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1 Introduction

The problem to approximate a probability distribution function (p.d.f) is still a basic and cru-
cial task in various fields, such as, engineering, economics and finance as well as statistics
[11[2][3][41(51[91[10][13][14][17][19]. Especially for the probability analysis corresponding to
rare events, it is necessary to focus on the tail behavior of the distribution function, and some-
times we are puzzled by so-called fat-tailed distributions [1][5][3][9][12]. Fat-tailed behavior
leads to overestimation or underestimation of rare events, and serious accidents, such as, large
packet losses in network traffic, and large asset losses in financial markets. So, an accurate
approximation method for p.d.f is necessitated.

This paper deals with an approximation method based upon mixture distribution, which is
optimized by Genetic Algorithm (GA) and its application to tail distribution analysis by using
the IS (Importance Sampling) [14][15][16][17]. For an approximate of p.d.f, due to good sta-
tistical properties and tractabilities, conventional distributions, such as normal, lognormal, and
non-Gaussian stable distribution and their extensions are well used in theoretical research and
numerical approaches. However, as shown from many empirical results, assumptions for these
distributions are inconsistent with the phenomena, since many distributions are observed with
excess kurtoses, fat tails, skewnesses, and finite moments [5].

In conventional works, we find several successful applications using probability distribution
function to approximate p.d.f, which are optimized by the GA [2][4][19][13][17]. One of them
is to optimize two typical distributions (Gamma and log-normal distributions) by the GA, as to
get the approximations of p.d.fs for natural water flow under different situations. But, in this
case, the complexity of the distribution is limited, and mixture distribution is not considered by
the authors [2]. One of them is to predict the error distribution or to generate random numbers,
the combination of multiple p.d.fs is utilized and the weights are optimized by the GA [4][19].
But, the mixture distribution is oriented only for the error estimation and random number gen-
eration, so the radical p.d.fs are limited. It is also reported in the pattern recognition that the
GA method for searching the optimal parameters based on the nonparametric estimation in mix-
ture distribution is better than the conventional method, such as Expectation Maximization (EM)
[13]. '
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Thus as to generate relevant functional form, we propose to approximate a distribution by
a mixed distribution function optimized by the GA[14][15][16][17][18]. Here, mixture distri-
bution is referred to a weighed sum of a set of radical distributions, and whose distributional
parameters of the radical distributions and combinational weights are optimized by the GA.
Then, as to examine the capability of our proposed method, estimation problem of returns distri-
bution of stock prices is applied and discussed later in this paper. The results are compared with
the results obtained by conventional methods, such as normal distributions. Moreover, tail dis-
tribution (probability of rare event) which is an important task in asset management is evaluated
based on the method of mixture distributions, and its efficiency and accuracy can be improved
by using the IS method [6][7][16][18]. As a result, we find that our proposed approximation
method provides an accurate approximate for p.d.f and its application in the risk analysis in
asset allocation.

The rest of this paper is orgnized as follows. Section 2 shows the basic idea for approxi-
mating p.d.f by using several radical distributions, whose parameters are optimized by the GA.
Section 3 gives the overview of IS method for improving the efficiency and accuracy of estima-
tion of tail distribution. Section 4 shows some applications and their numerical results with real
market data sets.

2 Approximation of p.d.f using GA

2.1 Why mixture distributions

At first, we concisely summarize the limitations of the conventional distributions, normal, log-
normal, and non-Gaussian stable. Normal distribution has a tractable property, but it is claimed
that there no low bound -1 exists in normal distribution. Furthermore, it is not supported by
many empirical results since normals can not catch excess kurtosis, fat tails. The lognormal
distribution has the same limitation, though, it solves the low bound problem. Another kind
of p.d.f like non-Gaussian stable distribution allows the sum of probabilistic variables still be
a stable distribution. And it can catch excess kurtosis and fat-tailed behavior in many cases.
But, the problem is that non-Gaussian stable distribution has infinite moments. The estimates
of variance and kurtosis tend to be larger and larger and not to converge even though the sam-
ple size increases. It doesn’t match the reality of practice when finite moments are observed.
Furthermore, it is complicated when applied to risk measurement and risk management.

