筋骨格ストレスマーカーから復元する身体活動の多様性：日本列島出土の古人骨を用いた縄文・弥生・中近世の総合的比較

米元, 史織

https://doi.org/10.15017/1560374

出版情報：九州大学, 2015, 博士 (理学), 課程博士
バージョン：published
権利関係：全文ファイル公表済
筋骨格ストレスマーカーから復元する身体活動の多様性
—日本列島出土の古人骨を用いた縄文・弥生・中世の総合的比較—

九州大学大学院比較社会文化学府
米元史織
平成27年10月
目次

第1章 序論 .. 1

第2章 研究史と問題の所在 ... 4

第1節 現存する集団の生業に関する諸研究 .. 4

第2節 過去の集団を対象とした生業・生活様式諸研究 .. 6

第3節 問題の所在 ... 15

第3章 資料と方法 ... 19

第1節 資料 .. 19

第2節 方法 .. 42

第1項 各集団の生業・生活様式の検討方法 ... 43
B) 先史時代の性分業推定方法 .. 45
C) 歴史時代の生業活動及び生産体制の推定方法 45
D) 生体計測による身体活動によって発達する諸筋の推定方法 45
第2項 MSMs を用いた各集団の諸活動の検討方法 48
A) 年齢推定・性別判定 ... 48
B) MSMs の対象部位・評価方法 ... 48

第3節 MSMs の発達にあたる年齢の影響に関する予備分析 52
第1項 縄文時代と弥生時代の MSMs の加齢変化に関する予備分析 ... 53
第2項 中近世の MSMs の加齢変化に関する予備分析 56

第4章 先史時代の身体活動の多様性に関する多角的検討結果 61
第1節 考古学的検討による先史時代の地域別生業復元 61
第1項 縄文時代の地域ごとの遺物組成 .. 62
A) 東北太平洋岸 ... 65
B) 三貫地地域 ... 66
C) 房総湾岸地域 ... 67
D) 滝美半島地域 ... 68
E) 津雲地域 ... 69
第2項 弥生時代の地域ごとの遺物組成の検討 71
A) 土井ヶ浜地域 ... 74
B) 三国丘陵域 ... 75
C) 福岡平野域 ... 76
D) 広田地域 ... 77
第3項 性別に基づく分業のあり方に関する検討 78
A) 縄文時代各地域集団 .. 78
B) 弥生時代各地域集団 .. 79

第2節 現代人の生体計測結果を用いた生業と筋発達部位の関係の検討 80
第3節 縄文時代と弥生時代の MSMs の集団間比較 83
第1項 縄文時代と弥生時代男性の MSMs の地域性と時代変化 84
A) 縄文時代と弥生時代の身体活動の差の推定：男性 84
B) 縄文時代と弥生時代の男性の MSMs の地域的差異 85
C) 縄文時代と弥生時代の男性の MSMs の時代変化 93
第2項 縄文時代と弥生時代女性の MSMs の地域性と時代変化 96
A) 縄文時代と弥生時代の身体活動の差の推定：女性 96
B) 縄文時代と弥生時代の女性の MSMs の地域的差異 97
C) 縄文時代と弥生時代の女性の MSMs の時代変化 106
第4節 縄文時代と弥生時代の MSMs の集団内比較：年齢・性別に基づく活動差 107
第1項 MSMs の加齢変化の諸相

A) 男性 108
B) 女性 115

第2項 MSMs の性差

A) 集団ごとの男女差 123
B) MSMs の加齢変化と性差 126
C) MSMs の左右差の性差 128

第5章 歴史時代の身体活動の多様性に関する多角的検討結果 133

第1節 中近世対象集団に特徴的な身体活動の検討 133

第1項 中世：文献記録から想定される身体活動 133
A) 主漁従農民 133
B) 揚浜式製塩民 135

第2項 近世：埋葬様式・文献記録より想定される身体活動 137

第2節 中近世のMSMs の集団間比較 .. 138

第1項 中近世男性のMSMs の多様性 .. 138
A) 中近世男性のMSMs の職業・階層間の差異 138
B) 中世男性の専業集団間のMSMs の差異 144
C) 近世男性の階層集団間のMSMs の差異 147

第2項 中近世女性のMSMs の多様性 .. 149
A) 中近世女性のMSMs の職業・階層間の差異 149
B) 中世女性の専業集団間のMSMs の差異 153
C) 近世女性の階層集団間のMSMs の差異 156

第3節 中近世の集団内比較：年齢・性別・個体間の身体活動差 157

第1項 MSMs の加齢変化の諸相 .. 158
A) 男性 158
B) 女性 163

第2項 MSMs の性差 .. 170
A) 男女差 171
B) MSMs の加齢変化と性差 175

第3項 集団内の個体間の身体活動差 .. 176
A) 中世主漁従農民と揚浜式製塩民の個体間比較 176
B) 江戸市中の武士層と庶民層の個体間比較 178

第6章 MSMs の通時的比較 .. 180

第1節 集団間のMSMs の多様性の時代変化 .. 180

第1項 男性のMSMs の多様性の時代変化 .. 180

第2項 女性のMSMs の多様性の時代変化 .. 185

第2節 集団内のMSMs の差の時代変化 .. 190
表目次

表 3.1.1 対象資料一覧 ... 20
表 3.1.2 縄文時代・弥生時代対象人骨出土資料および時期 21
表 3.1.3 遺物を集めた集落遺跡・貝塚一覧 ... 22
表 3.1.4 江戸市中の埋葬様式と対応分身 ... 41
表 3.2.1 縄文時代と弥生時代の遺物の構成 ... 44
表 3.2.2 生体計測対象一覧 ... 47
表 3.3.1 縄文時代と弥生時代の年齢による MSms の影響に関する検討 55
表 3.3.2 縄文時代と弥生時代各集団の年齢構成 56
表 3.3.3 縄文時代と弥生時代の MSms スコアの加齢による影響に関する多重比較 57
表 3.3.4 Mann-Whitney U 検定を用いた縄文時代と弥生時代の熟年と老年的 MSms スコアの有意差検定 ... 58
表 3.3.5 中近世各集団の年齢構成 ... 58
表 3.3.6 中近世各集団の成年段階と熟年段階の Mann-Whitney U 検定の結果 59
表 3.3.7 中近世各集団の熟年段階と老年段階の Mann-Whitney U 検定の結果 60
表 4.1.1 縄文時代各地域の漁撈対象 .. 63
表 4.1.2 縄文時代各地域の狩猟対象 .. 63
表 4.1.3 縄文時代各地域の対象採集物 .. 64
表 4.2.1 生体計測対象資料 個々の平均値 ... 81
表 4.2.2 生体計測値を用いた主成分分析の主成分負荷量 82
表 4.3.1 縄文時代の生業活動の地域的多様性 83
表 4.3.2 弥生時代の生業活動の地域的多様性 84
表 4.3.3 縄文・弥生時代各集団の MSms22 部位の平均値を用いたカテゴリカル主成分分析主成分負荷量 ... 91
表 4.3.4 縄文・弥生時代各集団女性の MSms22 部位を用いた主成分負荷量 103
表 4.4.1 加齢変化の諸相 カテゴリカル主成分負荷量：男性 114
表 4.4.2 加齢変化の諸相 カテゴリカル主成分負荷量：女性 122
表 4.4.3 縄文時代と弥生時代の各集団の MSms スコアの性差 距離行列 124
表 4.4.4 縄文時代と弥生時代の男女の MSms の違いに関するカテゴリカル主成分負荷量 ... 125
表 4.4.5 縄文時代と弥生時代の性差と加齢変化の関連に関するカテゴリカル主成分負荷量 ... 127
表 4.4.6 縄文時代の左右の MSms の差の性差：上肢のカテゴリカル主成分負荷量 ... 128
表 4.4.7 縄文時代の左右の MSms の差の性差：下肢のカテゴリカル主成分負荷量 ... 129
表 4.4.8 弥生時代の左右の MSms の差の性差：上肢のカテゴリカル主成分負荷量 ... 130
表 4.4.9 弥生時代の左右の MSms の差の性差：下肢のカテゴリカル主成分負荷量 ... 131
表 5.2.1 カテゴリカル主成分分析主成分負荷量：中世男性.............................. 142
表 5.2.2 カテゴリカル主成分分析主成分負荷量：中世女性.............................. 153
表 5.3.1 中世男性の年齢カテゴリー間の距離行列 159
表 5.3.2 中世男性の加齢変化の諸相に関するカテゴリカル主成分負荷量............ 163
表 5.3.3 中世年齢カテゴリー間の距離行列 ... 165
表 5.3.4 中世女性の加齢変化の諸相に関するカテゴリカル主成分負荷量............ 169
表 5.3.5 中世各集団の性差 距離行列.. 173
表 5.3.6 中世の男女間のMSMsのカテゴリカル主成分負荷量 173
表 5.3.7 中世の各集団の性差と加齢変化に関するカテゴリカル主成分負荷量........ 175
表 5.3.8 中世主漁徒農民と揚浜式製塩民の個体を用いた主成分分析主成分負荷量 ……177
表 5.3.9 江戸時代武士層と江戸市中庶民層の比較のためのカテゴリカル主成分負荷量...

... 178
表 6.1.1 通時の検討 距離行列：男性 ... 182
表 6.1.2 MSMs16部位の通時的検討：男性.. 183
表 6.1.3 通時の検討 距離行列：女性 ... 187
表 6.1.4 MSMs16部位の通時的検討：女性.. 188
表 6.2.1 MSMsの年齢差の時代変化に関するカテゴリカル主成分負荷量：男性........ 190
表 6.2.2 MSMsの年齢差の時代変化に関するカテゴリカル主成分負荷量：女性........ 192
表 6.2.3 性差の時代変化の検討のためのカテゴリカル主成分負荷量........................ 195
付表 1 縄文と弥生各集団の基礎統計量
付表 2 縄文と弥生各集団の基礎統計量（老年を含まない）
付表 3 縄文時代と弥生時代の各地域のMSMs22部位の左右差 基礎統計量
付表 4 縄文と弥生のMSMs基礎統計量
付表 5 加齢変化の諸相検討用基礎統計量：男性
付表 6 加齢変化の諸相検討用基礎統計量：女性
付表 7 中世各集団の基礎統計量
付表 8 中世年齢カテゴリーごとの基礎統計量
付表 9 性差の時代変化：距離行列
図目次

図 3.1.1 対象資料の列島における位置 ... 23
図 3.1.2 東北太平洋岸・三貫地地域対象人骨出土遺跡の位置 25
図 3.1.3 東北太平洋岸・三貫地地域遺物集成遺跡の位置 25
図 3.1.4 房総湾岸地域対象人骨出土遺跡の位置 .. 27
図 3.1.5 房総湾岸地域遺物集成遺跡の位置 ... 27
図 3.1.6 湖美半島対象人骨出土遺跡の位置 ... 28
図 3.1.7 津雲地域対象人骨出土遺跡の位置 ... 28
図 3.1.8 津雲地域対象遺物集成遺跡の位置 ... 28
図 3.1.9 土井ヶ浜地域対象人骨出土遺跡の位置 .. 30
図 3.1.10 土井ヶ浜地域遺物集成遺跡の位置 .. 30
図 3.1.11 三国丘陵域対象人骨出土遺跡の位置 .. 31
図 3.1.12 三国丘陵域遺物集成遺跡の位置 ... 32
図 3.1.13 福岡平野域対象人骨出土遺跡の位置 .. 33
図 3.1.14 福岡平野域遺物集成遺跡の位置 ... 33
図 3.1.15 広田地域対象人骨出土遺跡の位置 .. 34
図 3.1.16 吉母浜遺跡の立地 ... 35
図 3.1.17 吉母浜共同墓地における東西2群 ... 36
図 3.1.18 柿松白根遺跡と沢田遺跡の立地 ... 37
図 3.1.19 原田近世墓地立地図 ... 38
図 3.1.20 稲荷谷近世墓地の立地 .. 39
図 3.1.21 江戸市中対象遺跡地図 .. 40
図 3.1.22 江戸市中における埋葬様式と対応する階層 ... 42
図 3.2.1 Murdock(1937)で示された性別に基づく活動ごとの役割区分 46
図 3.2.2 対象部位一覧 .. 50
図 3.2.3 MSMs スコアの形態基準 .. 51
図 3.3.1 縄文時代人骨と弥生時代人骨の年齢構成 .. 54
図 4.1.1 縄文時代遺物組成 ... 62
図 4.1.2 縄文時代各地域遺物組成：漁具 .. 63
図 4.1.3 縄文時代各地域遺物組成：狩猟具、土壌具・石鎚、植物質加工具 64
図 4.1.4 食性分析の結果：縄文時代 ... 65
図 4.1.5 弥生時代遺物組成 ... 72
図 4.1.6 弥生時代遺物組成：狩猟および漁撈具 ... 72
図 4.1.7 木材加工具・石庖丁の頻度比較 ... 73
図 4.1.8 食性分析結果：弥生時代 ... 73
図 4.1.9 Murdock（1937）を基にした性分業：縄文時代に関係する活動のみ抜粋 ... 78
部位の平均値を用いたカテゴリカル主成分パターン：縄文時代と弥生時代の各集団のパターンの比較：男性パターンのみ

検定結果

図

3.18

図

3

図

114

図

4

図

5

図

2

図

1

図

105

図

104

図

103

図

100

図

99

図

98

図

97

図

96

図

95

図

94

図

93

図

92

図

91

図

90

図

89

図

88

図

87

図

86

図

85

図

84

図

83

図

82

図

81

図

80

図

79

図

78

図

77

図

76

図

75

図

74

図

73

図

72

図

71

図

70

図

69

図

68

図

67

図

66

図

65

図

64

図

63

図

62

図

61

図

60

図

59

図

58

図

57

図

56

図

55

図

54

図

53

図

52

図

51

図

50

図

49

図

48

図

47

図

46

図

45

図

44

図

43

図

42

図

41

図

40

図

39

図

38

図

37

図

36

図

35

図

34

図

33

図

32

図

31

図

30

図

29

図

28

図

27

図

26

図

25

図

24

図

23

図

22

図

21

図

20

図

19

図

18

図

17

図

16

図

15

図

14

図

13

図

12

図

11

図

10

図

9

図

8

図

7

図

6

図

5

図

4

図

3

図

2

図

1

図

0

図

-1

図

-2

図

-3

図

-4

図

-5

図

-6

図

-7

図

-8

図

-9

図

-10

図

-11

図

-12

図

-13

図

-14

図

-15

図

-16

図

-17

図

-18

図

-19

図

-20

図

-21

図

-22

図

-23

図

-24

図

-25

図

-26

図

-27

図

-28

図

-29

図

-30

図

-31

図

-32

図

-33

図

-34

図

-35

図

-36

図

-37

図

-38

図

-39

図

-40

図

-41

図

-42

図

-43

図

-44

図

-45

図

-46

図

-47

図

-48

図

-49

図

-50

図

-51

図

-52

図

-53

図

-54

図

-55

図

-56

図

-57

図

-58

図

-59

図

-60

図

-61

図

-62

図

-63

図

-64

図

-65

図

-66

図

-67

図

-68

図

-69

図

-70

図

-71

図

-72

図

-73

図

-74

図

-75

図

-76

図

-77

図

-78

図

-79

図

-80

図

-81

図

-82

図

-83

図

-84

図

-85

図

-86

図

-87

図

-88

図

-89

図

-90

図

-91

図

-92

図

-93

図

-94

図

-95

図

-96

図

-97

図

-98

図

-99

図

-100

図

-101

図

-102

図

-103

図

-104

図

-105

図

-106

図

-107

図

-108

図

-109

図

-110

図

-111

図

-112

図

-113

図

-114

図

-115

図

-116

図

-117

図

-118
図 4.4.7-2 弥生時代各集団の年齢ごとの MSms パターン：女性.................................119
図 4.4.8 縄文時代の房総湾岸・渥美半島・津雲の各年齢階段の MSms パターン：女性....120
図 4.4.9 弥生時代の広田・福岡平野・三国丘陵・土井ヶ浜の各年齢階段の MSms パターン：
女性 ...121
図 4.4.10 加齢変化の諸相カテゴリカル主成分分析結果：男性 縄文と弥生 第 1 主成分得
点..123
図 4.4.11 縄文時代と弥生時代の各集団の MSms スコアの性差 距離行列の結果 同一集団
の男女の距離の値を棒グラフ化したもの...125
図 4.4.12 縄文時代と弥生時代の男女間の MSms の差 カテゴリカル主成分分析第 1・2 主
成分得点の二次元展開図 ..126
図 4.4.13 性差と加齢変化：縄文時代と弥生時代 第 1 主成分得点 男性の値から女性の値
を引いた値を示す ..127
図 4.4.14 縄文時代の左右の MSms の差の性差：上肢のカテゴリカル主成分分析第 1,2 主
成分得点の 2 次元展開図 ...128
図 4.4.15 縄文時代の左右の MSms の差の性差：下肢のカテゴリカル主成分分析第 1,2 主
成分得点の 2 次元展開図 ...129
図 4.4.16 弥生時代の左右の MSms の差の性差：上肢のカテゴリカル主成分分析第 1,2 主
成分得点の 2 次元展開図 ...130
図 4.4.17 弥生時代の左右の MSms の差の性差：下肢のカテゴリカル主成分分析第 1,2 主成
分得点の 2 次元展開図 ...131
図 5.1.1 竿を用いた漁民の図 ...134
図 5.1.2 揚浜式製塩予想図 ...135
図 5.1.3 揚浜式製塩の過程 ...136
図 5.1.4 江戸市中埋葬様式と頭蓋形態 ...137
図 5.2.1 中近世の MSms パターンの比較：男性 ...139
図 5.2.2-1 中近世各集団の MSms パターン：男性 ...140
図 5.2.2-2 近世各集団の MSms パターン：男性 ...141
図 5.2.3 中近世集団間の Bonferroni 検定結果 ...142
図 5.2.4 カテゴリカル主成分分析第 2・3 主成分負荷量の二次元展開図：中近世男性143
図 5.2.5 漁撈の MSms パターンと主漁従農民（吉母浜）・製塩（沢田・村松白根）の MSms
パターン ..145
図 5.2.6 主漁従農民（吉母浜）と揚浜式製塩（沢田・村松白根）の MSms スコアのランク
の折れ線グラフ ..146
図 5.2.7 武士層の MSms パターンの比較 ..148
図 5.2.8 江戸市中武士層と庶民層の Mann-Whitney U 検定を用いた比較：男性149
図 5.2.9 中近世の MSms パターンの比較：女性 ..150
図 5.2.10-1 中近世各集団の MSms パターン：女性 ...151
図 5.2.10-2 中近世各集団の MSMs パターン：女性 ...152
図 5.2.11 中近世女性集団間の Bonferroni 検定結果 ...153
図 5.2.12 MSMs22 部位を用いたカテゴリカル主成分分析：中近世女性 ...154
図 5.2.13 主漁従農民と揚浜式製塩民の男女の MSMs パターンの差 ...155
図 5.2.14 江戸市中武士層と庶民層の Mann-Whitney U 検定を用いた比較：女性156
図 5.3.1-1 各集団の年齢ごとの MSMs パターン：中近世男性 ...160
図 5.3.1-2 各集団の年齢ごとの MSMs パターン：中近世男性 ...161
図 5.3.2 中近世各年代階の MSMs パターン：男性 ...162
図 5.3.3 加齢変化の諸相に関するカテゴリカル主成分分析：中近世男性 ...164
図 5.3.4-1 各集団の年齢ごとの MSMs パターン：中近世女性 ...166
図 5.3.4-2 各集団の年齢ごとの MSMs パターン：中近世女性 ...167
図 5.3.5 中近世各年代階の MSMs パターン：女性 ...168
図 5.3.6 加齢変化の諸相に関するカテゴリカル主成分分析：中近世女性 ...170
図 5.3.7 MSMs パターンの性差：中近世各集団 ...172
図 5.3.8 距離行列 各集団の男女の距離の値を示した棒グラフ ...173
図 5.3.9 中近世の性差に関するカテゴリカル主成分分析 第 1・2 主成分得点の二次元展開図 ...174
図 5.3.10 カテゴリカル主成分分析年齢ごとの性差：第 1 主成分 ...175
図 5.3.11 中世主漁従農民と揚浜式製塩民の個体を用いた主成分分析 2 次元展開図 ...177
図 5.3.12 江戸時代武士層と江戸市中庶民層の比較のためのカテゴリカル主成分分析 第 1・4 主成分得点を二次元展開した図 ...179
図 6.1.1 各時代集団の MSMs パターンの比較：男性 ...181
図 6.1.2 集団間差の時代間比較 第 2・4 主成分得点の二次元展開図：男性 ...184
図 6.1.3 各時代集団の MSMs パターンの比較：女性 ...186
図 6.1.4 集団間差の時代間比較 第 2・4 主成分得点の二次元展開図：男性 ...189
図 6.2.1 MSMs の加齢変化の諸相：男性 第 1 主成分得点を棒グラフした図 ...191
図 6.2.2 MSMs の加齢変化の諸相：女性 第 1 主成分得点を棒グラフした図 ...193
図 6.2.3 性差の時代変化：距離行列 ...194
図 6.2.4 性差：第 2・3 主成分得点二次元展開図 ...196
図 6.2.5 性差：第 2・3 主成分得点二次元展開図を時代ごとに分けた図 ...197
図 7.1.1 上腕の前方拳上 ...199
図 7.1.2 上腕の内転 ...199
図 7.1.3 上腕の外転 ...200
図 7.1.4 上腕の前方拳上 ...202
図 7.1.5 上腕の内転外転 ...203
図 7.1.6 上腕の外転 ...213
図 7.1.7 弥生時代各年代階の MSMs パターン比較 ...220
図 7.1.8 耕起作業と一本锄及び弥生中后期大阪府山賀遺跡に残るその痕跡……………………223
図 7.1.9 1961年秋田県湯沢市の代掻き作業 …………………………………………………224
図 7.1.10 弥生時代の紡績 ………………………………………………………………………224
図 7.1.11 上腕の後方挙上 ………………………………………………………………………224
図 7.1.12 上腕の外転 ………………………………………………………………………225
図 7.1.13 投石器の使用の仕方 …………………………………………………………………225
図 7.1.14 股関節の伸展 ………………………………………………………………………226
図 7.1.15 負荷を負う登山時に比較的高い要求が股関節伸筋に課せられる …………………226
図 7.1.16 手首の回内外 ………………………………………………………………………226
図 7.2.1 圆應寺寺域墓壙配置図と埋葬施設の比率 ……………………………………………239
図 7.2.2 遺跡ごとに見た埋葬様式の様相 ………………………………………………………240
第1章 序論

本稿の目的は、人骨から活動を読み取る1つの方法である筋骨格ストレスマーカー（muscle skeletal stress markers、以下MSMsと略す）を用いて、日本列島出土の縄文時代、弥生時代、中世（室町時代）、近世（江戸時代）に属する人骨を検討し、生業・生活様式の影響がどのようにMSMsにあらわれるのかを評価することで、身体活動の多様性とその変化を明らかにすることである。

職業・生業など文化的要因に由来する特定の骨形態の変異は数多く研究・報告され、骨に残るストレスマーカーから「骨形態から人間行動を如何にして解釈するか」という問題へのアプローチが行われている（Dutor 1986; Kelly and Angel 1987; Kennedy 1989; Mann and Murphy 1990; Larsen 1995,1997等）。その一環として、人骨の筋付着部位の変異のみを対象にしたMSMs研究は確立した（Hawkey and Merbs 1995）。この手法を用いることで、従来の断面示数や関節炎などの研究とは異なり、発達する筋や靭帯をより詳細に特定することが可能となり、身体にかかっていた負荷の大小だけでなく、どの部位にどの程度の負荷がかかっていたのかという、より具体的な身体の使い方を復元することが可能になると期待されている。しかし、MSMsも含めたストレスマーカー諸研究は、その多くが生業を漁撈や農耕のような大枠で類型化し、生業類型の中身が地域や時代で多様であるということをふまえず、世界的な比較研究を行ってきた。例えば、漕艇を伴う漁撈活動を行っていた集団はある特定の骨形態に変異がみられる頻度が高い、というようなレベルで研究が蓄積されている。しかし、漁撈活動と一言で表現される生業においても、網漁や釣漁など漁法は様々あり、舟のこぎ方にも地域的な違いは存在する。実際に行われていた漁撈活動の中身が類似しているかを検討せずに、漁撈活動としてひとくくりにして比較を行っているため、地域間の比較結果に違いが生じる場合も多い。このような結果の齟齬については、生業が地域的に多様である為という説明によってそれ以上を不問としてきたため、研究が個別事例化の方向へ進まざるをえなくなっていた。このような研究は、結果の読み取りの過度の単純化と受け取られ、多くの批判がなされている（Jurmain 1999; Jurmain et al. 2012）。

人骨は活動を実際に行ってきたヒトそのものであり、過去の人々の生業様式や生活様式、さらに、歴史時代においては文献記録に残らない人々の生業様式や生活様式に関する検討を行うことのできる有効な手段となりえる。しかし、生業様式とは身体活動のみを指す言葉ではなく、生存のための集団のあり方・活動・技術の総称であり、生活様式とはある社

1 ここで言う行動とは、身体活動・生理的ストレス・病原体への暴露・怪我・暴力・食性・歯の道具としての使用・食事・栄養学的影響・人口動態などを指す（Larsen 1997）。
2 剎密に生体において骨に付着するのは筋肉ではなく腱であるという意味で「筋付着部」は存在しない。しかし本稿では最も意味するところを表しうる用語として便宜的に筋付着部という用語を用いている。
第1章 序論

会の成員が共通して行っているような生活の送り方を意味し、所属階級・階層特有の行動の基準など、いわゆる価値観を含むものである。そのため、生業様式や生活様式を明らかにするという目的において、身体への負荷をあらわす人骨形質のみを用いた検討はそもそも不十分なものであった。本研究は、これまでの諸研究のように生業類型にあてはめた身体活動を人骨形質のみから復元するのではなく、考古学や文献学、文化人類学の成果と総合して評価を行い、生存のための集団のあり方・活動・技術の総称としての生業様式や生活様式の復元を試みるものである。

生存のための集団のあり方・活動・技術の総称としての生業様式や生活様式の復元を行うことで、過去の人々がどのような身体活動を行っていたかだけでなく、どのように活動を行ったか、すなわち性分業や年齢による活動区分を明らかにすることが可能となる。そのうえで、縄文時代、弥生時代、中世、近世の諸集団の生業活動を行う際の集団のあり方の差異や生活様式の差異のあらわれ方の時代変化を検討する。これにより、いわゆる自給自足的な平等社会であった縄文・弥生時代の諸集団と、専業的な生業活動を行っていた中世の諸集団、階層社会である近世の各階層集団における、集団間・集団内に生じる身体活動の多様性のあらわれ方を比較していく。本研究では、階層社会とそれ以前の社会の身体活動の多様性のあらわれ方と、ジェンダーや階層、地域などに基づく社会間・社会内の非均質性（inequality）は、歴史的に徐々に増加してきたという説を具体的に解明する。

本稿は以下の8章によって構成される。

まず、第1章では、上記の研究目的を詳述し、本稿の具体的な構成について述べる。

第2章では、先行研究を整理してその問題点を示し、本研究における取り組みについて述べる。これまでのMSMs研究の多くは、身体活動を復元することのみを目的とした個別事例研究として蓄積されてきた。しかし、身体活動だけではなく生業様式や生活様式を明らかにするという目的において身体活動の負荷を読みとるMSMsのみの検討はそもそも不十分なものであった。本研究では、身体活動を人骨形質から復元するだけでなく、考古学や文献学、文化人類学の成果と総合し、物質文化と自然環境、およびそれらを利用する際に形成される行動パターンと、それぞれが性別や年齢、個人の立場に基づいてどのように異なるのかを検討することで、「活動」・「技術」・「生存のための集団のあり方」の総称としての生業様式・生活様式の復元を目指す必要を示す。

第3章では、本稿で対象とした集団と用いた分析方法を示す。対象資料は、縄文・弥生時代および中・近世の人骨資料であり、その所属時期、年齢構成や出土遺跡の立地などの特性をまとめた。MSMsの観察対象としたのは上・下肢骨に付着する筋付着部22部位である。MSMsを含め、生業様式・生活様式を明らかにするために用いた分析方法を述べた。本方法は、身体活動の復元を指向する形質諸研究の中でとられたその方法よりも、発達する筋や韌帯を詳細に特定することが可能なものであり、具体的な身体の使い方を再現できるという点で本稿の目的に最も適うものである。

第4章では、先史時代、すなわち縄文時代と弥生時代の検討を行う。第5章も含めて、
対象としたすべての時代に関して、「活動」・「技術」・「生存のための集団のあり方」をそれぞれ明らかにしていく。まず、「技術」に関しては、考古学や文化人類学の研究成果から、各地域の集団がどのような道具を生業活動に用いたのか、地域間で道具の組成にどのような違いがみられるのかを明らかにする。そして、Murdock（1937）の性別分業の研究をふまえ、各活動が男女のどちらによって担われた可能性が高いかを推定する。また、生体計測の研究成果を検討することで、弥生時代北部九州・山口地域の大きな特徴である水稲農耕の確立によって、どのような筋発達をしうるのかを明らかにする。次に、具体的な身体の使い方を復元することが可能なMSMsを用い、対象集団のMSMsパターンの対比を行い、集団間のMSMsの類似と差異を明らかにする。この分析から地域ごとに行われていた「活動」を明らかにする。また、MSMsの男女差や年齢差を分析することで、これまで民族誌などから推定されてきた、性別や年齢に基づく分業・活動区分のあり方を具体的に検討し、「生存のための集団のあり方」を明らかにする。

第5章では、歴史時代、すなわち中近世の検討を行う。基本的な検討項目は第4章と同様である。まず、文献史学や民俗学的研究から各集団の行っていた生業諸活動や用いられた「技術」、及びその「生産体制」を推定する。そのうえで、対象集団のMSMsパターンの対比を行い、集団間のMSMsの類似と差異のあらわれ方を検討することで、各集団が生業活動に関わってきた諸「活動」や「生活様式」を明らかにする。さらに、MSMsの男女差や年齢差を分析することで、生存のための集団のあり方、すなわち、本章では性別・年齢に基づく活動区分のあり方や生活様式の性差・年齢変化を明らかにする。

第6章では、MSMsの集団間・集団内の差の時代変化を検討する。各時代の集団間の活動差のあらわれ方の違いを検討することで、ニッチの違いに基づいて生じる生業活動の活動差のあらわれ方と、個人の所属する階層に基づいて生じる活動差のあらわれ方と、どのように異なるのかを明らかにする。次に、集団内の男女差のあらわれ方や年齢に基づく活動の違いのあらわれ方の検討を行い、身体活動の性差や年齢差が集団ごとにどのように異なるのかを明らかにする。これらの結果をまとめ、集団間・集団内で生じる身体活動の差異のあらわれ方、地域性・時代性を明らかにする。

第7章では、縄文時代・弥生時代・中世・近世の各集団の道具の組成や文献記録、MSMsの結果を総合的に検討し、各集団の男女それぞれの活動や性別・年齢に基づく活動の区分を明らかにする。さらに、MSMsの集団間・集団内の差のあらわれ方がどのように異なり、それが時代によってどのように変化するのかを議論することで、本稿の最も重要な課題である、MSMsの集団間・集団内の差のあらわれ方の変化要因を考察する。

第8章では、一連の議論を総括し、本稿の結論および今後の展望について言及する。

以上が本稿の具体的な構成である。なお以下の章では、集団という用語の定義が縄文・弥生時代と中近世ではなく異なる。縄文・弥生時代の場合はニッチを共有する近接距離に居住していた人々を指す地域ごとのまとまりを意味し、中世の場合は集落を墓地を共有する専業的なまとまり、近世の場合は所属する階層ごとのまとまりをそれぞれ意味する。
第2章 研究史と問題の所在

本論文では、考古遺物や人骨形質から、過去の集団の生業様式・生活様式に関する検討をおこなっていく。そのために、まず本章第1節で実際に生きている集団を対象とした生業様式・生活様式研究の研究動向を視野にいれながら、第2節では過去の集団を対象とした生業様式・生活様式研究の現状について述べる。人骨形質を用いて身体活動を復元する研究、中でも特に本研究で用いるMSMsを用いた活動復元諸研究動向をまとめ、つぎに考古学・文献史学・民俗学的な生業活動の研究動向を整理する。その上で、第3節で本論文における問題の所在と課題を明らかにする。

第1節 現存する集団の生業に関する諸研究

第1項 文化生態学的生業論

19世紀後半以降、進化論的な視点から食糧採取・生産活動を指標として社会の基盤となる経済活動を生業とよび、主として確認される生業に基づいて狩猟採集社会や農耕社会というような人類社会の分類が行われた（岸上2008）。生業とその用語が内包する意味は多様であった（Lee2002）だが、多くの場合、狩猟、牧畜、農耕のような生産の一形態あるいは生存の手段とみなされていた（Leed1976）。

1960年代には、人間の社会と環境の関係を、環境を利用する技術に着目して明らかにしようとして文化生態学が生じた。スチュワードは生存活動と経済編成とそれに関係する社会・政治・宗教のパターンを文化の核とよび、生業様式とは食物獲得のための集団・活動・技術の総称であると述べた（スチュワード1979;田中1984）。この文化の核に関しては、経済に直結する生業活動のみを文化のコアとすることへの批判（Geertz1963）があるが、活動、およびそれに関係する諸要素と所与の環境との適応的な関係に関する議論が、生業様式（階層化以降の社会においては生活様式とする）に関する議論を中心として行われた。

スチュワードは、生存活動、経済編成とそれに関係するパターンである文化の核を明らかにするために、3つの手順を述べた。1つ目が、物質文化と自然資源の関係を明らかにすること、2つ目は、特定地域の特定の技術による生産・環境利用にみられる行動パターンを明らかにすること、3つ目は、ある環境利用にみられる行動パターンが文化の別の側面に如何にしてみられるかを分析することである（スチュワード1979）。

ヒトの生活と環境との関連を、生活の側から探求する学問分野である生態人類学において、人間の生活を構成する「活動」に関しては以下のように述べられている。ヒトの生活を構成する活動とは、食糧獲得活動や住居設営活動、身体保護活動、防禦活動、生殖活動、遊び活動、探査活動、休息と睡眠、儀礼活動、審美的活動といった各種活動から成る（渡辺1977）。さらに、各活動は、それぞれ「運動的側面」「道具的側面」「通信的側面」「社会
的側面」から成るものであり、所与の活動が個体群（集団）の中で行われる限り、他の個体との相互作用や連携といった関係性を生むものであると考えられている（渡辺1977）。このように考えると、個体の生涯にわたって継続した活動が総じて無作為で場当たり的なものではないといえる。

このように、生業様式・生活様式とは、生存のための集団のあり方・活動・技術の総称であるとまとめることができられる（渡辺1977）。これを明らかにするためには、対象とする地域の物質文化とその地域の自然環境および、それらを利用する際に形成される人間集団の様々な行動パターンの検討が必要である。

第2項 生業研究としての生活史研究

生業を考えるという研究において、重要な概念は生活史理論（スプレイグ2004）である。生活史理論とは、生物における生存と繁殖のスケジュールを適応との関連で説明するものである（池口・佐藤2014）。以下に、生活史理論と関連する事例研究を紹介する。

煎本（1977）は、房総湾岸の海村の海産物漁撈採集活動における仕事集団の性別・年齢構成とその時空間の区分を検討し、「性差や年齢差をはじめとする異質な身体的特徴を背景に持つヒト個体が、それぞれにどのような活動を行い、各個体の集合であるヒト個体群が、機能的・構造的に全体として、環境との間にどのような時間・空間構造を形成するのかという過程を明らかにしなければならない」と述べている（p.252）。

沖縄県石垣市新川地区の漁撈集団の年齢による仕事の配分を調べた口蔵（1977）によると、潜水活動と舟上活動では主体となる年齢層が異なり、潜水活動は20〜30歳台、舟上活動のうち陸から近い礁内での一本釣り漁は50歳台を中心として行われ、沖合での一本釣り漁は40歳台、最も陸から遠い深海での一本釣り漁は30歳台を中心に行われる。他にも各種漁撈活動において、このような年齢における活動域の区分があることが指摘された。行われる漁撈活動は、対象の特質によって生じる気温や水温、潮のサイクルといった環境との関係で構造化される活動系であり、年齢による活動域の分化をとらえることができる（p.252）。

男女それぞれの食料獲得・消費量の年齢別推移を示したKaplan et al.（2000）は、アチェの男女では年齢ごとに食糧獲得量と消費量が推移し、男女間でその推移の仕方が大きく異なることを指摘している。さらに、男女の資源ごとの平均獲得率の年齢別推移をアチェとヒウィで比較検討し、アチェとヒウィの男性では動物の肉の獲得率のピークが35〜40歳くらいであること、ヒウィの女性では根茎類の獲得率のピークが50歳前後にある一方でアチェの女性では30歳前後でピークを迎え、その後はほぼ同じような獲得率で推移することを指摘している。Walker and Hill（2003）は、アチェの男女別の身体能力の年齢別推移を検討し、男性は20〜30歳くらいでピークを迎えその後の加齢とともに緩やかに減少するが、女性の場合は男性より若い段階で弱いピークを迎え、その後は大きく変化しない傾向があることを指摘した。このように、身体能力の推移の仕方も狩猟採集民の男女では異なる。
第2章 研究史と問題の所在

一方、マヤの定住農耕民の一日の労働時間の年齢別平均の推移を検討した Kramer and Boone（2002）は、農耕民の女性では15歳前後、男性では20歳前後で生産に携わる時間がピークに達し、その後は、男女で傾向がやや異なるものの、男女とも概してほぼ同じような生産活動従事時間で推移することを指摘している。このように従事する活動によって、性別や年齢ごとにその活動への関わり方が異なるということが多くの民族の調査で指摘されてきた。生業活動は、地域環境の季節性や行われる場所の環境、対象の特性に応じて、集団内のどのような個人が行うかが異なり、それは集団ごとに構造化されている可能性があるといえる。そのため、活動に従事する人々の性別や年齢の区分の在り方は、これが必ずしもどの集団にとっても厳格な制度として存在するものではないとしても、生業活動がどのように行われたかを考えるうえで極めて重要な視点であるといえる。

第2節 過去の集団を対象とした生業・生活様式諸研究

第1節では、研究が行われた時に現存していた集団を対象とした生業様式・生活様式研究がどのような観点から行われてきたかを述べた。実際に生きている人々を対象とした生業諸研究に対して、第2節では、過去の集団を対象とした生業活動に関する研究がどのような視座から行われてきたかを整理していく。

第1項 人骨諸形態に基づく生業・生活様式諸研究

活動を行う主体であるヒトの骨形態から、過去の人々の生業や生活様式を明らかにしようという研究は数多く存在する。骨形態は、長期的な身体的負荷に対応するために、個体の生涯を通して適応的に変化していく（Ruff et al. 2006）。後天的な要因によって人骨形態が変化することを前提に、人骨にみられる病変や特異な形態変異をある特異な職業や生業、生活習慣の集団・個人と関連付けて説明する研究を主流として、研究事例がこれまで蓄積されてきた（Angel 1946; Ortner 1968: Kennedy 1989 等）。このような人間の諸活動と骨形態を関連付ける研究の1つとして、狩猟採集から農耕への移行に伴い、骨形態がどのように変化したかという研究が世界各地で行われてきた（Cohen and Armelagos 1984: Larsen 1995: Bridges 1989 等）。これらはマルクス主義の影響を受けた G.チャイルド（1957）によって提唱された新石器革命の研究をその基礎としている。新石器革命とは、農耕革命、あるいは食糧生産革命、定住革命など様々な観点から研究されているが、基本的には狩猟採集経済から農耕経済への生業の変化が、人口の増加や定住化をもたらし、社会の様々な面に変革を生じさせ、階級・国家の形成を促したとするものであった。社会に変革をもたらしたこの移行がヒトにどのような影響を与えたのかに関する研究は、まず1960年に Braidwood による「農耕への移行により生活のあらゆ
第2章 研究史と問題の所在

その面が改善され、労働の負荷は減り、安全になった」という仮説を検証するものであった。西欧文化を諸文化の頂点におき、よりよい時代へと絶え間なく進化してきたとする観点が支配的であったという時代背景をもじ、様々な分野で多くの研究がなされていったが、これに対しては、Lee（1968）によるKungの研究から、狩猟採集民の労働負荷や健康状態はそこまで悪いものではなかったとする、相反する研究成果の提示もなされた。この議論への解決策の1つとして、狩猟採集から農耕への文化的移行が過去の人々にとって、いかなる影響をあたえたのかを検討するため、古人骨を用いた数多くの研究事例が提示された。

Cohen and Armelagos（1984）は、疫病の頻度を比較し、農耕の確立と定住化という文化的適応の影響を明らかにする研究を試みた。これにより、この文化的移行が骨形態に与えた影響がいかなるものであったかをモデル化し、骨形態からその移行の読み取りを可能にしようとする試みでもあった。

Cohen and Armelagos（1984）の研究が報告されて以来、病変やストレスマーカーの出現頻度の文化間・時代間の違いの検討によって、文化や社会の特質を明らかにする研究が行われるようになっていく。例えば、新石器革命・中世の都市化・産業革命・新大陸における奴隷の生活状態の研究（Cohen and Armelagos 1984; Bridges 1992; Larsen 2006; Klaus et al., 2009; Eshed et al., 2010; Temple 2010; Christensen et al., 2013等）が挙げられる。分析対象となった項目と解明対象としては、口腔衛生から食性と栄養状態を、歯の咬耗度から調理法と歯の道具としての使用などの生活痕跡を、感染症やクリブラ・オルビタリア、エナメル質減形成などから健康・栄養状態を、関節炎・四肢骨の骨体断面示数から身体活動や身体にかかる負荷を復元する研究がある（Larsen 1995）。しかし、研究事例の蓄積とともに、古病理やストレスマーカーの出現頻度の多様性の大きさが明らかになり、文化の変化や差異に基づく一般的な結果の傾向を読み取ることができず、研究が個別事例的に進行している。

その中でも身体活動や身体にかかる負荷の復元を目的とした研究は、活動の主体である人から生業・生活様式そのものを再構築することを目指した研究であった。しかし、関節炎や骨断面形状の分析結果は、ストレスマーカー研究の中でも地域間の違いが大きく、一定の傾向がみられないこと、同じような結果が地域や時代、報告者が異なると全く異なる要因で説明されていることが問題視されている。これらの諸研究に対しては、結果が予想に合わないという批判がなされている（Jurmain 1999）。

このように研究成果の地域・時代間の齟齬が明らかになっていくにつけ、骨形態から身体活動を復元するという研究は、個別事例化していき、統合的な視座を失っている。

しかし、その中で、Swärdstedt（1966）の中世スウェーデンの身分とエナメル質減形成の相関に関する研究（地主・小作農・農奴の比較）、Van Gerven et al.（1981）のメロエ王国周辺域ヌビアの諸集団の健康状態と国家の盛衰との関係についての研究は重要なものであった。これらの社会的な格差と骨形態の相関についての研究をうけて、Armelagos（2003）は、新石器革命、中世ヨーロッパにおける都市化とペットなどの大流行、産業化とそれに
伴うスラムの形成における疫病の拡大、21世紀における長寿化に伴う習慣病の出現、グローバル経済の拡大と環境の悪化に伴う感染症の再流行を概観した。そして現代社会の特徴である資源へのアクセスの格差に反映される病気の分布や頻度の非均質性（inequality）は社会の進化の歴史の一側面であり、ジェンダー・階層・集団などに基づく社会間・社会内のギャップは、歴史的に徐々に増加してきた可能性があると述べている。

第2章 研究史と問題の所在

第2節 Musculoskeletal stress markers 方法の確立と展開

最初に提出されたHawkey and Merbs (1995)は、AD1,000から現在まで続くThule文化のイヌイットを対象とするものであった。この集団の生業に関しては2つの説が提出されており、全時期を通じて捕鯨活動が主な生業であったという説と、前期Thule文化期には主に捕鯨活動を行っていたが、AD1,200の気候変化の影響で、後期Thule文化期になると鯨の到来が減り、アザラシ猟へ移行したとする説である。この2つの説を検証するため、Hawkey and Merbs (1995)は、上肢20部位のMSMsを評価し、その発達パターンの比較検討を行い、前期と後期集団の発達パターンのピークが異なることから移行説を支持するという結論を提示した。この2集団でみられた差を具体的に述べると、前期では顎骨の肋鎖靭帯に、後期は大胸筋にピークが存在した。Hawkey and Merbs (1995)はこの論文の中で、このピークの違いは、気候変化に伴い鯨漁からアザラシ猟へ変化したためと説明しており、捕鯨活動の頻度の減少の結果であると主張した。すなわち、前期Thule文化の男性の肋鎖靭帯の発達
第2章 研究史と問題の所在

は、「動を漕ぐ」際の肩閉節の急速・反復的な回旋運動によって促進されたものであると指摘した。また、前期Thule文化の男性では、肋鎖靭帯のスコアが最も高く、次いで大胸筋・三角筋のスコアが高いという結果が得られた。大胸筋や三角筋は、動をひく際の上腕の曲や内転、および水中で動を元の位置に戻す際の上腕の外転や側方への回旋に強く作用するためスコアが高くなると述べられている。Hawkey and Merbs（1995）の研究の重要な成果は、漕艇活動を伴う漁撈において肋鎖靭帯が顕著に発達する傾向を示したことに加え、これまで「経験的に観察する」のみであったものを、スコアを用いて基準化したことである。

中でも方法論に関する研究が最も多く、数多くの観察基準や観察方法が出された。現在では、大きくわけて2つの方法論が提出されている。Hawkey and Merbs 1995の方法論を用いる研究と、2009年にCoimbra大学で行われたworkshopの参加者達によって共有される方法がある（Villotte et al., 2010）。

ヨーロッパ（イタリアとポルトガル）教会に残る人骨資料のMSMs\(^1\)を用いて非線形主成分分析・クラスター分析を行い、身体的な活動とMSMsの間に一定の相関が見いだされることが指摘しており、MSMsは身体活動を復元するにあたって一定の有効性を有するものであると考えられる。

しかし、Hawkey and Merbs（1995）においてその視座とされたような、MSMsのパターンを析出し、対象集団において想定される活動と発達する部位に齟齬がないことをもってそのパターンの形成要因を考察し、身体活動を復元する、あるいは身体活動の変化を読み取るという研究自体があまり多くはない（Hawkey and Merbs 1995；Steen and Lane 1998；Eshed et al. 2004；Lieverse et al. 2007）。これは、Weiβ（2003）の研究以降、MSMsのスコアをZスコア化したうえで合算し、その大小を比較するという研究が多く、MSMsパターンの読み取りではなくスコアの大小の比較が研究の主流となっているためである。

しかし、このいわゆる「漁撈的なMSMsパターン」にみられるように、MSMsパターンが類似するという結果のみから、全く異なるコンテクストをもつ集団の活動の復元がなされている。例えば、Eshed et al.（2004）やLieverse et al.（2009）では、MSMsパターンがHawkey and Merbs（1995）で指摘された漁撈的なパターンと類似するという点のみから、対象集団が舟を漕ぐという活動に従事した可能性を指摘している。

Lieverse et al.（2009）では、バイカル湖沿岸のKitoi文化とISG文化期の男性が漁撈活動（paddling）を行っていたと述べられている。しかし、この地域はHawkey and Merbs（1995）で対象とされたような、いわゆる海獣狩猟がおこなわれた地域ではない。アザラシ猟は確かに行われていたが、季節的なもの、特に冬季の氷穴猟ではなく、初春に雪洞を探して狩猟を行ったことが、アザラシの牙に残る成長線から捕獲時期を推定するという研究法によって指摘されている（小畑 2001）。はるかに重要であった魚種が、遺存体からチョウザメ、カワメンタイ、タイメニ、カワカマスであると指摘され、これら大型魚に用いられ、考古遺物として残っているものは、銛、釣針、錘である（小畑 2001）。これらの大型魚は、産卵に適した大きな湾や河口域に生息し、夏に岸沿いに広がり、早春に川へ移動するという季節性をもっていた。このような魚種に対して行われたのは、銛用いた突き漁、流し網漁や敷網漁、引網漁などの河川に網をかけるという各種網漁や、釣漁である。特にISG文化期には錘と釣頭鉤が出現することも指摘されている（小畑 2001）。

Lieverse et al.（2009）で対象とした両集団は共にいわゆる漁撈的なパターンを示すことが指摘されているが、MSMsパターンの形成要因として、漁撈活動のみが想定されている。漁撈活動が全く影響を与えなかったり主張するわけではないが、外洋にでる漁を行う必要

\(^1\)本稿ではMSMsとして一貫して表記するが、教会資料を用いる諸研究はECという用語を用いている。
第2章 研究史と問題の所在

のないバイカル湖沿岸域のMSMsパターンの形成要因を、Hawkey and Merbs（1995）の研究で指摘されていた「いわゆる漁撈的なMSMsパターン」の類似を根拠に、漁撈活動のみで説明するのは理に適っていない。このように、MSMsのみあるいはその差異や類似のみから、多くの研究は行われている。例えば、瀧川（2015）では、縄文時代（北海道と本州：蝦島・姥山・吉胡・津雲）と弥生時代（土井ヶ浜と北部九州、種子島集団）のMSMsの地域的多様性を検討した研究が挙げられる。主成分分析の結果、縄文時代では、北海道と本州の集団のMSMsが異なり、この要因を北海道縄文集団が海洋狩猟を行っていたためであると述べている。弥生時代では土井ヶ浜と北部九州、種子島集団を比較し、種子島集団のMSMsが異なり、この要因の1つに種子島集団は水稲農耕を行っておらず、狩猟・漁撈・採集に依存していた点を指摘している。また土井ヶ浜集団も北部九州域の集団とMSMsの傾向が同じではないという結果を示し、土井ヶ浜地域の人々は海洋性の漁撈に携わっていた可能性を指摘している。さらに、北部九州集団は、平野部で集約的な水稲農耕を営んでいたため大腿四頭筋や下腿三頭筋といった下肢の筋に負荷が強くかかったと指摘している。

しかし、本州の縄文時代の集団のMSMsの差異については、陸獣の狩猟と海洋性の漁撈に従事していたことを指摘するのみである。狩猟や漁撈、採集活動は極めて多様な活動を内包する類型であるにもかかわらず、その具体的な内容は明らかにされていない。また、瀧川（2015）の研究では、弥生時代の北部九州集団（金隈・隈西小田・永岡遺跡）は、平野部で集約的な水稲農耕を営んでいたとしてまとめている。しかし、金隈遺跡の立地する福岡平野と隈西小田遺跡や永岡遺跡の立地する三国丘陵域では状況は大きく異なっている。三国丘陵域には広い平野部が存在せず、そのため福岡平野のような広大な水田を展開できるような環境であったとは考え難い。

Lieverse et al.（2009）や瀧川（2015）の研究で示されるように、MSMsによる身体活動の復元に関する研究は、漁撈や農耕のように同一に類型化される生業ですらも、使用された道具や活動の行い方が、地域・時代・対象とすることのできる動植物ごとに極めて多様であるということを加味せずに行われている。

他にも、生業復元とは異なる観点からのMSMs研究もわずかではあるが行われている（Eshed et al.2004；米元 2012；Schrader 2015）。Eshed et al.（2004）の研究では、レヴァントの狩猟採集農耕移行に伴うMSMsの変化の検討を行った。その結果、農耕の開始によって、身体にかかる負荷が増加したこと、またその傾向は女性により顕著であると述べられている。この生業活動への関わり方が、農耕の開始・確立に伴う男女で変化するという結果は、社会内部の男女の在り方が変化した可能性を示唆するものでもあった。

また、米元（2012）、Schrader（2015）の研究は、これらは身体活動を復元するというより、ある社会の内部に存在する階層による活動区分がMSMsによくあらわれることを指摘した研究である。Schrader（2015）ではスーダンのKermaにおける主体部に埋葬された“chief”的な墓とそうでない墓 (“sacrifices”)では“chief”のほうがMSMsスコアが低い傾向にあることを示した。この2つの研究は、対象とした時代や地域は全く異なるが、階層に基づ
社会の分化が身体活動によく反映され、階層が異なると生活様式が大きく異なるようになることを示した研究である。これらの研究は、これまで骨形態から身体活動を考察するという研究ではみられなかった社会内部の非均質性（inequality）を、MSMs研究から明らかにしえる可能性を示唆するものであった。

第3章 各時代の考古学・文献史学・民俗学的生業研究

過去の集団を対象とする考古学において、生業研究は、自然のもつ生産力を得る手段である道具、および対象とした食料の残渣を通してなされてきた（渡辺1973、赤澤1984等）。

基本的に狩猟採集経済であったとする（小林1983）繊文時代の生業は、狩猟・漁撈・採集からなると考えられている。繊文時代の早期に貝塚の形成が開始し、前期にはドングリの利用が始まり（西田1980）、中期以降にアカ抜き技術が開発されトチの実の利用が行われ（渡辺1979）、徐々に食糧対象物を拡大させてきたことも知られている。

このように、繊文時代の生業活動に関しては、数多くの研究が行われてきた。繊文時代の間に次々と食糧対象物を拡大させてきたこと、ある程度の栽培活動や焼畑農耕が行われていたことは多くの研究が示す通りであるが、基本的には狩猟採集経済社会であること（渡辺1983；山本2002）もまた異論の余地のない事実であろう。狩猟採集経済の枠内で、漁撈活動における地域的な違いや、採集対象となった植物の地域的な多様性、植物栽培や畑作・焼畑の比重の地域・時期的多様性が指摘されている（戸沢1983；山崎1983）。

また、繊文時代の生業活動が、季節的な特性に応じて、狩猟や漁撈、採集という様々な諸活動を計画的に組み合わせて行っていたと多くの研究者が考えていることは、繊文カレンダーという概念によって明らかである（小林1975,1983）。しかし、生業活動に関する諸研究は、1種類の遺物あるいは、採集活動などのように生業の1つの側面に焦点を当てた研
第2章 研究史と問題の所在

研究が主体であり、その意味で生業活動を体系的にとらえ、全体像を把握するような研究は多くはない。

弥生時代を特徴づける肝心の灌溉水稲農耕の実態に関しても、数多くの研究がなされてい る。水田遺跡は、北海道を除いてほぼ全国で確認されている（八賀 1997; 工楽 1997）。 小区画面積の水田から100㎡に及ぶ水田まで大小さまざまな形態と面積をもつ水田址の出土が確認され、各地の地形環境に規制されて水田造成が行われていることが指摘されている（八賀 1997）。水田耕作に用いられた木製品を含む道具や道具の鉄器化に関する研究（佐原 1985; 黒崎 1985, 1997; 町田 1985等）、収穫の仕方の研究（山崎 1987; 甲元 1997）も行われ、水稲農耕をどのように行ったかは、その地域性も含めて具体的に明らかにされて きている。

水稲耕作の他にも、ドングリや豆類、アサリやタニシ（片岡 1996）イチイガシの炭化子葉の産出が確認されており（小林・沖田 2007）、畑作や採集活動も継続されていたと考えられる。縄文時代と同じように遺跡から出土する動物骨の検討から、狩猟活動の実態が明らかにされている（金子 1997）。漁撈活動については、遺跡から出土する漁具を対象に行われている（和田 1997）。このように、弥生時代において、水稲農耕の実態の地域性やそれ以外の生業活動の地域的な多様性が存在していることが諸研究から明らかになっており、弥生時代以降も現在の農民のように水稲農耕のみを行っていたと考えることができるような証拠はない（金関 1997; 橋口 1999）。

しかし、弥生時代の生業研究も、縄文時代と同様で、1種類の遺物あるいは、生業の1つの側面に焦点を当てた研究が主体であり、その意味で生業活動を体系的にとらえ、全体像を把握するような研究は多くはない。

また、考古学の分野において、このような諸活動を行ったのは男性か女性か、という性別に基づく分業やその有無、年齢による活動区分やその有無など、に関しては民族学的な研究を援用して推察が行われている（小笠原 1990）。

一方、中近世の生業や生活様式に関する研究は、考古学的な研究ではなく、文献史学や民俗学的研究が主体である。
第2章 研究史と問題の所在

中世末期から、戦国大名の本拠地への家臣の集住策が進み、それに伴い職人・商人も集住してくることで城下町が形成された。城下町は純粋都市民としての武士階層・手工業者・商人の役割となった（杉森 2001）。また、1588年豊臣秀吉の刀狩令による兵農分離・農商分離政策によって、武士と百姓、町人である商人・職人という身分の分離が決定づけられ、さらに江戸幕府の身分固定化政策で士農工商の分離が決定的となり、城下町では身分に応じて居住地がわけられ、身分ごとの生業・服装・所作の固定化が進行した（大津など 2004）。将軍の城下町、首都として発展した江戸には、旗本・御家人が集住し、大名の江戸藩邸もおかされたので、武家人口だけで50万人に達する一大都市となった（大津など 2004）。
第2章 研究史と問題の所在

各地に残されていることと関連すると考えられる。各地域の地域史を明らかにする手段として遺跡の調査は位置づけられ、生業活動や生活様式あるいは中世以降の社会像に関する研究は文献記録や民俗学的記録を検討することで行われている。

第3節 問題の所在

これまでのMSMs研究の多くは、漁撈や農耕のように同一に類型化される生業ですらも、使用された道具や活動の行い方が、地域・時代・対象とすることのできる動植物ごとに極めて多様であるということを検討してこなかった。このような状況で、他地域で行われたMSMsの研究成果との比較を行ってきたために、MSMsの類似や差異の要因は具体的には明らかにされていない。このような状況は、MSMsよりも先に方法論として確立した関節炎や四肢骨の断面形態などの諸研究も同様であった。しかし、これらの研究においては、2011年に出版された「Human Bioarchaeology of the Transition to Agriculture」では、身体活動は、周辺の環境や用いる道具によってそもそも地域的に多様なものであり、「ある生業はこういう傾向がでる」というような一般化は出来ないという指摘がなされた（Stock and Pinhashi 2011; Larsen 2011等）。このように、人骨形質を用いた身体活動復元の研究は、地域間で相互に参照することのできない個別事例研究として研究が蓄積されているだけであり、MSMs研究も同様の傾向を示している。そのうえ、人骨形質を用いた身体活動復元は、遺跡や一地域の生業関連の道具を徹底して検討し、遺跡に残る生産の痕跡を洗い出し、その遺跡や地域の過去の状況を復元する考古学的な研究と比べると個別事例研究としてもあまりに中途半端である。

