九州大学学術情報リポジトリ Kyushu University Institutional Repository

異種増感紙の組合せによるエネルギー差分法の可能 性について

長, 哲二 九州大学医療技術短期大学部診療放射線技術学科

坂本, 弘巳 九州大学医療技術短期大学部診療放射線技術学科

丸石, 博文 天野医院

https://doi.org/10.15017/163

出版情報:九州大学医療技術短期大学部紀要.14, pp.7-13, 1987-02-28.九州大学医療技術短期大学部 バージョン: 権利関係:

異種増感紙の組合せによるエネ ルギー差分法の可能性について

長 哲 二^{*}, 坂 本 弘 巳^{**}, 丸 石 博 文^{***}

Dual-energy Subtraction Imaging by a Single X-ray Exposure

Cho Tetsuji, Sakamoto Hiromi and Maruishi Hirohumi

はじめに

X線撮影における強調画像の作成の方法とし ては時間差分法,エネルギー差分法が多く利用 されている。

このいずれの方法も二回の撮影を必要とする ので、その間の被写体の動きが問題となる。こ れを解決するために、従来から行なわれてきた 同種類の増感紙二枚でフィルムを挟んで撮影す る方法でなく、フロントとバックの増感紙に種 類の違ったものを使用し、同時に二枚のフィル ムを撮影し、この二枚のフィルムから差分法に よって強調画像が得られないものか、その可能 性を測定した種々の増感紙が吸収したX線のエ ネルギースペクトルのうえから検討した。

材料および方法

X線管球,ファントーム,検出器の種類と設 置条件は前の報告と同じである。X線管球の管 電圧は100kV,管電流は2~3 mAを使用,フ ァントームは10 cmの厚さのものを使用した。 測定はファントームの中心部を透過してきた直 接線(散乱線は含まない)を利用し,ファント ームと検出器のコリメータの間に,X線撮影用 カセッテ,増感紙を挿入し,これ等を透過して きたX線のエネルギースペクトルを測定した。 この測定を二枚の増感紙の種類とその組合せを

*, ** 九州大学医療技術短期大学部 診療放射線技術学科

*** 天野医院

いろいろ変えて行い,その透過X線のエネルギ ースペクトルから,それぞれの組合せの場合の それぞれの増感紙が吸収したX線のエネルギー スペクトルを算出した。この実験に使用した増 感紙を表1に示すがいずれもKYOKKOの製品 である。

記号	蛍 光 体	厚 み (mm)	
		フロント	バック
F S	CaWO ₄	0.100	0.100
H S	CaWO4	0.135	0.170
RE-SPECIAL	BaFCl : Eu +CaWO4	0.275	0.275
G4	Gd_2O_2S : Tb	0.155	0.155

表1:実験に使用した増感紙の種類

測定にあたってはX線管球の出射口の照射中 心軸から離れたところにSnの薄板(厚さ:0.1 mm純度:99.95%)を貼付し,それから発生 するSnの特性X線をHpGe検出器で測定した。 この特性X線の計数値で,測定したX線のエネ ルギースペクトルを規格化した。測定した特性 X線のエネルギースペクトルの一例を1図に示 す。

いままではスペクトルの規格化のために透過 型や指頭型の線量計を使用したが、X線発生装 置の管電流が少ない状態(2~3 mA)で使用 するためにX線の線量率が小さく線量計の誤差 が無視できないために、今回はこのように特性 X線を計数する方法を用いた。

透過X線のエネルギースペクトル測定の波高

分析装置にはTN-1700, Snの特性X線測定には SEIKO EG&G社製のパソコン波高分析装置を 使用した。TN-1700で測定したX線のエネルギ ースペクトルは検出器の検出効率の補正, Pile up rejecterによる reject pulse の補正を行っ た。

管電圧は管電圧波高計(KV-201D)で実験中 は常時測定を行い,一定管電圧に保った。

結果

10 cm の水ファントームとカセッテのAI板を 透過してきた管電圧 100 kVのX線のエネルギ ースペクトルを2図に示す。これがフロントの 増感紙に対する入射X線のエネルギースペクト ルになる。このX線がさらにFSとG4の各々2 枚の増感紙(フロントとバック)を透過したエ ネルギースペクトルを3図に示す。

