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Abstract

A mid-point theorem is proved in an elementary way for the
∪

type shape
of functions that arise out of exponential quadratic functions. These results are
inspired from epidemic patterns and growth over a time period.
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1. Background and motivation

Quadratic functions can generate variety of sizes of
∪

shaped and
∩

shaped func-
tions. Such kind of shapes are generally seen, among other situations, in the growth
and decay pattern of a typical epidemic situation over certain period of years. It is
often seen, while studying the growth and decay of infections in a population over a
period of time, scientists had fitted observed epidemic data using family of exponential
or quadratic exponential functions. Quadratic exponential functions are not only helpful
in fitting the observed data, but also often used for predicting the future course of the
epidemic Pall (1932). These functions consists of parameters or constants which we es-
timate using the population data. In this paper, we are not concerned various statistical
methods of estimation of parameters in the quadratic functions, but concerned in the
mathematical properties of quadratic functions, in terms of, especially in relation to the
positive integers. Some of these properties are derived while investigating behavior of
epidemic over a season in a year, over a decade or more, Rao and Kakehashi (2005), Rao
et al. (2006). Typical epidemic data consists of number of incidence or prevalence cases
in a population over a regular or irregular time intervals. These observations within a
given interval could either be constant or dynamic. Original work in the direction of
investigating such functions and establishing a correspondence between natural numbers
and sequence of quadratic exponential functions in an elementary approach was inspired
by realistic situations in epidemiology, Rao (2003). We have extended these concepts to
prove a mid-point theorem on

∪
shaped functions (see section 3). We can obtain lowest

value of function under consideration between two peaks. Suppose an epidemic pattern
follows a pattern

∪
, then using this theorem we can time taken to reach lowest value of

incidence or prevalence (depending upon the context) before disease numbers to start to
grow. Further, one could try to rotate the

∪
-shaped object in a three dimensional space

and obtain the volume of such a vessel from the basic principles of Euclidean geome-
try. In this paper, we have considered

∪
-shaped curves and functions which generate
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such curves in two dimensional space. See Figure 1. Let f = exp(ux2 + vx + w) be a
quadratic exponential function with (domain) D(f) = N. For a given combination of
integer parameters (say, C1, for first combination of numerical values u, v, w) of f we
establish here that the mapping of 1 ∈ D(f) will be same as mapping of some integer
n ∈ D(f) (for the same combination of parameters). We have drawn several curves
for a combination of parameters in f. If we change the combination of parameters (say,
C2, for second combination of numerical values u, v, w), then the resultant mapping
of 1 will be same as mapping of some n1 ∈ D(f). Here n ̸= n1 and f(1) for C1 is not
equal to f(1) for C2 i.e. fC1(1) ̸= fC2(1). See Figure 2 for a general idea. We construct
such quadratic exponential sequence of numbers and try to link them to the natural
numbers. The readers will also see that for some nk ∈ D(f), the distance from 1 to nk

will be equal to f(nk) in certain conditions. We apply these facts to establish further
interesting properties of convergence and derivative of f . Using the principles of mean
value theorem we show that f ′(θ) = 0 for the mid-point θ ∈ (1, nk). In addition to the
application in epidemiology, these results will lead to methods to compute volumes of
vessels that are of U shape in a three dimensional space.

Consider the quadratic function, Q1(x) = u1x
2+v1x+w1 where u1 > 0, v1, w1 ∈ R.

Suppose u1 = m1

2 , v1 = n1

2 and m1(> 0), n1, c1 ∈ N, m1 + n1 is even, then Q1(x) is
an integer for an integer x, Pall (1932), Pall (1933). The versatile features of quadratic
function when its coefficients are positive integers or real numbers have been popu-
lar in modeling natural sciences Ojha and Pandey (1989). When quadratic function is
taken as an exponent to the irrational number e, then the resultant function is called
quadratic exponential function. Functions from such family were widely established tools
in modeling biological data Cox and Wermuth (1994), McCullagh (1994). These func-
tions can even mimic properties of Gaussian probability functions McCullagh (1994).
Suppose f(x) = exp

(
ux2 + vx

)
, v = −mu2k−1, u,m, k ∈ N, then, it was proved that

f(1) = f(|A|) for A = u+v
u , Rao (2003). In fact, this statement was also proved there

for k = 1 and u ∈ R− {0} , m ∈ N, Rao (2003). We use these results and establish few
interesting properties of such class of exponential function. By using Rolle’s theorem we
show that the derivative will be zero at the mid-point of the interval [1, |A|] .

Note that, Q(1) = Q(|A|) when Q(x) = ux2 + vx. Also note |A| = 1 −mu2k−2 if
(1 ≥ mu2k−2) or |A| = mu2k−2 − 1 if (1 < mu2k−2). We show that the above absolute
value function is necessary for deriving the main results of this paper. We begin with
some simple results.

Observe that|A| is always a positive integer for any combination of {k,m, u} ∈ N.
Since, u ∈ N, then, u2k−2 ∈ N (because m,u ∈ N). Therefore |A| ∈ N.