さらに重大なMSMs研究の問題点としては、身体活動を復元することを指向しておこなわれてきたことにある。しかし、道具や対象とした動植物に共通性がみられる場合のみMSMsから活動を復元することが可能であるとすると、それらはあまりに地域的に多様であり、個別事例的な研究にならざるをえない。また、全く異なる活動でも発達する筋は類似する場合なども考えられるため、MSMs研究のみから身体活動を復元することは困難である。

MSMs研究の利点は、活動を行っていた当事者である人間そのものを対象としているという点であり、考古学的な証拠や文献記録から推定される身体活動の検証を行うことができる点、考古学・文献史学の研究で直接的に復元することのできない、性差や年齢差に基づく活動区分や、文献記録の無い人々の活動を実証的に明らかにすることができる点である。

そのため、本研究においては、各地域で、使用された道具や活動の行い方、対象とすることのできる動植物は何であったのかを1つ1つ検討し、考古学・文献史学などの生業研究と総合して、MSMsパターンの差異や類似の要因を明確にしていく。そのうえで、各集団男女間のMSMsの差や年齢間のMSMs差を明らかにする。この手順を採ることで、対象とする地域の物質文化とその地域の自然環境および、それらを利用する際に形成される

15
行動パターンの検討が可能であり、生存のための集団のあり方・活動・技術の総称としての生業様式研究を行うことができると考える。

さらに、これまでMSMsを用いた研究においては、身体活動を復元する以上の目的が欠けていたといえる。身体活動は、道具や使い方、立地や環境によっても地域的に多様なものであるが、口蔵（1977）で指摘されているように、人々が生涯に活動する活動はどの集団においても無秩序に多様であるわけではない。これまでの研究のように身体活動そのものをMSMsのみから読みとるだけでなく、MSMsの集団ごとの違いを何を意味するかを考える必要がある。そのために、本論では、集団内のMSMsの違いのあらわれ方が地域差や階層差によってどのように異なるのか、またそれは、性別や年齢に基づいて集団内のMSMsの違いを検討した場合、集団ごとにどのように異なるのか、を検討する。自給自足的でいわゆる平等社会であり、構成員全てにある程度協働していた社会の集団間・集団内の身体活動の違いのあり方と、専業化や階層化が進み、特権的で生産に携わらない階級が確立した社会の集団間・集団内の身体活動の違いのあり方は大きく異なるものであることが予測される。このような社会構造の異なる集団の比較を行うことで、集団間・集団内のMSMsにあらわれる身体活動の違いとその多様性を形成された要因を明らかにすることができる。身体活動の多様性の通時的変遷を明らかにしてすることで、社会内部の非均質性（inequality）の進展が、人間集団にいかなる影響を与えたのかという命題に対してアプローチする。

上記の命題に対してアプローチするために、本研究では、基本的には、自給自足的で様々な活動を組み合わせて行われていた縄文時代と弥生時代の諸集団と、専業化が進展した社会である中世の諸集団、近世江戸の上位階層である武士を含めた階層社会の諸集団を対象とする。

まず、本稿で対象とした全集団の生業様式・生活様式を明らかにするために、それぞれの集団の技術・活動・生存のための集団のあり方を検討する。

1つ目の検討項目が、「技術」である。縄文時代と弥生時代では、人骨出土遺跡の周辺に存在する集落遺跡・貝塚から出土した遺物の集成を行い、動植物遺存体・食性分析の研究成果を参照することで、各地域の集団が用いた道具とその対象を明らかにする。遺物に関する研究は、考古学的に数多く行われているが、狩猟民・漁撈民・採集民のように種類ごとに行われることが多く、遺物を網羅的に、かつ人骨出土地域周辺に限定して検討した研究はこれまで行われていない。そのため、人骨出土地域周辺の遺物組成を集成し、その地域間の違い、動植物遺存体・植物の差異や食性分析の研究成果から、各地域の生業活動に用いた道具や対象とした動物の種類・時代別の技術的特性を明らかにする。

中近世の集団の諸活動に関しては、それぞれについての民俗調査・文献記録・考古学的な研究成果をふまえ、用いられた道具や行われていた活動を推定する。

2つ目の検討項目が、「活動」である。「技術」の検討で、明らかにした用いられた道具や行われていた生業活動の多様性をふまえ、狩猟採集民や漁撈民、農耕民など同一類型とされる生業における多様性を明示し、実際に行われていた身体活動の集団間の類似と差異を推
第２章 研究史と問題の所在

定する。MSMsパターンの評価、集団間比較を行い、集団間のMSMsの類似や差異を男女別に検討する。男女別に集団間比較を行う理由は、MSMsのスコアとして比較したときに男性の方が女性よりもスコアが概して高い場合が多く、男女間のMSMsの違いが集団間の違いのバイアスとなる可能性がある為である。男女別にMSMsの集団間比較を行い、各集団に特徴的なMSMsの発達の仕方を検討することで、MSMsにあらわれる「身体活動」を明らかにする。

対象とした全ての集団で同様の検討を行うが、縄文時代と弥生時代の場合のみ、身体活動の地域的な多様性を検討した後に、水稲農耕の確立以前と以降の活動の変化とその影響の有無を明らかにするために、縄文時代と弥生時代の大枠での比較を行う。この検討においてはまず、生体計測の研究で提示されている農民と漁民の四肢周径の比較を行い、水稲農耕という特定の諸活動の確率によってどのような筋が発達しやすいのかを推定する。そのうえでMSMsの時代間比較を行う。この検討から、日本列島における狩猟採集経済から農耕経済への移行に伴い身体にかかる負荷や身体活動そのもの、あるいは男女の生業への係り方がどのように変化したのかを検討する。

最後に、「生存のための集団のあり方」を検討する。従事する活動によって、性別や年齢ごとにその活動への関わり方が異なるということが文化人類学的研究から指摘されていることから、活動に従事する人々の性別や年齢の区分のあり方は、これが必ずしもどの集団にとっても厳密な制度として存在するものではないとも、生業活動や所属する階級によって異なる可能性がある。そのため、生業活動や生活様式を行うにあたって、各集団のどのような個人がそれを担ったのかを明らかにする。

「生存のための集団のあり方」を検討する方法は、以下の通りである。

まず、縄文時代と弥生時代の性別に基づく分業に関しては、考古学的な研究を参考として集成した個々の道具の用いられ方をふまえ、Murdock（1937）を援用し、各活動が男女どちらを主体として行われる場合が多いかを推定する。中近世の集団の諸活動に関しては、それぞれについての民俗調査・文献記録・考古学的な研究成果をふまえ、各集団の生産体制を推定する。その後、男女間のMSMsの差のあらわれ方や年齢段階ごとのMSMsの差のあらわれ方、MSMsの左右差の性差を検討することで、性分業の在り方や年齢に基づく活動区分のあり方を明らかにする。

さらに、中近世に関しては、性差や年齢差だけでなく、ある生業集団や階級集団に属する個人のMSMsの検討も行う。中世の漁撈民と揚浜式製塩民、江戸時代の武士層と庶民層の個体のMSMsを比較し、集団の平均値だけでなく個体レベルに至るまでMSMsが類似するか否かを検討する。専業化の影響によって同じ専業集団に属する個体のMSMsがどのように分散するか、また階層化の影響によって所属する階級ごとに生活様式が異なる場合、個体のMSMsがどのように分散するか、という分析から、個体の活動がどの程度規制されていたのか、そしてそれがMSMsにどの程度あらわれるのかを調べ、専業化・階層化が進行した社会の生業活動の区分や生活様式の浸透度を明らかにする。

上記の3つの項目の検討を行うことで、考古学・文献記録・民俗学的研究とMSMsの検
第2章 研究史と問題の所在

討を総合して個々の集団の生業諸活動の地域的多様性、生活様式の階層差を明らかにする。さらに本稿では、身体活動の多様性の通時的変遷を検討し、社会内部の非均質性（inequality）の進展が、人間集団の身体活動の多様性にいかなる影響を与えたのかを明らかにする。特に本稿で対象とする、自給自足的でいわゆる平等社会で、構成員全てが程度協働していた社会の集団間・集団内（性差・年齢差）の身体活動の違いのあり方と、専業化や階層化が進行し、特権的で生産に携わらない階級が確立した社会の集団間・集団内（性差・年齢差）の身体活動の違いのあり方は大きく異なるものであると予想される。そのため、集団間のMSMsパターンの類似や差異、MSMsパターンの性差・年齢差について、対象とした全ての時代の比較を行い、集団間の差のあらわれ方、性差のあらわれ方や年齢による差のあらわれ方が、時代ごとにどのように異なるのかを検討する。これにより、人間社会の内部にみられる非均質性（inequality）が階層社会と非階層社会でどのように異なるのかを具体的に明らかにすることが本研究の課題である。
第3章 資料と方法

第1節 資料

第3章第1節では、本稿で用いた人骨資料を帰属する時代ごとに述べていく。縄文時代と弥生時代の各遺跡に関しては、地域ごとに、中世に関しては遺跡ごとにその特性を述べていく。

本稿では、日本列島から出土した縄文時代・弥生時代・中世・近世の人骨の資料を用いる。日本列島出土の人骨資料は、精緻な発掘によって、出土した人骨のコンテクストが基本情報として保存されているため、人骨以外の資料から、各時代の集団間の生業活動や生活様式にどのような類似や差異があったか、に関する詳細な検討を行うことが可能である。このような資料を用いることで、従来の人骨を用いた活動復元の諸研究のように、「分析結果に都合のいい解釈を当てはめているような」研究が多いという状況を克服することが可能となる。

また、研究対象地域の活動復元を最終的な目的とするのではなく、本稿では社会内部の非均質性が集団間・集団内の身体活動の差異にどのようにあらわれるのかを明らかにすることが最終目的としている。そのため、時代変化、特に社会構造が異なる時代の変化を検討する必要があり、この目的を達成するために、縄文時代と弥生時代、中世、近世という広い時代幅で日本列島出土人骨の評価を行う（表3.1.1）。

表3.1.1に対象とした資料の本稿における呼称と主な生業や職業、所属時期、性別・年齢構成を示した。対象とした人骨の選定基準は、骨端の癒合している成人であること、体を動かすにあたって支障があったと推定されるような重度の関節炎や病変による骨の変形がないこと、関節が癒合していないこと、個体識別・性別推定・年齢判定が可能であること、である。

骨端が未癒合の個体や病変・重度関節炎を持つ個体、関節に癒合がみられる個体はMSMsの発達の仕方や個体が行っていた活動にバイアスがかかっている可能性があるため分析対象から除いた。また、個体識別・性別推定・年齢判定ができない個体は、分析の際にその集団の年齢・性別構成を不明瞭にするため分析対象から除いた。

縄文時代と弥生時代は地域ごとにそれぞれ集団を設定している為、各集団の遺跡ごとの内訳（時期・性別・年齢別資料数）を表3.1.2に示した。

縄文時代と弥生時代に関しては、各地域の集団が行っていた活動を評価するため、人骨が出土した遺跡の周辺に位置する貝塚・集落址から出土した遺物の集成を行った。遺物の組成は、日常的に用いていた道具のセットの一部を示すものである。そのため、道具群の組成の違いは用いていた道具の差であり、行われていた活動の違いを一部反映すると考えることができる。遺物の集成に用いた集落遺跡・貝塚の一覧を表3.1.3に示す。

1 江戸市中に関しては、寺院ごとに遺跡名が存在するが、本稿では江戸市中というまとまりで1つの遺跡と考えている。
図3.1.1には、本稿で用いた人骨出土遺跡及び集落址・貝塚が位置する地域の日本列島上の位置を示した。
以下に、各資料の特性と詳細な立地について述べる。本稿で各集団の表記に用いる名称は表3.1.1に記載している通りである。対象人骨出土遺跡を赤丸のドットで、遺物を集めた遺跡を白四角で示した。

表3.1.1 対象資料一覧

<table>
<thead>
<tr>
<th>本稿での呼称</th>
<th>縄文時代</th>
<th>原生時代</th>
</tr>
</thead>
<tbody>
<tr>
<td>東北太平洋岸</td>
<td>三貫地房総湾岸</td>
<td>津雲大田</td>
</tr>
<tr>
<td>土井ヶ浜</td>
<td>福岡平野</td>
<td>三国丘陵域</td>
</tr>
<tr>
<td>渋田</td>
<td>広田</td>
<td></td>
</tr>
</tbody>
</table>

図3.1.1との対応

<table>
<thead>
<tr>
<th>時期</th>
<th>後晩期</th>
<th>晩期</th>
<th>中期以降</th>
<th>晩期</th>
<th>晩期</th>
<th>中期</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別</td>
<td>成年</td>
<td>男性</td>
<td>2</td>
<td>5</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>熟年</td>
<td>9</td>
<td>3</td>
<td>21</td>
<td>43</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>老年</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>総計</td>
<td>11</td>
<td>8</td>
<td>44</td>
<td>80</td>
<td>14</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>性別</th>
<th>女性</th>
</tr>
</thead>
<tbody>
<tr>
<td>成年</td>
<td>1</td>
</tr>
<tr>
<td>熟年</td>
<td>3</td>
</tr>
<tr>
<td>老年</td>
<td>0</td>
</tr>
<tr>
<td>総計</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>時期</th>
<th>中世</th>
<th>近世</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別</td>
<td>男性</td>
<td></td>
</tr>
<tr>
<td>成年</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>熟年</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>老年</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>総計</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>女性</td>
<td></td>
</tr>
<tr>
<td>成年</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>熟年</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>老年</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>総計</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

図3.1.1との対応

<table>
<thead>
<tr>
<th>時期</th>
<th>中世</th>
<th>近世</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別</td>
<td>男性</td>
<td></td>
</tr>
<tr>
<td>成年</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>熟年</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>老年</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>総計</td>
<td>15</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>性別</th>
<th>女性</th>
</tr>
</thead>
<tbody>
<tr>
<td>成年</td>
<td>5</td>
</tr>
<tr>
<td>熟年</td>
<td>12</td>
</tr>
<tr>
<td>老年</td>
<td>0</td>
</tr>
<tr>
<td>総計</td>
<td>17</td>
</tr>
</tbody>
</table>

20
<table>
<thead>
<tr>
<th>時代</th>
<th>図3.1.1との対応</th>
<th>地域</th>
<th>遺跡名</th>
<th>男性</th>
<th>女性</th>
<th>時期</th>
</tr>
</thead>
<tbody>
<tr>
<td>縄文</td>
<td>① 順</td>
<td>東北太平洋岸地域</td>
<td>中沢浜</td>
<td>2</td>
<td>1</td>
<td>晩期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>大洞</td>
<td>3</td>
<td>1</td>
<td>晩期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>田柄</td>
<td>3</td>
<td>-</td>
<td>後期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>宮野</td>
<td>1</td>
<td>-</td>
<td>晩期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>二月田</td>
<td>1</td>
<td>-</td>
<td>晩期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>貝鳥</td>
<td>-</td>
<td>1</td>
<td>後期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>西の浜</td>
<td>-</td>
<td>1</td>
<td>後期前半</td>
</tr>
<tr>
<td></td>
<td>② 三貫地地域</td>
<td>三貫地</td>
<td>8</td>
<td>9</td>
<td>晩期</td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ 房総湾岸地域</td>
<td>貝の花</td>
<td>4</td>
<td>2</td>
<td>中期〜後期前葉</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>子和清水</td>
<td>1</td>
<td>1</td>
<td>中期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>煎畑</td>
<td>3</td>
<td>1</td>
<td>中期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>山倉</td>
<td>1</td>
<td>-</td>
<td>後期前葉</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>高根木戸</td>
<td>1</td>
<td>-</td>
<td>中期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>姪山</td>
<td>16</td>
<td>15</td>
<td>中期後葉〜後期中葉</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加賀利・北・南</td>
<td>8</td>
<td>6</td>
<td>中期中葉〜後期中葉</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>下太田</td>
<td>2</td>
<td>1</td>
<td>後期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>曽谷</td>
<td>1</td>
<td>2</td>
<td>後期前葉〜中葉</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>境之内</td>
<td>1</td>
<td>1</td>
<td>後期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>宮本台</td>
<td>3</td>
<td>-</td>
<td>後期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>上新宿</td>
<td>-</td>
<td>1</td>
<td>後期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>六通</td>
<td>3</td>
<td>2</td>
<td>中期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>矢作</td>
<td>-</td>
<td>1</td>
<td>後期前葉</td>
</tr>
<tr>
<td></td>
<td>④ 渥美半島地域</td>
<td>川地</td>
<td>3</td>
<td>3</td>
<td>晩期</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>伊川津</td>
<td>13</td>
<td>12</td>
<td>晩期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>稲荷山</td>
<td>8</td>
<td>7</td>
<td>晩期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>吉謹</td>
<td>47</td>
<td>44</td>
<td>晩期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>保美</td>
<td>9</td>
<td>9</td>
<td>晩期</td>
</tr>
<tr>
<td></td>
<td>⑤ 津雲地域</td>
<td>大田</td>
<td>12</td>
<td>7</td>
<td>中期</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>津雲</td>
<td>14</td>
<td>15</td>
<td>晩期</td>
</tr>
<tr>
<td></td>
<td>⑥ 土井ヶ浜地域</td>
<td>土井ヶ浜</td>
<td>38</td>
<td>25</td>
<td>前〜中期</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>中ノ浜</td>
<td>14</td>
<td>7</td>
<td>前〜中期</td>
</tr>
<tr>
<td></td>
<td>⑦ 福岡平野域</td>
<td>隈西小田</td>
<td>61</td>
<td>23</td>
<td>中期〜後期前半</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>横隈狐塚</td>
<td>7</td>
<td>7</td>
<td>中期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>永岡</td>
<td>9</td>
<td>12</td>
<td>中期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ハサコの宮</td>
<td>6</td>
<td>1</td>
<td>中期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>池ノ上</td>
<td>4</td>
<td>4</td>
<td>中期</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>穴伝山</td>
<td>1</td>
<td>-</td>
<td>中期</td>
</tr>
<tr>
<td></td>
<td>⑧ 三国丘陵域</td>
<td>広田</td>
<td>21</td>
<td>18</td>
<td>後期</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>島の峯</td>
<td>11</td>
<td>6</td>
<td>後期</td>
</tr>
</tbody>
</table>
表 3.1.3 遺物を集成した集落遺跡・貝塚一覧

<table>
<thead>
<tr>
<th>地域</th>
<th>地図 3.1.1と の対応</th>
<th>遺跡</th>
<th>時期</th>
<th>地域</th>
<th>地図 3.1.1と の対応</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>東北太平洋沿岸地域</td>
<td>貝鳥</td>
<td>後期～晩期</td>
<td>房総湾岸</td>
<td>表 3.1.13 遺物を集成した集落遺跡・貝塚一覧</td>
</tr>
<tr>
<td>②</td>
<td>三貫地地域</td>
<td>保美</td>
<td>後期後半～晩期</td>
<td>津雲地域</td>
<td>⑤</td>
</tr>
<tr>
<td>③</td>
<td>須美半島地域</td>
<td>保美</td>
<td>後期後半～晩期</td>
<td>福岡平野地域</td>
<td>⑥</td>
</tr>
<tr>
<td>④</td>
<td>福岡湾岸地域</td>
<td>養智内</td>
<td>中期</td>
<td>三國丘陵地域</td>
<td>⑦</td>
</tr>
<tr>
<td>⑤</td>
<td>⑥</td>
<td>⑦</td>
<td>①</td>
<td>②</td>
<td>③</td>
</tr>
</tbody>
</table>
図 3.1.1 対象資料の日本列島における位置
第1節 縄文時代

縄文時代対象遺跡は図 3.1.1 の①～⑤に位置する。縄文時代の遺跡は本州に広く分布するが、本稿で対象とした縄文時代諸遺跡は、海岸付近の貝塚出土資料のみであり、北海道や内陸部の遺跡などは対象としていない。本稿で用いた資料群は、北海道域の海獣狩猟民のようにわかりやすい生業の差異はないが、本州の海岸付近の貝塚から出土したという共通点を有し、漁撈・狩猟採集民として大枠でまとめられ、具体的な生業差についてはほとんど未検討である。漁撈・狩猟採集民としてまとめられてきた縄文時代各集団の地域性の有無を明らかにするという目的には適うものである。

A) 東北太平洋岸地域（図 3.1.1－①・図 3.1.2・3.1.3－①）
時期：後晩期
特性：対象とした遺跡が立地する仙台湾周辺や三陸海岸南部・大船渡湾岸は、リアス式海岸の入り組んだ海岸線が形成され、北上川や阿武隈川が内陸へながれ（氷見 2007）、沖合では親潮と黒潮のぶつかり合う世界有数の好漁場を形成している（高橋 1999）。丘陵が幾筋ものびる起伏にとんだ地形である（氷見 2007）。
対象とした人骨出土遺跡は、中沢浜遺跡・大洞貝塚・宮野貝塚・二月田貝塚・貝鳥貝塚・西の浜遺跡である（表 3.1.2）。
遺物集成の対象とした遺跡（表 3.1.3）は、野尻貝塚・上宮岡貝塚・大洞貝塚・田柄貝塚・西の浜貝塚のうち後晩期に所属する層や遺構から出土した遺物である。

B) 三貫地地域（図 3.1.1－②・図 3.1.2・3.1.3－②）
時期：晩期
特性：阿武隈山地と太平洋に挟まれた低地帯の最北部に位置し、貝塚のある地点は微高地で縄文時代後晩期には遠浅の砂泥性の海岸であった（渡辺 1981）。低地帯には丘陵が発達し河川による開析が進んでいる。扇状地性の段丘を中心にいくつかの段丘の発達がみられ（竹谷 1988）、西側の微高地域には水溜状の谷地がある（渡辺 1981）。
対象とした人骨出土遺跡は福島県相馬郡新地町に位置する三貫寺貝塚から出土した人骨資料である（表 3.1.2）。
遺物集成の対象とした遺跡（表 3.1.3）は、三貫地貝塚と、三貫地貝塚が位置する丘陵上にある三貫地遺跡集落址のうち、晩期に属する C,E,F 地点を主な対象とした。

注2 これらの出土人骨に関しては観察を行っているが、北海道域出土人骨に関しては病変個体が多すぎて MSMS の分析に堪えない。内陸部に位置する長野県北村遺跡に関しては保存状態が良好ではないため四肢骨全ての部位が観察可能であった個体が無いため、対象から外しており、これらの地域の分析を行うためには、新たな資料の増加を待つ必要がある。
図 3.1.2 東北太平洋岸・三貫地域対象人骨出土遺跡の位置

図 3.1.3 東北太平洋岸・三貫地域遺物集成遺跡の位置
C) 房総湾岸地域（房総半島 東京湾東岸、図 3.1.1-③・図 3.1.4・3.1.5）
時期：中期〜後期中葉を主体
特性：東京湾東岸の大型貝塚形成帯に位置する諸貝塚から出土した人骨主体とする。奥東京湾と東京湾沿岸で細部する場合もあるが、今村（1989）の研究から石器組成に大きな違いがないことが指摘できるため、房総湾岸としてまとめた。東京湾東岸の対象地域（ほぼ現市川市～市原市）では、中期中葉から安行Ⅰ式期以前の後期中葉までは大型貝塚形成期とされ、内陸部でみられるよう打製石斧の急増や狩猟活動への依存の高まりは、当該時期には指摘されていない（戸沢・勅使河原 1992）。
対象とした人骨が出土した遺跡（表 3.1.2）は、貝の花貝塚・子和清水貝塚・中峠貝塚・山倉貝塚・高根木戸遺跡・姥山遺跡・下太田貝塚・曾倉貝塚・堀之内遺跡・宮本台遺跡・六通貝塚・山倉貝塚である。
遺物集成の対象とした遺跡（表 3.1.3）は、有吉北・今島田・海保野口・加曾利北・鎌取場台・紙敷・川焼台・祇園原・草刈・越川戸・板之台・下太田・陣ヶ前・園生・台畑・吾妻・高根木戸・中嶋・通源寺・殿平賀向堀・中野木台・中野僧御堂・中峠・新山東・西広・根木内・根崎・八ヶ崎・東出山・東平賀・彦八山・宮本台・千駄堀寒風遺跡・貝塚であり、そのうち中期を主体とし後期中葉までに属する層や遺構から出土した遺物を集積した。

D) 渥美半島地域（図 3.1.1-④・図 3.1.6）
時期：晩期
特性：渥美半島の三河湾沿いに形成された大型諸貝塚から出土した人骨資料を用いた（表 3.1.2）。この地域は人骨出土遺跡と遺物を集成した遺跡が同一であるため、遺物を集積した遺跡の立地を個別に示さない。
渥美半島には、内海沿岸部の三河湾に流れ込む川沿いに大型の貝塚が複数形成されている（図 3.1.6）。豊川右岸の小坂井大地の南端部に立地する東三河の稲荷山貝塚、渥美半島の三河湾奥部の森王山当南麓の洪積台地上に流れる汐川下流に加賀貝塚、三河湾奥部の稲堆上になかなる新堀川河口に伊川津貝塚、福江面とよばれる中位段丘面の免々田川沿いに保美貝塚、渥美半島先端の伊良湖岬の中位段丘に流れる大川上流に川地貝塚が位置する。

E) 津雲地域（図 3.1.1-⑤・図 3.1.7・8）
時期：大田貝塚は中期、津雲貝塚は晩期を主体とする。
特性：対象とした遺跡は瀬戸内海沿岸部に形成された諸貝塚である（図 3.1.7）。
対象とした人骨が出土した遺跡は、津雲貝塚と大田貝塚である（表 3.1.2）。この 2つの貝塚は主体とする時期が大きく異なるため、地域的には同じとしているが分析の際にまとめてはいない。
岡山県最西端に位置する笠岡市東南の神島と大島中に挟まれた大殿州とよばれる扇
状地上に位置する津雲貝塚、広島県松永湾の西岸の海浜に位置する大田貝塚の南半部に低地から出土した人骨資料を用いた（河瀬 2006）。

遺物集成の対象とした遺跡（表 3.1.3、図 3.1.8）は、津雲貝塚と彦崎貝塚であり、そのうち後期から晩期前半に属する遺物を集成した。大田貝塚が所属する中期に該当する遺物組成は報告例が少ないため、検討していない。

図 3.1.5 房総湾岸地域遺物集成遺跡の位置
第3章 資料と方法

図3.1.6 渥美半島対象人骨出土遺跡の位置

図3.1.7 津雲地域対象人骨出土遺跡の位置

図3.1.8 津雲地域対象遺物集成遺跡の位置
第3章 資料と方法

第2項 弥生時代

弥生時代対象遺跡は図3.1.1の⑥・⑦・⑧に位置する。本稿で対象とした弥生時代諸遺跡は、北部九州域と山口県響灘沿岸、種子島に位置する。北部九州と山口地方に分布する弥生時代人は高顔・高身長という、形質的に縄文時代人骨と大きく異なる特徴を有する集団であった（中橋 2005）。この地域の人々の形質的特徴や水稲農耕という文化的特徴が、列島外から移住してきた渡来人の影響を受けて成立したことは広く認められていることである（金関 1966; 中橋・永井 1989; 中橋 2005; 田中 2014等）。この地域の弥生時代の生業を検討するにあたって、本稿で主に対象とした北部九州と山口地方は大陸からの影響を強く受けており、形質的にも文化的にも同時期の列島内でやや特異な地域であるとも言えることができる。そのため、本稿での検討をもって日本列島の弥生時代全体を代表させる意図はない。しかし、水稲農耕の確立という生業転換によってどのような変化が起きたのか、さらに水稲農耕が確立していた地域というフィルターによって今まで注目されることの少なかった当該地域の生業活動の地域的な多様性を明らかにするためには、最も適した資料群であるといえる。

A) 土井ヶ浜地域（図3.1.1－⑥・図3.1.9・3.1.10）
時期：弥生時代前期～中期
特性：土井ヶ浜遺跡と中ノ浜遺跡から出土した人骨資料を土井ヶ浜地区としてまとめた（表3.1.2）。そのうち人骨出土数が多いのは土井ヶ浜遺跡である。

土井ヶ浜遺跡の西側は響灘の海域に向かって開口し、東側は内陸部へ細長く伸びる海岸地帯から沖積地帯である神田低地とよばれる（辻 2014）。舌状に張り出したいわゆる丘陵の谷間に開発可能な後背湿地を有する（豊北町史編纂委員会 1972）。片瀬遺跡の発見により、土井ヶ浜遺跡は、丘陵や小谷によって断続された空間に居住・生産域を構えた人々が、その中心の砂丘に形成した集団墓地であったと指摘されている（小林・沖田 2007）。

遺物の集成対象とした遺跡は、片瀬・竜王南・土井ヶ浜南・吉永遺跡である（表3.1.3）。片瀬・土井ヶ浜南・竜王南遺跡が土井ヶ浜墓地を形成した人々の生活世であり、吉永遺跡が中ノ浜墓地を形成した人々の生活世と考えられる（小林 2011）。竜王遺跡は、遺物の帰属時期の特定が困難であったため集成対象に含めず、竜王南遺跡の弥生中期に属する遺物を集成対象とした。

中ノ浜遺跡周辺の吉永遺跡では定住性が高い一方で、土井ヶ浜遺跡周辺の諸遺跡はその存続期間が短く、両者の様相には差があるが、共に綾羅木式土器文化圏であり相互交流も指摘されているため、まとめる（小林 2011）。

29
第 3 章 資料と方法

図 3.1.9 土井ヶ浜地域対象人骨出土遺跡の位置

図 3.1.10 土井ヶ浜地域遺物集成遺跡の位置
B) 三国丘陵域（図 3.1.1-⑦・図 3.1.11・12）
時期：弥生時代中期～後期前半
特性：隈西小田遺跡・横隈狐塚遺跡・永岡遺跡・ハサコの宮遺跡・池ノ上遺跡・横隈山遺跡から出土し人骨資料を三国丘陵域としてまとめた。そのうち人骨出土数が最も多いのは隈西小田遺跡である（表 3.1.2）。
三国丘陵域の集落は、その動態の研究から、前期末から中期初頭に沖積地から丘陵上に進出して形成されたと考えられている（小澤 2000a,b,2008）。福岡平野とは異なり、丘陵上の山際の微高地を小さく区画して谷水田を形成した地域である（橋口 1985）。
遺物の集成の対象とした遺跡は、津古内畑・津古牟田・津古東宮原・津古大林・津古東台・合の原・隈西小田・北牟田・天神・橋詰・平原・一ノ口・三沢北中尾遺跡であり（表 3.1.3）、そのうち、前期末から後期初頭に属する住居址・貯蔵穴・溝状遺構・袋状堅穴・土坑などの遺構から出土した遺物である。
第3章 資料と方法

図3.1.12 三国丘陵域遺物集成遺跡の位置

C) 福岡平野域（図3.1.1－⑦・図3.1.13・14）
時期：弥生時代中期～後期前半
特性：金隈・蓆田青木・門田・豆塚山・西平塚・伯玄社・原・一の谷から出土した人骨資料を福岡平野としてまとめた（表3.1.2）。そのうち最も人骨出土数が多いのは月隈丘陵上に位置する金隈遺跡である（表3.1.2）。
遺物集成の対象とした遺跡は、板付・高畑・比恵・那珂・下月隈C・辻田・赤井出遺跡であり、そのうち、前期末から中期に属する竪穴住居址・貯蔵穴・井戸址・溝・土坑などの遺構から出土した遺物である（表3.1.3）。
福岡平野は、縄文時代後期から旧砂丘の形成と後背地の泥湿化現象の進行が指摘されており（井関 1982；橋口 1999），この時期に形成された農耕適地である後背湿地においてのぞむ低台地に集落遺跡が立地し（橋口 1985），耕作可能な広い平野を有した地域である。
第3章 資料と方法

図3.1.13 福岡平野域対象人骨出土遺跡の位置

図3.1.14 福岡平野域遺物集成遺跡の位置
D) 広田地域（図 3.1.3－⑧）

時期：弥生時代後期・終末期が主体

特性：種子島の東側海岸に面する海岸砂丘遺跡である広田遺跡・鳥の峯遺跡から出土した人骨資料を用いた。そのうち人骨出土数が多いのは広田遺跡である（表 3.1.2）。広田地域に関しては周辺に対応する時期の遺跡が確認できなかったため、遺物の集成はおこなっていない。板付Ⅰ・Ⅱ式土器やガラス小玉など北部九州との相応の交流が確認されてもいるが、貝輪習俗や覆石墓を形成するなど文化的独自性も指摘されている（甲元 2003）。この地域の集団は、北部九州・山口地域の人々とは形質的に大きく異なっており、縄文時代人にむしろ類似することが指摘されている（中橋 2003, 2005）。

広田遺跡の立地する広田海岸は、縄文海進の際に内海となりリアス式海岸となったといわれ、サンゴ礁の発達が良好であったとされる（目崎 2003）。また、種子島の砂丘埋葬地が立地する海岸砂丘では、小さな川が砂丘においてさえぎられるために、海岸と反対側の背後には後背湿地が形成され、凹字形に取り囲む丘陵、後背湿地、砂丘、小川、遠浅の沿岸の組み合わせが 1 つの生態環境をなしているとされる（甲元 2003）。

図 3.1.15 広田地域対象人骨出土遺跡の位置
第3章 資料と方法

第3項 中世

中世の対象遺跡の位置は図3.1.1に示した。

A) 主漁専農民（吉母浜遺跡、図3.1.1-③）
時期：分析対象とした墓の年代は概ね15世紀に属する（田中1987）。
特性：山口県下関市大字吉母（図3.1.16）に所在する吉母浜中世墓地から出土した人骨を用いた（表3.1.1）。吉母浜遺跡は響灘に面する海岸砂丘上に位置し、背後に可耕地を備えている。

対象とした墓群は、出土遺物より室町時代、15世紀代のものが主体とされている（伊東1985）。さらに、この墓地は、東西に2分される傾向を有することが田中（1985）によって指摘されている。東西の葬法に大きな差はないが、アワビやサザエ、二枚貝など貝類の副葬の事例は西側にしかみられない。一方、東側には地上標章として巻貝が供えられている墓が1基存在する（田中1985）が、地上標章であり西側にみられる墓壙内への副葬とは、副葬の仕方が異なる。この2支群は、伊藤（1985a）による文献の調査や田中・土肥（1987）による歯冠計測の分析から、近世の吉母浦にみられた集落の東・中・西の三分構成のもととなった、浦における東・西の二分構成を反映している可能性が指摘されている（図3.1.17）。

図3.1.16 吉母浜遺跡の立地（伊藤（1985）によって六千分の一の図を原図として作成された図を一部改変して使用）
第3章 資料と方法

B) 揚浜式製塩民（沢田遺跡及び村松白根遺跡、図3.1.1-⑩）

時期：15世紀〜江戸前期

特性：茨城県那珂郡東海村の村松白根遺跡（芳賀・寺内2005；皆川・井上2007）から出土した人骨を対象とする（図3.1.18、表3.1.1）。この2つの遺跡は、直線距離にして約3km程度しか離れていない。

東海村の村松、ひたちなか市阿字ヶ浦には「千々乱風」という伝説が語り継がれており、江戸初期に大風が吹き続け、この地域の村々は砂に埋められて住めなくなり、集落ごと他の地域に移住したとされている地域である。

村松白根遺跡から出土する陶磁器や古銭、内耳形土器、土師質土器の主体は15世紀であり、16世紀の遺物が少ないことから、この集落は短期的にしか存在しなかった可能性が指摘されている（芳賀・寺内2005）。村松白根遺跡出土人骨の時期は、副葬品などからは確定しがたいが、遺跡の出土遺物と同時期、15世紀中葉から後葉と考えられる。

沢田遺跡出土人骨の年代も、出土する遺物の帰属時期が15世紀であること、人骨の多くが渡来銭のみを伴うことから、遺跡の繁栄期である15世紀前後から、渡来銭が全国的に流通しなくなる1636年（鈴木1988,1994,1999）までが主体であったと考えられる。そのため、この2つの遺跡は15世紀を主体とするほぼ同時期に存在したと考えられる。

図3.1.17 吉母浜共同墓地における東西2群（下関市教育委員会1985に一部加筆）
第3章 資料と方法

第4項 近世

近世の対象集団のうち、原田遺跡出土人骨と稲荷谷遺跡出土人骨に関しては江戸時代の資料だけでなく明治期までの人体を若干含む可能性があるため、近世と称し、江戸市中遺跡出土人骨に関しては、17世紀後半以降19世紀の資料であり、幕末期やそれ以降に属する資料は対象としていないため、江戸時代と呼び分けている。

A) 百姓層（原田遺跡、図3.1.1-⑪）：
時期：江戸後期〜明治・大正（18世紀後半〜19世紀）
特性：福岡県筑紫野市所在の共同墓地出土の人骨を用いた（表3.1.1）。時期は、江戸時代後
期から明治に属する。筑前六宿の1つである長崎街道宿場町近郊の原田村の共同墓地である（森山 2003）。対象とした人骨は、明治22年に書かれた墓籍帳に、40・41号墓地と記された墓域から出土している（図3.1.19）。

この墓地に関しては、墓石や墓碑が改葬に伴い倒されており、どの被葬者に帰属するかは正確には不明である（森山 2003）が、墓碑や墓石が残存し、また伯東寺が墓籍・墓籍地図を所有していたため、墓の被葬者や墓地についての情報を大枠でとらえることが可能である。対象とした40・41号墓地の墓籍に書かれた氏名は山内姓が最多多いが、その他、平山姓・松口姓・山崎姓・岡藤姓・森内姓も散見される（森山 2003）。埋葬に用いられた甕は江戸市中で武士階層の埋葬に主に用いられた常滑式大甕ではなく、肥前のハンズーガメと呼ばれる日用陶器（東中川 1987）や正方形縦棺や桶棺である（森山 2003）。

B) 竹田武士層（稲荷谷遺跡、図3.1.1-⑳）：
時期：江戸後期〜明治（18世紀末〜19世紀以降明治・大正）
特性：大分県竹田市に所在する近世墓地出土の人骨資料を用いた。

稲荷谷近世墓は、大分県竹田市岡藩の城下町の南側の丘陵上に位置し、岡城を中心として配置された豊後最大の岡藩の武家屋敷群の近世墓地である（図3.1.20、城戸 1998）。土壌の形状・副葬品などからこの墓地造営時期は幕末にさかえる江戸時代後期から明治・大正に及ぶとされている（城戸 2004）。墓域全長には近年まで12家の墓域が存在したことがわかっているが、細かい区割りは不可能である（城戸 2000）。近年までわずかに残っていた墓石を重ねてみると、本郷、小河、長村、山口、小原、土岐、山路、萱野、和田、加藤、阿戸、阿南、森田家の墓が並んでいたであろうことが指摘され（城戸 1998）、500石とりの小河家を筆頭に、230石とりの森田家など、この墓地を形成したのは、概ね100石程度の武家である、と推定されている（城戸 1998, 2004）。99号墓の被葬者は小河一順、96号墓の被葬者は長村哲次郎であることが墓石から判明した（城戸 2004）が、それ以外の被葬者の特定は困難であった。

図3.1.19 原田近世墓地立地図
（一万分の一の図を基にして森山 2003によって作成された図を一部改変して筆者作成）
第3章 資料と方法

C) 上位武士層 神代利経
時期：1805年没
特性：佐賀県佐賀市富士町宗源院に埋葬されていた肥前の戦国武将神代勝利の一族9代目当主である。この個体の死亡時の年齢は、本稿で設定した年齢区分で成年段階と考えられる。
肥前藩鍋島家の親類格であった。神代一族は、小城藩成立時に佐賀初代藩主鍋島勝茂から小城藩に譲られた家臣の一つで、小城藩邸北小路に屋敷地を構え、10代目当主である神代利成は小城藩においては家老に次ぐ役職である番頭を務め、代々剣術指南役をつとめたことが知られる（岩松 1974）。江戸時代の身分制はその多くが世襲制に基づいていることから、9代目も同様に上級家臣であったことが推測される。本資料は、江戸市中の多重構造墓の被葬者と同じ上位武士層に位置づける。

D) 上位武士層 久世家
時期：1656～1786年
特性：福岡市材木町少林寺に埋葬されていた旧黒田藩の家老。久世家は久世広見（53）、広
第3章 資料と方法

明（71）、広澄（45）、広亮（60）を分析対象とした（括弧内は没年齢）。没年代は1656～1786年の江戸前期から中期の約100年間である。本資料は、江戸市中の中多重構造墓の被葬者と同じ上位武士層に位置づける。

E)江戸市中諸集団（上位武士層・武士層・江戸市中庶民層。図3.1.1-⑬）

時期：17世紀後半以降 19世紀
特性：現東京都の港区・新宿区を中心とする江戸時代江戸市中の中の寺院群である（図3.1.21）。対象とした遺跡は、正運寺・慶安寺・寛永寺護国院・自證院・修行寺・法光寺・圜應寺・発昌寺・天徳寺である。

以下、近世江戸市中で対象とした被葬者を階層集団へと分類するための定義を述べる（図3.1.22）。これまでの考古学的研究から江戸市中の中の埋葬に関しては、埋葬様式と身分・階層の対応関係が確認されている（表3.1.4，谷川1987, 2004；松本1990）。ここから概ね蓋をもつ常滑製の大甕（現愛知県常滑市の常滑窯で生産され全国に流通した大型の

図3.1.21 江戸市中対象遺跡地図
（天保御江戸大絵図を基に江戸考古学研究事典「江戸遺跡の主な調査地点」及び「江戸の藩邸」より作成）
第3章 資料と方法

一方、常滑製甕棺が将軍家の葬法に取り入れられ、武士層の一般的葬法となった江戸の中期（17世紀後半）以降、円形木棺や方形木棺は低禄の武士や江戸の町人、都市下層民など、特権階級ではない人々の墓となった（西木 1999; 谷川 2004）。

このような、埋葬様式が身分の表徴であるという考古学的見解（表3.1.4）を踏まえ、出土寺院を問わず人骨資料を埋葬様式が示す階層ごとにまとめた。

全ての寺院の常滑製大甕の被葬者を武士階層に属する者としてまとめ、本稿では武士層と称する。また、木炭・漆喰（石灰）床・槨木槨甕棺墓、方形木槨甕棺墓、円形木槨甕棺墓など多重構造墓を甕棺の被葬者よりも上位に位置する武士階層としてまとめ、上位武士層とする。久世一族や神代は多重構造墓とほぼ同じ階層と考えられるため、上位武士層に含めている（図3.1.22）。表3.1.4に示したように、甕棺や多重構造墓に埋葬されている被葬者は旗本以上あるいは高禄の陪臣など武家の人物であると考えられる。

円形木棺と方形木棺の被葬者に関しても、寺院ごとではなく、埋葬様式ごとにそれぞれまとめた。円形木棺と方形木棺の被葬者に関しては身元の分かる個体が存在しないため、身分の詳細は不明であるが、円形木棺は早桶と呼ばれる埋葬様式であり、被葬者は低禄の武士・都市下層民などを含む江戸市中の庶民層であると考えられる（西木 1999; 谷川 2004）。

本稿で主に用いている方形木棺は、別名堅棺や箱などと呼ばれ、他埋葬様式よりおくれて18世紀の中頃に出現在する墓制であるため、円形木棺と同様に身分の詳細は不明であるが、これらは分けて分析を行う。少なくとも、方形木棺は侑棺よりも格式は劣ることが指摘され（井汲 1991; 谷川 2004）、低禄の武士などを含む江戸市中の庶民層であると考えられる。円形木棺の被葬者群を江戸市中庶民層（円形）、方形木棺の被葬者群を江戸市中庶民層（方形）とする。

<table>
<thead>
<tr>
<th>出土寺院・出典</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>銅棺・木棺 将軍 〈増上寺〉</td>
<td></td>
</tr>
<tr>
<td>木棺 将軍正室・側室 〈増上寺〉</td>
<td></td>
</tr>
<tr>
<td>下総結城藩主松平家(15万石) (栩木1994)</td>
<td></td>
</tr>
<tr>
<td>越後長岡藩主牧野家(7.4万石) 〈済海寺〉</td>
<td></td>
</tr>
<tr>
<td>上野舘林藩主秋元家(6万石) 〈寛永寺護国院〉</td>
<td></td>
</tr>
<tr>
<td>将軍正室 〈増上寺〉</td>
<td></td>
</tr>
<tr>
<td>紀伊和歌山藩主徳川家(55.5万石) 〈寛永寺護国院〉</td>
<td></td>
</tr>
<tr>
<td>出羽新庄藩戸沢家(6.7万石) (河越1965)</td>
<td></td>
</tr>
<tr>
<td>上野舘林藩江戸家老、用人矢貝家(700石のち400石) 〈寛永寺護国院〉</td>
<td></td>
</tr>
<tr>
<td>旗本大久保家(5000石) 〈寛永寺護国院〉</td>
<td></td>
</tr>
<tr>
<td>高家畠山基徳再室(4000石) (港区立港郷土資料館1987)</td>
<td></td>
</tr>
<tr>
<td>旗本犬飼家(70俵3人扶持) (港区立港郷土資料館1989・東京都港区教育委員会1992)</td>
<td></td>
</tr>
<tr>
<td>職工藤近藤甫泉(120石) (東京都港区教育委員会1992)</td>
<td></td>
</tr>
<tr>
<td>旗本佐藤家(300俵) 〈寛永寺護国院〉</td>
<td></td>
</tr>
<tr>
<td>旗本深見家(200俵) 〈寛永寺護国院〉</td>
<td></td>
</tr>
<tr>
<td>職工藤近藤甫泉(120石) (東京都港区教育委員会1992)</td>
<td></td>
</tr>
<tr>
<td>旗本犬飼家(70俵3人扶持) (港区立港郷土資料館1989・東京都港区教育委員会1992)</td>
<td></td>
</tr>
</tbody>
</table>

表3.1.4 江戸市中の埋葬様式と対応身分

<table>
<thead>
<tr>
<th>埋葬様式</th>
<th>出土寺院・出典</th>
</tr>
</thead>
<tbody>
<tr>
<td>石槨石室墓</td>
<td>木槨</td>
</tr>
<tr>
<td>木棺</td>
<td>多重構造墓</td>
</tr>
<tr>
<td>石室墓</td>
<td>木炭・漆喰(石灰)床・槨木槨甕棺墓</td>
</tr>
<tr>
<td>甕棺</td>
<td>旗本以上あるいは高禄の陪臣など武家</td>
</tr>
<tr>
<td>方形木槨甕棺墓</td>
<td>甕棺</td>
</tr>
<tr>
<td>石槨石室墓</td>
<td>旗本以上あるいは高禄の陪臣など武家</td>
</tr>
<tr>
<td>木棺</td>
<td>低禄の武士以下庶民・都市下層民まで</td>
</tr>
</tbody>
</table>

（谷川2004をもとに一部改変して使用/本稿で対象とした埋葬様式を網掛けで示す）
第3章 資料と方法

第2節 方法

本節では、前章第3節の問題の所在で示した課題を検討する際に用いる分析方法について言及する。

本稿における研究課題は、階層社会と非階層社会において、社会内部の人間集団の活動の多様性がどう異なるのかを検討することで、人間社会の内部にみられる非均質性（inequality）の変容の仕方を明らかにすることである。このために、自給自足ないわゆる平等社会で、構成員全てがある程度協働していたと考えられる社会の集団間・集団内（性差・年齢差）の身体活動の違いのあり方と、専業化や階層化が進行し、特権的で生産に携わらない階級が確立した社会の集団間・集団内（性差・年齢差）の身体活動の違いのあり方は大きく異なるものであるという仮説を検証する。この仮説の検証を行うために、各集団の生業諸活動・生活様式のあり方を明らかにする必要がある。生業諸活動とは、生産を行うため
第3章 資料と方法

の集団のあり方、活動、技術の総称であることから、用いていた道具、行われていた身体活動および活動をどのような人々が行っていのかを明らかにする必要がある。以下本論において用いる諸分析方法を検討する。

第1項 各集団の生業・生活様式の検討方法

A) 先史時代の生業活動推定に用いられる遺物とその基準

縄文時代と弥生時代の諸集団に関しては、各地域の集団が総じて行っていた諸活動に関して人骨以外の情報から生業活動推定を行うために、人骨が出土した遺跡とその周辺の集落遺跡や貝塚から報告されている道具群の集成を行った。集成対象とした遺跡は、表3.1.3に一覧で示した。

集成を行った遺物は、人骨が帰属する時期と同一時期と考えられる遺構や土層から出土した土製・石製の諸遺物である。木製品は残存率が地域によって大幅に異なるため集成対象としてはいない。日常生活において一般的に用いられた物の集成を行っていく必要があるため、集成対象を生活址から出土した遺物に限定しており、副葬品は集成していない。未成品は器種同定が可能であった場合に含め、転用品は転用後の使用方法でカウントした。

道具の分類は国立歴史民俗博物館(1996)および柏原(2002)を参考として行っている(表3.2.1)。表3.2.1の破線は縄文・弥生時代で機能的に対応し同じタイプと考えられる遺物群をつないでいる。

遺物組成の分析に関しては、各集団の遺物の種類の頻度を比較するために、100%積上げ横棒グラフによる比較を行う。遺物の頻度の検討を通して、縄文時代と弥生時代、あるいは地域集団ごとに用いていた道具群の構成の差を明らかにしていく。

遺物は、その性質によって継続して使用できる時間幅や残存率に大きな差がある。例えば石鏃1個と石斧1個は、使用可能な時間幅に大きな違いがあると考え定される。

そのため、遺物の頻度がすなわち道具の需要の多寡に結びつくわけではなく、大量に遺存する道具を用いた活動の頻度が少ない遺存していない道具を用いた活動の頻度よりも高いことを意味するわけではない。しかし、地域間での構成の違いを比較することで、どのような活動がおこなわれ、どのような活動は行われていなかったのか、ということは検討可能であると考える。

また、地域によって発掘件数やその精度、遺物の残りやすさにも大きく差があるため、各地域の生業活動の具体像を考える際には、木製品や動植物遺存体、食性分析の結果など、生業活動に関連すると考えられる様々な諸研究の成果も踏まえて検討を行う。
表 3.2.1 縄文時代と弥生時代の遺物の構成

<table>
<thead>
<tr>
<th>縄文遺物</th>
<th>弥生時代遺物</th>
</tr>
</thead>
<tbody>
<tr>
<td>狩猟・武器</td>
<td>狩猟・武器</td>
</tr>
<tr>
<td>石鎚</td>
<td>打製石鎚</td>
</tr>
<tr>
<td>鹿角製鎚</td>
<td>尖頭器</td>
</tr>
<tr>
<td>尖頭器</td>
<td>磨製石剣</td>
</tr>
<tr>
<td>石撻</td>
<td>磨製石鎚</td>
</tr>
<tr>
<td>鹿角製石器</td>
<td>石彈</td>
</tr>
<tr>
<td>魚具1</td>
<td></td>
</tr>
<tr>
<td>石鏃</td>
<td>土製投弾</td>
</tr>
<tr>
<td>土鏃</td>
<td>線状石斧</td>
</tr>
<tr>
<td>土器片鏃</td>
<td>槍先</td>
</tr>
<tr>
<td>沈子</td>
<td>土鏃</td>
</tr>
<tr>
<td>軽石製浮子</td>
<td>石釣</td>
</tr>
<tr>
<td>魚具2</td>
<td></td>
</tr>
<tr>
<td>鹿角製釣針</td>
<td>沈子</td>
</tr>
<tr>
<td>魚具3</td>
<td></td>
</tr>
<tr>
<td>刺突具</td>
<td>銭</td>
</tr>
<tr>
<td>ヤス</td>
<td>土壌具</td>
</tr>
<tr>
<td>ヤスor銭</td>
<td>打製石斧</td>
</tr>
<tr>
<td>魚具4</td>
<td></td>
</tr>
<tr>
<td>銭頭</td>
<td>扁平石斧(両刃)</td>
</tr>
<tr>
<td>石銭</td>
<td></td>
</tr>
<tr>
<td>魚具:伐採</td>
<td></td>
</tr>
<tr>
<td>石鎚</td>
<td>太形蛤刃石斧</td>
</tr>
<tr>
<td>石扇</td>
<td>石斧</td>
</tr>
<tr>
<td>加工斧</td>
<td></td>
</tr>
<tr>
<td>石鎚</td>
<td>抹入柱状片刃</td>
</tr>
<tr>
<td>石扇</td>
<td>扁平片刃</td>
</tr>
<tr>
<td>牙斧</td>
<td>柱状片刃</td>
</tr>
<tr>
<td>加工斧</td>
<td></td>
</tr>
<tr>
<td>石鎚</td>
<td>石ノミ</td>
</tr>
<tr>
<td>加工具</td>
<td></td>
</tr>
<tr>
<td>スクレイバー</td>
<td>削器</td>
</tr>
<tr>
<td>刃器</td>
<td>小刀</td>
</tr>
<tr>
<td>梗形石器</td>
<td>摘器</td>
</tr>
<tr>
<td>ビエス・エスキーケ</td>
<td>石匙</td>
</tr>
<tr>
<td>石匙</td>
<td>石鎚</td>
</tr>
<tr>
<td>骨器</td>
<td>ドリル</td>
</tr>
<tr>
<td>見匙</td>
<td>ブレイド</td>
</tr>
<tr>
<td>石鎚</td>
<td>スクレイバー</td>
</tr>
<tr>
<td>骨鎚</td>
<td></td>
</tr>
<tr>
<td>雉器</td>
<td>調理具</td>
</tr>
<tr>
<td>麦畑柄骨製品</td>
<td>磨石</td>
</tr>
<tr>
<td>骨匕</td>
<td>凹石</td>
</tr>
<tr>
<td>骨刃</td>
<td>敲石</td>
</tr>
<tr>
<td>植物茎加工具:</td>
<td>紡錦具</td>
</tr>
<tr>
<td>調理具</td>
<td></td>
</tr>
<tr>
<td>石杵</td>
<td>紡錦車</td>
</tr>
<tr>
<td>磨石</td>
<td>石製紡錦車</td>
</tr>
<tr>
<td>骨石</td>
<td>土製円盤</td>
</tr>
<tr>
<td>凹石</td>
<td>石製円盤</td>
</tr>
<tr>
<td>紡錦具</td>
<td></td>
</tr>
<tr>
<td>円盤状土製品</td>
<td>研磨具</td>
</tr>
<tr>
<td>有孔石製品</td>
<td>研磨具</td>
</tr>
<tr>
<td>円盤状石製品</td>
<td>研磨具</td>
</tr>
<tr>
<td>骨針</td>
<td>研磨具</td>
</tr>
<tr>
<td>研磨具</td>
<td>研磨具</td>
</tr>
<tr>
<td>研磨具</td>
<td>研磨具</td>
</tr>
</tbody>
</table>
第3章 資料と方法

B) 先史時代の性分業推定方法

文化生態学などの研究によると、従事する活動が異なると性別や年齢によってその活動への関わり方が異なるということが指摘されている（煎本 1977）。男女が異なる生産活動をしたり、異なるタイプの資源利用を行ったりする性別分業が多くの小規模社会においてみられ、またそのあり方は、農民社会のあり方とは異なる場合も多い（池口・佐藤 2014）。

これまで、過去の集団の性別分業に関する１つの指標として Murdock (1937) の研究が度々取り上げられてきた（図3.2.1）。本研究では、遺物組成の違いを検討し、どのような遺物に集団間で違いがみられるのかを明らかにしたのちに、ではその遺物を用いて行われた活動は、男女のどちらによって担われたと考えられるのかを、Murdock（1937）の研究をもとにして検討を行う。

C) 歴史時代の生業活動及び生産体制の推定方法

先史時代と歴史時代の生業活動推定方法は異なる。本稿で対象とする中世は、村や地域ごとに専業化が進んでいる時代であり、遺跡を形成した集団の生業活動が、１つの生業活動と概ね直結する。近世においては、武士を頂点とする社会的身分が確立した時代であり、このような社会的な身分が生業活動・生活様式と概ね直結する。そしてこれらは文献記録として各地に残されており、これらの記録をもじった研究を援用することで従事した生業活動操作及び生産体制、あるいは生活様式を推定する。例えば漁村などを対象とした近代の民俗学的研究や、武士や町人の一生を記録した文献資料の研究を援用することで、性別に基づく分業や年齢に応じた活動区分などの生産体制や武士や町人の生活史を推定する。

D) 生体計測による身体活動によって発達する筋の推定方法

先史時代の集団が、諸活動を行う際に筋発達の仕方にどのような差が生じるか、という点を検討するために、生体計測のデータを参照する。本稿で用いる生体計測のデータは、生きている人間集団を対象として、人類の体質や体格の差を検討することで、対象集団に対して日常的且つ継続的に作用していた外因、特に勤労形態の差、が体質や体格に与えた影響を探ろうとした研究である。

生体計測のデータの内、特に四肢周径値の差は、四肢の筋発達の程度を反映することができる。生体計測のデータを参照する。本稿で用いる生体計測のデータは、生きている人間集団を対象として、人類の体質や体格の差を検討することで、対象集団に対して日常的且つ継続的に作用していた外因、特に勤労形態の差、が体質や体格に与えた影響を探ろうとした研究である。

九学会連合は1950年代を中心に様々な地域の生体データの収集を行った。このデータのうち、右上腕周径、右前腕周径最大、右大脛周径、右下脛周径最大の計測値は、大まかではあるが活動によって四肢のどの筋が発達するかという仮説を立てる際に役立つと考えられる。そのため、これらの値が報告されている台湾の水稲農耕民と漁撈民（邱 1956; 顔 1959）、三池鉱業所の炭鉱労働者の計測値（洲上 1957）を検討した（表3.2.2）。

本稿で、台湾の水稲農耕民と漁撈民（邱 1956; 顔 1959）を用いた理由は、台湾の水稲農耕民はアワ・キビやムギではなく水稲の栽培を行っており、気候的にみてでも日本列島と同じように、夏あるいは雨季に作物が育ち、除草に多くの時間を割いていたと考えられる。
図 3.2.1 Murdock（1937）で示された性別に基づく活動ごとの役割区分
ためである。また、その比較資料として遺伝的差の小さい（顔 1959）、同じ台湾の福老系漢族の集団と福建省からの移民集団を用いることで、四肢の筋発達の差を生じさせる主要因として、身体活動を想定しやすくなる点でも適切な資料である。

比較資料として三井鉱山株式会社の各集団（洲上 1957）を用いた。洲上（1957）は、この資料群を用いて、四肢の筋周径値が勤務年数に伴いどのように変化するかを検討し、勤務年数と筋系統の変化の関連を調べた。本研究においては、退職などの要因で加齢に伴い活動負荷が著しく減少することのない重労働者の筋発達の経年変化を追うために用いる。この資料を用いることで、労働負荷が長期的でかかることによる四肢の筋量にどのような影響を与えるかを明らかにする。この研究で対象としたのは、20 歳から 55 歳までの日本人男子（94.6％が九州出身者）であり、3 交代時間制の 8 時間労働でこれを毎週交替し、健康で過去に重大な既往症がない者である。

生体計測のそれぞれの計測項目とそれが表していると考えられる身体的特徴および計測値に影響を与える筋を以下にまとめる。

- 胸囲：正立位で前方は乳頭の中心、後方は肩甲骨下角直下を通る周径を測り、この計測値に影響を与える筋は、大胸筋・大円筋・広背筋・僧帽筋である。
- 骨盤幅：左右の腸骨稜の最外側方突出点間の直線距離を測っており、体の幅を示す。
- 右上腕周径：上腕二頭筋の膨隆の最も強いところを計測しており、上腕二頭筋・上腕三頭筋・上腕筋がその値に影響する筋である。
- 右前腕周径最大：肘関節の少し下の膨隆部を測り、円筒筋・腕絞筋・回外筋・指の屈伸に作用する筋が計測値に影響する。
- 右大腿周径：太股が内側に最も強く膨隆するところを計測しており、粗縄筋群による影響が強い。
- 右下腿周径最大：下腿の前方（後方）からみて最も幅の広いところを計測しており、下腿三頭筋（特にヒラメ筋）がその値に影響を与えると考えられる。

上記の計測値を用いて、主成分分析を行い、各集団の生体的特徴を把握し、四肢の筋の内どのような筋が発達していたかを明らかにする。

<table>
<thead>
<tr>
<th>属性</th>
<th>図中での名称</th>
<th>職種</th>
<th>男性</th>
<th>詳細</th>
<th>引用</th>
</tr>
</thead>
<tbody>
<tr>
<td>三井鉱山株式会社</td>
<td>勤続5年未満</td>
<td>採炭工、堀進工、仕操工。</td>
<td>179</td>
<td>(洲上 1957)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>勤続5年以上10年未満</td>
<td>採炭工、堀進工、仕操工。</td>
<td>287</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>勤続10年以上15年未満</td>
<td>採炭工、堀進工、仕操工。</td>
<td>208</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>勤続15年以上20年未満</td>
<td>採炭工、堀進工、仕操工。</td>
<td>198</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>勤続20年以上</td>
<td>採炭工、堀進工、仕操工。</td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>台湾南部福老系</td>
<td>農民</td>
<td>年2回の果樹栽培なども</td>
<td>180</td>
<td>(顔 1959)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>漁民</td>
<td>渔港漁業</td>
<td>184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>台湾澎湖群島</td>
<td>主漁業</td>
<td>主漁業</td>
<td>519</td>
<td>(顔 1956)</td>
<td></td>
</tr>
</tbody>
</table>
第2章 資料と方法

A) 年齢推定・性別判定

年齢の表記に関して、九州大学医学部解剖学第二講座編集の『日本民族・文化の生成』（九州大学医学部解剖学第二講座編 1988）記載の区分に従い、成年 20-40 歳、熟年 40-60 歳、老年 60 歳以上とした。

年齢の推定を行うにあたって、骨盤の保存状態が良好な場合は恥骨結合面と耳状面を基準に推定を行った。恥骨結合面による年齢推定は、Brooks and Suchey（1990）、Sakaue（2006）を、耳状面はLovejoy et al.（1985）の方法を用い、上記3区分に分類した。

歯の咬耗度を評価し、年齢推定を行う場合には栃原（1957）の基準を用いた。しかし江戸時代の人骨に関しては、近世の特権階級は咬耗が弱いという指摘（鈴木 1967, 1985a, b）を考慮し、骨盤が残存している場合は歯の咬耗による年齢推定は用いていない。しかし、残存状態がよくMSMsの観察が可能な部位が多いが、歯以外に年齢推定可能部位が残存していない場合には、四肢骨の関節面など骨の加齢性変化（Jurmain 1977）を参考にして、歯牙の咬耗度を用いて年齢の推定を行った。その際に、階級によって歯牙の咬耗の進行の仕方が異なる可能性を考慮して、骨盤から年齢推定を行うことが可能であった同一埋葬様式の被葬者の歯牙の咬耗度との比較を行ったうえで年齢を推定した。

また、中世吉母浜出土人骨についても、中橋・永井（1985）やKaifu（1999）によって、推定年齢よりも概して強い咬耗を示すこと、また咬耗進行程度が部位によって異なること、が指摘されている。このことをふまえ、中世吉母浜出土人骨の歯の咬耗度を年齢推定に用いる際には、骨盤から年齢推定を行うことが可能であった吉母浜出土人骨の歯の咬耗と比較したうえで年齢推定を行った。

性判定は、骨盤が残存している場合はBuikstra and Ubelaker（1994）を基準に、恥骨下角の角度・大坐骨切痕の角度・前耳状溝の有無、Phenice（1969）の腹側弧、恥骨下陥凹、恥骨下枝内側面隆起に基づいて判定を行った。さらに、Buikstra and Ubelaker（1994）を基準に、眼窩上隆起・乳様突起・外後頭隆起の発達と矛盾がないかを確認した。各部位の判定に関与する場合や、骨盤の残存状態が悪く頭蓋のみでは曖昧であった場合、Nakahashi and Nagai（1986）、中橋（1988）の方法を用いて判別関数による推定を行った。中世吉母浜の場合は中世の判別式を、近世人骨の場合は現代人の判別式を用いている。多くの組み合わせで検討を行うため、可能な限り対象部位の計測を行って判定しているが、適中率が90％以下の組合せは用いていない。

B) MSMs の対象部位・評価方法

本稿では、筋付着部の発達度を示すMSMsを用いる。Coimbra系の研究者たちによってその名称が問題視され、MSMs（musculoskeletal stress markers：筋骨格ストレスマーカー）という名称は、より中立的なenthesal changesという名称に置き換えるべきであるという主張がなされ、ここ5年くらいでenthesal changesという用語が定着しつつある（Mariotti et
第3章 資料と方法

al. 2004, 2007; Jurmain and Villotte 2010 等）。この用語は、腱・靭帯を意味し、人骨に直接付着しているのは筋肉ではなく腱や靭帯であるという事実に基づいた名称である。しかし、本稿では、筋骨格ストレスマーカーという名称を用いる。筋骨格系とは、日本語で骨格系と筋系の総称であり、骨格系には骨とそれをつなぐ靭帯・関節・軟骨を、筋系には筋と腱を含む（森など 1950）ため、過不足のない言葉であると判断したためである。

この方法を用いた理由は、骨の断面示数などの方法よりも、差の要因を特定しやすいためである。MSMs の対象部位は、最大で上肢・下肢 22 部位の筋・靭帯・腱の付着部の MSMs である（図 3.2.2）。何の言及もない場合は、右側の MSMs スコアの値を用いている。

基本的に 1 つの筋が付着する部位ごとに評価を行っているが、それぞれ近接しており、区別が不可能であると判断した以下の筋に関してはまとめて評価を行った。

図 3.2.1 の 18. 大腿骨の粗線に付着する筋群は、短内転筋・大内転筋・長内転筋・内側広筋・外側広筋・大腿二頭筋短頭をさす。6. 上腕の小結節腱に付く大円筋と広背筋、21. 脛骨後面より起こる後脛骨筋と長趾屈筋は各々 1 つの対象部位としてまとめて評価を行った。

MSMs の評価は、Hawkey and Merbs（1995）の基準に従い、付着部の隆起としてあらわれる頑丈性（Robusticity）と、pitting や溝を形成する Stress lesions をそれぞれ 3 段階のグレードで評価した (Hawkey and Merbs 1995)。

各スコアの定義は以下の通りである。基本的にスコアの形態基準は Hawkey and Merbs（1995）に従うものである。しかし、22 部位それぞれ部位ごとに表面形状には特徴があるため、原則として、付着部域の稜線の強弱や数で評価されるが、稜線の形態や出現する場所などスコア評価の仕方がまったく同じであるわけではない。

1=faint robusticity：触ると分かる程度の粗面を形成する
2=moderate robusticity：容易に識別可能な明瞭な粗面を形成する
3=strong robusticity：明瞭な粗面形成に加えて、その範囲内あるいは外縁部に隆線を形成する
4=faint stress lesions：小孔・浅い陥凹を形成する
5=moderate stress lesions：小孔・陥凹がより大きく深くなり、付着部範囲に面的に広がるが全体を覆うほどではない
6=strong stress lesions：小孔あるいは陥凹が明瞭になり、付着部範囲全体を覆う

大胸筋と肋鎖靭帯を例として図 3.2.3 に写真を載せている。基本的に robusticity の段階は、付着部域の複雑性、すなわち付着部域に生じる稜線の数でスコアを判断している。stress lesions は付着部域に生じる小孔あるいは凹みの面積でスコアを判断している。

本稿の対象集団において 4－6 が確認されている部位は肋鎖靭帯と大胸筋のみである。評価の際には観察者内誤差を減らすために、Hawkey and Merbs（1995）で指摘されているように、各グレードの基準となる指標を部位ごとに設定し、それらを示した写真を常に参照しつつ行った。なお、Hawkey and Merbs（1995）が用いている 0（発現なし）評価については、0 と 1 の段階の識別が最も曖昧であったため、本分析では用いていない。
第3章 資料と方法

MSMsの評価方法のうち、Hawkey and Merbs (1995) の方法を採用した理由は、明白でわかりやすく、スコアの細分によって生じる曖昧さを回避できていること、有無評価（Al-Oumaoui et al. 2004; Mariotti 2004, 2007）に比べて活動の差であるとの判断に基づいている。なお、ここで対象にした筋付着部の変化の様相には部位によって違いがあり、部位間にみられるスコアの値の高低が必ずしも筋の発達度の強弱を示すわけではないことを注記しておく。

MSMsの比較を行う際には、MSMsスコアを合算せず、どの部位のスコアが高く、どの部位のスコアが低いのか、というパターンとして検討を行う。MSMsスコアの合算において、Weiss (2003) は観察者間誤差が減るという方法上の利点を強調するが、この方法では、どの筋がどの程度発達しているのかを析出することは出来ず、筋付着部を個々に観察し評価するという分析的有効点を損なってしまう。骨断面示数の研究が骨にかかる負荷の大小を比較していたのに対し、MSMsを用いることで筋・靭帯の発達する部位としない部位のパターンを読み解くことができ、負荷の大小ではなく体の動かし方の総体を読み解くことが可能となる。このことから考えても、スコアを合算することなく、個々の発達の仕方をパターンとして読み解くことが有効であると考える。

まず、MSMsは22部位個々のスコアを平均値化し、折れ線グラフにして、どの部位がどの程度発達しているのか、あるいはしていないのかを検討する。

図3.2.2 対象部位一覧
この折れ線グラフを本稿では MSMs パターンと呼ぶ。基本的には MSMs パターンを示す際には、折れ線グラフのみではなく、各 MSMs スコアの個体の頻度を示す 100%積上げ縦棒グラフをともに併記する。これは、MSMs スコアの平均値だけでなく、各スコアの個体数を部位ごとに示すためである。また、一部の検討においては、22 部位個々の平均値を降順のランクで示し、各部位の発達程度を示した。これを MSMs ランクパターンと呼ぶ。ランクパターンで表記することでスコアの平均値の高低よりも MSMs パターンの違いを分かりやすく示せる場合に用いている。

個々の部位ごとの MSMs スコアの集団間比較のために、2 集団の比較の場合は Mann-Whitney U 検定を、3 集団以上の場合は Bonferroni 法を用いた多重比較を行う。また、MSMs パターンの類似や差異を検討するために、集団ごとの各部位の平均値を用いて、距離行列を算出し、距離の大小を比較する。その後、集団ごとの各部位の平均値を用いて、カテゴリー主成分分析を行い、MSMs パターンの類似や差異を明らかにする。

また、生業活動を構成する諸活動は、性別や年齢によってその活動への関わり方が異なるということが指摘されている（煎本 1977）。男女が異なる生産活動をしたり、異なるタイプの資源利用を行ったりする性別分業が多くの小規模社会においてみられ、またその在り方は、農民社会の在り方とは異なる場合も多い（池口・佐藤 2014）。この生業活動への関わり方は、各個人の年齢によっても大きく異なる（口藏 1977）。この区分は、どの集団においても常に厳格な制度として存在するものではないであろう。しかし、MSMs パターンにあらわれる活動を復元する、という研究において、男女間の MSMs の差やその表れ方の違い、
第3章 資料と方法

年齢によるMSMsの差やその差の表れ方の違いの検討は極めて重要なものであると考える。そのため、男女および年齢段階ごとにMSMsパターンの比較を行う。本節では集団ごとに個々の部位のMSMsスコアの発達が加齢によってどの程度影響を受けているかを検討するために、各集団を成年（20-40）、熟年（40-60）、老年（60以上）という年齢カテゴリーにわけ、年齢カテゴリー間のMSMsスコアの有意差検定を行う。3集団比較の場合はBonferroniの多重検定を用いる。部位別の有意差検定の結果を示した表では、有意差が5%水準でみられた場合は*、1%水準でみられた場合**で表記した。さらに、その類似と差異を明らかにするために距離行列とカテゴリカル主成分分析を行う。

左右のMSMsのアシンメトリーの程度も、活動を考えるにあたって重要な項目の1つである。例えば網漁は、網を用いた狩猟や漁撈の網漁（spear fishing）や網を用いた狩猟よりも左側の筋発達のアシンメトリーが強い活動であり、中でもoverhand throwingはヤスを投げるよりも左右のアシンメトリーが強くなる可能性が指摘されている（Hawkey and Merbs 1995; Peterson 1998; Chatter 2014）。左右差の検討を行う際には、同一個体の右側のMSMsスコアから同一部位の左側のMSMsスコアを引いた値を絶対値化した値を部位ごとに平均値化する。左側のどちら側のMSMsが発達するかではなく、左右のMSMsスコアのアシンメトリーを検討するために本方法を用いている。平均値化した値を、動きごとにまとめて、上肢（肋鎖靱帯・大円筋と大胸筋・三角筋）、前腕（上腕三頭筋外側頭・上腕筋・上腕二頭筋）、手首（回外筋・外旋内筋・関節内筋）、大腿（腸腰筋・大殿筋・粗線・外側広筋・内側広筋）、下腿（後脛骨筋と長趾屈筋・ヒラメ筋）でそれぞれ合算し平均値を算出して比較を行う。また、MSMsパターン全体における左右差の類似・差異を検討するため、22部位個々の平均値を用いて、カテゴリカル主成分分析を行う。

統計解析は、IBM社の統計パッケージPASW Statistics18及びPASW Categories18を用いた。

第3節MSMsの発達にあたる年齢の影響に関する予備分析

本論文でMSMsの分析対象とした集団の年齢構成は表3.1.1の通りである。MSMs研究においては、これまで、多くの先行研究で加齢に伴いMSMsのスコアが増加する傾向にある、ということが指摘されてきた（Robb 1998; Wilczak 1998; Stirland 1998; Mariotti et al. 2004; Cardoso and Henderson 2010; Niinimäki 2011; Niinimäki and Baiges Satos 2013）。これらの研究の多くは、MSMsの発達主因が、活動に因る負荷ではなく、加齢であることも主張している（Cardoso and Henderson 2010; Niinimäki 2011）。一方で、日本列島の集団で、加齢によるMSMsの変化を検討したTakigawa（2014）やYonemoto（印刷中）は、有意差が出る部位が集団によって異なること、その増加の程度が様々であり、年齢段階の低い個体群の方がMSMsスコアが高くなる部位やMSMsスコアの高い個体の頻度が多い部位も存在することから、加齢変化の様相を個々の集団で検討することが必要であると指摘している。
第3章 資料と方法

それらの研究をふまえると、MSMsの発達の主要因が加齢であり活動の影響は小さいと結論付けるのは早計であるといえる。まずMSMsパターンの検討を行う前に、個々の部位ごとに加齢の影響をどの程度受けているかを集団ごとに明らかにしておく必要がある。

そのため、本節では集団ごとに個々の部位のMSMsスコアの発達が加齢によってどの程度影響を受けているかを検討した。有意差が5%水準でみられた場合は*、1%水準でみられた場合**で表記した。有意差の有無にかかわらず、部位ごとで年齢カテゴリー間のスコアの平均値の増減を示すため、年齢段階の低いカテゴリーから年齢段階の高いカテゴリーを引いた値を平均値の差として示した。例えば、成年-熟年となっている場合は、成年段階の平均値から熟年段階の平均値を引いている。年齢段階の高いカテゴリーの方が、年齢段階の高い場合、平均値の差の値はマイナスになり、マイナスの値は赤字で示す。一方、年齢段階の低いカテゴリーの方が年齢段階の高いカテゴリーよりも平均値が高い場合、平均値の差はプラスになり、プラスの値は黒字で示した。

第1項 縄文時代と弥生時代のMSMsの加齢変化に関する予備分析

まず、縄文時代と弥生時代の大枠で年齢カテゴリー間のMSMsの有意差検定を行い、加齢がMSMsの発達に及ぼす影響を検討した。その後、縄文時代と弥生時代の各地域集団の年齢カテゴリー間のMSMsの有意差検定を行い、地域集団ごとに加齢がMSMsの発達に及ぼす影響を検討した。

図3.3.1に示したように、縄文時代と弥生時代という大枠で比較した場合、男女共に年齢構成に違いはみられない。加齢によってMSMsスコアにどのような影響があるのかを検討するため、Bonferroniの多重比較を用いて成年・熟年・老年の年齢カテゴリー間のMSMsスコアの有意差検定を行った（表3.3.1）。

加齢によってMSMsのスコアが有意に増加する部位は、縄文時代の男性で66部位中3部位であり、縄文時代の女性も66部位中3部位であり、弥生時代の男性で66部位中13部位、弥生時代の女性は66部位中2部位のみである。有意差を示す部位は、弥生時代の男性が最も多いといえるが、有意差検定を行った66部位中13部位と半数にも満たないため、どの集団も有意な差がみられる部位は多くないといえる（表3.3.1）。

また、有意か否かにかかわらず赤字で示した、年齢段階の高いカテゴリーの方が低いカテゴリーよりもMSMsスコアの平均値が高くなる部位は、男性では弥生時代の方が縄文時代よりも多く、女性の場合は縄文時代の方が弥生時代よりも多い。

この結果から、弥生時代の男性と縄文時代の女性は年齢が高い個体ほどMSMsスコアが高い部位が比較的多いのに対し、縄文時代の男性と弥生時代の女性は年齢が高い個体の方が必ずしもMSMsスコアが高くなるとは言えないということが分かる。縄文時代の男性と弥生時代の女性で年齢が低い個体の方が一貫してスコアが高くなる傾向を示す部位は、縄文時代の男性は肋鎖靭帯と三角筋、腸腰筋、外側広筋に、弥生時代の女性は円錐・菱形靭帯や三角筋（起始部）や手首の回内外に作用する筋、腸腰筋、外側広筋である。
次に、縄文時代と弥生時代の各地域集団の年齢構成（表 3.3.2）をみると、男性では縄文時代の東北太平洋岸、三貫地域、弥生時代の福岡平野、広井、女性では縄文時代の東北太平洋岸、広井に老年段階の個体が存在しない。老年段階の個体が一定数存在する房総湾岸、渥美半島、津雲、土井ヶ浜、福岡平野のみ Bonferroni の多重比較を行い、加齢によって MSMs にどのような変化があるかを検討した結果が表 3.3.3 である。土井ヶ浜の男性のみ、66 項目中 10 項目で有意な差がみられるが、概してどの部位も有意な差はないといえる。

加齢によって MSMs スコアが有意に増加するような傾向は対象集団にはみられないといえるが、老年段階の個体が全くない集団の存在がどのようなバイアスを与えるかが不明であるため、MSMs スコアの大小を含めて検討する多変量分析で、縄文時代と弥生時代の各地域の MSMs 比較を行う場合、老年段階の個体を分析から除くこととする。加齢変化を検討する場合のみ、多変量分析にも老年段階の個体を用いた。

成年段階の個体と熟年段階の個体で MSMs スコアに有意差がみられるかどうかを検討したのが表 3.3.4 である。成年と熟年の 2 段階の比較なので Mann-Whitney U 検定を用いた。土井ヶ浜の男性で有意差を示す部位がやや多いが、Bonferroni の多重比較の結果と同様で、概してどの部位も有意な差はないといえる。

図 3.3.1 縄文時代人骨と弥生時代人骨の年齢構成
表 3.3.1 縄文時代と弥生時代の年齢によるMSMsの影響に関する検討

<table>
<thead>
<tr>
<th>部位</th>
<th>縄文男性</th>
<th>弥生男性</th>
<th>縄文女性</th>
<th>弥生女性</th>
</tr>
</thead>
<tbody>
<tr>
<td>頸部後面筋</td>
<td>成人-熟年</td>
<td>-0.22</td>
<td>-0.14</td>
<td>-0.48</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>0.71</td>
<td>0.43</td>
<td>-0.27</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>0.49</td>
<td>0.57</td>
<td>0.21</td>
</tr>
<tr>
<td>各回筋外筋</td>
<td>成人-熟年</td>
<td>0.03</td>
<td>-0.25</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.14</td>
<td>-0.29</td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.17</td>
<td>-0.04</td>
<td>-0.18</td>
</tr>
<tr>
<td>円錐筋前筋</td>
<td>成人-熟年</td>
<td>-0.18</td>
<td>-0.55</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.25</td>
<td>-0.21</td>
<td>-0.24</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.07</td>
<td>0.34</td>
<td>0.02</td>
</tr>
<tr>
<td>鍼骨下筋</td>
<td>成人-熟年</td>
<td>-0.25</td>
<td>0.21</td>
<td>-0.55</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.31</td>
<td>0.07</td>
<td>-0.75</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.06</td>
<td>-0.14</td>
<td>-0.20</td>
</tr>
<tr>
<td>三角筋（部始）</td>
<td>成人-熟年</td>
<td>-0.06</td>
<td>-0.01</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.01</td>
<td>-0.18</td>
<td>-0.11</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>0.05</td>
<td>-0.17</td>
<td>0.07</td>
</tr>
<tr>
<td>大円筋・広背筋</td>
<td>成人-熟年</td>
<td>-0.33</td>
<td>-0.42</td>
<td>-0.21</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.12</td>
<td>-0.66</td>
<td>-0.31</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>0.21</td>
<td>-0.24</td>
<td>-0.10</td>
</tr>
<tr>
<td>大胸筋</td>
<td>成人-熟年</td>
<td>-0.59</td>
<td>-0.41</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.21</td>
<td>-1.06</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>0.38</td>
<td>-0.65</td>
<td>0.13</td>
</tr>
<tr>
<td>三角筋</td>
<td>成人-熟年</td>
<td>0.09</td>
<td>-0.30</td>
<td>-0.09</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.12</td>
<td>-0.37</td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>0.03</td>
<td>-0.07</td>
<td>-0.01</td>
</tr>
<tr>
<td>鳥口腕筋</td>
<td>成人-熟年</td>
<td>-0.31</td>
<td>*-0.57</td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.58</td>
<td>**-0.67</td>
<td>-0.42</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.27</td>
<td>-0.10</td>
<td>-0.31</td>
</tr>
<tr>
<td>上腕三頭筋</td>
<td>成人-熟年</td>
<td>-0.24</td>
<td>-0.71</td>
<td>-0.36</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.03</td>
<td>-1.17</td>
<td>**-0.23</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>0.21</td>
<td>-0.45</td>
<td>0.13</td>
</tr>
<tr>
<td>上腕筋</td>
<td>成人-熟年</td>
<td>0.05</td>
<td>-0.08</td>
<td>-0.09</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.23</td>
<td>-0.10</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.28</td>
<td>-0.02</td>
<td>-0.04</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>成人-熟年</td>
<td>0.00</td>
<td>-0.07</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.14</td>
<td>-0.41</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.14</td>
<td>-0.34</td>
<td>-0.05</td>
</tr>
<tr>
<td>回外筋</td>
<td>成人-熟年</td>
<td>0.11</td>
<td>0.03</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.04</td>
<td>0.09</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.15</td>
<td>0.07</td>
<td>-0.38</td>
</tr>
<tr>
<td>方形回内筋</td>
<td>成人-熟年</td>
<td>0.11</td>
<td>-0.30</td>
<td>-0.10</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.14</td>
<td>-0.71</td>
<td>-0.53</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.25</td>
<td>-0.40</td>
<td>-0.43</td>
</tr>
<tr>
<td>円回内</td>
<td>成人-熟年</td>
<td>-0.10</td>
<td>-0.90</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.53</td>
<td>-0.93</td>
<td>**-0.16</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.43</td>
<td>-0.03</td>
<td>0.16</td>
</tr>
<tr>
<td>鍼膜筋</td>
<td>成人-熟年</td>
<td>0.02</td>
<td>0.12</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>0.03</td>
<td>-0.04</td>
<td>-0.47</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>0.02</td>
<td>-0.15</td>
<td>-0.34</td>
</tr>
<tr>
<td>大脛筋</td>
<td>成人-熟年</td>
<td>-0.13</td>
<td>-0.33</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.33</td>
<td>-0.42</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.20</td>
<td>-0.09</td>
<td>-0.18</td>
</tr>
<tr>
<td>腱線</td>
<td>成人-熟年</td>
<td>-0.07</td>
<td>-0.12</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.09</td>
<td>-0.42</td>
<td>*-0.14</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.01</td>
<td>-0.29</td>
<td>-0.13</td>
</tr>
<tr>
<td>外側広筋</td>
<td>成人-熟年</td>
<td>0.15</td>
<td>-0.10</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>0.36</td>
<td>-0.02</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>0.21</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>内側広筋</td>
<td>成人-熟年</td>
<td>-0.08</td>
<td>0.09</td>
<td>-0.17</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>0.06</td>
<td>-0.07</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>0.14</td>
<td>-0.16</td>
<td>0.04</td>
</tr>
<tr>
<td>後面骨筋・長直内筋</td>
<td>成人-熟年</td>
<td>-0.18</td>
<td>-0.17</td>
<td>-0.29</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.19</td>
<td>-0.02</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>0.01</td>
<td>0.15</td>
<td>0.34</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>成人-熟年</td>
<td>0.11</td>
<td>-0.10</td>
<td>-0.26</td>
</tr>
<tr>
<td></td>
<td>成人-老年</td>
<td>-0.06</td>
<td>-0.15</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>成人-若年</td>
<td>-0.17</td>
<td>-0.04</td>
<td>0.18</td>
</tr>
</tbody>
</table>

* 平均値の差は 0.05 水準で ** 0.01水準で有意
余計:年齢段階の高いカテゴリーの平均値が年齢段階の低いカテゴリーの平均値よりも高いことを示す
異常:年齢段階の低いカテゴリーの平均値が年齢段階の高いカテゴリーの平均値よりも高いことを示す
表 3.3.2 縄文時代と弥生時代各集団の年齢構成

<table>
<thead>
<tr>
<th>本稿での呼称</th>
<th>縄文時代</th>
<th>弥生時代</th>
</tr>
</thead>
<tbody>
<tr>
<td>東北太平洋洋岸</td>
<td>島根県海岸</td>
<td>福岡平野</td>
</tr>
<tr>
<td>三貫地</td>
<td>鳥取県海岸</td>
<td>三国丘陵域</td>
</tr>
<tr>
<td>房総湾</td>
<td>広田</td>
<td>広田</td>
</tr>
<tr>
<td>津雲</td>
<td>渥美</td>
<td>渥美</td>
</tr>
<tr>
<td>大田</td>
<td>土井ヶ浜</td>
<td>土井ヶ浜</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>図3.1.1との対応</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
<th>⑥</th>
<th>⑦</th>
<th>⑧</th>
</tr>
</thead>
<tbody>
<tr>
<td>主生業・職業</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>狩猟採集</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水稲農耕</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>時期</th>
<th>後晩期</th>
<th>晩期</th>
<th>中期以降</th>
<th>晩期</th>
<th>晩期</th>
<th>中期</th>
<th>中期以降</th>
</tr>
</thead>
<tbody>
<tr>
<td>成年</td>
<td>2</td>
<td>5</td>
<td>17</td>
<td>24</td>
<td>4</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>熟年</td>
<td>9</td>
<td>3</td>
<td>21</td>
<td>43</td>
<td>8</td>
<td>7</td>
<td>27</td>
</tr>
<tr>
<td>老年</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>13</td>
<td>2</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>総計</td>
<td>11</td>
<td>8</td>
<td>44</td>
<td>80</td>
<td>14</td>
<td>12</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>本稿での呼称</th>
<th>縄文時代</th>
<th>弥生時代</th>
</tr>
</thead>
<tbody>
<tr>
<td>男性</td>
<td>①</td>
<td>②</td>
</tr>
<tr>
<td>成年</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>熟年</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>老年</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>総計</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>性別</th>
<th>女性</th>
</tr>
</thead>
<tbody>
<tr>
<td>成年</td>
<td>①</td>
</tr>
<tr>
<td>熟年</td>
<td>①</td>
</tr>
<tr>
<td>老年</td>
<td>①</td>
</tr>
<tr>
<td>総計</td>
<td>①</td>
</tr>
</tbody>
</table>

第2項 中近世のMSMsの加齢変化に関する予備分析

中近世各集団のMSMsにあたる加齢の影響も経文時代・弥生時代と同様に検討を行った。中近世の年齢構成を表3.3.5に示す。吉母浜において男女共に老年個体が存在しない。この吉母浜にみられる年齢構成の違いがMSMsにどのような影響を与えているかを検討する必要があるが、個体数が5以下の年齢群が多く、Bonferroniの多重比較を行うことができない。どの集団も基本的には、熟年個体が多い傾向を示すという傾向は一致しているため、成年と熟年、熟年と老年間でMann-Whitney U検定を行った。熟年と老年間で吉母浜以外の集団で有意差を示す部位が多い集団が存在しなければ、老年個体を含んだ分析を行うことは可能であると考える。また成年と熟年の年齢構成に、江戸市中庶民層（円形木棺）に違いがみられるので、成年と熟年間のMann-Whitney U検定を行った。どの集団でも有意な差を示す部位が多くなければ、平均値の比較を行う際に、年齢群をまとめていと判断する。各集団の成年と熟年のMann-Whitney U検定の結果を表3.3.6に、熟年と老年のMann-Whitney U検定の結果を表3.3.7に示した。成年段階と熟年段階（表3.3.6）で有意差がみられる部位が最も多くは武士層の女性であるが、6部位と少なく、概してどの部位においても年齢によって有意にMSMsのスコアに違いがないと考えられる。
表 3.3.3 綱文時代と弥生時代の MSMs スコアの加齢による影響に関する多重比較

<table>
<thead>
<tr>
<th>被検部位</th>
<th>成年（男）</th>
<th>成年（女）</th>
<th>熟年（男）</th>
<th>熟年（女）</th>
<th>平均値の差</th>
<th>成年（男）</th>
<th>成年（女）</th>
<th>熟年（男）</th>
<th>熟年（女）</th>
<th>平均値の差</th>
</tr>
</thead>
<tbody>
<tr>
<td>頚部後腹筋（内）</td>
<td>0.37</td>
<td>0.18</td>
<td>0.58</td>
<td>0.86</td>
<td>0.65</td>
<td>0.22</td>
<td>0.12</td>
<td>0.39</td>
<td>-0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>頚部後腹筋（外）</td>
<td>0.14</td>
<td>1.33</td>
<td>0.50</td>
<td>0.57</td>
<td>0.65</td>
<td>0.16</td>
<td>0.83</td>
<td>0.25</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>胸骨内側筋</td>
<td>0.14</td>
<td>0.50</td>
<td>0.30</td>
<td>0.22</td>
<td>0.53</td>
<td>0.63</td>
<td>0.17</td>
<td>0.30</td>
<td>0.20</td>
<td>0.12</td>
</tr>
<tr>
<td>胸骨外側筋</td>
<td>0.25</td>
<td>0.17</td>
<td>0.14</td>
<td>0.24</td>
<td>0.17</td>
<td>0.20</td>
<td>0.15</td>
<td>0.24</td>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>肺骨伸展筋</td>
<td>-0.35</td>
<td>0.80</td>
<td>0.60</td>
<td>0.75</td>
<td>0.80</td>
<td>0.60</td>
<td>0.61</td>
<td>0.75</td>
<td>0.61</td>
<td>0.61</td>
</tr>
<tr>
<td>肺骨外側筋</td>
<td>0.47</td>
<td>0.25</td>
<td>0.35</td>
<td>0.47</td>
<td>0.35</td>
<td>0.47</td>
<td>0.35</td>
<td>0.47</td>
<td>0.35</td>
<td>0.47</td>
</tr>
<tr>
<td>背筋（上）</td>
<td>0.00</td>
<td>0.15</td>
<td>0.25</td>
<td>0.00</td>
<td>0.15</td>
<td>0.25</td>
<td>0.00</td>
<td>0.15</td>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td>背筋（下）</td>
<td>0.35</td>
<td>0.25</td>
<td>0.45</td>
<td>0.35</td>
<td>0.25</td>
<td>0.45</td>
<td>0.35</td>
<td>0.25</td>
<td>0.45</td>
<td>0.35</td>
</tr>
<tr>
<td>嫁下入筋</td>
<td>0.60</td>
<td>0.35</td>
<td>0.45</td>
<td>0.60</td>
<td>0.35</td>
<td>0.45</td>
<td>0.60</td>
<td>0.35</td>
<td>0.45</td>
<td>0.60</td>
</tr>
<tr>
<td>趾屈筋（上）</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>趾屈筋（下）</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>鷹嘴筋</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>鷹嘴筋</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>鷹嘴筋</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

* 平均値の差は 1 に当たる ** 表示では値が著明に表示されることを示す

成年 年齢層が比べて MSMs のスコアが年齢層が低いグループのスコアが有意に高いことを示す

熟年 年齢層の低い MSMs のスコアが年齢層が高いグループのスコアが有意に高いことを示す
表 3.3.4 Mann-Whitney U 検定を用いた縄文時代と弥生時代の成年と熟年の MSMs スコアの有意差検定

<table>
<thead>
<tr>
<th>部位</th>
<th>三貫地</th>
<th>房総湾岸</th>
<th>渥美半島</th>
<th>津雲</th>
<th>土井ヶ浜</th>
<th>三国丘陵</th>
<th>福岡平野</th>
<th>広田</th>
</tr>
</thead>
<tbody>
<tr>
<td>成年</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>熟年</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>老年</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>性別</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 3.3.5 中近世各集団の年齢構成

<table>
<thead>
<tr>
<th>本稿での呼称</th>
<th>中世</th>
<th>近世</th>
</tr>
</thead>
<tbody>
<tr>
<td>年齢層</td>
<td>15C</td>
<td>late18〜19C</td>
</tr>
<tr>
<td>性別</td>
<td>男性</td>
<td>女性</td>
</tr>
<tr>
<td>成年</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>熟年</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>老年</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>性別</td>
<td>男性</td>
<td>女性</td>
</tr>
<tr>
<td>成年</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>熟年</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>老年</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>性別</td>
<td>男性</td>
<td>女性</td>
</tr>
<tr>
<td>成年</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>熟年</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>老年</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>性別</td>
<td>男性</td>
<td>女性</td>
</tr>
<tr>
<td>成年</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>熟年</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>老年</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>性別</td>
<td>男性</td>
<td>女性</td>
</tr>
<tr>
<td>成年</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>熟年</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>老年</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>性別</td>
<td>男性</td>
<td>女性</td>
</tr>
<tr>
<td>成年</td>
<td>43</td>
<td>16</td>
</tr>
<tr>
<td>熟年</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>老年</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

第3章 資料と方法
第3章 資料と方法

熟年段階と老年段階（表3.3.7）で有意差がみられる部位が最も多いのも武士層の女性であるが、4部位のみであり、成年段階と熟年段階よりも少なく、概してこの場合もどの部位においても年齢によって有意にMSMsのスコアに違いがないと考えられる。そのため、中近世の分析を行う際に、年齢構成の違いを考慮せずに各々平均値化する。

小結 年齢がMSMsに与える影響の予備分析の結果のまとめ

本項では、MSMsによる活動復元を行う前に、各年齢カテゴリー間の部位ごとのMSMsの差を各集団で検討し、各集団の部位ごとのMSMsの変化に与える加齢の影響の程度を検討した。その結果、本論で対象としたどの集団においても、加齢によって有意にMSMsスコアが増加する傾向を示す部位は少ないことがわかった。そのため、次章以降のMSMsの分析で、基本的には年齢構成の違いを考慮せずにMSMsスコアを部位ごとに平均値化した値での集団間比較を行うことが可能である。しかし、縄文時代と弥生時代の各集団の場合、老年段階の個体が全くない集団の存在が結果にどのようなバイアスを与えるかが不明である。

表3.3.6 中近世各集団の成年段階と熟年段階のMann-Whitney U検定の結果

<table>
<thead>
<tr>
<th>男性</th>
<th>吉母浜（主漁従農民）</th>
<th>綿粟形製塩（沢田と村松白根）</th>
<th>竹田武士層（稲荷谷）</th>
<th>近世百姓（原田）</th>
<th>武士層（甕棺）</th>
<th>上位武士層</th>
<th>江戸市中庶民層（方形木棺）</th>
<th>江戸市中庶民層（円形木棺）</th>
</tr>
</thead>
</table>
| | 原動・動
| 背筋 | ** | * | ** | * | ** | * | ** | * |
| 背筋 | ** | * | ** | * | ** | * | ** | * |
| 大胸筋 | ** | * | ** | * | ** | * | ** | * |
| 三角筋 | * | ** | * | ** | * | ** | * | ** |
| 大円筋・広背筋 | ** | * | ** | * | ** | * | ** | * |
| 上腕三頭筋 | ** | * | ** | * | ** | * | ** | * |
| 上腕二頭筋 | ** | * | ** | * | ** | * | ** | * |
| 肩外側筋 | ** | * | ** | * | ** | * | ** | * |
| 筒筋 | ** | * | ** | * | ** | * | ** | * |
| 外側広筋 | ** | * | ** | * | ** | * | ** | * |
| 内側広筋 | ** | * | ** | * | ** | * | ** | * |
| 後脛骨筋・長趾屈筋 | ** | * | ** | * | ** | * | ** | * |
| ヒラメ筋 | ** | * | ** | * | ** | * | ** | * |
| 細線 | ** | * | ** | * | ** | * | ** | * |
| 内側広筋 | ** | * | ** | * | ** | * | ** | * |
| 外側広筋 | ** | * | ** | * | ** | * | ** | * |
| 後脛骨筋・長趾屈筋 | ** | * | ** | * | ** | * | ** | * |
| ヒラメ筋 | ** | * | ** | * | ** | * | ** | * |
| 細線 | ** | * | ** | * | ** | * | ** | * |
| 内側広筋 | ** | * | ** | * | ** | * | ** | * |
| 外側広筋 | ** | * | ** | * | ** | * | ** | * |
| 後脛骨筋・長趾屈筋 | ** | * | ** | * | ** | * | ** | * |
| ヒラメ筋 | ** | * | ** | * | ** | * | ** | * |
| 細線 | ** | * | ** | * | ** | * | ** | * |
| 内側広筋 | ** | * | ** | * | ** | * | ** | * |
| 外側広筋 | ** | * | ** | * | ** | * | ** | * |
| 後脛骨筋・長趾屈筋 | ** | * | ** | * | ** | * | ** | * |
| ヒラメ筋 | ** | * | ** | * | ** | * | ** | * |
| 細線 | ** | * | ** | * | ** | * | ** | * |
| 内側広筋 | ** | * | ** | * | ** | * | ** | * |
| 外側広筋 | ** | * | ** | * | ** | * | ** | * |
| 後脛骨筋・長趾屈筋 | ** | * | ** | * | ** | * | ** | * |
| ヒラメ筋 | ** | * | ** | * | ** | * | ** | * |
| 細線 | ** | * | ** | * | ** | * | ** | * |
| 内側広筋 | ** | * | ** | * | ** | * | ** | * |
| 外側広筋 | ** | * | ** | * | ** | * | ** | * |
| 後脛骨筋・長趾屈筋 | ** | * | ** | * | ** | * | ** | * |
| ヒラメ筋 | ** | * | ** | * | ** | * | ** | * |
| 細線 | ** | * | ** | * | ** | * | ** | * |
| 内側広筋 | ** | * | ** | * | ** | * | ** | * |
| 外側広筋 | ** | * | ** | * | ** | * | ** | * |
| 後脛骨筋・長趾屈筋 | ** | * | ** | * | ** | * | ** | * |
| ヒラメ筋 | ** | * | ** | * | ** | * | ** | * |
第3章 資料と方法

ため、MSMs スコアの大小を含めて検討する多変量分析で、縄文時代と弥生時代の各地域の MSMs 比較を行う場合、老年段階の個体を分析から除くこととする。一方、中近世の分析を行う際には、年齢構成の違いを考慮せずに各々平均値化する。全対象時期に関して MSMs の加齢変化の諸相を検討する場合のみ、年齢カテゴリーごとに分けて検討を行う。

表 3.3.7 中近世各集団の熟年段階と老年段階の Mann-Whitney U 検定の結果

<table>
<thead>
<tr>
<th></th>
<th>吉母浜（主漁 従農民）</th>
<th>播浜式製塩（沢田と村松白根）</th>
<th>竹田武士層（稲荷谷）</th>
<th>近世百姓</th>
<th>武士層（甕棺）</th>
<th>上位武士層</th>
<th>江戸市中庶民層（方形木棺）</th>
<th>江戸市中庶民層（円形木棺）</th>
</tr>
</thead>
<tbody>
<tr>
<td>男性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>仙腸前筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大三角筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>円錐筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>髄骨下筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>三角筋（起）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大円筋・広背筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大胸筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>三角筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鳥口腕筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上腕筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上腕三頭筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>四方筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>方形回内筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>円形回内筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>間隔筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>外側広筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>内側広筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>他端骨筋・長趾屈筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>漸近有意確率（両側）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

女性								
仙腸前筋								
大三角筋								
円錐筋								
髄骨下筋						*		
三角筋（起）								
大円筋・広背筋						*		
大胸筋								
三角筋								
鳥口腕筋								
上腕二頭筋						*		
上腕三頭筋								
四方筋								
方形回内筋								
円形回内筋								
間隔筋					*			
大臂筋								
間隔筋								
外側広筋								
内側広筋								
他端骨筋・長趾屈筋								
ヒラメ筋								
漸近有意確率（両側）								

| | | | | | | | | |

60
第4章 先史時代の身体活動の多様性に関する多角的検討結果

第4章では、日本列島先史時代、すなわち縄文時代と弥生時代の生業諸活動の復元を行う。まず第1節で、縄文時代と弥生時代それぞれの各地域の生業諸活動の違いを遺物の組成を比較して具体的に検討する。第2節では、水稲農耕民と漁撈民の生体計測の結果を比較し、この2つの生業活動によって発達する筋にどのような違いがみられるかを明らかにする。水稲農耕民は弥生時代の北部九州地域の3集団に対応しており、この分析によって弥生時代の水稲農耕民の筋発達の特徴を予測する。第1・2節の分析を通じて、各地域の集団によって、行われていた活動にどのような差がみられるのか、縄文時代と弥生時代という大枠で検討した際に用いられていた道具群にどのような差がみられるかをまとめ、これらをもとに身体活動にどのような差がみられるかを推測する。第3節で、各地域集団間のMSMsパターンの比較を行い、各地域の集団のMSMsの類似と差異を明らかにする。また、水稲農耕確立以前と以降によってMSMsにどのような違いが生じるかを明らかにするため、縄文時代と弥生時代という大枠でMSMsを比較する。第4節では、MSMsの男女差や年齢差を検討し、集団内のMSMsの類似と差異から、活動の性差や年齢による違いの表れ方の差を明らかにする。

第1節 考古学的検討による先史時代の地域別生業復元

本節では、生存のための集団のあり方・活動・技術の総称としてあらわれる生業活動のうち、技術的な側面を考古学的な検討から明らかにする。縄文時代と弥生時代の生業は狩猟採集と水稲農耕と位置付けられているが、その実態は地域ごとに極めて多様である可能性が高い。しかし、これまでの考古学的な研究では、1種類の遺物あるいは、生業の1つの側面に焦点を当てた研究が主体であり、その意味で生業活動を体系的にとらえ、全体像を把握するような研究は少ない。そのため、生業諸活動に関わる道具総体を比較した場合に地域集団ごとにどのような違いがあるのか、という点を検討する必要がある。

また、このような活動を行ったのは男性か女性か、という性別に基づく分業やその有無、年齢による活動区分やその有無など、に関しては民族学的な研究を援用して推察が行われてきた。これは生業活動の重要な側面の1つであるが、このような活動は縄文時代や弥生時代という大きな枠組みにしか行われておらず、各地域集団で個々に検討したような研究は少ない。しかし、地域ごとに行われていた活動に違いがあるのでであれば、性別に基づく分業や年齢による活動区分のあり方も同じではない可能性が高いため、地域ごとに検討を行う。

本節では、縄文時代・弥生時代に用いられた道具、食料の残滓である動物遺存体、食性分析の結果から生業諸活動の具体的な違いを明らかにする。図3.1.1で設定した地域ごとの遺物組成を比較していく。まず第1節第1項で縄文時代、第2項で弥生時代の個々の地
第4章 先史時代の身体活動の多様性に関する多角的検討結果

域集団ごとに生業活動にどのような違いがみられるのかを遺物組成の地域差から明らかにし、第3項では男女のどちらがそれらの諸活動を担った可能性が高いのかをMurdock（1937）をふまえて検討する。

第1項 縄文時代の地域ごとの遺物組成の検討

第1項では、縄文時代の各地域の遺物組成の検討を行う。用いていた道具群を示す遺物組成の頻度比較とあわせて、過去の人々が食べていたものの総体をしめす食性分析の結果や、遺跡から出土した動植物遺存体の検証も行った。

図4.1.1には集成対象とした全ての遺物の組成を、そのうち漁具のみをとりだしたものが図4.1.2である。図4.1.2でまとめた遺物組成と、出土した魚骨や貝類を一覧にまとめたものが表4.1.1である。図4.1.3で示した狩猟具と土壌具・石鎚の割合と関連して、各地域の狩猟対象獣や対象となる植物遺存体に関する諸研究をまとめたものが表4.1.2、4.1.3である。

図4.1.4に食性分析の結果を示している。これらの研究成果を鑑みて、以下に縄文時代の各地域の生業活動の違いを明らかにしていく。

図 4.1.1 縄文時代遺物組成
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.1.2 縄文時代各地域遺物組成：漁具

表4.1.1 縄文時代各地域の漁撈対象

<table>
<thead>
<tr>
<th>漁業類型</th>
<th>遺物組成で多いもの</th>
<th>魚種</th>
<th>貝種</th>
</tr>
</thead>
<tbody>
<tr>
<td>東北太平洋岸</td>
<td>釣針・鉄</td>
<td>外洋魚（マダイ・カツオ・マグロ・イルカ）</td>
<td>岩礁性（クボガイ・サザエ・スガイ・レイシ・イボニシ）</td>
</tr>
<tr>
<td>三貫地</td>
<td>ヤス・釣針</td>
<td>内湾性魚類主体（クロダイ・スズキ・ウナギ）・外洋性遺存体（タイ）</td>
<td>内湾砂泥性（アサリ・イボキサゴ）</td>
</tr>
<tr>
<td>房総湾岸</td>
<td>土器片錘・釣針</td>
<td>内湾性魚類（クロダイ・スズキ）・外洋性遺存体（マダイ）</td>
<td>内湾砂泥性（イボキサゴ・ハマグリ・オフキ・アサリ）</td>
</tr>
<tr>
<td>渥美半島</td>
<td>刺突具・切目石錘</td>
<td>内湾性魚類（クロダイ・スズキ）・外洋性遺存体（マダイ・カツオ・マグロ）</td>
<td>内湾砂泥性（アサリ・ハマグリ）</td>
</tr>
<tr>
<td>津雲</td>
<td>刺突具・釣針・石錘</td>
<td>内湾性魚類（クロダイ・スズキ・サワラ・イワシ）・外洋性遺存体（マダイ・マガキ）</td>
<td>岩礁（マガキ）・内湾（ハイガイ）</td>
</tr>
</tbody>
</table>

表4.1.2 縄文時代各地域の狩猟対象

<table>
<thead>
<tr>
<th>狩猟対象</th>
<th>主</th>
<th>従</th>
<th>鳥類</th>
</tr>
</thead>
<tbody>
<tr>
<td>東北太平洋岸</td>
<td>シカ・イノシシ</td>
<td>イヌ・ウサギ・キツネ</td>
<td>ガン・カモ・キジ・ワシタカ</td>
</tr>
<tr>
<td>三貫地</td>
<td>シカ・イノシシ</td>
<td>イヌ・ウサギ・キツネ</td>
<td></td>
</tr>
<tr>
<td>房総湾岸</td>
<td>シカ・イノシシ</td>
<td>タヌキ・キツネ・モグラ</td>
<td>カモ・キジ・ガン</td>
</tr>
<tr>
<td>渥美半島</td>
<td>シカ・イノシシ</td>
<td>タヌキ・イヌ</td>
<td>カモ・キジ</td>
</tr>
<tr>
<td>津雲</td>
<td>シカ・イノシシ</td>
<td>タヌキ・ニホンザル</td>
<td></td>
</tr>
</tbody>
</table>
図 4.1.3 縄文時代各地域遺物組成：狩猟具、土掘具・石鎚、植物質加工工具

表 4.1.3 縄文時代各地域の対象採集物

<table>
<thead>
<tr>
<th>地域</th>
<th>遺物組成：土掘具・石鎚加工具</th>
<th>クルミ</th>
<th>クリ</th>
<th>ドングリ</th>
<th>トチノキ</th>
<th>打製石斧</th>
</tr>
</thead>
<tbody>
<tr>
<td>東北太平洋岸</td>
<td>磯角類が多い</td>
<td>○</td>
<td>○</td>
<td>落葉性（アカ強い）</td>
<td>○</td>
<td>どの地域も出現率30%以上を占めない</td>
</tr>
<tr>
<td>三貫地</td>
<td>ほぼ同じくらいの割合</td>
<td>○</td>
<td>○</td>
<td>落葉性（アカ強い）</td>
<td>○</td>
<td>－</td>
</tr>
<tr>
<td>房総湾岸</td>
<td>磯角類の方が多いが土掘具も一定程度</td>
<td>○</td>
<td>○</td>
<td>落葉性・照葉性</td>
<td>○</td>
<td>東北地方の約10倍の打製石斧（今村1989年）、中期以降前期まで出現率30%以上を安定して占める</td>
</tr>
<tr>
<td>潮美半島</td>
<td>磯角類の方が多いが土掘具も一定程度</td>
<td>○</td>
<td>○</td>
<td>不明</td>
<td>○</td>
<td>晩期には出現率30%以上を安定して占める</td>
</tr>
<tr>
<td>津雲</td>
<td>磯角類の方が多いが土掘具も一定程度</td>
<td>×</td>
<td>×</td>
<td>照葉性（アカ弱い）</td>
<td>○</td>
<td>後期以降後期まで出現率30%以上を安定して占める</td>
</tr>
</tbody>
</table>

（篠辺1984年）
（前山2007年、今村1989年）
第4章 先史時代の身体活動の多様性に関する多角的検討結果

A) 東北太平洋岸:

遺物組成の主体（図4.1.1）は狩猟具、漁具2の釣針や漁具3のヤス等の刺突具、漁具4の銛である。狩猟の対象獣は出土する動物遺存体から考えてニホンジカやイノシシである（表4.1.2）。狩猟具である石鏃や尖頭器と、採集具として用いられた土塀具・石鍬や伐採用と考えられる斧類の割合をみてみると（図4.1.3）、他地域よりも圧倒的に狩猟具の割合が多い。

漁撈の道具（図4.1.2）としては、刺突具が最も多い。対象とした後晩期には手突きと弓を用いたヤス漁が併存していたと指摘されている（楠本1973）。刺突具の中でも、数多く確認される挟み込み式ヤスは魚体を上から挟み込んで捕獲する道具とされ、サケ漁に用いられたと考えられている（藤沼1992）。釣針の出土数も他地域と比べると多い。釣漁発達の中心地であったという渡辺（1973）の指摘からもこの見解は支持される。また銛や尖頭器も他地域に比べると圧倒的に多い（図4.1.2）。動物遺存体は、マダイ・カツオ・マグロ・イルカ等が多数出土しており（渡辺1973）、外洋性の大形魚を対象とした釣り・銛を用
第4章 先史時代の身体活動の多様性に関する多角的検討結果

だった漁撈が行われていたと考えられる。
当然、舟の使用が指摘されており、東北地方に類例はないが、縄文時代早期から千葉県や福井県などから多く出土している丸木舟（山田1983）を使用していたと考えられる。また、舟の辺縁にオールをとりつけるような構造がみられないことから、パドルによる漕艇が考えられている（山田1983）。

植物利用については、アク抜きの必要な落葉広葉樹林帯のドングリやトチの実、クリやクルミなどの堅果類の利用、キノコや山菜の利用が指摘されている（藤沼1992）。

東北太平洋岸のまとめ
東北太平洋岸の各活動の対象と使用道具、食性の特徴を纏めると以下になる。

B) 三貫地域
遺物組成の主体（図4.1.1）は狩猟具とその加工具・漁具3・土壌具・石鍬・植物質加工具・紡績具がほぼ同じ割合を占める。狩猟の対象魚は出土する動物遺存体から考えて、イノシシ・シカ・アナグマ・ウサギである（表4.1.2）。
漁撈活動（図4.1.2）としては、遺物組成の結果から明らかなように、刺突具（ヤス）を主体とし、網漈を併用する漁法であったと考えられる（田中1988）。東北の三陸海岸・仙
第 4 章 先史時代の身体活動の多様性に関する多角的検討結果

台湾岸とは異なり、釣り漁や餌漁の痕跡は乏しい。動物遺存体はウナギを主体としクロダイ・フグ・スズキ・マグロが出土しており（表 4.1.1）、内湾性の網漁や、湾内や河川底の畏漁、ヤスによる内湾・湖沼・河川での刺突漁が想定される（田中 1988）。

狩猟具である石鏃や尖頭器と、採集具である土塀具・石鍬や伐採用と考えられる斧類の割合をみてみると（図 4.1.3）、他地域よりも土塀具・石鍬及び石斧類の割合が多いことがわかる。

植物利用に関しては、アク抜きの必要な広葉樹林帯のドングリやトチの実、クリやクルミなどの堅果類の利用が想定される（表 4.1.3）。また、三貫地遺跡からヤマブドウの種子やモモの種子などが出土している（山崎 1981）。土塀具・石鍬とした打製石斧の比率も多いことから、根茎類の採集も行われていたと考えられる。

貝塚の主体は、ハマグリやアサリといった内湾中央～奥部の砂質に生息する貝類である（表 4.1.1、田中 1988）。

食性分析の結果（図 4.1.4）によると、三貫地貝塚出土人骨の食性の約 8 割を植物性資源が占め、採集活動が重要であったといえる。

三貫地地域のまとめ

三貫地の各活動の対象と使用道具、食性の特徴を総合すると以下にようになる。

- 主体：狩猟具、漁具、土塀具・石鍬、石斧、植物質加工具、紡績具がほぼ同程度。
- 対象：イノシシ・シカ・内湾性の魚種・河川や湖沼の魚種。
- 貝類：内湾砂泥性のハマグリやアサリを主体とする。
- 採集植物：アク抜きの重要な落葉広葉樹林帯のドングリやトチの実、クリやクルミなどの堅果類の利用、土塀具・石鍬を用いた根茎類の採集。
- 食性分析：約 8 割を植物性資源が占め、採集活動が重要であったといえる。

C) 房総湾岸

遺物組成（図 4.1.1）は漁具 1 が卓越し、土塀具・石錘・植物質加工具、狩猟具・加工具が拮抗する。この結果は、本稿で対象とした中期（特に後半、加曾利 E）から後期前半までは大型貝塚形成期であり、漁撈および狩猟、さらに根茎類や堅果類の採集活動も活発であった時期であるという指摘からも支持することができる（赤澤 1984；野口 1985；今村 1989、西野 1999,2005；楠泉・西野 1999）。狩猟対象獣としてはイノシシ・シカがよく遺存している（表 4.1.2）。

漁撈に使用された主な道具（図 4.1.2）は土器片錘およびその他錘であり、次いで刺突具（骨製ヤス）がみられる。関東の湾岸部における土器片鍾の多さと骨製ヤスの出土から、渡辺（1973）は、関東の東京湾を中期以降内湾漁業形態の確立の中心地と指摘している。さらに東関東の土器片錘や刺突具は、貝塚に残る魚骨の構成から、浅瀬河口性魚類（クロダイやスズキなど）や淡水魚（コイ・フナ・アユ・ウナギ）を捕獲するものである可能性を指摘し、魚網の重量から 2〜3 人程度の内湾・内水面域での小規模な地引網がおこなわれ
第4章 先史時代の身体活動の多様性に関する多角的検討結果

たと考えた（渡辺 1973）。舟は、東北太平洋岸と同様に、丸木舟をパドルでこぐような舟であったと考えられる（山田 1983）。

狩猟具である石鏃や尖頭器と、採集具である土堀具・石鎚が伐採用と考えられる斧類の割合を比べると（図4.1.3）、房総湾岸は三貫地に次いで他地域よりも土堀具・石鎚の割合が多いことがわかる。

