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1. Introduction

Vortex rings are ubiquitous coherent structures in high-Reynolds-number flows, and
are of fundamental importance in fluid mechanics. Vortex rings are used for producing
thrust and lift by insects, fishes and animals. Vortex rings are capable of transporting
neutrally buoyant materials. Recently they find their utility for creating virtual reality
in the field of entertainment. There is an attempt to use an air cannon, as a means of
olfactory display, to deliver smells encapsulated in a vortex ring to a targeted person.
In a theater, virtual reality contents are created solely by image and sound. Reality is
enhanced if we appeal to tactile display. A mini-theater is planned in which air cannons
are designed to produce vortex rings, in synchronization with the image and the sound,
so that the audience experiences direct impact and freshness. These applications to
entertainment necessitate controlled vortex rings, and raise questions pertaining to an
inverse problem. When does a vortex ring arrive at a specified point? How far does
the ring travel? How large the vortex ring has grown at the moment of impact? This
talk addresses these questions.

In 1858, the field of vortex dynamics started with a single piece of paper written by
Helmholtz. In his seminal paper [1], Helmholtz proved a distinguishing feature of the
vorticity that vortex lines are frozen into the fluid. In the same paper, he studied motion
of vortex rings. By an elaboration from the Euler equations, now being widely known
through Lamb’s textbook [2], Helmholtz had reached an identity for traveling speed of
a thin axisymmetric vortex ring, steadily translating in an inviscid incompressible fluid
of infinite extent. Helmholtz-Lamb’s method is recapitulated in a recent article [3].

By a deep insight into the formation of a columnar vortex along the central line of a
rotating tank filled with water, Kelvin [4] envisioned that a columnar vortex should be
a state of the maximum of the kinetic energy, with respect to perturbations that main-
tain the circulation. An almost century passed before Kelvin’s variational principle was
mathematically formulated and proved. Arnol’d [5] proved that a steady solution of
the Euler equations of an incompressible fluid is an extremal of the total kinetic energy
with respect to the kinematically accessible perturbations. We mean by kinematically
accessible perturbations the perturbation flow field for which the perturbed vorticity is
frozen into the perturbed flow field. The kinematically accessible perturbations may
be alternatively said to be the isovortical perturbations or occasionally the rearrange-
ments. Mathematical proof for steady isolated vortex as the maximum-energy states
uses rearrangement inequalities (see, for example, [6]).

Kelvin’s variational principle can be extended to make allowance for motion by
adding a constraint of constant impulse [7, 8, 9]; a stationary configuration of vorticity
in an inviscid incompressible fluid, in a steadily moving frame, is realizable as an
extremal of energy on an isovortical sheet under the constraint of constant impulse.
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Our main concern lies in the variational principle for motion of vortex rings. Kelvin-
Benjamin’s variational principle is adapted to find the traveling speed of steady vortices
[9, 10]. This variational principle is applied to motion of vortex rings.

Finite-thickness effect of vortex tubes is a common problem in the dynamics of
interacting vortices in two dimensions, and has been intensively studied so far. Com-
pared with the axisymmetric problem, less is known about interaction of (anti-) parallel
vortex tubes. For motion of a curved vertex tube, the correction of curvature origin
appears at first order in a small parameter, the ratio of the core- to the curvature radii,
but, for a planer problem, the finite-size effect of the core makes its appearance at a
high order in the ratio of the core radius to the vortex distance. The last section is
concerned with motion of a counter-rotating vortex pair [18].

2. Kelvin-Benjamin’s variational principle

We assume that the fluid is incompressible, and take the density of fluid to be
ρf = 1. In addition, we assume that the vorticity ω = ∇×u is localized in some finite
region in such a way that the velocity decreases sufficiently rapidly. Define the total
kinetic energy H and the hydrodynamic impulse P , of the fluid filling an unbounded
space, by

H =
1

2


u2dV, P =

1

2


x× ωdV.(1)

We confine ourselves to steady motion, with constant speed U , of a region with
vorticity and assume that the flow is stationary in a frame moving with U . It is
expedient to partition the velocity u as u = ū + U . By the assumption that the
relative velocity ū is steady, it obeys

(2) ∇× (ū× ω) = 0.

Suppose that fluid particles undergo an infinitesimal displacement δξ while preserv-
ing the volume of an arbitrary fluid element:

x → x̃ = x+ δξ(x) ; ∇ · δξ = 0.(3)

We impose the condition that the flux of vorticity through an arbitrary material surface
be unchanged throughout the process of the displacement. Its local representation is
[8]

(4) δω = ∇× (δξ × ω) .

