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Abstract 

 

   By using the Monte Carlo simulation, we investigate the critical 

behavior of the 1-dimensional spin system with infinite long-range (LR) 

interaction ( )σ+− 1r . By changing the value σ , we compare the results 

with those of the d -dimensional spin system with the nearest- neighbor 

(NN) interaction only. 

In the case of XY spin model, we obtain three different type phase 

transitions, i.e. the mean field type for 5.00 << σ , theσ - dependent 

non-trivial one for 15.0 << σ  and ‘Berezinskii-Kosterlitz-Thouless  

(BKT)-like’ transition at 1=σ as in the NN model of 4>d , 

42 << d  and 2=d , respectively.  

In the case of q -state clock spin model with 1=σ , we also confirm 

the BKT-like transition together with the similar q -dependence of the 

critical behavior to that of the 2-dimensional NN model. 

These results suggest that the infinite long-range interaction can 

partly compensate the role of the lattice dimensionality by increasing 

the effective value d  from 1=d to 2=d . 

 

 

Keywords: Phase transition, Dimensionality, Monte Carlo simulation, XY spin 

model, q -state clock spin model, Long-range interaction, BKT transition 

 

 

1. Introduction 

 

The lattice dimensionality d of the system has a large effect on the nature of the phase 

transition. In general, a 1-dimensional system ( )1=d  does not show any phase transition. On the 

other hand, the higher dimensional systems ( )1>d  show various types of phase transition, and the 

critical behavior changes with the spin symmetry (or the number of spin component D ). For 
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example in the 2-dimensional system ( )2=d , in contrast to the usual order-disorder transition of 

the Ising model ( )1=D , the XY spin model ( )2=D  shows the characteristic phase transition 

without long-range order (LRO), which is called Berezinskii-Kosterlitz-Thouless (BKT) transition. 

 

 The critical behavior of the system around the transition temperature cT  is well described by a 

set of indices defined for various physical quantities. For example, the temperature dependence of 

the specific heat C , the magnetization M , the susceptibility χ  and the correlation length ξ  

are represented by 
α−∝ tC , 
βtM ∝ , 
γχ −∝ t , 

νξ −∝ t , 

where t  is the reduced temperature 
cc TTTt −= . Also the spin correlation at cT  for the 

d -dimensional lattice is represented as 

( )
η+−

∝
2

1
d
r

rG . 

These indices α , β , γ ,ν and η  are called critical point exponents (or critical exponents in short). 

It is well established that the value of the critical exponents only depends on d  and D  and is 

not affected by other details of the system. As a result, the spin systems are classified into several 

groups (universality class) designated by the values of the critical exponents. Table 1 shows the 

critical exponents of some typical spin models. 

 

 

 
Table 1  The critical exponents of some typical spin models.1) 

 

 α  β  γ  ν  η *
 

2d-Ising 

(D=1) 

0 1/8 7/4 1 1/4 

3d-Ising 

(D=1) 

0.113 0.324 1.239 0.629 0.03 

3d-XY 

(D=2) 

-0.01 0.34 1.32 0.70 0.03 

Mean field 

approximation 

0 1/2 1 1/2 0 

* η  is called `anomalous dimension’ and shows the deviation from the mean field value. 

 

 

 

From Table 1, we can see that the lattice dimensionality affects not only the appearance of phase 

transition but also the intrinsic nature of the phase transition and critical behavior. Then, it is 

interesting to study whether such important role of the lattice dimensionality can be replaced or 

compensated by other factors, e.g. by the introduction of the modification of interaction form.  

One possible candidate is the 1-dimensional spin model with infinite long-range (LR) interaction 

decaying with power law ( )σ+− 1r , where r  is the distance between interacting spins. This model 

has no phase transition for 1>σ  but shows various types of phase transition characterized by the 

value of σ  for 1≤σ . The natures of these phase transitions appearing in the model are 

analogous to those found in the d -dimensional spin model having only the nearest- neighbor (NN) 

interaction.  

In the present paper, we investigate the critical behavior of the 1-dimensional spin model with 

(1) 

(2) 
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LR interaction by using Monte Carlo (MC) simulation and discuss the results comparing with those 

of the NN model on the 2-dimensional lattice. Calculation is mainly performed for the XY spin 

model ( 2=D ) and partly for the discrete version of it ( q -state clock spin model). 

