k} \diamond M_{2 C A-j}\right), \\
& \left(M_{2 C A-j} \cup M_{2 C A-k}\right) \diamond M_{2 C A-i} \\
= & \left(M_{2 C A-j} \diamond M_{2 C A-i}\right) \cup\left(M_{2 C A-k} \diamond M_{2 C A-i}\right)
\end{aligned}
$$

for all rule number i, j and k.
Theorem 6. Let

$$
\begin{aligned}
& M_{1}=G A C S\left(G, G, V, l_{1}\right) \\
& M_{2}=G A C S\left(G, G, V, l_{2}\right) \\
& M_{3}=G A C S\left(G, G, V^{\prime}, l_{3}\right)
\end{aligned}
$$

Then we have

$$
\begin{equation*}
\left(M_{1} \cup M_{2}\right) \diamond M_{3}=\left(M_{1} \diamond M_{3}\right) \cup\left(M_{2} \diamond M_{3}\right) . \tag{54}
\end{equation*}
$$

Proof. We see that

$$
\begin{aligned}
&\left(M_{1} \cup M_{2}\right) \diamond M_{3} \\
& \equiv G A C S\left(G, G, V, l_{1} \cup l_{2}\right) \diamond G A C S\left(G, G, V_{3}, l_{3}\right) \\
& \equiv \quad \text { (by Cor. 5) } \\
&\left(M_{1} \diamond M_{3}\right) \cup\left(M_{2} \diamond M_{3}\right) \\
& \equiv G A C S\left(G, G, V_{3}\left(l_{3}\right) \otimes V, l_{1} \diamond l_{3}\right) \\
& \cup G A C S\left(G, G, V_{3}\left(l_{3}\right) \otimes V, l_{2} \diamond l_{3}\right) \\
& \equiv G A C S\left(G, G, V_{3}\left(l_{3}\right) \otimes V,\left(l_{1} \diamond l_{3}\right) \cup\left(l_{2} \diamond l_{3}\right)\right) \\
& \quad \text { (by Cy Cor. 4) } \\
& \hline \text { (by Prop. 7). }
\end{aligned}
$$

Moreover, we see that

$$
\begin{aligned}
& \left(l_{1} \cup l_{2}\right) \diamond l_{3}(X) \\
= & \left(l_{1} \cup l_{2}\right)\left(\bigcup_{v \in V\left(l_{3}\right)} v l_{3}\left(v^{-1} X \cap V_{3}\right) \cap V\right) \\
= & l_{1}\left(\bigcup_{v \in V\left(l_{3}\right)} v l_{3}\left(v^{-1} X \cap V_{3}\right) \cap V\right) \\
\cup & l_{2}\left(\bigcup_{v \in V\left(l_{3}\right)} v l_{3}\left(v^{-1} X \cap V_{3}\right) \cap V\right) \\
= & l_{1} \diamond l_{3}(X) \cup l_{2} \diamond l_{3}(X)
\end{aligned}
$$

for all $X \in 2^{V\left(l_{3}\right) \otimes V_{3}}$. Hence we have (54).
This theorem says that the operation \diamond is right distributive over \cup, but \diamond is not left distributive over \cup.

7. CONCLUSION

We defined abstract collision systems on groups, and investigated their properties. First, we see the behavior of the global transition functions of ACS on groups. Second, we consider union and division of ACS. In the case of ACS on groups, we proved a sufficient condition that ACS is dividable. Finally, by using operations of groups, we discussed a composition of ACS on groups.

The union of cellular automata on groups is to take "logical or" of local transition rules. The composition of cellular automata with ACS matches the composition of local transition rules of cellular automata in Fujio's work [4]. Then the operations "composition" and "logical or" of local transition rules of cellular automata satisfy the right distribution law, but they do not satisfy the left distribution law.

As future works, we would like to show the necessary condition of division. Moreover, we would like to consider division there are no operations on groups.