貝塚の遺存体の組成はイボキサゴ（概ね8割を超える）・ハマグリなど内湾砂泥性貝類を主体とする（表4.1.1）。

採集対象となりえたのは（表4.1.3）、アク抜きの必要な落葉広葉樹林帯のドングリやトチの実、クリやクルミなどの堅果類と考えられる。また、山本（2002）によると、関東地方は、打製石斧（土堀具・石鎚）でクズ、ワラビ、カタクリ、ヤマノイモ、木製掘り棒でウバユリ、小型の鉤形木鎚や鉤形鹿角鎚でギョウジャニンニクやキツネノカミソリを採取していたと指摘されている。

食性分析の結果（図4.1.4）からは、水産資源や貝類への極端な依存がみられず、陸上獣や堅果と水産資源をバランスよく利用していたと指摘されている（南川 2001；米田 2010）。この分析結果は、漁具のみではなく、土堀具・石鎚や植物質加工具が多いことともよく整合する結果である。

房総湾岸のまとめ

房総湾岸の各活動の対象と使用道具、食性の特徴を纏めると以下になる。

- 主体：植物質加工具・漁具1（土器片錘）・狩猟具が拮抗する。
- 対象：イノシシ・シカ・内湾性魚類が主体であるが・外洋性の魚類も確認される。
- 貝類：内湾砂泥性のイボキサゴ（概ね8割を超える）・ハマグリを主体とする小型の貝。
- 採集植物：アク抜きの必要な落葉広葉樹林帯のドングリやトチの実、クリやクルミなどの堅果類。土堀具・石鎚、を用いた根茎類（クズ、ワラビ、カタクリ、ヤマノイモ）の採集や木製掘り棒でウバユリ、小型の鉤形木鎚や鉤形鹿角鎚でギョウジャニンニクやキツネノカミソリを採取していた。
- 食性分析：水産資源や貝類への極端な依存はみられず、陸上獣や堅果と水産資源をバランスよく利用していた。

D) 湯美半島

遺物組成の主体（図4.1.1）は狩猟具（尖頭器の比率が比較的多い）が多い。出土する動物遺存体はイノシシやシカが多く（表4.1.2）、陸生の動物の狩猟がおこなわれたと考えられる。

使用された漁具（図4.1.2）に関しては、漁具3の刺突具・鈎と漁具1の石鎚が多数を占め、大形の釣針が若干であるが確認されている。湯美半島、広くいうと東海地域の縄文後晩期における刺突具の出土数の多さ（図4.1.2）は、渡辺（1973）によって後晩期の海退現象に伴い、網漁がやや衰退したためではないかと述べている。鍾は、切目石锺が大半を占

68
第4章 先史時代の身体活動の多様性に関する多角的検討結果

め、千葉に多い土器片鍔はほとんど見られない（図4.1.2、渡辺1973）。切目石鍔も制突具と同様に、内湾性・河川漁獲に用いられたと考えられる（渡辺2002）。

狩猟具である石鍔や尖頭器と、採集具である土壌具・石鍔や伐採用と考えられる斧類の割合をみてみると（図4.1.3）、東北太平洋沿いで他地域よりも狩猟具である石鍔の割合が多いことがわかる。

渥美半島の貝塚（表4.1.1）はスガイやアサリが中心で、年間を通した遺跡周辺の内湾の干渉・浅瀬の貝の採取が指摘できる（樋泉2000）。

また、渥美半島でみられる収穫具11点を指す石庖丁（図4.1.1）は、打製横刃型石器であり、弥生時代の鉄製石庖丁とは質的に異なるものであるが、植物の採集や集落周辺の禾本科植物の収穫に用いられたものと考えられる（春成1988）。

ドングリやトチの実、クリやクルミなどの堅果類の採集も行われ（表4.1.2）、土壌具・石鍔も一定程度みられる（図4.1.3）ことから根茎類の採集も重要であったと考えられる。また、山本（2002）によると、渥美半島を含む中部地方は、関東地方と同様で、打製石斧（土壌具・石鍔）でクズ、ワラビ、カタクリ、ヤマノイモ、木製掘り棒でウバユリ、小型の鈍形木鍔や鈍形鹿角鍔でギョウジャニンニクやキツネノカミソリを採取していたと指摘されている。

食性に関しては（図4.1.4）関東縄文と大差ないが、窒素同位体比が低い傾向にあり漁獲よりも貝類の方がよく利用されていったと指摘されている（米田2010）。

渥美半島のまとめ

渥美半島の各活動の対象と使用道具、食性の特徴を纏めると以下のようにになる。

- 主体：狩猟具（尖頭器の比率が比較的多い）・漁具3の制突具と漁具1の石鍔が優占する。
- 対象：イノシシ・シカ・内湾性魚類・外洋性魚類。
- 貝塚：内湾性泥性のスガイやアサリが中心。
- 採集植物：落葉広葉樹林帯のドングリやトチの実、クリやクルミなどの堅果類。土壌具・石鍔、若葉異形石器（クズ、ワラビ、カタクリ、ヤマノイモ）の採集や木製掘り棒でウバユリ、小型の鈍形木鍔や鈍形鹿角鍔でギョウジャニンニクやキツネノカミソリを採取していた。また、打製石庖丁を用いた禾本科植物の収穫を行っていたと考えられる。
- 食性分析：漁獲よりも貝類の方がよく利用されていったと指摘される。

E) 津雲地域

この地域で主に対象としたのは津雲貝塚に対応する晩期の遺跡であり、以下の検討は中期に属する大田貝塚の活動を指すものではない。

当該地域の遺物組成の主体（図4.1.1）は石鍔などの狩猟具およびその加工具が大半を占める。狩猟具である石鍔や尖頭器と、採集具である土壌具・石鍔や伐採用と考えられ
第4章 先史時代の身体活動の多様性に関する多角的検討結果

る斧類の割合をみてみると（図4.1.3）、東北太平洋岸に次いで狩猟具である石鏃の割合が多いことがわかる。

漁具に関しては（図4.1.2）、石鍬や釣針が多く、特に釣針が相対的に多い点で、刺突具が多い様子がわかっている（田嶋2006）。山本（2002）が指摘しているように、特に釣針の規模は格段に大型化し、外洋性漁撈活動が全くないということはないようである（千葉2013）が、内湾性の漁撈活動が主体であった可能性がある（千葉2013；千葉2006；千葉2006）。

津雲周辺域の貝塚はアサリ（概ね7割を超える）を主体とする。

採集対象となりえたのは、イチイガシ（佐々木2014b）を中心とし、他アク抜きの不要な照葉樹林体のドングリなどの堅果類と考えられる。打製石斧を用いて採取したのは、クズ、ワラビ、ヤマノイモと考えられる（山本2002）。

一方、大田貝塚の帰属する中期は、縄文海進によって形成された内湾に面した海浜・低地部に遺跡が進出した時期である（千葉2013）。中期の特徴としては、まず土壇具・石鍬が当該地域にはまだ存在しない点、大型の釣針や鈎などの外洋性漁具も中期には未だ伝播していない点（渡辺2002）が指摘されている。鍬や刺突具（ヤス）が漁具の主体であり、外洋性漁撈活動が全くないということはないようである（千葉2013）が、内湾性の漁撈活動が主体であった可能性がある（渡辺1984；山本2002；田嶋2006）。

津雲地域のまとめ

津雲：津雲地域晩期を主体とする津雲貝塚の各活動の対象と使用道具、食性の特徴を纏めると以下のようになる。

· 主体：石鏃や石匙などの加工具がその大半を占める（田嶋2006）。
· 対象：イノシシ・シカ・内湾性魚類・外洋性魚類。
· 貝類：岩礁性のマガキややや多いが内湾のアサリやハイガイ（概ね7割を超える）を
第4章 先史時代の身体活動の多様性に関する多角的検討結果

主体とする。

・ 採集植物：イチイガシを中心とし、アク抜きの不要な照葉樹林体のドングリなどの堅果類、土壌具・石鎬を用いてクズ、ワラビ、ヤマノイモの採取。

・ 燒畑や畑、水稲農耕も行っていた可能性がある（穂川 1992）。

・ 食性分析：陸上資源と海産物を組み合わせた食性であるが、植物質の利用が関東と比較すると少なく、海産物の利用率が比較的高いことが指摘されている（南川 2001；米田 2010）。

大田：津雲地域晚期前期～中期を主体とする貝塚に関しては先行研究を継めると以下のようになる。

・ 土壌具・石鎬が当該地域にはまだ存在しない。

・ 大型の釣針や鈍などの外洋性漁具も中期には未だ伝播しておらず（渡辺 2002）、錘や刺突具（ヤス）が漁具の主体であり、内湾性の漁撈活動を主体としていた可能性がある（渡辺 1984；山本 2002；田嶋 2006）。

第2項 弥生時代の各地域の遺物組成の検討

次に、弥生時代の各地域の遺物組成の検討を行う。用いていた道具群を示す遺物組成の頻度比較をあわせて、過去の人々が食べていたものの総体をしめす食性分析の結果や、遺跡から出土した動植物遺存体の検討も行っていく。広田遺跡では、周辺に集落などの墓地以外の時期の特定可能な遺跡が確認・報告されていないため検討していない。

図 4.1.5 には集成対象とした全ての遺物の組成を、そのうち狩猟具と漁具を取りだしたのが図 4.1.6 である。図 4.1.7 に弥生時代の特徴とされる収穫具及び木材加工具の頻度を示した。

まず弥生時代の大枠の遺物組成（図 4.1.5）をみると、三国丘陵・福岡平野・土井ヶ浜に関しては、いずれも水稲農耕とともに伝来した収穫具及び木材加工具（伐採具・加工斧）が一定の割合をしめている。弥生時代に定型化して出現する木材加工具は、エブリや鋤、鎬などの木製農具や井堰、田下駄といった灌漑を伴う水稲農耕に必要な木製品を作成するために使用された道具である（田崎 1989）。弥生文化の成立においては、朝鮮半島から伝来したモノのあるうち、縄文文化には存在しない要素のみを受容したことが指摘されており（橋口 1985；下條 1986）、弥生時代の各地域にみられる遺物としては周知のことである。

さらに、本稿では残存状況に地域的な偏りがあると考えられ検討対象としていないが、木製品や有機物の中で縄文時代と弥生時代の出土遺物には極めて重要な変化が 2 つ存在する。1 つが、木製の杵や臼の出現である。これらは、縄文時代晩期後半に北部九州に初現した道具である（村上 2008）。石製の杵については渥美半島の稲荷山貝塚で唯一確認されているが、これは長形の叩き石あるいは石鎬ともよばれるものであり（清野 1969）、弥生時代の木製の堅杵・横杵よりもむしろ磨石や敲石に近いものである。この革新は、穀物の脱穀の仕方に大きな変化をもたらしたと考えられる。
第4章 先史時代の身体活動の多様性に関する多角的検討結果

2つ目が、縄文時代は、俵を編むような編機が主体であり（小笠原 1983）、越後アンギンを編むように（東村 2011）、手首の動きのみで編む。一方、弥生時代は、腰と足首の前後の動きで経を調節する輪状型原始機を用いた織布であると考えられている。そのため、紡織の仕方も大きく異なっていたと考えられる。

以下に、上記以外の点でみられる遺物組成の地域的な特徴および水稲農耕の規模や定着度について述べていく。

図4.1.5 弥生時代遺物組成

図4.1.6 弥生時代遺物組成：狩猟および漁撈具

72
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.1.7 木材加工具・石鎚の頻度比較

図4.1.8 食性分析結果：弥生時代
A) 土井ヶ浜地区

土井ヶ浜地区では、狩猟具とその加工具が一定の割合をしめている。イノシシ・シカの動物骨の出土（沖田 2014）から、対象となった獣はイノシシやシカと考えられる。

また、漁撈具の出土もみられる（図 4.1.6）。土井ヶ浜地区で出土する漁具は管状土鍬 a・e（下條 1984）という極めて軽量で小型の土鍬であり、内湾や内水面で小規模な網漁がおこなわれていた可能性が考えられる。漁具の出土は少ないが、土井ヶ浜から出土した人骨の中には外耳道骨腫という、耳の穴にできた骨の異常な隆起の痕跡が認められており、潜水漁法による漁撈も行われていた可能性がある（豊北町史編纂委員会 1972）。

灌溉水稲農耕に関しては、片瀬遺跡から畦で区画された水田が検出されており水稲農耕を行っていたことがうかがえる（小林・沖田 2007）、あるいはやや規模の小さいものであり、土井ヶ浜遺跡の北部九州と同様に竜王遺跡のようなりんごの集落址が出現する（小林 2011）。水稲農耕の定着度がこの地域では福岡平野よりもはるかに低く、「中国地方の縄文時代集落と状況的には大差はみられない」（小林 2011）とも述べられている。

さらに、小林（2011）による土井ヶ浜遺跡の周辺の集落動態の検討からこの地域の水稲農耕の定着度に関する重要な指摘がなされている。片瀬遺跡や土井ヶ浜南遺跡などの土井ヶ浜遺跡周辺の集落は中期の初めに終息し、この終息時期と前後して、内陸のより水稲耕作に適した地形を有する竜王遺跡のような中期の集落址が出現する（小林 2011）。この間にも土井ヶ浜遺跡での墓地造営は継続することから、土井ヶ浜遺跡で墓を作製した人々は、前期に片瀬遺跡を形成し、水稲農耕を試みたが、中期にはこれらの集落を放棄し、より内陸へ移動し水稲農耕を開始した可能性が指摘されている（小林 2011）。水稲農耕の定着度がこの地域では福岡平野よりもはるかに低く、「中国地方の縄文時代集落と状況的には大差はみられない」（小林 2011）とも述べられている。

水稲農耕の定着度の低さと整合するように、片瀬遺跡の弥生時代前期の柱穴からイチイガシの炭化子葉の産出が確認され（小林・沖田 2007）、畑作や採集活動も行われたと考えられる。

土井ヶ浜遺跡の動物遺存体としてはサザエ・ハマグリ、その他カワニナ、マツカサガイなどの河川湖沼の貝類が挙げられている（沖田 2014）。魚骨もスズキ科・ハタ科・タイ科・イシダイ科・ベラ科・ミシマオコゼ科・フグ科など海水魚が出土しているが少量である（沖田 2014）。

食性分析の結果（図 4.1.8）から、土井ヶ浜・福岡平野と隈西小田に関しては若干炭素の同位体比が異なることがわかる。米田（2014）によると、土井ヶ浜遺跡から出土した弥生時代の人々は窒素同位体比が高く海産物あるいは淡水資源を高率で摂取しており、その食性は C3 植物と海産物の両方であったと指摘されている。

土井ヶ浜地区のまとめ

土井ヶ浜地域の各活動の対象と使用道具、食性の特徴をまとめると以下のようになる。

74
第4章 先史時代の身体活動の多様性に関する多角的検討結果

主体：水稲農耕を行いつつ、小規模な網漁や狩猟、採集を行っていた
対象：イノシシ・シカ・海水魚も少ないが出土している。
貝類：河川湖沼の貝類が主体。
採集植物：イチイガシの炭化子葉が確認されている
食性分析：海産物あるいは淡水資源を高率で摂取しており、その食性はC3植物と海産物の両方であったと指摘されている。

B) 三国丘陵

三国丘陵域では狩猟具及び加工具が多数を占める。このうち大多数を占める（図4.1.5）遺物は、打製・磨製石鏃・投弾・スクレイバーや石錐である。石製および土製の投弾は、投石器に用いられた石製・土製の弾と考えられている。弥生時代に出現し、中でも北部九州に数多く出土すると言われている（江上 1971）。これは、鳥類をはじめとした狩猟に用いられたと考えられている（江上 1971；吉岡 1997）。集落遺跡からはキジ（津古土取遺跡）、イノシシの骨（津古土取遺跡・一ノロ遺跡）が出土しており、対象となった獣は鳥類やイノシシであったと考えられる。貯蔵穴からドングリや豆類（横隈山遺跡・津古内畑遺跡・津古大林遺跡）、アサリやタニシ（津古土取遺跡）の出土も確認され（片岡 1996）、採集活動も行われていたと考えられる。片岡（1996）や中園（1996）が指摘するように、農閑期に北部の丘陵帯で狩猟や採集が活発に行われたことが示唆される。

食性分析の結果をみると、三国丘陵域に位置する主要遺跡である隈西小田出土人骨の蛋白質の炭素の値は他の弥生時代集団と比較するとやや低いことがわかる（図4.1.8）。海生の魚類などは少なく、摂取していたとしても淡水系の魚であり、それよりもC3植物及びそれを利用する草食動物の摂取がやや多かった可能性が考えられる。

三国丘陵域のまとめ

三国丘陵域の各活動の対象と使用道具、食性の特徴をまとめると以下のようになる。
第4章 先史時代の身体活動の多様性に関する多角的検討結果

- 主体：水稲農耕を行いつつ、狩猟、畑作、採集を行っていた。
- 対象：イノシシ・鳥類が主体。
- 貝類：アサリやタニシなど水田に生息する貝類。
- 採集植物：ドングリや豆類が確認されている。
- 食性分析：海生の魚類などは少なく、摂取していたとしても淡水系の魚であり、それよりもC3植物及びそれを食する草食動物の摂取がやや多かったと考えられる。

C) 福岡平野域

狩猟具は、石鏃と土製投弾が卓越する（図4.1.6）。対象となった猟は、板付遺跡出土動物骨遺存体から主にイノシシと考えられる。弥生時代に出現する、石製および土製の投弾が狩猟具の中でも極めて多い（図4.1.6）。鳥類の遺存体は確認できていないが、おそらく鳥類の狩猟も行われたと考えられる。

福岡平野においてみられる漁具のほとんどは土錘と石錘であり（図4.1.6）、下条（1984,1989）および和田など（1989）を参考に位置づけを行うと、福岡平野では打欠石錘（80〜200g程度：魚網錘との限定できない可能性があるがその場合も構成比率に変化はない）、管状土錘（小型）、小型九州型A1で、内湾での釣漁（天秤釣り）や小規模な網漁を行っていた可能性がある。下月隈遺跡ではクロダイやタイ科、ギギ科の骨片が出土しており、少なくとも博多湾や那珂川などの周辺河川での小規模な網漁・釣り漁を行っていたものと考えられる。また、福岡平野の高畑遺跡からはタモ網の枠が、辻田遺跡からは筌だといった罠猟に関する遺物の出土も確認されている（和田1997）。

灌溉水稲農耕に関しては、板付でみられるように大規模な水路・井堰が形成され、畦は木製の矢板で補強され600平方メートルにおよぶ（田中1986）。特に早期から高度な灌溉技術を持つ水田が確認されているこの低位段丘面は、後背湿地に恵まれ（橋口1985,1987）、土壌も農耕に適したものである（出田1978）。そのため、福岡平野では土地の開発のための伐採の必要性は三国丘陵よりも低いことが予測される。図4.1.7にみられる遺物の出土数の頻度比較でも石庖丁の出土率が他の地域と比較して最も多いことからも支持される。木材加工は、配水の管理に必要な灌漑施設を維持するために行われたのだろう。諸岡川のつくる湿地帯に水田が作られている為、洪水などによる被害を受ける頻度は高く、そのたびに井堰を作り直し水路を掘り直した痕跡が残っている（福岡市教育委員会1992）。福岡平野の比恵や板付遺跡からは、鈴（平鍬・三又鍬・二又鍬・諸手鍬）、エブリ・杷・鋤・網枠・弓・編み籠など、木製品が大量に出土している。

北部九州弥生の貝塚研究によると板付や比恵ではヤマトシジミやカキ、アサリ、タニシなどからなる貝層が確認されており、普遍的に食されていた（木村1982）、「製塩」（山崎1991）と関連するものでもあると指摘されている。

コムギやマクワウリ、アズキと考えられる種子が出土しており、畑作も行っていたことが指摘されている（福岡市教育委員会1992）。クリの木も杭などに利用されていることからクリやドングリの採集も行っていたと考えられる（福岡市教育委員会1992）。
食性分析の結果をみると（図 4.1.8）、青い小さい丸で示した福岡平野の主要遺跡である金隈遺跡から出土した弥生時代の人々は窒素同位体比が土井ヶ浜の範囲に収まるがやや低く、炭素の値も隈西小田よりはやや高い。陸生哺乳類や淡水魚（肉食）、C3 植物を主要なたんぱく質源にしていた可能性が考えられる。

福岡平野のまとめ
福岡平野域の各活動の対象と使用道具、食性の特徴をまとめる以下のようになる。

- 主体: 水稲農耕を行いつつ、河川での小規模な網漁や罠漁、狩猟、畑作、採集を行っていた。
- 対象: イノシシ・シカ・を主体とし、鳥類、クロダイやタイ科、ギギ科の河川魚。
- 貝類: 河川湖沼の貝類が主体。
- 採集植物: クリやドングリの採集。
- 食性分析: 陸生哺乳類や淡水魚（肉食）、C3 植物を主要なたんぱく質源にしていた可能性が指摘されている。

D) 広田地域
遺物組成の検討は行えていないが、水稲農耕とともに伝来した収穫具及び木工用斧類は種子島全体を通じてみられない（甲元 2003）。対して土堀具・石鎚として用いられたと考えられる打製の有肩石斧が一定量存在し、畑作を行っていた可能性が考えられる（橋口 1990）。また、広田遺跡の副葬品として磨製石鏃や鉄製釣針の出土がみられることから、狩猟や釣漁を行っていたと考えられる。サンゴ礁の発達のために、魚介類を通じた食糧資源を徒歩で採取可能であったこと、港としての利用が可能であったことが指摘されている（目崎 2003）。
後背湿地を利用した小規模な水田経営や丘陵上での畑作栽培を営んでいた可能性はあるが、生業の中心は漁撈活動であったと考えられている（甲元 2003）。
食性分析の結果（図 4.1.8）は、δ15N・δ13C の値の高さから海産物あるいは淡水魚を主要なたんぱく質源としていたことが指摘されている（米田 2007）。C3 植物と海水魚類を中心として、海産魚類あるいは C4 植物が加わった食生活が想定されている。

広田遺跡の貝類の分析を行った黒住（2007）によると、食用種はいずれも海産種でありイシダタミが最も多く、クビレクロズケ・クボガイ類・カサガイ類・アマオブネ・トコブシ・イボアナゴが優占している。動物骨・魚骨の分析（樋泉 2007）ではアオブダイ属が 4 割弱を占め岩礁・サンゴ礁性の魚種に集中する。しかし、種子島周辺に回遊するカツオ類・アジ類・サバ類・イワシ類・トビウオ類は全く確認されておらず外海での表層漁業の低調さは奄美・沖縄の諸遺跡の特徴と言われている。哺乳類ではシカが大半を占めている。
第4章 先史時代の身体活動の多様性に関する多角的検討結果

広田地域のまとめ

広田遺跡に関しては、小規模な水田経営を行っていた可能性はあるが、その中心は畑作と漁撈であり、漁法としては釣漁・およびサンゴ礁での採取であると考えられ、外洋への進出はあまり一般的でなかったと考えられる。また狩猟も行われており、磨製石鐮がこれに対応する道具であると考えられるため、槍あるいは弓矢の使用が指摘される。

第3項 性別に基づく分業の在り方に関する検討

第1・2項で明らかになった縄文時代・弥生時代の各地域集団の生業諸活動を男女のどちらが担ったと考えることができるかを、Murdock（1937）を参考にして検討する。

A) 縄文時代各地域集団の性分業

Murdock（1937）のうち縄文時代と関連する活動を抜粋した（図4.1.9）。

狩猟活動は主に男性が担ったと考えられるが、縄文時代の各地域集団では、対象とした獣を含め用いていた道具にも大きな差はない。

漁撈活動、特に釣漁や鯨漁など外洋性の漁撈活動は男性の労働が主体となると考えられる。漁撈活動に関しては、その内容や用いていた道具が各地で特に大きく異なっていること

図4.1.9　Murdock（1937）を基にした性分業:縄文時代に関係する活動のみ抜粋
第4章 先史時代の身体活動の多様性に関する多角的検討結果

とが遺物組成の検討から明らかである。

女性が主体となる可能性が高い労働は採集や収穫、植物質加工具を用いた製粉などの調理作業、紡績にかかわる作業である。これらに関する道具の比率には差があるが、植物質加工具として用いられていた道具や紡績具の種類に地域的な違いはない。しかし対象とした採集物は各地域で大きく異なり、落葉広葉樹林帯の広がる東日本、本稿では東北、三貫地、房総と渥美、ではクリやウルシ、エゴマやアサ、ダイズ属、アズキ亜種、ヒエ属などの種実が利用されていたと考えられる。また、東日本においては中期後半以降、クリとウルシにトチノキの種実利用が確立する（佐々木2014b）。一方で、照葉樹林の卓越する西日本、津雲ではイチイガシの果実、アク抜きの必要ないドングリがよく利用されていたと指摘されている（渡辺1984；佐々木2014b）。本研究で対象とした地域でドングリのアク抜きの必要がない地域は津雲のみである。根茎類に関しては、東北太平洋岸では土堀具・石鍬が少なく掘り棒を用いて採取するという点で他の地域との違いがみられる。他にも、後晩期に属する渥美半島では石庖丁を用いた収穫が、津雲では焼畑や畑作、水稲農耕が行われていた可能性がある。何をどのように採集していたかが縄文時代では地域ごとに大きく異なり、これは特に女性が行っていた活動に違いを生じさせる可能性が高い。

B) 弥生時代の性分業に関する検討

第4章 先史時代の身体活動の多様性に関する多角的検討結果

えたうえで、各活動が男女どちらを主体として行われていたかを検討する。
まず、福岡平野・土井ヶ浜・三国丘陵域でのその組成に違いがある道具は、狩猟・漁撈・石器の加工具である。狩猟や小動物の捕獲、漁撈活動は基本的には男性の労働である場合が多い、弓による狩猟が少なくとも弥生時代以降は男性の労働であることは、佐原（1968）や都出（1990）による銅鐸に描かれた人物像に関する検討で述べられている。図4.1.10より、水稲農耕のうち、耕作や開墾、木材の切り出しは男性を主体とする場合が多く、太形蛤刃石斧を用いた伐採活動（下條1975；武末2001；森2011）や木材加工具による農具の作製などは、すべて男性優位労働と考えることができる。

水稲農耕のうち、女性が中心となるのは穀物の手入れと収穫である。小笠原（1990）によって、弥生時代後期に鋳器が普及するまでの稲の植え付けや収穫は、直播と石包丁を用いた穂首刈りによって行われ、女性労働を主体とした縄文時代の採集活動の延長上であったと指摘されている。杵・臼を用いた脱穀も収穫の延長として女性によって行われたと考えられている（小笠原1990）。これは、佐原（1968）や都出（1990）による銅鐸に描かれた人物像に関する検討からも述べられている。さらに、輪状型原始機を用いた織布も弥生時代の女性の仕事であった可能性が高く、このような活動は弥生時代の男女の活動の大きな差であるとともに、縄文時代の女性と弥生時代の女性の活動差の1つでもあると考えられる。

広田遺跡では農耕関連遺物が全く確認されていないことや、生業活動の中心が畑作と漁撈であり、漁法としては釣漈・およびサンゴ礁での採取が考えられることから、他の3集団とは男性の主な活動が大きく異なっていた。また、石庖丁などの農耕関連遺物の存在が確認されていない点で広田遺跡の女性も、他の3集団の女性とは活動が大きく異なる可能性がある。

小結 縄文時代と弥生時代の性分業に関するまとめ
縄文時代に行われていた可能性のある性別に基づく役割分担を考慮すると、漁撈活動は主に男性に、採集活動は主に女性によって担われたと考えられる。
弥生時代に行われていた可能性のある性別に基づく役割分担を考慮すると、投弾や石鏃を用いた狩猟活動、耕作や開墾、木材の切り出しは主に男性に、穀物の手入れと収穫、脱穀作業、輪状型原始機を用いた織布は主に女性によって担われたと考えられる。

第2節 現代人の生体計測結果を用いた生業と筋発達部位の関係の検討
第1節では、考古学的な検討をおこない、縄文時代と弥生時代の各地域の生業活動を明らかにした。縄文時代・弥生時代の諸集団が用いていた道具は地域性に富み、さらに、活動自体複数組み合わせて行っていた。このような諸集団に対して、MSMsの先行研究やスポーツ医学などの研究と類似から、どの部位の筋がどのように発達するかを推定することは困難である。しかし、筋の発達の仕方にどのような差がみられるかを可能な限り推測する。
第 4 章 先史時代の身体活動の多様性に関する多角的検討結果

る必要がある。

縄文時代と弥生時代の大きな差として、弥生時代には水稲農耕が確立しているという点と、縄文時代のほうが、漁撈活動が盛んであったという点が挙げられる。これと対比可能なデータとして、台湾福老系漢族の水稲農耕民と漁撈民、澎湖諸島魚民を対象として生体の四肢の太さを検討した生体計測のデータを用いる（表 3.2.2、邱 1956；顔 1959）。このデータを用いて、水稲農耕を行っていた集団と、水稲農耕を行っていなかった集団の四肢の筋発達の仕方にどのような違いがあるのかを検討し、水稲農耕を行っている集団の場合、どのような筋発達をはらうのかを明らかにする。この分析では、四肢周径値が報告されている三井鉱山の労働者のデータも加えた（表 3.2.2、洲上 1957）。

一方、漢族漁民や澎湖島民は比較群中で上腕や前腕・大腿の周径が大きい傾向をしめす（表 4.2.1）。さらに、胸囲の計測値は、三池鉱山の労働者よりも大きい（表 4.2.1）。漢族農民は、計測値自体は小さいが体幹、中でも骨盤幅が相対的にやや広く、四肢骨の周径の中では、下腿の周径が大きいといえる（表 4.2.1）。

集団間の発達部位の違いを検討するために主成分分析を行った結果が、表 4.2.2 であり、第 1 主成分得点を横軸に、第 2 主成分得点を縦軸にとって二次元展開した図が図 4.2.1 である。

表 4.2.1 生体計測対象資料 個々の平均値

<table>
<thead>
<tr>
<th>計測項目/集団</th>
<th>福老系漁民</th>
<th>福老系農民</th>
<th>澎湖島漁民</th>
<th>三井鉱山 I</th>
<th>三井鉱山 II</th>
<th>三井鉱山 III</th>
<th>三井鉱山 IV</th>
<th>三井鉱山 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸囲</td>
<td>87.24</td>
<td>84.55</td>
<td>88.45</td>
<td>83.37</td>
<td>82.9</td>
<td>83.1</td>
<td>85.46</td>
<td>84.97</td>
</tr>
<tr>
<td>骨盤幅</td>
<td>27.0</td>
<td>27.34</td>
<td>27.16</td>
<td>27.39</td>
<td>27.44</td>
<td>27.12</td>
<td>27.21</td>
<td></td>
</tr>
<tr>
<td>右上腕周径</td>
<td>27.04</td>
<td>24.53</td>
<td>26.77</td>
<td>27.15</td>
<td>27.2</td>
<td>27.05</td>
<td>27.08</td>
<td>27.29</td>
</tr>
<tr>
<td>右前腕周径最大</td>
<td>26.09</td>
<td>24.51</td>
<td>25.96</td>
<td>25.58</td>
<td>25.49</td>
<td>25.29</td>
<td>25.95</td>
<td>25.85</td>
</tr>
<tr>
<td>右前腕周径最小</td>
<td>16.79</td>
<td>15.58</td>
<td>16.87</td>
<td>16.81</td>
<td>16.85</td>
<td>16.73</td>
<td>17.16</td>
<td>17.2</td>
</tr>
<tr>
<td>右大腿周径</td>
<td>48.3</td>
<td>44.13</td>
<td>48.03</td>
<td>48.54</td>
<td>48.61</td>
<td>48.39</td>
<td>48.95</td>
<td>48.97</td>
</tr>
<tr>
<td>右下腿周径最大</td>
<td>33.47</td>
<td>32.86</td>
<td>33.76</td>
<td>34.25</td>
<td>33.95</td>
<td>34.07</td>
<td>34.31</td>
<td>34.03</td>
</tr>
</tbody>
</table>

三井鉱山 I：勤続年数 5 年未満、Ⅱ：勤続年数 5 年以上 10 年未満、Ⅲ：勤続年数 10 年以上 15 年未満、Ⅳ：勤続年数 15 年 20 年未満、Ⅴ：勤続年数 20 年以上
が 25.83%である。第 1 主成分は、骨盤幅とは負の相関があるが値が低く、それ以外の四肢骨の諸周径と正の相関が高い。そのため、第 1 主成分得点は、四肢骨の周径の値が相対的に大きいと正の値が大きくなる。

第 2 主成分は、右下脚周径最大値と負の相関が強く、胸囲・前腕周径最大・骨盤幅と正の相関が高い。縦軸に示した第 2 主成分得点は、下腿の周径値が大きいと小さくなり、前腕や胸囲の値が大きいと得点は大きくなる。

図 4.2.1 をみると、比較資料として用いた三井鉱山の勤続年数によってわけられた各集団（Ⅰ・Ⅱ・Ⅲ・Ⅳ・Ⅴ）は、縦軸で採用数の長さに比例して縦軸の値が大きくなっていく。特に I で示した勤続年数 5 年未満の人達とそれ以上の人達のプロットされる位置は異なる。これは、四肢の周径よりも勤続年数とともに体幹の周径や幅が増し、特に胸囲の値が大きくなくなっていくことを示す。

台湾の漢族の漁民と農民において、漁民は骨盤よりも胸囲を大きく、上肢（特に上腕）が発達、下肢では下脚よりも大腿の周径が発達する傾向にある（図 4.2.1）。漁業を中心的に行っていた集団は下肢よりも上肢のほうが頑丈になると考えられる。中でも特に大胸筋、大円筋、広背筋、僧帽筋などの肩関節の動きに作用する筋が発達すると考えられる。

一方、農民は、胸囲よりも骨盤の幅が広く、下腿の周径の値が大きい傾向にあるといえる。この結果から、漁業者や網漁を行う漁業集団は胸囲が発達し、四肢周径の中では相対的に下脚の発達が弱いことが示される。また、水稲農耕は漁業集団と比較するとどの部位も発達程度は低いが、四肢周径の中では相対的に下脚の発達がやや強いといえる。水稲農耕の、下脚の周径の値が相対的に大きく、中でも特に、ヒラメ筋の発達が強いと考えられる。

表 4.2.2 生体計測値を用いた主成分分析の主成分負荷量

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>胸囲</td>
<td>0.01</td>
<td>0.58</td>
</tr>
<tr>
<td>右上腕周径</td>
<td>0.27</td>
<td>0.03</td>
</tr>
<tr>
<td>右前腕周径最大</td>
<td>0.24</td>
<td>0.32</td>
</tr>
<tr>
<td>右大腿周径</td>
<td>0.28</td>
<td>0.02</td>
</tr>
<tr>
<td>右下脚周径最大</td>
<td>0.26</td>
<td>-0.23</td>
</tr>
<tr>
<td>骨盤幅</td>
<td>-0.09</td>
<td>0.38</td>
</tr>
<tr>
<td>固有値</td>
<td>3.57</td>
<td>1.55</td>
</tr>
<tr>
<td>寄与率 %</td>
<td>59.47</td>
<td>25.83</td>
</tr>
</tbody>
</table>

図 4.2.1 生体計測の値を用いた主成分分析の結果
第 4 章 先史時代の身体活動の多様性に関する多角的検討結果

小結 生体計測による検討のまとめ
漁撈を中心にしていた集団は、大胸筋、大円筋、広背筋、僧帽筋などの肩関節の動きに作用する諸筋が発達すると考えられる。一方、水稲農耕を行っていた集団は、ヒラメ筋の発達が相対的に強いと考えられる。
また、洲上（1957）の検討から、基本的に同じような労働をし続けると、その継続年数に概ね比例して筋量は増していくと考えられる。

第3節 縄文時代と弥生時代の MSms の集団間比較
これまで考古学的検討および生体計測の結果から、縄文時代と弥生時代の各地域別の諸集団の活動の特徴と集団間の生業活動の類似・差異、及び水稲農耕によって発達する部位に関する検討を行った。考古学的な検討から得られた地域別生業活動に関しては表 4.3.1、4.3.2 及び本節の各項の A にまとめている。
第 3 節では、縄文時代と弥生時代の各集団の MSms の類似や差異を検討する。MSms パターンの検討を行うことで、行われていた身体諸活動、及び集団間の類似や差異を明らかにする。
まず、性別ごとに、MSms パターンおよびスコアの差を検討する。単変量解析を行い、部位ごとの違いを明らかにした後、主成分分析を行い、各地域集団の MSms パターンの類似や差異を検討し、その要因を議論する。
本節では、MSms の左右差を検討する。これは、活動の行い方によって身体の左右差が助長される場合が指摘されているためである。例えば、弓矢や槍の使用は左右のアシンメ
第 4 章 先史時代の身体活動の多様性に関する多角的検討結果

トリーが強くなる傾向が Bridges（1989）、Chatter（2014）によって指摘されている。他にも片側の内旋筋群に負荷がより強くかかるエリートテニス選手では利き腕側のほうが 15 〜30%筋力が高いことも指摘されており（Ellenbecker et al. 2012）、動作の左右差が強い活動では、両側のアシンメトリートリーが強くなると考えられる。このことから、左右差のあらわれ方の集団差は、行われていた身体活動の特徴を反映すると考えられる。MSMs の左右差の検討を行い、各地域別に左右の負荷のかかり方にどのような違いがあったのかを明らかにする。地域間の MSMS の類似と差異および地域間の MSMS の左右差の類似と差異から、身体活動にどのような違いがあったかを明らかにする。

次に、縄文時代と弥生時代という大枠で時代間の比較を行う。各地域集団の生業活動には様々な違いが存在するが、弥生時代の広田以外の 3 集団は水稲農耕を多かれ少なかれ行っていたという共通点がある。そのため、縄文時代と弥生時代の比較を行うことで、水稲農耕という新しい生業活動の確立以前と以降によって、MSMs がどのように変化するのかを検討する。この検討から、狩猟採集から農耕への移行によって、人々の身体活動はどのように変化したのか、身体にかかる負荷は増したのか、減ったのかを明らかにしていく。

表 4.3.2 弥生時代の生業活動の地域性

<table>
<thead>
<tr>
<th>地域</th>
<th>狩猟</th>
<th>対象獣</th>
<th>漁撈</th>
<th>貝類</th>
<th>採集</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>土井ヶ浜</td>
<td>石鏃</td>
<td>イノシシ・シカ</td>
<td>小規模な網漁</td>
<td>河川湖沼の貝類</td>
<td>イチイガシ</td>
<td>畑作</td>
</tr>
<tr>
<td>三国丘陵</td>
<td>石鏃・投弾の使用</td>
<td>イノシシ・鳥類</td>
<td>無し</td>
<td>アサリやタニシの採集</td>
<td>ドングリや豆類</td>
<td>畑作</td>
</tr>
<tr>
<td>福岡平野</td>
<td>石鏃・投弾の使用</td>
<td>イノシシ</td>
<td>網漁・罠漁</td>
<td>ヤマトシジミやカキ、アサリ、タニシの採集</td>
<td>ドングリやドングリの採集</td>
<td>畑作</td>
</tr>
<tr>
<td>広田</td>
<td>石鏃</td>
<td>シカ</td>
<td>釣り漁・サンゴ礁での採取</td>
<td>海産種</td>
<td>アク抜きの必要な堅果・根茎</td>
<td>畑作</td>
</tr>
</tbody>
</table>

第1項 縄文時代と弥生時代男性の MSMS の地域性と時代変化

A) 縄文時代と弥生時代の各地域で想定される諸活動の類似と差異：男性

第 1・2 節で検討した遺物組成や植生、食物分析の結果から明らかになった各地域の男性の生業活動にみられる差異を述べる（表 4.3.1、4.3.2）。

縄文時代の男性 5 集団は、漁撈活動の差から、東北太平洋岸の集団の身体活動は、他の集団とは大きく異なる可能性がある。また、房総湾岸の集団の身体活動も網漁が非常に卓越するという点やや異なる可能性がある。刺突漁と網漁の組み合わせという点で三貫地、津雲、渥美半島の集団の身体活動は類似する可能性がある。

弥生時代の 4 集団に関しては、広田の身体活動が大きく異なること、三国丘陵では水稲農耕を行うための伐採活動の頻度及び狩猟活動の頻度が高く、土井ヶ浜では水稲農耕の定
第4章 先史時代の身体活動の多様性に関する多角的検討結果

着度が低く漁撈活動などの副次的な活動の需要が高い。しかし、弥生時代の各地域の男女の身体活動は、水稲農耕を共通するという点で縄文時代の各地域の男女の身体活動よりも、地域的な多様性が小さくなる可能性が想定された。

B) 縄文時代と弥生時代の男性のMSMsの地域的差異

まず、男性の各地域集団のMSMsパターンの違いを検討する。MSMsパターンのスコアの違いを示した図が4.3.1である。縄文時代は集団数が多いので任意において2つの図で示している。各地域の基礎統計量は付表1、2に示した。

図4.3.1に示した男性のMSMsパターンのスコアをみると、縄文時代のどの集団も折れ線グラフの重なりが強くMSMsパターンのスコアとして大きな差はみられない。一方で弥生時代の各集団は、まず、広田が他とは異なるMSMsパターンを示す。さらに、その他3集団も特に上肢のMSMsパターンにおいて、折れ線グラフの重なりが小さく、縄文時代の各集団間のMSMsパターンの差よりも集団間の差が大きい。MSMsパターンと頻度グラフを合わせて、図4.3.2、4.3.3に示す。

図4.3.2の縄文各地域の男性のMSMsパターンをみると、鎖骨から上腕に付着する諸筋のMSMsパターンに大きな差はない。どの集団も大胸筋に強いピークを示し、大胸筋よりもスコアの平均値は低いが、肋鎖靭帯でスコア4以上を示す個体の割合が多い。前腕の屈伸に作用する上腕三頭筋外側頭・上腕筋・上腕二頭筋のMSMsパターンは東北太平洋岸のみ他の集団と異なり、肘関節の屈曲に作用する上腕筋・上腕二頭筋のほうが、肘関節の伸展に作用する上腕三頭筋よりもMSMsスコアが低い。手首の回内外に作用する回外筋・方形回内筋、円回内筋のMSMsパターンは、東北太平洋岸、津雲、大田では円回内筋のスコアがやや低い傾向にある。三貫地・房総湾岸・渥美半島はこの3部位のスコアはほぼ同程度である。

下肢では、津雲と大田以外の諸集団では粗線に付着する筋群にMSMsパターンのピークがあり、どの集団もヒラメ筋よりも後脛骨筋と長趾屈筋のスコアが高い。

図4.3.3の弥生時代の各集団のMSMsパターンをみると、水稲農耕を行っていた3集団においても、鎖骨から上腕に付着する諸筋のMSMsパターンに決定的な差はない。しかし、三国丘陵域の集団がやや円錐靭帯及び大円筋と広背筋のスコアが高い傾向にある。肋鎖靭帯のMSMsスコアが大胸筋のMSMsスコアよりも高い傾向にあるが、縄文時代の各集団のように、スコア4以上の個体が50％以上を占め、大胸筋のスコア4以上の個体数よりも多いのは土井ヶ浜だけである。三国丘陵域は土井ヶ浜よりやや円錐靭帯及び大円筋と広背筋のスコアが高い傾向にある。肋鎖靭帯のMSMsスコアが大胸筋のMSMsスコアよりも高い傾向にあるが、縄文時代の各集団のように、スコア4以上の個体が50％以上を占め、大胸筋のスコア4以上の個体数よりも多いのは土井ヶ浜だけである。三国丘陵域は土井ヶ浜よりやや円錐靭帯及び大円筋と広背筋のスコアが高い傾向にある。肘関節の屈伸に作用するMSMsパターンは土井ヶ浜と三国丘陵、福岡平野ではやや異なる。土井ヶ浜ではこの3部位はほぼ同程度であり、三国丘陵域では上腕筋と上腕二頭筋のMSMsスコアが高く、福岡平野では上腕筋のスコアが高い。手首の回内外に作用する回外筋・方形回内筋、円回内筋のMSMsパターンは、3集団間にあまり差がない。

下肢のMSMsパターンは基本的に土井ヶ浜と三国丘陵、福岡平野では類似し、腸腰筋、粗線に付着する筋群、内側広筋、ヒラメ筋にピークを示す。ヒラメ筋のほうが後脛骨筋と長趾屈筋よりもスコアが高い（図4.3.3）。

85
一方、広田は、上記3集団とは異なるMSMsパターンを形成する。特に下肢のMSMsパターンにおいて他の集団と共通性が見られない（図4.3.3）。
また、肋鎖帯のMSMsスコア4以上を占める個体の頻度が大胸筋のスコア4以上を示す個体よりも多い。前腕の屈伸に作用する筋のMSMsパターンは弥生時代の他の集団とあまり違いはない。しかし、回外筋のほうが方形回内筋・円内筋よりも高いという点で差がある。下肢のパターンには明確なピークを示す部位がなく、あまり特徴がないといえる。
縄文時代と弥生時代の各集団の男性の部位ごとの差異を検討するために、単変量の有意差検定を行った。Kruskal-Wallis検定を行い、有意差を検出した部位で、集団ごとの有意差検定を行うため、Bonferroni法を用いた多重比較を行った。その結果を図3.3.4に併記している。有意差がみられるのは、基本的に縄文時代の各集団と弥生時代の各集団の間であり、縄文時代の各集団間で有意差がみられた部位はない。

図 4.3.1 縄文時代と弥生時代のMSMsパターンの比較：男性
図 4.3.2 MSMs パターン：縄文時代各集団男性
弥生時代の集団間では、三国丘陵と広田で3部位（大円筋と広背筋・三角筋・粗線）、広田と福岡平野で1部位（粗線）に有意差がみられた。弥生時代の広田以外の3集団間で有意差がみられた部位は、三国丘陵と福岡平野で1部位（大円筋と広背筋）のみである。

大胸筋が最も有意差を示す集団が多く、渥美半島、房総湾岸、東北太平洋岸は、弥生時代のすべての集団と有意な差を示し、津雲は土井ヶ浜と三国丘陵域の集団と有意な差を示す。三角筋は、渥美半島・津雲・房総湾岸の各集団と、福岡平野・広田の集団が有意な差を示す。上腕筋は房総湾岸と福岡平野・広田が有意な差を示す。回外筋は大田・津雲・渥美半島・房総湾岸と土井ヶ浜・福岡平野がそれぞれ有意な差を示す。方形回内筋は大田・渥美半島と土井ヶ浜・福岡平野が有意な差を示し、津雲と福岡平野も有意な差を示す。下肢では、大殿筋で、大田・津雲と福岡平野・広田が有意な差を示す。

図 4.3.3 MSNs パターン：弥生時代各集団男性
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.3.4-1 素文時代と弥生時代の各集団のBonferroni検定結果

（※＞5%水準で有意、***＞1%水準で有意）
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.3.4-2 糸島時代と弥生時代の各集団のBonferroni検定結果 2
（＊>5%水準で有意、＊＊>1%水準で有意）
第4章 先史時代の身体活動の多様性に関する多角的検討結果

粗線は、広田と渥美半島・大田・房総湾岸・三貫地・福岡平野・三国丘陵の各集団が有意な差を示し、土井ヶ浜と房総湾岸・渥美半島の各集団が有意な差を示す。ヒラメ筋は、房総湾岸と三国丘陵で有意な差を示した。

次に、遺物組成の分析が可能であった縄文時代の5集団と弥生時代の3集団のMSMsパターンにおける類似と差異、その要因を検討するために、カテゴリカル主成分分析を行った（表4.3.3、図4.3.5）。

第1主成分は、固有値が13.55、寄与率が61.58%、第2主成分は固有値が4.94、寄与率が22.44%、第3主成分は固有値が3.02、寄与率が13.74%である。

第1主成分は、ほぼすべての部位と正の相関が高く、いわゆるサイズファクターである。

第2主成分は、肋鎖靭帯、大胸筋、上腕三頭筋外側頭、粗線に付着する筋群と正の相関が高く、外側広筋、ヒラメ筋と負の相関が高い。第3主成分は、円錐靭帯、鎖骨下筋、鳥口腕筋、腸腰筋と正の相関が高く、肋鎖靭帯、粗線に付着する筋群と負の相関を示す。

第2・3の主成分得点を2次元展開した図が図4.3.5である。

縄文時代の各集団は、東北太平洋岸と房総湾岸が、それ以外の3集団とはやや異なる位置にプロットされる。房総湾岸は、縦軸では負の値を示し、津雲・渥美半島・三貫地と類似するといえる。房総湾岸と東北太平洋岸では、肋鎖靭帯をはじめ鎖骨に付着する諸靭帯および鎖骨下筋、大胸筋、上腕三頭筋外側頭といった上腕の内転や挙上に大きく作用する筋帯と筋、さらに肘関節の屈伸に作用する上腕三頭筋外側頭と上腕筋、粗線に付着する筋群のMSMsスコアが他の3集団よりも高い。また、房総湾岸を含め、三貫地、渥美半島、津雲の各集団は肋鎖靭帯の他肩関節の前方への動きを制限する菱形靭帯、肘関節の屈曲に作用する上腕筋、粗線に付着する筋群のMSMsスコアがやや高い。

弥生時代の3集団は、土井ヶ浜と三国丘陵が類似し、福岡平野はこの2集団とはやや異なる位置にプロットされる。土井ヶ浜と三国丘陵の方が福岡平野よりも、肩甲骨が後方に動くのを制限する円錐靭帯、鎖骨の安定を保つ鎖骨下筋、上腕の内転や屈曲の補助筋である鳥口

<table>
<thead>
<tr>
<th>表4.3.3 縄文・弥生時代各集団のMSMsスコアの平均値を用いたカテゴリカル主成分分析 主成分負荷量</th>
<th></th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>肋鎖靭帯</td>
<td>0.26</td>
<td>0.92</td>
<td>-0.22</td>
</tr>
<tr>
<td>前頸二頭筋</td>
<td>0.96</td>
<td>0.18</td>
<td>-0.09</td>
</tr>
<tr>
<td>新錐靭帯</td>
<td>0.64</td>
<td>0.15</td>
<td>0.63</td>
</tr>
<tr>
<td>鎖骨下筋</td>
<td>-0.20</td>
<td>0.48</td>
<td>0.85</td>
</tr>
<tr>
<td>三角筋（起始）</td>
<td>0.99</td>
<td>-0.15</td>
<td>0.00</td>
</tr>
<tr>
<td>大円筋・広背筋</td>
<td>0.99</td>
<td>-0.15</td>
<td>0.03</td>
</tr>
<tr>
<td>大胸筋</td>
<td>0.74</td>
<td>0.66</td>
<td>-0.10</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.99</td>
<td>-0.12</td>
<td>0.04</td>
</tr>
<tr>
<td>鳥口腕筋</td>
<td>0.14</td>
<td>-0.13</td>
<td>0.97</td>
</tr>
<tr>
<td>上腕三頭筋</td>
<td>0.39</td>
<td>0.75</td>
<td>0.36</td>
</tr>
<tr>
<td>上腕筋</td>
<td>0.93</td>
<td>0.33</td>
<td>-0.14</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>0.99</td>
<td>-0.15</td>
<td>0.03</td>
</tr>
<tr>
<td>回外筋</td>
<td>0.99</td>
<td>-0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>方形形内筋</td>
<td>0.99</td>
<td>-0.15</td>
<td>0.02</td>
</tr>
<tr>
<td>円円内</td>
<td>0.99</td>
<td>-0.15</td>
<td>0.03</td>
</tr>
<tr>
<td>頚腰筋</td>
<td>-0.44</td>
<td>0.44</td>
<td>0.75</td>
</tr>
<tr>
<td>大脛筋</td>
<td>0.99</td>
<td>-0.17</td>
<td>0.02</td>
</tr>
<tr>
<td>稲穂</td>
<td>0.36</td>
<td>0.89</td>
<td>-0.22</td>
</tr>
<tr>
<td>外側広筋</td>
<td>0.52</td>
<td>-0.83</td>
<td>0.17</td>
</tr>
<tr>
<td>内側広筋</td>
<td>0.97</td>
<td>-0.22</td>
<td>0.10</td>
</tr>
<tr>
<td>後脛骨筋・長趾筋</td>
<td>0.99</td>
<td>-0.14</td>
<td>0.01</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>-0.40</td>
<td>-0.86</td>
<td>0.30</td>
</tr>
<tr>
<td>固有値</td>
<td>13.55</td>
<td>4.94</td>
<td>3.02</td>
</tr>
<tr>
<td>寄与率（%）</td>
<td>61.58</td>
<td>22.44</td>
<td>13.74</td>
</tr>
</tbody>
</table>
腕筋、下肢では腸腰筋のMSMsスコアが高い傾向を示す。福岡平野は、第2主成分得点は正の値を示し、土井ヶ浜と三国丘陵よりも、肋鎖靭帯をはじめ鎖骨に付着する諸靭帯および鎖骨下筋、大胸筋、上腕三頭筋外側頭といった上腕の内転や挙上に大きく作用する靭帯と筋、さらに肘関節の屈伸に作用する上腕三頭筋外側頭と上腕筋、粗線に付着する筋群のMSMsスコアが高い。横軸では、土井ヶ浜、三国丘陵は、縄文時代の三貫地、渥美半島、津雲と同じような傾向をしめす。

図 4.3.5 縄文各集団と弥生各集団のMSMs22部位の平均値を用いたカテゴリカル主成分分析

縄文時代と弥生時代各地域の男性の左右差

行っていた活動によって左右のアシンメトリーの表れ方は変化すると考えられるため、左右差の検討を行う（図4.3.6）。基礎統計量は付表3に示す。左右差が最も大きいのは、縄文時代の東北太平洋岸で、特に上腕の左右差が大きい。三貫地は手首の回内外の左右差が大きい。房総湾岸は前腕の左右差が大きいが、全体的な左右差に房総湾岸・渥美半島・津
第 4 章 先史時代の身体活動の多様性に関する多角的検討結果

雲では大きな違いはない。弥生時代では土井ヶ浜の左右差は全ての部位で小さい。弥生時代の中では三国丘陵域が最も高く、中でも特に上腕と下腿の左右差が大きい傾向がある。

各部位の左右差の値を MSMs パターンにした図が図 4.3.7 である。東北太平洋岸の集団は、上腕の中でも肋鎖靭帯と大胸筋に顕著に差が生じている。また、上腕二頭筋の左右差もやや大きいことがわかる。三貫地は、手首の回内外に作用する諸筋（回外筋・方円筋）の左右差が大きい。図 4.3.5 で MSMs パターンが類似しているとした房総湾岸と渥美半島、津雲の集団にもやや差がみられ、特に房総湾岸は肋鎖靭帯・三角筋・上腕三頭筋の左右差がやや大きく、大胸筋の左右差が小さいという点で、渥美半島・津雲とは異なっている。

弥生時代の 3 集団の左右差をみる（図 4.3.7）と、図 4.3.6 で指摘したように、土井ヶ浜はどの部位も小さい。三国丘陵は、肋鎖靭帯・腸腰筋・長脛骨筋と長趾屈筋の左右差が大きいことがわかる。福岡平野の左右差は上腕三頭筋・外側頭でやや大きいが、他の部位で他集団より明確に左右差のスコアが大きい部位はない。

図 4.3.6 縄文時代と弥生時代各地域集団の男性の MSMs スコアの左右差

C) 縄文時代と弥生時代の男性の MSMs の時代変化

縄文と弥生の時代の基礎統計量は付表 4 に示し、男性の MSMs パターンと頻度グラフを合わせ図 4.3.8 に示した。縄文時代と弥生時代の MSMs の差を検定するために、Mann-Whitney U 検定を行った。図 4.3.8 にアスタリスクで示した部位は Mann-Whitney U 検定の結果、有意差がみられた部位である。図 4.3.9 には、各部位の MSMs スコアの平均値を折れ線グラフにした MSMs パターンのみを示している。アスタリスクで示した部位は Mann-Whitney U 検定の結果、有意差がみられた部位であり、赤い四角で囲った部分は縄文時代の方が、MSMs スコアが有意に高い部位、青い四角で囲った部分は弥生時代の方が、MSMs スコアが有意に高い部位である。
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.3.7 縄文時代と弥生時代の各集団の左右差のMSMsパターン
第4章 先史時代の身体活動の多様性に関する多角的検討結果

縄文時代と弥生時代の男性間でのMann-WhitneyU検定では、22部位中11部位で有意な差がみられるが、うち2部位のみ（腸腰筋とヒラメ筋）弥生時代人骨の方が縄文時代人骨よりもスコアが高い傾向を示す（図4.3.9）。折れ線グラフで比較すると、男性では縄文時代人骨の平均値の方が弥生時代の平均値よりも高い部位が多い。統計的に有意ではないが縄文時代と弥生時代のMSMsスコアの平均値がほぼ拮抗している部位は、円錐靭帯・鎖骨下筋・鳥口腕筋・大円筋と粗線に付着する筋群である（図4.3.9）。肋鎖靭帯、大胸筋や三角筋、手首の内外に作用する筋、後脛骨筋と長趾屈筋は縄文時代の方が弥生時代よりも顕著にMSMsスコアが高い（図4.3.9）。縄文時代と弥生時代の男性の場合、下肢よりも上肢の方が、スコアの平均値の差が大きいといえる。

図4.3.8 縄文と弥生のMSMsパターンとMann-Whitney検定による比較結果：男性

図4.3.9 縄文と弥生のMann-Whitney検定による比較結果 男性MSMsパターンのみ
赤い四角で囲った部分は縄文時代の方が、MSMsスコアが有意に高い部位
青い四角で囲った部分は弥生時代の方が、MSMsスコアが有意に高い部位
第 4 章 先史時代の身体活動の多様性に関する多角的検討結果

小結 先史時代男性のMSMsの地域的多様性と時代変化に関するまとめ

縄文時代各集団のMSMsパターンのスコアは弥生時代各集団よりも相互に類似する傾向にある。部位ごとの有意差検定の結果、基本的に有意差がみられるのは縄文時代の各集団と弥生時代の各集団の間であり、縄文時代の各集団間で有意差がみられた部位はない。MSMsパターンとしても類似しており、どの集団も大胸筋に強いピークを示し、肋鎖靭帯でスコア4以上を示す個体の割合が多い。下肢では、概して粗縁に付着する筋群にMSMsパターンのピークがあり、どの集団もヒラメ筋よりも後脛骨筋と長趾屈筋のスコアが高い。