There are many variates of these conventional p.d.fs and their combinations, but the main
problem is how to optimize the parameters included in the p.d.f approximation [5]. Therefore, it
is necessary to consider more general optimal approaches for the functional approximation.

Several approaches are usually utilized to optimize parameters included in the evaluation
function, such as, the Steepest Descent Algorithm for monotonic functions, Back Propagation
Algorithm for finding weights in neural networks. However, the GA is considered to be one of
the most powerful and robust tools for optimizing the evaluation function, even in the case of
nonlinear evaluation functions, or multi-peak functions [8][14][15][17]. Thus, the GA is chosen
here to optimize the approximation function.

We must at first explain the following items before we show the applications, namely, the
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types of radical (basic) functions, the string in the GA individuals, and the approximation eval-
uation.

(1) mixture distribution of radical distributions

We propose to approximate p.d.f as a weighed sum of radical distributions (mixture distribu-
tion). Especially we choose several different families of p.d.fs as the radical functions, such as,
normal distributions with different means and variances, and Student ts with different degrees of
freedom. Thus, a p.d.f can be represented using the variable r(x) as

) ~ Y i) (1)
i=1

where the constraint is
D=1 2)

where ¢; is a radical distribution, a chosen member from a p.d.f family.

It is expected that mixture distribution can represent the characteristics of excess kurtosis
and fat tails much better than the conventional normal distribution, and it also has several good
statistical properties, such as finite moments when the chosen radical ones have finite moments.

(2) GA string

As mentioned from previous discussion, the variables necessary for the approximation of a
p.d.f are the parameters included in each radical function and the weights in mixture distribution.
These variables are embedded in the string of individuals in the GA.

For simplicity, we denote the parameters of the radical functions as @1, ¢», ...,¢x. The
weights among the radical functions are denoted as wy, ws, ..., wx. The individuals are com-
posed of these variables whose lengths are identical.

Moreover, as to obtain approximation at an arbitrarily attainable level, we propose to design
the GA system with individuals as length-enlargable ones. If a problem can not be solved within
a predetermined accuracy using the current lengths of the individuals, the length (bits) of indi-
viduals are automatically to be enlarged, so that it turns to be possible to represent more radical
distributions with an improved accuracy of approximation.

(3) Fitness

We must define the fitness of an individual in the pool used for the GA. It is based that the
functional values of discrete points (denoted as f;) of the variables for p.d.f are available for the
approximation. So, we have a set of estimated (calculated) values fl for approximation which
are obtained form the approximated mixture distribution. Then, we have the root mean square
error ¢;; between f; and f, for the case where we obtain f: by using the j th individual in the
pool. Finally, we define the fitness function for evaluating jth individual as follows.

1 Yie;
(1- )
(n_l) ZjZieij

Fitnessj =

3)
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2.2 Optimizing by the GA

GA is known as one of the efficient optimization methods, which converges hardly in a local
optimal solution while searching for a global optimal one. It has been widely applied in many
problems ranging from scientific studies to social studies [8].

The basics of our GA are described as follows.

Step 1: Generation of initial individuals

At first, we generate individuals by random numbers as the first generation. Each individual
represents a set of parameters of radical functions and combinational weights.
Step 2: Evaluation of fitness

Then, we evaluate each individual by predetermined fitness function, and sort them accord-
ing to the values of their fitness.
Step 3: Genetic operations

We select two individuals with higher fitness values from the present generation at a certain
predetermined probability. The selection strategy has a large of variations, one of well-used
strategies is roulette strategy. And then to apply genetic operations (crossover, mutation oper-
ation) to them to reproduce new individuals (offsprings) as the next generation. A crossover
operation is referred to randomly decide crossover positions on the two selected individuals,
then to exchange parts of two individuals each other. A mutation operation is referred to ran-
domly decide mutation positions under a certain probability, and change those position values
of an individual.

Step 4: Termination

If the results meet the Termination Conditions (i.e., repeating times, or error range), then GA
terminates, otherwise it goes back to Step 3.

