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MULTI-CLASS DISCRIMINANT FUNCTION
BASED ON CANONICAL CORRELATION IN

HIGH DIMENSION LOW SAMPLE SIZE

By

Mitsuru Tamatani
∗, Kanta Naito† and Inge Koch‡

Abstract

In multi-class discriminant analysis for High Dimension Low Sample Size set-
tings it is not possible to define Fisher’s discriminant function, since the sample
covariance matrix is singular. For the special case of two-class problems, the naive
Bayes rule has been studied, and combined with feature selection, this approach
yields good practical results. We show how to extend the naive Bayes rule based
on the naive canonical correlation matrix to a general setting for K ≥ 2 classes,
and we propose variable ranking and feature selection methods which integrate in-
formation from all K − 1 eigenvectors. Provided the dimension does not grow too
fast, we show that the K − 1 sample eigenvectors are consistent estimators of the
corresponding population parameters as both the dimension and sample size grow,
and we give upper bounds for the misclassification rate. For real and simulated
data we illustrate the performance of the new method which results in lower errors
and typically smaller numbers of selected variables than existing methods.

Key Words and Phrases: High Dimension Low Sample Size, Canonical Correlations, Consis-

tency, Naive Bayes rule, Misclassification, Multi-class Linear Discriminant Analysis.

1. Introduction

Fisher’s well-known linear discriminant function forK-class problems is the solution
to his paradigm: maximize the between-class variance while minimising the within-class
variances. See Fisher (1936), and Rao (1948) for the general multi-class setting. Fisher’s
rule applies in the classical domain where the sample size n is much larger than the
dimension, and the within-class covariance matrix is invertible, but breaks down for
high dimension low sample size (HDLSS) problems, since the sample covariance matrix
becomes singular when the dimension d exceeds the sample size n.

Several discriminant rules have been proposed for the HDLSS context which over-
come the problem of the singular covariance matrix in different ways: Dudoit et al. (2002)
proposed diagonal linear discriminant analysis (DLDA) which only uses the diagonal ele-
ments of the sample covariance matrix, Srivastava and Kubokawa (2007) proposed a dis-
criminant function based on the Moore-Penrose inverse, and Aoshima and Yata (2011)
considered a discriminant rule based on second moments in conjunction with geometric
representations of high-dimensional data.

∗ Graduate school of science and engineering, Shimane University, Japan.
† Graduate school of science and engineering, Shimane University, Japan.
‡ School of Mathematical Sciences, The University of Adelaide, Australia.
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In this paper we focus on the ‘diagonal’ approach of Dudoit et al. (2002), which has
special appeal since it is conceptually simpler than the competitors, admits a theoretical
and asymptotic foundation, and can be implemented efficiently for large and complex
data sets. We refer to Fisher’s rule based on the diagonal of the covariance matrix as
the naive Bayes rule.

For two-class problems in a HDLSS setting, Bickel and Levina (2004) and Fan and
Fan (2008) investigated the asymptotic behavior of the naive Bayes rule, and calcu-
lated bounds for its misclassification rate. Tamatani, Koch and Naito (2012) defined
the naive canonical correlation matrix, a modification of the canonical correlation ma-
trix that is suitable for classification problems, and studied the asymptotic behavior of
the eigenvector and the discriminant direction of the naive canonical correlation matrix
in the context of two-class problems.

The purpose of this paper is to generalise works by Fan and Fan (2008) and
Tamatani, Koch and Naito (2012) in two-class setting to multi-class. We propose a
naive Bayes rule in a general multi-class setting and investigate its asymptotic proper-
ties for high-dimensional data when both the dimension d and the sample size n grow.
Throughout this paper we focus on HDLSS data from K classes, that is, we assume that
the dimension d of the data is much bigger than the sample size n. In this framework,
we consider the problem of classifying d-dimensional random vectors X into one of K
classes. Our discriminant approach is based on canonical correlations, and in particular
on a modification of the canonical correlation matrix suitable for vector-valued class
labels from K classes. In this framework we replace the covariance matrix by its di-
agonal counterpart as discussed in Dudoit et al. (2002), Bickel and Levina (2004) and
Fan and Fan (2008). We call such a matrix a naive canonical correlation matrix, and
observe that this matrix plays an important role in the present theory. The K − 1
eigenvectors belonging to K − 1 non-zero eigenvalues of the estimated naive canonical
correlation matrix yield discriminant directions which inform our choice of a discrimi-
nant function for K classes. For this setting we study the asymptotic behavior of the
eigenvectors and associate discriminant directions. Related research on eigenvalues and
eigenvectors for high-dimensional data includes Johnstone (2001), Ahn et al. (2007),
Jung and Marron (2009), Fujikoshi et al. (2010) and Tamatani, Koch and Naito (2012).

For HDLSS data from K multivariate normal classes, we derive an upper bound
for the misclassification rate of the proposed multi-class discriminant function. Our
asymptotic results for the misclassification rate split into two disjoint types depending on
the precise growth rates of d and n. Depending on the two distinct growth rates, we also
develop HDLSS asymptotic results for estimators of the eigenvectors and discriminant
directions.

In high-dimensional settings, it is necessary to select a subset of relevant features (or
variables) for discrimination. There are several discussions on feature selection methods
for multi-class discriminant analysis, see Saeys et al. (2007). It appears that many of
these proposals are variable selection methods which are not specific for or connected
with a particular discriminant function. We believe that in discriminant analysis, a
comprehensive feature selection method should include the discriminant function in the
variable ranking and in the choice of the number of selected features, and we propose
new feature selection methods specifically for our multi-class discriminant function.

This paper is organized as follows. In Section 2 we review a relationship between
Fisher’s rule and canonical correlations for K classes. To avoid the singularity of the
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sample covariance matrix in a HDLSS setting, we derive a multi-class version of the
naive Bayes rule. Section 3 details the asymptotic behavior of the eigenvectors of the
estimated naive canonical correlation matrix and the associated discriminant directions
in a HDLSS setting under general distributional assumptions. We derive an upper
bound for the asymptotic misclassification rate of the proposed multi-class discriminant
function under assumptions of normality, and we show that the upper bound for the
asymptotic misclassification rate is indeed a multi-class extension of that obtained in
Fan and Fan (2008) and Tamatani, Koch and Naito (2012). Section 5 includes new fea-
ture selection methods for multi-class discriminant analysis, which naturally follow from
our analysis of the naive canonical correlation matrix. In Section 6, we apply proposed
methods to real and simulated data sets, and compare the performance of our methods
with other ranking methods. These comparisons demonstrate that our feature selection
method works well and yields a parsimonious set of features which lead to good classifi-
cation results. The conclusions are summarized in Section 7, and the Appendix contains
proofs of our theoretical results.

2. Discriminant Function based on Canonical Correlations

In this section we derive direction vectors for discrimination using canonical cor-
relations. For two classes, the relationship between canonical correlation vectors and
Fisher’s rule is well known. Tamatani, Koch and Naito (2012) discussed two-class dis-
criminant analysis in a HDLSS context based on a naive canonical correlation vector.
We extend their theory to the general multi-class HDLSS problem.

2.1. Canonical Correlations

Let Cℓ (ℓ = 1, . . . ,K) be d-dimensional populations with different means µℓ and
common covariance matrix Σ. For a random vector X from one of the K classes, let
πℓ be the probability that X belongs to Cℓ. Let Y be the K-dimensional vector-valued
class label with ℓth entry 1 if X belongs to Cℓ and 0 otherwise, so P (Y = eℓ) = πℓ, and∑K

ℓ=1 πℓ = 1, where eℓ is the vector with ℓth entry 1 and 0 otherwise.
In a canonical correlation analysis of two vectors X and Y , with Y the vector-

valued labels and µ =
∑K

ℓ=1 πℓµℓ, the matrix

C̃ = Σ−1/2E
[
(X − µ)Y T

]{
E[Y Y T ]

}−1/2

plays an important role. From the definition of (X,Y ) it follows that

E[Y Y T ] = Π and E
[
(X − µ)Y T

]
= M0Π, (1)

where Π = diag(π1, . . . πK) and M0 = [µ1 − µ, . . . ,µK − µ]. Using the between-class
covariance matrix M = M0ΠM

T
0 , we have

C̃C̃T = Σ−1/2MΣ−1/2.

If we put b̃ = Σ−1/2p̃, where p̃ is a solution to the eigenvalue problem C̃C̃T p̃ = λ̃p̃ with
λ̃ > 0, then the vector b̃ is the maximizer of the criterion

J̃(b) =
bTMb

bTΣb
(2)
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over vectors b. Note that (2) is nothing other than the criterion which yields Fisher’s

rule for the multi-class setting. In particular, the rank of C̃C̃T is K − 1, so the K − 1
eigenvectors [p̃1 · · · p̃K−1] belonging to K − 1 non-zero eigenvalues should be used for
constructing the discriminant directions

B̃ ≡ [b̃1 · · · b̃K−1] = Σ−1/2[p̃1 · · · p̃K−1].

Using the discriminant directions B̃, we want to define a discriminant function g̃
for classifying new observations X whose class is unknown. For 1 ≤ α ≤ K − 1, put

Zα(X) = b̃
T

αX, and define the vector Z(X) = [Z1(X), . . . , ZK−1(X)]T = B̃TX. For
Z(X) and Cℓ, define Mahalanobis distances ∆ℓ by

∆ℓ(Z(X)) =
√
(Z(X)− νℓ)TΣ

−1
ℓ (Z(X)− νℓ),

where νℓ = E [Z(X)|Y = eℓ] = B̃Tµℓ and Σℓ = V [Z(X)|Y = eℓ] = B̃TΣB̃. Hence
∆2

ℓ(Z(X)) can be rewritten as

∆2
ℓ(Z(X)) = (X − µℓ)

T
B̃(B̃TΣB̃)−1B̃T (X − µℓ) . (3)

Using (3), we now derive the multi-class discriminant function g̃ as the minimizer of the
Mahalanobis distance, and let

g̃(X) = argmin
ℓ∈{1,...,K}

∆2
ℓ(Z(X)).

Note that both B̃ and ∆2
ℓ(Z(X)) depend on Σ.