カテゴリカル主成分分析の結果からは、東北太平洋岸と房総湾岸の集団が他の3集団とはやや異なるといえる。

東北太平洋岸の集団は、肘関節の屈曲に作用する上腕筋・上腕二頭筋のほうが肘関節の伸展に作用する上腕三頭筋よりもMSMsスコアが低い傾向を示す。また、この集団は上腕の左右差、中でも肋鎖靭帯と大胸筋の左右差が最も強い。

房総湾岸は、肋鎖靭帯と大胸筋のスコアの高い個体が縄文時代の中でも多い傾向を示す。

三貫地・渥美半島・津雲の右側のMSMsパターンは類似する傾向にあるが、左右差の点で三貫地は他2集団とはやや異なる。特に、MSMsパターンおよび左右差において渥美半島と津雲の男性の類似性は強いといえる。

弥生時代の各集団のMSMsパターンのスコアは縄文時代よりも差が大きい。鎖骨から上腕に付着する諸筋のMSMsパターンでは、三国丘陵域の集団がやや円錐靭帯、大円筋と広背筋のMSMsスコアが高いという差が存在する。この3集団は肋鎖靭帯のMSMsスコアが大胸筋のMSMsスコアよりも若干高い傾向にあるが、スコア4以上の個体が50%以上を占めるのは土井ヶ浜だけである。肘関節の屈伸に作用するMSMsパターンは北部九州3集団間でやや異なる。

一方、下肢のMSMsパターンは基本的に土井ヶ浜と三国丘陵、福岡平野では類似し、腸腰筋、粗縁に付着する筋群、内側広筋、ヒラメ筋にピークを示す。特にどの集団もヒラメ筋のほうが後脛骨筋と長趾屈筋のMSMsスコアよりも高いという傾向を示す。カテゴリカル主成分分析の結果からは、福岡平野と、土井ヶ浜・三国丘陵域の集団のMSMsパターンはやや異なるといえる。

広田は、弥生時代の他3集団と有意差がみられる部位があり、MSMsパターン全体も他の3集団とは大きく異なる。

第2項 縄文時代と弥生時代女性のMSMsの地域性と時代変化

A) 縄文時代と弥生時代の各地域で想定される諸活動の類似と差異：女性

第1・2節で検討した遺物組成や植生、食性分析の結果から明らかになった各地域の女性の生業活動の地域的な多様性を具体的に述べていく（表4.3.1、4.3.2）。

縄文時代の5集団の採集活動においては、津雲の集団が、アク抜きの必要性がないという点、畑作や焼畑、さらに定着はしていないが水稲農耕を行っていた可能性があるという
第4章 先史時代の身体活動の多様性に関する多角的検討結果

点で、他の縄文時代の各地域集団と身体活動に差があると推測された。また、東北太平洋岸も土壌具・石鎚が少ないという点で、根茎類への依存度が低かった可能性があり、他の地域とは身体活動が異なっていた可能性がある。

弥生時代の水稲農耕を行っていた3集団では、雑草の除去や石鎚を用いた収穫、脱穀は女性を主体として行われたと考えられる。水田内の作業が必要であることと、生体計測の結果を合わせ、女性も男性同様、下肢、特にヒラメ筋の発達が相対的に強いという結果がえられる可能性がある。採集活動は、広田以外の3集団には採集対象と用いていた道具に大きな違いはないといえる。

B) 縄文時代と弥生時代の女性のMSMsの地域的差異

女性の各地域集団のMSMsパターンの違いを検討する。MSMsパターンのスコアの違いを示した図が図4.3.10である。縄文時代は集団数が多いので任意にかけて2つの図で示している。各地域の基礎統計量は付表1、2に示した。女性のMSMsパターンのスコアは、男性とはやや傾向が異なり、縄文・弥生どちらの時代の集団間にも差がみられる。

図4.3.11の縄文各地域の女性のMSMsパターンをみると、大胸筋にピークを示す集団は房総湾岸、三貫地、渥美半島のみであり、他の集団は肋鎖靭帯、三角筋の前部、大胸筋、三角筋のMSMsスコアが拮抗する。また大田は大胸筋よりも三角筋のMSMsスコアが高い。前腕に付着する肘関節の屈伸に作用する筋の中では、東北太平洋岸と津雲は上腕二頭筋と上腕筋が高く、手首の回内外に作用する筋の中では方形回内筋のスコアが他よりやや高いという点で類似している。三貫地、房総湾岸、渥美半島、大田では肘関節の屈伸に作用する筋の中では上腕筋に、手首の回内外の筋は方形筋のMSMsスコアがやや高い傾向を示す。

下肢では、東北太平洋岸、津雲、大田が粗線に付着する筋群ではなく、大殿筋でピークを示し、下腿では緩やかにMSMsスコアが減少していく。三貫地、房総湾岸、渥美半島では、粗線に付着する筋群にピークを示し、下腿でMSMsスコアがわずかに高くなる。

図4.3.12の弥生時代の女性の各集団のMSMsパターンをみると、福岡平野と三国丘陵域、土井ヶ浜は大胸筋にピークがあり、広田は三角筋にピークを示している。肘関節の屈伸に作用する筋のMSMsパターンは、上腕三頭筋外側頭・上腕筋・上腕二頭筋の3部位が緩やかに増減する土井ヶ浜と三国丘陵域に対して、福岡平野は上腕筋にピークを示す。手首の回内外の筋は3集団共に方形回内筋のMSMsスコアが最も高い。この3集団においては、下肢のMSMsパターンは類似しており、ピークが粗線に付着する筋群にあり、ヒラメ筋のほうが後脛骨筋と長趾屈筋よりもスコアが高い。一方、広田は、手首の方形回内筋に最大のピークをもち、下肢も股関節のスコアが高いが基本的にはあまり部位間のスコアの高低差がない。この点で、弥生時代の3集団とは大きく異なる。また、スコア1を示す個体の頻度が相対的に高く、概してスコアは低い傾向を示す。

縄文時代と弥生時代の各集団の女性の部位ごとの差異を検討するために、単変量の有意差検定を行った。図4.3.13に、Kruskal-Wallis検定を行い、有意差を検出した部位の頻度グラフを示している。集団ごとの有意差検定を行うため、Bonferroni法を用いた多重比較を行
い、図4.3.13にはその結果を併記している。

有意差がみられるのは、基本的に広田と縄文時代・弥生時代の各集団の間であり、縄文時代の各集団間で有意差がみられた部位はない。広田は、菱形靭帯で大田・津雲・房総湾岸・三貫地・土井ヶ浜・三国丘陵の各集団と有意な差を示し、円錐靭帯では津雲・渥美半島・土井ヶ浜・三国丘陵の各集団と有意な差を示し、三角筋の前部では縄文時代の全集団及び三国丘陵の集団と有意な差を示し、大円筋と広背筋では房総湾岸と渥美半島の各集団と、大胸筋では渥美半島の各集団と、大殿筋では大田・津雲・渥美半島・房総湾岸・三貫地と、粗線では渥美半島・房総湾岸・三貫地・土井ヶ浜・福岡平野と、外側広筋では渥美半島と有意な差を示す。福岡平野と渥美半島の集団間で大円筋と広背筋・回外筋・円回内筋に有意な差がみられる。

図4.3.10 縄文時代と弥生時代のMSMsパターンの比較：女性
図 4.3.11 MSms パターン：縄文時代各集団女性
他には、三角筋の前部は、土井ヶ浜と房総湾岸・渥美半島・津雲の間に有意な差がみられる。回外筋は、渥美半島と土井ヶ浜の間に有意な差がみられ、円回内筋では、福岡平野と房総湾岸の集団間に有意な差がみられた。
遺物組成の分析が可能であった縄文時代の5集団と弥生時代の3集団のMSMsパターンにおける類似と差異、その要因を検討するために、カテゴリカル主成分分析を行った（表4.3.4、図4.3.14）。

第1主成分は、固有値が10.98、寄与率が49.91％、第2主成分は固有値が7.96、寄与率が36.17％である。第1主成分は肋鎖靭帯、菱形靭帯、鎖骨下筋、三角筋起始、大円筋と広背筋、大胸筋、三角筋、上腕二頭筋、回外筋、方形回内筋、円囲内筋、大殿筋、内側広筋と正の相関が高く、腸腰筋、外側広筋、ヒラメ筋と負の相関が高い。第2主成分は、上腕三頭筋、上腕筋、腸腰筋、粗線に付着する筋群と後脛骨筋と長軸屈筋と正の相関が高く、円錐靭帯、鎖骨下筋、大円筋と広背筋、上腕二頭筋、方形回内筋、ヒラメ筋と負の相関が高い。第1・2の主成分得点を2次元展開した図が図4.3.14である。

縄文時代の各集団では、東北太平洋岸と津雲が、それ以外の3集団とはやや異なる位置にプロットされる。

図 4.3.13-1 縄文時代と弥生時代の各集団女性の Bonferroni 検定結果
（＊＞5％水準で有意、＊＊＞1％水準で有意）
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.3.13-2 縄文時代と弥生時代の各集団女性のBonferroni検定結果

（＊＞5％水準で有意、＊＊＞1％水準で有意）
津雲は、縦軸で負の値を示し、肋鎖靭帯、肩甲骨が後方に動くのを制限する円錐靭帯、三角筋、大円筋と広背筋、上腕二頭筋といった上腕の外転や後方拳上に作用する筋や靭帯のMSMsスコアが高く、手首の回内に作用する方形回内筋、ヒラメ筋のMSMsスコアもやや高い。縄文時代の集団の中で最も弥生時代の集団に類似する。

東北太平洋岸は、横軸で他集団よりも高い正の値を示し、上腕の内転外転、前方拳上や後方拳上などに作用する諸筋、回外筋、大殿筋、内側広筋のMSMsスコアが高い。

一方、三貫地、房総湾岸、渥美半島の3集団は、肋鎖靭帯、肩関節の前方への動きを制限する菱形靭帯、上腕の前方拳上や内転に作用する大胸筋、鳥口腕筋、上腕三頭筋外側頭、肘関節の屈曲に作用する上腕筋、手首の回内外に作用する回外筋、腸腰筋や大殿筋、粗線に付着する筋群、後脛骨筋と長趾屈筋のMSMsスコアが高い傾向にあり、弥生時代のどの集団とも類似しない。

弥生時代の3集団は、縄文時代の各集団と比べると、あまり大きな違いはない。縄文時代の各集団の違いの方が弥生時代のばらつきよりも大きいといえる。

縄文時代と弥生時代各地域の女性の左右差

活動によって左右のアシンメトリの表れ方は変化すると考えられるため、女性のMSMsの左右差の検討を行った（図4.3.15）。基礎統計量は付表3に示す。左右差が最も大きいのは、縄文時代の三貫地であり、男性と同様、手首の回内外の左右差が大きい。東北太平洋岸の女性の左右差は、男性ほど顕著に他の集団と差がない。左右差の表れ方の集団差は弥生時代の3集団と比べると縄文時代の5集団の方が大きく、弥生時代の3集団の左右差にはどの部位も集団間で大きな差はないといえる。

各部位の左右差の値をMSMsパターンにした図が図4.3.16である。東北太平洋岸の集団は、上腕三頭筋外側頭の左右差がやや大きいが男性ほど明瞭な差は示さない。三貫地は、手首の回内外に作用する諸筋の中でも回外筋・方形回内筋の左右差が一貫して大きい。これも男性と同様の傾向を示す。しかし、縄文時代および弥生時代の女性の左右差は、例えば肘の屈伸に作用する諸筋（上腕三頭筋・上腕筋・上腕二頭筋）というような、まとまった部位で特定の集団の左右差が他より大きいというような傾向はみられない。
第 4 章 先史時代の身体活動の多様性に関する多角的検討結果

図 4.3.14 縄文と弥生各集団の MSMs22 部位の平均値を用いたカテゴリカル主成分分析：女性

図 4.3.15 縄文時代と弥生時代の MSMs の左右差：女性
図 4.3.16 縄文と弥生各集団のMSMsの左右差MSMsパターン：女性
C) 縄文時代と弥生時代の女性の MSMs の変化

縄文と弥生の時代の基礎統計量は付表 4 に示し、女性の MSMs パターンと頻度グラフを合わせ図 4.3.17 に示した。縄文時代と弥生時代の女性間での Mann-WhitneyU 検定の結果は、22 部位中 14 部位で有意な差がみられた（図 4.3.17）。図 4.3.18 には、各部位の MSMs スコアの平均値を折れ線グラフにした MSMs パターンのみを示している。そのうち弥生時代人骨の方が縄文時代人骨よりもスコアが高い傾向を示すのはヒラメ筋のみである。ヒラメ筋は弥生時代人骨の方が縄文時代人骨よりもスコアが高い傾向にあり、男女共に有意な差があるといえる（図 4.3.9、4.3.18）。加えて、有意ではないが弥生時代人骨の方が縄文時代人骨よりも平均値が高いあるいは拮抗する部位は、円錐靭帯・上腕三頭筋外側頭・内側広筋である（図 4.3.17）。

図 4.3.17 縄文と弥生の MSMs パターンと Mann-Whitney 検定による比較結果：女性

図 4.3.18 縄文と弥生の Mann-Whitney 検定による比較結果 女性 MSMs パターンのみ

赤い四角で囲った部分は縄文時代の方が、MSMs スコアが有意に高い部位

青い四角で囲った部分は弥生時代の方が、MSMs スコアが有意に高い部位
第4章 先史時代の身体活動の多様性に関する多角的検討結果

手首の回内外に作用する筋や下肢の諸筋では、縄文時代の女性のMSMsスコアの平均値が弥生時代の女性のMSMsスコアの平均値よりも高い傾向にある。

縄文時代と弥生時代のMSMs平均値の差は、上肢では大きく下肢ではよりも小さい。このことから、女性においても、縄文時代の諸集団は上肢に付着する諸筋が発達し、弥生時代の諸集団は相対的に下肢に付着する諸筋が発達する傾向を示すといえる。

小結 先史時代女性のMSMsの地域的多様性と時代変化に関するまとめ

女性のMSMsパターンのスコアは、男性とはやや傾向が異なり、縄文・弥生どちらの時代の集団間にも差がみられる。MSMsパターンをみると、東北太平洋岸と津雲は、肋鎖靭帯、三角筋の前部、大胸筋、三角筋のMSMsスコアが拮抗し、前腕に付着する肘関節の屈伸に作用する筋群の中では、上腕二頭筋が高く、手首の回内外に作用する筋の中では方形回内筋のスコアが他よりやや高く、下肢では大殿筋に対しピークという点で類似する。

房総湾岸、三貫地、渥美半島の女性は大胸筋にピークを示し、肘関節の屈伸に作用する筋の中では上腕筋に、手首の回内外の諸筋は回外筋のMSMsスコアがやや高く、下肢では粗線に付着する筋群のスコアがやや高い傾向にあるという点で類似する。左右差は三貫地の女性の前腕にやや強いためや、それ以外の集団間であまり大きな違いはない。

カテゴリカル主成分分析の結果からは、これら集団が他の3集団とはやや異なるといえる。

弥生時代の各集団のMSMsパターンでは、福岡平野と三国丘陵域、土井ヶ浜は大胸筋にピークがあり、広田は三角筋にピークを示す。福岡平野と三国丘陵域、土井ヶ浜の3集団においては、下肢のMSMsパターンは類似しており、ピークが粗線に付着する筋群にあり、三角筋のほうが後脛骨筋と長趾屈筋よりもスコアが高い。広田はMSMsパターンが他の3集団とは大きく異なる。

カテゴリカル主成分分析の結果からは、土井ヶ浜と、福岡平野・三国丘陵域の集団はやや異なる。しかし、縄文時代のバラつきより弥生時代のバラつきは小さい。

第4節 縄文時代と弥生時代のMSMsの集団内比較：年齢・性別に基づく活動差

前節で、縄文時代と弥生時代の各地域集団間のMSMsの類似と差異を検討してきた。これらまでの節で行った検討を通して、生業様式のうちの技術と活動を検討した。本節では、生存のための集団のあり方を検討する。縄文時代や弥生時代において地域ごとに、あるいは時代間で行っていた生業諸活動が異なると考えられることから、文化人類学的に指摘されるような（口蔵 1977）性別や年齢に基づく活動差も存在していた可能性がある。第4節では、生業活動に携わる集団のあり方をMSMsの違いから明らかにするため、各地域集団の加齢によるMSMsの変化の仕方に違いがあるか、MSMsの男女差がどのようにあらわれかかるかを検討した。

第1項では、年齢段階ごとに活動の質や量に集団間で違いが見られるか、それが活動の
特性に応じて集団ごとに採られていた集団内の活動区分であるのかを明らかにするために、MSMs の発達における加齢による影響の集団間差を調べる。この検討において、本稿で任意に分けた年齢段階ごとに比較を行うが、過去の社会における活動区分がその年齢の通りに行われていたことを示す意図はない。ここでは示すことができる可能性があると考えていることは、年齢段階によって活動や活動負荷に変化があるか否かである。第 2 項では、MSMs の性差を検討することで、活動の特性などに応じて集団ごとにとられている性分業のあり方を明らかにする。まず各集団の男女間の MSMs の差を検討し、次に年齢段階ごとに集団ごとの性差がどのように変化するかを検討する。さらに、集団ごとの左右差の性差のあらわれ方を検討する。

第1項 MSMs の加齢変化の諸相

A) 男性

加齢変化の分析に用いた年齢カテゴリーごとの基礎統計量を付表 5 に示す。男性で加齢変化の分析に用いることができた集団は、縄文時代では渥美（成年・熟年・老年、図 4.4.1-2）、

![図 4.4.1-1 縄文時代各集団の年齢ごとの MSMs パターン：男性](image)
津雲（成年・熟年、図 4.4.1-2）、房総湾岸（成年・熟年、図 4.4.1-1）、であり、弥生時代では土井ヶ浜（成年・熟年・老年、図 4.4.2-1）、福岡平野（成年・熟年、図 4.4.2-1）、三国丘陵（成年・熟年・老年、図 4.4.2-2）、広田（成年・熟年、図 4.4.2-1）、である。

図 4.4.1-2 糸文時代各集団の年齢ごとの MSMe パターン：男性
図 4.4.2-1 弥生時代各集団の年齢ごとの MSMs パターン：男性
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.4.2-2 弥生時代各集団の年齢ごとのMSMaパターン 男性
縄文時代の3集団は各年齢カテゴリーのMSMsパターンに大きな差はない。全ての年齢段階で大胸筋にMSMsパターンのピークがある。図4.4.1-2の渥美半島の各年齢カテゴリーの集団と図4.4.1-1の房総湾岸の各年齢カテゴリーの集団は下肢のMSMsパターンのピークが粗線に付着する筋群にあるという点も共通する。津雲はどの年齢段階でも下肢では大殿筋にMSMsパターンのピークがある。図4.4.2-1、4.4.2-2から、弥生時代の広田以外の各集団は、どの年齢段階も全てヒラメ筋のスコアがやや高いという点で共通性が見られる。

図4.4.3 縄文時代の房総湾岸・渥美半島・津雲の各年齢段階のMSMsパターン：男性
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.4.4 弥生時代の広田・福岡平野・三国丘陵・土井ヶ浜の各年齢段階のMSMaパターン：男性
4 章 先史時代の身体活動の多様性に関する多角的検討結果

しかし、土井ヶ浜（図 4.4.2-1）は、成年段階と熟年段階で肋鎖靭帯のスコアが大胸筋よりも高く、老年段階では大胸筋のほうが肋鎖靭帯よりもわずかにスコアが高くなっている。成年段階では大胸筋と三角筋のスコアがほぼ拮抗し、三角筋よりも大胸筋の方がスコアが高くなる。また前腕の筋では、成年段階では肘関節の伸展に作用する上腕三頭筋外側頭よりも肘関節の屈曲に作用する上腕筋と上腕二頭筋の方がスコアが高いか、熟年段階ではこの3部位にあまり差がなくなり、老年段階では上腕三頭筋外側頭のスコアの方が高くなるという違いがある。

三国丘陵域（図 4.4.2-2）の各年齢段階のうち成年と熟年段階では、肋鎖靭帯のMSMsスコアよりも常に大きいが、スコア4以上の個体が少なく、ほとんどの個体がMSMsスコア3を示す。成年段階では大胸筋と三角筋のスコアがほぼ拮抗し、三角筋よりも大胸筋の方がスコアが高くなる。前腕の筋では、どの年齢段階でも常に上腕筋あるいは上腕二頭筋の方が、大胸筋のMSMsスコアよりも大きくなる。

福岡平野（図 4.4.2-1）の各年齢段階では、肋鎖靭帯のMSMsスコアよりも常に大きいが、スコア4以上を示す個体は少ない。成年段階では上腕筋と上腕二頭筋のスコアが上腕三頭筋外側頭よりも高いか、熟年段階ではその傾向が逆転する。

MSMsパターンのみでの比較（図 4.4.3, 4.4.4）を行い、スコアの高低を比較すると、縄文時代の各集団は年齢カテゴリーごとMSMsパターンの開き具合が、弥生時代の各集団のそれよりも小さく、成年<熟年<老年のようにスコアが増加していく部位は少ない。一方、弥生時代の各集団の年齢カテゴリーごとのMSMsパターンの開き具合は縄文時代よりもやや大きく、成年<熟年<老年というようにスコアが増加していく部位が多い。

MSMsパターンの類似や差異を明らかにするため、個々の年齢カテゴリーごとの平均値を用いてカテゴリカル主成分分析を行った。主成分負荷量を表 4.4.1 に示す。

第1主成分は、固有値が10.23、寄与率が46.52%、第2主成分は固有値が4.50、寄与率が20.46%、第3主成分は固有値が2.07、寄与率が9.40%である。

表 4.4.1 加齢変化の諸相 カテゴリカル主成分負荷量：男性

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>肋鎖靭帯</td>
<td>0.68</td>
<td>-0.48</td>
<td>0.21</td>
</tr>
<tr>
<td>鍼形靭帯</td>
<td>0.86</td>
<td>-0.11</td>
<td>0.22</td>
</tr>
<tr>
<td>円錐靭帯</td>
<td>0.73</td>
<td>0.34</td>
<td>-0.29</td>
</tr>
<tr>
<td>鎖骨下筋</td>
<td>-0.19</td>
<td>-0.24</td>
<td>0.87</td>
</tr>
<tr>
<td>三角筋（起始）</td>
<td>0.82</td>
<td>-0.46</td>
<td>-0.12</td>
</tr>
<tr>
<td>大円筋・広背筋</td>
<td>0.76</td>
<td>0.47</td>
<td>-0.10</td>
</tr>
<tr>
<td>大胸筋</td>
<td>0.89</td>
<td>-0.31</td>
<td>0.06</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.90</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>鳥口腕筋</td>
<td>0.37</td>
<td>0.74</td>
<td>0.19</td>
</tr>
<tr>
<td>上腕三頭筋</td>
<td>0.74</td>
<td>0.31</td>
<td>-0.44</td>
</tr>
<tr>
<td>上腕筋</td>
<td>0.85</td>
<td>0.00</td>
<td>0.37</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>0.36</td>
<td>0.59</td>
<td>-0.13</td>
</tr>
<tr>
<td>回外筋</td>
<td>0.72</td>
<td>-0.58</td>
<td>-0.05</td>
</tr>
<tr>
<td>方形回内筋</td>
<td>0.79</td>
<td>-0.03</td>
<td>-0.44</td>
</tr>
<tr>
<td>円回内</td>
<td>0.58</td>
<td>0.46</td>
<td>0.34</td>
</tr>
<tr>
<td>腓腓筋</td>
<td>-0.13</td>
<td>0.79</td>
<td>0.41</td>
</tr>
<tr>
<td>大顎筋</td>
<td>0.89</td>
<td>0.29</td>
<td>0.00</td>
</tr>
<tr>
<td>直腸筋</td>
<td>0.79</td>
<td>0.35</td>
<td>0.17</td>
</tr>
<tr>
<td>外側広筋</td>
<td>0.36</td>
<td>-0.46</td>
<td>-0.32</td>
</tr>
<tr>
<td>内側広筋</td>
<td>0.62</td>
<td>0.29</td>
<td>0.19</td>
</tr>
<tr>
<td>後経骨筋・長趾背筋</td>
<td>0.77</td>
<td>-0.53</td>
<td>0.13</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>-0.24</td>
<td>0.79</td>
<td>-0.27</td>
</tr>
</tbody>
</table>

固有値 10.23 4.50 2.07
寄与率 (%) 46.52 20.46 9.40
第 4 章 先史時代の身体活動の多様性に関する多角的検討結果

B) 女性

次に、女性において加齢変化が MSms スコアにどのような影響を与えたかを検討した。この分析に用いることができた集団（女性）は、縄文時代では渥美（成年・熟年・老年、図 4.4.6-1）、津雲（成年・熟年・老年、図 4.4.6-1）、房総湾岸（成年・熟年、図 4.4.6-2）、であり、弥生時代では土井ヶ浜（成年・熟年・老年、図 4.4.7-1）、福岡平野（成年・熟年、
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.4.7-1、三国丘陵（成年・熟年・老年、図4.4.7-2）、広田（成年・熟年、図4.4.7-2）である。

縄文時代渥美半島の集団は各年齢カテゴリーのMSMsパターンに大きな差はない（図4.4.6-1）。全ての年齢段階で大胸筋にMSMsパターンのピークがあり、次いで三角筋の前部および三角筋のMSMsスコアが高い。前腕では上腕筋と上腕二頭筋のスコアが上腕三頭筋よりも高く、下肢のピークは粗線に付着する筋群にある。津雲（図4.4.6-2）は、成年段階と熟年段階で大胸筋にMSMsパターンのピークがあり、老年段階では三角筋にピークがある。しかし、どの年齢カテゴリーも下肢のピークは大腿筋にある。図4.4.6-1の房総湾岸の各年齢カテゴリーの集団は、各年齢段階で上肢のMSMsパターンがやや異なるが、下肢のMSMsパターンのピークが粗線に付着する筋群にあるという点で共通している。

弥生時代の女性（図4.4.7-1,2）も、どの年齢段階においてもヒラメ筋のスコアがやや高くなるという点で共通した傾向を示す。土井ヶ浜地区（図4.4.7-1）の各年齢段階の上肢ではMSMsパターンにあまり変化が見られない。上腕では大胸筋と三角筋のスコアが高く、前腕では上腕筋のスコアが高く、手首は方形回内筋のスコアが高い。下肢では、成年段階が腸腰筋にピークがくるが、熟年と老年段階の個体は粗線に付着する筋群にピークがある。
図 4.4.6-2 縄文時代各集団の年齢ごとの MSMs パターン：女性
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.4.7-1 弥生時代各集団の年齢ごとのMSMsパターン:女性
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.4.7-2 弥生時代各集団の年齢ごとのMSMsパターン:女性
MSMsパターンのみでの比較を行い、スコアの高低を比較する（図4.4.8、4.4.9）。縄文時代の房総湾岸の年齢カテゴリーごとのMSMsパターンは、上肢では年齢段階があがるにつれスコアが高くなっていく傾向を示すが、下肢ではその傾向が逆転する。渥美半島と津雲、および弥生時代各集団の女性の場合は年齢カテゴリーごとのMSMsパターンの開き具合が小さく、加齢とともにスコアが増加する部位は多くはない。

図 4.4.8 縄文時代の房総湾岸・渥美半島・津雲の各年齢段階のMSMsパターン：女性
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.4.9 弥生時代の広田・福岡平野・三国丘陵・土井ヶ浜の各年齢階段のMSMsパターン：女性
MSMs パターンの類似や差異を明らかにするため、個々の年齢カテゴリーごとの平均値を用いてカテゴリカル主成分分析を行った（表 4.4.2）。この分析からは、福岡平野の個体数が少ないため除いている。

主成分負荷量を表 4.4.2 に示す。第 1 主成分は、固有値が 9.28、寄与率が 42.17%、第 2 主成分は固有値が 3.79、寄与率が 17.22%、第 3 主成分は固有値が 3.22、寄与率が 14.64% である。

第 1 主成分は回外筋・方形囲内筋・腸腰筋・外側広筋と負の相関がみられるが、負荷量は低く、他の部位と正の相関の値が高いため、第 1 主成分はいわゆるサイズファクターであると考えられる。すなわち、対象とした 22 部位のうちスコアの高い部位が多いため値が大きくなる軸である。

MSMs スコアの大小を示すと考えられる第 1 主成分得点を棒グラフで示した（図 4.4.10）。

図 4.4.10 をみると、縄文時代の各集団では老年段階でスコアがわずかに減少する傾向にあり、これは土井ヶ浜の女性でも見られる傾向である。縄文時代の田島及び木曽平原の集団での減少の仕方は男性ほど明確ではないが、房総湾岸も含めて老年段階に MSMs スコアのピークがみられると示される。

第 1 主成分得点を棒グラフで示した（図 4.4.10）。縄文時代の各集団では老年段階でスコアがわずかに減少する傾向にあり、これは土井ヶ浜の女性でも見られる傾向である。縄文時代の田島及び木曽平原の集団での減少の仕方は男性ほど明確ではないが、房総湾岸も含めて老年段階に MSMs スコアのピークがみられると示される。

成年段階での MSMs スコアの発達度は、縄文時代の諸集団のほうが弥生時代の諸集団よりもやや大きいが、男性ほどその差が明確ではない。

一方、弥生時代の三国丘陵の集団では単線的にスコアが増加していく傾向が読み取れ、広田の女性は成年から熟年にかけて第一主成分得点が下がる。広田に関しては、全体的な MSMs スコアが極端に低いといえる。

<table>
<thead>
<tr>
<th>表 4.4.2 加齢変化的諸相 カテゴリカル主成分負荷量</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>肋間筋</td>
<td>0.81</td>
<td>0.06</td>
<td>-0.45</td>
</tr>
<tr>
<td>腹直筋</td>
<td>0.89</td>
<td>-0.04</td>
<td>-0.34</td>
</tr>
<tr>
<td>肱直筋</td>
<td>0.93</td>
<td>0.03</td>
<td>-0.02</td>
</tr>
<tr>
<td>腓骨下筋</td>
<td>0.19</td>
<td>-0.38</td>
<td>-0.39</td>
</tr>
<tr>
<td>三角筋（起始）</td>
<td>0.87</td>
<td>-0.12</td>
<td>-0.41</td>
</tr>
<tr>
<td>大円筋・広背筋</td>
<td>0.89</td>
<td>-0.09</td>
<td>-0.34</td>
</tr>
<tr>
<td>大胸筋</td>
<td>0.90</td>
<td>0.05</td>
<td>-0.23</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.40</td>
<td>-0.63</td>
<td>0.08</td>
</tr>
<tr>
<td>島口吻筋</td>
<td>0.65</td>
<td>-0.05</td>
<td>0.62</td>
</tr>
<tr>
<td>上腕三頭筋</td>
<td>0.59</td>
<td>0.61</td>
<td>-0.43</td>
</tr>
<tr>
<td>上腕筋</td>
<td>0.81</td>
<td>-0.13</td>
<td>0.50</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>0.69</td>
<td>-0.11</td>
<td>0.60</td>
</tr>
<tr>
<td>外側筋</td>
<td>-0.11</td>
<td>-0.83</td>
<td>-0.25</td>
</tr>
<tr>
<td>四方回内筋</td>
<td>-0.20</td>
<td>-0.27</td>
<td>-0.23</td>
</tr>
<tr>
<td>円内筋</td>
<td>0.68</td>
<td>-0.07</td>
<td>0.60</td>
</tr>
<tr>
<td>腹腰筋</td>
<td>-0.17</td>
<td>-0.03</td>
<td>0.32</td>
</tr>
<tr>
<td>大臀筋</td>
<td>0.95</td>
<td>-0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>粗縄</td>
<td>0.95</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>外側広筋</td>
<td>-0.01</td>
<td>0.12</td>
<td>-0.77</td>
</tr>
<tr>
<td>内側広筋</td>
<td>0.26</td>
<td>0.91</td>
<td>0.01</td>
</tr>
<tr>
<td>後腰骨筋・長仮屈筋</td>
<td>0.18</td>
<td>-0.70</td>
<td>-0.04</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>0.23</td>
<td>0.83</td>
<td>0.15</td>
</tr>
<tr>
<td>固有値</td>
<td>9.28</td>
<td>3.79</td>
<td>3.22</td>
</tr>
<tr>
<td>寄与率（％）</td>
<td>42.17</td>
<td>17.22</td>
<td>14.64</td>
</tr>
</tbody>
</table>

小結 MSMs の加齢変化の諸相のまとめ

男性と女性では加齢変化の様相が大枠でみると大きな変化はない。縄文時代の各集団では男女共に加齢に伴い MSMs のスコアが単線的に増加するというような傾向がみられない。しかし、加齢とともにスコアが減少する傾向は男性の方が女性よりも顕著である。縄文時代の女性は加齢による変化が男性ほど大きくなくほぼ横ばいである。一方、弥生時代
第4章 先史時代の身体活動の多様性に関する多角的検討結果

の広田以外の3集団の男性では単線的なスコアの増加がみられるという共通性を見出すことができる。しかし、女性では土井ヶ浜の各年齢段階のMSMsスコアの傾向と三国丘陵域の各年齢段階のMSMsスコアの傾向には違いがみられる。土井ヶ浜の女性では老年段階で減少傾向を示すが、三国丘陵域の女性では男性と同様で単線的な増加がみられる。

広田は、男性ではスコアは加齢とともに増加するが、女性では成年から熟年にかけて減少する傾向がみられる。男女共に広田は、第1主成分得点の値が極端に低く、どの年齢段階においてもMSMsスコアが低いといえる。

図4.4.10 加齢変化の諸相カテゴリカル主成分分析結果：女性 縄文と弥生 第1主成分得点

第2項 MSMsの性差

A）集団ごとの男女のMSMsの差

縄文時代と弥生時代の各集団間の身体活動における性別間の違いの有無と、どのような部位に差が現れるのかを明らかにするために、男女のMSMsパターンの差に関する検討を行った。

123
まず、パターン間の類似と差異を検討するため距離行列を算出した。MSMs スコアは Z 値に標準化している。表 4.4.3 にはその結果を示し、同じ集団の男女の距離のみを棒グラフにして示した図が図 4.4.11 である。縄文時代の各集団の男女間の距離の値にはあまり共通性がなく、東北太平洋岸の集団と大田貝塚の集団は距離の値が大きい傾向にある。一方で、津雲や渥美半島、房総湾岸、三貫地では男女間の距離の値は比較的小さい。

弥生時代の広田以外の 3 集団では、男女間の距離の値に集団間ではほとんど違いがないことがわかる。また、広田では男女間の距離の値は大きく、縄文時代の大田や東北太平洋岸と同程度である。

次に性差のあらわれ方とその要因を検討するため、男女 22 部位の平均値を用いてカテゴリカル主成分分析を行った（表 4.4.4・図 4.4.11）。主成分負荷量を表 4.4.4 に示す。

第 1 主成分は、固有値が 11.10、寄与率が 50.47%、第 2 主成分は固有値が 3.99、寄与率が 18.13%、第 3 主成分は固有値が 3.07、寄与率が 13.97%である。

第 1 主成分得点をみると、鎖骨下筋と負の相関がみられるが相関は低く、他の部位の正の相関の値が高いため、第 1 主成分はいわゆるサイズファクターであると考えられる。すなわち、対象とした 22 部位のうちスコアの高い部位が正の負荷値を持つつまりの長さに集団ごとに違いがある。具体的には、渥美半島は短く、大田、東北太平洋岸が長い。

縄文時代の男性は、第 1 主成分得点が最も高く、相対的に最も MSMs スコアが高い。縄文時代の各集団の男性は、全体的な MSMs スコアの高低を示す第 1 主成分だけでなく、第 2 主成分にも大きな違いはなく、全集団がほぼ同じような位置にプロットされる。

縄文時代各集団の男性は、概ね第 2 主成分では値が負になるという共通する傾向があるが男性ほどのまとまりはない。また、三貫地の男性が第 2 主成分でやや離れた位置にプロットされる。同一集団の男女を結んだ線をみると、三貫地以外概ね方向は一致するが、その長さに集団ごとに違いがある。具体的には、渥美半島は短く、大田、東北太平洋岸が長い。

124
第 4 章 先史時代の身体活動の多様性に関する多角的検討結果

図 4.4.11 縄文時代と弥生時代の各集団の MSMs スコアの性差 距離行列の結果

同一集団の男女の距離の値を棒グラフ化したもの

表 4.4.4 縄文時代と弥生時代の男女の MSMs の違いに関するカテゴリカル主成分負荷量

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>助骨帯</td>
<td>0.81</td>
<td>0.24</td>
<td>-0.39</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.68</td>
<td>-0.19</td>
<td>0.67</td>
</tr>
<tr>
<td>四肢筋</td>
<td>0.38</td>
<td>-0.15</td>
<td>0.56</td>
</tr>
<tr>
<td>龍骨下筋</td>
<td>-0.09</td>
<td>-0.83</td>
<td>0.05</td>
</tr>
<tr>
<td>三角筋（起始）</td>
<td>0.68</td>
<td>-0.65</td>
<td>-0.31</td>
</tr>
<tr>
<td>大円筋・広背筋</td>
<td>0.84</td>
<td>-0.15</td>
<td>0.43</td>
</tr>
<tr>
<td>大胸筋</td>
<td>0.89</td>
<td>0.39</td>
<td>-0.13</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.94</td>
<td>-0.21</td>
<td>0.03</td>
</tr>
<tr>
<td>鳥口筋</td>
<td>0.61</td>
<td>0.43</td>
<td>0.35</td>
</tr>
<tr>
<td>上顎三頭筋</td>
<td>0.80</td>
<td>0.41</td>
<td>0.19</td>
</tr>
<tr>
<td>上腕筋</td>
<td>0.81</td>
<td>-0.07</td>
<td>0.31</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>0.67</td>
<td>-0.20</td>
<td>0.59</td>
</tr>
<tr>
<td>回外筋</td>
<td>0.78</td>
<td>-0.52</td>
<td>0.00</td>
</tr>
<tr>
<td>方形柄内筋</td>
<td>0.44</td>
<td>-0.48</td>
<td>0.64</td>
</tr>
<tr>
<td>円囲内</td>
<td>0.85</td>
<td>-0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>腰腹筋</td>
<td>0.37</td>
<td>0.72</td>
<td>0.24</td>
</tr>
<tr>
<td>大脛筋</td>
<td>0.71</td>
<td>-0.59</td>
<td>-0.21</td>
</tr>
<tr>
<td>腱膜筋</td>
<td>0.84</td>
<td>0.11</td>
<td>0.17</td>
</tr>
<tr>
<td>外側広筋</td>
<td>0.64</td>
<td>-0.07</td>
<td>0.56</td>
</tr>
<tr>
<td>内側広筋</td>
<td>0.72</td>
<td>0.53</td>
<td>0.25</td>
</tr>
<tr>
<td>後側群筋・長趾筋</td>
<td>0.90</td>
<td>0.23</td>
<td>0.16</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>0.04</td>
<td>0.66</td>
<td>0.56</td>
</tr>
<tr>
<td>積算値</td>
<td>11.10</td>
<td>3.99</td>
<td>3.07</td>
</tr>
<tr>
<td>総分も (%)</td>
<td>50.47</td>
<td>18.13</td>
<td>13.97</td>
</tr>
</tbody>
</table>

男女の MSMs の発達部位の差は、東北太平洋と大田が大きく、渥美半島は小さいといえる。三貫地の男女の MSMs の差は、発達する部位ではなく発達度の差であるといえる。

一方、弥生時代の広田以外の諸集団では男性は第 2 主成分の値はほとんど変わらないが、第 1 主成分で福岡平野の男性だけ離れた位置にプロットされる。

また、弥生時代の女性の各集団は男性よりもばらつきが小さい。

同一集団の男女を結んだ線をみると、弥生時代の土井ヶ浜・三国丘陵・福岡平野の 3 集団の線の長さはほぼ同程度である。広田、男女共に弥生時代の 3 集団とはやや異なる位置にプロットされ、男女共に第 1 主成分得点の値が低い。

弥生の 3 集団の男女の MSMs の差は、発達する部位の差というよりむしろその発達度の差である。この傾向は広田でも同じであり、広田が全集団の中で最も男女間で MSMs の発達部位に差がないといえる。
第4章 先史時代の身体活動の多様性に関する多角的検討結果

図4.4.12 縄文時代と弥生時代の男女間のMSMsの差 カテゴリカル主成分分析第1・2主成分得点の二次元展開図

B) MSMSの加齢変化と性差

MSMsの性差と加齢変化の様相がどのように関連しているかを検討するため、男女あわせて各年齢カテゴリーに分けた状態でカテゴリカル主成分分析を行った。

検討に用いることのできた集団は、津雲男女（成年・熟年）、渥美半島男女（成年・熟年・老年）、房総湾岸（成年・熟年）、土井ヶ浜（成年・熟年・老年）、三国丘陵（成年・熟年・老年）、広田（成年・熟年）である。

カテゴリカル主成分分析の結果を表4.4.5に示す。
第1主成分は、固有値が9.29、寄与率が42.25%、第2主成分は、固有値3.84、寄与率17.43%、第3主成分は、固有値1.93、寄与率8.79%である。

第1主成分は、すべての部位との正の相関の値が高いため、第1主成分はいわゆるサイズファクターであると考えられる。すなわち、対象とした22部位のうちスコアの高い部位が多いと値が大きくなる軸である。

同一集団の男性の第1主成分得点から女性の値を引く、MSMの年齢段階ごとの男女差を算出したものが図4.4.13である。

縄文時代の各集団は成年段階での男女差が熟年段階よりも大きく、唯一老年段階の比較ができる渥美の集団では老年でまた男女差が増加する傾向にある。一方、弥生の各集団は成年段階よりも熟年段階の方が男女差は大きく、老年段階でごくわずかに減少する傾向を示す。

表4.4.5 縄文時代と弥生時代の性差と加齢変化の関連に関するカテゴリカル主成分負荷量

<table>
<thead>
<tr>
<th>主成分負荷量</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>肋鎖関節</td>
<td>0.83</td>
<td>0.08</td>
<td>0.32</td>
</tr>
<tr>
<td>腰形関節</td>
<td>0.82</td>
<td>0.12</td>
<td>-0.10</td>
</tr>
<tr>
<td>円錐関節</td>
<td>0.86</td>
<td>-0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>鍵骨下筋</td>
<td>-0.04</td>
<td>0.34</td>
<td>-0.57</td>
</tr>
<tr>
<td>三角筋（起始）</td>
<td>0.47</td>
<td>0.78</td>
<td>-0.13</td>
</tr>
<tr>
<td>大円筋・広背筋</td>
<td>0.87</td>
<td>-0.09</td>
<td>-0.12</td>
</tr>
<tr>
<td>大胸筋</td>
<td>0.88</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.71</td>
<td>0.19</td>
<td>0.27</td>
</tr>
<tr>
<td>鳥口腕筋</td>
<td>0.65</td>
<td>-0.59</td>
<td>-0.23</td>
</tr>
<tr>
<td>上腕三頭筋</td>
<td>0.76</td>
<td>-0.08</td>
<td>0.31</td>
</tr>
<tr>
<td>上腕筋</td>
<td>0.85</td>
<td>-0.05</td>
<td>-0.20</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>0.59</td>
<td>-0.40</td>
<td>-0.46</td>
</tr>
<tr>
<td>回外筋</td>
<td>0.32</td>
<td>0.72</td>
<td>-0.10</td>
</tr>
<tr>
<td>方形回内筋</td>
<td>0.12</td>
<td>0.50</td>
<td>0.04</td>
</tr>
<tr>
<td>円囲内</td>
<td>0.57</td>
<td>-0.08</td>
<td>-0.52</td>
</tr>
<tr>
<td>腸膝筋</td>
<td>0.25</td>
<td>-0.62</td>
<td>0.15</td>
</tr>
<tr>
<td>大脛筋</td>
<td>0.87</td>
<td>-0.09</td>
<td>-0.15</td>
</tr>
<tr>
<td>膝関節</td>
<td>0.93</td>
<td>-0.06</td>
<td>-0.10</td>
</tr>
<tr>
<td>外側広筋</td>
<td>0.15</td>
<td>0.57</td>
<td>0.49</td>
</tr>
<tr>
<td>内側広筋</td>
<td>0.62</td>
<td>-0.20</td>
<td>0.55</td>
</tr>
<tr>
<td>後脛骨筋・長趾屈筋</td>
<td>0.54</td>
<td>0.54</td>
<td>-0.05</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>0.19</td>
<td>-0.82</td>
<td>0.23</td>
</tr>
</tbody>
</table>

固有値 | 9.29 | 3.84 | 1.93 |
寄与率（%） | 42.25 | 17.43 | 8.79 |

図4.4.13 性差と加齢変化:縄文時代と弥生時代 1主成分得点
男性の値から女性の値を引いた値を示す
す。一方広田の男女差は成年から熟年で急激に増加する傾向を示す。

C) MSMs の左右差の性差

縄文時代と弥生時代の各集団の左右差に性別間でどのように違いがあるかを検討するため、MSMs の左右差の平均値を用いて、縄文時代の各集団と弥生時代の各集団でそれぞれカテゴリカル主成分分析を行った。左右差の表れ方が上肢と下肢それぞれでどのように異なるのか、及びその性差を明らかにするため、この分析は上肢と下肢についておこなった。

縄文時代の上肢の MSMs の左右差の男女間の差の結果は、表 4.4.6 である。

第 1 主成分は、固有値が 3.24、寄与率が 32.44%、第 2 主成分は固有値が 2.58、寄与率が 25.81% である。

第 1 主成分負荷量をみると、上腕筋と回外筋と正の相関が高く、大円筋と広背筋、大胸筋、三角筋、上腕三頭筋と負の相関が高い。

| 表 4.4.6 縄文時代の左右のMSMsの差の性差：上肢のカテゴリカル主成分負荷量 |
|-----------------|-----------------|
| | 1 | 2 |
| 肋鎖靱帯 | 0.28 | 0.87 |
| 大円筋・広背筋 | -0.74 | -0.08 |
| 大胸筋 | -0.39 | 0.78 |
| 三角筋 | -0.74 | -0.21 |
| 上腕三頭筋 | -0.77 | 0.40 |
| 上腕筋 | 0.74 | 0.36 |
| 上腕二頭筋 | -0.12 | 0.73 |
| 回外筋 | 0.77 | -0.26 |
| 方形回内筋 | 0.40 | 0.50 |
| 円回内筋 | -0.15 | 0.11 |
| 固有値 | 3.24 | 2.58 |
| 寄与率 (%) | 32.44 | 25.81 |

図 4.4.14 縄文時代の左右のMSMsの差の性差：上肢のカテゴリカル主成分分析第 1、2 主成分得点の 2 次元展開図
第4章 先史時代の身体活動の多様性に関する多角的検討結果

第2主成分負荷量は、肋鎖靭帯と大胸筋、肘関節の屈伸に作用する諸筋、手首の回内諸筋と正の相関が高く、大円筋と広背筋、三角筋、回外筋と負の相関がみられるが負荷量は低いので、第2主成分負荷量はいわゆるサイズファクターと考えられる。

第1と第2主成分得点を2次元展開した図が図4.4.14である。三貫地の男女の左右差の違いが他と比べて小さいが、概ね男性は第2主成分得点が正の値を示し、女性は負の値を示すという点で、左右差は男性の方が大きい傾向にある。男性の中でも最も上肢の左右差が大きいのは東北太平洋岸の男性である。第1主成分得点を見るとき、三貫地以外の男性はまとまり、各地域の集団間であまり大きな違いはない。

女性は、第1主成分得点をみると、男性よりもばらつきが大きい傾向を示す。東北太平洋岸の女性は、大円筋と広背筋、大胸筋、三角筋、上腕三頭筋のMSMsの左右差が大きく、津雲と三貫地は上腕筋と回外筋のMSMsの左右差が大きいといえる。

縄文時代の下肢のMSMsの左右差の男女間の差の主成分負荷量を表3.4.7に示す。第1主成分は、固有値が2.69、寄与率が38.47％、第2主成分は固有値が1.63、寄与率が23.31％である。第1主成分負荷量をみると、大殿筋と粗線に付着する筋群、ヒラメ筋と正の相関が高く、外側・内側広筋と後脛骨筋と

<table>
<thead>
<tr>
<th>診定</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>腹腰筋</td>
<td>-0.21</td>
<td>-0.53</td>
</tr>
<tr>
<td>大脛筋</td>
<td>0.58</td>
<td>-0.53</td>
</tr>
<tr>
<td>粗線</td>
<td>0.67</td>
<td>-0.24</td>
</tr>
<tr>
<td>外側広筋</td>
<td>-0.68</td>
<td>-0.45</td>
</tr>
<tr>
<td>内側広筋</td>
<td>-0.51</td>
<td>0.63</td>
</tr>
<tr>
<td>後脛骨筋・長趾屈筋</td>
<td>-0.85</td>
<td>0.06</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>0.65</td>
<td>0.65</td>
</tr>
</tbody>
</table>

固有値 2.69 1.63
寄与率(%) 38.47 23.31

図4.4.15 縄文時代の左右のMSMsの差の性差：下肢のカテゴリカル主成分負荷量

図4.4.15 縄文時代の左右のMSMsの差の性差：下肢のカテゴリカル主成分負荷量

129
第4章 先史時代の身体活動の多様性に関する多角的検討結果

長趾屈筋と負の相関が高い。第2主成分負荷量は、内側広筋とヒラメ筋と正の相関が高く、腸腰筋、大殿筋、外側広筋と負の相関が高い。

第1と第2主成分得点を2次元展開した図が図4.4.15である。三貫地の男性の傾向が他の縄文時代男性の傾向と異なるが、概ね縄文時代の男性は第1主成分得点で負の値を示す。女性の左右差のばらつきは男性よりも大きく、集団間で左右差の表れ方の違いが大きい。

次に弥生時代の上肢のMSMsの左右差の男女間の差の結果は、表4.4.8である。

第1主成分は、固有値が5.30、寄与率が53.01%、第2主成分は固有値が2.18、寄与率が21.82%である。

第1主成分負荷量をみると、すべての部位と正の相関を示すので、いわゆるサイズファクターであり、各部位のMSMsスコアが高ければ高いほど、第1主成分得点は正の値に大きくなる。

第2主成分負荷量は、肋鎖靭帯と負の相関が高く、手首の回内外に作用する諸筋と正の相関が高い。

第1主成分得点を横軸に、第2主成分得点を縦軸にして二次元展開したのが図4.4.16で

表4.4.8 弥生時代の左右のMSMsの差の性差：上肢のカテゴリカル主成分負荷量

<table>
<thead>
<tr>
<th></th>
<th>主成分得点</th>
<th>主成分得点</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.61</td>
<td>-0.53</td>
</tr>
<tr>
<td>2</td>
<td>0.93</td>
<td>-0.07</td>
</tr>
<tr>
<td>3</td>
<td>0.92</td>
<td>-0.20</td>
</tr>
<tr>
<td>4</td>
<td>0.88</td>
<td>-0.11</td>
</tr>
<tr>
<td>5</td>
<td>0.72</td>
<td>-0.33</td>
</tr>
<tr>
<td>6</td>
<td>0.50</td>
<td>-0.33</td>
</tr>
<tr>
<td>7</td>
<td>0.88</td>
<td>0.30</td>
</tr>
<tr>
<td>8</td>
<td>0.49</td>
<td>0.70</td>
</tr>
<tr>
<td>9</td>
<td>0.09</td>
<td>0.89</td>
</tr>
<tr>
<td>10</td>
<td>0.79</td>
<td>0.48</td>
</tr>
</tbody>
</table>

| 固有値 | 5.30 | 2.18 |
| 寄与率(%) | 53.01 | 21.82 |

図4.4.16 弥生時代の左右のMSMsの差の性差：上肢のカテゴリカル主成分分析第1、2主成分得点の2次元展開図
ある。

同一集団の左右差の性差をみると、左右差は男性の方が女性よりも大きい。また、土井ヶ浜、三国丘陵、福岡平野の女性は近い位置にプロットされ、左右差のあらわれ方が相対的に類似する傾向がある。この集団の女性は全体的にみると左右差は小さく、手首の回内外に作用する筋の左右差よりも、肋鎖靭帯と上腕の内転外転に作用する筋の左右差の方が大きい。

広田の女性はこれとは傾向を違え、手首の回内外に作用する筋の左右差の方がやや大きいといえる。

弥生集団の男性の左右差はそれぞれはばらつき、福岡平野の男性の左右差が最も小さい。三国丘陵域は手首の回内外及び上腕二頭筋の左右差が大きく、土井ヶ浜は肋鎖靭帯と上腕の内転外転に作用する筋の左右差が大きいといえる。また広田の男性は、左右の傾向としては三国丘陵と同じである。

弥生時代の下肢のMSMsの左右差の男女間の差の結果は、表4.4.9である。第1主成分は、固有値が4.57、寄与率が65.34%、第2主成分は固有値が1.09、寄与率が15.52%である。

第1主成分負荷量をみると、すべての部位と正の相関を示すので、いわゆるサイズファクターであり、各部位のMSMsスコアが高ければ高いほど、第1主成分得点は正の値に大

表4.4.9 弥生時代の左右のMSMsの差の性差：下肢のカテゴリカル主成分負荷量

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>股関節筋</td>
<td>0.62</td>
<td>0.69</td>
</tr>
<tr>
<td>大脛筋</td>
<td>0.86</td>
<td>-0.28</td>
</tr>
<tr>
<td>粗縄</td>
<td>0.91</td>
<td>0.12</td>
</tr>
<tr>
<td>外側広筋</td>
<td>0.83</td>
<td>-0.36</td>
</tr>
<tr>
<td>内側広筋</td>
<td>0.88</td>
<td>0.27</td>
</tr>
<tr>
<td>腱骨筋・長跖筋</td>
<td>0.67</td>
<td>0.27</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>0.83</td>
<td>-0.50</td>
</tr>
<tr>
<td>固有値</td>
<td>4.57</td>
<td>1.09</td>
</tr>
<tr>
<td>寄与率（％）</td>
<td>65.34</td>
<td>15.52</td>
</tr>
</tbody>
</table>

図4.4.17 弥生時代の左右のMSMsの差の性差：下肢のカテゴリカル主成分分析第1、2主成分得点の2次元展開図
第4章 先史時代の身体活動の多様性に関する多角的検討結果

さくなる。第2主成分負荷量は、腸腰筋と正の相関が高く、ヒラメ筋と負の相関が高い。

第1主成分得点を横軸に、第2主成分得点を縦軸にして二次元展開したのが図4.4.17である。上肢と同様で、同一集団の左右差の性差をみると、常に男性の方が女性よりも左右差が大きい傾向を示す。土井ヶ浜、三国丘陵、福岡平野の女性は、やはり近い位置にプロットされ、左右差の表れ方が相対的に類似する傾向がある。この3集団の女性は全体的にみると左右差は小さく、腸腰筋よりもヒラメ筋の左右差の方が大きいといえる。

広田の女性はこれらとは傾向を逆え、腸腰筋の方が左右差は大きい。さらに、広田の女性の下肢の左右差は集団中で最も小さい。

弥生3集団の男性の左右差はそれぞればらつき、福岡平野の男性の左右差が最も小さい。三国丘陵域はヒラメ筋の左右差が大きく、土井ヶ浜は腸腰筋の左右差が大きいといえる。また広田の男性は、傾向としては三国丘陵と同じである。

小結 MSMSの性差のまとめ

性差：縄文時代の男女のMSMSの差は地域ごとにバラつきが大きく、大田と東北太平洋岸地域の性差が最も大きい。三貫地の男女のMSMSの差はMSMSの発達部位の差は小さく、量的な差である。

性差と加齢変化：縄文時代の各集団は成年段階での男女差が大きく、弥生時代の各集団は熟年段階での男女差が大きい。

左右差の性差：縄文時代の上肢の左右差は女性よりも男性が大きい。下肢の左右差は男性の方が女性よりもバラつきが小さい。上肢の左右差が最も大きいのは東北太平洋岸の集団である。

弥生時代では、上肢・下肢ともに男性の方が差が大きく、女性は地域的な違いも少ない。
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

本章では、歴史時代、すなわち室町時代と江戸時代の人骨を対象として、文献記録や民俗学的研究所とMSMsの結果をあわせることで生業様式・生活様式を復元する。

中世室町時代で対象としたのは、村落全体で1つの生業への専業化がやや進行していた集団、主漁従農民（吉母浜）と揚浜式製塩民（沢田・村松白根）である。

近世で対象としたのは、江戸時代の江戸市中武士層・竹田武士層（稲荷谷）・江戸市中町人層（円形・方形木棺）・百姓（原田）といった、江戸時代の上位階層である武士と被支配階級である町人や農民である。

これらの集団はそれぞれ、ある程度活動の特殊化が進行している為、階層間・職業集団間の身体活動の差は、縄文時代や弥生時代よりも明瞭に析出される可能性が考えられる。

本章第1節では、文献記録や民俗学的研究結果を検証し、第2節で集団間のMSMsパターンの結果を比較検討し、第3節で集団内の性別や年齢に基づくMSMsの違いを検討する。

第1節 中世対象集団に特徴的な活動の検討

以下に文献記録や民俗学、出土遺物や遺構から復元される各集団が行った活動や生活様式に関する諸研究を述べ、各集団の身体活動の特性や生産体制を推定する。

第1項 中世：文献記録から想定される活動

A) 主漁従農民（吉母浜 図3.1.16）

現在の吉母浜、響灘に面した海村である。伊藤（1985b）が行った聞き取り調査から、中世の吉母浦で一般的に行われていた漁法は「漕ぎ（手釣り）・延縄・網漁・磯見」であったことが推測されている。伊藤（1985b）は、聞き取り調査と民俗資料を加味して各々の漁法を以下のよう説明している。

漕ぎは、漕ぎ釣りを指す。この場合、「船は潮の来方向にミョシを向け、アジロの真上にポジションをとるために絶えず左手で艪を漕ぎ、右手で釣る」と述べられている。

延縄は、1本の幹縄に多数の枝縄をつけ、枝縄の先端に釣り針をつけたものを用いる。延縄を漁場に仕掛けた後、しばらく放置して再び延縄を回収して収穫を得る。

網漁は、南北町・室町時代に発達したとされる。吉母浦では、18世紀中葉にイワシ網漁が行われたことが知られている。15世紀、室町期の漁撈を示すと考えられる遺物は一点、土錘のみであるが、伊藤（1985b）が行った聞き取り調査によると、この土錘は湾内を漁場とするアゴ（トピウオ）サシアミかタテアミに使用した筋台の道具に近似しているとされる。