We show an example of p.d.f approximation by using the GA. We assume the p.d.f is known
and is given as a mixture function y(x) = 0.49xN(-2,1)+0.21xN(2, 1)+ 0.3*Studentt(d. f = 3).
Seen from Fig.1, the p.d.f is characterized by the shape having two tops with fat tails, and it is
difficult to be approximated by a combination of ordinary normal distributions. But, we have
the final result of approximation with running of 2000 generations in GA, the estimated form
is y(x) = 0.50 = N(-1.99,1.01) + 0.21 = N(1.98,1.07) + 0.298 = Studentt(d.f = 3.18) and the
root mean square error of the approximation is 0.00049349. The result shows an example of its
acurrate approximation for p.d.f.

2.3 Analysis of tail distribution

In the previous sections, we simply propose an approximation method for the p.d.f based on
mixture distribution which is optimized by the GA. We find there is another meaningful task in
the analysis of tail distribution when we get the explicit expression of the mixture distribution.
For example, in the network traffic, link delay depends on the extreme values of delay distri-
butions rather than the whole functional forms, which affects direct the packet losses in networks
[3][9]. Similarly, almost all financial institutions are suggested by the authorities to evaluate the
risk of asset losses in the next period, such as one week [10][12][6][7]. The quantile a of the loss
expectation is defined as the Value at Risk (VaR), and usually the value of a is set to between 1%
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Figure 1: Mixture distribution constructed with two normals and a Student t

to 5%. Here, we use the approximate of mixture distribution as the real p.d.f for the evaluation
of tail distribution [8][14][15][17].

3 Improved tail estimation by IS

3.1 Basics of IS

For evaluation of tail distribution of an approximated p.d.f, there exists several methods, such as
the direct integration of each radical distributional functions composing the p.d.f, and the Monte
Carlo simulation as an alternative. In this paper, we use the Monte Carlo method but make some
extension by using the IS to improve the estimation results [8][9][11][16][18].

The IS method exploits tail distribution effectively using the transformation of the distribu-
tion function, so that the extreme shape (called tail) of the distribution can be figured out more
accurately. The IS method is widely adopted to estimate parameters in systems such as the delay
distribution in networks as well as the fractal time series and surfaces [11][18]. It is confirmed
by many simulation studies, that the IS method remarkably improves the efficiency of estimation
of tail distribution compared to conventional Monte Carlo simulation.

For a given probability p, the tail distribution x,, is defined to be the (1 — p)th quantile of the
distribution.

P(x > xp) = p @

For simplicity, we assume that the probability P(x) is the distribution of loss in asset allocation
during a certain time period, and x,, is a large number in case of estimating P(x > Xp).

The computational cost required to obtain accurate Monte Carlo estimates of tail distribution
is often enormous, since a large number of runs ( asset loss evaluations, for example) are required
to obtain accurate estimates of the loss from the distribution in the region of interest. Thus we
apply the IS by changing the measure for sampling probability(the change of loss distribution).
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The IS is an appropriate technique for rare event simulations. The standard simulation is
inaccurate for estimating P(x > x,), while for large x, there few samples are obtained in the
region of interest, where x =~ x,. Effective IS generates a disproportionally large number of
samples in the region of interest. For the IS, we have P(x > x,) = E[I(z > x,)l(z) where E(.)
means the expectation under the IS distribution, and /(z) is the likelihood ratio with new random
variable z.

3.2 Selecting Importance function

Under asset loss estimation, we denote
p=Pez )= [ S (5)
Xp

where the function f(x) is the p.d.f of asset loss x in a certain period. Then, we introduce a
distribution function to generate twisted random variable z as follows.

4@
fU

where the function f/(x) is the probability density function (called Importance Function) for the
twisted variable z having higher probability in the region close to x, and greater than x,,.

Then, we define the Importance Function f*(x) which is used as an alternative density func-
tion or a biasing density function. Biasing by exponential twisting is most easily explained by
means of derivation of statistical upper bounds on tail probability, and is widely used various
areas such as information theory.