Acknowledgments

The author thanks Professor Yoshihiro Mizoguchi for his valuable suggestions and discussions. I am also grateful
to Professor Shuichi Inokuchi for his support. Further, I would like to give my special thanks to Professor Mitsuhiko Fujio. His ideas about composition of CA on groups give me very useful hints to finish this work. In addition, this research was supported in part by Kyushu University Global COE Program "Education-and-Research Hub for Mathematics-for-Industry".

References

[1] A. Adamtzky (Ed).: Collision-Based Computing, Springer, 2002.
[2] E.R. Berlekamp, J.H.Conway and R.Guy: Winning Ways for Your Mathematical Plays, 2, Academic Press, 1982.
[3] M. Cook: Universality in elementary cellular automata, Complex Systems, 15 (2004) 1-40.
[4] M. Fujio: $\mathrm{XOR}^{2}=90$ - Graded Algebra Structure of the Boolean Algebra of Local Transition Rules -, in: Papers in RIMS, 1599 (2008) 97-102, Kyoto University.
[5] T. Ito, S. Inokuchi, and Y. Mizoguchi: An abstract collision system, AUTOMATA-2008 Theory and Applications of Cellular Automata, 339-355, Luniver Press, 2008.
[6] T. Ito, S. Inokuchi, and Y. Mizoguchi: Abstract collision systems simulated by cellular automata, in: 3rd International Workshop on Natural Computing (IWNC 2008) Proceedings, (2008) 27-38.
[7] G. J. Martínez, H. V. McIntosh, J. C. S. T. Mora, and S. V. C. Vergara: Determining a regular language by glider-based structures called phases f_{i-1} in Rule 110, Journal of Cellular Automata 3 (3), (2008) 231-270.
[8] K. Morita: Simple universal one-dimensional reversible cellular automata, Journal of Cellular Automata, 2, (2007) 159-166.
[9] E. Rémila: An introduction to automata on graphs, M. Delorme and J. Mazoyer, Eds., Cellular Automata, A Parallel Model, Kluwer Academic Publishers, Dordecht, (1998) 345-352.
[10] Zs. Róka: One-way cellular automata on Cayley graphs, École Normale Supérieure de Lyon, Research Report 93-07 (1993) 406-417.
[11] S. Wolfram: A New Kind of Science, Wolfram Media, 2002.
[12] S. Yukita : Dynamics of cellular automata on groups, in : IEICE Trans. Inf. \& Syst., vol.E82-D (10) (1999) 1316-1323.

Takahiro Ito
Graduate School of Mathematics, Kyushu University, Fukuoka 819-0395, Japan.
E-mail: t-ito@math.kyushu-u.ac.jp

List of MI Preprint Series, Kyushu University
 The Global COE Program Math-for-Industry Education \& Research Hub

MI
MI2008-1 Takahiro ITO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristiccurve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a padic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU \& Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI \& Kazuhiro YOKOYAMA Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO \& Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE \& Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA \& Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO On the L^{2} a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
 Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions
MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI \& Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI \& Sadanori KONISHI
Variable selection for functional regression model via the L_{1} regularization

MI2009-4 Shuichi KAWANO \& Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI \& Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAJIWARA \& Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous $1+1$ dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI \& Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI \& Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO

Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE \& Teruhisa TSUDA Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric \mathbf{T}-functions of the q-Painlevé system of type $E_{8}^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI \& Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA \& Yoshiyuki KAGEI
Large time behavior of the semigroup on L^{p} spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI \& Tsuyoshi SAWABE Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA \& Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO \& Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO \& Sadanori KONISHI

Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA \& Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER \& Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA \& Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_{0}^{2}-projection

```
MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine's property (Pm)
```

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI \& Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI \& Yasunori MAEKAWA On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA \& Yoshinori YAMASAKI Hecke's zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU \& Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO \& Teruhisa TSUDA Projective reduction of the discrete Painlevé system of type $\left(A_{2}+A_{1}\right)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA \& Daisuke TAGAMI Finite element computation for scattering problems of micro-hologram using DtN map

MI2009-36 Reiichiro KAWAI \& Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic OrnsteinUhlenbeck processes

MI2010-2 Reiichiro KAWAI \& Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE \& Sadanori KONISHI Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA \& Setsuo TANIGUCHI The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI \& Sadanori KONISHI Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI \& Sadanori KONISHI Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups

