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Abstract

Among Professor Kiyosi Itô’s achievements, there is the Itô-Nisio theorem, a com-
pletely general theorem relative to the Fourier series decomposition of the Brownian
motion. In this paper, some of its applications will be reviewed, and new applica-
tions to 1-soliton solutions to the Korteweg-de Vries (KdV in short) equation and
Eulerian polynomials will be given.
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1 Introduction

Professor Kiyosi Itô’s careful study about the work by N. Wiener on Brownian
motion started around 1943, after he moved to Nagoya University; in the
foreword to “Kiyosi Itô Selected papers”, he said ([21, pp.xiv-xv])

“Although I had heard much of N. Wiener’s great contribution to probability
theory, I had not read his work carefully until I went to Nagoya. Even his
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theory of Brownian motion I learned from Lévy’s book and Doob’s papers.
Reading some of his papers I was impressed by the originality with which
he initiated not only measure-theoretic probability theory but also path-
theoretic process theory as early as the 1920’s.”

He then learned the Fourier series expansion of Brownian motion by N. Wiener
in 1924 ([41]) and R. E. A. C. Paley-N. Wiener in 1934 ([34]). Itô was par-
ticularly interested in the latter paper, where the construction of the path of
Brownian motion was used to construct the Wiener measure. As Itô wrote
in the Commentary in [42, pp.513-519], it is not easy to read Wiener’s paper
of year 1923 ([40]), in which the existence of the Wiener measure was first
proved, because of the heuristic nature of its presentation. In contrast, the
Fourier series expansion given in Paley-Wiener [34] is more satisfactory from
the logical point of view. Being interested in the method, Itô introduced the
Fourier series expansion in detailed and clearly understandable manner in his
Japanese book [20, §§38-39] published in 1953. This is an example of Itô’s
attitudes to devote extraordinary efforts to approaching central problems in
probability theory with prior knowledge as little as possible. After the publi-
cation of his book, the Japanese mathematicians with interests in probability
theory easily understood Chapters IX and X in Paley-Wiener [34].

It should be also mentioned that the sections from 64 to 66 in Itô’s book are
devoted to the theory of stochastic differential equations, which was created
by him in 1942 ([16]). In 1950’s, in Japan, many probabilists started the study
of probability theory with this book, and then read together the books by J.
Doob [3] and W. Feller [5].

Another Fourier series expansion of Brownian motion is the one by P. Lévy in
1940 ([27]), where the Haar wavelet expansion was used. The wavelet expan-
sion is now used widely. For example, see Z. Ciesielski [1], M. Kac [24], and
M. Pinsky [36].

Retaining an interest in the Fourier series expansion of Brownian motion, Itô
established a theorem in 1968 in the joint paper with Makiko Nisio ([23]), the
Itô-Nisio theorem, which is a complete generalization of Wiener’s construc-
tion of the Brownian motion; they formulated the expansion as a problem on
convergence of sums of independent random variables with values in a Banach
space, and applied the concept of tightness due to Y. Prohorov [37] to see the
convergence. Their result in the most simple case asserts that

Theorem 1 (Itô-Nisio[23], p.45, Theorem5.2) Denote by H the Cameron-
Martin space of real valued functions over [0, 1], that is, the real separable
Hilbert space of all real, absolutely continuous functions h on [0, 1] with h(0) =
0, possessing square integrable derivatives. Let {un}∞n=1 be an orthonormal ba-
sis of H, and {ξn}∞n=1 be a sequence of independent and identically distributed
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random variables, each of which obeys N(0, 1), the normal distribution of mean
0 and variance 1. Then, the sequence

∞∑
n=1

ξnun(t), t ∈ [0, 1]

converges uniformly in t a.s., and the limit process {S(t)}t∈[0,1] is a 1-dimensional
Brownian motion.

In addition to this, we would like to remark that Itô was very much interested
in Prohorov’s work [37]. For example, in 1964, 4 years before the above article
on the Fourier series expansion appeared, he wrote another paper with M. Ni-
sio ([22]) using Prohorov’s result. Itô had been interested in the metric space
structure of the space of probability measures. It should be recalled that the
metric space structure of P(R) (≡ the space of probability measures on R)
was already studied in 1930’s by Lévy ([26]), and, in 1956, Prohorov intro-
duced a distance between two measures on a complete separable metric space,
which is analogous to the Lévy distance on P(R). Being very much interested
in the results of 1930’s, in 1943, about two decades before the joint articles
with Nisio, Itô wrote an introductory book to probability theory in Japanese,
where he gave a concise account of the metric space structure of P(R) ([17]).