The basics of the exponential twisting is summarized as follows.

(1) function f*(x)
The function f*(x) is defined as

(6)

P: =

() = ™) f(x) (7)

where the function u(s) = log M(s) is obtained from the moment generating function M(s) =

Ef{exp(sX)} of f(x).
(2) optimal value of s
If the functional form of f(x) is given, then the optimal value of s is determined so that the

two quantities are to be minimized.
K@:j‘JWW@ﬂmm (8)
t

I(s) = o~ 2(st=p(s)) 9)

If we choose the function f(x) an exponential density function f(x) = ae®*, then we have
optimal value of s as s,

Si=a—— (10)
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For example, if we choose as @ = 1 and p; = 107, then we have ¢ = 13.81551.
(3) approximation of function

We assume that the p.d.f is approximated by a function g(x) for the variable x based on the
mixture distribution. Then, we can get the probability by substituting the value of x into the
function g(x).
(4) giving the gain of IS

We also denote the gain of IS as follows.

= pi(1 = ps)
E*{12(X 2 HA(X)} - p?

It means the ratio of the sample sizes of standard Monte Carlo method and importance sampling
method under the circumstance with the same estimator variances.

We can recognize the ability of the IS by a simple example. For a given exponential distri-
bution f(x) with a = 3, we generate M = 500000 samples along the distribution. Then, we cal-
culate the probability of rare event p; = P(x > x,) = 107°. We have the estimation for expected
value of p; (E{p/}) and its variances (V{p,}) as (E{p;} = 0.90001E7%, V{p,} = 1.46316E712,
On the other hand, we obtain estimation result by using the IS (E{p,} = 1.00180E7%, V'{p,} =
9.92378E~17) with the sample size M = 100000. At the same time, we have the value 7 for the
example as 7 = 54075.94. The fact shows the ability of IS to increase the estimation result.

(1D

4 Applications

4.1 Stock returns

In this section, we present some numerical applications for the approximation of p.d.f. we
estimate the mixture distributions for the stock prices in real markets, where one p.d.f is almost
symmetric, and the other is asymmetric. Fig.2 shows the time series of these stock prices.

We prepare two data sets, called Data A and Data B from these stock prices. The Data A
is composed of the logarithm of relative returns of daily stock price of Tosho (in Fig.2 (left)),
from April 1, 1983 ~ September 21, 2001. The Data B is composed of the logarithm of relative
returns of daily stock price of IBM (in Fig.2 (right)), from April 1, 1983 ~ September 21, 2001.
The descriptive statistics for the returns of Data A and Data B is summarized in Table 1. The
Skewnesses of A and B are -0.34628 and -7.95617 respectively, A is almost symmetric, B is
asymmetric. And the kurtoses of A and B are 12.66296, 128.1785 respectively, excess kurtoses
are observed here.

The conditions of the GA procedure are given as follows.

Number of individuals:100
Crossover probability:0.27
Mutation probability:0.15
The ranges of parameters included in the radical functions are given as. o; € (0 in, O max) a8

(0.1, 50) and 1; € (Umins max) as (-5, 5).
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Figure 2: Prices for Data A and B

Statistics of returns for Data A and Data B
Data A Data B
Mean 4.693E-05 | -6.4E-04
Median 7.107E-05 | 6.06E-04
S.D 0.0050128 | 0.031477
Kurtosis 12.662960 | 128.1785
Skewness | -0.346276 | -7.95617
Range 0.1082526 | 0.739272
Min -0.068663 | -0.60809
Max 0.0395896 | 0.131184
Sum 0.2264266 | -6.91786
Size 4825 10800

T
4000 5000

The first mixture distribution is estimated by GA as a weighed sum of three normal distri-
butions. The estimated parameters are listed in Table 2. Namely, ; ~ ﬁ,-Z?:lN(ﬂ,-, O'f). And the
estimated error is 0.00011793, which is the sum of the approximation error }; ¢;; obtained by
the individual of the highest fitness at the final generation of the GA.