図2:管電圧100kVX線の10cm水ファントー ムとカセッテ透過後のエネルギースペクトル。

- 8 --

ム,カセッテ,増感紙を透過したX線のエ ネルギースペクトル。 (1) FS+FS (2) G4+G4

増感紙の種類によってその透過X線のエネルギ ースペクトルのちがいはあきらかであり,G4増 感紙では構成元素であるGdのK吸収端(50.22 keV)の影響がはっきり表われている。このよ うな透過X線のエネルギースペクトルのちがい は増感紙が吸収したX線のエネルギースペクト ルのちがいを意味している。

それでフロントとバック二枚の増感紙が吸収 したX線のエネルギースペクトルの例を二つ4

図に示す。4-(1)図はFS増感紙を二枚組合せた 例であり、4-(2)図は種類の異った増感紙G4 とRE-SPECIALを組合せたものである。FSは CaWO4系の増感紙であるためWのK吸収端 (69.48 keV)、G4ではGdのK吸収端の影響 がよく表われている。

異種の増感紙の場合フロントの増感紙はバッ クの増感紙にとってはX線のフィルターとして の役をはたすので、どちらの増感紙をフロント 異種増感紙の組合せによるエネルギー差分法の可能性について

図5: 増感紙の吸収X線のエネルギースペクトル。

- (1) G4フロント増感紙のスペクトル
- (2) フロント増感紙にG4を用いたときの RE-SPECIAL増感紙のスペクトル。
- (3) RE-SPECIAL フロント 増感紙のスペクトル
- (4) フロント増感紙に RE SPECIALを
 用いたときの G4 増感紙のスペクトル
- (5) フロント増感紙にG4を用いたときのHS 増感紙のスペクトル

にするかによってその吸収 X 線のエネルギース ペクトルが変化してくる。その例を5 図に示す。 5 図の(1),(2)はいずれもフロントの増感紙にG 4を用いた時のG4とバックの増感紙RE - SP-ECIALの吸収 X 線のエネルギースペクトルであ り,(3),(4)は RE - SPECIALをフロントにした 場合の RE - SPECIALをフロントにした 場合の RE - SPECIALとG4 増感紙の吸収 X 線 のエネルギースペクトルである。同じ組合せで もどちらをフロント増感紙にするかによってス ペクトルが変化するのがわかる。5 図の(5)には フロント増感紙にG4 をバックの増感紙にHSを 使用したときの HS 増感紙の吸収 X 線スペクト ルである。全く特異的な型をしたスペクトルに なっている。

考察

エネルギー差分法で強調画像を得るには,一 般に行なわれているのは低い管電圧とより高い 管電圧で撮影を行い,この二枚のフィルムを利 用した差分法によっている。この場合二枚の画 像で撮影の時間が異るために,その間の臓器の 移動という問題があり,これを解決するために 撮影間の時間を短縮する努力が必要になってく る。^{3,4)}

この問題を解決するには同時に撮影した二枚 の画像を利用することができればよい。これを 可能にするには感度のエネルギー依存性が異る 二つのセンサーを用いて同時に撮影するか,同 じセンサーを使用しセンサー間に適当なX線の フィルターを挿入し前後のセンサーに入射する X線のエネルギースペクトルを変化させて撮影 し,差分法によって強調画像を得る方法を用い ればよい。この実験で用いた増感紙はこのセン サーに相当するものである。測定の結果得られ た増感紙の吸収X線のエネルギースペクトルは 5 図に示されるようにそれぞれの増感紙で異り, また同じ増感紙であっても,増感紙に入射する X線のエネルギースペクトルによっても変化す ることがわかった。

5図の2と5図の3のスペクトルを比較して みると5図の2のほうが相対的に低エネルギー 部分の吸収が多いことがわかる。一方G4 増感 紙の吸収スペクトルをみてみると,フロント, バックどちらで用いてもスペクトルの形は大き くは変わらない。それで同じG4とRE-SPEC-IALの増感紙の組合せであってもG4をフロント, RE-SPECIALをバックの増感紙として用いた ほうがGdのK吸収端のエネルギー(50.22 keV) を境にして感度のエネルギー依存性のちがいを 大きくすることができる。即ち感度のエネルギ ー依存性の異なるセンサーでの撮影が可能とな る。このときのフロントのG4増感紙はセンサー の間に挿入するX線のフィルターの役もしてい る。

それで、このことを利用して片面乳剤のフィ ルムを用い、フロント(G4)とバック(RE-SP-ECIAL)増感紙にフィルムを密着させフィルム の間には遮光のための黒紙を挿入して同一カセ ッテに入れ撮影を行うとエネルギーの高い部分 に感度の大きいセンサー(G4)と低エネルギー 部分のほうに相対的に大きな感度をもつセンサ ー(RE-SPECIAL)による同時撮影ができて、 この二枚の画像から差分法を用いて強調画像を 作ることは可能であろう。

