ID-Federation in Japan for trustfull inter-domain ubiquitous services

Ito, Eisuke
Research Institute For Information Technology, Kyushu University : Associate Professor : Information Science

http://hdl.handle.net/2324/15948
ID Federation in Japan for trustful inter/intra-institutional ubiquitous services

Eisuke ITO
Research Institute for Information Technology,
Kyushu University
itou@cc.kyushu-u.ac.jp
Outline

1. Introduction
2. Solutions for user authN problems
3. ID-federation
4. UPKI in Japan
5. IdM in Kyushu University
6. Conclusion
1. Introduction

- Recently, a variety of information services are being provided.
- Various aspects
 - Layer: Network, Transport, Application or Web
 - Content-type: text, document, picture, voice, movie, ...
 - Target user: young or senior, male or female, biz or entertainment, ...
 - Open or Closed
 - Members only
 - Many institutional services are closed.
User authN in closed service

• Closed services need user authN to identify a user
 – To provide personalized service
 – To be secure (keep secret, privacy)
 – To consider compliance

• The more closed service are provided, the more ID/passwd are issued.
 – For end-uses, authN becomes complicated.
 – For administrators, user account management becomes complicated.

• SSO (Single Sign On) is requested, especially web applications
Inter-Domain Services

• Research and development of inter-domain service
 – Mash-up or Web-service
 • Development of new service with composition of multiple web services.
 – Grid computing
 – Wireless LAN roaming
 – Mutual exchange of e-Learning contents
 • (Unit exchange program among universities)
Objectives

Realize authN platform for trustful inter/intra-institutional (domain) services

- For inter-institutional services,
 - ID Federation between institutions (domains)
 - UPKI in Japan

- For intra-institutional services,
 - Identity Integration for all members
 - Deploy a campus-wide authentication infrastructure
1. Introduction
2. Solutions for user authN problems
3. ID-federation
4. UPKI in Japan
5. IdM in Kyushu University
6. Conclusion
2. Solutions for user authN problems

• **SSO (Single Sign On)**
 – Once a user authenticate, then gain access to the resources of multiple service systems.

• **Divide SP and IdP**
 – SP: Service Provider
 – IdP: Identity Provider

• **AuthN/AuthZ data exchange**
 – SAML: Security Assertion Markup Language

• **Identity Integration**
 – Set a centralized user DB in an institution/organization,
 – Any service lookup the DB.

• **ID Federation**
 – Make alliance between institutions
 – Mutually exchange user authN/authZ information
Divide SP and IdP

Identity Provider (User Identity DB)

Service Provider

AuthN/AuthZ data exchange

Single Sign On

Proxy type Web SSO

Agent type SSO
Identity Integration

• Intra-Institutional services
 – Set a centralized user DB in an institution/organization, any service lookup the DB.

• Purpose
 – Reduce administration cost
 – The president can control all systems
Outline

1. Introduction
2. Solutions for user authN problems
3. ID-federation
4. UPKI in Japan
5. IdM in Kyushu University
6. Conclusion
3. ID-Federation

- Federated organizations mutually exchange user identity data
- Ex.
 - Institute A and B are federated.
 - User of institute A accesses to an SP of B
 - The User sends the same credential to the SP for user AuthN.
Federation systems

• Web based services systems
 – Google Apps Education Edition
• Eduroam
• Shibboleth
• OpenID
Google Apps Education Edition

- Google Apps for educational organization
- Free service
- Enable ID Federation

Example 1

Microsoft Windows Live@edu
Yahoo! Mail Academic Edition may have the same architecture.
• Inter-institutional wireless roaming environment based on 802.1X and RADIUS
• Developed and deployed by TERENA
 – Mainly Europe, and Oceania. Asia was joined recently.
Shibboleth

- Shibboleth
 - An Internet2 subproject
 - The name of middleware for Web SSO

- WAYF server must know IdPs
 - IdPs and the WAYF are tightly connected

- WAYF server becomes bottleneck.
OpenID

- A decentralized SSO system
- User’s identifier is represented as URI format
 - Easy to resolve where the IdP is.
 - Maintenance free
 - Easy to keep uniqueness without centralized control
- Problem
 - How to trust the IdP?

Example4
Federation structure

1 to 1
IdP SP

Network

Broker or Bridge

Tree

Hybrid
AuthN/AuthZ data exchange

- On-demand exchange user authN/authZ data
 - Web apps, Shibboleth, eduroam, OpenID

- PKI style
 - Trust the same CA
 - Trust each other
 - No communication between entities

Easy to implement but NOT scalable

Broker is the bottle neck.