Table 2. Estimation results for Data A

N(u1,07) N(u2,0) N(u3,03)
Bi | 0.916708410 | 0.072212338 | 0.010278450
;i | 0.002639055 | -0.30707550 | -0.21727777
o; | 1.090306759 | 2.594726324 | 3.292275429

The second mixture distribution is estimated by GA as a weighed sum of three normal
distributions plus a Student t. The estimated parameters are listed in Table 3. Namely, r; ~
ﬁiZleNQJi, a‘f) + #(v). And the estimated error is 1.12762E-05, which is the sum of the approx-
imation error )} ¢;; obtained by the individual of the highest fitness at the final generation of the

GA.
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——yt
—— Mixture

Figure 3: Plots of p.d.fs; solidline: estimated mixture distributions; dashline: standard normal
distributions; points: observations.

Table 3. Estimation results for Data B

N(u1,0%) N(u2,0%) N(u3,03) t(v)
Bi | 0.183533490 | 0.009949307 | 0.024255246 | 0.782261968
u; | 0.224407910 | 0.339988232 | 0.262051344 | 0
o; | 1.000061512 | 4.187711720 | 1.010577679 | 1.090184392
v |- - - 24.17678642

——yt
—— Mixture

Figure 4: Plots of p.d.fs; solidline: estimated mixture distributions; dashline: standard normal
distributions; points: observations.

Fig.3 and fig.4 show the estimated mixture distributions obtained by the GA. In the fig-
ures, the solid-lines mean the estimated mixture distributions, points mean the distributions of
observations. As seen from Fig.3, 4 clearly, mixture distributions are much more closer to ob-
servations than the conventional normal distributions. Mixture distributions are seemed to catch
excess kurtosis and fat tails behavior much better than normal distributions. Additionally, the
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fitness and prediction errors have converged after GAs have been implemented 50 generations.

Fig.5 shows the changes of fitness and error in last generation.

0.25
!

0.20
n

fitness
0.1
s

0.10
N

0.00990  0.00985 0.01000  0.01005  0.01010
L s 1 L L
0.05
[

Figure 5: Plots of fitnesse and errors of last generation

4.2 Tail estimation using IS

T
100

In this section, we examine the estimation of tail distribution (percentile of loss probability)
obtained by the IS method proposed in this paper by comparing with the results obtained solely

from the Monte Carlo method [6][7][8][14][15][16][17].

For simplicity and without loss of generalicity, we assume that the mixture is composed by
two normals (if one has other mixture distribution, usually one can cope with it through the
same approache summarized here). We write the mixture distribution as follows. Here we use

the exponential twist method.

f=p1g1 + g2

where B + B> = 1, and g1, are normal distributions. It yields,
M(s) = B1ei8 1215 4 g, o035 210
Since u(s) = log(M(1)), and let 1/ (s;) = ¢, it yields,

2.2 2.2
Brel 1S S (g + O'%S) + Bpe®2s 12 (1 o*%s)

'Bleafﬂ/zwls +’8280-532/2+,u23

Then
Bre I (1 — 1y — 0%s) + BreTI (1 — g — ) = 0
For simplicity, we just call the left side of equation (7) F(s;). Namely,

22 2.2
F(s;) = B1e”1* /2+;115(t — - O'%S) + Bre’2’ /2+u2s0 — - O‘%S)
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Thus, the problem is how to find a special s, which statisfies F(s;) = 0. That s; is the
optimal parameter in the IS simulation when {u;, o1, 2, 02, t} are given. There are several ways
to realize it. Here we explain how to solve it using the bisection method.

1) firstly, one needs to find two points, say, so and s1, let F(sp) > 0, and F(s;) < 0.

2) secondly, one needs to compute the midpoint between s¢ and sy, say, Spmig, namely, Spig =
So+Si
==,

3) thirdly, let so = $piq when F(s,,;2) > 0 holds, or let s1 = $,,g when F(s:4) < 0 holds.
4) repeat step 2) and 3) till the predeterminded accuracy of the solution is reached.