Additionally, whenever u =
(
n+1
m

) 1
2k−2 , for n ∈ N, then u2k−2 = n+1

m , which

means
∣∣u+v

u

∣∣ = n. For that reason |A| could be equal to every natural number for
a suitable combination of {k,m, u} , where k,m, u ∈ N. For example, if we choose
{k = 1,m = 2, u = 2}, then, we obtain |A| = 1, if {k = 1,m = 3, u = 2}, then |A| = 2,
if {k = 1,m = 4, u = 2}, then |A| = 3, if {k = 3,m = 10, u = 8}, then |A| = 40959. We
know that f(1) = f(|A|). Therefore, we modify the previous result and state that as
follows:

Lemma 1.1. For any combination of {k,m, u} ,where k,m, u ∈ N, there corre-
sponds a f(1) such that f(1) = f(nk) for some nk ∈ N.

Proof. For every |A| there corresponds a n ∈ N and f(1) = eu(1−mu2k−2) =
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Figure 1: Numerical examples to demonstrate the shape of the function f(x) =
exp

(
ux2 + vx

)
, v = −mu2k−1, with some k, u,m ∈ N. Note that f(1) = f(|A|) for

A = u+v
u . Following are combinations of k, u,m in each figure 1a) k = 2, u = 2, m = 2;

1b) k = 2, u = 2, m = 3; 1c) k = 1, u = 2, m = 3; 1d) k = 1, u = 2, m = 5; 1e) k = 1,
u = 2, m = 6; 1f) k = 1, u = 2, m = 8; 1g) k = 1, u = 2, m = 5 (reciprocal of the
function considered); 1h) k = 1, u = 2, m = 3 (reciprocal of the function considered).
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f1(1) f1(nk)

f2(1) f2(nk)

fp(nk)fp(1)

fj(1) fj(nk)

{fp(1)}

nk

Figure 2: fp(1) = fp(nk) for the pth combination of parameters of f and nk ∈ N.

f(|A|). Thus f(1) = f(nk) for some nk ∈ N.

The domain of f is N. The value of f(1) is not same for every combination of {k,m, u},
where k,m, u ∈ N. Readers are suggested to keep this in mind for understanding the
results presented in this work.

2. Linking natural numbers and exponential function

Theorem 2.1. Let N be even, {m,u, k,N}, where k,m, u,N ∈ N and v = (−1)Nk−1·
muNk−1. Then, f(1) = f(|A|).

Proof. f(1) = eu(1−muNk−2) and |A| =
∣∣∣u+(−1)Nk−1muNk−1

u

∣∣∣ = muNk−2 − 1.

Therefore, |A| ∈ N for {m,u, k,N}, where k,m, u,N ∈ N. Now,

f(|A|) = eu(muNk−2−1)
2
+v(muNk−2−1)

= eu(m
2u2Nk−4+1−2muNk−2)−m2u2Nk−3+muNk−1

= eu(1−muNk−2)

Therefore, f(1) = f(|A|). Since |A| consists of every element of N, it follows that
f(1) = f(n).
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Theorem 2.2. When N is odd, k is even, v = (−1)
Nk−1

muNk−1 and {k,m, u,N},
where k,m, u,N ∈ N, then it follows that f(1) = f(nk), whenever |A| ∈ N and for
nk ∈ N.

Proof. When N is odd and k is even |A| =
∣∣∣u+(−1)Nk−1muNk−1

u

∣∣∣ = muNk−2 − 1.

The rest of the proof can be deduced from Theorem 2.1.

Remark. f1 denotes the 1st, f2 denotes the 2nd, and so on, fp denotes the func-

tion f(x) = e(ux
2+vx) associated with the pth combination of parameters {m,u, k}, i.e.

say {m1, u1, k1} , {m2, u2, k2} ,..., {mp, up, kp} , then we can observe following relations:

f1(1) = f1(2) ̸= f1(3) ̸= ... ̸= f1(n) ̸= ...

f2(1) ̸= f2(2) = f2(3) ̸= ... ̸= f2(n) ̸= ...

...

fp(1) = fp(2) ̸= fp(3) ̸= ... ̸= fp(n) = fp(n+ 1) ̸= ...

...

Given Theorem 2.1, suppose we denote the distance from |A| to 1 by D, then

f (|A|) = D, if m = Z(1−Z)Nk−2/ {log(Z − 2)}Nk−2
. Here Z = muNk−2.

Suppose Dp be the logarithmic distance from 1 to |A| for the pth combination of
parameters, then

Dp = log{Zp − 2}

= log

{
Zp

(
1− 2

Zp

)}
= logZp + log

(
1− 2

Zp

)
Dp converges for Zp > 2.
The relation fm(1) = fm(n) is unique for each n ∈ N and {mp, up, kp} where

mp, up, kp ∈ N.

Let Np+i be even for

{
p = 1, 2, 3, ...
i = 0, 1, 2, ...

. If |Ap| > |Ap−1| then fp(1) < fp−1(1) for

all p = 2, 3, 4, .... This fact is demonstrated through Figure 3.
The number of pairs {fm(1), fm(n)} that satisfy Remark 2. are countable.