How to trust other institute CA/RA? CRL distribution is difficult.
Outline

1. Introduction
2. Solutions for user authN problems
3. ID-federation
4. UPKI in Japan
5. IdM in Kyushu University
6. Conclusion
4. UPKI in Japan

- CSI (Cyber Science Infrastructure) Project
 - Since 2005,
 - NII (National Institute for Informatics) of Japan

- Purpose:
 - A nation-wide platform for inter-institutional services

- Four subprojects
 - Grid computing
 - Advanced high speed broadband network
 - Institutional repository for library
 - UPKI
UPKI

• UPKI
 – U: University/Universal/Ubiquitous
 – Nation-wide electronic certification platform.
 – The inter-institutional exchange of user authN
 – Construct mutual trust among institutions.

• Results
 – Publish template of CP/CPS for CA in University
 – Server certificate distribution
 – eduroam.jp
• eduroam experiment in JP
 – Part of UPKI project
 – 6 institutions are participated
 – Tohoku University is leading
 • Running JP Top RADIUS Server

Participated Institution (2007/9/13)

<table>
<thead>
<tr>
<th>Institution</th>
<th>AuthN Used</th>
<th>Access Granted</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Institute of Informatics</td>
<td>802.1x</td>
<td>eduroam standard</td>
</tr>
<tr>
<td>Hokkaido Univ.</td>
<td>802.1x</td>
<td>?</td>
</tr>
<tr>
<td>Tohoku Univ.</td>
<td>802.1x, TKIP, PEAP</td>
<td>VPN</td>
</tr>
<tr>
<td>High Energy Accelerator Research Organization (KEK)</td>
<td>802.1x</td>
<td>?</td>
</tr>
<tr>
<td>Kyoto Univ.</td>
<td>802.1x</td>
<td>eduroam standard</td>
</tr>
<tr>
<td>Kyushu Univ.</td>
<td>802.1x</td>
<td>VPN(planned)</td>
</tr>
</tbody>
</table>

eduroam standard includes:
IPSec VPN, PPTP VPN, SSH, HTTP, HTTPS, IMAP2/3/S, POP/POP3, Passive FTP, SMTP/SMTPS, RDP
Outline

1. Introduction
2. Solutions for user authN problems
3. ID-federation
4. UPKI in Japan
5. IdM in Kyushu University
6. Conclusion
5. IdM in Kyushu Univ.

• Since 2005

• Construct IdM (Identity Management) System
 – Integrate user ID/PW, user Identity
 – Centralized user authentication platform

• Connect between applications and the IdM

• Identity Management Division
IdMS System Overview

Personnel DBs

- Staff DB
- Student DB
- Other DB

Member DB (MS SQL Server)

Extracted Data (CSV format)

Import

Meta Directory (Active Directory)

Meta Directory LDAP (Sun Java Directory)

Sync

Fire Wall

Group ware

Wireless LAN

SSL-VPN

Sync

Refer

Password Changer

Sync

Refer

Refer

Web Appli.

Web Appli.

Univ. Portal

Single Sign On

Issue ID card (or IC card)

Educational Computer System

Windows PC Logon

802.1x

AuthN

AuthN

AuthN

AuthN

AuthN
Work flow to update member data

Data extraction from Personnel DB
- Staff DB
- Student DB

Central Personnel DBs

Each schools
- Other DB

Data Integration and Member DB
- Data cleansing, Store to DB
- Member DB

Issue of ID card

User Support
- Help desk
- Password change
- ID card reprint

AuthN platform
- LDAP Server
- Active Directory
- SSO server

Stiffs

Students

Others

Request & response

WebCT
For Campus Network & Roaming (under development)

eduroam
Federated site

Kyushu University
Campus wide authN infra.

RADIUS
FW
Internet
FW
RADIUS
switch

Upper level eduroam server (eduroam.jp)

User DB (LDAP)
IdMS

KITE
Kyushu Univ. Campus Network

eduroam
kitenet

switch

802.1x User AuthN
ID・Password
ID・X509

802.1x User AuthN
ID・Password
ID・X509
Outline

1. Introduction
2. Solutions for user authN problems
3. ID-federation
4. UPKI in Japan
5. IdM in Kyushu University
6. Conclusion
6. Conclusion

- For trustful inter/intra-institutional ubiquitous services,
 - Not only service cooperation
 - User AuthN/AuthZ cooperation is necessary.
- ID Federation
 - Introduced four systems
 - Discuss about ID federation styles and problems
- CSI and UPKI project in Japan
- IdM in Kyushu University

- In the future,
 - PKI based nationwide ID-federation (for inter-institutional services)
 - E-Tokens (such as IC card)
 - Authorization mechanism