Now returning to our subject, we recall the first section of Lévy [28, pp.171-
172], where he discusses the importance of using the Fourier series expansion.
After giving two definitions of the Brownian motion: the first one in the fourth
line on page 171:

“Let X(t) be Wiener’s well known random function, defined up to an addi-
tive constant by the condition

(1.1.1) X(t)−X(t0) = ξ
√
t− t0, t > t0,

ξ being a real and normalized Laplacian (often called Gaussian) random
variable”

and the second one in the fourteenth line:

“(1.1.5) X(t) =
ξ′t√
2π

+
∞∑
1

1

n
√
π
[ξn(cosnt− 1) + ξ′n sinnt],

the Greek letters indicating normalized Laplacian random variables, all in-
dependent of each other”

he wrote
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“ Thus, the same random function may be defined by (1.1.1) or by (1.1.5).
This theorem was proved by N. Wiener [9] in 1924, and ten years later,
formula (1.1.5) was used as a definition by Paley and Wiener. Starting from
one or the other point of view, it is easy to prove that X(t) is almost surely
a well defined and continuous function; δX(t) is generally O(

√
dt ) (dt > 0),

and not O(dt). Thus X(t) is not differentiable.
The explicit representation of X(t), given by (1.1.5), is often very useful.

Yet, during more than twenty years, the author and other mathematicians
did not have the idea of using it. We shall now apply it to the study of the
Brownian plane curve.”

Lévy’s method has been well known recently, and used widely by many people,
for example, [24] and so on. In particular, it is indispensable in the study
of quadratic Wiener functionals, which plays an essential role in stochastic
analysis. Moreover, as for the Malliavin calculus, another important research
field in stochastic analysis, P. Malliavin has taken the advantage of the Itô-
Nisio theorem in many situations.

As N. Wiener wrote in his autobiography [43, pp.37-39], when the study on
Brownian motion, his first major mathematical work, started, he was strongly
influenced by the book of J. Perrin [35]. Perrin noted similarities between on
one hand the non-differentiable function, which was constructed by K. Weier-
strass in 1872 with the use of sums of trigonometric functions, and on the
other hand the irregular movement of physical Brownian motion. The result
by Weierstrass was refined by G. Hardy in 1916 ([9]). Having close exchanges
with Hardy and Littlewood, Wiener must have had a detailed knowledge of
these preceding results. He began to study the Brownian motion in early 1920.
There is a mention that makes one guess that, from the very beginning, he
had in his mind an idea of using Fourier series expansions. Actually he tackled
straightforwardly the problems of Fourier series expansion in the paper of year
1924, and in the joint paper with Paley [34], he discussed systematically about
the construction of Wiener measure along this line. See also [28].

As was mentioned before, the studies of the Fourier series expansion of Brow-
nian motion bore as a fruit Lévy’s Haar function expansion, and then came
up to the Itô-Nisio theorem, the complete generalization. On one hand, if one
approaches the study of diffusion processes with heat kernels, then the Fourier
series for regular functions play a key role. On the other hand, studying Brow-
nian motion from the point of view of path behaviour (particle movement),
then the Itô-Nisio theorem and the Fourier series of irregular functions play a
fundamental role. In this paper, we shall see several more concrete examples
where Itô-Nisio’s Fourier series expansions are indispensable, and we shall give
some applications of them.
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As shown in his study attitude of deepening the understanding of the Wiener
measure by constructing the paths of Brownian motion, Itô had a tendency
to dwell on essentials of problems. This can be also seen as he developed the
understanding of Kolmogorov’s work [25] on diffusion processes by stochastic
differential equations. Apart from stochastic topics, we would like to exhibit
more episodes of Itô’s interests in fundamental subjects. Itô, who returned
again and again to logical structures of research subjects, was interested in
extensive range of mathematics, not only probability theory. For example,
in the late 1940’s, he was fascinated by Gödel’s theory, and his review [18]
of the Japanese translation of Gödel’s book received attention of Japanese
mathematicians who were interested in Gödel’s work. In 1960’s, through the
lecture by Martin Löf at Aarhus University, he was also very much interested
in the concept of a random sequence by Kolmogorov.

All of Itô’s mathematical works, including the Itô-Nisio theorem, consistently
gave motivations and directions for our researches. Not only in his lectures, but
also Itô was willing to tell young mathematicians privately what was behind
his research topics. By such private conversations, we learned a lot of things
and enriched our understandings over many topics. It is a great honor for us
to write a paper for this Tribute to Professor Kiyosi Itô, and on this occasion
we would like to express our deepest respect and gratitude to him for all he
taught us directly and indirectly.

2 A generalization of Lévy’s stochastic area formula

Let W be the space of all continuous functions w on [0,∞) taking values in
R2 with w(0) = 0, and let P stand for the Wiener measure on W . For x ∈ R2,
we set

wx(s) = x+ w(s), s ∈ [0,∞), w ∈ W.

To avoid any confusion, under P , we continue to write w(s) and do not use
w0(s). Take the differential 1-form θ = (1/2)(x1dx2−x2dx1), x = (x1, x2) ∈ R2,
on R2. Its exterior derivative dθ is the area element dx1∧dx2. We define S(t, wx)
to be the stochastic line integral of θ along the curve [0, t] 3 s 7→ wx(s) ∈ R2;

S(t, wx) =
∫

wx[0,t]

θ.
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For stochastic line integrals, see [12,15]. S(t, w), i.e. S(t, wx) with x = 0, is
called Lévy’s stochastic area. It holds:

S(t, wx) =
1

2

t∫
0

〈Jwx(s), dwx(s)〉,

where J =

(
0 −1

1 0

)
and 〈·, ·〉 denotes the standard inner product in R2;

〈x, y〉 = x1y1 + x2y2, x = (x1, x2), y = (y1, y2) ∈ R2.