現在の吉母浜での磯見は、船上からするホコヅキである「ヨイサリ」に相当する。「ヨイサリ」は、基本2人構成で行い、漁場までは艪を用いるが、漁場到着後は一人が艪を練り、もう一人が舟上に正座してカガミをみながホコの付いた竿で突く漁法で、概ね親子で行われる。
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

また、1639年（寛永16年）、吉母浦の役人が鐘崎海士の潜水現場へ行く際に丸木船が使用されたという記録があり、用いられた船は図5.1.1のようなものであったと考えられる。

漁撈活動の資料以外では、中世の層から動物骨、ウマやウシ、ニホンイノシシ、ニホンジカの骨が出土している。イノシシやシカは数量的には少なく、ウマの割合がや多い。ウマやウシには解体痕が認められなかったことから生活活動の兼用として飼養されたことが指摘されている（船越1985）。イノシシやシカの出土から、当該時期において農耕や山での狩猟に従事していたことも指摘されている。東側墓域LG20号墳（女性、成年）からは犬（中型犬）も出土しており、猟犬として利用されていた可能性が指摘されている（船越1985）。

以上の知見から当該集団は、漁撈あるいは、漁撈に比重をおいた主渔従農に従事した集団であると推測することが出来る。漁撈活動として主に行っていたのは、艪を主体とし櫂を併用する漕ぎ、網漁、ホコヅキ、釣りであると推測される。

漕艇を伴う漁撈活動を行っていた諸集団が、汎世界的に共通するMSMsパターンを示すことは様々な研究で指摘されている（Hawkey and Merbs1995; Stirland1998; Steen and Lane1998; Eshed et al.2004; Lieverse et al.2009）。これら先行研究と共通する特徴として、肋鎖靱帯の発達、それに次いで大胸筋・大円筋・広背筋・三角筋が発達することが指摘されており、それは漁撈活動の際の肩関節の急速・反復的な回旋運動の結果が一因であるとされている（Hawkey and Merbs1995; Stirland1998; Steen and Lane1998; Lieverse et al.2009）。このことから、主漁従農民（吉母浜）においてもいわゆる漁撈的なMSMsパターンを示す可能性が考えられる。

一方で、この地域の女性は、男性と同じようにいわゆる漁撈的なMSMsパターンを示さない可能性が高い。なぜなら、当該時期以降近代に至るまで多くの漁撈民が、女性が舟に乗るという行為を禁忌とする（桜田1980b）ことが指摘されているからである。この分業形態は、桜田（1980a）によって漁撈に従事する村落において一般的に見られる風習であると述べられている。

主漁従農民（吉母浜）のまとめ

吉母浜で行っていた活動は、艪を主体とし櫂を併用する漕ぎ、網漁、ホコヅキ、釣りである。そのため、主漁従農民においては、いわゆる漁撈的なMSMsパターンを示す可能性がある。一方、女性は漁撈的なMSMsパターンを示さないことが予想される。
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

B）揚浜式製塩民（沢田・村松、図3.1.18）

次に揚浜式製塩民の活動の特性について述べる。村松白根遺跡と沢田遺跡からは塩水槽、竈、土槽などの遺構や担い棒、濾過器、柄振り、椀、吊り金具、耳金などの遺構や遺物が数多く出土しており、これらの遺物から揚浜式製塩を行っていたことが指摘されている（鯉渕・新井1992）。この2つの遺跡を含む茨城県太平洋岸一帯は、鎌倉時代後期には神宮領となり（梅原2005）、佐竹氏の支配下で製塩に携わっていたと考えられている（鯉渕2014；皆川・芳賀2014；佐々木2014）。

揚浜式製塩法は「行徳の製塩作業場」に描かれており、新井(1992)によって図5.1.2のように纏められている。まず、担い棒に桶を2つ下げて浜辺に行き、人力で海水をくみ上げ、何度も砂浜にまいて日光で乾燥させ、塩の付着した砂を海水で流して濃い塩水（塩水）を作る。次に、作られた塩水を屋外の大形塩水槽に溜める。塩水は必要に応じて塩水槽から柄杓でくみ上げ、土槽を通して釜屋内の塩水槽に少しずつ流し、釜屋内の塩水槽に溜めていく。釜で塩水を煮詰める時には、釜屋内の北側の塩水槽に南側の塩水槽の塩水を濾過して、泥などを取り除いた濃い塩水を溜め、柄杓でくみあげ、何度も釜に入れ、釜の中に結晶化した塩がいっぱいになるまで塩焚を行う。塩焚が終わると、釜の中の結晶化した塩を釜柄振りで押し引きして集め、塩の中に混じっている苦渋を取り出すために、竈の南側に付設されている居出場と呼ばれる水槽の上の釜に入れ、一夜放置して苦渋を下垂れさせて水槽に溜める。その後は、苦渋の抜けた塩を杮に入れ、目方をはかり、俵装したと思われる。そして俵装された塩は倉庫などに格納し、馬などに積んで各地へ運び出されたと考えられている。

揚浜式製塩は3月から10月が活動時期であり（高澤1988）、この集団が、それ以外の季節に副業的に農業や漁業活動を行っていた可能性は考えられるが、一年の基本的なサイクルは製塩を中心に組み立てられていたと考えることは妥当である。

揚浜式製塩を行っていた集団の活動を考えると、人力で海水を汲み上げて海岸よりも高い砂浜につくられた塩田に運ぶ（図5.1.3）ほどは極めて重労働である。また、能登で現在も行われている揚浜式製塩の説明によると、この海水の汲み上げ作業は担い棒を用いて行われ、1回あたり60kg（72リットル）以上を汲み上げるとされる（高澤1988）。

近代の揚浜式製塩は、塩田の面積が狭く、一度に多くの人手を必要とするわけではなかったため、基本的に家族経営で行われ、生じる分業は家族内の役割分担程度のもとであった（廣山

図5.1.2 扬浜式製塩予想図（茨城県教育委員会、1992一部改変）
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

1993年。中世においても技術的に大きな変化がみられるわけではなく、また塩田と呼ばれるような人工的な施設を明確に形成していた痕跡がない点でより原始的な形態であったと考えられることから（鯉渕 2014）、一度に多くの人手を必要とせず、基本的に家族経営で行われる（廣山 1993）という傾向は変わっていないと考えられる。このことから、男女共に概ね同じような製塩作業に従事していた可能性が高いためと考えられる。

さらに、煎熬作業（塩水をつめる行程）にもちいられる釜は、江戸時代には、村松村（現東海村）や前浜村（現ひたちなか市）では私有ではなく組による共有であったという記録が残っている（梅原 2005）。この作業は、薪の燃やし加減や火のおとし加減が塩の良否を左右したので、一家の熟練者がそれにあたっていたような形態であったと述べられている（梅原 2005）。

揚浜式製塩民（沢田・村松白根）のまとめ

揚浜式製塩民は、主漁従農民とは異なるMSMsパターンを形成すると予想される。基本的に塩田の経営は家族などの小規模な単位で行われていたと考えられるため、MSMsパターンの性差も、男女の活動区分の明確な主漁従農民よりは小さい可能性がある。

図5.1.3 揚浜式製塩の過程
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

第2項 近世 埋葬様式・文献記録より想定される活動
江戸市中の武士層（甕棺の被葬者）・上位武士層（多重構造墓の被葬者）・庶民層（円形・方形木棺の被葬者）及び近世百姓（原田）・豊後の竹田武士層（稲荷谷）

考古学的な研究から江戸市中に関しては、埋葬様式と身分・階層の対応関係が確認され、概ね甕をもつ常滑の甕棺や多重構造墓の被葬者は武家の人間であることが指摘されている（谷川1987,2004; 松本1990）。江戸時代の骨形態に関しては、これまででも鈴木（1985a,b）によって将軍や大名の貴族化が指摘されていた。さらに平本（2001）によって、いわゆる武士層の大部分を占める人々の形質は、将軍や大名も庶民層とも異なる可能性が示唆され、Sakaue（2012）によって実証的に検証されている（図5.1.4）。このような指摘は頭蓋形質に関するものであるが、武士階層の生活様式の規定は食生活に留まるものではない。武術や馬術、弓術の義務や、歩行様式、立ち居振る舞いなどの起居進退の所作に及んでいたと考えられる（笹間2004）。こうした生活様式における武士層の特異性が、四肢骨の筋・靭帯・腱付着部に反映されている可能性は十分に想定することができ、武士階層においては身体活動を示すMSMsのパターンが類似し、江戸市中庶民層や近世百姓である原田とはMSMsのパターンは異なることが予想される。一方、竹田武士層（稲荷谷）は、時期と地域の点で江戸市中の武士層とは差があり、江戸市中で居住していた武士層と起居進退の動作法において全く同じであった可能性は低い。

近世の各階層集団のまとめ
江戸市中においては、武士層とそれ以外の庶民層とではMSMsに差がみられる可能性がある。

図5.1.4 江戸市中埋葬様式と頭蓋形態
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

第2節 中近世のMSMsの集団間比較

第1節では、中近世の諸集団の活動の特性について述べた。前節で明らかにした各集団の活動の特性は以下の通りである。

主漁従農民：吉母浜で行っていた活動は、船を主体とし穂を併用する漁撈、網撈、ホコヅキ、捕りである。主漁従農民においては、いわゆる漁撈的なMSMsパターンを示す可能性がある。一方、女性は、漁撈的なMSMsパターンは示さない可能性があり、このような結果が得られた場合、女性が舟に乗ることを禁忌としていたためであると考えることができる。

揚浜式製塩民：揚浜式製塩民は、主漁従農民とは明確に異なるMSMsパターンを示す可能性が考えられる。揚浜式製塩の場合は家族単位の協働労働が指摘されているため、男女の活動区分は、主漁従農民ほど明瞭ではない可能性がある。

江戸市中の階層集団：江戸市中においては、武士層とそれ以外の庶民層とでは男女共にMSMsに差がみられる可能性が考えられる。
本節では、中近世の対象集団のMSMsパターンの検討を行うことで、行われていた諸活動とその差異を明らかにする。まず、各集団の男女別に、MSMsパターンおよびスコアの差を検討する。分析手順としては、単変量解析を行い部位ごとの違いを明らかにした後、主成分分析を行い、各地域集団のMSMsの類似や差異とその要因を検討する。

第1項 中近世男性のMSMsの多様性

中近世集団男性のMSMsパターンを検討する。中近世集団のMSMsの基礎統計量は付表7に示す。

A) 中近世男性のMSMsの職業・階層間の差異

男性のMSMsパターンのスコアの違いを図5.2.1に示す。江戸時代の江戸市中の諸集団と、中近世の非都市部の集団を分けて示している。一見して、中近世非都市部の諸集団ではMSMsパターンのスコアが大きいことがわかる。対して、江戸市中の諸集団にはスコアの違いはあまりみられない。

個々のMSMsパターンをみていくために、MSMsパターンと頻度グラフを合わせて図5.2.2に示した。

図5.2.2-1にみられる主漁従農民吉母浜のMSMsパターンのピークは肋鎖靭帯にあり、次いで大胸筋・三角筋のスコアが高いという、いわゆる漁撈民に特徴的な傾向が認められる。

揚浜式製塩（沢田・村松白根）の特徴は、いわゆる漁撈的なMSMsパターンとは全く異なり、MSMsパターンのピークが大胸筋にある（図5.2.2-1）。また肘関節の伸展よりも屈曲に作用する上腕筋や上腕二頭筋のMSMsスコアが高い。手首の回內外に作用する諸筋のスコアは概ね同程度のスコアの高さを示す。

上位武士層と武士層の被葬者については、下肢7部位の一連のパターンに類似性が認められる。まず、腸腰筋のスコアの高さが武士層と上位武士層に共通する特徴として挙げられる。
この拮抗筋である大殿筋は腸腰筋よりもやや低いスコアを示す。股関節の内転筋群を含む粗線のスコアは、江戸市中庶民層（円形・方形木棺）や近世百姓（原田）よりも上位武士層と武士層の被葬者のほうが高い（図 5.2.1-1、5.2.2-2）。大殿筋のスコアは同時期の他の集団のMSMsスコアと比較して低いわけではないことから、平均的なスコアをみせると考えよう。外側広筋のスコアが低く、その一方で内側広筋のスコアが著しく高い点も共通点として挙げることができる。腸腰筋のスコアの高さは原田や方形木棺の被葬者においてもみられるが、これらは内側広筋のスコアがやや低いという点で武士階層とは異なっている。下腿では、後脛骨筋と長脛屈筋よりも下腿三頭筋を構成するヒラメ筋のスコアが高い点が武士層と上位武士層では類似する。スコアの出現頻度をみると、上位武士層と武士層の被葬者の腸腰筋はスコア 2、3 でほぼ 100% を占め、粗線に付着する筋群では 70% 以上、内側広筋は 80% 以上を占めている。これら の部位では江戸市中庶民層や近世百姓（原田）とはスコアの頻度が異なり、高いスコアの占める割合が多いことがみとめられる。

一方、竹田武士層は腸腰筋のMSMsのスコアが低く、この点において江戸市中の武士層とは異なる傾向を示す。しかし、粗線に付着する筋群、内側広筋、ヒラメ筋のスコアが下肢の中ではやや高いという点では江戸市中の武士層に共通するといえる。

図 5.2.1 中近世のMSMsパターンの比較：男性
中近世各集団の男性の類似性を具体的に検討するため、単変量の有意差検定を行った。集団間のMSMsスコア値の比較をするために、Bonferroni法を用いた多重比較を行った（図5.2.3）。武士層男性は上位武士層男性とはどの項目においても有意な差は無い。検定した集団内では揚浜式製塩民（沢田・村松白根）が他の集団と有意な違いを示す部位が最も多く、大胸筋ではほとんどの集団と有意な差を示す。主漁従農民（吉母浜）は江戸市中庶民層（円形木棺）と2部位（大胸筋・三角筋）で有意差が、江戸市中庶民層（円形木棺）と1部位（大殿筋）で有意差がみられる。武士層と江戸市中庶民層（円形木棺）とはそれぞれ2部位（菱形靭帯・三角筋）、近世百姓（原田）とは2部位（鳥口腕筋・内側広筋）で有意な差が確認された。上位武士層男性は、江戸市中庶民層（円形木棺）とは1部位（大円筋と広背筋・内側広筋）、江戸市中庶民層（方形木棺）とは1部位（内側広筋）で有意差が確認され、近世百姓（原田）
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

の男性とはどの項目にも有意差は無い。江戸市中庶民層（方形木棺）と江戸市中庶民層（円形木棺）とではどの項目にも有意差は無い。比較する集団が複数あることから多重比較が妥当と考え、検定を行ったが、上位武士層男性など標本の大きさに偏りがある場合があり、多重比較の場合、標本間の大きさが異なるほど群間の有意水準が保守的になることが指摘されている。そのために有意差が検出されなかった可能性も考えられる。

図5.2.2-2 中近世各集団のMSMsパターン：男性
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

中近世男性のMSMsの相対的な類似・差異およびその要因となる部位を検討するため、右側22部位個々の値を利用してカテゴリカル主成分分析を行った（表5.2.1）。

第1主成分は、固有値が8.98で、寄与率が40.80%であり、第2主成分は、固有値が6.65、寄与率が30.24%、第3主成分は固有値が5.44、寄与率が24.73%である。

第1主成分は、肋鎖靭帯と回外筋と負の相関が高く、それ以外の部位と正の相関がみられる。特に菱形靭帯との正の相関が高い。第2主成分は鎖骨靭帯系、手首の回内が院作用する諸筋、外側広筋、後脛骨筋と長趾屈筋と負の相関が高く、大円筋と広背筋、三角筋、上腕三頭筋外側頭、上腕筋、腸腰筋、内側広筋と

図5.2.3 中近世集団間のBonferroni検定結果（有意差のみられる部位のみを表記）

表5.2.1 カテゴリカル主成分分析主成分負荷量：
中近世男性

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>肋鎖靭帯</td>
<td>-0.68</td>
<td>-0.58</td>
<td>0.40</td>
</tr>
<tr>
<td>菱形靭帯</td>
<td>1.00</td>
<td>0.00</td>
<td>-0.08</td>
</tr>
<tr>
<td>全位靭帯</td>
<td>0.92</td>
<td>-0.35</td>
<td>0.16</td>
</tr>
<tr>
<td>鎖骨靭帯</td>
<td>0.39</td>
<td>0.80</td>
<td>-0.03</td>
</tr>
<tr>
<td>三角筋の前筋</td>
<td>0.72</td>
<td>-0.52</td>
<td>0.42</td>
</tr>
<tr>
<td>大円筋と広背筋</td>
<td>0.01</td>
<td>0.90</td>
<td>0.43</td>
</tr>
<tr>
<td>大胸筋</td>
<td>-0.25</td>
<td>0.05</td>
<td>0.97</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.02</td>
<td>0.90</td>
<td>0.43</td>
</tr>
<tr>
<td>鳥口脛筋</td>
<td>0.94</td>
<td>-0.21</td>
<td>0.00</td>
</tr>
<tr>
<td>上腕三頭筋外側頭</td>
<td>0.67</td>
<td>0.57</td>
<td>0.04</td>
</tr>
<tr>
<td>上腕筋</td>
<td>0.59</td>
<td>-0.25</td>
<td>0.76</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>-0.04</td>
<td>0.87</td>
<td>0.48</td>
</tr>
<tr>
<td>回外筋</td>
<td>-0.66</td>
<td>-0.61</td>
<td>0.39</td>
</tr>
<tr>
<td>方形内側筋</td>
<td>0.73</td>
<td>-0.55</td>
<td>0.35</td>
</tr>
<tr>
<td>円内筋</td>
<td>0.86</td>
<td>-0.19</td>
<td>0.40</td>
</tr>
<tr>
<td>骨筋突起</td>
<td>0.67</td>
<td>0.60</td>
<td>-0.40</td>
</tr>
<tr>
<td>大胸筋</td>
<td>-0.09</td>
<td>0.02</td>
<td>0.99</td>
</tr>
<tr>
<td>三角筋</td>
<td>-0.05</td>
<td>0.87</td>
<td>0.47</td>
</tr>
<tr>
<td>外側広筋</td>
<td>0.90</td>
<td>-0.37</td>
<td>0.21</td>
</tr>
<tr>
<td>内側広筋</td>
<td>0.67</td>
<td>0.63</td>
<td>-0.38</td>
</tr>
<tr>
<td>半月骨筋長脛屈筋</td>
<td>0.89</td>
<td>-0.34</td>
<td>-0.07</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>0.15</td>
<td>-0.06</td>
<td>-0.98</td>
</tr>
</tbody>
</table>

固有値: 8.98 6.65 5.44
累積寄与率(%) : 40.80 30.24 24.73
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

正の相関が強い。第3主成分は、基本的に上肢に付着する筋と大股筋、粗縫に付着する筋群と正の相関が高く、腸腰筋、内側広筋、ヒラメ筋と負の相関が高い。第1主成分は菱形靭帯との相関が高く、その他相関の高い部位も身体の挙動に大きく作用する筋ではないため、第2主成分得点を横軸に、第3主成分得点を縦軸にとって、二次元展開した図が図5.2.4である。

この結果から以下の3つのまとまりを読み取ることができる。

1つ目は、武士層と上位武士層、及び竹田武士層で、第2主成分得点が正の値を示し、第3主成分得点が負の値を示す。上位武士層の男性のはが武士層の男性よりも他の集団との違いが顕著である。2つ目は江戸時代の庶民層であり、第2・3主成分得点共に負の値を示す。3つ目は中世の主漁従農民（吉母浜）と揚浜式製塩民（沢田・村松白根）、近世の百姓（原田）であり、第2主成分得点が最初の2つのグループのほぼ真ん中に位置し、第3主成分得点が正の値を示す。

武士層のまとまりであるといえる1つ目のグループは、縦軸で負の値を示すため、上肢よりも下肢の方が、MSMsスコアが高い傾向にあり、その中でも、腸腰筋と内側広筋のスコアが高い。
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

い。また、上肢では、大円筋と広背筋、三角筋、上腕三頭筋、上腕二頭筋のスコアが高く、大胸筋も正の値を示しているため上腕の外転や後方拳上、内転や前方拳上に作用する筋のスコアが高いといえる。

2つ目の江戸市中庶民層（円形・方形木棺）のまとまりは相対的にヒラメ筋のスコアが高い傾向にあるが、他の集団と比較すると概してどの部位もスコアが低い傾向を示している。

3つ目のまとまりは、非都市部でそれぞれ生産活動に従事した集団であり、大殿筋や外側広筋など下肢の一部の筋以外、特に上肢に付着する諸筋のMSMsスコアが高いという、漁撈民に特徴的な傾向が認められた（図5.2.5）。

しかし、いわゆる漁撈的なパターンにおいても、肋鎖靭帯のMSMsスコアの高さの程度には地域差があり、Thule文化期の男性やGolobin Bayの男性のように海獣狩猟を行っていた集団よりも主漁従農民（吉母浜）のほうがスコアの高さは緩やかである。さらに、肋鎖靭帯のスコアが大胸筋よりも高く、次いで三角筋のスコアが高いという、漁撈民に特徴的な傾向が認められた（図5.2.5）。

揚浜式製塩民（沢田・村松白根）の特徴は、いわゆる漁撈的なパターンとは全く異なり、MSMsパターンのピークが大胸筋にある（図5.2.5）。肘関節の屈伸に作用する諸筋の中では、上腕三頭筋よりも、屈筋に作用する上腕筋の方がスコアは高い傾向にある。主漁従農民（吉母浜）では、上腕三頭筋と上腕筋のスコアはあまり変わりないが、上腕二頭筋に肘関節屈伸のスコアのピークがある。また、揚浜式製塩民の手首の回内外に作用する諸筋のスコアは概ね同程度のスコアの高さを示す。

主漁従農民（吉母浜）と揚浜式製塩（沢田・村松白根）のMSMsパターン（図5.2.2-1）をみると、主漁従農民（吉母浜）は肋鎖靭帯のスコア4の個体の頻度が高く、揚浜式製塩（沢田・村松白根）はスコア3の個体の頻度が高い。また、大胸筋においては、主漁従農民（吉母浜）はスコア3の個体の頻度が高く、揚浜式製塩（沢田・村松白根）はスコア4以上の個体の頻度が高い。

22部位のMSMsスコアを昇順のランクに変換し、スコアの低い順から低いランクをつけ折れ線グラフ化したもののが図5.2.6である。つまり、22部位中で最も低いスコアを示す部位はランク1が、最も高いスコアを示す部位はランク22がつく。
図 5.2.5 漁撈的 MSMs パターンと主漁従農民（吉母浜）・製塩（沢田・村松白根）の MSMs パターン
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

MSMsパターンの平均値そのものを比較することができないが、ランクに変換することでより明瞭にパターンの違いを示すことができるため、図5.2.6にランクパターンを示した。

肘関節の屈伸に作用する諸筋では、主漁従農民（吉母浜）は先に指摘した通り上腕二頭筋のスコアのランクが高いが、揚浜式製塩（沢田・村松白根）は上腕筋のスコアのランクが高い。

下肢のMSMsパターンもやや異なり、大腿骨に付着する腸腰筋・大殿筋・粗線に付着する筋群のMSMsパターンは類似するが、外側広筋・内側広筋・後脛骨筋など膝関節から距髖関節に作用する筋の傾向が異なる。主漁従農民（吉母浜）ではこれらの筋のMSMsスコアは低く、ランクにして表記すると著しい減少を見せるのに対し、揚浜式製塩（沢田・村松白根）ではそこまでのランクの低下を示さない。

これらのことから、カテゴリカル主成分分析（図5.2.4）では同じグループとされた主漁従農民と揚浜式製塩民のMSMsパターンはやや異なり、主漁従農民はいわゆる漁撈的なMSMsパターンを示し、揚浜式製塩民はそのような漁撈的なMSMsパターンは示さない。

小結 中世男性のMSMsパターンのまとめ

主漁従農民：この集団のMSMsパターンをみる（図5.2.5）と、主漁従農民はいわゆる漁撈的なMSMsパターンを示す。すなわち、肋鎖靭帯のMSMsスコアが大胸筋よりも高く、この2つの付着部の次に三角筋のMSMsスコアも高いという傾向を示す。

また、カテゴリカル主成分分析の結果からは、下肢よりも上肢の諸筋のスコアが高い傾向がみとめられた（図5.2.4）。

揚浜式製塩民：揚浜式製塩民は、主漁従農民とは異なりいわゆる漁撈的なパターンは示さず、大胸筋の方がMSMsのスコアは高い（図5.2.2-1）。さらに、上肢のMSMsの発達は著しく、下肢の発達が弱いというわけではなく、外側広筋・内側広筋・後脛骨筋や長脛屈筋など膝関節から距髖関節に作用する筋でも著しい減少を示さない（図5.2.6）。この点において、主漁従農民とは上肢と下肢のMSMsの発達のバランスも異なるといえる。

図5.2.6 主漁従農民（吉母浜）と揚浜式製塩（沢田・村松白根）のMSMsスコアのランクの折れ線グラフ
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

○ 近世男性の階層集団間のMSMsの差異

次に、近世の各集団について述べていく。図5.2.2-1、5.2.2-2のMSMsパターンをみると、先述したとおり、上位武士層と武士層の被葬者については、下肢7部位の連続のパターンに類似性が認められる。

さらに、武士階層に共通する下肢のパターンが武士特有の生活様式の結果であるかどうかを検討するために、身元の判明している神代利経と久世一族各個体のMSMsパターンと、武士層及び上位武士層から久世・神代の個体を抜いた多重構造墓（炭・漆喰（石灰）床・樫木樫特色社会、方形木樫特色社会、円形木樫特色社会などの被葬者の被葬者のパターンとの比較を行った（図5.2.7）。カテゴリカル主成分分析の結果からその類似が指摘された竹田武士層と、比較資料として主漁従農民をのせている。

一個体のMSMsスコアは平均化したものよりも極端なパターンを描くが、下肢7部位で先に指摘した傾向が共通してみられる。特に、腸腰筋と内側広筋のスコアの高さが目立つ。このように、武士層及び上位武士層では、下肢の最大のピークが腸腰筋に見られる点、外側広筋のスコアが低い一方で内側広筋のスコアが著しく高い点、粗線に付着する筋群のスコアも高く、ヒラメ筋でMSMsパターンが上昇する点、その一方で大殿筋や後脛骨筋と長趾屈筋のスコアは中程度である点で下肢7部位におけるMSMsパターンが類似するという傾向が指摘できる。

竹田武士層は、下肢の最大のピークが腸腰筋にこないという点で他の武士とは異なる傾向を示すが、外側広筋のスコアが低い一方で内側広筋のスコアが著しく高い点、粗線に付着する筋群のスコアも高く、ヒラメ筋でMSMsパターンが上昇する点、その一方で大殿筋や後脛骨筋と長趾屈筋のスコアは中程度である点では、MSMsパターンは類似する。

武士層のMSMsパターンの特異性を検討するため、全武士層（武士層と上位武士層）の男性と江戸市中全庶民層（円形木棺・方形木棺）の2つの集団のMann-WhitneyのU検定を行い、その結果を図5.2.8に示した。江戸市中全庶民層と武士層との間では、菱形靭帯・鎖骨下筋・大円筋と広背筋・三角筋・鳥口腕筋・回外筋・円内筋・腸腰筋・粗線に付着する筋群・内側広筋と10部位で有意差がみられた。武士層で共通して発達することを指摘した腸腰筋・粗線に付着する筋群、内側広筋は、江戸市中庶民層とは有意な差を示すといえる。

小結 近世男性のMSMsパターンのまとめ

江戸市の中の階層集団および竹田武士層は近世の他の集団と比べるとMSMsパターンが類似する傾向を示し、その特徴は下肢の7部位のMSMsパターンにみられる。武士層で共通して発達する腸腰筋・粗線に付着する筋群、内側広筋は、江戸市中庶民層とは有意な差を示すという点でも、この下肢の特徴は支持される。

竹田武士層は、下肢の最大のピークが腸腰筋にこないという点で他の武士とは異なる傾向を示すが、それ以外の下肢のMSMsパターンは類似する。

一方で、江戸市中庶民層（円形木棺・方形木棺）のMSMsパターンにはあまり明確なピークが存在せず、全ての部位でスコア1,2,3全ての段階の個体があまり偏りなく一定の割合を占める。
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

図5.2.7 武士層のMSMsパターンの比較（比較資料として主漁農民をのせている）
第 5 章 歴史時代の身体活動の多様性に関する多角的検討結果

第2項 中近世女性の MSms パターンの比較

A) 中近世女性の MSms の職業・階層間の差異

女性の MSms パターンのスコアの違いを図 5.2.9 に示す。江戸時代の江戸市中の諸集団と、中近世の非都市部の集団を分けて示している。一見して、中近世非都市部の諸集団では MSms パターンのスコアの差が大きいことがわかる。対して、男性と同様で、江戸市中の諸集団にはスコアの違いはあまりみられない。

個々の MSms パターンをみていくために、MSms パターンと頻度グラフを合わせて図 5.2.10 に示した。

図 5.2.10-1 にみられる主漁従農民の女性の MSms パターンは男性のようにわゆる漁撈的な MSms パターンを示さない。肋鎖靭帯や大胸筋よりも三角筋の方が、MSms スコアが高いが、上肢に明確なピークは、手首の回内に作用する方形回内筋になる。

揚浜式製塩（沢田・村松白根）の女性は、MSms パターンのピークが大胸筋にある（図 5.2.10-1）。また肘関節の伸展よりも屈曲に作用する上腕筋や上腕二頭筋の MSms スコアが高い。手首の回内外に作用する諸筋では方形回内筋の方が、スコアが高い。

近世百姓の MSms パターンもこれらとは大きく異なり、上肢では上腕二頭筋に、下肢では腸腰筋に MSms パターンのピークがある。

江戸市中の武士層は、下肢では腸腰筋と内側広筋のスコアがやや高いという点で男性とも共通するといえるが、粗線に付着する筋群のスコアが低い傾向を示す。この、腸腰筋と内側広筋
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

のスコアがやや高いという傾向は竹田武士層でも共通する傾向である。さらに、武士層と上位層の女性は下肢よりもむしろ上肢のMSMsパターンに類似性が強い。上位武士層と武士層の上肢のMSMsパターンの共通点は、特に肋鎖靭帯・菱形靭帯・円錐靭帯・鎖骨下筋・三角筋の前部・大円筋と広背筋・大胸筋・三角筋・鳥口腕筋にみられる。菱形靭帯・円錐靭帯・三角筋の前部・三角筋のスコアは、3を示す個体の割合が江戸市中庶民層（円形・方形木棺）よりも多い一方で、大円筋と広背筋・大胸筋はスコア3を示す個体が江戸市中庶民層（円形・方形木棺）よりも少なく10%以下である。

また、武士層・上位武士層の下肢において、腸腰筋のスコアが3を示す個体の割合は、下肢の他の6部位でスコア3を示す個体の割合よりもやや多く、腸腰筋が下肢の中で最もスコアの高い個体の頻度が多い傾向がある。上位武士層の女性においては腸腰筋以外の下肢6部位はスコアの低い個体（2以下）が顕著に多い傾向にあるといえる。

集団間のMSMsスコアの値の比較をするために、Bonferroni法を用いた多重比較を行った（図5.2.11）。武士層女性は上位武士層女性とはどの項目においても有意な差は無い。検定した集団内では男性同様に揚浜式製塩民（沢田・村松白根）が他の集団と有意な違いを示す部位が最も多い。

揚浜式製塩民（沢田・村松白根）は、江戸市中庶民層（円形木棺）と比べると、菱形靭帯・
円錐靭帯・三角筋・上腕筋・外側広筋に有意差がみられ、この2集団間では有意な差がみられる部位が最も多い。

揚浜式製塩民（沢田・村松白根）と武士層との間では、大胸筋・上腕筋・外側広筋に有意差がみられる。揚浜式製塩民（沢田・村松白根）と原田との間では三角筋・外側広筋で、揚浜式製塩民（沢田・村松白根）と竹田武士層（稲荷谷）との間では方形回内筋で、揚浜式製塩民（沢田・村松白根）と江戸市中庶民層（方形木棺）との間では上腕筋でそれぞれ有意な差がみられる。武士層と江戸市中庶民層（方形木棺）との比較では円錐靭帯で有意な差が、竹田武士層（稲荷谷）と主漁従農民（吉母浜）とでは方形回内筋で有意な差がみられる。

次にMSMsパターンの類似と要因を検討するために、右側22部位個々の値を用いてカテゴリカル主成分分析を行った。主成分負荷量を表5.2.1に示す。

第1主成分は、固有値が10.25で、寄与率が46.58%である。第2主成分の固有値は8.11、寄

図5.2.10-1 中世各集団のMSMsパターン：女性
5章 歴史時代の身体活動の多様性に関する多角的検討結果

与率は36.88％である。第1主成分は上腕三頭筋外側頭・円回内筋・腸腰筋・大殿筋と負の相関が高く、上肢の筋のスコア、特に肋鎖靭帯や大胸筋・三角筋、下肢では粗線に付着する筋群・外側広筋・ヒラメ筋のスコアと正の相関が高い。

第2主成分は、鎖骨下筋・三角筋の前部・鳥口腕筋や内側広筋・後脛骨筋と長趾屈筋と正の相関が強く、上腕筋・上腕三頭筋・上腕三頭筋外側頭・円回内筋をはじめ回内外に作用する筋群、下肢では大殿筋と負の相関が高い。

図5.2.10-2 中近世各集団のMSMsパターン：女性
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

図5.2.11 中近世女性集団間のBonferroni検定結果（有意差のみられる部位のみを表記）

第1主成分得点を横軸に、第2主成分得点を縦軸にとり、二次元展開した図が図5.2.12である。
カテゴリカル主成分分析の結果（図5.2.12）から次の傾向を読み取ることができる。
まず江戸市中に埋葬された被葬者である、武士層・上位武士層・江戸市中庶民層（円形・方形木棺）の4集団が第1主成分得点は負の値に、第2主成分得点は正の値になり近接した場所に位置する。近世百姓（原田）は第1主成分得点が負の値になるという点で共通するが、第2主成分が大きく負の値を示し、竹田武士層（稲荷谷）は原点付近に位置する。
一方、主漁従農民（吉母浜）と揚浜式製塩民（沢田・村松白根）は第1主成分得点の値が正の値になり、江戸時代の諸集団とはやや傾向が異なる。

B) 中世女性の専業集団間のMSMsの差異
多変量解析による分析によって示された集団間の類似性とその要因をふまえたうえで、MSMsパタ
歴史時代の身体活動の多様性に関する多角的検討結果

第5章 歴史時代の身体活動の多様性に関する多角的検討結果

シーンにおける類似と差異を検討していく。男性とのMSMsパターンの違いが大きいことを示すために主漁従農民と揚浜式製塩民の男女のMSMsパターンを示した（図5.2.13）。

主漁従農民（吉母浜）に関しては男性でみられたような肋鎖靭帯のピークはみられない（図5.2.2-1、5.2.10-1）。男性との大きな差として、女性では、肋鎖靭帯や大胸筋よりも三角筋の方が、MSMsスコアが高いという点にある。さらに上肢の明確なピークは、上腕の挙動に作用する筋群のどれにもなく、手首の回内内に作用する方形回内筋になる。下肢のMSMsパターンも関節筋のスコアが高いという傾向が指摘される。また、ヒラメ筋のスコアもやや高い傾向にある。

MSMsパターンをみると江戸市中庶民層（円形・方形木棺）に類似する傾向もあるといえ（図5.2.10-1、5.2.10-2）、これはカテゴリカル主成分分析の第2主成分得点の値（図5.2.12）にも表れている。

揚浜式製塩民（沢田・村松白根）は、単変量解析における有意差（図5.2.11）やカテゴリカル

第1主成分負荷量

第2主成分負荷量

図5.2.12 MSMs22部位を用いたカテゴリカル主成分分析：中近世女性
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

ル主成分分析の結果（図5.2.12）をみると、他の集団との差が大きい。揚浜式製塩民（沢田・村松白根）の女性はMSMsパターンをみると、他の集団の女性よりもMSMsスコアが高い部位が多い（図5.2.10-1）。

男女間のMSMsパターンの差（図5.2.13）も揚浜式製塩民は主漁従農民ほど顕著ではなく、下肢のMSMsスコアは男性の方が女性よりも高い部位が多いが、上肢のMSMsスコアは男性と拮抗する。

中世各集団女性のMSMsのまとめ

主漁従農民：主漁従農民の女性は、男性と異なり、いわゆる漁撈的なMSMsパターンを示さない。

揚浜式製塩民：揚浜式製塩民の女性のMSMsパターンは、主漁従農民ほど明確に男女間で差がない。

図5.2.13 主漁従農民と揚浜式製塩民の男女のMSMsパターンの差
C) 近世女性の階層集団間のMSMsの差異

次に近世の各集団のMSMsパターンを検討した。図5.2.10-1、5.2.10-2をみると、上位武士層と武土層の被葬者については、上肢の一連のMSMsパターンに類似性が認められた。また、男性の武士階層特有のMSMsスコアの発達を示す腸腰筋と内側広筋のスコアは女性の武士階層の場合も高い傾向にある。これは竹田武士層（稲荷谷）の女性も同様の傾向を示す。しかし、カテゴリカル主成分分析の結果（図5.2.12）をみると、武士層・上位武士層の女性は、江戸市中庶民層（円形・方形木棺）との差を男性ほど明確にあらわさない。

武士層の女性は、上位武士層の女性よりも江戸市中庶民層（円形木棺）の女性とのほうが類似するという傾向も指摘することができる。図5.2.10-2のMSMsパターンをみてみると、江戸市中庶民層（円形・方形木棺）の2群のMSMsパターンは、スコアの平均値が明らかに高い部位がないことから、その発達にあまり明確なピークがないという類似を示す。カテゴリカル主成分分析（図5.2.12）で示された江戸市中庶民層（円形・方形木棺）の類似はMSMsスコアの平均値が明らかに高い部位がなく、MSMsパターンに明確なピークが存在しない点であると言える。この傾向が武士層の女性の上肢のMSMsパターンにも表れているとは言い難いが、少なくとも武士層女性的下肢のMSMsパターンは上位武士層よりもむしろ江戸市中庶民層（円形木棺）のパターンに類似する傾向にある。

上位武士層の女性は、武士層の女性や江戸市中庶民層（円形・方形木棺）の女性とはやや異なるといえる。上位武士層の女性のMSMsパターンをみると（図5.2.10-2）腸腰筋以外の下肢のスコアの個体の頻度が他の集団と比べて非常に高い。この下肢の諸筋のMSMsスコアの低
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

さによって、第1主成分得点で、他の江戸市中の集団よりも高い負の値を示したものと考えられる。

近世の百姓（原田）のMSMsパターンをみると（図5.2.10-1）、腸腰筋のMSMsスコアがやや高いが、腸腰筋に次いで大殿筋・ヒラメ筋のスコアが高い点で、武士層の女性とは違いがみられる。カテゴリカル主成分分析の結果から（図5.2.12）、竹田武士層の女性と近世百姓（原田）の女性は、江戸市中の女性とは大きく異なる傾向を示す。

男性と同様、全武士層（武士層と上位武士層）の女性と江戸市中全庶民層（円形木棺・方形木棺）の女性の２つの集団間のMann-WhitneyのU検定を行い、その結果を図5.2.14に示した。

菱形靭帯・円錐靭帯・三角筋の前部・円回内筋・腸腰筋の5部位で有意な差がみられたが、有意な差を検出した部位は男性よりも少ない。また、武士層の男性で共通して発達する腸腰筋・粗線に付着する筋群、内側広筋の中では、江戸市中庶民層と有意な差を示す部位は腸腰筋のみである。

小結 近世女性のMSMsのまとめ

江戸市中の諸集団では、武士層と、その他庶民層の間にMSMsの差がみられると考えられが、江戸市中武士層の女性のMSMsパターンは、男性とは異なり、江戸市中庶民層（円形・方形木棺）と明確な差を示さない。上位武士層の女性が、他の江戸市中の集団と異なる点としては、下肢のMSMsスコアが低い個体が多い点を挙げることができる。一方、非都市部の諸集団の女性は、竹田武士層の女性もあわせて、江戸市中の女性とは大きく異なる傾向を示す。

第3節 集団内比較：年齢・性別・個体間の身体活動差

前節で、中近世の各地域集団のMSMsの類似と差異を検討し、それぞれのMSMsパターンの違いを析出した。生業活動は、生存のための集団のあり方・活動・技術の総称であり、性差や年齢差による活動の区分の検討は、活動に従事する集団のあり方の一端を示すものである。

この節では、中近世の各集団の生業活動への携わり方をMSMsの違いから検討する。集団間で加齢によるMSMsの変化の仕方に違いがあるか、MSMsの性差のあらわれ方がどのように異なるかを検討する。

第1項では、年齢段階ごとに活動の質や量に集団間で違いがみられるかを検討し、MSMsの発達における加齢の影響が集団間でどのように異なるかを調べる。第2項では、MSMsの性差を検討することで、活動の特性などに応じて集団ごとにとらえていた業分業のあり方を明らかにする。さらに、年齢段階ごとに集団ごとの性差がどのように変化するかを検討し、どの年齢で性差が最も大きくなるかを検討する。第3項では、中世と近世の集団の男性個体の値をそれぞれ用いてMSMsの集団内の多様性のあり方の比較を行う。中世の主漁労農民と揚浜式製塩民、あるいは江戸時代の武士層と町人層とで個体間のMSMsの差のあり方がどのように異なるのかを調べることで、集団ごとの平均的な活動の差ではなく、個体間のMSMsの
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

類似や差異の程度を明らかにする。この検討をおこなうことで、個体の活動の類似度を調べる。これにより、生業活動の専業化の影響や、所属する階層に応じて規制されていた生活様式が個体に与える影響がどの程度であったかを明らかにする。

第1項 MSMSの加齢変化の諸相

生業活動が異なると性別や年齢による活動への携わり方が異なることが文化人類学的な研究で指摘されている。また第4章第4節で縄文時代と弥生時代の加齢変化を分析した結果、加齢変化の様相が縄文時代と弥生時代では異なることが指摘された。このことから、中近世の様々な生業活動にやや専業的に従事した諸集団と、属する階層が異なる諸集団においても、加齢変化の様相は異なる可能性が想定されるため、本項では、男女それぞれでどのような傾向がみられるかを検討していく。

A) 男性

加齢変化に関する分析に用いることができた集団（男性）は、主漁従農民（吉母浜：成年・熟年）、揚浜式製塩（村松白根・沢田：成年・熟年）、全武士層（成年・熟年・老年）、江戸市中庶民層（円形木棺：成年・熟年・老年）、江戸市中庶民層（方形木棺：成年・熟年）である。武士階層の集団を武士層と上位武士層とに分けて年齢カテゴリーごとの分析を行うことはサンプルサイズの問題で不可能であった。武士層と上位武士層は活動パターン自体の類似が先の分析で指摘されている為、全武士層としてまとめ、3つのが年齢カテゴリーに分け、分析を行った。男女それぞれの基礎統計量は付表8に示す。

各年齢段階のMSMsパターンをみていくと、まず主漁従農民（吉母浜）において（図5.3.1-1）は、成年と熟年でややMSMsパターンが異なる。肋鎖靭帯のスコアが高いことは成年でも熟年でも共通しているが、成年段階では三角筋のスコアが大胸筋よりもやや高く、熟年段階では大胸筋のスコアのほうが高い。また肘関節の屈曲や手首の回内外に作用する筋のMSMsパターンも異なる。特に上腕三頭筋外側頭と上腕筋のランク、および円回内筋のランクが大きく異なる。吉母浜の成年と熟年の下肢のMSMsパターンは、外側広筋でスコアが下がるが、腸腰筋・大殿筋・粗線に付着する筋群の方が下腿に付着する部位よりもMSMsスコアが高いという共通した傾向を示す。揚浜式製塩（沢田・村松白根）は（図5.3.1-1）、成年と熟年でMSMsパターンに変化が無い。特に上肢においてその傾向は強く、下肢のMSMsパターンには、成年段階では腸腰筋、粗線に付着する筋群、後脛骨筋と長趾屈筋にピークがあるが、熟年段階では下腿のMSMsスコアが大腿骨の諸筋に比べてやや高くなる傾向を示す。

全武士層のMSMsパターンをみると（図5.3.1-2）、細かい違いはあるが、上肢のピークを示す部位が菱形靭帯・三角筋・上腕二頭筋にみられる点、円回内・方形回内筋のスコアが高く、下肢のMSMsスコアが高い点、および下肢のMSMsパターンはどの年齢段階でも類似している。

江戸市中庶民層（円形・方形木棺）ではMSMsパターンは共通点がない（図5.3.1-1, 5.3.1-2）。とくに江戸市中庶民層（円形木棺）の成年・熟年・老年はMSMsパターンに明確なピークが
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

歴史時代の身体活動の多様性に関する多角的検討結果（図5.3.1-2）。この傾向は下肢よりも上肢に付着する筋に強い。江戸市中庶民層（方形木棺）でも（図5.3.1-1）、成年段階ではMSMsに明確なピークを示さない。一方熟年段階では上肢では三角筋が、下肢では腸腰筋が顕著に発達する傾向にあるが、その他の部位のスコアの高低差は小さい。

武士層はどの年齢段階でもMSMsスコアが重複し、またMSMsパターンに大きな変化はない。同様の傾向は揚浜式製塩民の成年と熟年の間にもみられ、下肢のパターン以外はあまり大きな変化はない。一方、年齢段階でややパターンが異なり、スコアの重複が少ないとされるのは主漁従農民である（図5.3.2）。

中近世男性の年齢カテゴリー間の類似を検討するため、距離行列を行った（表5.3.1）。主漁従農民（吉母浜）と揚浜式製塩（沢田・村松白根）はそれぞれ0.402, 0.448であり、近世の全武士層の成年と熟年の距離は0.091, 成年と老年の距離は0.237, 江戸市中庶民層（方形木棺）の成年と熟年の距離は0.189であり、江戸市中庶民層（方形木棺）の成年と老年の距離は0.359である。この結果からどの年齢カテゴリー間でも全武士層の値が最も小さく、年齢カテゴリー間でMSMsパターンの差が最も小さいことが指摘できる。

次にこの類似と差異の要因を検討するため年齢カテゴリーごとのMSMsスコア22部位の平均値を用いてカテゴリアル主成分分析を行った。主成分負荷量を表5.3.2に示した。

第1主成分は、固有値が9.44で、寄与率が42.90%である。第2主成分は固有値が5.35、寄与率が24.31%であり、第3主成分は固有値が4.75、寄与率が21.60%である。

第1主成分は腸腰筋・内側広筋・後脛骨筋と長趾屈筋・ヒラメ筋と正の相関が高く、それ以外の部位と負の相関がみられる。

第2主成分は肩甲骨の外・後方の動きを制限する肋鎖靭帯・円錐靭帯、上腕の内転や前方拳上に作用する三角筋の前部と大胸筋は正の相関が強く、腸腰筋・内側広筋は負の相関が高い。

表5.3.1 中近世男性の年齢カテゴリー間の距離行列

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>0.402</td>
<td>1.178</td>
<td>0.264</td>
<td>0.215</td>
<td>0.228</td>
<td>0.518</td>
<td>0.303</td>
<td>0.226</td>
<td>0.394</td>
<td>0.236</td>
<td>0.323</td>
<td>0.000</td>
</tr>
<tr>
<td>0.402</td>
<td>0.000</td>
<td>0.510</td>
<td>0.468</td>
<td>0.723</td>
<td>0.474</td>
<td>0.575</td>
<td>0.866</td>
<td>0.438</td>
<td>0.425</td>
<td>1.000</td>
<td>0.091</td>
<td>0.203</td>
</tr>
<tr>
<td>1.178</td>
<td>0.510</td>
<td>0.000</td>
<td>0.448</td>
<td>0.470</td>
<td>0.390</td>
<td>0.657</td>
<td>0.299</td>
<td>0.321</td>
<td>0.606</td>
<td>0.479</td>
<td>0.446</td>
<td>0.000</td>
</tr>
<tr>
<td>0.264</td>
<td>0.468</td>
<td>0.448</td>
<td>0.000</td>
<td>0.642</td>
<td>0.597</td>
<td>0.727</td>
<td>0.628</td>
<td>0.483</td>
<td>0.509</td>
<td>0.635</td>
<td>0.500</td>
<td>0.000</td>
</tr>
<tr>
<td>0.215</td>
<td>0.390</td>
<td>0.642</td>
<td>0.000</td>
<td>0.091</td>
<td>0.237</td>
<td>0.153</td>
<td>0.119</td>
<td>0.175</td>
<td>0.221</td>
<td>0.281</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.228</td>
<td>0.391</td>
<td>0.657</td>
<td>0.091</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.352</td>
<td>0.151</td>
<td>0.112</td>
<td>0.446</td>
<td>0.274</td>
<td>0.000</td>
</tr>
<tr>
<td>0.518</td>
<td>0.657</td>
<td>0.299</td>
<td>0.237</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.644</td>
<td>0.261</td>
<td>0.278</td>
<td>0.710</td>
<td>0.372</td>
<td>0.000</td>
</tr>
<tr>
<td>0.303</td>
<td>0.151</td>
<td>0.299</td>
<td>0.352</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.644</td>
<td>0.261</td>
<td>0.278</td>
<td>0.710</td>
<td>0.372</td>
<td>0.000</td>
</tr>
<tr>
<td>0.226</td>
<td>0.112</td>
<td>0.261</td>
<td>0.151</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.261</td>
<td>0.149</td>
<td>0.099</td>
<td>0.249</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.354</td>
<td>0.421</td>
<td>0.279</td>
<td>0.112</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.421</td>
<td>0.099</td>
<td>0.000</td>
<td>0.434</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

尺度化 平方ユークリッド距離
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

図5.3.1-1 各集団の年齢ごとのMSMsパターン：中近世男性
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

図5.3.1-2 各集団の年齢ごとのMSMαパターン：中近世男性
図5.3.2 中近世の各年齢段階のMSMsパターン：男性
第3章主成分は手首の内外の主働筋である外筋・方形内外筋と負の相関が高い、他の部位とは正の相関がみられ、値がおおきくなるほど概してMSMsスコアの高い部位が多いといえる。MSMsの全体系的なスコアの高低を示すような軸がないため、発達部位の違いをあらわす第1・2主成分得点を図5.3.3に二次元展開している。特に第1主成分得点はいわゆる武士的なMSMsスコアの発達を示す軸である。

この結果（図5.3.3）から、武士層の男性はどの年齢カテゴリーにおいても同じような位置にプロットされることがわかる。全武士層のすべての年齢段階で、武士に共通する下肢のMSMsスコアが高く、なかでも腸腰筋と内側広筋のMSMsスコアの発達が一際うかがえる。一方、江戸市中庶民層（円形・方形木棺）は、年齢ごとのばらつきが大きい。

揚浜式製塩民（沢田・村松白根）は近世の各集団とはプロットされる位置が異なるが、年齢間での差は大きくない。

主漁従農民（吉母浜）は成年段階と熟年段階ではプロットされる位置が大きく異なり、熟年段階では第1主成分得点の負の値が大きい。横軸で負の相関が高いのは肋鎖靭帯・大円筋と広背筋・大胸筋・鳥口腕筋・上腕三頭筋外側頭など特に上肢の諸筋のスコアが一際高いためであり、主漁従農民（吉母浜）の漁撈的な傾向が熟年段階においてより顕著にあらわれると考えられる。

中近世男性のMSMsの加齢変化のまとめ

揚浜式製塩民では成年と熟年の間のMSMsの差は小さく、主漁従農民では成年と熟年の間のMSMsの差が大きい。

武士層の男性では加齢に伴う変化が小さい傾向にある。一方、江戸市中庶民層（円形・方形木棺）の各年齢段階ではMSMsの差が大きく、パターンに共通性がみられない。

B) 女性

女性に関しても同様の検討を行った。用いることのできた集団（女性）は、主漁従農民（吉母浜：成年・熟年）、揚浜式製塩（村松白根・沢田：熟年・老年）、全武士層（成年・熟年・老年）、江戸市中庶民層（円形木棺：成年・熟年・老年）、江戸市中庶民層（方形木棺：成年・熟年）である。女性の場合も、武士階層の集団を武士層と上位武士層とまとめて分析を行った。
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

まず、各集団の年齢段階ごとのMSMsパターンを見ていく（図5.3.4-1, 5.3.4-2）。図5.3.4-1をみると、主漁従農民（吉母浜）は成年と熟年間では、細かい違いはあるが、MSMsパターンは概ね類似する傾向を示す。男性と異なり肋鎖靭帯のスコアの高さは女性の場合成年でも熟年でもみられず、三角筋にMSMsパターンのピークを示し、最もスコアが高いのは成年・熟年段階共に方形内筋である。

揚浜式製塩（沢田・村松白根）も熟年と老年で、上肢のMSMsパターンは類似する傾向を示す（図5.3.4-1）。

図5.3.3 加齢変化の諸相に関するカテゴリカル主成分分析: 中近世男性
第 5 章 歴史時代の身体活動の多様性に関する多角的検討結果

全武士層の各年齢段階の MSMs パターン（図 5.3.4-2）は、上肢のピークを示す部位が円錐靭帯・三角筋の前部・三角筋であり、大胸筋のスコアが低い点を共通点として指摘することができる。

江戸市中庶民層（円形・方形木棺）の各年齢段階の MSMs パターンは男性と同様で、あまり共通点がない。江戸市中庶民層（円形・方形木棺）では、成年段階でパターンに明確なピークを示して、あまり特徴がない。図 5.3.4-2 から、加齢とともに MSMs パターンの各部位のスコアの高低差が明瞭になっていく傾向があることがいえる。

女性の場合、男性よりも個体数がどの集団もやや少ないことがパターンの傾向に影響を与えている可能性がある。しかし、どの集団においても、男性よりも加齢とともにスコアの高い個体の頻度が増える傾向は顕著であるといえる（図 5.4.3-1,2）。

MSMs パターンのみで比較を行い、スコアの高低を比較する（図 5.3.5）と、主漁従農民（吉母浜）、揚浜式製塩（沢田・村松白根）、武士層においては、加齢とともにスコアが増加していく傾向を示す。武士層は特に、熟年段階と老年段階での下肢の類似性が強い。しかし、江戸市中庶民層（円形・方形木棺）においては、加齢とともにスコアが増加していくような部位は少なく、重複する部位が多い。しかし、MSMs パターンとしての類似性は低い。

中近世女性の年齢カテゴリー間の類似を検討するため、距離行列を行った（表 5.3.3）。主漁従農民（吉母浜）と揚浜式製塩（沢田・村松白根）はそれぞれ 0.224, 0.205 であり、近世の全武士層の成年と熟年の距離は 0.180。成年と老年の距離は 0.222、江戸市中庶民層（円形木棺）の成年と老年の距離は 0.054、成年と老年の距離は 0.268、熟年と老年の距離は 0.111 であり、江戸市中庶民層（円形木棺）の成年と熟年の距離は 0.227 である。この結果から最も年齢間の差が小さいのは江戸市中庶民層（円形木棺）であるといえる。

表 5.3.3 中近世年齢カテゴリー間の距離行列

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.主漁従農民（吉母浜）成年</td>
<td>1.000</td>
<td>0.224</td>
<td>0.107</td>
<td>0.291</td>
<td>0.105</td>
<td>0.234</td>
<td>0.171</td>
<td>0.171</td>
<td>0.205</td>
<td>0.171</td>
<td>0.025</td>
<td>0.429</td>
</tr>
<tr>
<td>2.主漁従農民（吉母浜）熟年</td>
<td>0.224</td>
<td>1.000</td>
<td>0.107</td>
<td>0.291</td>
<td>0.105</td>
<td>0.234</td>
<td>0.171</td>
<td>0.171</td>
<td>0.205</td>
<td>0.171</td>
<td>0.025</td>
<td>0.429</td>
</tr>
<tr>
<td>3.揚浜式製塩</td>
<td>0.107</td>
<td>0.107</td>
<td>1.000</td>
<td>0.205</td>
<td>0.198</td>
<td>0.222</td>
<td>0.166</td>
<td>0.136</td>
<td>0.282</td>
<td>0.489</td>
<td>0.126</td>
<td>0.126</td>
</tr>
<tr>
<td>4.揚浜式製塩</td>
<td>0.291</td>
<td>0.291</td>
<td>0.205</td>
<td>1.000</td>
<td>0.577</td>
<td>0.507</td>
<td>0.714</td>
<td>0.671</td>
<td>0.578</td>
<td>1.000</td>
<td>0.786</td>
<td>0.386</td>
</tr>
<tr>
<td>5.全武士層 成年</td>
<td>0.105</td>
<td>0.105</td>
<td>0.198</td>
<td>0.577</td>
<td>1.000</td>
<td>0.439</td>
<td>0.222</td>
<td>0.000</td>
<td>0.519</td>
<td>0.326</td>
<td>0.185</td>
<td>0.865</td>
</tr>
<tr>
<td>6.全武士層 熟年</td>
<td>0.234</td>
<td>0.234</td>
<td>0.222</td>
<td>0.439</td>
<td>0.439</td>
<td>1.000</td>
<td>0.579</td>
<td>0.577</td>
<td>0.519</td>
<td>0.326</td>
<td>0.185</td>
<td>0.865</td>
</tr>
<tr>
<td>7.全武士層 老年</td>
<td>0.171</td>
<td>0.171</td>
<td>0.166</td>
<td>0.714</td>
<td>0.714</td>
<td>0.579</td>
<td>1.000</td>
<td>0.577</td>
<td>0.519</td>
<td>0.326</td>
<td>0.185</td>
<td>0.865</td>
</tr>
<tr>
<td>8.江戸市中庶民層（円形木棺）成年</td>
<td>0.025</td>
<td>0.025</td>
<td>0.022</td>
<td>0.057</td>
<td>0.057</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9.江戸市中庶民層（円形木棺）熟年</td>
<td>0.429</td>
<td>0.429</td>
<td>0.222</td>
<td>0.579</td>
<td>0.579</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10.江戸市中庶民層（円形木棺）老年</td>
<td>0.126</td>
<td>0.126</td>
<td>0.126</td>
<td>0.579</td>
<td>0.579</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>11.江戸市中庶民層（方形木棺）成年</td>
<td>0.121</td>
<td>0.121</td>
<td>0.121</td>
<td>0.579</td>
<td>0.579</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12.江戸市中庶民層（方形木棺）熟年</td>
<td>0.121</td>
<td>0.121</td>
<td>0.121</td>
<td>0.579</td>
<td>0.579</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