The translation velocity U of a vortex ring is then calculable through the variation

(5) δH −U · δP = 0,

under the constraint that, for any smooth Lagrangian displacement of fluid particles,
the vorticity is frozen into the fluid. Section 2 touches upon this principle, which is
the theme of ref. [9]. Intriguingly, the same principle encompasses motion of a vortex
ring ruled by the cubic nonlinear Schrödinger equation, which serves as a model for
superfluid liquid helium and a Bose-Einstein condensate, at zero temperature [11].

In the sequel, we restrict this theorem to motion of a steadily moving axisymmetric
vortex ring. An isovortical sheet is of infinite dimension. A family of solutions of
the Euler equations includes a few parameters. By imposing certain relations among
these parameters, we can maintain the solutions on a single isovortical sheet, and the
restricted family of the solutions constitutes a finite dimensional set on the sheet.
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3. High-Reynolds-number vortex ring

The inner solution for steady motion of a vortex ring, or quasi-steady motion in
the presence of viscosity, is found by solving the Euler or the Navier–Stokes equations,
subject to the matching condition, in powers of the small parameter ε, the ratio of
the core- to the ring-radii [15]. To work out the inner solution, we introduce the
relative velocity ũ in the meridional plane by u = ũ + (Ṙ, Ż). Here a dot stands
for differentiation with respect to time. Let us non-dimensionalize the inner variables.
We introduce, in the core cross-section, local polar coordinates (r, θ) around the core
center. The radial coordinate is normalized by the core radius εR0(= σ) and the local
velocity (u, v), relative to the moving frame, by the maximum velocity Γ/(εR0). The
normalization parameter for the ring speed (Ṙ(t), Ż(t)), the slow dynamics, should be
Γ/R0. The suitable dimensionless inner variables are thus defined as

(6) r∗ = r/εR0, t∗ = t/
R0

Γ
, ψ∗ =

ψ

ΓR0

, ζ∗ = ζ/
Γ

R2
0ε

2 , ũ∗ = ũ/
Γ

R0ε
, Ż∗ = Ż/

Γ

R0

.

The difference in normalization between the last two of (6) should be kept in mind.
Correspondingly to (6), the kinetic energy H and the hydrodynamic impulse P are
normalized as H∗ = H/Γ2R0, P ∗

z = Pz/ΓR
2
0. Hereinafter we drop the superscript

∗ for
dimensionless variables. Dimensionless form of the radial position R of the core center
is R = 1 + ε2R(2) + O(ε3). We can maintain the first term to be unity by adjusting
disposable parameters, bearing with the origin of coordinates, in the first-order field
[15]. The second-order correction ε2R(2) is tied with the viscous expansion.

A glance at the Euler or the Navier–Stokes equations shows that the dependence,
on θ, of the solution in a power series in ε is

ψ = ψ(0)(r) + εψ
(1)
11 (r) cos θ + ε2


ψ

(2)
0 (r) + ψ

(2)
21 (r) cos 2θ


+O(ε3),(7)

ζ = ζ(0)(r) + εζ
(1)
11 (r) cos θ + ε2


ζ
(2)
0 (r) + ζ

(2)
21 (r) cos 2θ


+O(ε3).(8)

Upon substitution from (7) and (8), we obtain a representation, to O(ε2) in dimen-
sionless form, H = H(0) + ε2H(2) as

(9) H(0) = −2π2

 ∞

0
rζ(0)ψ(0)dr, H(2) = −2π2

 ∞

0
r


1

2
ζ
(1)
11 ψ

(1)
11 + ζ(0)ψ

(2)
0 + ζ

(2)
0 ψ(0)


dr.

The leading-order term H(0) of energy is evaluated with ease as

(10) H0/Γ
2 =

1

2
R0


log


8R0

σ


+ A− 2


,

where H0 = Γ2R0H
(0) and A is given by

(11) A = lim
r→∞


4π2

Γ2

 r

0

rv0(r
)2dr − log

 r

σ


.

The variation of (10) with respect to an isovortical perturbation is manipulated as

(12) δH0 =
Γ2

2


log


8R0

σ


+ A− 1

2


δR0.
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Figure 1. Variation of speed of a viscous vortex ring with time.

The variation of the leading term of impulse P0 = ΓπR2
0 is δP0 = 2πΓR0δR0, and

application of (5) retrieves Fraenkel–Saffman’s formula [12, 14]:

(13) U0 =
Γ

4πR0


log


8R0

σ


+ A− 1

2


.

The third-order correction U2 to the translation speed of the vortex ring requires
evaluation of H(2). For an inviscid vortex ring in steady motion, R2 = R0ε

2R(2) ≡ 0
without loss of generality, and, after some manipulations, we arrive at

(14) U2 =
1

R3
0


d1
2


log


8R0

σ


− 2


− πΓB +

π

2Γ

 ∞

0

r4ζ0v0dr


,

where v0 = Γv(0)/σ, ζ0 = Γζ(0)/σ2 and d1 is the dipole strength, and

(15) B = lim
r→∞


1

Γ2

 r

0

rv0ψ̃
(1)
11 dr

 +
r2

16π2


log

 r

σ


+ A


+

d1
2πΓ

log
 r

σ


.