From this expression with Itô integral, we see that the stochastic area is a
quadratic Wiener functional, i.e., an element of the homogeneous chaos of
order 2 of Wiener-Itô, which plays a key role in stochastic analysis. For details,
see the second proof of Proposition 2.

While Lévy defined the stochastic area in his own manner in [27], it is now
standard to use Itô’s stochastic integral to define the area. The discontinuity
of S(t, w) in w requires special care in defining the stochastic area ([15,29]).

Let α, β ∈ R, and define

p(t, x, y;α, β)

=
∫
W

exp
(√

−1αS(t, wx)−
β2

2

t∫
0

|wx(s)|2ds
)
δy(wx(t))P (dw), (1)

where δy(wx(t)) stands for Watanabe’s pull-back of the Dirac measure δy
concentrating at y ∈ R2 through wx(t). For the pull-back, see [15]. Then
p(t, x, y;α, β) is the fundamental solution to the partial differential equation

∂u

∂t
=
(
Lα − β2

2
|x|2

)
u,

where

Lα =
1

2
∆ +

α
√
−1

2

(
x1

∂

∂x2
− x2

∂

∂x1

)
− α2

8
|x|2, (2)

∆ being the Laplacian. See [15]. The heat equation was deeply studied by
Gaveau [7].
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It follows from the result by H. Matsumoto ([31]) that

Proposition 2 Let α, β ∈ R, and set m1 = (α2 + 4β2)1/2. Then it holds that

∫
W

exp
(√

−1αS(t, w)− β2

2

t∫
0

|w(s)|2ds
)
δy(w(t))P (dw)

=
1

2πt

m1t/2

sinh(m1t/2)
exp

(
− 1

2t

m1t/2

tanh(m1t/2)
|y|2

)
, y ∈ R2. (3)

Matsumoto’s result is based on the Van Vleck formula, the formula established
in [11], which is a Wiener integral counterpart to the application in the Feyn-
man path integral theory of the result due to Van Vleck [39] on fundamental
solutions.

PROOF. The assertion is a special case of the observation made by Mat-
sumoto in [31, pp.172-173]. We shall give the proof after briefly revisiting his
result.

Let k1, k2 > 0 and B ∈ R. Denote by q(t, a, b), t ≥ 0, a, b ∈ R2, the heat kernel
associated with the differential operator

−
{
1

2

2∑
j=1

(√
−1

∂

∂xj
−Bθj

)2

+
1

2
{k21(x1)2 + k22(x

2)2}
}

= LB − 1

2
{k21(x1)2 + k22(x

2)2},

where θ1 = x2/2 and θ2 = −x1/2, and LB is the operator defined in (2).
Setting

m1 = {(k1 + k2)
2 +B2}, m2 = {(k1 − k2)

2 +B2},

s1 =
m1 +m2

2
, s2 =

−m1 +m2

2
,

K(t) = 2k1k2B
2(cosh(s1t) cosh(s2t)− 1)

−{B2(k21 + k22) + (k1 − k2)
2} sinh(s1t) sinh(s2t),

αi(t) = s1(s
2
2 − k2i ) cosh(s1t) sinh(s2t)

−s2(s21 − k2i ) sinh(s1t) cosh(s2t),
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βi(t) = s2(s
2
1 − k2i ) sinh(s1t)− s1(s

2
2 − k2i ) sinh(s2t), i = 1, 2,

γ(t) = 2k1k2{cosh(s1t) cosh(s2t)− 1}
+(m2

1 − 2k1k2) sinh(s1t) sinh(s2t),

S̃cl(t, a, b) =
m1m2

K(t)
α1(t){(a1)2 + (b1)

2}+ m1m2

K(t)
β1(t)a

1b1

+
m1m2

K(t)
α2(t){(a2)2 + (b2)2}+ m1m2

K(t)
β2(t)a

2b2

+

√
−1B(k21 − k22)

2K(t)
γ(t)(a1a2 − b1b2)

−
√
−1 k1k2m1m2B

K(t)
{cosh(s1t)− cosh(s2t)}(a1b2 − a2b1),

Matsumoto [31] showed that

q(t, a, b) =
1

2π

(
k1k2m

2
1m

2
2

K(t)

)1/2

exp(−S̃cl(t, a, b)). (4)

In our situation, B = α, k1 = k2 = β, a = 0, and b = y. Hence m1 =
(α2+4β2)1/2 and m2 = |α|. Using the identities: coshx cosh y− sinhx sinh y =
cosh(x− y) and coshx− 1 = 2 sinh2(x/2), we see that

K(t) = 4α2β2 sinh2(m1t/2),

which implies:

k1k2m
2
1m

2
2

K(t)
=

(m1/2)
2

sinh2(m1t/2)
.