2.2. Naive Canonical Correlations

In the HDLSS two-class discrimination settings of Fan and Fan (2008), the within-

class sample covariance matrix Σ̂ is singular. For a population framework, it therefore
does not make sense to define a discriminant function based on Σ. To be able to establish
a consistent theory, we first require a suitable framework for the population. We define
the naive canonical correlation matrix C and vectors bα and pα by

C = D−1/2E
[
(X − µ)Y T

]{
E[Y Y T ]

}−1/2

and bα = D−1/2pα,

where D = diagΣ, and pα is eigenvector of the matrix CCT corresponding to the αth
largest eigenvalue λ∗

α. Put P = [p1 · · ·pK−1]. The discriminant directions

B ≡ [b1 · · · bK−1] = [D−1/2p1 · · ·D−1/2pK−1] = D−1/2P

can now be seen to maximise the analogous naive criterion

J(b) =
bTMb

bTDb
. (4)

Note that Σ in (2) has been replaced by the diagonal matrix D in (4). The corresponding
discriminant function g is therefore

g(X) = argmin
ℓ∈{1,...,K}

(X − µℓ)
T
B(BTDB)−1BT (X − µℓ) . (5)
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Note that Σ has been replaced by D both in (2) and (3) to yield (4) and (5) respectively.
It is worth noting that for K = 2, the discriminant function g reduces to the naive

Bayes discriminant function of Bickel and Levina (2004).

3. Asymptotic Behavior of the Eigenvector of the Empirical Naive Canon-
ical Correlation Matrix

In this section we investigate the asymptotic behavior of suitable estimators of P
and B.

3.1. The Empirical Setting

Consider data (Xℓi,Y ℓi) (ℓ = 1, . . . ,K, i = 1, . . . , nℓ), where the independently
distributed Xℓi are from K disjoint classes, and the Y ℓi are independent realizations of
vector labels

Y ℓi = (Yℓi1, . . . , YℓiK)T with Yℓij =

{
1 ℓ-th component,
0 otherwise.

Let X and Y be matrices defined by X = [X11, . . . ,XKnK ] and Y = [Y 11, . . . ,Y KnK ].

Then X is of size d× n, and Y is of size K × n, where n =
∑K

ℓ=1 nℓ.
Next we derive an empirical version of C and its left eigenvectors pα. Define

estimators µ̂ℓ and Σ̂ of µℓ and Σ by

µ̂ℓ =
1

nℓ

nℓ∑
i=1

Xℓi and Σ̂ =
1

K

K∑
ℓ=1

Ŝℓ,

where

Ŝℓ =
1

nℓ − 1

nℓ∑
i=1

(Xℓi − µ̂ℓ)(Xℓi − µ̂ℓ)
T .

Using the centering matrix, an estimator for C is

Ĉ = D̂−1/2

{
1

n

(
X

(
In −

1

n
1n1

T
n

))
Y T

}(
1

n
Y Y T

)−1/2

= D̂−1/2M̂0N
1/2, (6)

where D̂ = diagΣ̂, In is the n × n identity matrix, 1n is the n-dimensional vector of
ones, M̂0 = [µ̂1 − µ̂, . . . , µ̂K − µ̂] and N = diag(n1/n, . . . , nK/n). Hence we obtain the
expression

ĈĈT = D̂−1/2M̂D̂−1/2,

where M̂ = M̂0NM̂T
0 .

Since the rank of ĈĈT is K − 1, we use the K − 1 eigenvectors p̂α of ĈĈT cor-
responding to the K − 1 non-zero eigenvalues in the definition of the discrimination
directions b̂α, and put b̂α = D̂−1/2p̂α (α = 1, ...,K − 1). We note that these b̂α can be
obtained as the maximizers of the function

Ĵ(b) =
bT M̂b

bT D̂b
.
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Put

B̂ = [b̂1 · · · b̂K−1] = [D̂−1/2p̂1 · · · D̂−1/2p̂K−1] ≡ D̂−1/2P̂ , (7)

then ĝ, defined by

ĝ(X) = argmin
ℓ∈{1,...,K}

(X − µ̂i)
T
B̂(B̂T D̂B̂)−1B̂T (X − µ̂i) , (8)

is a natural estimator of g in (5), and this ĝ is our proposed discriminant function in the
HDLSS multi-class setting. To elucidate the asymptotic behavior of ĝ, it is necessary to
develop first asymptotics for B̂ as well as P̂ in a HDLSS setting.

3.2. Asymptotic Behavior of P̂ and B̂

In this section, we evaluate the asymptotic behavior of the eigenvectors p̂α and

discriminant directions b̂α in a HDLSS setting under general assumptions about the
underlying distributions. Throughout this paper, we make the assumption that the
sample size of each of the K classes satisfies c ≤ nℓ/n for some positive constant c and
ℓ = 1, . . . ,K.

In what follows we use the asymptotic notation:

1. an,d = O(bn,d) to mean that an,d/bn,d →M ∈ (0,∞) as n, d→∞.

2. an,d = o(bn,d) to mean that an,d/bn,d → 0 as n, d→∞.

The definition of o is usually included in that of big O, however we distinguish these
cases in this paper.

Definition 3.1. Let x ∈ Rd be a non-stochastic unit vector, and let x̂, a vector
of length one, denote an estimate of x based on the sample of size n . If

x̂Tx
P−→ 1 as n, d→∞,

where
P−→ refers to convergence in probability, then x̂ is HDLSS consistent with x.

In order to evaluate the asymptotic behavior of p̂α, we need the following conditions:

Condition A. Let X = [X11, . . . ,XKnK ] be a data matrix from K classes. Each
column of X can be written as

Xℓi = µℓ + εℓi, (9)

where εℓi (ℓ = 1, . . . ,K; i = 1, . . . , nℓ) are i.i.d. copies of an underlying random vector
ε with mean 0 and covariance matrix Σ.

Condition B. (Cramér’s condition) There exist constants ν1, ν2,M1 and M2 such
that each component of ε = (ε1, . . . , εd)

T satisfies

E[|εj |m] ≤ m!Mm−2
1 ν1/2 and E[|ε2j − σjj |m] ≤ m!Mm−2

2 ν2/2 for all m ∈ N.
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Condition C. Let nℓ →∞(ℓ = 1, ...,K), d→∞, log d = o(n), n = o(d). There exists
a positive sequence Cd depending only on the dimension d such that d/(nCd)→ ξ, where
ξ ≥ 0.

Condition D. All eigenvalues λ∗
α of CTC are simple (so λ∗

1 > · · · > λ∗
K) and satisfy

λ∗
α = O(Cd) and

λ∗
α − λ∗

α+1

Cd
> ξ for α = 1, . . . ,K − 1,

and Cd as in condition C.

Condition E. As d → ∞, µT
ℓ D

−1µℓ = O(Cd), and there exists δ ∈ (0, 1) such that
µT

ℓ D
−1µk = O(Cδ

d) for all k, ℓ ∈ {1, . . . ,K}, and Cd as in condition C.

Condition F. For k, ℓ ∈ {1, . . . ,K}, and k ̸= ℓ,

lim
d→∞

√
πℓ

µT
ℓ D

−1µℓ

Cd
̸= lim

d→∞

√
πk

µT
kD

−1µk

Cd
,

and Cd as in condition C.

We note that the positive sequence Cd will play an important role in the subsequent
discussions since it controls the gap between d and n. To establish the asymptotic
behavior of the estimators p̂α and b̂α, we start with an asymptotic expansion of the

matrix ĈT Ĉ/Cd. In what follows, Θ denotes the parameter space for our multi-class
setting:

Θ =

{
(µ1, . . . ,µK ,Σ)

∣∣∣∣ mink ̸=ℓ(µk − µℓ)
TD−1(µk − µℓ) ≥ Cd,

λmax(R) ≤ b0, min1≤j≤d σjj > 0

}
, (10)

where R is the correlation matrix R = D−1/2ΣD−1/2, λmax(R) is the largest eigenvalue
of R and σjj is jth diagonal entry of Σ.

Lemma 3.2. Suppose that conditions A – E hold. Then for all parameters θ ∈ Θ,
ĈT Ĉ/Cd can be expanded as

ĈT Ĉ

Cd
=

CTC

Cd
+ ξ(IK −Π1/21K1T

KΠ1/2) + 1K1T
KoP (1),

where Π is the diagonal matrix given in (1).

If ξ = 0, which means d = o(nCd) by condition C, then the above expansion
becomes very simple.

To proceed with the theoretical considerations, we need to show that the K − 1
eigenvalues of CTC/Cd + ξ(IK −Π1/21K1T

KΠ1/2) are simple in the case of d = O(nCd),
that is, ξ > 0.

Lemma 3.3. Let λα/Cd be αth largest eigenvalue of CTC/Cd+ξ(IK−Π1/21K1T
KΠ1/2).

Suppose that the λα/Cd satisfy condition D, and that d = O(nCd). Then for all param-
eters θ ∈ Θ,

λα = O(Cd) and
λα

Cd
>

λα+1

Cd
for α = 1, . . . ,K − 1.
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In this paper, eigenvectors have unit length. In addition, we assume that the
first entry of each eigenvector is positive. This assumption avoids any ambiguity about
the direction of the eigenvector. Using Lemmas 3.2 and 3.3, we can now describe the
asymptotic behavior of p̂α as follows.

Theorem 3.4. Suppose that conditions A – D hold. Then, for all parameters θ ∈
Θ,

p̂T
α

Ĉγα

||Ĉγα||
= 1 + oP (1) for α = 1, . . . ,K − 1,

where γα is eigenvector of CTC/Cd+ ξ(IK −Π1/21K1T
KΠ1/2) belonging to the non-zero

eigenvalue λα.

Proofs of Lemmas 3.2, 3.3 and Theorem 3.4 are given in the Appendix. To gain
further insight in the behavior of the p̂α, we define the vectors

pα =
Cγα

||Cγα||
for α = 1, . . . ,K − 1 (11)

by referring to Theorem 3.4. Under the assumption that d = O(nCd), one can show
that the vectors p̂α are consistent estimators for the pα. We have the following theorem
and corollary:

Theorem 3.5. Suppose that conditions A – E hold, and that d = O(nCd). More-
over, assume that λα/Cd → κα and γT

αΠ
1/21K → ηα. Then for all parameters θ ∈ Θ,

P̂TP
P−→

κβδαβ − ξ(δαβ − ηαηβ)
√
κα

√
κβ − ξ(1− η2β)


1≤α,β≤K−1

,

where δαβ is the Kronecker delta-function.

Corollary 3.6. Suppose that conditions A – E hold, and that d = o(nCd). Then
for all parameters θ ∈ Θ,

P̂TP
P−→ IK−1.

Theorem 3.5 and Corollary 3.6 are extension of Theorems 1 and 2 in Tamatani,
Koch and Naito (2012). Corollary 3.6 states that if d = o(nCd) is satisfied, then p̂α

is HDLSS consistent with pα. Furthermore, p̂α is asymptotically orthogonal to pβ for
α ̸= β. On the other hand, if d = O(nCd) is satisfied, then the angle between p̂α and
pβ converges to a particular non-zero angle for all α and β.