 

In the next section, we explain the important properties of the 1-dimensional LR interaction 

model. In chapter 3, we define the XY spin model and its discrete version, i.e. q -state clock spin 

model with LR interaction. We also explain the outline of the method of MC simulation adopted in 

the present study. Simulation results for the XY spin model are given and discussed in chapter 4. 

These calculations are extended to the q -state clock spin model in chapter 5. Chapter 6 is the 

conclusion of this paper. The explanation of the BKT phase transition in the 2-dimensional NN 

model is given in the Appendix. 

 

 

2. 1-dimensional System with Long-range Interaction 

 

2.1 Long-range interaction and lattice dimensionality  

The 1-dimensional spin model with the finite-range interaction does not have the long-range 

order (LRO). On the other hand, Dyson proved exactly that a phase transition can occur in the Ising 

model with power law decaying infinite long-range interaction ( )σ+− 1r .
2)
 After that the 

renormalization group (RG) calculation was performed by Fisher et al.
3)
 and by Sak 

4)
, and they 

predicted that this model would show the mean field type critical behavior for 5.00 << σ  and the 

non-trivial phase transition, where critical nature varies with the value σ , for 15.0 << σ . 

For 15.0 << σ , it is also expected that the critical exponent η  obeys the relation ση −= 2 . In 

order to confirm these predictions, many numerical calculations have been performed.
 5-9)

 

 

  In the case of 1>σ , the phase transition cannot occur even in the LR model. In this sense, the 

LR model with 1>σ  is equivalent to the 1-dimensional NN model. Also in the case of 1<σ , if 

we compare the nature of phase transition of LR model with that of d -dimensional NN model, we 

note that there is an interesting correspondence betweenσ and d . We compared the nature of the 

phase transitions of the 1-diensional LR model with that of the d -dimensional NN model in the 

respective case of the Ising model (Table 2) and 3-state Potts model (Table 3). We used the well 

established results that the 3-state Potts model with NN interaction shows continuous second order 

phase transition in the 2-dimensional lattice while it shows the mean field like first order phase 

transition in the 3-dimensional lattice. Also it is actually known that the 3-state Potts LR model 

changes its nature of phase transition from the second order to the first order at 7.0≈σ .
 10,11)

 

 

 

 

Table 2  Comparison between the phase transition of the NN model and that of the LR model for 

Ising model. 

 

 

d  

 

 

 
σ  

 

 

 

 

 

NN model 

LR model 

2 4 

1 0.5 

No phase 

transition 

Continuous 

phase transition 

 MF-like        

phase transition 

(Continuous) 
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Table 3  Comparison between the phase transition of the NN model and that of the LR model for 

3-state Potts model. 

 

 

d  

 

 

 
σ  

 

 

 

 

Table 2 (Table 3) suggest that in the Ising model (3-state Potts model) the 1-dimensional LR 

system with 1>σ , 15.0 << σ  ( 17.0 << σ ) and 5.00 << σ  ( 7.00 << σ ) has a similar 

critical nature to that of the d -dimensional NN models of d<2 , 42 << d      ( 32 << d ) 

and 4>d , respectively. That is, the value of σ in the LR model plays the role of lattice 

dimensionality d in the NN model. Thus we may say that the LR interaction compensates the 

dimensionality of the lattice. 

 

 

2.2 The ‘BKT-like’ transition of the 1-dimensional model  

As described in the previous chapters, the 1-dimensional Ising model with LR interaction 
( )σ+− 1r  shows the mean field type critical behavior for 5.00 << σ , the non-trivial phase 

transition for 15.0 << σ  and no phase transition for 1>σ . The situation is very complicated in 

the case of 1=σ , since this is the border point of whether the phase transition occurs or not. For 

the Ising model ( 1=D ) with 1=σ , the discontinuous jump of the order parameter was expected 

at cT  by the calculation based on counting the possible spin configuration by Thouless.
12)
 Later, 

Anderson explained that the binding-unbinding of the topological defects (kinks) interacting 

through the Coulomb interaction cause this behavior (kink gas representation).
13)
 

  It is the case of the XY spin model ( 2=D ) that is interesting. The Hamiltonian for the XY spin 
model is given by 

( )ji

ij

ijJH θθ −−= ∑
><

cos  , 

where iθ  denotes an angular variable at site i . 
( )σ+−= 1

0 ijij rJJ  is a coupling constant between 

site i  and site j  separated by distance ijr .  