Since

s1(s
2
2 − β2) = s2(s

2
1 − β2) = −β2|α|

and sinh x cosh y − coshx sinh y = sinh(x− y), it holds that

α1(t) = α2(t) = |α|β2 sinh(m1t).

Then

S̃cl(t, 0, y) =
m1m2

2K(t)
α1(t)|y|2 =

1

2t

m1t/2

tanh(m1t/2)
|y|2.
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Plugging these into (4), we obtain the desired identity. 2

Remark 3 The identity in the case when α = 0 can be shown as an appli-
cation of the Feynman-Kac formula. If β = 0 and y = 0, then the identity is
well-known Lévy’s formula ([28]).

Remark 4 Observe that

α

t∫
0

w1(s)dw2(s) + β

t∫
0

w2(s)dw1(s) =
α− β

2
S(t, w) +

α + β

2
w1(t)w2(t).

This identity was used by M. Yor [44] to study the joint distribution

( 1∫
0

w1(s)dw2(s),

1∫
0

w2(s)dw1(s)
)
.

Using this expression, we obtain a variant of Matsumoto’s result to the oper-
ator (√

−1
∂

∂x1
+
B1x

2

2

)2

+
(√

−1
∂

∂x2
+
B2x

1

2

)2

+
1

2
{k21(x1)2 + k22(x

2)2}

with B1, B2 ∈ R.

In the remainder of this section, we shall give an alternative proof of Propo-
sition 2 with β = 0 by using the general Fourier series expansion of Brown-
ian motion due to Itô-Nisio. The method was first used by Lévy [28] in the
case when y = 0. The following observation was essentially made by Ikeda-
Watanabe [15, pp.476-478], and we are aiming to make clear which specified
trigonometric functions are involved in this computation.

PROOF. (An alternative proof of Proposition 2 for β = 0)

Suppose β = 0. Due to the scaling property of Brownian motion, it suffices to
show (3) for t = 1. Hence we work on the space {w|[0,1]|w ∈ W} of restrictions
of elements in W on [0, 1]. For the sake of simplicity, we use the same letter
W to indicate the space of restrictions. Let H be the corresponding Cameron-
Martin space. Then:

L2(W ;P ) =
∞⊕
n=0

Cn
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denotes the decomposition of L2(W ;P ), the Hilbert space of square integrable
variables with respect to P , in terms of the homogeneous chaos of Wiener-Itô
([19]). A quadratic Wiener functional is an element of C2. By the result of Itô
on multiple Wiener integrals ([19]), each quadratic Wiener functional F ∈ C2
admits a kernel representation;

F (w) =
2∑

i,j=1

{ 1∫
0

t∫
0

F ij(t, s)dwj(s)dwi(t) +

1∫
0

s∫
0

F ij(t, s)dwi(t)dwj(s)

}
,

where F ij is square integrable on [0, 1]2 with respect to the Lebesgue measure
and F ij(t, s) = F ji(s, t), t, s ∈ [0, 1], i, j = 1, 2. Setting the 2×2 matrix F (t, s)
to be (F ij(t, s))1≤i,j≤2, we define a symmetric Hilbert-Schmidt operator B of
H into H by

(Bh)′(t) =

1∫
0

F (t, s)h′(s)ds, h ∈ H,

where h′ denotes the derivative of h. Such a correspondence between quadratic
Wiener functionals and symmetric Hilbert-Schmidt operators of H into H is
bijective ([13]).

It is easily seen that S(1, w) is a quadratic Wiener functional. The correspond-
ing kernel F (t, s) = (F ij(t, s))1≤i,j≤2 is given by

F 11(t, s) = F 22(t, s) = 0,

F 12(t, s) = F 21(s, t) =



1

4
, 0 ≤ t ≤ s ≤ 1,

−1

4
, 0 ≤ s < t ≤ 1.

Moreover, if we set

I[h] =
( I[h1]

I[h2]

)
, I[hi](s) =

s∫
0

hi(u)du, h ∈ H,

then the Hilbert-Schmidt operator B associated with S(1, w) is represented
as

B = BV +BF , (5)
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where

(BV h)(s) =
1

2
I[Jh](s), (BFh)(s) = −1

4
(Jh)(1)s, s ∈ [0, 1].

Let H0 = {h ∈ H |h(1) = 0} and set B# = π0Bπ0, π0 being the orthogonal
projection of H onto H0. Then the above decomposition (5) implies that

(B#h)(s) =
1

2
I[Jh](s)− 1

2
I[Jh](1)s, s ∈ [0, 1].

It is then easily checked that B# admits the eigenfunction expansion:

B# =
∑

n∈Z\{0}

1

2

1

2nπ
{kn ⊗ kn + k̃n ⊗ k̃n},

where k ⊗ k : H → H is defined by (k ⊗ k)(h) = 〈k, h〉Hk, h ∈ H, and

kn(s) =
1

2nπ

(
cos(2nπs)− 1

sin(2nπs)

)
, s ∈ [0, 1], k̃n = Jkn.