Next we turn to the asymptotic behavior of the vectors b̂α. We define normalized
versions of direction vectors for discrimination by

b̂
∗
α =

D̂−1/2p̂α√
p̂T
αD̂

−1p̂α

and b∗α =
D−1/2pα√
pT
αD

−1pα

. (12)

Then we have the following theorem and corollary:
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Theorem 3.7. Suppose that conditions A – E hold, and that d = O(nCd). Put
σmax = max1≤j≤d σjj and σmin = min1≤j≤d σjj. Then for all parameters θ ∈ Θ,

b̂
∗T
α b∗β ≤

b∗Tα b∗β
√
κα − ξ(1− η2α)√

κα − ξ(1− η2α) (1− σmin/σmax)
(1 + oP (1)),

b̂
∗T
α b∗β ≥

b∗Tα b∗β
√
κα − ξ(1− η2α)√

κα − ξ(1− η2α) (1− σmax/σmin)
(1 + oP (1)).

Corollary 3.8. Let B̂∗ = [b̂
∗
1, . . . , b̂

∗
K−1] and B∗ = [b∗1, . . . , b

∗
K−1]. Suppose that

conditions A – E hold, and that d = o(nCd). Then for all parameters θ ∈ Θ,

B̂∗TB∗ −B∗TB∗ P−→ O.

Theorem 3.7 states that the upper and lower bounds of b̂
∗T
α b∗β are determined by the

ratio of σmax and σmin. For example, if all diagonal elements of Σ are equal, then

b̂
∗T
α b∗α − b∗Tα b∗α

√
1− ξ

κα
(1− η2α)

P−→ 0. (13)

If d = o(nCd) is satisfied, then the angle between b̂
∗
α and b∗α converges to 0 in probability,

which shows that the b̂
∗
α are HDLSS consistent with the corresponding b∗α. However, b̂

∗
α

and b∗β may not necessarily be orthogonal for α ̸= β, since

b̂
∗T
α b∗β −

pT
αD

−1pβ√
pT
αD

−1pα

√
pT
βD

−1pβ

= oP (1).

4. Asymptotic Misclassification Rate

In this section, we study the misclassification rate of our method in a multi-class
setting. The misclassification rate for two classes has been investigated in Fan and Fan
(2008) who derived an upper bound for the misclassification rate in a HDLSS setting.
A related discussion can be found in Tamatani, Koch and Naito (2012).

Specifically, for the results in this section we will assume that condition A1 holds.

Condition A1. Let X = [X11, . . . ,XKnK ] be a data matrix from K classes. Each
column of X can be written as

Xℓi = µℓ + εℓi,

where εℓi are independently and identically distributed as N(0,Σ).

In addition to condition A, condition A1 makes statements about the distribution of X.
Suppose that X belongs to class Ck. The misclassification rate of ĝ, an estimate of

the discriminant function g in (5), for class Ck is defined as

Wk(ĝ, θ) = P (ĝ(X) ̸= k |Xℓi, ℓ = 1, . . . ,K, i = 1, . . . , nℓ )

= 1−
∫

D̂k

1√
|2πΣ̂k|

exp

(
−1

2
zT Σ̂−1

k z

)
dz

≡ 1− ΦK−1

(
D̂k;0, Σ̂k

)
,
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where Σ̂k is the transformed covariance matrix of size (K−1)× (K−1) which is defined

in (26) in the Appendix, and D̂k is the (K − 1)-dimensional region given by

D̂k =
{
z ∈ RK−1

∣∣∣zα < d̂kα, α = 1, . . . ,K − 1
}
,

where

d̂kα = I(α < k)d̂kα + I(α ≥ k)d̂k(α+1) and

d̂kα =
(µk − (µ̂k + µ̂α)/2)

T
B̂(B̂T D̂B̂)−1B̂T (µ̂k − µ̂α)√

(µ̂k − µ̂α)
T B̂(B̂T D̂B̂)−1B̂TΣB̂(B̂T D̂B̂)−1B̂T (µ̂k − µ̂α)

.

We note that the region D̂1 results in the interval obtained in Theorem 1 in Fan and
Fan (2008) for their special case of K = 2.

Let Θk be the parameter space associated with the misclassification rate of ĝ for
class Ck:

Θk =

{
(µ1, . . . ,µK ,Σ)

∣∣∣∣ minℓ̸=k(µℓ − µk)
TD−1(µℓ − µk) ≥ Cd,

λmax(R) ≤ b0,min1≤j≤d σjj > 0

}
.

In addition to the region D̂k we also require the following region and quantities in
Theorem 4.1:

Dk,O =
{
z ∈ RK−1 | zα < dkα(1 + oP (1)), α = 1, . . . ,K − 1

}
,

where dkα = I(α < k)dkα + I(α ≥ k)dk(α+1),

dkα =
SkαΓ

[
ΓT
{
CTC + (d/n)(IK −Π1/21K1T

KΠ1/2)
}
Γ
]−1

ΓTQT
kα√

λmax(R)

√
QkαΓ

[
ΓT
{
CTC + (d/n)(IK −Π1/21K1T

KΠ1/2)
}
Γ
]−1

ΓTQT
kα

,

Γ = [γ1, . . . ,γK−1], Skα = Mkα/2 + (d/n)skαΠ
−1/2, Qkα = Mkα + (d/n)qkαΠ

−1/2,

Mkα = (µk − µα)
TD−1/2C,

skα = [s1, . . . , sK ] , sℓ = πℓ −
1

2
{I(ℓ = k) + I(ℓ = α)} ,

qkα = [q1, . . . , qK ] , qℓ = I(ℓ = k)− I(ℓ = α).

Furthermore, we need the following region in Corollary 4.2:

Dk,o =
{
z ∈ RK−1 | zα < d∗kα(1 + oP (1)), α = 1, . . . ,K − 1

}
,

where d∗kα = I(α < k)d∗kα + I(α ≥ k)d∗k(α+1) and

d∗kα =

√
MkαΓ (ΓTCTCΓ)

−1
ΓTMT

kα

2
√

λmax(R)
.

We have the following theorem and corollary using Theorem 3.4.
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Theorem 4.1. Suppose that conditions A1 and B – F hold, and that d = O(nCd).
Then, for all parameters θ ∈ Θk,

Wk(ĝ, θ) ≤ 1− ΦK−1

(
Dk,O;0, Σ̂k

)
.

Corollary 4.2. Suppose that conditions A1 and B – F hold, and that d = o(nCd).
Then, for all parameters θ ∈ Θk,

Wk(ĝ, θ) ≤ 1− ΦK−1

(
Dk,o;0, Σ̂k

)
.

Note that Theorem 4.1 and Corollary 4.2 extend Theorem 1 in Fan and Fan (2008) to
the general multi-class setting considered in this paper.

To appreciate the usefulness of the upper bounds which we derived in Theorem 4.1
and Corollary 4.2, we give a numerical example for the case K = 3 with parameters
d = 1200, µℓ = ℓ(1d − eℓ)/n

s (ℓ = 1, 2, 3) and Σ =
(
0.6|i−j|)

1≤i,j≤d
. We see that

d = O(nCd) if s = 1/2, and d = o(nCd) if s < 1/2 (see condition E). The empirical

regions D̂1,O or D̂1,o are obtained from the sample mean over 100 iterations.
Figure 1 shows estimates of the misclassification rate W1(ĝ, θ) and of the upper

bounds given in Theorem 4.1 and Corollary 4.2. Both figure panels show that the upper
bounds are actually upper bounds of the error rates even for the moderate sample sizes
used in the example. The left panel refers to the case d = o(nCd), and the right panel
covers the case d = O(nCd). Note that the difference between the upper bound and
W1(ĝ, θ) is smaller for the regime d = O(nCd) than the case d = o(nCd) as sample size
increases. In both cases, the estimated misclassification rate increases with n, whereas
the upper bounds tend to flatten as n approaches 500.

5. Feature Selection for the Multi-class Setting

In this section, we propose a method for feature selection in a HDLSS multi-class
setting which accompanies our discriminant function. For two-class problems a number
of algorithms exist for extracting and ranking salient features, including the features
annealed independence rules (FAIR) of Fan and Fan (2008), which are based on two-
sample t-statistics. Tamatani, Koch and Naito (2012) showed that FAIR is essentially
equivalent to variable ranking based on the absolute value of the components of p̂1. Fur-
thermore, Tamatani, Koch and Naito (2012) proposed the naive canonical correlation
(NACC) approach for feature selection, which exploits the first canonical correlation

vector b̂1. Feature selection algorithms for more than two classes have been discussed in
the machine learning and bioinformatics literature; see, for example, the comprehensive
survey by Saeys et al. (2007).

Feature selection algorithms generally consist of two steps:

Step A Variable Ranking: Using some reference vectors including information about fea-
tures(variables), we make a ranking vector ĉ, of which components satisfy

ĉj1 ≥ · · · ≥ ĉjm ≥ · · · ≥ ĉjd ≥ 0. (14)

A variable ranking scheme for a vector X (or each column of the data matrix X)
is a permutation of the variables of X according to the order inherited from ĉ.
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Figure 1: Mean upper bound for the misclassification rates over 100 simulations shown
together with intervals of one standard deviation. Left panel: d = o(nCd); right panel:
d = O(nCd).
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Step B Number of Discriminant Features: Once the entries of X (or each column of the
data matrix X) have been ranked, we determine the number of effective features,
m̂ and then only use the features Xj1 , ..., Xjm̂ .

FAIR uses p̂1 as the reference vector. NACC works in a similar way, but it is based

on b̂1 instead of p̂1. Both rules minimize an upper bound for the misclassification rate

as the stopping criterion in Step B. Note that p̂1, and respectively b̂1, is the eigenvector
belonging to the unique non-zero eigenvalue for K = 2.

We aim to extend FAIR and NACC to the multi-class setting. A natural extension
is the use of all K− 1 vectors p̂1, ..., p̂K−1 or b̂1, ..., b̂K−1 as reference vectors. Hence we
need a rule for combining the K − 1 vectors. We integrate the K − 1 reference vectors
into a component-wise ‘best’ ranking vector whose entries are chosen as described in
Table 1. The ranking of the variables is then inherited from the ranking vector obtained
by combining these reference vectors.