As in the Ising model, Fisher et al. predicted that the XY spin model with LR interaction shows 

the mean field type critical behavior for 5.00 << σ  and the non-trivial phase transition that 

depends on σ for 15.0 << σ . 

However, since the XY spin model has continuous symmetry, this model cannot make the 

topological defects. Thus the kink gas representation cannot apply to the 1-dimensional XY spin 

model. Therefore, no attention had been paid to this model even in the case of 1=σ  for a long 

time until the study by Simanek. In the spin wave approximation, Simanek
14
 showed that, for 1=σ , 

the correlation at low temperature is given by 

  ( )
0

2J

Tk

ijij

B

rrG π
−= , 

and the susceptibility at low temperature is given by 

0
2

0

12 J

Tk

j jB

B

rTk

π
χ ∑ 













= , 

where Bk  is the Boltzmann constant. 

NN model 

LR model 

2 ≃ 3 

≃ 0.7 1 

No phase 

transition 

Continuous 

phase transition 

  MF-like        

phase transition 

(First order ) 

(3) 

(4) 

(5) 
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These results imply the appearance of the power law decay correlation and infinite susceptibility 

in the low temperature region of 10
2 <JTkB π . The situation is very similar to the case of 

ordinary BKT transition found in the 2-dimensioanl XY spin model of NN system (See, 

Appendix).
15,16)

 

 

If the BKT transition occurs in such 1-dimensional system, it means that the infinite long-range 

interaction can play the role to increase effective lattice dimensionality from 1=d  to 2=d . 

One of our main aims in the present paper is to confirm whether the BKT (or BKT-like) phase 

transition truly occurs or not in the 1-dimensional XY spin model with LR interaction of 1=σ . 

 

In the next chapter, we present the spin models and briefly explain the method of MC simulation 

adopted for the present system with infinite long-range interaction. 

 

 

3. Definition of the Model and the Method of Calculation 

 

As described in the previous chapter, the Hamiltonian for the XY spin model with LR interaction 

is given by 

( )ji

ij

ijJH θθ −−= ∑
><

cos        
( )( )σ+−= 1

0 ijij rJJ . 

In the calculation, we assumed ferromagnetic coupling ( )010 >= 　J  and periodic boundary 

condition. 

  When we suppose that the angular variable iθ  takes only q discrete values, we obtain the 

discrete version of the XY spin model that is called as the q-state clock spin model. The Hmiltonian 

for the 1-dimensional q-state clock spin model with LR interaction is 

( )
q

pp
JH

ji

ij

ij

−
−= ∑

><

π2
cos     ( )qpi ,,2,1 ⋅⋅⋅= . 

This model reduces to the XY spin model in the limit ∞→q . In chapter 5, we also make use of 

this model. 

  

Because of the infinite long-range interaction, the finite size effect strongly affects the simulation 

results. Therefore we need a large system size L  requiring much calculation time proportional to 

the square of L .  
Recently, many methods based on the cluster algorithm are proposed to shorten the computing 

time.
17)
 In this study, we use the simplest discrete update (DUD) MC method.

18)
 In the DUDMC 

method, we divide the effective field acting on site i  into two parts: farneari HHH += , where 

nearH is the effective field from spins near the site i , and farH is that from spins at the far sites. 

When the thermal equilibrium is realized, the field farH does not vary so much during the spin 

update process.  Then we update farH only for every mMC steps (discrete update), while we 

update nearH in every update trial since it is strongly affected by each spin configuration. In this 

study, we include up to the 8th nearest-neighbor sites in nearH and consider the case of m =1 or 2. 

Furthermore, we make use of the fast Fourier transform algorithm (FFT) to calculate farH with the 

aid of the convolution theorem in k -space. The FFT can reduce the calculation time from the 

order 
2L  to LL log . The validity of this method is explained in reference 18).

 
 

When we need more precise calculation, we also adopt the Swendsen's histogram MC method. 

The physical quantities such as the energy E and the magnetization M are estimated from the 

following thermal average:  

 

 

(6) 

(7) 
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HE = , 

 

22

sincos
1














+














= ∑∑

i

i

i

i
L

M θθ . 

 

The specific heat C and the susceptibility χ are calculated by their fluctuation: 

2

22

Tk

EE
C

B

−
= , 

Tk

MM

B

22 −
=χ . 

In the calculation, we assume 1=Bk . 