Theorem 2.3. Let Bσ(0) = {b ∈ R+ : |b− 0| < σ} for σ > 0 and Np+i is even

for

{
p = 1, 2, 3, ...
i = 0, 1, 2, ...

, if |Ap+1| > |Ap| then the sequence {fp(1)}p=1,2,3,... ∈ Bσ(0) for

p > M ∈ N.

Proof. |Ap+1| > |Ap| ⇒ mp+1u
Np+1kp+1−2 − 1 > mpu

Npkp−2 − 1.

⇒
(
1−mp+1u

Np+1kp+1−2
)

<
(
1−mpu

Npkp−2
)

⇒ up+1

(
1−mp+1u

Np+1kp+1−2
)

< up

(
1−mpu

Npkp−2
)

⇒ eup+1(1−mp+1u
Np+1kp+1−2) < eup(1−mpu

Npkp−2)
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This implies fp+1(1) < fp(1). We know that e−p → 0 as p → ∞. Thus fp(1) ∈
Bσ(0).

Corollary 2.4. Since fp(1) ∈ Bσ(0), it follows from Remark 2. that {f1(2),
f2(3), ..., fp(n) , fp+1(n+ 1), ...} is a convergent sequence.

3. Mid-point Theorem

Theorem 3.1. Suppose θ ∈ (1, |A|) such that f ′(θ) = 0. Then this θ is the mid-
point of the interval I = [1, |A|] .

Proof. It is easy to verify that f is continuous on [1, |A|] and differentiable on
(1, |A|), and from Lemma 1.1 we have f(1) = f(|A|), so by Rolle’s theorem there exists
a θ ∈ (1, |A|) such that f ′(θ) = 0. We have |A| = mu2k−2 − 1. Mid-point of the interval
I is m

2 u
2k−2.

f ′(θ) = euθ
2+vθ(2uθ + v) = f(θ)(2uθ + v). Since f ′(θ) = 0, this means obviously

2uθ+v = 0, because f(θ) ̸= 0. Therefore θ = −v
2u = m

2 u
2k−2. Hence θ is the mid-point of

the interval I. For a numerical example, consider {k = 3, m = 10, u = 8} as in section 1.
For this combination |A| = 40959, mid-point of the interval is 20480 and f ′(20480) = 0.

Theorem 3.2. Suppose δ1 < δ2 < ...δn, where δi(> 0) ∈ I. Then for a given
combination of {k,m, u}, f(1 + δ1) > f(1 + δ2) > ...f(1 + δn)= f(|A| − δn) < ... <
f(|A|−δ2) < f(|A|−δ1) if and only if (1+δn) is a mid-point of I, where δn = m

2 u
2k−2−1.

Proof. Verify easily that f(1 + δ) = f(|A| − δ) for δ(> 0) ∈ I. Consider

f(1 + δ1) > ... > f(1 + δn) = f(|A| − δn) < ... < f(|A| − δ1) (1)

By Theorem 3.1 we know f ′(θ) = 0 for θ ∈ I. Hence (1 + δn) is a mid-point.
To prove converse we begin as follows. Since mid-point of the interval I is m

2 u
2k−2,

we have

f(
m

2
u2k−2) = e4(

m
2 u2k−2)2−mu2k−1 m

2 u2k−2

= e−
m2

4 u4k−3

(2)

Now for given δn = m
2 u

2k−2 − 1, we can verify that

f(1 + δn) = f(|A| − δn) = e−
m2

4 u4k−3

(3)

Since δ1 < δ2 < ...δn and by equations 2 and 3, the result 1 is straightforward.

For large value of the distance function D defined, the shape of f look like the alphabet
U , Rao (2003). Suppose instead of positive integer, let u ∈ Z−and other parameters
k,m remain as before, and if we denote resulting function as g, then the shape of g
was shown to have mirror image of U , Rao (2003). Based on this information and from
Theorem 3.2, we state the following corollary.
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A1 A2 A A Ap  p+1 p+m

f1

f2

fp+1

fp+m

fp

Figure 3: Relation between |Ap| and fp(1). Vertical lines corresponding to |Ap| are
lengths of fp(1) for each p.

Corollary 3.3. Suppose δ1 < δ2 < ...δn, where δi(> 0) ∈ I. Then for a given
combination of {k,m, u}, g(1 + δ1) < g(1 + δ2) < ...g(1 + δn)= g(|A| − δn) > ... >
g(|A|−δ2) > g(|A|−δ1) if and only if (1+δn) is a mid-point of I, where δn = m

2 u
2k−2−1.

Readers can also verify Darboux’s theorem for f on the intervals [1, θ] and [θ, |A|] for
some f ′(1) > β1 > f ′(θ) or f ′(θ) < β2 < f ′(|A|) such that f ′(β1) = α1 or f ′(β2) = α2

for α1 ∈ [1, θ] and α2 ∈ [θ, |A|].
In general, results on dynamics and periodic properties for the quadratic function

of the form x2+K, Walde and Russo (1994) and periodic properties of natural numbers
Fine (1958) can be found. However, this present note is basically deals with a correspon-
dence between natural numbers, quadratic exponential function, and the convergence of
such functions mapped on natural numbers constructed using |A| .
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