Table 1: The ranking vector ĉ associated with NACC and FAIR for K classes.
Name Component of ĉ

M-NACC ĉj = max
1≤α≤K−1

|b̂αj |, j = 1, ..., d

M-FAIR ĉj = max
1≤α≤K−1

|p̂αj |, j = 1, ..., d

The criterion for selecting the number of discriminant features is similar to that in
Fan and Fan (2008): We choose the number m̂ which minimizes the upper bound of the
misclassification rate given in Theorem 4.1. Suppose that the rows of the data matrix
X are sorted according to some ĉ, and then X is truncated into the upper m̂×n matrix.
The discrimination rule (8) with feature selection becomes

ĝm̂ (X) = argmin
ℓ∈{1,...,K}

(
Xm̂ − µ̂ℓ,m̂

)T
B̂m̂(B̂m̂D̂m̂B̂T

m̂)−1B̂T
m̂

(
Xm̂ − µ̂ℓ,m̂

)
, (15)

where Xm̂, µ̂ℓ,m̂ and each column of B̂m̂ =
[
b̂1,m̂, . . . , b̂K−1,m̂

]
are the corresponding

first m̂-dimensional subvectors and

D̂m̂ = diag(σ̂11, . . . , σ̂m̂m̂)

is the m̂ × m̂ left-upper submatrix of D̂. We summarize the new classification method
based on feature selection in the following steps:

Feature Selection Algorithm M-NACC (M-FAIR)

Step 1 Calculate P̂ and B̂.

Step 2 Sort the components of ĉ in descending order of their absolute values as

ĉj1 ≥ ĉj2 ≥ · · · ≥ ĉjm ≥ · · · ≥ ĉjd ≥ 0,

where ĉj is based on b̂ℓ(ℓ = 1, ...,K − 1) for M-NACC, and on p̂ℓ(ℓ = 1, ...,K − 1)
for M-FAIR (see Table 1 ).



80 M. Tamatani, K. Naito and I. Koch

Step 3 Apply the permutation τ : {1, 2, . . . , d} → {j1, j2, . . . , jd} to the rows of the data
X, and put Xi ← τ(Xi).

Step 4 Let [ · ]m be the vector or matrix calculated by using the first m rows of the matrix
X made in Step 3. Find the best truncation m̂ based on Theorem 4.1:

m̂ = argmax
K−1≤m≤d

∑
k ̸=α

nknα

n2
d̂kα(m), (16)

where d̂kα(m) is calculated by

d̂kα(m) =
Ŝkα,mΓ̂

(
Γ̂T ÛmΓ̂

)−1

Γ̂T Q̂T
kα,m√

λmax(R̂m)

√
Q̂kα,mΓ̂

(
Γ̂T ÛmΓ̂

)−1

Γ̂T Q̂T
kα,m

,

Ûm =
[
ĈT Ĉ

]
m
+

m

n
(IK −N1/21K1T

KN1/2),

Q̂kα,m =
[
M̂kα

]
m
+

m

n
qkαN

−1/2,

Ŝkα,m =
1

2

[
M̂kα

]
m
+

m

n
ŝkαN

−1/2,

ŝkα = (ŝ1, . . . , ŝK) , ŝℓ =
nℓ

n
− 1

2
{I(ℓ = k) + I(ℓ = α)}

and R̂m = (ρ̂ij)1≤i,j≤m is the appropriate m×m correlation submatrix of R̂.

Step 5 Apply the same permutation τ as in Step 3 to a new datum X ← τ(X), use the
first m̂ entries of X and apply rule (15) to assign X to one of the K classes.

Note that if m̂ = d, then (15) is nothing other than (8) without feature selection.
We will refer to this method Multi-class Diagonal Linear Discriminant Analysis (M-
DLDA). We investigate the performance of M-NACC, M-FAIR and M-DLDA for real
and simulated data in the next section.

6. Numerical Studies

In this section, we apply the proposed discriminant function to real and simulated
data, and compare its performance on simulated data with the theoretical results de-
veloped in the previous sections. Further, we compare the performance of our feature
selection with the Minimum Redundancy – Maximum Relevance (MRMR) proposed
by Ding and Peng (2005), which maximizes an F -statistic or mutual information while
minimizing a redundancy criterion which is based on the correlation coefficient. It is
worth noting that MRMR is a variable ranking method which does not include any
determination of the number of ranked features as in Step B of Section 5.. The ranking
approach MRMR does not exclude the integration of criteria for determining the num-
ber of features. Indeed, in the simulations below we show how one can implement the
criterion of (16) in MRMR, as well as in our new method.
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6.1. Simulation I

We start with an investigation of the angle between b̂
∗
α and b∗β for simulated data

from the Gaussian distribution. In Simulation I, we generate nℓ d-dimensional obser-

vations Xℓi
i.i.d.∼ Nd(µℓ,Σ) for d = 600 and 1200 from K = 3 classes. For each d, we

choose n =
∑K

ℓ=1 nℓ such that n ≤ d. For the simulated data we calculate b̂
∗
1, . . . , b̂

∗
K−1,

and the angles ∠(b̂
∗
α, b

∗
β) = (180/π) arccos(b̂

∗T
α b∗β) (for α, β = 1, . . . ,K − 1), and display

the distributions of these angles based on 1000 iterations.
We take Σ = (σij) to be the covariance of an AR structure, with σij = ρ|i−j| for

1 ≤ i, j ≤ d. For this example we take ρ = 0.6. In order to avoid CCT being singular,
we take

[µ1 µ2 µ3] =
4√
n

 1d/2 0 0
0 1d/4 0
0 0 1d/4

 .

In this setting, it is easily confirmed that

min
i ̸=j

n(µi − µj)
TD−1(µi − µj)

d
−→ 2.

Thus, if we take Cd = dγ for the sequence in condition C such that d = ndγ for γ ∈ (0, 1),
then the condition d = O(nCd) in Theorem 3.7 is satisfied. We obtain the following

angles in degrees ∠(b̂
∗
1, b

∗
1) ≈ 33.855, ∠(b̂

∗
2, b

∗
2) ≈ 40.893 and ∠(b̂

∗
1, b

∗
2), ∠(b̂

∗
2, b

∗
1) ≈ 90

from (13) with σmax = σmin = 1.
Table 2 summarizes the results for Simulation I. The table shows that each angle

approaches the theoretical value shown in Theorem 3.7. Figure 2 depicts the behavior

of ∠(b̂
∗
1, b

∗
1) and ∠(b̂

∗
2, b

∗
2) using kernel density estimates. The top panel of Figure 2

shows the results for ∠(b̂
∗
1, b

∗
1), and the bottom panel shows the results for ∠(b̂

∗
2, b

∗
2) for

n = 15, 30, 150, 600 and d = 1200. These figures show that each angle converges as
the sample size increases.

6.2. Simulation II

Simulation II focuses on the performance of the proposed discriminant function

with feature selection. In Simulation II, we consider data Xℓi
i.i.d.∼ Nd(µℓ,Σ0) from

K = 10 classes with:

µℓ = (µℓ1, . . . , µℓd)
T ∈ Rd, µℓj =

{
11− ℓ , j = ℓ,
0 , otherwise,

and Σ0 = A1/2ΣA1/2,

where A = diag(ajj) with ajj = j and Σ has an AR structure with ρ = −0.6. The mean
parameters µℓs show that only the first 10 features differ, and we therefore, expect to
select these features in the simulated data. Furthermore, we note that the diagonal
elements of the covariance matrix Σ0 are monotonically increasing.

We compare M-NACC with MRMR, and use the same m̂ for both methods, which
we calculate for M-NACC as described in (16). A similar comparison is given for M-
FAIR and MRMR. For d = 1000 and nℓ = 50 (with ℓ = 1, ..., 10), we obtained estimates
for the misclassification rate based on 100 iterations.
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Figure 2: Kernel density estimates of angles in degrees between b̂
∗
α and b∗α. The top

panel and bottom panel are for ∠(b̂
∗
1, b

∗
1) and ∠(b̂

∗
2, b

∗
2), respectively. The vertical dashed

line is the asymptotic value derived in Theorem 3.7.
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Table 2: Average of 1000 simulated angles between b̂
∗
i and b∗j in degrees.

n
15
30
90
150
300
450

n
15
30
90
150
300
450
600
900

d = 600

∠(b̂
∗
1, b

∗
1) ∠(b̂

∗
2, b

∗
2) ∠(b̂

∗
1, b

∗
2) ∠(b̂

∗
2, b

∗
1)

42.237 47.407 90.327 89.976
37.392 43.652 90.243 90.127
35.159 41.842 90.265 90.026
34.746 41.359 90.288 90.074
34.388 41.182 90.277 89.959
34.257 41.181 89.990 89.881

d = 1200

∠(b̂
∗
1, b

∗
1) ∠(b̂

∗
2, b

∗
2) ∠(b̂

∗
1, b

∗
2) ∠(b̂

∗
2, b

∗
1)

42.084 47.428 90.273 89.995
37.328 43.590 90.302 89.992
35.042 41.671 90.046 90.071
34.592 41.385 90.073 90.061
34.261 41.146 90.196 90.058
34.203 41.075 90.164 90.059
34.147 41.062 90.120 89.946
34.078 41.068 90.021 90.041

In this simulation study we introduce another measure for comparing feature se-
lection methods. We can see from definition of the µℓ that the set of features {1, ..., 10}
should be picked with a suitable feature selection. We now want to determine how suc-

cessful the features selection (16) is in choosing the correct features. Let {j(t)1 , ..., j
(t)
m̂(t)}

be a set of selected features based on the tth simulated data set, where m̂(t) is the num-
ber of selected features determined by the tth data set. For i ∈ {1, ..., 10}, let CSR(i)
be the correct selection rate for feature i and put

CSR(i) =
1

100

100∑
t=1

I
(
i ∈ {j(t)1 , ..., j

(t)
m̂(t)}

)
,

where I(A) is the indicator function of a set A. The CSR counts how often the set
of selected features contains the features which should be selected. A CSR(i) close to
1 means that feature i is frequently selected by the feature selection method which is
good. We calculated CSR(i) for M-NACC, M-FAIR and MRMR in this study. For the
MRMR-based discriminant function with feature selection we did not calculate estimates
of the misclassification rate, since MRMR is just a competitor for variable ranking.

The results of the simulations are given in Table 3, which shows the correct selection
rate as well as the estimated misclassification rate for each method. The estimate for the
error based on (15), and called training error here, was obtained as the sample mean over
100 iterations, while the estimate for the test error was calculated as the average of the
leave-one out cross-validation over 100 iterations. Table 3 shows that the CSR(i)-values
of M-NACC are typically higher than those of MRMR, and a similar tendency can be
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verified for M-FAIR. M-NACC recorded CSR(i) < 1 for i = 9, 10, while M-FAIR resulted
in CSR(i) < 1 for i = 8, 9, 10. Further CSR(9) and CSR(10) of M-FAIR are smaller than
those of M-NACC. As far as the mean number of selected features m̂ is concerned, we
note that M-FAIR has a tendency to select more (and indeed by far too many) features
than M-NACC, and M-NACC selects the correct features more frequently than M-FAIR.