See [13,32]. This leads us to the orthonormal basis {φ1
n, ψ

1
n+1, φ

2
n, ψ

2
n+1}∞n=0 of

H defined by

φ1
0(s) =

(
s

0

)
, φ2

0(s) =

(
0

s

)
,

φ1
n(s) =

√
2

2nπ

(
cos(2nπs)− 1

0

)
, φ2

n(s) =

√
2

2nπ

(
0

cos(2nπs)− 1

)
,

ψ1
n(s) =

√
2

2nπ

(
sin(2nπs)

0

)
, ψ2

n(s) =

√
2

2nπ

(
0

sin(2nπs)

)
.

Applying the Itô-Nisio theorem, we obtain the expansion:

w(s) =
2∑

i=1

{ ∞∑
n=0

ξ(i)n (w)φi
n(s) +

∞∑
m=1

η(i)m (w)ψi
m(s)

}

11



where

ξ(i)n (w) =

1∫
0

〈(φi
n)

′(s), dw(s)〉, η(i)m (w) =

1∫
0

〈(ψi
m)

′(s), dw(s)〉.

Since X i
0(w) = wi(1), in terms of components, this can be rewritten as

wi(s) = wi(1)φi,i
0 +

∞∑
n=1

ξ(i)n (w)φi,i
n (s) +

∞∑
n=1

η(i)n (w)ψi,i
n (s), i = 1, 2,

where φi
n =

(
φi,1
n

φi,2
n

)
and ψi

n =

(
ψi,1
n

ψi,2
n

)
. It is easily seen that {wi(1), ξ(i)n , η(i)n ; i =

1, 2, n = 1, 2, . . .} are independent random variables, each of which obeys
N(0, 1). These expansions are exactly the same as the ones used in [15, pp.476-
477]. In particular, we have that, P -a.s.,

S(1, w) =
∞∑
n=1

1

2πn

{
(η(1)n (w)−

√
2w1(1))ξ(2)n − (η(2)n (w)−

√
2w2(1))ξ(1)n

}
.

As was seen by Ikeda-Watanabe, it holds that

E[e
√
−1αS(1)|w(1) = y]

=
∞∏
n=1

(
1 +

α2

(2nπ)2

)−1

exp
(
−

∞∑
n=1

(α/2πn)2

1 + (α/2πn)2
|y|2

)
, (6)

where E[·|w(1) = y] stands for the conditional expectation given w(1) = y. In
conjunction with the well-known formulas

sinhx = x
∞∏
n=1

(
1 +

x2

π2n2

)
, cothx =

1

x
+ 2x

∞∑
n=1

1

x2 + π2n2
(7)

and the identity∫
W

e
√
−1αS(1,w)δy(w(1))P (dw) =

1

2π
e−|y|2/2E[e

√
−1αS(1)|w(1) = y]

we arrive at the desired identity. 2 2

2 In [15, p.478], the multiplication by 1/2 is missing when the infinite series expres-
sion of cot is applied.
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Remark 5 The first product in (6) can be rewritten as

∞∏
n=1

(
1 +

α2

(2nπ)2

)−1

= {det2(I − 2
√
−1αB#)}−1/2.

Remark 6 It is well known ([13,28,32]) that the Hilbert-Schmidt operator B
is decomposed as

B =
∑
n∈Z

1

2

1

(2n+ 1)π
{hBn ⊗ hBn + h̃Bn ⊗ h̃Bn },

where

hBn (s) =
1

(2n+ 1)π

(
cos((2n+ 1)πt)− 1,

sin((2n+ 1)πt)

)
, h̃Bn = JhBn .

In particular, B has the eigenvalues 1/{2(2nπ)π}, n ∈ Z, the multiplicity of
each being two, and:∫

W

e
√
−1αS(1)dP =

1

cosh(α/2)
= {det2(I − 2

√
−1αB)}−1/2.

Remark 7 The formulas in (7) are the well known Euler formulas. The latter
proof relies upon these formulas. Conversely, the Euler formulas can be shown
by combining Proposition 2 and the identity (6).

In [24, Sections 2 and 7], M. Kac also gave two such directions to approach
Lévy’s formula in the case when α = 0, i.e., the case of harmonic oscillator.
The importance of proving Lévy’s formula from two directions is discussed
there. Two such types of computation are widely known in the theory of Feyn-
man path integrals. See for example [6, Problems 2-2, 3-8, pp.71-73].

3 Lévy’s stochastic area formula for Ornstein-Uhlenbeck processes

In [14,38], the authors gave a probabilistic approach to reflectionless potentials,
soliton solutions and the τ -function to the KdV equation. Their observation
is based on quadratic Wiener functionals obtained as the square norms on
time interval for Ornstein-Uhlenbeck processes. In this section, we investigate
stochastic areas determined by Ornstein-Uhlenbeck processes, and establish
a similar result to the one in [14]. In the case of the Brownian motion, i.e.,
the Ornstein-Uhlenbeck process with p = 0, the result is well known ([8,28]).
We continue to work on the Wiener space (W,P ) of 2-dimensional Brownian
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motion. To apply the KdV equation, real numbers x, y, z instead of s, t, u are
used to indicate time parameters.