 

 

4. The Result of the XY Spin Model  

 

4.1 Theσ dependence of the critical behavior 

It has been predicted that the critical behavior of this system is the mean field type for 

5.00 << σ and non-trivial σ dependent type for 15.0 << σ . At 5.0=σ , the essentially 

singular type critical behavior has been predicted. In Fig. 1, we showed the temperature 

dependence of the specific heat C in the cases of 4.0=σ and 7.0=σ . In this calculation, thermal 

averages were taken 
5105× MC steps after equilibrating over 

5101× MC steps for system size 
147 22 ～=L . 

In the mean field approximation, the specific heat jumps from zero to a finite value at cTT =  

with the decrease of temperature. For 4.0=σ , the specific heat shows the tendency of mean field 

type critical behavior as system size increases. On the other hand, for 7.0=σ , the specific heat 

shows no jump, and obviously the system has critical behavior that is different from the mean field 

type. 

 

According to the finite size scaling theory, system size dependence of the magnetization M and 

the susceptibility χ at the critical temperature are given by 

ν
β

−
∝ LM , 

ν
γ

χ L∝ . 

We estimated the critical exponent νγ from the result of susceptibility χ by using equation (10). 

In this calculation, we adopted the histogram MC method and we took 
5108×  MC steps for 

making an energy histogram. The σ dependence of the critical exponent νγη −= 2 is shown in 

Fig. 2. In the region 15.0 << σ , our result fits well with the relation ση −= 2  predicted by 

Fisher et al.
3,4)

 

(8) 

(9) 

(10) 
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Fig. 1  The temperature dependence of the specific heat for several system size L  at mean field 

region 4.0=σ  and non-trivial region 7.0=σ . 

 

 

 

 

 

 
 

Fig. 2  The σ dependence of the critical exponent νγη −= 2 . The slope shows the RG 

prediction of ση −= 2 . Inset shows χln  vs Lln  for 1.0=σ ～ 1=σ  from lower curves to 

upper ones. 

T 
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The value of νγ expected by the mean field calculation is 2=νγ . Our estimation of νγ  is 

almost 5.0=νγ  in the area of 5.00 << σ . At present we cannot explain this large deviation 

from the expected mean field value. The smaller σ means the longer range interaction, and so in 

order to elucidate the situation more careful scaling correction by using larger L systems will be 

needed for 5.00 << σ . 

 

 

4.2 The case of 1=σ  

In this section, we show the MC result of the XY spin model with 1=σ  where the BKT-like 

transition is expected by the spin wave calculation. 

In Fig. 3, we showed the temperature dependence of the specific heat C for several system size 

L . These curves show no system size dependence. On the other hand, the susceptibility χ has the 

clear system size dependence and does not well defined behavior at low temperature region (not 

reported here). These behaviors commonly appear on the MC simulations for the 2-dimensional 

XY spin model with NN interaction that shows BKT transition. In the inset, we show cT obtained 

from the maximum of χ , and we got 6.0≈cT . 

 

 

 

 

 

 
 

 

Fig. 3  The temperature dependence of the specific heat for several system size L  at 1=σ . The 

inset shows the size dependence of the peak temperature of χ  calculated by the histogram 

method. 

 

 

 

 

T 

T
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Fig. 4  The phenomenological RG plot of M ( L = 102 ,
112 ,

122 ) at 1=σ . 

 

 

 

 

Figure 4 shows the phenomenological renormalization group plot
19)
 of the magnetization M. 

We calculated the temperature dependence of the following quantity R:  

( )
( )LL

MM
R

′
′

−=
/ln

/ln
, 

where L and L’ denote the different two lattice size ( )121110 2,2,2, =′LL , and M , M’ are 

corresponding magnetizations. 

If M is proportional to ν
β

−
L  at critical temperature, R should take the only one value of νβ  

independent of L  and L′ . For ordinary LRO, therefore, the curves of the temperature 

dependence of R should cross only at critical temperature (point) cT . On the other hand, in the BKT 

transition which has the critical line, R should lap over one curve for cTT < . 

Our result at lower temperature than 6.0≈cT  collapse on the one curve and this shows one 

evidence supporting the BKT transition. 

 

  We can estimate the critical exponent η  by using finite size scaling and the relation 

( )ηνγ −= 2  and we got 1977.0 ≈=η . This value is different from 41=η  for the ordinary 

BKT transition found in the 2-dimensional XY spin model with NN interaction. Thus, for the 

characteristic transition found in the present 1-dimensional LR model, it may be adequate to be 

called BKT-like transition.  