In view of training error, M-FAIR is slightly superior to M-NACC, which can be
understood by its number of selected features. However it is worth noting that M-NACC
recorded a smaller test error than M-FAIR and used fewer features.

Table 3: Results for Simulation II. CSR(i) and estimates for the misclassification rate of
each method. 1: MRMR with m̂ determined by M-FAIR. 2: MRMR with m̂ determined
by M-NACC.

Feature(i) 1 2 3 4 5 6 7 8 9 10
M-FAIR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.47 0.03
MRMR1 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.68 0.20 0.02
M-NACC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84 0.14
MRMR2 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.42 0.08 0.00

M-FAIR M-NACC
No. of selected features 24.31 9.22

Training error (%) 27.46 30.94
Test error (%) 31.84 28.21

6.3. Real Data

6.3.1. SRBCT data

We apply our method to the small round blue-cell tumors (SRBCT) data that were
analyzed in Khan et al. (2001), and are available at http://statweb.stanford.edu/

~tibs/ElemStatLearn/ (see Hastie et al. (2001)). The data have four classes: neu-
roblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the
Ewing family of tumors (EWS). There are 2308 genes and a total of 83 samples: 63
training samples (12 NB, 20 RMS, 8 NHL and 23 EWS) and 20 test samples (6 NB, 5
RMS, 3 NHL and 6 EWS).

We applied M-NACC, M-FAIR and MRMR with feature selection to the SRBCT
data, and also applied M-DLDA (without feature selection) to the same data. The
results for approaches with feature selection, including selected gene numbers, training
error and test error are summarized in Table 4. We observe from Table 4 that M-FAIR
selected 13 genes which resulted in a training error of 0 and a test error of 2, while
M-NACC selected 12 genes which yielded a training error of 0 and a slightly higher test
error of 3. 20 genes were selected by MRMR, which yielded a 0 training error and a test
error of 2. Although M-FAIR and MRMR resulted in the same test error, it should be
noted that M-FAIR achieved this accuracy with a smaller number of features. M-DLDA
recorded 1 training error and 5 test errors, both of these are worse than the error rates
obtained with M-NACC, M-FAIR and MRMR. This reveals that feature selection works
well for this data set, and is superior to similar methods without feature selection.
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6.3.2. Isolet data

The last example deals with the Isolet data studied in Weinberger et al. (2006),
which are available at http://archive.ics.uci.edu/ml/datasets/ISOLET. The data
have 26 classes corresponding to the letters of the alphabet. There are 617 genes and
and a total of 7797 samples: 6238 training samples (238 samples from class 6, and 240
samples from each of the other classes), and 1559 test samples (59 samples from class
13, and 60 samples from each of the other classes).

As our setting is that of HDLSS, we randomly picked 20 samples form each class
of the training data. We applied each of the four methods considered in Section 6.3.1.
to the 520 samples of the new training data, and evaluated their performances on the
full test data consisting of 1559 samples. We repeated the above procedure 100 times.
Boxplots of the test errors and the number of selected features are shown in Figure 3.
The left panel of Figure 3 shows the number of selected features. Figure 3 exhibits that
the number of selected features of M-FAIR is smaller than that of the other approaches.
However, there seems to be an unstable trend in the misclassification rate arising from the
M-FAIR calculations, as can be observed in the right panel. This could be a consequence
of the small number of selected features. On the other hand, the number of selected
features of M-NACC and MRMR result in about the same number, however, the test
error of M-NACC is smaller than that for MRMR and M-FAIR. The detailed values of
the boxplots are summarized in Table 5. From these values we can see that the average
test error of M-NACC is almost equal to that of M-DLDA, but M-NACC obtains the
same accuracy with only one-third of the number of features.

Table 4: Results for the SRBCT data. Numbers in bold show common selected genes
in each approach.

selected genes

M-FAIR 1955 2050 1954 1194 1158 174 1003
1389 246 107 1645 951 1980

M-NACC 1955 481 1158 1954 1194 1888 951
879 1003 174 1389 246
509 107 867 879 1708 1955 2050

MRMR 1194 246 742 1003 1389 819 851
338 368 1706 1319 2 545

M-FAIR M-NACC MRMR M-DLDA
No. of selected genes 13 12 20 2308

Training error 0/63 0/63 0/63 1/63
Test error 2/20 3/20 2/20 5/20

7. Conclusion

In this paper, we proposed a linear discriminant function for a general multi-class
setting with K classes in a HDLSS context, and derived asymptotic properties of the
sample estimators. Our approach extends linear discrimination based on a suitably
adjusted naive canonical correlation matrix from two classes to K classes.

In the asymptotic theory, both the dimension d and the sample size n grow, and
provided d does not grow too fast, we show that all K − 1 eigenvectors and canonical
correlation vectors are HDLSS consistent. Under suitable conditions, we are able to
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Figure 3: Isolet data. The left panel shows boxplots of the number of selected features
for M-NACC, M-FAIR and MRMR over 100 iterations. M-FAIR is smallest, and the
number of its outliers (open circles) is zero. The number of outliers for M-NACC is two,
and that of MRMR is six. The right panel shows boxplots of test errors of M-NACC,
M-FAIR, MRMR and M-DLDA using the simulated data of the left panel. M-FAIR is
not as stable as the other approaches because there are many outliers and large errors.
M-NACC and M-DLDA are superior to other approaches.



Multi-class discriminant function based on canonical correlation in HDLSS 87

Table 5: Results for the Isolet data. Descriptive statistics of the number of selected
features and test error for each method over 100 iterations.

No. of selected features
M-FAIR M-NACC MRMR M-DLDA

SD 43.69 33.38 52.31 0.00
min 25.00 139.00 25.00 617.00

1st quartile 74.00 166.80 171.80 617.00
median 102.00 181.50 189.50 617.00
average 99.33 185.60 205.10 617.00

3rd quartile 130.50 198.00 227.20 617.00
max 197.00 420.00 368.00 617.00

Test error
M-FAIR M-NACC MRMR M-DLDA

SD 0.13361 0.01483 0.04152 0.01242
min 0.12190 0.11030 0.13410 0.10780

1st quartile 0.15190 0.13710 0.16340 0.14110
median 0.16900 0.14820 0.17670 0.14820
average 0.22500 0.14770 0.18200 0.14850

3rd quartile 0.20510 0.15590 0.19500 0.15520
max 0.61390 0.18410 0.52020 0.18220

derive an upper bound for the worst case misclassification rate in the K class setting.

Feature selection has been shown to be essential in correctly classifying HDLSS data
arising from two classes. For the general multi-class setting, we propose and discuss two
methods for feature selection, M-NACC and M-FAIR, which extend their respective two-
class analogues. If the variance is large relative to the difference between the means, we
illustrate in Simulation II that M-NACC performs better than M-FAIR. Applications to
real data sets demonstrate that M-NACC performs well.

Our approach exploits the naive Bayes rule and replaces Σ̂−1 by the diagonal matrix
D̂−1. On the other hand, replacing D̂−1 by a certain type of band matrices could
also yield efficient linear discriminant functions in a HDLSS setting. Such discriminant
functions are of interest in practice, especially when relevant correlation information
between the observations is lost in the replacement of Σ̂−1 by the diagonal matrix D̂−1.
Theoretical research of band matrices has been considered in Bickel and Levina (2008),
and their results are expected to apply to linear discriminant function in HDLSS settings.

Appendix

Proof of Lemma 3.2 .

By condition A, for fixed ℓ ≤ K we have

µ̂ℓ − µ̂ = (µℓ − µ) + (εℓ − ε) +
K∑
ℓ=1

(nℓ

n
− πℓ

)
µℓ,
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where εℓ = (1/nℓ)
∑nℓ

i=1 εℓi and ε = (1/n)
∑K

ℓ=1

∑nℓ

i=1 εℓi. Thus,

M̂0N
1/2 −M0Π

1/2 = M0(N
1/2 −Π1/2) + M̃(N −Π)1K1T

KN1/2 + E0N
1/2,

where M̃ = [µ1, . . . ,µK ] and E0 = [ε1 − ε, . . . , εK − ε]. Therefore, ĈT Ĉ can be written
as

ĈT Ĉ =
(
N1/2 −Π1/2

)
MT

0 D̂−1M0

(
N1/2 −Π1/2

)
+
(
N1/2 −Π1/2

)
MT

0 D̂−1M̃ (N −Π)1K1T
KN1/2

+
(
N1/2 −Π1/2

)
MT

0 D̂−1E0N
1/2 +

(
N1/2 −Π1/2

)
MT

0 D̂−1MΠ1/2

+N1/21K1T
K(N −Π)M̃T D̂−1M0

(
N1/2 −Π1/2

)
+N1/21K1T

K(N −Π)M̃T D̂−1M̃(N −Π)1K1T
KN1/2

+N1/21K1T
K(N −Π)M̃T D̂−1E0N

1/2 +N1/21K1T
K(N −Π)M̃T D̂−1M0Π

1/2

+N1/2ET
0 D̂

−1M0

(
N1/2Π1/2

)
+N1/2ET

0 D̂
−1M̃(N −Π)1K1T

KN1/2

+N1/2ET
0 D̂

−1E0N
1/2 +N1/2ET

0 D̂
−1M0Π

1/2

+Π1/2MT
0 D̂−1M0

(
N1/2 −Π1/2

)
+Π1/2M0D̂

−1M̃(N −Π)1K1T
KN1/2

+Π1/2MT
0 D̂−1E0N

1/2 +Π1/2M0D̂
−1M0Π

1/2. (17)

From condition B, it follows that D̂ = D(1 + oP (1)) (see Fan and Fan (2008)), and this
leads to the following expressions

MT
0 D̂−1M0 =

(
(µk − µ)TD−1(µℓ − µ)

)
1≤k,ℓ≤K

(1 + oP (1)) = 1K1T
KO(Cd),

MT
0 D̂−1M̃ =

(
(µk − µ)TD−1µℓ

)
1≤k,ℓ≤K

(1 + oP (1)) = 1K1T
KO(Cd),

M̃T D̂−1M̃ =
(
µT

kD
−1µℓ

)
1≤k,ℓ≤K

(1 + oP (1)) = 1K1T
KO(Cδ

d) + IKO(Cd)

by condition E. From the evaluation of the term I3 on p.2626 of Fan and Fan (2008),
we have

MT
0 D̂−1E0 = 1K1T

KoP (Cd), M̃T D̂−1E0 = 1K1T
KoP (Cd).