図5.3.4-1 各集団の年齢ごとのMSMsパターン：中近世女性
図5.3.4-2 各集団の年齢ごとのMSMsパターン：中近世女性
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

図 5.3.5 中世各年齢段階のMSMsパターン：女性
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

次に、この類似と差異の要因を検討するため年齢カテゴリーのMSMsスコア22部位の平均値を用いてカテゴリカル主成分分析を行った。主成分負荷量を表5.3.4に示した。

第1主成分は回外筋と負の相関が高いが、それ以外の部位とは正の相関がみられ、いわゆるサイズファクターである。

第2主成分は鳥口腕筋・上腕三頭筋外側頭・上腕二頭筋・腸腰筋・内側広筋は正の相関が強く、菱形靱帯・鎖骨下筋・大胸筋・上腕筋・大殿筋・外側広筋は負の相関が高い。

第3主成分は上腕二頭筋・手首の回内筋である方形回内筋・円回内筋、腸腰筋・大殿筋・粗線といった大腿骨に付着する筋は負の相関があり、上腕の挙動に作用する諸筋と回外筋、後脛骨筋と長趾屈筋は正の相関が高い。

第2主成分と第3主成分得点を二次元展開した図が図5.3.6である。

発達部位の違いをあらわす第2・3主成分得点を図5.3.6に二次元展開している。女性の武士層はどの年齢段階も第2象限内にプロットされるが、男性ほどのまとまりを見せず加齢とともに値が大きくなっていく。江戸市中庶民層(円形・方形木棺)は年齢段階ごとに象限を変え、主漁従農民は第3主成分ほどの変化はなく、成年段階も熟年段階もあまり原点付近からはずれない。揚浜式製塩(沢田・村松白根)の熟年と老年では他の集団とは横軸でやや離れ、プロットされる位置もやや異なりスコアの発達する部位も熟年と老年段階で異なる。

小結 中近世女性のMSMsの加齢変化的まとめ

揚浜式製塩民の熟年と老年、主漁従農民の成年と熟年のMSMsにあまり大きな違いはなく、MSMsパターンも類似する傾向にある。武士層の女性では加齢に伴う変化は小さい傾向にあるが、男性ほどではない。江戸市中庶民層(円形・方形木棺)の各年齢段階ではMSMsの差は、武士層の女性よりも小さいが、MSMsパターンに共通性はあまりみられない。女性の場合、男性よりも顕著に加齢とともにスコアが増加する傾向にある。

表5.3.4中近世女性の加齢変化の諸相に関するカテゴリカル主成分負荷量

<table>
<thead>
<tr>
<th></th>
<th>主成分負荷量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>肋鰓筋帯</td>
<td>0.82</td>
</tr>
<tr>
<td>菱形筋帯</td>
<td>0.83</td>
</tr>
<tr>
<td>円錐筋帯</td>
<td>0.68</td>
</tr>
<tr>
<td>鍼骨下筋</td>
<td>-0.03</td>
</tr>
<tr>
<td>三角筋の前部</td>
<td>0.80</td>
</tr>
<tr>
<td>大円筋と広背筋</td>
<td>0.84</td>
</tr>
<tr>
<td>大胸筋</td>
<td>0.79</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.84</td>
</tr>
<tr>
<td>鳥口腕筋</td>
<td>0.45</td>
</tr>
<tr>
<td>上腕三頭筋外側頭</td>
<td>0.39</td>
</tr>
<tr>
<td>上腕筋</td>
<td>0.83</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>0.62</td>
</tr>
<tr>
<td>回外筋</td>
<td>-0.52</td>
</tr>
<tr>
<td>方形囲内筋</td>
<td>0.76</td>
</tr>
<tr>
<td>円囲内</td>
<td>0.83</td>
</tr>
<tr>
<td>脇腰筋</td>
<td>0.45</td>
</tr>
<tr>
<td>大殿筋</td>
<td>0.74</td>
</tr>
<tr>
<td>臀線</td>
<td>0.70</td>
</tr>
<tr>
<td>外側広筋</td>
<td>0.77</td>
</tr>
<tr>
<td>内側広筋</td>
<td>0.46</td>
</tr>
<tr>
<td>後脛骨筋と長趾屈筋</td>
<td>0.49</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>0.87</td>
</tr>
<tr>
<td>固有値</td>
<td>10.50</td>
</tr>
<tr>
<td>寄与率(%)</td>
<td>47.71</td>
</tr>
</tbody>
</table>
第2項 MSMs の性差

本項では、集団ごとの性差を検討する。まず男女間の MSMs の差を検討した後に、年齢段階ごとに各集団の性差がどのように変化し、どの年齢で性差が最も大きくなるかを検討する。これらの検討を通じて、活動の性差のあらわれ方が集団ごとにどのように異なるのかを明らかにする。
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

A) 男女差

中近世の各集団間の男女間のMSMsパターンの類似や差異に関する検討を行った。

図5.3.7に、同じ集団の男女のMSMsパターンを示した。

主漁従農民（吉母浜）では、男性にみられるような肋鎖靭帯の発達は女性にはみられず、大円筋と広背筋・大胸筋・三角筋といった上肢の動きに作用する主要筋群では男性の方が女性よりも顕著にMSMsスコアが高い。また、主漁従農民（吉母浜）では、肋鎖靭帯以外の鎖骨靭帯系や鎖骨下筋・三角筋の前部・回外筋・方形回内筋で男女の差は逆転する。

揚浜式製塩民（沢田・村松白根）では、主漁従農民ほど男女間の差が顕著ではないが、上腕に付着する筋のMSMsパターンはやや異なっている。下肢のMSMsスコアは男性の方が女性よりも高い部位が多いが、粗線に付着する筋群のスコアが下肢の他の筋よりもややスコアが高く、大腿骨に付着する筋群のスコアがやや変化しないという点で類似している。肘関節の屈伸に作用する筋（上腕三頭筋外側頭・上腕筋・上腕二頭筋）では男女のスコアにほとんど差がない。

近世百姓（原田）では、上腕に付着する筋のMSMsスコアは男性の方が高く、肘関節の屈伸や手首の回内外に作用する筋は女性の方が男性よりもスコアが高い傾向を示す。下肢のMSMsパターンに大きな違いはない。

竹田武士層（稲荷谷）では、鎖骨諸靭帯のMSMsパターンは男女間で大きな違いがあるが、それ以外の部位のMSMsパターンは類似する傾向にある。また、肘関節の屈曲に作用する上腕筋と上腕二頭筋や腸腰筋など、個々に女性の方がスコアが高い部位が存在し、スコアが男女で拮抗する部位も多い。

武士層と上位武士層では、男女のMSMsスコアの高低差が大きく、ほとんどどの部位で男性の方が女性よりもスコアが高い。特に、上位武士層の男女間でMSMsパターンのスコアの差が大きい。

江戸市中庶民層（円形・方形木棺）では、部分的に違いは認められるが、男女間のMSMsパターンの差はほとんどない。江戸市中庶民層（円形木棺）では、ほとんどの部位で男性の方が女性よりもスコアが高い。江戸市中庶民層（方形木棺）は、上腕の挙動と肘関節の屈伸に作用する筋では、男女間でスコアが拮抗し、手首の回内外に作用する筋と腸腰筋で違いが生じるが、下肢のMSMsパターンも類似性が高い。

男女間のMSMsパターン間の類似と差異を検討するため距離行列を算出した。MSMsスコアはZ値に標準化している。表5.3.5にはその結果を示し、同じ集団の男女の距離のみを棒グラフにして示したのが図5.3.8である。近世百姓（原田）は0.119、主漁従農民（吉母浜）は0.178、揚浜式製塩は0.129、竹田武士層（稲荷谷）が0.394、武士層は0.206、上位武士層が0.782、江戸市中庶民層（方形木棺）が0.189、江戸市中庶民層（円形木棺）は0.161である。図4.3.7で明らかのように、各武士層、特に上位武士層において男女の違いが最も大きく、次いで竹田武士層、江戸市中庶民層が男女間の距離の値の差が大きい。それ以外の集団の男女間の距離の値には大きな違いはない。

171
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

図5.3.7 MSMaパターンの性差：中近世各集団
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

表5.3.5 中近世各集団の性差 距離行列

<table>
<thead>
<tr>
<th>性差</th>
<th>近世百姓</th>
<th>主漁従農民（吉母浜）</th>
<th>揚浜式製塩</th>
<th>竹田武士層（稲荷谷）</th>
<th>武士層</th>
<th>上位武士層</th>
<th>江戸市中庶民層（方形）</th>
<th>江戸市中庶民層（円形）</th>
</tr>
</thead>
<tbody>
<tr>
<td>女性</td>
<td>1.19</td>
<td>494</td>
<td>832</td>
<td>339</td>
<td>502</td>
<td>751</td>
<td>222</td>
<td>212</td>
</tr>
<tr>
<td>22</td>
<td>0.30</td>
<td>119</td>
<td>3.67</td>
<td>0.376</td>
<td>2.25</td>
<td>0.474</td>
<td>0.151</td>
<td>0.072</td>
</tr>
<tr>
<td>女性</td>
<td>0.509</td>
<td>129</td>
<td>0.719</td>
<td>0.472</td>
<td>0.724</td>
<td>0.319</td>
<td>0.250</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.293</td>
<td>0.912</td>
<td>0.394</td>
<td>0.486</td>
<td>0.495</td>
<td>0.478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>上位武士層</td>
<td>0.294</td>
<td>0.476</td>
<td>0.344</td>
<td>0.206</td>
<td>0.444</td>
<td>0.000</td>
<td>0.044</td>
<td>0.476</td>
</tr>
<tr>
<td>江戸市中庶民層（方形）</td>
<td>0.513</td>
<td>1.000</td>
<td>0.624</td>
<td>0.616</td>
<td>0.782</td>
<td>0.149</td>
<td>0.335</td>
<td></td>
</tr>
<tr>
<td>江戸市中庶民層（円形）</td>
<td>0.346</td>
<td>0.767</td>
<td>0.338</td>
<td>0.591</td>
<td>0.800</td>
<td>0.189</td>
<td>0.223</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.184</td>
<td>0.681</td>
<td>0.228</td>
<td>0.593</td>
<td>0.824</td>
<td>0.160</td>
<td>0.161</td>
<td>0.161</td>
</tr>
</tbody>
</table>

図5.3.8 距離行列 同集団の男女の距離の値を示した棒グラフ

次に性差のあらわれ方とその要因を検討するため、男女22部位の平均値を用いてカテゴリー主成分分析を行った。主成分負荷量を表5.3.6に示した。

第1主成分は、固有値が7.87、寄与率が35.76%、第2 主成分は、固有値が4.99、寄与率が22.68%、第3主成分は、固有値が3.27、寄与率が14.88%である。

第1主成分は、すべての部位が正の相関を示すため、いわゆるサイズファクターであると考えられる。すなわち、対象とした22部位のうちスコアの高い部位が多いと値が大きくなる軸である。

第2主成分は、大円筋と広背筋や三角筋、上腕三頭筋外側頭のような上腕の後方拳上に作用する筋、腸腰筋・内側広筋・前歯骨筋と長趾屈筋・ヒラメ筋と正の相関が高く、肋鎖靭帯・円錐靭帯・手首の回内外に作用する諸筋

表5.3.6 中近世の男女間のMSMsのカテゴリー主成分負荷

<table>
<thead>
<tr>
<th>集団</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>肋鎖靭帯</td>
<td>0.85</td>
<td>-0.47</td>
<td>0.14</td>
</tr>
<tr>
<td>腰形靭帯</td>
<td>0.62</td>
<td>0.19</td>
<td>-0.35</td>
</tr>
<tr>
<td>円錐靭帯</td>
<td>0.41</td>
<td>-0.07</td>
<td>-0.78</td>
</tr>
<tr>
<td>鎖骨下筋</td>
<td>0.62</td>
<td>0.42</td>
<td>-0.28</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.58</td>
<td>-0.54</td>
<td>-0.46</td>
</tr>
<tr>
<td>大円筋</td>
<td>0.61</td>
<td>0.54</td>
<td>0.39</td>
</tr>
<tr>
<td>大股筋</td>
<td>0.82</td>
<td>-0.49</td>
<td>0.21</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.74</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>前腕内筋</td>
<td>0.68</td>
<td>0.51</td>
<td>0.10</td>
</tr>
<tr>
<td>上腕三頭筋外側頭</td>
<td>0.52</td>
<td>0.49</td>
<td>0.52</td>
</tr>
<tr>
<td>上腕筋</td>
<td>0.46</td>
<td>-0.55</td>
<td>0.13</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>0.34</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>四外筋</td>
<td>0.55</td>
<td>-0.51</td>
<td>-0.79</td>
</tr>
<tr>
<td>方形筋内筋</td>
<td>0.09</td>
<td>-0.36</td>
<td>-0.32</td>
</tr>
<tr>
<td>股関節</td>
<td>0.83</td>
<td>-0.03</td>
<td>0.20</td>
</tr>
<tr>
<td>鎖骨下筋</td>
<td>0.32</td>
<td>0.82</td>
<td>-0.22</td>
</tr>
<tr>
<td>大髄筋</td>
<td>0.71</td>
<td>-0.45</td>
<td>0.40</td>
</tr>
<tr>
<td>肋股筋</td>
<td>0.84</td>
<td>-0.26</td>
<td>0.24</td>
</tr>
<tr>
<td>外側腰筋</td>
<td>0.46</td>
<td>-0.54</td>
<td>-0.26</td>
</tr>
<tr>
<td>内側腰筋</td>
<td>0.35</td>
<td>0.88</td>
<td>-0.19</td>
</tr>
<tr>
<td>前腕骨筋と長趾屈筋</td>
<td>0.72</td>
<td>0.34</td>
<td>-0.47</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>0.25</td>
<td>0.53</td>
<td>-0.39</td>
</tr>
</tbody>
</table>

固有値 | 7.87 | 4.99 | 3.27 |
寄与率(%) | 35.76 | 22.68 | 14.88 |
筋・大殿筋・外側広筋と負の相関が高い。第3主成分は、肘関節の屈伸に作用する上腕三頭筋外側頭と上腕二頭筋と正の相関が高く、円錐靭帯と負の相関が高い。

スコアの全体的な発達程度を示す第1主成分得点を横軸に、発達部位の違いを表す第2主成分得点を縦軸にとって、二次元展開した図が図5.3.9である。

図5.3.9で、同じ集団の男女差をみてみると、上位武士層及び武士層の男女の違いが大きく、次いで揚浜式製塩（沢田・村松白根）、主漁従農民（吉母浜）の男女差が大きい。揚浜式製塩（沢田・村松白根）の男女は他の集団とは離れた位置にプロットされ、男女は同じ第4象限に位置し、その差は横軸（第1主成分得点）での違いが大きい。このことから、揚浜式製塩の男女差はスコアの大小の違いによって説明できる差であるといえる。

江戸市中庶民層の男女間の差は縦軸でも横軸でも小さいが、男女を結んだ線をみると、縦軸
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

の差よりも横軸の差が大きいため、MSMs スコアの質的な差よりも量的な差が大きい。

竹田武士層（稲荷谷）や近世百姓（原田）の男女間の差は最も小さく、特に横軸ではほとんど差がみられない。そのため、男女間のスコアの量的な差が小さいと考えられる。

B) MSMs の加齢変化と性差

各年齢段階の性差と性差の要因となる部位を検討するため、男女 22 部位の平均値を用いてカテゴリカル主成分分析を行った（表 5.3.7）。主成分負荷量とそれを二次元展開した図を表 5.3.7 に示した。

第1主成分は固有値が 9.00、寄与率が 40.90% で、ヒラメ筋以外すべての部位が正の相関を示し、概ね MSMs スコアの高い部位が多いと値が大きくなる軸である。

第2主成分は固有値が 3.30、寄与率が 14.98% で、手首の回外に作用する上腕二頭筋・外転筋と下肢のほとんどの筋は負の相関が高く、上肢のほとんどの筋と正の相関がみられる。

第3主成分は固有値が 2.85、寄与率が 12.95% で、上腕の外転・肩関節の後方への動きで作用する肋鎖靭帯・円錐靭帯・三角筋の後部・三角筋、粗線、ヒラメ筋は正の相関がみられ、上腕の内転に作用する大胸筋や菱形靭帯、肘関節の屈曲に作用する肘関節筋や個に筋筋と長総屈筋は負の相関がみられる。

いわゆるサイズファクターである第1主成分得点を棒グラフで示したものが図 5.3.10 である。図 5.3.10 をみると、どの集団も男女間の MSMs 差は

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>助顕筋</td>
<td>.606</td>
<td>.231</td>
<td>.566</td>
<td>-.097</td>
</tr>
<tr>
<td>腱形筋</td>
<td>.301</td>
<td>-.098</td>
<td>-.311</td>
<td>.796</td>
</tr>
<tr>
<td>円盤筋</td>
<td>.851</td>
<td>.287</td>
<td>.144</td>
<td>.109</td>
</tr>
<tr>
<td>骨下筋</td>
<td>.505</td>
<td>.614</td>
<td>.471</td>
<td>.012</td>
</tr>
<tr>
<td>三角筋の前部</td>
<td>.631</td>
<td>-.121</td>
<td>.585</td>
<td>-.115</td>
</tr>
<tr>
<td>大円筋と広背筋</td>
<td>.940</td>
<td>.078</td>
<td>-.097</td>
<td>.115</td>
</tr>
<tr>
<td>大胸筋</td>
<td>.872</td>
<td>.181</td>
<td>-.284</td>
<td>.072</td>
</tr>
<tr>
<td>三角筋</td>
<td>.427</td>
<td>.346</td>
<td>.103</td>
<td>.414</td>
</tr>
<tr>
<td>鳥口腕筋</td>
<td>.841</td>
<td>.174</td>
<td>-.064</td>
<td>-.344</td>
</tr>
<tr>
<td>上腕三頭筋外側部</td>
<td>.485</td>
<td>-.135</td>
<td>.521</td>
<td>.357</td>
</tr>
<tr>
<td>上腕筋</td>
<td>.122</td>
<td>.627</td>
<td>.521</td>
<td>.430</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>.834</td>
<td>-.319</td>
<td>-.159</td>
<td>-.182</td>
</tr>
<tr>
<td>回外筋</td>
<td>.817</td>
<td>-.227</td>
<td>-.124</td>
<td>-.229</td>
</tr>
<tr>
<td>外側内筋</td>
<td>.419</td>
<td>.729</td>
<td>.065</td>
<td>-.156</td>
</tr>
<tr>
<td>円結筋</td>
<td>.841</td>
<td>.178</td>
<td>-.057</td>
<td>-.303</td>
</tr>
<tr>
<td>圓腸筋</td>
<td>.260</td>
<td>.258</td>
<td>.437</td>
<td>.353</td>
</tr>
<tr>
<td>大円筋</td>
<td>.832</td>
<td>-.350</td>
<td>-.384</td>
<td>.019</td>
</tr>
<tr>
<td>粗線</td>
<td>.300</td>
<td>-.808</td>
<td>.322</td>
<td>.218</td>
</tr>
<tr>
<td>外側広筋</td>
<td>.722</td>
<td>-.303</td>
<td>-.102</td>
<td>-.216</td>
</tr>
<tr>
<td>内側広筋</td>
<td>.695</td>
<td>-.562</td>
<td>-.044</td>
<td>-.115</td>
</tr>
<tr>
<td>後脛骨筋と長総屈筋</td>
<td>.503</td>
<td>-.249</td>
<td>-.444</td>
<td>.506</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>-.120</td>
<td>-.361</td>
<td>.705</td>
<td>.372</td>
</tr>
</tbody>
</table>

表 5.3.7 中近世の各集団の性差と加齢変化に関するカテゴリカル主成分負荷量

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>助顕筋</td>
<td>.606</td>
<td>.231</td>
<td>.566</td>
<td>-.097</td>
</tr>
<tr>
<td>腱形筋</td>
<td>.301</td>
<td>-.098</td>
<td>-.311</td>
<td>.796</td>
</tr>
<tr>
<td>円盤筋</td>
<td>.851</td>
<td>.287</td>
<td>.144</td>
<td>.109</td>
</tr>
<tr>
<td>骨下筋</td>
<td>.505</td>
<td>.614</td>
<td>.471</td>
<td>.012</td>
</tr>
<tr>
<td>三角筋の前部</td>
<td>.631</td>
<td>-.121</td>
<td>.585</td>
<td>-.115</td>
</tr>
<tr>
<td>大円筋と広背筋</td>
<td>.940</td>
<td>.078</td>
<td>-.097</td>
<td>.115</td>
</tr>
<tr>
<td>大胸筋</td>
<td>.872</td>
<td>.181</td>
<td>-.284</td>
<td>.072</td>
</tr>
<tr>
<td>三角筋</td>
<td>.427</td>
<td>.346</td>
<td>.103</td>
<td>.414</td>
</tr>
<tr>
<td>鳥口腕筋</td>
<td>.841</td>
<td>.174</td>
<td>-.064</td>
<td>-.344</td>
</tr>
<tr>
<td>上腕三頭筋外側部</td>
<td>.485</td>
<td>-.135</td>
<td>.521</td>
<td>.357</td>
</tr>
<tr>
<td>上腕筋</td>
<td>.122</td>
<td>.627</td>
<td>.521</td>
<td>.430</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>.834</td>
<td>-.319</td>
<td>-.159</td>
<td>-.182</td>
</tr>
<tr>
<td>回外筋</td>
<td>.817</td>
<td>-.227</td>
<td>-.124</td>
<td>-.229</td>
</tr>
<tr>
<td>外側内筋</td>
<td>.419</td>
<td>.729</td>
<td>.065</td>
<td>-.156</td>
</tr>
<tr>
<td>円結筋</td>
<td>.841</td>
<td>.178</td>
<td>-.057</td>
<td>-.303</td>
</tr>
<tr>
<td>圓腸筋</td>
<td>.260</td>
<td>.258</td>
<td>.437</td>
<td>.353</td>
</tr>
<tr>
<td>大円筋</td>
<td>.832</td>
<td>-.350</td>
<td>-.384</td>
<td>.019</td>
</tr>
<tr>
<td>粗線</td>
<td>.300</td>
<td>-.808</td>
<td>.322</td>
<td>.218</td>
</tr>
<tr>
<td>外側広筋</td>
<td>.722</td>
<td>-.303</td>
<td>-.102</td>
<td>-.216</td>
</tr>
<tr>
<td>内側広筋</td>
<td>.695</td>
<td>-.562</td>
<td>-.044</td>
<td>-.115</td>
</tr>
<tr>
<td>後脛骨筋と長総屈筋</td>
<td>.503</td>
<td>-.249</td>
<td>-.444</td>
<td>.506</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>-.120</td>
<td>-.361</td>
<td>.705</td>
<td>.372</td>
</tr>
</tbody>
</table>

固有値 9.00 3.30 2.85 2.12
寄与率 (%) 40.90 14.98 12.95 9.62

図 5.3.10 カテゴリカル主成分分析年齢ごとの性差：第1主成分
第3章 歴史時代の身体活動の多様性に関する多角的検討結果

成年段階で最も大きく、加齢とともに第1主成分得点の差は減少する。全武士層の男女差も加齢とともに減少していき、老年段階では女性のほうが、MSMsスコアが高くなる傾向を示す。

小結 中近世各集団の性差のまとめ

性差：男女間のMSMsの差は、上位武士層が最も大きい。また、武士層も他の集団と比べると男女間のMSMsの差が大きい傾向を示す。江戸市中庶民層（円形・方形木棺）では、男女間ではMSMsパトーンの差はあまりみられない。

主漁従農民（吉母浜）の男女間のMSMsパトーンの差は、揚浜式製塩民と比較すると大きい。これは、女性が男性とは異なり、漁撈的なMSMsパトーンを示さないためである。

揚浜式製塩民の男女間のMSMsパトーンの差は上肢にみられる。カテゴリカル主成分分析の結果から、揚浜式製塩の男女差はパトーン自体に大きな差はなく、スコアの大小の違いによって説明できる差である。

性差と加齢変化：どの集団も成年段階で最も男女間のMSMsの差が大きいことがわかる。これは、女性の加齢変化で明らかになったように、女性のMSMsスコアは加齢とともに増加していく傾向を示す一方で、男性は、女性ほどには加齢とともにスコアが増加する傾向を示さないことがその要因と考えられる。

第3項 集団内の個体間の活動差

A) 中世主漁從農民と揚浜式製塩民の個体間比較

主漁従農民である吉母浜墓地遺跡に関しては、「墓域における東西二分に反映されるような明瞭な二分原理を有しつつも、血縁的には相当の交流を行う、実質的同族関係にある複数の家族」という指摘がなされている（田中・土肥 1987）。吉母浜遺跡については、埋葬習俗や個々の墓の葬法、人骨の形質や埋葬者の年齢構成の東西比較などの検討は行われており、実質的同族関係を示す墓域をもつという点で独立した集団とされている（田中 1985）。これらのことから、婚姻関係を含む、経済的な格差もないが、墓域を分かつという点で独立した集団とは、近世時代においても形成されていた東・中・西の3組の元となった東・西の2つの「組」であると考えられている（田中 1985: 田中・土肥 1987）。村落規模によっては一村落で対象とする魚種を異にする複数の組が存在する場合もある（桜田 1980b; 野地 2008）、この東・西の組の差は漁撈活動の種類の差である可能性が考えられる。

そのため、カテゴリカル主成分分析を用いて、吉母浜遺跡出土の男性のMSMsの個体間比較を行う。比較資料として揚浜式製塩民も用いた。本稿で扱った揚浜式製塩民は沢田遺跡出土人骨と村松白根遺跡出土人骨から構成されており、主な生業活動が同じであるが出土遺跡、すなわち生きていた村落と活動を行った場所が異なる場合に個体のMSMsの違いが遺跡間でどのようにあらわれるかを検討するためである。

被葬者のMSMsの分散を検討するために、個体を対象とした主成分分析を行った。サンプルサイズを確保しつつ、上肢・下肢における偏りを検討するため、上肢4部位（肋鎖靭帯・大円筋と広背筋・大胸筋・三角筋）・下肢2部位（粗線に付着する筋群・ヒラメ筋）を用いた。
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

表 5.3.8 にはカテゴリー主成分負荷量を示している。

第1主成分は固有値1.98、寄与率32.93%、ヒラメ筋以外すべての変数が正の相関を示す。ヒラメ筋の負荷量は極めて小さいため、第1主成分はいわゆるサイズファクターである。

第2主成分は、固有値1.77、寄与率29.52%で、肋鎖靭帯・大円筋と広背筋・三角筋と正の相関を、大胸筋・粗線・ヒラメ筋と負の相関を示す。第2主成分は正の値が大きくなるほど、肩関節の外転に作用する諸筋の発達が大きく、負の値が大きくなるほど肩関節の内転や下肢の筋が発達するといえる。いわゆる漁撈的なMSMsパターンを考慮すると、肩関節の外転に作用する諸筋のMSMsの発達が強いほどいわゆる漁撈的傾向が強いといえる。

第1主成分得点と、第2主成分得点を用いて、第1主成分得点を横軸に、第2主成分得点を縦軸にとって2次元展開した図が図5.3.11である。

部位のみを抜粋して分析を行った為、身体活動をどこまで反映しているのかという問題は存在するが、吉母浜遺跡出土人骨の分布は墓の東西区分と対応し、第2主成分得点で墓地の

图5.3.11 中世主漁従農民と揚浜式製塩民の個体を用いた主成分分析2次元展開図

表 5.3.8 中世主漁従農民と揚浜式製塩民の個体を用いた主成分分析主成分負荷量

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>助鎖靭帯（鎖）</td>
<td>0.13</td>
<td>0.80</td>
</tr>
<tr>
<td>大円筋と広背筋（上）</td>
<td>0.85</td>
<td>0.27</td>
</tr>
<tr>
<td>大胸筋（上）</td>
<td>0.82</td>
<td>-0.26</td>
</tr>
<tr>
<td>三角筋（上）</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td>粗線（大）</td>
<td>0.65</td>
<td>-0.50</td>
</tr>
<tr>
<td>ヒラメ筋（膣・起）</td>
<td>-0.01</td>
<td>-0.67</td>
</tr>
<tr>
<td>固有値</td>
<td>1.98</td>
<td>1.77</td>
</tr>
<tr>
<td>寄与率（%）</td>
<td>32.93</td>
<td>29.52</td>
</tr>
</tbody>
</table>
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

西側から出土する被葬者が概ね正の値を、東側から出土する被葬者が負の値を示す。一方、沢田遺跡出土人骨と村松白根遺跡出土人骨のMSMsの値は、第1主成分、第2主成分共に明瞭な違いはなく、縦軸横軸共にまとまりなくプロットされる。

小結 中世主漁従農民と揚浜式製塩民の個体間比較のまとめ

吉母浜遺跡出土人骨の各個体のMSMsは墓地の東西区分と対応し、東側出土人骨と西側出土人骨ではMSMsの傾向がやや異なる。

沢田遺跡出土人骨と村松白根遺跡出土人骨の各個体のMSMsには明瞭な違いはない。

B) 江戸市中の武士層と町人層の個体間比較

この章でみてきたように、男性の武士層の各年齢段階のMSMsパターンおよび武士層と上位武士層間のMSMsパターンは、特に下肢において概して類似している。これが武士階層に属する人々の特徴であるといえる。この下肢におけるMSMsパターンの類似が、その階層の成員として、ふさわしいふるまいをするように行動が規定されていることが示している場合、個体の行動に直接的に影響を与えていたと考えられる。そのため、個体ごとのMSMsパターンが、どの程度類似しているか、すなわち個体差の程度に関しての検討を行った。

比較資料として江戸市中庶民層（円形木棺）を用いた。ここでは武士らしさを示すとした下肢7部位（中でも3部位）のMSMsパターンが、類似しているかどうかを検討するために、カテゴリカル主成分分析を行った。表5.3.9にはカテゴリカル主成分負荷量を示している。

第1主成分は固有値2.39、寄与率34.17％で、すべての変数が正の相関を示す。いわゆるサイズファクターである。中でも、腸腰筋・粗線・内側広筋と正の相関が高い。

第2主成分は、固有値1.23、寄与率17.64％で、腸腰筋・大殿筋・後脛骨筋と長趾屈筋が正の相関を、粗線・内側広筋・ヒラメ筋と負の相関を示す。特に、後脛骨筋と長趾屈筋と正の相関が、外側広筋と負の相関が高く、相対的にそれ以外の負荷量が低いため、この2つの部位のスコアの高低の影響が大きい。

第3主成分は、固有値1.08、寄与率15.50％で、外側広筋・後脛骨筋と長趾屈筋・ヒラメ筋と正の相関を、腸腰筋・大殿筋・粗線・内側広筋と負の相関を示す。特に、ヒラメ筋と正の相関が、大殿筋と負の相関が高く、相対的にそれ以外の負荷量が低いために、この2つの部位のスコアの高低の影響が大きい。

第4主成分は、固有値0.94、寄与率13.42％で、大殿筋・外側広筋・後脛骨筋と長趾屈筋・ヒラメ筋と正の相関を、腸腰筋・粗線・内側広筋と負の相関を示す。特に、ヒラメ筋と正の相関が、大殿筋筋と負の相関が高く、相対的にそれ以外の負荷量が低いため、この2つの部位のスコアの高低の影響が大きい。

表5.3.9 江戸時代武士層と江戸市中庶民層の比較のためのカテゴリカル主成分負荷量

<table>
<thead>
<tr>
<th>主成分負荷量</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>腸腰筋</td>
<td>.684</td>
<td>.156</td>
<td>-.153</td>
<td>-.046</td>
<td>.661</td>
</tr>
<tr>
<td>大殿筋</td>
<td>.498</td>
<td>.153</td>
<td>-.538</td>
<td>.518</td>
<td>-.373</td>
</tr>
<tr>
<td>粗線に付着する筋群</td>
<td>.843</td>
<td>-.145</td>
<td>-.009</td>
<td>-.183</td>
<td>-.211</td>
</tr>
<tr>
<td>外側広筋</td>
<td>.232</td>
<td>-.747</td>
<td>.047</td>
<td>.539</td>
<td>.231</td>
</tr>
<tr>
<td>内側広筋</td>
<td>.744</td>
<td>-.075</td>
<td>-.182</td>
<td>-.458</td>
<td>-.093</td>
</tr>
<tr>
<td>後脛骨筋と長趾屈筋</td>
<td>.328</td>
<td>.759</td>
<td>.334</td>
<td>.365</td>
<td>.075</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>.499</td>
<td>-.161</td>
<td>-.790</td>
<td>.049</td>
<td>-.195</td>
</tr>
<tr>
<td>固有値</td>
<td>2.39</td>
<td>1.23</td>
<td>1.08</td>
<td>0.94</td>
<td>0.73</td>
</tr>
<tr>
<td>寄与率 (%)</td>
<td>34.17</td>
<td>17.64</td>
<td>15.50</td>
<td>13.42</td>
<td>10.38</td>
</tr>
</tbody>
</table>

178
第5章 歴史時代の身体活動の多様性に関する多角的検討結果

そのため、いわゆるサイズファクターである第1主成分得点と、第4主成分得点を用いて、第1主成分得点を横軸に、第4主成分得点を縦軸にとって2次元展開した図が図5.3.12である。

図5.3.12をみると、武士層の男性は、例外はあるが、ほとんどの個体が第1主成分得点で正の値を、第4主成分得点で負の値を示す。特に、第1主成分で負の値を、第4主成分で正の値をしめす個体は極めて少ない。この第2象限は、武士的な下肢のMSMsパターンを形成しない個体であることを示している。江戸市中庶民層（円形木棺）は、第4象限に位置する個体が少なく、すべての象限にまとまりなくプロットされる傾向を示す。

江戸市中の武士層と町人層の個体間比較のまとめ

江戸時代の武士層のMSMsパターンの個体差に関する検討を行ったところ、江戸市中庶民層（円形木棺）と比べると、武士層の下肢のMSMsパターンは個体レベルで類似性が強いといえる。

図5.3.12 江戸時代武士層と江戸市中庶民層の比較のためのカテゴリカル主成分分析 第1・4主成分得点を二次元展開した図
第6章 MSMSの通時比較

本章では、縄文時代・弥生時代・中世（主に室町時代）・近世の各時代における各集団間のMSMsの多様性を通時的に比較し、集団間・集団内の身体活動の多様性の時代変化を検討する。身体活動の多様性の通時的変遷を検討することで、社会内部の非均質性（inequality）の進展が、人間集団の身体活動の多様性にいかなる影響を与えたのかを明らかにする。

まず、男女それぞれの集団間のMSMsの差の時代変化を明らかにする。次に、MSMsの年齢差と、男女間のMSMsの差を検討し、加齢変化や性差がMSMsの発達に与えた影響の程度の差が、時代によってどのように変化するかを明らかにする。

本章では、観察可能であった個体数が他の部位と比べると少なく、また、身体活動に直接作用せず補佐的な役割を示す部位である肋鎖靭帯・菱形靭帯・円錐靭帯・鎖骨下筋・三角筋の前部・鳥口腕筋を除いた。そのため、大円筋と広背筋・大胸筋・三角筋・上腕三頭筋外側頭・上腕筋・上腕二頭筋・回内筋・方形回内筋・両内筋・腸腰筋・大殿筋・粗線・外側広筋・内側広筋・後脛骨筋・柔曲筋の16部位で検討を行った。肋鎖靭帯のMSMsスコアの発達は、漁撈的なパターンを示す部位として、これまでの諸研究では指摘されてきたが、本分析において、肋鎖靭帯を分析から除くことで生じるバイアスはそこまで大きくないと考える。なぜなら、弥生時代の三国丘陵域の集団は、平均値化した場合、肋鎖靭帯のMSMsスコアは高いが、漁撈的な活動を指摘することができず、また、縄文時代各集団は漁撈的な活動を行っていたが、大胸筋のスコアが高すぎるために、肋鎖靭帯のスコアと大胸筋のスコアの間に差がみられなかったため、この1部位のみが、漁撈的な活動を示すわけではないからである。

第1節 集団間のMSMsの多様性の時代変化

本節では男女それぞれの集団間のMSMsの差の時代変化を検討する。MSMsパターンの差の集団間の類似・差異のあらわれ方が時代によってどのように変化するかを明らかにするために、MSMsパターンの比較を距離行列とカテゴリカル主成分分析を用いて行う。特に地域的な自然環境に基づいて、地域性が異なっていた縄文時代・弥生時代のような集団の集団間の身体活動差の表れ方と、、職業化と階層化が進行した中・近世社会の職業・階層に基づく集団の集団間の身体活動差のあらわれ方と、生産活動に従事しない特権的な階級や職業化によって活動の特殊化がある程度進行した社会の方が集団間のMSMsの差は大きいことが予想される。

第1項 男性のMSMsの多様性の時代変化

これまで検討を行ってきた各集団のMSMsパターンを頻度線グラフで示している（図
6.1.1）。折れ線グラフのスコアの増減の程度の違いではなく、流れ方の違いに着目する。

縄文時代の男性では、各集団のパターンは類似し、各折れ線グラフ間の違いがほとんどみられない。弥生時代の男性では、広田以外の弥生 3 集団の MSMs パターンは、前腕の筋では違いがみられるが、それ以外の部位の MSMs パターンは類似している。また、広田と弥生 3 集団とでは、MSMs パターンは全体的に異なる。中近世非都市部及び江戸市中各集団では、武士層と上位武士層の 2 集団のパターンは類似するが、それ以外の各集団とで

![各時代集団のMSMsパターンの比較：男性](image)

図 6.1.1 各時代集団のMSMsパターンの比較：男性
はMSMsパターンは異なる。

MSMsパターンの類似性は、縄文時代で最も大きく、中世近世非都市部及び江戸市中集団では、MSMsパターンの類似性は、縄文時代や弥生時代に比べて小さくなっていくといえる。

次に、図6.1のMSMsパターンの類似と差異を検討するため、多変量解析を行った。

16部位個々の平均値の値をZスコア化した値を用いて距離行列を算出した（表6.1.1）。

表6.1.1に示した男性の結果を見ると、人骨の所属する時期が前中期の大田以外は、渥美と東北太平洋岸では0.137、房総湾岸と三貫地では0.174、東北太平洋岸と三貫地で0.102を超えるが、縄文時代各集団間の距離の値で0.1を超える値自体が稀であり、縄文時代各集団の距離の値は総じて低い。このことから、距離行列の結果からも、縄文時代の各集団のMSMs16部位のスコアのパターンは類似するといえる。

弥生時代の各集団間の距離の差をみると、土井ヶ浜と三国丘陵域の距離の値は0.094で最も小さいが、福岡平野と土井ヶ浜、三国丘陵域はそれぞれ0.416、0.592と、縄文時代の各集団間の距離の値と比べるとやや大きい。広田地域と土井ヶ浜、三国丘陵域、福岡平野域は、それぞれ0.447、0.389と0.102で、縄文時代各集団間の距離の値のほとんどが、0.1を超えないことから、縄文時代各集団間の距離の値よりも、弥生時代の集団間の距離の値の方が大きいといえる。

また、縄文時代の各集団との距離の値の差をみると、土井ヶ浜や三国丘陵の集団では最大で0.499であるのに対し、福岡平野域では最小で0.594、最大で0.804と、縄文時代各集団との距離の値の差が大きいため、縄文時代集団間の類似性が高いといえる。
団と比べると、福岡平野の集団は最も距離の値が大きいといえる。また、土井ヶ浜・三国丘陵の集団と、福岡平野との距離の値がそれぞれ 0.416、0.592 であるのに対し、土井ヶ浜・三国丘陵の集団と縄文時代各集団との距離の値は、最小で 0.152、最大で 0.408 で、三国丘陵域と縄文時代各集団との距離のほうが近いといえる。よって、土井ヶ浜・三国丘陵の集団のMSMs16 部位のスコアのパターンは類似し、縄文時代の集団に近い傾向を示す。一方、弥生時代の福岡平野の集団はやや異なる。また、福岡平野域の集団は、近世百姓層（原田）や江戸市中庶民層（円形・方形木棺）と 0.192、0.145 という値を示し、これらの集団の方が、距離の値が小さい。このことから、福岡平野域は、弥生時代の集団とはMSMs16 部位のスコアのパターンがやや異なり、むしろ近世の百姓層や庶民層と類似する傾向がある。

近世の上位階級である武士層と上位武士層の距離の値は 0.053 と、中近世内の男性階級では最も小さい。武士層・上位武士層は共に、中近世の武士層以外の集団との距離の値は、0.053 よりも大きく、武士層は最小で 0.130、最大で 0.288 を示し、上位武士層は、最小で 0.318、最大で 0.425 という値を示す。そのため、中近世の他の集団との差は、特に上位武士層のほうが顕著に大きい。このことから、近世の武士層と上位武士層のMSMs16 部位のスコアのパターンの類似性を指摘することができる。

江戸市中庶民層（円形木棺）と江戸市中庶民層（方形木棺）の距離の値も 0.050 と小さく、しかし、それ以外の中近世の各集団において、集団間の距離の値が 0.1 を下回るケースはない。特に主漁業農民（吉母浜）や揚浜式製塩民（沢田・村松白根）と他の集団との間の距離の値は概して大きい傾向にある。

次に、集団間のMSMs16部位の類似・差異とその要因をさらに検討するため、カテゴリカル主成分分析を行った。表 6.1.2 に示したように、第 1 主成分は固有値が 8.05 で寄与率は 50.31%、第 2 主成分は固有値 2.91、寄与率 18.18%、第 3 主成分は固有値 1.58、寄与率 9.86%、第 4 主成分は固有値 1.38、寄与率が 8.65% である。

第 1 主成分は、腸腰筋とヒラメ筋と負の相関を示すが寄与率が小さく、他 14 部位と正の相関を示すため、いわゆるサイズファクターと考えられる。
第 6 章 MSMS の通時的変化

第 2 主成分（表 6.1.2）は、上腕の後方挙上に作用する大円筋と広背筋・三角筋・上腕三頭筋外側頭と、腸腰筋・内側広筋・ヒラメ筋と正の相関が高い。正の相関を示す下肢の MSMS は、武士階層の特徴である。大胸筋、回外筋、外側広筋と負の相関が高い。

第 4 主成分得点の二次元展開図: 男性

図 6.1.2 集団間差の時代間比較 第 2・4 主成分得点の二次元展開図: 男性
第 3 主成分（表 6.1.2）は、肩関節の内旋に作用する大円筋と広背筋・上腕二頭筋および大胸筋、先の上腕二頭筋とあわせて肘関節の屈曲を補佐する円囲内筋と正の相関が高く、内側広筋・後脛骨筋と長髄屈筋と負の相関が高い。第 4 主成分（表 6.1.2）は、下肢の諸筋、特にヒラメ筋と正の相関が高く、また手首の回内外に作用する筋との正の相関が高く、肩関節や肘関節に作用する筋と負の相関が高いといえる。すなわち手首と下肢に付着する筋が発達すると概ね第 4 主成分得点は正の値になり、肩関節や肘関節に作用する筋の発達によって第 4 主成分得点は負の値になる。

筋の個々の作用を考えると第 2・4 主成分得点が最も身体の動作を表すものであるため、第 2 主成分得点を横軸に、第 4 主成分得点を縦軸にとり、二次元展開したのが図 6.1.2 である。

図 6.1.2 をみると、縄文時代の各集団は相対的に最も近接し原点付近に位置する。弥生時代の各集団は上肢よりも下肢や手首に作用する筋が発達するという点で、縦軸の値がやや高い。距離行列の分析結果と同様で、土井ヶ浜と三国丘陵域の集団の方は横軸でも縄文のぼらつきと重なる傾向をもつ。福岡平野と広田、縄文時代の各集団は横軸の位置が異なり、近世の百姓（原田）や江戸市中庶民層の位置に近い。同時代内の集団差が最も大きいのは近世であり、特権階級である上位武士層・武士層が他の集団と大きくはなれ、庶民層の被葬者（円形・方形木棺）や百姓（原田）はそれぞれ全く異なる象限に位置する傾向にある。また中世の 2 集団、主漁従農民（吉母浜）と揚浜式製塩（村松・沢田）もブロットされる位置はやや異なる傾向にある。特に主漁従農民（吉母浜）は縦軸で最も負の値が大きく、上肢の発達の大きさを指摘することができる。

これまでの結果から、男性の MSMs パターンの多様性の時代間比較を行うと、縄文時代の各集団間が互いに近いにもかかわらず、弥生時代ではやや類似性が低くなり、同時代内の集団間の多様性が最も大きいのが近世の階層集団であるといえる。

第2項 女性の MSMs の多様性の時代変化

次に、各集団の女性の集団間の多様性の時代間変異を検討する。これまで検討を行ってきた各集団の MSMs パターンを折れ線グラフで示している（図 6.1.3）。ここでは、折れ線グラフのスコアの増減の程度の違いではなく、流れの違いに着目する。

縄文時代では、各集団のパターンは類似し、各折れ線グラフ間の違いがほとんどみられない。

広田以外の弥生 3 集団の MSMs パターンは、スコアの高低の差はあるが、前腕の諸筋以外の部位の MSMs パターンは類似している。また、広田と弥生 3 集団とでは MSMs パターンは全体的に異なる。

中近世非都市部及び江戸市中各集団では、武士層と上位武士層の 2 集団の上肢のパターンはやや類似するが、それ以外の各集団とでは MSMs パターンが異なる。このことから、MSMs パターンの類似性は、縄文時代で最も大きく、中近世非都市部及び江戸市中各集団
第6章 MSMsの通時的変化

のMSMsパターンの類似性は、縄文時代や弥生時代に比べて小さくなっていくといえる。

女性の16部位個々の平均値の値をZスコア化した値を用いて距離行列の分析の結果を表6.1.3に示した。女性の場合は、縄文時代各集団の距離の値が最も小さいのは、津雲と房総湾岸が0.075、渥美半島と津雲が0.004、房総湾岸と渥美半島が0.000、東北太平洋岸と三貫地は0.075となるが、それ以外で集団間の距離が0.1を下回ることはない。そのため、男性のように、縄文時代の各集団間の距離の値が他の集団よりも顕著に小さいという傾向は
みられない。

弥生時代の集団間では、広田と他3集団の距離は、土ヶ崎浜 0.429、三国丘陵域 0.601、福岡平野 0.290 と大きい。土ヶ崎浜・三国丘陵間の距離の値は、0.116 と小さく、この2集団と福岡平野の集団とは、それぞれ 0.174、0.429 と距離の値が大きくなる傾向を示す。また、福岡平野と縄文時代各集団間の距離は、最小で 0.245、最大で 0.605、土ヶ崎浜・三国丘陵域の 2集団と縄文時代各集団との距離の値は最小で 0.101、最大で 0.384 と、福岡平野と縄文時代各集団間の距離の方が、大きいという傾向も示す。男性と同様で、土ヶ崎浜・三国丘陵の集団のMSMs16 部位のスコアのパターンは類似し、縄文時代の各集団に近い傾向を示す。

しかし、福岡平野と土ヶ崎浜、三国丘陵域との間の距離の値（0.174、0.429）よりも、福岡平野と近世百姓（原田）や江戸市中庶民層（円形・方形木棺）の距離の値は、0.199、0.101、0.176 と小さく、これらの集団との方が距離の値は小さい。このことから、福岡平野域の集団は、弥生時代の他の地域の集団とは MSMS16 部位のスコアのパターンがやや異なり、むしろ近世の百姓層や庶民層と類似する傾向がある。

上位武士層の女性と中近世の他の集団間の距離は、最小で 0.198、最大で 0.727 と最も大きい。上位武士層と武士層の女性の距離の値は 0.198 で、上位武士層と他の集団間の距離では最小である。しかし、武士層の女性はむしろ江戸市中庶民層（円形木棺）と江戸市中庶民層（方形木棺）の女性との方が、0.013、0.162 と値が小さい傾向を示し、これは第 2

表 6.1.3 通時的検討 距離行列：女性

<table>
<thead>
<tr>
<th>女性</th>
<th>竹田武士層（稲荷谷）</th>
<th>近世百姓（原田）</th>
<th>武士層</th>
<th>江戸市中庶民層（方形木棺）</th>
<th>竹田市民（吉母浜）</th>
<th>竹田白根層</th>
<th>土ヶ崎浜</th>
<th>三国丘陵域</th>
<th>福岡平野</th>
<th>広田地域</th>
<th>大田</th>
<th>横雲</th>
<th>福岡平野</th>
<th>三貫地</th>
<th>東北太平洋</th>
<th>津軽</th>
</tr>
</thead>
<tbody>
<tr>
<td>竹田武士層（稲荷谷）</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>近世百姓（原田）</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>武士層</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>江戸市中庶民層（方形木棺）</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>竹田市民（吉母浜）</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>竹田白根層</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>土ヶ崎浜</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>三国丘陵域</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>福岡平野</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>広田地域</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>大田</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>津軽</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>福岡平野</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
<tr>
<td>広田</td>
<td>236</td>
<td>199</td>
<td>421</td>
<td>397</td>
<td>213</td>
<td>250</td>
<td>439</td>
<td>278</td>
<td>160</td>
<td>405</td>
<td>542</td>
<td>571</td>
<td>565</td>
<td>571</td>
<td>229</td>
<td>163</td>
</tr>
</tbody>
</table>

第 6 章 MSMS の通時的変化

187
第6章 MSmsの通時的変化

節で中近世の女性のMSms22部位の類似・差異を、主成分分析を用いて検討をしていた際にみられた傾向と同じである。このことから、武士層のMSmsパターンは、江戸市中庶民層（円形木棺・方形木棺）の方が類似性が高い。また、武士層の女性と主漁従農民（吉母浜）の距離の値は0.087と、江戸市中庶民層（円形木棺）に次いで小さい。

江戸市中庶民層である円形木棺と方形木棺の被葬者群間の距離の値も、0.049と小さい。揚浜式製塩民は主漁従農民以外の中近世の集団との距離の値が最小で0.179、最大で0.727と大きい。一方、主漁従農民（吉母浜）は、最小で0.087、最大で0.345と、揚浜式製塩民ほど他集団との距離の値が大きくない。そのため、中近世の女性集団の中で、揚浜式製塩民と上位武士層の女性は、他の集団と大きく異なる傾向を示すといえる。

次に、集団間のMSms16部位の類似・差異とその要因を検討するため、カテゴリカル主成分分析を行った。表6.1.4に女性のカテゴリカル主成分分析の主成分負荷量を示した。

第1主成分は固有値が6.49で寄与率が40.55%、第2主成分は固有値3.02、寄与率18.86%、第3主成分は固有値2.50、寄与率15.65%であった。

第2主成分は、肩関節の内転に作用する大円筋・上腕三頭筋外側頭、下肢では内側広筋とヒラメ筋と正の相関が高く、手首の回内外に作用する筋と負の相関が高いため。

第3主成分は上腕の後方拳上に作用する三角筋・大円筋と広背筋、後脛骨筋と長趾短屈筋と正の相関が高く、上腕の前方拳上に作用する大胸筋・上腕二頭筋、大殿筋・ヒラメ筋と負の相関が高いため。

次に、集団間のMSms16部位の通時的検討:女性

<table>
<thead>
<tr>
<th>番号</th>
<th>主成分負荷量</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>大円筋と広背筋</td>
<td>6.84</td>
<td>.522</td>
<td>.296</td>
<td>-.308</td>
<td></td>
</tr>
<tr>
<td>大胸筋</td>
<td>.823</td>
<td>.002</td>
<td>-.264</td>
<td>.144</td>
<td></td>
</tr>
<tr>
<td>三角筋</td>
<td>.821</td>
<td>-.129</td>
<td>.319</td>
<td>-.229</td>
<td></td>
</tr>
<tr>
<td>上腕三頭筋外側頭</td>
<td>.154</td>
<td>.890</td>
<td>.156</td>
<td>.064</td>
<td></td>
</tr>
<tr>
<td>上腕筋</td>
<td>.612</td>
<td>-.230</td>
<td>.267</td>
<td>.619</td>
<td></td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>.709</td>
<td>-.111</td>
<td>-.490</td>
<td>.235</td>
<td></td>
</tr>
<tr>
<td>団固内筋</td>
<td>.449</td>
<td>-.519</td>
<td>.376</td>
<td>-.044</td>
<td></td>
</tr>
<tr>
<td>板固内筋</td>
<td>.439</td>
<td>-.567</td>
<td>.009</td>
<td>-.501</td>
<td></td>
</tr>
<tr>
<td>回回外筋</td>
<td>.421</td>
<td>-.172</td>
<td>.638</td>
<td>-.450</td>
<td></td>
</tr>
<tr>
<td>頚腰筋</td>
<td>-.615</td>
<td>.164</td>
<td>.554</td>
<td>-.151</td>
<td></td>
</tr>
<tr>
<td>団固内筋</td>
<td>.846</td>
<td>.305</td>
<td>-.330</td>
<td>-.010</td>
<td></td>
</tr>
<tr>
<td>腓前筋</td>
<td>.895</td>
<td>.000</td>
<td>-.154</td>
<td>.105</td>
<td></td>
</tr>
<tr>
<td>板固内筋</td>
<td>.725</td>
<td>-.344</td>
<td>.045</td>
<td>.211</td>
<td></td>
</tr>
<tr>
<td>内側広筋</td>
<td>.276</td>
<td>.797</td>
<td>.449</td>
<td>-.128</td>
<td></td>
</tr>
<tr>
<td>後脛骨筋と長趾短屈筋</td>
<td>.249</td>
<td>-.122</td>
<td>.791</td>
<td>.506</td>
<td></td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>.648</td>
<td>.602</td>
<td>-.284</td>
<td>.115</td>
<td></td>
</tr>
</tbody>
</table>

固有値 | 6.49 | 3.02 | 2.50 | 1.43 |
寄与率(%) | 40.55 | 18.86 | 15.65 | 8.93 |
第6章 MSMsの通時的変化

象限にまとまる。武士層は近世の中ではもっとも上位武士層に近い位置にプロットされるが、近世の上位武士層以外の女性と概ね同じような位置にプロットされる。

揚浜式製塩民（沢田・村松白根）が中近世のまとまりからはやや離れるが、主漁従農民（吉母浜）の女性は、男性ほど他の集団と離れた位置にプロットされない。

これらの結果から、女性のMSMsパターンの多様性の時代間比較を行うと、男性ほど明瞭な時代間変異を示さないということがわかった。

図6.1.4 集団間差の時代間比較 第2・3主成分得点の二次元展開図：女性
第6章 MSMs の通時的変化

小結 通時的集団間比較のまとめ

男女それぞれの集団間のMSMsの差が時代ごとにどのように変化していくかを検討した結果から、男女共に、近世の上位階層である上位武士層と他の集団間の距離が大きく離れ傾向にあるといえる。男性の場合、縄文や弥生時代の各集団のばらつきよりも中近世の各集団の多様性のほうが大きいといえる。男性では縄文・弥生・中世・近世の順に、集団間の類似性が減少していく傾向がみとれた。

一方、女性の場合は、集団間での差自体が小さいが、縄文時代よりも弥生時代の各集団の方がばらつきは小さく、中近世も上位武士層を除くと時代を経るごとにばらつきは小さくなっていく傾向にある。女性は男性ほど明確な減少傾向を示さず、縄文時代の集団間の類似性は弥生時代よりも大きく、中近世でも上位武士層以外の類似性は低くない。この中において、上位武士層の女性の特異性は顕著であることがわかった。

第2節 集団内差の時代変化

本節では、MSMsの集団内の多様性のあり方の変化を明らかにする。MSMsの性差と加齢変化を通時的に検討することで、MSMsの加齢変化の仕方の違いやMSMsの性差のあり方が、社会構造が異なる場合、すなわち地域的な自然環境に基づいて生業を行う集団と、専業化や階層に基づく集団とでは、どのように異なるのかを明らかにする。

第1項 MSMsの年齢差の時代変化

加齢変化の様相が各集団間でどのように異なるのかを検討するため、男女それぞれでカテゴリカル主成分分析を行った。

まず、男性のカテゴリカル主成分分析の結果の主成分負荷量を表6.2.1に示す。

第1主成分の固有値は6.06、寄与率は37.87%である。第1主成分は、腸腰筋とヒラメ筋は負の相関を示すが寄与率が小さいため、いわゆるサイズファクターと考えられる。

第2主成分は固有値が3.28、寄与率が20.51%、第3主成分は固有値が1.83、
第6章 MSMsの通時的変化

寄与率が11.45％である。第2主成分は、上腕の後方拳上や外転に作用する大円筋と広背筋・三角筋・上腕三頭筋外側頭・上腕二頭筋、円回内筋、腸腰筋・内側広筋、ヒラメ筋と正の相関が高く、大胸筋、回外筋・方形回内筋、後脛骨筋と長趾屈筋と負の相関が高い。

第3主成分は固有値が1.83、寄与率が11.45％で、外側広筋と大殿筋と正の相関が高く、内側広筋・後脛骨筋と長趾屈筋と負の相関が高い。

図6.2.1に第1主成分得点を棒グラフにしたものを示した。全体的なMSMsスコアの大

図6.2.1 MSMsの加齢変化の諸相：男性 第1主成分得点を棒グラフした図
小を示す図6.2.1をみると、弥生の3集団は概して右上がりで、加齢に伴いスコアが徐々に増加していく。一方、縄文の各集団は加齢変化に伴って単純にスコアが増加する傾向を示さず、年齢が上がるとスコアが減少する場合が多い。縄文時代の各集団の各年齢段階の主成分得点は、他の時代の集団に比べても相当に高い。

中近世の各集団は、揚浜式製塩（沢田・村松白根）以外はすべての集団が加齢とともにスコアを増していく傾向にあるが、その変化が最も小さいのは武士層である。揚浜式製塩民（沢田・村松白根）は、成年から熟年にかけてスコアが減少する傾向を示す。