今述べたのはG4とRE-SPECIALの組合せの 例であり、撮影の目的、管電圧によってその増 感紙の組合せはかわるであろう。一例としてフ ロント増感紙にG4をバックの増感紙にCaWO4 系のHSを使用したときのHS増感紙の吸収X線 のエネルギースペクトルを5図の(5)に示すが, これはGd, WのK吸収端の影響でGdの吸収端 より低いエネルギー部分とWの吸収端(69.48 keV)よりも高いエネルギー部分に大きな感度 をもち中間部が相対的にX線の吸収が少ないと いった全く特異的なスペクトルになっている。 これは同じCaWO4系増感紙であるFSの吸収ス ペクトル(4図の(1))と比較するとそのちがい がわかる。このように同じ管電圧で同じファン トームを照射した場合でもそのときの増感紙の 組合せによって増感紙が吸収するX線のエネル ギースペクトルが大きく変化することがわかっ た。

異種増感紙の組合せによるエネルギー差分法の可能性について

さらにファントームに入射するX線のエネル ギースペクトルを付加フィルターで変化させる と4図,5図に示すスペクトルも大きく変化す ることが考えられる。管電圧が100kV程度で の撮影ではX線写真に利用されるX線のエネル ギー範囲は4図からわかるように40~80keV である。それでそのエネルギー範囲のX線のエ ネルギー分布を特異的に変化させるにはこのエ ネルギー範囲にK吸収端をもつ元素をフィルタ ーとして利用しないと効果的ではない(勿論被 写体が薄い場合はこの限りではない)。一例とし てHoを付加フィルターとして用いたときのX線 のエネルギースペクトルを6図に示す。

図6:付加フィルターに0.075mmのHoを用い たときの管電圧 100 kVのX線のエネルギ ースペクトル

このような元素は原子番号が大きく付加フィル ター自身によるX線の吸収が大きくなり撮影に 利用される線量率の低下が問題となる。しかし 最近では大出力のX線発生装置,デジタルラデ ィオグラフィーの利用によりこの問題も解決で きるであろう。以上述べたようにX線撮影の場 合,X線のセンサーとして働く増感紙のX線吸 収スペクトルが増感紙の組合せ,付加フィルタ ーによって大きく変化し,その組合せによって はエネルギー差分法による強調画像の作成に利 用可能なものがあることがわかった。線量率の 問題はあるにしても同時に撮影したフィルムで 差分法ができることは非常に有用な方法である。

この実験では散乱線を考慮にいれていない。 実際には散乱線によって低エネルギーのX線が より多く増感紙に入射して画像のコントラスト を低下させるとともに吸収エネルギースペクト ルを変化させる可能性もあるが,これはカーボ ングリッド等の使用により改善できる。

今後は測定した増感紙のX線吸収スペクトル, 管電圧,付加フィルター,撮影目的の組合せを 考えてファントーム撮影を行い,写真的な問題 を検討してゆく。

結論

一般のX線撮影に使用されている増感紙の組 合せ(異種の増感紙の組合せ)を選択すること により,同時X線撮影によるエネルギー差分法 の可能性があることが増感紙のX線吸収エネル ギースペクトルの測定結果から推測された。

本実験に使用した増感紙を提供していただい た三浦典夫,化成オプトニクスK.K.技術本部 部長に感謝いたします。

参考文献

- Castle, J. W. Sensitivity of Radiographic Screens to Scattered Radiation and Its Relationship to Image Contrast, Radiol. 122, 805-809, 1977
- 2) Ishigaki, T, Sakuma, S, Horikawa,
 Y, et al. : One-shot Dual-energy Subtraction Imaging, Radiol. 161, 271-273, 1986
- 3) 松尾啓志,岩田 彰,鈴村宣夫 他:エネ ルギー差分法による軟部組織像抽出.
 医用画像工学会誌,2,29-35,1984.
- 4) 西谷 弘:私信
- 5) 坂本弘巳,長 哲二,小山田即:診断用X 線スペクトルの測定.医短大紀要,6,43 -47,1979
- 6) 坂本弘巳,長 哲二,阿部一之:診断用X

線のスペクトル測定(カーボンファイバグ リッドの評価), 医短大紀要, 11, 17-21, 1984.