Consider the matrix ET
0 D̂

−1E0 of ĈT Ĉ. We have

ET
0 D̂

−1E0 =
(
(εk − ε)TD−1(εℓ − ε)

)
1≤k,ℓ≤K

(1 + oP (1)).

In particular, we need to evaluate the variance term V
[
(εk − ε)TD−1(εℓ − ε)

]
.

If k = ℓ, this variance can be obtained as

V
[
(εℓ − ε)TD−1(εℓ − ε)

]
= tr

{
(D−1 ⊗D−1)E

[
(εℓ − ε)(εℓ − ε)T ⊗ (εℓ − ε)(εℓ − ε)T

]}
−
{
tr(D−1Σ∗)

}2 (18)

by using Theorem 9.18 of Schott (1996), where ⊗ is Kronecker product and Σ∗ =

V [εℓ − ε] = (1/nℓ − 1/n)Σ. Thus, we have
{
tr(D−1Σ∗)

}2
= d2(1/nℓ − 1/n)2. Since
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D−1 ⊗D−1 is a diagonal matrix, (18) can be written as

V
[
(εℓ − ε)TD−1(εℓ − ε)

]
= tr

{
(D−1 ⊗D−1)E

[
diag

{
(εℓ − ε)(εℓ − ε)T ⊗ (εℓ − ε)(εℓ − ε)T

}]}
− d2

(
1

nℓ
− 1

n

)2

,

by the property of the trace of the relevant matrix. The diagonal elements can be written
as

D−1 ⊗D−1E
[
diag

{
(εℓ − ε)(εℓ − ε)T ⊗ (εℓ − ε)(εℓ − ε)T

}]
= diag (v1, . . . , vd2) , (19)

where

vj =


E
[
(εℓs − εs)

4
]

σ2
ss

, for j = (s− 1)d+ s, s ∈ {1, . . . , d},

E
[
(εℓs − εs)

2
(εℓt − εt)

2
]

σssσtt
, for all other values of j < d2, and s ̸= t,

and εℓs and εs are sth element of εℓ and ε respectively.
Next, we expand εℓs − εs. This difference can be written as

εℓs − εs =

(
1

nℓ
− 1

n

) nℓ∑
i=1

εℓis −
1

n

∑
k ̸=ℓ

nk∑
i=1

εkis.

Using the properties E [εℓsεks] = E [εℓs]E [εks] and E [εℓs] = 0, we have

E
[
(εℓs − εs)

4
]

=

(
1

nℓ
− 1

n

)4

E

( nℓ∑
i=1

εℓis

)4
+

1

n4
E


∑

k ̸=ℓ

nk∑
i=1

εkis

4


+
6

n2

(
1

nℓ
− 1

n

)2

E

( nℓ∑
i=1

εℓis

)2
E


∑

k ̸=ℓ

nk∑
i=1

εkis

2
 .

In particular, we find that

E

( nℓ∑
i=1

εℓis

)2
 = nℓσss, E


∑

k ̸=ℓ

nk∑
i=1

εkis

4
 = (n− nℓ)ξss + 3

∑
k ̸=ℓ

nk(nk − 1)σ2
ss,

E


∑

k ̸=ℓ

nk∑
i=1

εkis

2
 = (n− nℓ)σss, E

( nℓ∑
i=1

εℓis

)4
 = nℓξss + 3nℓ(nℓ − 1)σ2

ss,

where ξst = E
[
ε211sε

2
11t

]
. Therefore, the ((s−1)d+s)th diagonal element of (19) becomes

E
[
(εℓs − εs)

4
]

=
(n− nℓ)(3n

2
ℓ − 3nnℓ + n2)

n3n3
ℓ

ξss +
3

n4

∑
m ̸=ℓ

nm(nm − 1)σ2
ss

+3

(
1

nℓ
− 1

n

)2
(n− nℓ)(nℓ(nℓ + 1) + n(nℓ − 1))

nℓn2
σ2
ss.
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From tedious but direct calculations we have

E

[(
nℓ∑
i=1

εℓis

)(
nℓ∑
i=1

εℓit

)]
= nℓσst,

E

( nℓ∑
i=1

εℓis

)2
∑

k ̸=ℓ

nk∑
i=1

εkit

2 = nℓ(n− nℓ)σssσtt,

E

∑
k ̸=ℓ

nk∑
i=1

εkis

2(
nℓ∑
i=1

εℓit

)2
 = nℓ(n− nℓ)σssσtt,

E

∑
k ̸=ℓ

nk∑
i=1

εkis

( nℓ∑
i=1

εℓis

)∑
k ̸=ℓ

nk∑
i=1

εkit

( nℓ∑
i=1

εℓit

) = nℓ(n− nℓ)σ
2
st,

E

[(
nℓ∑
i=1

εℓis

)2( nℓ∑
i=1

εℓit

)2]
= nℓξst + nℓ(nℓ − 1)σssσtt + τℓσ

2
st,

E

∑
k ̸=ℓ

nk∑
i=1

εkis

2∑
k ̸=ℓ

nk∑
i=1

εkit

2 = (n− nℓ)ξst + (n− nℓ)(n− nℓ − 1)σssσtt + τ−ℓσ
2
st,

where τℓ and τ−ℓ are the numbers of combinations that arose throughout the calculations,
and whose orders are O(n2). The above expressions lead to

E
[
(εℓs − εs)

2
(εℓt − εt)

2
]

=
(n− nℓ)(3n

2
ℓ − 3nℓn+ n2)

n3n3
ℓ

ξst

− (n− nℓ)(n
2
ℓn+ 3n2

ℓ − nℓn
2 − 3nℓn+ n2)

n3
ℓn

σssσtt + τσ2
st,

where τ = (1/nℓ− 1/n)4τℓ + (1/n)4τ−ℓ +4 (1/nℓ − 1/n)
2
nℓ(n−nℓ)/n

2. Combining the
above calculations results in

V
[
(εℓ − ε)TD−1(εℓ − ε)

]
= O

(
d2

n3

)
+O

(
1

n2

)∑
s,t

ρ2st,

where ρst is the (s, t) component of the correlation matrix R. The sum is evaluated as∑
s,t

ρ2st = 1T
d (R⊙R)1d ≤ λmax(R)

{
max
1≤s≤d

ρss

}
1T
d 1d ≤ b0d

by the definition of the parameter space Θ in (10), where ⊙ is the Hadamard product.
Therefore, (18) can be evaluated as

V
[
(εℓ − ε)TD−1(εℓ − ε)

]
= O

(
d2

n3

)
.

Using Chebyshev’s inequality, for any ε > 0, we have

P

(∣∣∣∣∣ (εℓ − ε)TD−1(εℓ − ε)− E
[
(εℓ − ε)TD−1(εℓ − ε)

]
Cd

∣∣∣∣∣ > ε

)
≤ O

(
d2

n3C2
d

)
= o(1).
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Hence, (εℓ − ε)TD−1(εℓ − ε) can be evaluated as

(εℓ − ε)TD−1(εℓ − ε) =

(
1

nℓ
− 1

n

)
d+ oP (Cd).

Next, we evaluate V
[
(εℓ − ε)TD−1(εk − ε)

]
for ℓ ̸= k. Using Theorems 7.7 and

7.14–7.16 of Schott (1996), we get

V
[
(εℓ − ε)TD−1(εk − ε)

]
= tr

{
(D−1 ⊗D−1)E

[
diag{(εℓ − ε)(εk − ε)T ⊗ (εℓ − ε)(εk − ε)T }

]}
−
{
tr(D−1E

[
diag(εℓ − ε)(εk − ε)T

]}2
.

We first calculate the jth diagonal element of (εℓ − ε)(εk − ε)T . By noting that

εℓj − εj =

(
1

nℓ
− 1

n

) nℓ∑
i=1

εℓij −
1

n

nk∑
i=1

εkij −
1

n

∑
h̸=ℓ,k

nh∑
i=1

εhij ,

we have E [(εℓj − εj)(εkj − εj)] = −σjj/n. Consequently, we obtain

{
tr(D−1E

[
diag(εℓ − ε)(εk − ε)T

]}2
=

d2

n2
.

Next, we consider the diagonal matrix

(D−1 ⊗D−1)E
[
diag{(εℓ − ε)(εk − ε)T ⊗ (εℓ − ε)(εk − ε)T }

]
= diag (u1, . . . , ud2) ,

where

uj =


E
[
(εℓs − εs)

2
(εks − εs)

2
]

σ2
ss

, j = (s− 1)d+ s, s ∈ {1, . . . , d},
E [(εℓs − εs) (εks − εs) (εℓt − εt) (εkt − εt)]

σssσtt
, for all other values of j < d2, and s ̸= t.

If j = (s− 1)d+ s, then we have

E
[
(εℓs − εs)

2(εks − εs)
2
]

=
n(nℓ + nk)− 3nℓnk

nℓnkn3
ξss + κ(ℓ, k)σ2

ss,

where κ(ℓ, k) is the coefficient of σ2
ss. Note that the order of κ(ℓ, k) is O(1/n2) which

we state here without giving a detailed proof. On the other hand, we have

E [(εℓs − εs) (εks − εs) (εℓt − εt) (εkt − εt)]

=
n(nℓ + nk)− 3nℓnk

nℓnkn3
ξst +

{
3

n3
− 1

n2

(
1

nℓ
+

1

nk

)
+

1

n2

}
σssσtt + τσ2

st

when ℓ = k, where τ = O(1/n2). From the above calculations, we have

V
[
(εℓ − ε)TD−1(εk − ε)

]
= O

(
d2

n3

)
+O

(
1

n2

)∑
s,t

ρ2st = O

(
d2

n3

)
.
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Chebyshev’s inequality now implies that (εℓ − ε)TD−1(εk − ε) = −d/n + oP (Cd), and
consequently,

N1/2ET
0 D̂

−1E0N
1/2

= N1/2
(
(εℓ − ε)TD−1(εk − ε)

)
1≤ℓ,k≤K

N1/2(1 + oP (1))

= N1/2

(
d

(
1

nℓ
− 1

n

)
δℓ,k −

d

n
(1− δℓ,k) + oP (Cd)

)
1≤ℓ,k≤K

N1/2(1 + oP (1))

=
d

n
(IK −N1/21K1T

KN1/2) + 1K1T
KoP (Cd).