 

 

 

(11) 

T 
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5. The BKT-like Transition of Clock Spin Model 

 

 

As shown in the Appendix, in the 2-dimensional NN interaction system, it has been also 

confirmed that the clock spin model shows the BKT transition when 5≥q 20,21)
. In the present 

chapter, the calculation in the previous section was extended to the 1-dimensional q-state clock spin 

model in order to confirm the correspondence between σ  and d . In the MC simulation, thermal 

averages were taken 
5105× MC steps after equilibrating over 

5101× MC steps and the system size 

L was taken 158 22 ～=L . 

 

In Fig. 5, we showed the temperature dependence of the specific heat C, in the case of q = 6. The 

specific heat exhibits two anomalies; the rather sharp peak at low temperature, 2T , and the broad 

maximum at high temperature, 1T  (> 2T ). We could estimate the precise positions of 1T  and 2T  

by using the histogram MC method, and determine 1T = 0.862±0.003 and 2T = 0.457±0.003. In the 

inset, we show the size dependence of the peak height of the specific heat at 1T  and 2T . As 

expected for the BKT transition, both peaks have no evident size dependence. 

  All those behaviors of C are very similar to those found in the 2-dimensional 6-state clock spin 

model with the NN interaction (See Appendix). Thus, it is considered that two-step phase transition 

occurs, i.e. BKT at 1T  and ordinary LRO at 2T  leading intermediate BKT phase for temperatures 

2T < T < 1T . 

 

 

 

 

 
 

Fig. 5  The temperature dependence of the specific heat for several system size L  ( 6=q ). The 

inset shows the size dependence of the peak height at 1T  and 2T  calculated by the histogram 

method. 

T 
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Fig. 6  The temperature dependence of the specific heat for several values of q  ( 142=L ). The 

inset shows the q  dependence of the temperature 2T  and its peak height calculated by the 

histogram method. 

 

 

 

 

The temperature dependences of the specific heat in the case of q = 4～9 are shown in Fig. 6. In 

the case of q = 4, the curve exhibits only one peak probably corresponding to 2T . This behavior is 

similar to that of the 2-dimensional 4-state clock spin model with the NN interaction. In the case of 

q = 5, the peak begins to split into two peaks, and there appear two separate peaks in the case of q = 

6. With further increase of q, 2T  shift to the lower temperature. By using the histogram MC 

method we estimated the q dependence of the temperature 2T  and the peak height of C at 2T . 

The results are shown in the inset. We may be able to expect that the sharp peak at 2T  shift to the 

zero temperature and disappears in the limit of ∞→q . The position of the peak at higher 

temperature does not depend on the value of q and consistently coincides with that of the single 

peak found for the 1-dimensional XY spin model with LR interaction.
22,23)

 

 

In Fig. 7, we showed the temperature dependence of the magnetization M, in the case of q = 6. 

As discussed before, the low temperature phase at T < 2T  is expected to be the ordinary LRO 

phase with finite magnetization and the phase at 2T < T < 1T  is the intermediate BKT phase where 

total magnetization is expected to disappear. However, a comparatively large magnetization is 

observed even for the intermediate region 2T < T < 1T . This is explained by the strong finite size 

effect of the BKT system having long-range correlation. Then, in order to get more precise 

conclusion is needed to extrapolate the present results into the infinite size system. The finite size 

scaling theory for the BKT phase transition predicts that the size dependence of M should be as 

follows 
( )η+−−∝ 2dLM , 

where d is the lattice dimensionality. 
(12) 

T 

q 
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Fig. 7  The temperature dependence of the magnetization for several system size L  ( 6=q ). 

 

 
  

Fig. 8  Log-Log plot of the relation between M  and L  for some selected temperatures 

between 1T  and 2T  ( 6=q ) . 

T 
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We showed the size dependence of magnetization for various temperature between 1T  and 2T  

in Fig. 8 in the case of q = 6. As expected in this temperature region,M seems to decrease and 

disappear with increase of the system size L . Because of the large finite size effect in the 

long-range system, there are large deviations from the liner behavior even in the case of a fairly 

large value of L. Then, for the estimation of the slope, η+− 2d , we used the largest two sizes 

available in the present calculation. The results are shown in Table 4 for some selected values of 

temperatures in the region of 2T < T < 1T . The value of η varies with temperature. 