&0

\‘\Z;M

-0f% -01 -005 o 005 01! 015 o0z EI}? 0.3 035

-20
-40 \

-650 +

Figure 6: Solution between -0.1 and 0.3

On the other hand, the optimal density function f*(x) turns out to be
ff(x) = 51X H(s1) f

- eSzx—/t(Sx)(’Bl

1 _ (x_ﬂl )2 1 _ (X_/-lz)z

> e )
V2o V27ro,

e 1 +pB
(uy+od s - Gy rods)?

2 2
20'1 e 20'1

1
V2r0|

(1 +03s0% 13 1 _ Gluptads)?
20% 202

e 2
\V2rory

It means that optimal density function of the mixture distribution is still a mixture distribu-
tion of normals. The generated random numbers are distributed by f* in the IS simulations.

Here we give an example, where 8 = 0.2, 80 = 0.8, =0, up = =1, 01 = 10, 0 = 5, and
t = 25, corresponding p; = 0.0012420158.

Seen from Fig.6, let so = —0.01, and s; = 0.30, then we have F(=0.01) = 26.46364901 > 0,
and F(0.3) = —56.24529597 < 0, respectively. We use the above-explained bisection method to
search the optimal s;. As shown in Fig. 6, the solution is between -0.1 and 0.3. And finally we
get s, = 0.280214385 while F(s;) = —1.10134E13.

Actually it can be easily extended to a mixture distribution which is constructed by # nor-
mals. Since F(—00) — +00 > 0, and F(+00) — —co < 0, and F(s;) is a continuous function, then

—p(se)+

—p(se)+
+ pae
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the optimal s, that satisfies F(s;) ~ 0 can be obtained after bisection algorithm has been repeated
enough times. Meanwhile, the IS density function /™ still remains as a mixture distribution of n
normals, even though the mixture distribution has » normal components.

Table 3. Estimates of p; and 7

Pt T
0.001247185 | 234.0255
0.001244696 | 234.0904
0.001258913 | 228.5909
0.001233208 | 238.0388
0.001255329 | 232.2330

DN AW N

E(-) | 0.001243067 | 233.2091

The estimated tail probability p, and efficiency 7 are shown in Table 3. Seen from the Table
3, the tail probability has been precisely estimated by the IS method. Besides, it shows that the
IS method is much more efficient than the standard Monte Carlo simulation.

Another example we give here is the case of Data A. We have got its mixture distribution
by the GA already. It is a mixture distribution with three nomal components. We apply the IS
method to it to estimate the tail probability as we explain above. The results are summarized in
Table 4 and Table 5.

Table 4. Estimates of p; and 7

t 2

S; 0.702334
F(s) | -1.11022E71
E(p;) | 0.046062984
E(t) | 4.5043000

Table 5. Estimates of p; and T

t 3

si | 0.80927251
F(s;) | 2.22045E716
E(p;) | 0.012730215
E(r) | 13.81202124

Seen from Table 5 and 6, the optimal parameter s;s in the IS simulation are successfully
found by the bisection method, and the tail probabilities (odds of rare events) have been accu-
rately estimated by the IS method. Besides, the advantage of the IS simulation to the standard
Monte Carlo simulation is confirmed here as well.
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5 Conclusion

In this paper we have shown how to use a mixture distribution to approximate a probability
distribution function based upon the observed data sets. As to optimize the parameters (combi-
national weights and the distributional parameters) in the mixture distribution, we have proposed
to apply Genetic Algorithm to it. Furthermore, as to do the tail distribution analysis, we have
explained how to find the optimal parameter in the Importance Sampling simulation using bisec-
tion algorithm, and have shown that the optimal solution is guaranteed if the mixture distribution
is constructed by several normals. Through the numerical experiements on the real stock market
data sets, it has been confirmed that Genetic Algorithm is powerful tool in serch of the optimal
parameters in the mixture dsitributions, and the efficiency and accuracy have been remarkably
improved by using the Importance Sampling simulation in the tail distribution analysis.

For future works, it is necessary to extend the method to other fields and to include more
complicated radical distribution functions. Further researches will be done by the authors.
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