The previous calculations can now be summarized and lead to the desired expansion of
ĈT Ĉ/Cd, namely

ĈT Ĉ

Cd
=

CTC

Cd
+

d

nCd
(IK −N1/21K1T

KN1/2) + 1K1T
KoP (1)

=
CTC

Cd
+ ξ(IK −Π1/21K1T

KΠ1/2) + 1K1T
KoP (1).

□
Proof of Lemma 3.3 . From Weyl’s inequality (see e.g. Bhatia (1997)), λα can be
evaluated as

max

{
λ∗
α+1

Cd
+ ξ,

λ∗
α

Cd

}
≤ λα

Cd
≤ λ∗

α

Cd
+ ξ, (20)

for α = 1, . . . ,K − 1 and 0 ≤ λK/Cd ≤ λ∗
K/Cd + ξ = ξ. In particular, it follows from

(20) that
λ∗
α+1

Cd
+ ξ <

λα

Cd
≤ λ∗

α

Cd
+ ξ

by condition D. Therefore, λα/Cd should be simple. □
Proof of Theorem 3.4 .

Put ΓK = [γ1, . . . ,γK ], where γℓ is eigenvector of C
TC/Cd+ξ(IK−Π1/21K1T

KΠ1/2)
belonging to the ℓth largest eigenvalue. By Lemma 3.2, we obtain

ΓT
K

ĈT Ĉ

Cd
ΓK = diag

(
λ1

Cd
, . . . ,

λK

Cd

)
(1 + oP (1)).

Let Ĥ =
[
ĥ1, . . . , ĥK

]
, where ĥℓ is eigenvector of ΓT

K

(
ĈT Ĉ/Cd

)
ΓK belonging to the

ℓth largest eigenvalue. Since all eigenvalues λα (for α = 1, . . . ,K − 1) are simple by

Lemma 3.3, it follows that Ĥ
P−→ IK . From the equation ΓT

K

(
ĈT Ĉ/Cd

)
ΓKĥℓ =

(λ̂ℓ/Cd)ĥℓ we can see that

ΓT
K

ĈT Ĉ

Cd
ΓKĥℓ =

λ̂ℓ

Cd
ĥℓ

=⇒ ĈT Ĉ

Cd

(
ΓKĥℓ

)
=

λ̂ℓ

Cd

(
ΓKĥℓ

)
=⇒ ĈĈT

Cd

{
Ĉγℓ

||Ĉγℓ||
(1 + oP (1))

}
=

λ̂ℓ

Cd

{
Ĉγℓ

||Ĉγℓ||
(1 + oP (1))

}
. (21)
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On the other hand,

ĈĈT

Cd
p̂ℓ =

λ̂ℓ

Cd
p̂ℓ (22)

follows from the definition in Section 3. Now, from (21), (22) and Lemma 3.3, we con-

clude that the linear span of the p̂α is asymptotically equal to that of the Ĉγα/||Ĉγα||.
Since eigenvectors have unit length, ||pα|| = 1 and sgn (p̂α1) = sgn

((
Ĉγα/||Ĉγα||

)
1

)
,

where (·)1 denotes the first component of the vector. Therefore, we have

p̂α =
Ĉγα

||Ĉγα||
(1 + oP (1)) =⇒ p̂T

α

Ĉγα

||Ĉγα||
= 1 + oP (1).

□
Proof of Theorem 3.5.

From Theorem 3.4 and (11), the inner product of p̂α and pβ is given by

p̂T
αpβ =

γT
αΠ

1/2M̂T
0 D−1M0Π

1/2γβ(1 + oP (1))√
γT
α Ĉ

T Ĉγα

√
γT
βC

TCγβ

. (23)

The numerator of (23) can be evaluated as

γT
αΠ

1/2M̂T
0 D−1M0Π

1/2γβ = γT
αΠ

1/2MT
0 D−1M0Π

1/2γβ(1 + oP (1))

= γT
αC

TCγβ(1 + oP (1))

by Chebyshev’s inequality. By Lemma 3.2, γT
α Ĉ

T Ĉγα of (23) becomes γT
α Ĉ

T Ĉγα =
λα(1 + oP (1)) . Notice that γT

βC
TCγβ of the denominator of (23) can be written as

γT
βC

TCγβ

= γT
β

{
(CTC + Cdξ(IK −Π1/21K1T

KΠ1/2))− Cdξ(IK −Π1/21K1T
KΠ1/2)

}
γβ

= λβ − Cdξ(1− γT
βΠ

1/21K1T
KΠ1/2γβ).

Therefore, we obtain

p̂T
αpβ =

κjδαβ − ξ(δαβ − ηαηβ)
√
κα

√
κβ − ξ(1− η2β)

(1 + oP (1)).

□
Proof of Corollary 3.6. Follows, since ξ → 0. □

Proof of Theorem 3.7.
The inner product of b̂

∗
α and b∗β becomes

b̂
∗T
α b∗β =

γT
α Ĉ

T D̂−1/2D−1/2Cγβ√
γT
α Ĉ

T D̂−1Ĉγα

√
γT
βC

TD−1Cγβ

(1 + oP (1)). (24)
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using Theorem 3.4, (11) and (12). The numerator of (24) can be evaluated as

γT
α Ĉ

T D̂−1/2D−1/2Cγβ = γT
αC

TD−1Cγβ(1 + oP (1)).

Using (17), ĈT D̂−1Ĉ of (24) is given by

ĈT D̂−1Ĉ = CTD−1C +N1/2ET D̂−2EN1/2 + 1K1T
Ko(Cd).

Therefore, we have

γT
α Ĉ

T D̂−1Ĉγα

≤ γT
αC

TD−1Cγα +
1

σmin
γT
αN

1/2ET D̂−1EN1/2γα(1 + oP (1)) + o(Cd)

= γT
αC

TD−1Cγα

×
(
1 + Cdξ

1

σmin

1− γT
αΠ

1/21K1T
KΠ1/2γα

γT
αC

TD−1Cγα
(1 + oP (1)) + o

(
Cd

γT
αC

TD−1Cγα

))
≤ γT

αC
TD−1Cγα

×
(
1 + Cdξ

σmax

σmin

1− γT
αΠ

1/21K1T
KΠ1/2γα

γT
αC

TCγα

(1 + oP (1)) + o

(
Cd

γT
αC

TCγα

))
= γT

αC
TD−1Cγα

×
(
1 + Cdξ

σmax

σmin

1− η2α
λα − Cdξ(1− η2α)

(1 + oP (1)) + o

(
Cd

λα − Cdξ(1− η2α)

))
= γT

αC
TD−1Cγα

κα − ξ(1− η2α) (1− σmax/σmin)

κα − ξ(1− η2α)
(1 + oP (1)),

where σmax = max1≤j≤d σjj and σmin = min1≤j≤d σjj . Hence it follows that

b̂
∗T
α b∗β ≥ b∗Tα b∗β

√
κα − ξ(1− η2α)√

κα − ξ(1− η2α) (1− σmax/σmin)
(1 + oP (1)).

Similarly, we obtain

b̂
∗T
α b∗β ≤ b∗Tα b∗β

√
κα − ξ(1− η2α)√

κα − ξ(1− η2α) (1− σmin/σmax)
(1 + oP (1)).

□
Proof of Corollary 3.8. Follows, since ξ → 0. □
Evaluation of the Misclassification Rate W (ĝ, θ).

Suppose that the random vector X belongs to Ck. The correct classification rate
of ĝ for class Ck is defined as

W k(ĝ, θ) = P (ĝ(X) = k |Xℓi, ℓ = 1, . . . ,K, i = 1, . . . , nℓ )

= P (ĝ(X) = k |X ) .
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We have

W k(ĝ, θ) = P

 ∩
α ̸=k

{
ω ∈ Ω

∣∣∣∣∣
(
X(ω)− 1

2
(µ̂k + µ̂α)

)T

ŵkα > 0

}∣∣∣∣∣∣X


= P

 ∩
α ̸=k

{
ω ∈ Ω

∣∣∣δ̂kα(X(ω)) > 0
}∣∣∣∣∣∣X

 ,

where ŵkα = B̂T (B̂D̂B̂T )−1(µ̂k − µ̂α). We can easily see that

δ̂kα(X) ∼ N

((
µk −

1

2
(µ̂k + µ̂α)

)T

ŵkα, ŵT
kαΣŵkα

)
, α ̸= k.

Therefore, W k(ĝ, θ) can be written as

W k(ĝ, θ) = P

 ∩
α̸=k

{
ω ∈ Ω

∣∣∣Ẑkα(ω) > −d̂kα
}∣∣∣∣∣∣X

 ,

where Ẑkα =
(
δ̂kα(X)− E

[
δ̂kα(X)

])
/

√
V
[
δ̂kα(X)

]
∼ N(0, 1) and

d̂kα =
E
[
δ̂kα(X)

]
√
V
[
δ̂kα(X)

]
=

(µk − (µ̂k + µ̂α)/2)
T
B̂T (B̂D̂B̂T )−1B̂(µ̂k − µ̂α)√

(µ̂k − µ̂α)
T B̂T (B̂D̂B̂T )−1B̂ΣB̂T (B̂D̂B̂T )−1B̂(µ̂k − µ̂α)

. (25)

Next, we evaluate the (i, j)th element of the covariance matrix of (Ẑk1, . . . , ẐkK)T ,

where i, j ∈ {1, . . . ,K}− {k} and i ̸= j. From δ̂kα(X)−E
[
δ̂kα(X)

]
= (X −µk)

T ŵkα,

Cov(Ẑki, Ẑkj) can be written as

Cov(Ẑki, Ẑkj) =
ŵT

kiΣŵkj√
ŵT

kiΣŵki

√
ŵT

kjΣŵkj

.

Therefore, the covariance matrix of Ẑk = (Ẑk1, . . . , Ẑk(K−1))
T is

Σ̂k = ŴT
k ΣŴk, (26)

where Ẑkα = I(α < k)Ẑkα + I(α ≥ k)Ẑk(α+1),

Ŵk =

 ŵk1√
ŵT

k1Σŵk1

, . . . ,
ŵk(K−1)√

ŵT
k(K−1)Σŵk(K−1)


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and ŵkα = I(α < k)ŵkα + I(α ≥ k)ŵk(α+1). Now consider the region

D̂k =
{
z ∈ RK−1

∣∣∣zj < d̂kα, α ∈ {1, . . . ,K − 1}
}
,

where d̂kα = I(α < k)d̂kα + I(α ≥ k)d̂k(α+1). Since −Zk is also distributed as

NK−1(0, Σ̂k), the correct probability can be obtained as

W k(ĝ, θ) = P

(
K−1∩
α=1

{
ω ∈ Ω

∣∣∣−Ẑkα(ω) < d̂kα

}∣∣∣∣∣X
)

=

∫
D̂k

1√
|2πΣ̂k|

exp

(
−1

2
zT Σ̂−1

k z

)
dz

= ΦK−1

(
D̂k;0, Σ̂k

)
.