This is an extension, to O(ε3), of Fraenkel–Saffman’s formula (13).
Even if viscosity is switched on, the higher-order asymptotics U2 is not invalidated

at a large Reynolds number. Taking, as the initial condition, a circular line vortex of
radius R0, the leading-order vorticity ζ0 is given by

(16) ζ0 =
Γ

4πνt
e−r2/4νt,

where ν is the kinematic viscosity and t is the time measured from the instant at which
the core is infinitely thin [12, 16], and the inhomogeneous heat-conduction equation

governing ζ
(2)
0 becomes tractable, with an introduction of similarity variables. we are

eventually led to an extension of Saffman’s formula (13) in the form

(17) U ≈ Γ

4πR0


log


4R0√
νt


− 0.55796576− 3.6715912

νt

R2
0


.

Figure 1 displays the comparison of the asymptotic formula (17) with a direct nu-
merical simulation of the axisymmetric Navier–Stokes equations [13]. The normalized
speed UR0/Γ of the ring is drawn as a function of normalized time νt/R

2
0 for its small

values. The upper thick solid line is our formula (17), and the thick broken line is the
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Figure 2. The Cartesian coordinates system (x, y) fixed in space and
the polar coordinates system (r, θ) centered on (X, Y ) in moving frame.

first-order truncation (13). The dashed lines are the results of the numerical simula-
tions, attached with the circulation Reynolds number Γ/ν, ranging from 0.01 to 200.
Augmented only with a single correction term, (14) appears to furnish a close upper
bound on the translation speed. The lowermost solid line is the low-Reynolds-number
limit obtained in a different manner [17]. Notably, the large-Reynolds-number asymp-
totic formula (17) compares fairly well with the numerical result of even moderate and
small Reynolds numbers.

4. High-Reynolds-number motion of a vortex pair

The rest of this paper is concerned with motion of a counter-rotating vortex pair
at very low Reynolds numbers [18].

4.1. Inner and outer expansions. Consider a counter-rotating vortex pair with cir-
culations ±Γ moving in an inviscid fluid or a viscous fluid with the kinematic viscosity
ν. The core radius σ of the two vortices is assumed to be much smaller than the dis-
tance 2d between the centroids of the two vortices. The outer solution is provided by
the Biot–Savart law, though the distribution of vorticity remains to be calculated. The
latter is found by the solution to the inner problem. The behavior of the Biot–Savart
law valid near one of the vortex provides the matching condition on the inner solution.

4.2. Inner solution and traveling speed of a vortex pair. The inner solution
is obtained by integrating the Navier–Stokes equation. We introduce the Cartesian
coordinates (x, y), fixed in space, with the x axis parallel to the direction of the line
connecting the centroids. At the same time, we introduce local polar coordinates (r, θ),
centered at the centroid (X, Y ) of one of the vortices, moving with it. The angle is
measured from the direction parallel to the x-axis, and therefore the laboratory and the
moving frames are viewed with each other through x = X + r cos θ and y = Y + r sin θ
(figure 2). The radial coordinate r is non-dimensionalized by εd where ε = σ/d =


ν/Γ

is a small parameter. The solution for the streamfunction ψ is sought in a power series
in ε as

(18) ψ = ψ(0) + εψ(1) + ε2ψ(2) + ε3ψ(3) + ε4ψ(4) + ε5ψ(5) + . . . .

The Navier–Stokes equation dictates that ψ(2) = ψ
(2)
21 (r, t) cos 2θ and ψ(3) = ψ

(3)
31 (r, t) cos 3θ.

The matching condition at O(ε5) yields the correction, of O(ε4), to the traveling speed
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Ẏ ,

(19) Ẏ (4) =
π

2

 ∞

0

∂a

∂r
ψ

(2)
21 ψ

(3)
31 rdr−

q2
4
, where a = − 1

v(0)
∂ζ(0)

∂r
; ζ(0) =

1

r

∂

∂r

�
rv(0)


.

Here v(0) and ζ(0) are respectively the local azimuthal velocity and the axial vorticity
at O(ε0), the leading order, and q2 is the strength of quadrupole of O(ε

2).
Moreover, we notice that two terms in Ẏ (4) gives the same contribution, and as a

consequence, Ẏ (4) = −q2/2. The eventual formula for the translation speed of a vortex
pair includes the strength of the second-order quadrupole field only and is expressed,
in terms of the dimensional variables,

(20) Ẏ ≈ − Γ

4πd


1 +

2π

Γd2
q


; q = ε2q2; ψright = − Γ

2π
log r + q

cos 2θ

r2
+ · · · .
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