  Though the value of η differs from that obtained for the 2-dimensional clock spin model with 

NN interaction, the tendency of the temperature dependence is quite similar to each other. Thus we 

may conclude that there exists intermediate phase (BKT-like phase) in 1-dimensional 6-state clock 

spin model with LR interaction with 1=σ . 

  

 

 

Table 4  The critical exponent η estimated from Fig. 8. 

 

 45.0=T  50.0=T  55.0=T  60.0=T  65.0=T  70.0=T  

η+− 2d  345.0  406.0  418.0  448.0  452.0  503.0  

η  ( 1=d ) 345.1  406.1  418.1  448.1  452.1  503.1  

 

 

 

6. Conclusion 

 

We have discussed the critical behavior of the 1-dimensional spin model with LR interaction 

decaying as ( )σ+− 1r . 

For the XY spin model, we confirmed the appearance of the mean field type phase transition for 

5.00 << σ  and non-trivial σ -dependent phase transition for 15.0 << σ . Those critical 

behaviors coincide with the results of the d -dimensional XY spin model with NN interaction in 

the cases of 4>d and 42 << d , respectively. This supports our speculation that the role of the 

lattice dimensionality can be replaced or compensated by the LR interaction. From this viewpoint, 

the σ -dependent non-trivial phase transition is well understood by successive changes of 

universality class induced by the change of effective lattice dimensionality d . In the extreme case 

of 1=σ , we found the characteristic phase in the low temperature region where correlation has 

power law decay similar to the BKT phase in the ordinary 2-dimensional XY spin model with NN 

interaction. The transition to this phase has different critical exponent with the ordinary BKT, and 

so may be called a BKT-like transition. 

A similar calculation is also performed for the q -state clock spin model restricted to the case of 

1=σ . In this calculation, we could observe the two transitions having different characters and 

confirm the nature of the intermediate phase is BKT-like. These results are very similar to the 

results of the 2-dimensional q -state clock spin model with NN interaction. 

In conclusion, we could confirm that the infinite long-range interaction can partly compensate 

the effect of the lattice dimensionality and plays a very important role in affecting the nature of the 

phase transition. 
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Appendix  The BKT Transition of the 2-dimensional XY and Clock Spin Model 

 

The theorem of Mermin-Wagner
24)
 proves exactly that the 2-dimensional XY spin model does 

not have LRO for 0>T . However, it was expected that a certain phase that is different from a 

paramagnet phase would appear at low temperature. This phase transition is called BKT transition. 

According to the Kosterlitz-Thouless scenario, as shown in Fig. 9, the BKT transition is caused 

by the shift from a plasma state at high temperature to dielectric state at low temperature. In the 

plasma phase, spin vortices move freely by heat fluctuation. On the other hand, the spin vortices 

make pairs in the dielectric phase. 

 

All the energy of the system is 

c

ji

ji

ji E
r

rr
nnJU +

−
−= ∑

≠ 0

log

rr

π , 

where 0r  is the radius of the vortex and cE  is the energy of the vortex core. in denotes the sign 

of the vortex (for the vortex 1=in  and the anti-vortex 1−=in ). Equation (13) shows that many 

vortices interact with the Coulomb force in 2-dimensional plane. 

 

The free energy is given by 









≈

t

A
f exp , 

where A  is a constant. Since f is infinitely differentiable by temperature, it turns out that 

specific heat does not diverge at cT . 

 

 

 

 
 

 

Fig. 9  The example of the pair of spin vortices.
25)
 

 

 

 

The correlation function at low temperature is given by the power law decay of the form 

( ) J

TkB

rrG π2
−

= . 

The RG theory of the BKT transition shows that these conclusions are qualitatively correct and 

(13) 

(14) 

(15) 
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C 

T 

2T 1T

also predicts that the critical exponent η  for cTT >  is given by 

( )
4

1
=cTη . 

The BKT transition is seen not only in the 2-dimensional XY spin model but also in the 

2-dimensional q-state clock spin model with 5≥q . Although this is the discrete version of the XY 

spin model, unlike ordinary XY spin model, it shows two steps of phase transitions. 

 

Figure 10 shows the temperature dependence of the specific heat of q-state clock spin model 

with 5≥q . It shows the phase transitions from the paramagnetic phase at high temperature to LRO 

phase at low temperature through the intermediate BKT phase. The critical exponent η  is found 

to vary with temperature and takes between ( )
4

1
1 =Tη  and ( )

22

4

q
T =η . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10  The temperature dependence of the specific heat of q -state clock spin model ( 5≥q ). 
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