Therefore, the misclassification rate of ĝ for class Ck becomes

Wk(ĝ, θ) = 1−W k(ĝ, θ) = 1− ΦK−1

(
D̂k;0, Σ̂k

)
.

□
Proof of Theorem 4.1.

By Theorem 3.4, B̂ is given by

B̂ = D̂−1/2P̂ = D̂−1M̂0N
1/2ΓL̂−1(1 + oP (1)),

where L̂ = diag
(
||Ĉγ1||, . . . , ||ĈγK−1||

)
. Using D̂ = D(1+oP (1)), (25) can be evaluated

as

d̂kα =
(µk − (µ̂k + µ̂α)/2)

T
B̂(B̂T D̂B̂)−1B̂T (µ̂k − µ̂α)√

(µ̂k − µ̂α)
T B̂(B̂T D̂B̂)−1B̂TΣB̂(B̂T D̂B̂)−1B̂T (µ̂k − µ̂α)

≥ 1√
λmax(R)

I1N
1/2Γ(ΓTN1/2I2N

1/2Γ)−1ΓTN1/2IT3√
I3N1/2Γ(ΓTN1/2I2N1/2Γ)−1ΓTN1/2IT3

(1 + oP (1)),

where I1 = (µk − (µ̂k + µ̂α)/2)
T
D−1M̂0, I2 = M̂T

0 D−1M̂0 and I3 = (µ̂k−µ̂α)
TD−1M̂0.

We first calculate I3. Note that I3 can be decomposed as

I3 = (µ̂k − µ̂α)
TD−1M̂0

=
[
(µ̂k − µ̂α)

TD−1(µ̂1 − µ̂), . . . , (µ̂k − µ̂α)
TD−1(µ̂K − µ̂)

]
. (27)

From condition A, a typical component of (27) can be expressed as

(µ̂k − µ̂α)
TD−1(µ̂ℓ − µ̂)

=

K∑
h=1

nh

n

[
(µk − µα)

TD−1(µℓ − µh) + (εk − εj)
T D̂−1(µℓ − µh)

+(µk − µα)
TD−1(εℓ − εh) + (εk − εα)

TD−1(εℓ − εh)
]
.
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Then we have

(εk − εα)
TD−1(µℓ − µh) = oP

(
(µℓ − µh)

TD−1(µℓ − µh)
)

(µk − µα)
TD−1(εℓ − εh) = oP

(
(µk − µα)

TD−1(µk − µα)
)

by p.2625 of Fan and Fan (2008). Next we examine
∑K

h=1(nh/n)(εk−εα)TD−1(εℓ−εh),
which can be written as

K∑
h=1

nh

n
(εk − εα)

TD−1(εℓ − εh) = εTkD
−1εℓ − εTkD

−1ε− εTαD
−1εℓ + εTαD

−1ε.

By an argument similar to that given on p.2627 of Fan and Fan (2008), we obtain

K∑
h=1

nh

n
(εk − εα)

TD−1(εℓ − εh) =



d

nk
+ oP

(√
d

n

)
if ℓ = k,

− d

nα
+ oP

(√
d

n

)
if ℓ = α,

oP

(√
d

n

)
otherwise.

We also need to evaluate the asymptotic order of (µk − µα)
TD−1M0, which can be

written as

(µk − µα)
TD−1M0 = 1T

KΠF,

where F = [f1, . . . ,fK ] = ((µk − µα)
TD−1(µi − µj))1≤i,j≤K . Using conditions E and

F, ℓth component of (µk − µα)
TD−1M0 has the following form

1T
KΠf ℓ

=



Cd

−∑
h̸=k

√
πh

µT
kD

−1µk

Cd
−
√
πα

µαD
−1µα

Cd
+
∑
β ̸=k

cβk
Cd

 if ℓ = k,

Cd

√πk
µkD

−1µk

Cd
+
∑
h̸=α

√
πh

µT
αD

−1µα

Cd
+
∑
β ̸=α

cβα
Cd

 if ℓ = α,

Cd

√πk
µkD

−1µk

Cd
−
√
πα

µαD
−1µα

Cd
+
∑
β ̸=ℓ

cβℓ
Cd

 otherwise.

= O(Cd),

where cβℓ = O(C
ζβℓ

d ) and ζβℓ ∈ (0, 1) for all β, ℓ. Therefore, we have

(µk − µα)
TD−1M0 = 1T

KΠF = O(Cd)1
T
K .
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Using the above calculations, we have

(µ̂k − µ̂α)
TD−1(µ̂ℓ − µ̂)

= (µk − µα)
TD−1(µℓ − µ)(1 + oP (1)) +

K∑
h=1

nh

n
(εk − εα)

TD−1(εℓ − εh)

+oP

(
max

h∈{1,...K}

{
(µℓ − µh)

TD−1(µℓ − µh), (µk − µα)
TD−1(µk − µα)

})

=



{
(µk − µα)

TD−1(µℓ − µ) +
d

nk

}
(1 + oP (1)) if ℓ = k,{

(µk − µα)
TD−1(µℓ − µ)− d

nα

}
(1 + oP (1)) if ℓ = α,

(µk − µα)
TD−1(µℓ − µ)(1 + oP (1)) otherwise,

by condition D. Thus, it follows that

I3 =
(
(µk − µα)D

−1M0 + βkα

)
(1 + oP (1)),

where

βkα =

(
0, . . . , 0,

d

nk
, 0, . . . , 0,− d

nα
, 0, . . . , 0

)
.

Next, we consider I1. We find that

I1 =

(
µk −

1

2
(µ̂k + µ̂α)

)T

D−1M̂0

= −εTkD−1M̂0 +
1

2
(µ̂k − µ̂α)

TD−1M̂0. (28)

Similarly, (28) becomes

−εTkD−1M̂0 +
1

2
(µ̂k − µ̂α)

TD−1M̂0

=



d

n

(
1− n

nk

)
+

1

2

{
(µk − µα)

TD−1(µℓ − µ) +
d

nk

}
(1 + oP (1)) if ℓ = k,

d

n
+

1

2

{
(µk − µα)

TD−1(µℓ − µ)− d

nα

}
(1 + oP (1)) if ℓ = α,

d

n
+

1

2
(µk − µα)

TD−1(µℓ − µ)(1 + oP (1)) otherwise,

=


[
1

2
(µk − µα)

TD−1(µℓ − µ) +
d

n

(
1− n

2nℓ

)]
(1 + oP (1)) if ℓ = k, α,[

1

2
(µk − µα)

TD−1(µℓ − µ) +
d

n

]
(1 + oP (1)) otherwise.

Therefore, we have

I1 =

[
1

2
(µk − µα)

TD−1M0 +
d

n
αkα

]
(1 + oP (1)),

where

αkα =

(
1, . . . , 1, 1− n

2nk
, 1, . . . , 1, , 1− n

2nα
, 1, . . . , 1

)
.
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Finally, we consider I2. It can be written as

I2 = M̂0D
−1M̂0 =

(
(µ̂α − µ̂)TD−1(µ̂β − µ̂)

)
1≤α,β≤K

. (29)

Each component of (29) can be decomposed as

(µ̂α − µ̂)TD−1(µ̂β − µ̂) =
{
(µα − µ)TD−1(µβ − µ) + J1 + J2

}
(1 + oP (1)) + J3, (30)

where J1 = (εα − ε)TD−1(µβ − µ), J2 = (µα − µ)TD−1(εβ − ε) and J3 = (εα −
ε)TD−1(εβ − ε). From calculations similar to those carried out in the derivation of I1
and I3, we get

J1 = oP
(
(µβ − µ)D−1(µβ − µ)

)
,

J2 = oP
(
(µα − µ)D−1(µα − µ)

)
,

J3 =


d

n

(
n

nα
− 1

)
+ oP

(√
d

n

)
if α = β,

− d

n
+ oP

(√
d

n

)
if α ̸= β.

Consequently, (30) results in

(µ̂α − µ̂)TD−1(µ̂β − µ̂)

=


{
(µα − µ)TD−1(µα − µ) +

d

n

(
n

nα
− 1

)}
(1 + oP (1)) if α = β,{

(µα − µ)TD−1(µβ − µ)− d

n

}
(1 + oP (1)) if α ̸= β.

Therefore, we have

I2 =

{
MT

0 D−1M0 +
d

n

(
N−1 − 1K1T

K

)}
(1 + oP (1)).

In summary, the components of d̂kα can be evaluated as

I1N
1/2 =

[
1

2
(µk − µα)

TD−1M0 +
d

n
αkα

]
N1/2(1 + oP (1))

=

[
1

2
Mkα +

d

n
skαΠ

−1/2

]
(1 + oP (1))

= Skα(1 + oP (1)),

N1/2I2N
1/2 = N1/2

[
MT

0 D−1M0 +
d

n

(
N−1 − 1K1T

K

)]
N1/2(1 + oP (1))

=

[
CTC +

d

n

(
IK −Π1/21K1T

KΠ1/2
)]

(1 + oP (1)),

I3N
1/2 =

[
(µk − µα)D

−1M0 + βkα

]
N1/2(1 + oP (1))

=

[
Mkα +

d

n
qkαΠ

−1/2

]
(1 + oP (1))

= Qkα(1 + oP (1))
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since N = Π(1 + oP (1)). Therefore, we have

d̂kα ≥
SkαΓ

[
ΓT
{
CTC + (d/n)

(
IK −Π1/21K1T

KΠ1/2
)}

Γ
]−1

ΓTQT
kα(1 + oP (1))√

λmax(R)

√
QkαΓ

[
ΓT
{
CTC + (d/n)

(
IK −Π1/21K1T

KΠ1/2
)}

Γ
]−1

ΓTQT
kα

.

(31)
This completes the proof of Theorem 4.1. □
Proof of Corollary 4.2. Using Mkα = 1T

KO(Cd) and CTC = 1K1T
KO(Cd), Skα of

(31) becomes

Skα =
Mkα

2
+ Cd

(
d

nCd

)
skαΠ

−1/2 =
Mkα

2
+ 1T

Ko(Cd) =
Mkα

2
(1 + oP (1)).

Similarly, we can obtain Qkα = Mkα(1 + oP (1)) and U = CTC(1 + oP (1)). □
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