For p ∈ R, define the 2-dimensional Ornstein-Uhlenbeck process {ξp(z)}z≥0 to
be the solution to the stochastic differential equation

dξp(y) = dw(y) + pξp(y)dy, ξp(0) = 0,

that is, if we represent: ξp(y) = (ξp,1(y), ξp,2(y)) and w(y) = (w1(y), w2(y)),
then

dξp,i(y) = dwi(y) + pξp,i(y)dy, ξp,i(0) = 0, i = 1, 2.

In the sequel, let x > 0. By the Maruyama-Girsanov theorem [30,15], the

process
{
w(z)−

∫ z
0 pw(y)dy

}
z∈[0,x]

is a 2-dimensional Brownian motion under

the probability measure exp(p
∫ x
0 〈w(y), dw(y)〉−(p2/2)

∫ x
0 |w(y)|2dy) dP . Since∫ x

0 〈w(y), dw(y)〉 = 1
2
|w(x)|2 − x, we have:

∫
W

Φ({ξp(z)}z∈[0,x])dP

=
∫
W

Φ({w(z)}z∈[0,x]) exp
(
p

2
|w(x)|2 − p2

2

x∫
0

|w(y)|2dy
)
P (dw)e−px

for every Φ ∈ Cb(Wx), where Wx = {w|[0,x] |w ∈ W}. In particular, for Ψ ∈
Cb(Wx) such that Ψ({ξp(z)}z∈[0,x]) is smooth in the sense of the Malliavin
calculus, it also holds that, for any b ∈ R2,

∫
W

Ψ({ξp(z)}z∈[0,x])δb(ξp(x))dP

=
∫
W

Ψ({w(z)}z∈[0,x]) exp
(
−p

2

2

x∫
0

|w(y)|2dy
)
δb(w(x))P (dw)e

p{(|b|2/2)−x}.

Thus we arrive at

Proposition 8 For b ∈ R2, α,C ∈ R, it holds that

∫
W

exp

(√
−1α

2

x∫
0

〈Jξp(y), dξp(y)〉 − C|ξp(x)|2
)
δb(ξ

p(x))dP

=
∫
W

exp

(√
−1αS(x,w)− p2

2

x∫
0

|w(y)|2dy
)
δb(w(x))P (dw)
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× exp

({p
2
− C

}
|b|2 − px

)
. (8)

It should be mentioned that the above expression is meaningful for any C,
while the integrand exp(· · ·) on the left hand side is not smooth in the sense
of the Malliavin calculus for C < 0 with large absolute value. Namely, by the
localization via δb(ξ

p(x)), one may replace |ξp(x)|2 by ψ(|ξp(x)|2) with smooth
ψ : R → R which is compactly supported and equal to the identity function
on the interval [0, 2|b|2). After this replacement, one can take the pairing with
Watanabe’s pull-back.

In conjunction with Proposition 2, this proposition implies that

Theorem 9 Let α,C ∈ R and set m1 = (α2 + 4p2)1/2. Then it holds that

∫
W

exp

(√
−1α

2

x∫
0

〈Jξp(y), dξp(y)〉 − C|ξp(y)|2
)
δb(ξ

p(y))dP

=
1

2πx

m1x/2

sinh(m1x/2)
exp

(
−
{

1

2x

m1x/2

tanh(m1x/2)
+
(
C − p

2

)}
|b|2 − px

)
. (9)

Moreover, if C ≥ p/2, then it holds that

∫
W

exp

(√
−1α

2

x∫
0

〈Jξp(y), dξp(y)〉 − C|ξp(x)|2
)
dP

=
m1e

−px

m1 cosh(m1x/2) + (4C − 2p) sinh(m1x/2)
. (10)

PROOF. The identity (9) follows immediately from Propositions 2 and 8.

If C ≥ p/2, then

1

2x

m1x/2

tanh(m1x/2)
+
(
C − p

2

)
> 0.

Integrating (9) in b over R2, we come to the identity:

∫
W

exp

(√
−1α

2

x∫
0

〈Jξp(y), dξp(y)〉 − C|ξpx|2
)
dP

=
m1/2

sinh(m1x/2)

{
2

(
1

2x

m1x/2

tanh(m1x/2)
+
(
C − p

2

))}−1

e−px,
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which implies (10). 2

We first apply Theorem 9 to reflectionless potentials. For η,m > 0, the re-
flectionless potential with scattering data (η,m) is the function on R of the
form

−2(d/dx)2 log

(
1 +

m

2η
e−2ηx

)
.

See [33]. We have that

Corollary 10 We continue to use the same notation as in Theorem 9. Let
C ∈ [p/2, (p/2) + (m1/4)), and put

Q(x) = log

(∫
W

exp

(√
−1α

2

x∫
0

〈Jξp(y), dξp(y)〉 − C|ξp(x)|2
)
dP

)
.

Then the function q = 2(d/dx)2Q is the reflectionless potential with scattering
data(

m1

2
,
m1(m1 − 4C + 2p)

m1 + 4C − 2p

)
.

If p ≤ 0, then we can take C = 0 in the above equation and

2(d/dx)2 log

(∫
W

exp

(√
−1α

2

x∫
0

〈Jξp(y), dξp(y)〉
)
dP

)

is a reflectionless potential.

PROOF. Define γ ≥ 0 so that

m1 tanh γ = 4C − 2p, i.e., e−2γ =
m1 − 4C + 2p

m1 + 4C − 2p
. (11)

Since cosh(t+ s) = cosh t cosh s+ sinh t sinh s, we have:

m1 cosh(m1x/2) + (4C − 2p) sinh(m1x/2)

=
m1

cosh γ

e(m1x/2)+γ

2
(1 + e−2γe−m1x).
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By Theorem 9, it then holds:

q(x) = −2(d/dx)2 log(1 + e−2γ e−m1x).

Thus q is the reflectionless potential with scattering data (m1/2,m1e
−2γ). 2

As an application of the corollary, we consider a stochastic representation
of 1-soliton solutions to the KdV equation. After deforming the Brownian
motion into Ornstein-Uhlenbeck processes with parameter p, we shall obtain
a 1-parameter family of soliton solutions of the KdV equation which varies
according to the initial condition.

To see this, for p ∈ R, t ≥ 0, we set

V p(x, t) = log

(∫
W

exp

(√
−1α

2

x∫
0

〈Jξp(y), dξp(y)〉

−
{
p

2
+
m1

4
tanh(m3

1t/8)

}
|ξp(x)|2

)
dP

)

and

vp(x, t) = 2(∂/∂x)2V (x, t).

The 1-parameter family {vp; p ∈ R} satisfies:

Corollary 11 {vp; p ∈ R} is a 1-parameter family of 1-soliton solutions vp

to the KdV equation

∂u

∂t
=

3

2
u
∂u

∂x
+

1

4

∂3u

∂x3
with u(x, 0) = − (α2 + 4p2)1/2

2 cosh2((α2 + 4p2)1/2x)
.

PROOF. Due to Corollary 10 and (11), for each t ≥ 0, vp(·, t) is the reflec-
tionless potential with scattering data (m1/2,m1e

−2(m1/2)3t). Then it is well
known that vp is a 1-soliton solution (cf. [33]). The initial value vp(x, 0) is
easily computed. 2

4 Eulerian polynomials and stochastic area

Recently F. Hirzebruch [10] and A. Cohen [2] began to study several types of
Eulerian polynomials from a new point of view. In [28], Lévy pointed out that
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the stochastic area is related to Euler and Bernoulli numbers. In this section,
we shall see that the stochastic area is also related to Eulerian polynomials
introduced by Euler [4] (also see [2,10]).

Define the Eulerian polynomials Pn(ξ), n = 0, 1, . . ., by

∞∑
k=0

(k + 1)nξk =
Pn(ξ)

(1− ξ)n+1
, |ξ| < 1.

For the convenience of the reader, let us recall that

1

1− ξ
=

∞∑
k=0

ξk, |ξ| < 1,

so that P0(ξ) = 1. Differentiating both sides of the previous identity, we get:

P1(ξ) = 1.

Further differentiating both sides of the identity, thus defining Pn, by induc-
tion, we see that Pn is of degree n− 1 (cf. [10]).

From the definition, we easily obtain the exponential generating function for
the Eulerian polynomials ([10]):

∞∑
n=0

Pn(ξ)
λn

n!
=

(1− ξ)e(1−ξ)λ

1− ξe(1−ξ)λ
for λ ∈ R with |ξ|e(1−ξ)λ < 1. (12)

We shall show that

Proposition 12 For −1 < ξ ≤ 0 and λ ∈ R with |ξ|e(1−ξ)λ < 1 and |λ| < 1,
it holds:

∞∑
n=0

Pn(ξ)
λn

n!
=
∫
W

e
√
−1 (1−ξ)λS(1,w)+(1−ξ)λ|w(1)|2/4P (dw)

×
∫
W

e
√
−1 (1−ξ)λS(1,w)+(1+ξ)λ|w(1)|2/4P (dw). (13)

The above product may be gathered into one integration with respect to 4-
dimensional Brownian motion. Before proceeding to the proof, we see that
exact representations of Eulerian polynomials follow from (13). Namely, the
identity (13) yields:
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Pn(ξ) =
n∑

k=0

n!

k!(n− k)!

∫
W

{√
−1 (1− ξ)S(1, w) +

(1− ξ)|w(1)|2

4

}k

P (dw)

×
∫
W

{√
−1 (1− ξ)S(1, w) +

(1 + ξ)|w(1)|2

4

}n−k

P (dw). (14)

For example, we can compute P1(ξ), P2(ξ), and P3(ξ) as follows. Let

Cj,k =
∫
W

S(1, w)j|w(1)|2kP (dw).

Applying Itô’s formula, we see:

C1,0 = C1,1 = C1,2 = C3,0 = 0, (15)

C0,k = 2kk!, k = 1, 2, 3, C2,0 =
1

4
, C2,1 =

5

6
. (16)

Then it follows from (14) and (15) that

P1(ξ) =
1

2
C0,1,

P2(ξ) =
{
−2C2,0 +

C0,2

23
+
C2

0,1

23

}
+ 4C2,0ξ +

{
−2C2,0 +

C0,2

23
−
C2

0,1

23

}
ξ2,

P3(ξ) =
{
−3

2
C2,1 +

1

25
C0,3 −

3

2
C0,1C2,0 +

3

25
C0,1C0,2

}
+{3C2,1 + 3C0,1C2,0}ξ

+
{
−3

2
C2,1 +

3

25
C0,3 −

3

2
C0,1C2,0 −

3

25
C0,1C0,2

}
ξ2.

Substituting (16) into these, we arrive at the well known expressions ([10]):

P1(ξ) = 1, P2(ξ) = 1 + ξ, P3(ξ) = 1 + 4ξ + ξ2.

For the proof of Proposition 12, we prepare a lemma.

Lemma 13 For a ∈ R and β ∈ R with |a| ≤ 1/2 and −aβ < 1, it holds:

∫
W

e
√
−1β{S(1,w)+

√
−1a|w(1)|2/2}P (dw) =

{(
1

2
+ a

)
eβ/2 +

(
1

2
− a

)
e−β/2

}−1

.

PROOF. Since −aβ < 1, e
√
−1β{S(1,w)+

√
−1a|w(1)|2/2} is smooth in the sense of

the Malliavin calculus. Then we have:
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∫
W

e
√
−1β{S(1,w)+

√
−1a|w(1)|2/2}P (dw)

=
∫
R2

dy
∫
W

e
√
−1β{S(1,w)+

√
−1a|w(1)|2/2}δy(w(1))P (dw).

By Proposition 2, this is equal to

1

2π

β/2

sinh(β/2)

∫
R2

dy exp

(
− β/2

sinh(β/2)
{cosh(β/2) + 2a sinh(β/2)}|y|

2

2

)
.

Notice that

cosh(β/2) + 2a sinh(β/2) =
(
1

2
+ a

)
eβ/2 +

(
1

2
− a

)
e−β/2 > 0.

Then, by an elementary change of variables, we obtain the desired identity. 2

We now proceed to the:

PROOF of Proposition 12. Suppose that −1 < ξ ≤ 0, |ξ|e(1−ξ)λ < 1, and
|λ| < 1. Observe that

∞∑
n=0

Pn(ξ)
λn

n!
= e(1−ξ)λ/2

{
1

1− ξ
e−(1−ξ)λ/2 − ξ

1− ξ
e(1−ξ)λ/2

}−1

. (17)

Applying Lemma 13 with a = −1/2 and β = (1− ξ)λ, we have:∫
W

e
√
−1 (1−ξ)λS(1,w)+(1−ξ)λ|w(1)|2/4P (dw) = e(1−ξ)λ/2. (18)

If a = −(1 + ξ)/{2(1 − ξ)} and β = (1 − ξ)λ, then |a| ≤ 1/2 and −aβ < 1.
Applying Lemma 13 again, since (1/2) + a = −ξ/(1 − ξ) and (1/2) − a =
1/(1− ξ), we obtain:

∫
W

e
√
−1 (1−ξ)λS(1,w)+(1+ξ)λ|w(1)|2/4P (dw)

=

{
1

1− ξ
e−(1−ξ)λ/2 − ξ

1− ξ
e(1−ξ)λ/2

}−1

.

Plugging this and (18) into (17), we obtain the desired identity. 2
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Let P (Bn; ξ) be the Eulerian polynomial of type Bn, where we have borrowed
the notation from Cohen [2]. Then it holds ([2,10]):

∞∑
k=0

(2k + 1)nξk =
P (Bn; ξ)

(1− ξ)n+1
.

A similar result as above can be shown for P (Bn; ξ), n = 0, 1, . . . Namely, the
exponential generating function satisfies:

∞∑
n=0

P (Bn; ξ)
λn

n!
=

(1− ξ)e(1−ξ)λ

1− ξe2(1−ξ)λ
for |ξ|e2(1−ξ)λ < 1.

It follows from this expression that

P (Bn;−1) = 2nEn,

where the Euler number En is the n-th derivative of 1/ coshx at x = 0 ([10]).
Suppose that −1 < ξ ≤ 0, |ξ|e2(1−ξ)λ < 1, and |λ| < 1. Applying Lemma 13
with a = −(1 + ξ)/{2(1− ξ)} and β = 2(1− ξ)λ, we obtain:

∞∑
n=0

P (Bn; ξ)
λn

n!
=
∫
W

e2
√
−1 (1−ξ)λS(1,w)+(1+ξ)λ|w(1)|2/2P (dw),

and

P (Bn; ξ) =
∫
W

{
2
√
−1 (1− ξ)S(1, w) +

(1 + ξ)|w(1)|2

2

}n

P (dw).
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[16] K. Itô, Differential equations determining a Markov process (in Japanese), Jour.
Pan-Japan Math. Coll. 244 (1942), 1352–1400 (English translation: [21] pp. 42–
75).
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