次に、女性の検討を行うため、同じようにカテゴリカル主成分分析を行った。カテゴリカル主成分分析の結果の主成分負荷量を表6.2.2に示した。

第1主成分の固有値は6.06、寄与率は37.86%、第2主成分は固有値が2.89、寄与率が18.08%、第3主成分は固有値が1.76、寄与率が11.01%である。

第1主成分は、すべての部位が正の相関を示すため、いわゆるサイズファクターと考えられる。

第2主成分は、上腕の後方拳上や内転に作用する大円筋と広背筋・大胸筋と協働で働く上腕三頭筋外側頭、腸腰筋・内側広筋・ヒラメ筋と正の相関が高く、外転に作用する三角筋、回外筋、後脛骨筋と長趾屈筋と負の相関が高い。

第3主成分は固有値が1.79、寄与率が11.20%で、回外筋、腸腰筋・後脛骨筋と長趾屈筋と正の相関が高く、方形回内筋と負の相関が高い。

図6.2.2に第1主成分得点を棒グラフにしたものを示している。

表6.2.2 MSMsの年齢差の時代変化に関するカテゴリカル主成分負荷量：女性

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>大円筋と広背筋</td>
<td>0.78</td>
<td>0.24</td>
<td>0.25</td>
</tr>
<tr>
<td>大胸筋</td>
<td>0.84</td>
<td>0.01</td>
<td>-0.15</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.71</td>
<td>-0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>上腕三頭筋外側頭</td>
<td>0.24</td>
<td>0.78</td>
<td>0.18</td>
</tr>
<tr>
<td>上腕筋</td>
<td>0.81</td>
<td>-0.20</td>
<td>0.12</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>0.80</td>
<td>0.12</td>
<td>-0.18</td>
</tr>
<tr>
<td>回外筋</td>
<td>0.22</td>
<td>-0.57</td>
<td>0.45</td>
</tr>
<tr>
<td>方形回内筋</td>
<td>0.37</td>
<td>-0.22</td>
<td>-0.40</td>
</tr>
<tr>
<td>央回内</td>
<td>0.81</td>
<td>0.17</td>
<td>-0.19</td>
</tr>
<tr>
<td>腹腰筋</td>
<td>0.27</td>
<td>0.55</td>
<td>0.53</td>
</tr>
<tr>
<td>大殿筋</td>
<td>0.79</td>
<td>-0.30</td>
<td>-0.25</td>
</tr>
<tr>
<td>腱膜筋</td>
<td>0.83</td>
<td>-0.06</td>
<td>-0.31</td>
</tr>
<tr>
<td>外側広筋</td>
<td>0.67</td>
<td>-0.18</td>
<td>0.13</td>
</tr>
<tr>
<td>内側広筋</td>
<td>0.11</td>
<td>0.93</td>
<td>0.11</td>
</tr>
<tr>
<td>後脛骨筋と長趾屈筋</td>
<td>0.29</td>
<td>-0.28</td>
<td>0.79</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>0.33</td>
<td>0.58</td>
<td>-0.20</td>
</tr>
</tbody>
</table>

固有値：6.06 2.89 1.76
寄与率(%)：37.86 18.08 11.01
中世の主漁従農民（吉母浜）・揚浜式製塩（沢田・村松白根）や近世の集団では加齢に伴い単純的な増加がみられる。武士層の女性に関しては、武士層の男性と異なり、成年段階のスコアが低く、その後の増加はやや大きい。

図 6.2.2 MSMs の加齢変化の諸相：女性 第1主成分得点を棒グラフした図
第2項 MSMs の男女差の時代変化

MSMs に表れる性差の時代変化を明らかにするために、集団ごとの男女間の MSMs の差を検討する。

まず、距離行列を算出した（付表 9）。同一集団の男女間の距離の値は、竹田武士層が 0.15、近世百姓 0.08、武士層 0.16、上位層 0.54、江戸市中庶民層（方形木棺）0.16、江戸市中庶民層（円形木棺）0.12、主漁従農民（吉母浜）0.13、揚浜式製塩民（沢田・村松白根）0.06、弥生土井ヶ浜地域 0.16、弥生三国丘陵域 0.17、弥生福岡平野域 0.13、弥生広田地域 0.20、縄文大田 0.32、縄文津雲 0.16、縄文渥美半島 0.06、縄文房総湾岸 0.14、縄文三貫地 0.14、縄文東北太平洋岸 0.41 である。図 5.2.3 に、同一集団内の男女間の距離の値を棒グラフにして示した。

男女のパターンの違いが突出して大きいのが近世の上位武士層であり、武士層の値も、上位武士層よりは低いが、近世の中では次いで男女差が大きいと言える。江戸市中に埋葬された庶民層、あるいは竹田豊後の武士である稲荷谷は百姓（原田）や製塩（沢田・村松白根）よりも差が大きい。中近世の中では主漁従農民（吉母浜）の男女差もやや大きいといえるが、武士層ほどではない。弥生時代の土井ヶ浜・三国丘陵・福岡平野の 3 集団の距離には大きな違いはみられないが、この中では福岡平野の値が一番小さい。縄文時代の各集団の男女間の距離はばらつきが大きく、最も差が大きいのは東北太平洋岸、次いで大田であり、津雲・房総湾岸・三貫地はあまり差がなく、渥美の男女差が最も小さい。

各集団の男女差のあらわれ方の類似と差異及びその要因を検討するためにカテゴリカル主成分分析を行った。カテゴリカル主成分負荷量を表 6.2.3 に示した。第 1 主成分は固有値が 7.52 で寄与率が 46.98%、第 2 主成分は固有値 2.71、寄与率 16.94%、第 3 主成分は固有値 1.56、寄与率 9.72% であった。第 1 主成分は、すべての部位と正の相関をしめすことからサイズファクターである。すなわち、スコアの高い部位の多い集団の値がより高くな
第6章 MSMs の通時的変化

第6章 MSMs の通時的変化

第2主成分は、上腕の後方拳上に作用する大円筋と広背筋、上腕三頭筋外側頭、下肢骨では、いわゆる武士に特徴的に発達する部位とした腸腰筋、内側広筋、ヒラメ筋と正の相関が高い。手首の回内外に作用する主働筋である方形回内筋、回外筋と負の相関が高い。第3主成分は、肘関節屈曲位で前腕の回外を担う上腕二頭筋と正の相関が高い、上腕の内転に作用する大胸筋、上腕三頭筋外側頭、下肢では、後脛骨筋と長趾屈筋と負の相関が高い。

図6.2.4に、第2主成分得点を横軸にとり、第3主成分得点を縦軸にとって二次元展開したものを示している。第2・3主成分得点の二次元展開図を、時代ごとに分けて示したのが図6.2.5である。

縄文時代では男性よりも女性のほうが、ばらつきが大きく、男女間の距離は、集団ごとに大小さまずかで、徳野半島と三貫地では男女間の差は小さい傾向にあり、東北太平洋岸、津雲、大田では大きい。しかしそれを対象に、集団ごとに違いが出始める。これは女性のばらつきが小さいことに対し男性のばらつきが大きいためである。この分析からも、福岡平野が土井ヶ浜、三国丘陵域の男性とはやや異なることが言える。しかし、三貫地以外は距離の方向に集団ごとに違いが出始める。男性は、肩関節の挙動に作用する大円筋、広背筋、大胸筋、上腕三頭筋外側頭のMSMsスコアが高い傾向にある。

弥生時代の各集団では男性の方が女性よりもばらつきが大きく、距離の方向に集団ごとに違いが出始める。男性のばらつきが小さいことに対し男性のばらつきが大きいためである。この分析からも、福岡平野が土井ヶ浜、三国丘陵域の男性とはやや異なるということが言える。しかし、広田以外の3集団の性差は概ね横軸、上腕の後方拳上に作用する大円筋と広背筋、上腕三頭筋外側頭、下肢骨では、いわゆる武士に特徴的に発達する部位とした腸腰筋、内側広筋、ヒラメ筋のスコアが男性の方が高い傾向を示す。

中世の男女差は、他の時代に比べるとやや小さい。主漁従農民（吉母浜）のほうが、揚浜式製塩民（沢田・村松白根）よりもやや小さい。しかし揚浜式製塩民（沢田・村松白根）の男性は同じ象限に位置するため、発達部位の差でみると、主漁従農民（吉母浜）の性差の方が大きいといえる。

<table>
<thead>
<tr>
<th>表6.2.3 性差の時代変化の検討のためのカテゴリカル主成分負荷量</th>
<th>主成分負荷量</th>
</tr>
</thead>
<tbody>
<tr>
<td>大円筋と広背筋</td>
<td>0.61 0.43 0.46</td>
</tr>
<tr>
<td>大胸筋</td>
<td>0.85 -0.03 -0.29</td>
</tr>
<tr>
<td>三角筋</td>
<td>0.87 0.15 0.14</td>
</tr>
<tr>
<td>上腕三頭筋外側頭</td>
<td>0.55 0.50 -0.37</td>
</tr>
<tr>
<td>上腕筋</td>
<td>0.81 -0.31 -0.07</td>
</tr>
<tr>
<td>上腕二頭筋</td>
<td>0.57 0.12 0.65</td>
</tr>
<tr>
<td>回外筋</td>
<td>0.83 -0.39 -0.18</td>
</tr>
<tr>
<td>方形回内筋</td>
<td>0.55 -0.51 0.09</td>
</tr>
<tr>
<td>円内</td>
<td>0.75 0.12 0.23</td>
</tr>
<tr>
<td>腹壁筋</td>
<td>0.12 0.80 -0.19</td>
</tr>
<tr>
<td>大殿筋</td>
<td>0.81 -0.32 0.16</td>
</tr>
<tr>
<td>粗縫</td>
<td>0.90 -0.08 -0.20</td>
</tr>
<tr>
<td>外側広筋</td>
<td>0.67 -0.31 0.23</td>
</tr>
<tr>
<td>内側広筋</td>
<td>0.50 0.70 -0.21</td>
</tr>
<tr>
<td>後股骨筋と長趾屈筋</td>
<td>0.78 0.08 -0.48</td>
</tr>
<tr>
<td>ヒラメ筋</td>
<td>0.11 0.61 0.40</td>
</tr>
<tr>
<td>固有値</td>
<td>7.52 2.71 1.56</td>
</tr>
<tr>
<td>寄与率(%)</td>
<td>46.98 16.94 9.72</td>
</tr>
</tbody>
</table>
第6章 MSMsの通時的変化

近世のばらつきが各時代の中で最も大きく、特に武士層・上位武士層の間の距離が顕著に大きい。江戸市中庶民層（円形・方形木棺）の男女間の差は、近世の中では中程度といえる。さらに、近世百姓（原田）には、男女間でほとんど差がない。近世の場合は、男女間の差は概ね横軸に見られ、この点では弥生時代と傾向が同じである。

図6.2.4 性差：第2・3主成分得点二次元展開図
第6章 MSmsの通時的変化

図 6.2.5 性差：第2・3主成分得点二次元展開図を時代ごとに分けた図
小結 通時的集団内比較のまとめ

加齢変化の時代間比較：MSMs の加齢変化の様相は、縄文時代の各集団では男女共に老年段階で減少する傾向にある。弥生時代では、男性では、加齢とともに増加傾向を示すが、女性ではその傾向はやや異なる。土井ヶ浜の女性では、老年段階でMSMs スコアが減少し、三国丘陵域の女性では、老年段階でMSMs スコアが減少する。広田の女性は成年から老年にかけてMSMs スコアが減少する傾向を示す。中近世の各集団は、男女共に基本的には加齢とともにMSMs スコアが増加していく傾向があるが、その増加の程度は、男性よりも女性の方が顕著である。

性差の時代間比較：縄文時代の諸集団では、男女差のあらわれ方に地域差が大きいが、どの部位に違いがみられるかという傾向は集団間で共通しており、女性の方が男性よりもばらつきが大きい傾向を示す。弥生時代の諸集団では、男女差のあらわれ方の地域差は小さいが、男性が大きくばらつくため、どの部位に違いがみられるかという傾向は集団間で共通性がない。また、女性の方が男性よりもばらつきが小さい傾向を示す。中近世の諸集団では、男女差のあらわれ方の集団差が大きい。しかし、どの部位に違いがみられるかという傾向は江戸市中の集団では概ね集団間で共通しており、女性と男性のばらつきは同程度である。一方、中近世非都市部の各集団の性差は、男女差のあらわれ方の集団差が大きく、どの部位に違いがみられるかという傾向も一致しない。また、すべての時代の集団の中で最も男女間のMSMs の違いが大きいのは上位武士層である。
第7章 考察

第1節 先史時代の活動パターンの類似・差異とその要因

第4章で、縄文時代と弥生時代それぞれの各地域の生業様式とその多様性を明らかにするために、考古遺物の検討をおこない、地域別の生業活動を推定し、その上で、MSMs を用いて身体活動の地域的な多様性のあらわれ方を検討してきた。これまで MSMS を用いた当該時期を対象とした分析は Takigawa（2014）および瀧川（2015）で行われている。しかし、具体的にどのような生業活動が行われていたか、という観点の検討に関しては、狩猟採集や漁撈活動と述べるのみであり、不十分であるといわざるをえない。

本節では、第 4 章の分析結果および議論を整理し、縄文時代と弥生時代の各地域の集団間および集団内の身体活動の差異とその要因を考察する。

第1項 縄文時代の各地域集団の身体活動の地域的多様性

縄文時代の各集団では漁撈活動・特に漕艇活動も行っていたと考えられるにもかかわらず、肋鎖靭帯のスコアが大胸筋よりも高くなるという、先行研究で示されたようなわゆる漁撈的な MSMS パターン（Hawkey and Merbs 1995）は形成されない。肋鎖靭帯のスコア 4 以上の個体の頻度が低いわけではないため、大胸筋のスコアが高すぎることがこの要因である。大胸筋は上腕の内転や前方拳上（図 7.1.1, 7.1.2）に作用する胸部の筋であり、縄文時代の各集団は、上肢に強い負荷がかかっていた可能性が考えられる。槍や弓矢を用いた狩猟活動や土壌具や加工具を用いた採集活動も MSMS パターンの形成に大きな影響を与えたと考えられる。これは海産物への依存が高くないという食性分析の結果からも支持されるものである（南川 2001；米田 2010）。

縄文時代各集団の MSMS パターンをみてみると、有意な差を示す部位はなく、集団間で大きな違いはみられない（図 4.3.1）が、MSMS パターンが全く同じというわけでもない。また、左右差の表れ方（図 4.3.6, 4.3.15）や加齢変化の諸相（図 4.4.5, 4.4.10）、性差（図 4.4.11, 4.4.12, 4.4.13）、左右差の性差（図 4.4.14, 4.4.15）も集団ごとに大きく異なる。以下に各地域の MSMS パターンの形成要因となった諸活動を考察する。
A) 東北太平洋岸

遺物組成の結果を見ると、東北太平洋岸では漁具のうち銛・刺突具（ヤス）、釣り針が相対的に多い。また銛や尖頭器の出土例も多い（表4.3.1）。東北太平洋岸の食性分析の結果（図4.1.4）では、縄文時代の他地域の諸集団と大きな差はないとされているが、これは外洋漁業の生産性の低さによるものであり（渡辺1973）、活動の頻度の低さをしめしているわけではないと考えられる。東北太平洋岸地域の地形が、リアス式海岸域であるため砂浜での網漁ができるような地域ではないことからも、外洋性漁撈への比重の高さが推測される。東北太平洋岸において、男性は外洋性の釣り・銛を用いた漁撈活動の頻度によって、女性はヤマノイモなどの根茎類を対象とする採集活動の少なさや石鎚の使用頻度の低さによって、他の縄文時代の各集団とは異なると考えられる。

男性の身体活動

男性のMSMsの結果をみていく。この地域の縄文時代男性におけるMSMsの特徴としては、上腕の肩関節の前方拳上や外転（図7.1.3）に作用する筋（三角筋鎖骨起始部・大円筋と広背筋・鳥口腕筋・三角筋・上腕三頭筋）の発達と肋鎖帯のスコアに対する大胸筋のスコアの高さが特徴として挙げられる（図4.3.2）。上腕の外転（図7.1.3）に作用する三角筋は特に観察できたすべての個体がスコア3を示し（図4.3.2）、肘関節の伸展あるいは上腕の前方拳上に作用する上腕三頭筋外側頭のスコアは肩関節の屈伸に作用する筋の中では最も高い。これらはサンプルサイズに起因する可能性もあるが、肩を後方に引く・腕を外側へあげる動きによって発達しうる筋であり、上腕を外転し上方へ拳上し、銛を下方あるいは遠方へ投げるという、外洋性の大型魚を対象とした銛漁などを行う際の動作によって発達しうる筋であると考えられる。

また、網漁に関する遺物の頻度が低い東北太平洋岸の集団では大胸筋のMSMsのスコア4以上の個体の頻度が高い（図4.3.2）ことから、肋鎖帯の発達には漕艇活動以外にも網を使うという活動の影響が強く反映されていることが示唆される。

この集団は左右のMSMsのスコアのアシンメトリーが強く、その要因として特に上腕三頭筋に付着する筋、中でも肋鎖帯と大胸筋の左右差が大きいということも、銛漁のような活動によって生じたパターンであると考えられる。このMSMsパターンは弓矢の使用や槍の使用によっても生じうるパターンであり、これらの活動も東北太平洋岸男性のMSMsパターンの形成の一因となっていたと考えられるが、遺物組成から狩猟の際の弓矢や槍の使用は他の地域でもみられる活動であり、狩猟活動が他の集団との違いを生じさせた主要な活動であったと考えることは妥当ではない。そのため、外洋性漁撈がMSMsに与えた影響を強調したが、弓矢や槍の使用がMSMsパターンの形成に全く影響を与えていないとい
第7章 考察

うわけではない。
また、この地域は縄文時代の中でも男女間のMSMsの差が大きい（図4.4.11、4.4.12）。漁獲活動の中でも、網漁などは女性も行っていた可能性はある（笠原1990）が、外洋での漁獲や銛漁は男性を主体とする活動であると考えられ、この地域の漁獲活動における特性によって、縄文時代の中でも男女間のMSMsの違いが大きくなるという結果が生じた可能性と考えられる。

女性の身体活動

東北太平洋岸の女性は、MSMsパターンをみると、縄文時代の各集団の中では、津雲の女性と類似し、他の集団とはやや異なる（図4.3.11）。遺物組成の検討結果から考えると土堀具・石鍬の使用頻度が少ないという点にこの要因を求めることができよう。この地域は、トチの濃密な分布によって根茎類などへの依存の低さが指摘されており（渡辺1981），地中を深く掘る必要があるような根茎植物の採取を行う頻度が低かったと考えられる（山本2002）。

MSMsパターンをみると、肋鎖靭帯、三角筋の前部、大胸筋、三角筋のMSMsスコアが拮抗する。大胸筋のスコアが他と比べて低いというわけではなく、三角筋のスコアが高いのである（図4.3.11）。前腕に付着する肘関節の屈伸に作用する筋群の中では屈曲筋である上腕二頭筋と上腕筋のスコアが高く、手首の回内外に作用する筋の中では方形回内筋のスコアが他よりやや高い（図4.3.11）。磨石や敲き石の使用にあたって、肘関節を伸展した状態での使用は考え難く、この動作においては手首を回外するよりも回内する動きにより比重がかったのだろうと考えられる。左右差は男性に比べると小さく、縄文時代の他集団の女性と比べても違いはあまりみられない（図4.3.15）。地中を深く掘るあるいは畑作や焼畑の際に錬を使用するということが少なく、トチやクリ、ドングリの水さらしや磨石や敲き石を用いた製粉によってこのようなMSMsパターンが形成された可能性が考えられる。

B) 三貫地

三貫地は漁具だけでなく、土堀具や磨り石などの植物質加工具がその組成の多くを占める（図4.1.1、4.1.3）。また、漁法の中心はヤスによるものである（図4.1.2）。同位体分析でも東北沿岸のような外洋性ではなく、内湾性の魚を対象として行われた可能性が指摘されている（田中1988・南川2001）。考古学的な検討の結果、三貫地・渥美半島・津雲の集団は刺突漁（ヤス）を主体とし、網漁を併用する、という点で男性のMSMsパターンは類似する可能性がある。採集植物や関連遺物も房総半島や渥美地域と大差なく、女性のMSMsパターンにおいても概ね類似する可能性が高い。

男性と女性の身体活動

MSMs分析の結果からえられる（図4.3.5）特徴としては、三貫地、津雲、渥美半島地域
の男性は類似し、女性では（図 4.3.14）、房総湾岸、渥美半島、三貫地は類似する傾向がえられた。男性（図 4.3.5）は、上腕の肩関節の拳上や外転に作用する筋（三角筋鎖骨起始部・大円筋と広背筋・大胸筋・三角筋）や肘関節の屈曲（上腕筋・上腕二頭筋）のMSMs スコアの発達がみられ、なかでも上腕の前方（図 7.1.4）に作用する筋（三角筋鎖骨起始部・三角筋・上腕二頭筋）のMSMs スコアの高い個体が他の集団と比べても多い。

図 7.1.4 上腕の前方拳上（坂井・松村 2011 より引用）

三貫地の集団の植物資源の利用の高さや根茎類の採取、畑作や焼畑などのための石鎚の使用と、外洋性の強い漁撈を行っていない点、突く動作が漁法の中心であった点に東北太平洋岸の集団との上肢の発達部位の差を説明することができる。

また、三貫地は性差が他と異なり、その差は量的な差である（図4.4.12）。男女共に前腕、すなわち肘関節の屈伸に作用する筋のMSMs の発達のアシンメトリーがやや大きい（図 4.3.6、4.3.15）。

三貫地で主に行われていたヤスや網漁は、漁撈の中でも男女どちらかに偏った主体を要するような活動ではなく、採集活動の延長としても使用できる道具であるといえる。MSMs パターンにおいても、東北太平洋岸にみられるような男女間の差はみられない（図4.4.11）。网漁も男女共に行っていた可能性がある活動である（小笠原 1990）。渥美半島や房総湾岸の性差も小さいことから（図4.4.11、4.4.12）、漁撈活動の外洋性が低く、ヤスなどの刺突具を中心とした漁撈活動の場合、男女でヤスや網を用いる場面や対象とした動植物に差があった可能性があるが、ように大きくない差は観察されない。結果として男女間のMSMs が小さくなった可能性が考えられる。活動区の小ささ、あるいは活動区分がMSMs に生じにくいという傾向は、性差の小ささだけでなく、上肢の左右差の男女の類似（図4.4.14）によつても支持されるだろう。しかし下肢の左右差の性差はやや大きい（図4.4.15）ことから、活動の際の体の支え方に関係差があった可能性はある。男性では下肢の中では下腿の左右差が大きく（図 4.3.6）、中でも脛骨筋と長蹠屈筋の左右差が大きい（図4.3.7）。女性ではそのような数が少なく（図4.3.15）、粗線に付着する筋群とヒラメ筋の左右差が共に大きい（図4.3.16）。三貫地の集団は他の集団と比べて男女共に個体数がやや少なくなため、この結果がどこまで実態を反映しているかを確定することは困難であるが、活動の仕方に全く差がなかったわけではないと考える。
C) 房総湾岸

房総湾岸の諸集団は、遺物組成からみると土器片錘の出土数がきわめて多い（図 4.1.1）。渡辺（1973）によると、東関東の土器片錘は浅瀬河口性魚類（クロダイやスズキなど）を捕獲するものであると指摘されている（渡辺 1973）。考古学的な検討の結果（表 4.3.1）、房総湾岸の集団は内湾性の高い網漁を主体とし、剣突具（ヤス）を併用するという点で、男性の身体活動は、東北太平洋岸の男性とは大きく異なり、三貫地・渥美半島・津雲とはやや類似する可能性を指摘した。房総半島は、採集植物や関連遺物も三貫地や渥美地域と大差なく、女性の身体活動においては、この 2 集団と概ね類似すると推測された。

男性の身体活動

MSMs のカテゴリカル主成分分析の結果（図 4.3.5）からは、織文時代の各集団とはやや離れた位置にプロットされるが、縦軸の値は三貫地、津雲、渥美半島地域と大差ない。男性（図 4.3.2）は、肋鎖靭帯のスコア 4 以上の個体が多く、肩関節の内転・外転（図 7.1.5）に作用する筋（大胸筋・三角筋）や肘関節の屈曲に作用する筋（上腕筋）、手首の回内外の筋（回内筋・外形回内筋・回内筋）の MSMs スコアの発達を指摘することができる。房総湾岸の集団の MSMs と三貫地集団の MSMs パターン（図 4.3.2）を比較すると、房総湾岸の集団の方が、肋鎖靭帯と大胸筋のスコアの高い個体が多い（図 4.3.2）。一方、東北太平洋岸の男性と比べると、上腕三頭筋外側頭の MSMs スコアがやや低く、肘関節の外転よりも屈曲により負荷がかかっていた可能性が考えられる。これらの諸筋は内湾河口での網漁、すなわち網を手繰るような動作によって発達しうる筋であると考えることができる。網を引くという活動を一因として、肋鎖靭帯が顕著に発達することは、中世古舟の男性の MSMs パターンからも指摘することができ（米元 2012）、房総湾岸の集団も漁撈活動の中では特に網漁の頻度が高かったものと考えることができる。この地域の男性の上肢・下肢の左右差（図 3.3.6）は東北太平洋岸の集団よりも小さい。この傾向も MSMs パターン形成の主要因として網漁を想定することを支持するものである。

かという指摘もなされるほどであり、このことから、基本的には一度形成された筋付着部
の表面形状の複雑性は累積的に増加していくという特性をもつと考えられる。このような
特性をもつMSMsスコアがカテゴリー1主成分分析で分析した際に、主成分得点に減少傾
向がみられるということから、熟年段階で身体にかかる負荷の大きさ方が大きく変わった
可能性を指摘できる。図4.4.6-1をみると、房総湾岸の熟年個体は肘関節の屈伸と手首の回
内外に作用する筋（上下腕三頭筋外側頭から円回内筋まで）の筋のスコアが顕著に減少し
ている。しかし、成年段階と熟年段階ではパターン自体に大きな変化はない。このことか
ら成年段階の個体のスコアが高い、熟年段階の個体のスコアが低くなったと考えられる。

Kaplan et al. (2000)によると、アチェの男性の動物の肉の獲得率のピークが35歳にあ
り、その後加齢とともに緩やかに減少していくことが指摘されている。また、Acheの人々
の身体能力（握力・50m走・腕立て・懸垂）の加齢変化の検討から (Walker and Hill 2003)，
男性では20代の初めにピークがあり、その後加齢とともに能力が減退していくことも指摘
されている。本分析で得られた結果は、このような指摘と同じ傾向を示している可能性が
考えられる。あるいは、近世の漁村の研究でみられたような、漁場の選定や操船を熟練者
が、網の上げ下ろしなど体力の必要な活動をより若いものが行うような単純な作業の分担
があった（伊藤 1993）可能性も考えられる。

男女間のMSMsの差は東北太平洋岸と比べると小さく、渥美や三貫地と比べるとやや大き
い（図4.4.11、4.4.12）。漁撈活動の中でも、網漁などは女性も行っていた可能性はある
（小笠原 1990）とされているが、三貫地ほど男女間のMSMsパターンの類似性はみられ
ない。また、性別間のMSMsの差が最も大きいのは成年段階（図4.4.13）であり、この差
は縄文時代の各集団の中でも最大である。以下に女性のMSMsパターンを検討する。

女性の身体活動
MSMsのカテゴリー1主成分分析の結果（図4.3.14）からは、房総湾岸の女性は三貫地、
渥美半島の女性と類似した位置にプロットされる。

女性（図4.3.11）のMSMsパターンは、三貫地、渥美半島の女性のMSMsパターンと類
似する。三貫地と房総湾岸は手首の回内外に作用する筋の中では円内筋が一番スコアは
高いという点で、渥美半島よりも三貫地との類似性が高い。そのため、MSMsパターンと
しては三貫地の女性と大きく変わらないといえる。しかし先述したが、房総湾岸の男性と
比べると三貫地の男女は類似を示す傾向はない。これはひとえに、房総湾岸の女性では、肋鎖
靭帯と大胸筋のスコアが高い個体が少ない（図4.3.11）ためである。房総湾岸の女性の男性
とは異なり、肋鎖靭帯よりも菱形靭帯が、大胸筋よりも三角筋の前部がスコアが高い。網
を引くという上腕を斜め下方から反復的に引き上げるという動作を一因として、肋鎖靭帯
が顕著に発達する（米元 2012）可能性が高いことから、房総湾岸の女性が土器片錘を用い
た網漁に男性ほど関与していた可能性は低い。成年段階で男女間のMSMsの差が最も大き
いことから（図4.4.13）、網漁に主に従事したのは成年男性であったためと考えることもで
きよう。女性は男性とは異なり、成年から熟年にかけてスコアが増加する傾向があるとい

204
う結果がえられた（図4.4.8）。採集活動を主とするアチェの女性のヤシの実（palm fiber）の採集率は25歳程度でピークを迎えその後ほとんど増減しないという傾向がKaplan et al.（2000）によって指摘されており、また、Walker and Hill（2003）では、身体能力の加齢による減退も女性においては顕著でないことが指摘されている。活動の負荷のしかたや活動のための能力に女性は男性ほど変化が無いといえる。この指摘は、房総湾岸の女性のMSMsに加齢による影響が小さいという本稿での結果を説明しうるものである。

さらに、左右差の性差も、東北太平洋東岸ほどではないが、大きい（図4.4.14、4.4.15）ことからも男女間の活動に違いがあったことは支持されるよう。女性の活動として考えられるのは、土堀具・石堀や磨石などの多さから、これらを用いた土を掘る動作や採集活動、場合によっては煙を作るために土地をなすような作業と考えられる。このような活動では、肋鎖靭帯のMSMsスコアの発達を促すような、肩関節の急速かつ反復的な回旋あるいは前後方向への動きの必要性は高くない。肩甲骨が前方あるいは内側へ動くのを妨げる菱形靭帯のスコアの方が高い点や上腕の前方拳上に作用する三角筋の前部のスコアがより高いという傾向も房総湾岸の女性の採集活動によって形成されうるものと考えて大きな矛盾はない。

D) 渥美半島

渥美半島では、内湾で用いる刺突具や外洋での網漁で用いる切目石錘が多い（図4.1.1、3.1.2）。内湾性のクロダイ、イワシや外洋性のマダイなどの種類の魚骨が多く出土するため、これらを対象とした刺突漁と網漁が想定されている（樋泉2000）。

採集活動の対象としてはドングリやトチの実、クリやクルミなどの堅果類の採集（表3.1.5）、土堀具・石堀なども一定の傾向がみられることから根茎類の採集も重要であったと考えられる。さらに打製石庖丁を用いた禾本科植物の収穫を行っていたと考えられる。

考古学的な検討からは、渥美半島の男性は、三貫地・津雲の集団と刺突漁（ヤス）を主体とし、網漁を併用する、という点で類似し、女性は房総湾岸や三貫地と類似する可能性が指摘された。

男性の身体活動

MSMsのカテゴリカル主成分分析の結果（図4.3.5）からは、三貫地、津雲と近い位置にプロットされる。特に左右差（図4.3.6）をあわせて考えると津雲の男性との類似性が強い。

男性（図4.3.1）は、基本的には三貫地の集団と傾向を同じくし、肘を曲げた状態で肩関節を前方に拳上する動作は、ヤスなどで突く動作、土堀具・石堀を用いて土を掘る際に動作であると考えて大きな矛盾はない。さらに、渥美半島からは打製横刃型石器が出土しており、禾本科植物の栽培・半栽培の可能性が指摘されている。根茎植物を含めた栽培によ

205
の高さが指摘される三貫地である点から、その可能性を示唆するものである。

渥美半島の男性のMSMsの加齢変化は、熟年でピークをむかえ老年でわずかに減少する傾向を示す（図4.4.5）。図3.4.3をみると、渥美半島の男性の熟年個体のMSMsパターンは熟年段階で大胸筋のスコアの高さがピークを迎え、MSMsパターンは熟年と老年であまり変化はないが、成年段階のMSMsパターンとは、手首の回内外の部分でやや異なる。また、渥美半島の男性の成年段階の肋鎖靭帯のスコア4以上を示す個体の頻度の多さ（図4.4.1-2）も指摘することができる。

この結果も、房総湾岸同様概ねKaplan et al.（2000）やWalker and Hill（2003）の研究の結果と同様の傾向を示していると考えられる。MSMsパターンが大きく変化しないことから、年齢段階によって行った活動の種類が、活動を区分していたといえるほど大きく異なっていたわけかどうかは定かではないが、単純な作業の分担はおこなわれていたと考えられる。活動域が陸から離れるほど、従事者の年齢構成が若くなる傾向が口蔵（1977）によって指摘されており、肋鎖靭帯のスコアの高い個体が成年段階で多いことから、外洋性の高い漁撈活動は基本的に成年の個体によって行われていたのかもしれない。

渥美半島の男女間のMSMsの差は小さく（図4.4.11、4.4.12）、そのピークは成年段階と老年段階にある（図4.4.13）。三貫地との違いは、男女間の差が完全に量的な差ではない点である（図4.4.12）。男（図4.3.2）女（図4.3.11）のMSMsパターンも三貫地とは異なり、女性のパターンは房総湾岸の女性にむしろ類似する。以下に女性のMSMsパターンを検討する。

女性の身体活動

MSMsのカテゴリカル主成分分析の結果（図4.3.14）からは、渥美半島の女性は房総湾岸、三貫地の女性と類似した位置にプロットされる。

女性（図4.3.11）のMSMsパターンは、三貫地、房総湾岸の女性のMSMsパターンと類似する。渥美半島の女性も、房総湾岸と同様で、肋鎖靭帯と大胸筋のスコアが高い個体が少なく（図4.1.26）、肋鎖靭帯よりも菱形靭帯の方が、スコアが高く、大胸筋よりも三角筋の前部の方が、スコアが高い。女性の活動として考えられるのは、土壌・石錬を用いた土を掘る動作や採集活動や製粉作業、場合によっては畑を作るために土をなすような作業と考えられる。また、ヤスを用いた貝類の採集活動などは行っていた可能性があるが、このような活動では、肋鎖靭帯のMSMsスコアの発達は生じない。肩甲骨が前方あるいは内側へ動くのを妨げる菱形靭帯のスコアの方が高い点や腕の前方拳上に作用する三角筋の前部のスコアがより高いという傾向から、渥美半島の女性のMSMsパターンが、採集活動によって形成されたことを示唆する。

渥美半島のMSMsは、房総湾岸よりも男女間のMSMsスコアの違いが小さく（図4.4.11）、三貫地よりも男女間のMSMsパターンに違いがみられる（図4.4.12）という傾向を示す。渥美半島の男性の漁撈活動の主体はヤスを用いた刺突漁であり、三貫地の男性よりも渥美半島の男性の方がやや外洋性の漁撈活動の比重が高かったためではないかと考えられる。
このことから、外洋魚を対象とする漁撈活動は縄文時代の渥美半島においては、女性の関与が小さかった可能性が示唆される。成年段階で男女間のMSMsの差がやや大きい要因（図3.1.39）も女性が外洋性の高い網漁や刺突漁に男性ほど関与していたためと考えられる。左右差の特性が高い太平洋岸ほどではないが大きく（図4.4.14、4.4.15）、このことからも男女間の活動に違いがあったことは支持されるよう。女性のMSMsの加齢変化の様相は、成年から熟年にかけてスコアが増加し、老年でやや主成分得点が減少する傾向がある（図4.4.10）。しかし、男性ほどの違いはない（図4.4.5）。女性においてMSMsの総合的な傾向が緩やかにしか変化しないという点は、Kaplan et al. (2000)によっても指摘されており、活動の負荷のかかり方に渥美半島の女性においても大きな変化が無いといえる。

E) 津雲地域

津雲では石鏃などの狩猟具や石匙などの加工具が多く（図4.1.1）、それらは、狩猟あるいは刺突漁（金子・忍沢 1969）、動物の解体処理や工具に用いられたと考えられる（小林 1995）。また、出土する釣針や石錘は大型で重いものが多く、大型魚種を対象とした道具の可能性が指摘されている（清野 1969; 田嶋 2006）。渥美半島と津雲の遺物組成は、狩猟具と土壌具の構成（図4.1.3）において類似する傾向にあり、漁具に関しても（図4.1.2）組成の半分以上を大型の石錘が占める点で共通し、その差異は、釣針と鋏の差にのみ認められる。男性の身体活動において、三貫地・渥美半島・津雲の集団は刺突漁（ヤス）を主体とし、網漁を併用する、という点で類似すると考えられる。一方、採集活動は対象集団の中では、やや特異であるといえる。あく抜きの不要なドングリやイチイガシの採集が主体であり、土壌具・石錘を用いた焼畑や畑作、場合によっては水田の形成も開始していた可能性が考えられる点で、津雲の女性の身体活動は他の縄文時代の集団とは大きく異なる可能性がある。

津雲貝塚の男性の身体活動

MSMsのカテゴリカル主成分分析の結果（図4.1.23）からは、三貫地、渥美半島と近い位置にプロットされる。渥美半島の集団と津雲の集団は、MSMsパターン（図4.3.1）と左右差（図4.3.6、4.3.7）においてよく似ている。肋鎖靭帯のスコアが相対的に高い傾向にあり、これは房総湾岸の集団とも共通する点である。渥美半島と津雲の男性は、大型魚種を対象とした網漁を行っていた可能性が高く、網漁に必要な動作によって房総湾岸の集団と類似する傾向を示した可能性がある。このことから、対象とした魚種が内湾か外洋かが異なるが、肋鎖靭帯の発達には対象活動の不論のこと、網を引く行為の影響が強く考えられる。さらに、この2集団は三貫地と共通する傾向も示し（図4.3.5）、上腕の前方拳上に作用する筋（三角筋鎖骨起始部・上腕二頭筋）の発達も指摘することができる。この傾向は、刺突具であるヤスや鋏がその組成に占める割合と関係すると考えることができる。
さらに、当該時期には西日本で焼畑による農耕が行われていたと考えられており、渥美半島との類似性の要因の一端となった可能性も考えられる。三貫地も含め、渥美・津雲の3集団の生業活動の中に、打製石斧や打製横刃型石器を用いた焼畑や禾本科植物、アワやキビの収穫を含んでおり、この比重が房総湾岸よりもやや高かったために、これら3集団は類似性が強く、房総湾岸とはやや傾向が異なる結果となった可能性が考えられる。この3集団の中では三貫地がやや類似性が低い要因としてはヤス漁の比重が相対的に高かった可能性が考えられる。

津雲の男性のMSMsの加齢変化は、成年でピークをむかえ熟年で減少する傾向を示す（図4.4.5）。図4.4.3をみると、津雲の男性のMSMsパターンは成年と熟年とではあまり変化はない。しかし成年段階では粗線に付着する筋群ではなく大殿筋（図4.4.1-2）にピークがあり、熟年段階においても粗線に付着する筋群に明確なピークが見られない。この点は他集団との差異として指摘することができる。大殿筋は、体幹をあまり前傾させずに階段を登るような活動に際してより強く作用する（嶋田・平田監訳 Neumann原著 2005）。津雲のこの下肢のMSMsパターンは、狩猟具が多いという考古学的な検討結果とあわせると、他の地域の集団よりも狩猟を行うために、高低差のある場所を歩くような活動の頻度が高かったことに起因ののではないかと考えられる。そもそも、房総湾岸や渥美半島地域の土地にはあまり高低差がない（図3.1.5、3.1.6）ということもその要因の1つと考えられる。このことは、左右差の表れ方が上肢では縄文時代の他の男性集団と変わらない（図4.4.14）に対して、下肢の左右差は他の集団と比べると小さいこと（図4.4.15）からも支持される。狩猟活動の重要度が他の活動の重要度よりも高いことによって、活動のピークが成年段階に表れた可能性も考えられる。

また、津雲の性差は、東北太平洋岸ほどではないがやや大きい（図4.4.12）。そのピークは成年段階にある（図4.4.13）。この傾向から、男性の狩猟や漁撈活動のピークが成年段階にあたったと考えられる。この結果は、房総湾岸や渥美半島の男性と類似する傾向であり、Kaplan et al. (2000) や Walker and Hill (2003) の研究の結果と同様の傾向を示していると考えられる。

津雲貝塚の女性の身体活動
MSMsのカテゴリカル主成分分析の結果（図4.3.14）からは、津雲の女性は縄文時代の他の集団とは大きく異なり、むしろ弥生時代の女性に近い。

MSMsパターンをみると（図4.3.11、4.3.12）と、弥生時代との類似性は下肢ではなく上肢に強い。具体的には、鎖骨から上腕にかけて（肋鎖靭帯から鳥口腕筋）のパターンに大きなピークがない点である。肘関節は屈筋（上腕筋と上腕二頭筋）の方が高く、それよりも手首の方形回内筋がよりスコアが高い。

この地域は、対象とした集団の中で唯一あく抜きの不要なドングリやイチイガシの採集が主体であり、また、焼畑や畑作を行っていた可能性がある。場合によっては水田の形成も開始していた可能性が指摘されているが、弥生時代の集団とは下肢のパターンにおける
第7章 考察

類似性が低いことから、採集活動の1つ程度であったと考えられ、これは水田遺構が面的に広がらないことからも支持される。

女性も男性と同様で、下肢のピークが大殿筋にくる点は弥生時代の女性とも異なる点である（図4.3.11）。この下肢の傾向は、津雲地域特有のものであり、男性と同じ地域で採集活動を行っていたためであると考えられる。

女性のMSMsの加齢変化の様相は、成年から熟年にかけてスコアが増加し、老年ではほとんど変化が無い（図4.4.10）。女性においてMSMsの総合的な傾向が緩やかにしか変化しないという点は、Kaplan et al.（2000）やWalker and Hill（2003）によっても指摘されている。活動の負荷の大きさ方に津雲の男性においても大きな変化が無いという。左右差の性差も北太平洋沿岸ほどではないが上肢では大きく（図4.4.14、4.4.15）、このことからも男女間の活動に違いがあったことは支持されよう。

大田貝塚の男性と女性の身体活動

大田貝塚の属する中期にはまだ土壌具・石鉞が当該地域には存在しない。大型の釣針や鈎などの外洋性漁具も中期には未だ伝播しておらず（渡辺2002）、鎌や刺突具（ヤス）が漁具の主体であり、内湾性の小規模な漁撈活動を主体としていた可能性がある（渡辺1984、山本2002、田嶋2006）。この点で男女共に身体活動は他の縄文時代の集団とは大きく異なるはずである。

大田貝塚の集団にみられる他集団とのパターンの差として挙げられるのは、津雲と同様で大殿筋に下肢のMSMsパターンのピークがある点である（図4.3.2、4.3.11）。男性では肋鎖靭帯のスコアが顕著に低い。このことから、活動の主体が漁撈ではなく、むしろ狩猟にあった可能性を指摘することができる。男女差が大きい（図4.4.11、4.4.12）ことからも男性は狩猟を、女性は採集をその活動の中心としていたことは示唆されるよう。

F)縄文時代各地域の身体活動の多様性のまとめ

遺物組成の結果をふまえると、MSMsパターンに反映されている各地域集団の身体活動の違いとして以下のような活動の違いがあった可能性を考えることができる。このような違いは、遺物組成や動植物遺存体から考えられる地域的な差異と相互に関連するため、適応した環境、ニッチの違いに基づく差であるといえる。このことから、本州の海岸部の大田貝塚周辺で生活していた縄文時代各集団の生業活動は、それぞれの地域に合わせた最適な活動を行っていたために相互に異なり、環境に基づく差がMSMsパターンの差としてあらわれているといえる。また、左右差のばらつきは弥生時代よりも大きく、性差の表れ方にも一貫性がない。このことからも、各地域によって生業活動のあり方やその仕方が異なっていったといえよう。

縄文時代の男性の加齢変化の様相は、弥生時代の男性のそれとは異なるものである。房総湾岸・渥美半島・津雲の男性は成年段階あるいは熟年段階にピークをもち、その後減少していく（図4.4.5）。Kaplan et. al.（2000）やWalker and Hill（2003）のアチェの加齢
第7章 考察

変化の研究から、男性では成年段階に活動や身体能力のピークがあり、その後加齢とともに能力が減退していくことが指摘されている。渡辺（1990）でも、現生狩猟採集民の男性が第一線の狩猟者でいられるのは大体40〜45歳と指摘されている。狩猟採集集団の老年男性は退役狩猟者として、政治的あるいは祭縁儀礼上高い地位を占めることは、渡辺（1990）のアイヌの研究によって指摘されている。縄文時代の上記3集団の結果もそれと類似したものであった。退役狩猟者が農耕に従事した可能性も渡辺（1990）で指摘されているが、各年齢段階のMSMsパターンの差（図4.4.3）は明瞭ではないことから、本分析の結果から、身体活動の劇的な変化が起きたかとは言い難い。しかし、少なくとも、男性は狩猟活動の第一線からは退いていたものと考えられる。渡辺（1990）では、農耕の導入において、女性ではなく男性の退役狩猟採集者の存在が極めて重要であったことが指摘され、狩猟採集社会である縄文社会の農耕化モデルとして提示されている。この観点からみると、本稿で対象とした縄文各地域の集団が本格的に農耕へ移行した可能性は低いと言えるかもしれない。

一方、MSMsの加齢変化の傾向は女性では緩やかなものである（図4.4.10）。この傾向もKaplan et al.（2000）やWalker and Hill（2003）の指摘と類似するものであり、採集集団の女性の活動は加齢とともに大きく増減あるいは変化しないという特徴を指摘することができる。このような男女の加齢変化の様相が異なるという傾向は、狩猟者の生理的、心理的、能力の低下に関連するものであり、世界的に共通の現象であることが渡辺（1990）によって指摘されており、縄文時代の各集団も狩猟採集民として例外ではなかったということを指摘することができる。

しかし、これらの集団のMSMsパターンの違い（図4.3.1、4.3.10）は小さく、概ね類似するということもまた、結果として言える。特にMSMsパターンにおける差が小さいことは他の時代と比較すると顕著である。これは、狩猟及び石匙などの加工具や磨り石などの植物質加工具がどの集団においても共通して存在することや植物食の利用の高さという共通項によっても説明可能である。また、地域を越えて類似するMSMsパターンを形成した1つの要因として、縄文時代においては基本的に何か1つの軸となるような生業活動があるわけではなく、基本的には平等で集団内で階層に基づく厳格に規定された活動差はなく、集団の構成員のほとんどが様々な活動を組み合わせて行っていた結果ではないかと考えることができる。

第2項 弥生時代の各地域集団の身体活動の地域的多様性

生体計測の結果から、漁獲活動を行う集団と、農耕活動を主体とする集団では、胸囲と臀部の筋の相対的な発達のバランスが異なり、台湾の水稲農耕と日本列島で行われた水稲農耕の違いを考慮する必要があるが、水稲農耕を行う集団は胸部の筋の発達が低いか、及び大腿（粗線に付着する筋群）よりも下腿の筋（ヒラメ筋）が発達すると考えられる。

縄文時代の集団との比較によって（図4.3.8、4.3.17）弥生時代に発達する部位の特徴と
第7章 考察

は、上肢と下肢のバランスが異なること、下肢では特にヒラメ筋が発達する傾向にあることを指摘した。また、男性においてヒラメ筋および腸腰筋が、女性はヒラメ筋が発達するという傾向は水稲農耕を行っていた3集団では地域をこえて共通する（図4.3.3、4.3.12）。さらにそれ以外の下肢の大部分においてもスコアの頻度分布が類似する（図4.3.8）。このことから、広田以外の弥生時代各集団の下肢のMSMsパターンは水稲農耕の影響を強く受けて形成されたものであると考えられる。下肢の中でも腸腰筋のMSMsスコアが発達する事例としては近世の武士が存在するが、武士の場合は下肢の中でより明瞭なピークとなる点、膝関節軽度屈曲（30度以下）状態での立ち居振る舞いによって生じると考えられる。

このことから、広田以外の弥生時代各集団の下肢のMSMsパターンは水稲農耕の影響を強く受けて形成されたものであると考えられる。下肢の中でも腸腰筋のMSMsスコアが発達する事例としては近世の武士が存在するが、武士の場合は下肢の中でより明瞭なピークとなる点、膝関節軽度屈曲（30度以下）状態での立ち居振る舞いによって生じると考えられる内側広筋と外側広筋の不均衡がみられるという点で弥生のパターントとは異なる（米元2012）。

しかし、発達の偏りや下肢のMSMsパターンに関しては水稲農耕による影響を受けつつも、上肢のMSMsパターンにおいてはあまり共通性がなく（図4.1.20、4.1.25）、それぞれ異なる活動を反映している可能性が考えられる。

遺物組成や食性分析、対象となった動物遺存体の検討を行ったところ、弥生時代の各地域の男性は縄文時代の各地域の男性よりも身体活動の地域的な多様性は小さくなる可能性が指摘した。また、女性は水稲農耕の確立により採集対象が画一化されてくるという点で、弥生時代の各地域の女性は縄文時代の各地域の女性よりも身体活動の地域的な多様性は小さくなると考えた。さらに、考古学的な検討から、各集団で遺物組成に大きな違いがみられるのは女性主体労働よりも狩猟や伐採、内水面での漁撈活動など男性が主体となっている労働であったことと考えられ、男性のMSMsの多様性は女性の多様性よりも大きくなるのではないかと考えた。

MSMsを検討した結果、男性のMSMsの集団間差は縄文時代のほうが小さく（図4.3.2、4.3.3）、女性は弥生時代の方が小さい（図4.3.11、4.3.12）。性差や左右差は弥生時代の男性よりも女性の方が上肢、下肢ともに小さく集団間のばらつきが小さい（図4.4.12、4.4.16、4.4.17）。男性に比べて女性の方が、地域差が小さくなるという傾向がえられた。

弥生時代の各集団、特に土井ヶ浜と福岡平野では肋鎖靭帯のスコアが大胸筋よりも高くなるという先行研究で指摘されたいわゆる漁撈的なMSMsパターン（Hawkey and Merbs 1995）を形成する。しかし、福岡平野では肋鎖靭帯のスコア4以上の個体の頻度は低く、三国丘陵域の男性は肋鎖靭帯スコア3の個体が極端に多い。これは縄文時代の各集団の傾向とは明らかに異なる傾向である。

以下に各地域のMSMsパターンの形成要因となった諸活動を考察する。

A) 土井ヶ浜地域

遺物組成（図4.1.5）をみると、水稲農耕とともに伝来した収穫具及び木工用斧類が一定の割合をしめる。これらの地域では紡績具と調理具が同程度の割合を占めている。土井ヶ浜では漁撈活動関連遺物も多く、福岡平野と比べると農耕関連遺物の頻度がやや少ない（図4.1.5、4.1.6、4.1.7）。博多湾や河川での網漁が主体と考えられる福岡平野に対して、土井
第7章 考察

ヶ浜地域では、出土魚骨の構成から、外洋性の漁撈活動がわずかに強い可能性もある。

女性の活動は採集対象の主体が稲となり、どの地域でも雑草の除去や石包丁を用いた収穫、脱穀に関する活動を女性は主体として行っていたと考えられる。そのため、縄文時代ほど他の地域との間に大きな差はないが、土井ヶ浜に関しては、水稲農耕の定着度はいまだ低く、「中国地方の縄文時代集落と状況的には大差はみられない」とされていている。この点からみても、水稲農耕の定着度の高い福岡平野の集団とはやや異なり、狩猟や採集活動の比重が高かったと考えられる。

男性の身体活動

カテゴリカル主成分分析の結果を見ると（図4.3.5）、土井ヶ浜と三国丘陵域の集団は類似し、福岡平野の集団とは異なる傾向がある。また、この2集団に関しては、横軸では縄文時代の刺突漁と網漁を行っていた集団にプロットされる位置が近く、三国丘陵域の集団よりも土井ヶ浜の集団のほうがプロットされる位置がやや縄文に近い（図4.3.5）。

MSMsのパターンを検討した結果、まず土井ヶ浜地域の集団では肋鎖靭帯のMSMsスコアが大胸筋のMSMsスコアよりも高いといういわゆる漁撈的なMSMsパターンを示すことがわかる（図4.3.3）。土井ヶ浜集団のMSMsをみると、肋鎖靭帯のスコア4以上の頻度が縄文時代の各集団の中で最も高い。遺物組成とあわせると、少なくとも河川や海岸での網を用いた漁撈活動は行っていたと考えられる。また、土井ヶ浜集団では、食性分析の結果から見て、海産物の摂取もある程度は行っていたことが指摘されている（米田2014）。このことから外洋性漁撈に伴う漁撈活動を行っていた可能性も考えられる。

肘関節の屈伸に作用する筋群では、3つの部位のスコアは拮抗し、あまりスコアの差がない（図4.3.3）。しかし、他の集団と比べると上腕三頭筋外側頭のスコアがやや高い（図4.3.3）。手首の回内外に作用する筋群では回外筋よりも円回内筋のスコアが高い傾向にある（図4.3.3）。

また、土井ヶ浜地域の男性は、左右差が縄文時代の男性と比較すると極端に小さい（図4.3.6）。弓矢や槍の使用は左右のアシンメトリーが強くなる傾向がBridges（1989）やChatter（2014）によって指摘されている。他にも片側の内旋筋群に負荷がより強くかかるエリートテニス選手では利き腕のほうが15～30％筋力が高いことも指摘されており（Ellenbecker et al. 2012）、動作の左右差が強い活動では、両側のアシンメトリーが強くなると考えられる。この点から考えても、土井ヶ浜集団は狩猟よりも網漁のような片側の優位性が低くなるような漁撈活動の比重が高かった可能性も考えられる。

そのため、網漈を中心とした漁撈活動の比重の高さによって、福岡平野との上肢のMSMsパターンの差が形成された可能性が考えられる。

加齢によるMSMsの変化は、縄文時代とは異なる傾向を示す。加齢とともにスコアは増していく傾向があり（図4.4.5）、男女の差は熟年段階でピークを迎える（図4.4.13）。図4.4.4をみると、各年齢段階のMSMsパターンは、特に上肢においてやや異なる。スコアの高低を比べると（図4.4.5）、成年段階の上肢のMSMsスコアが極端に低い部位が多い。しかし、
下肢のパターンは上肢に比べて共通性がやや高く、このパターンは福岡平野や三国丘陵域でも共通することから、基本的には成年段階でも水田での農耕活動には関与していたと考えられる。

土井ヶ浜の成年男性の MSMs パターンは熟年や老年と異なる。肋鎖靭帯のスコアが顕著に高い（図 4.4.4）。成年段階では大胸筋よりも三角筋のほうがスコアが高い。また前腕の諸筋でも、成年段階では肘関節の伸展に作用する上腕三頭筋外側頭よりも肘関節の屈曲に作用する上腕筋と上腕二頭筋のほうがスコアが高いという傾向を示す（図 4.4.2-1）。この傾向は三国丘陵域の成年男性のパターンとも共通する傾向であり（図 4.4.2-2）、福岡平野の成年段階ではみられない。土井ヶ浜と三国丘陵域で共通する要素としては、土井ヶ浜では漁撈、三国丘陵域では狩猟が主体であったという違いはあるが、水稲農耕よりもこれらの諸活動の比重が高かった可能性があるという点と、水田のための土地を開拓しなければならなかった点である。これは土井ヶ浜地域においては、水稲農耕の定着度が低かった（小林 2011）ことから指摘できる。上腕の外転（図 7.1.6）に作用する三角筋と肘関節の屈曲に作用する上腕筋と上腕二頭筋のスコアの高さから太型蛤刃石斧を用いた開墾や伐採などの活動を成年男性が担っていた可能性は考えられる。また、三国丘陵の男性と比べると、肋鎖靭帯のスコアが高いこと、手首の回内外の諸筋では方形骨内筋にピークがあることから、網漁、おそらくより外洋性の強い活動を成年段階の男性が担っていたものと考えられる。

下肢の MSMs パターンにはあまり変化が無いということと、相対的に成年男性のほうが熟年・老年段階の男性よりも MSMs スコアが低いという傾向から、水田での農耕作業にも成年男性は関与しており、その後も累積的に負荷がかかり続けた結果であると考えられる。

マヤの定住農耕民の一日の労働時間の年齢別平均の推移を検討したKramer and Boone（2002）によると、農耕民の女性では 15 歳前後、男性では 20 歳前後に生産に携わる時間がピークに達し、その後は、観察を行った 65 歳まで概してほぼ同じような生産活動従事時間で推移することを指摘している。このことから、土井ヶ浜において成年段階から老年段階にかけて MSMs のスコアが全体的に増加していくという傾向は、老年段階まで農耕活動に従事していた結果といえるのではないか。

女性の身体活動

MSMs のパターンを検討すると（図 4.3.12）、他の集団とあまり大きな違いはないといえる。弥生時代の女性は左右差（図 4.4.16、4.4.17）や加齢変化の仕方（図 4.4.9、4.1.10）、男女間の差の表れ方（図 4.4.11、4.4.12）において地域的な多様性が小さくなる傾向があり、この点からも女性の活動の地域性が減少したことは指摘することができよう。
下肢のパターンは、腸腰筋における違いはあるが男性とも類似している（図 4.3.3, 4.3.12）。これは弥生時代の水稲農耕を行っていた 3 集団と共通する傾向であるといえる。上肢のMSMs パターンとしては、肩関節の動きに作用する筋では大胸筋に、肘関節の屈伸に作用する筋では屈曲に作用する上腕筋に、手首の回内外に作用する筋では方形回内筋にピークがくる。これは、稲を刈る動作や除草のための動作、さらにはイチイガシなど堅果類などの採集活動における動作、杵臼をもたいた脱穀作業や縄編の作成によって発達する筋と考えて大過ないだろう。

しかし、カテゴリカル主成分分析で土井ヶ浜の女性が福岡平野や三国丘陵域の女性と異なり、弥生時代の集団の中では最も縄文時代の諸集団に近い（図 4.3.14）。この結果は考古学的な結果と合わせると、水稲農耕への依存度がやや低かったために生じている可能性がある。

土井ヶ浜地区の女性の加齢変化の様相は男性とは異なり、むしろ縄文時代的である（図 4.4.10）。弥生時代の女性の活動は縄文時代の採集活動の延長に位置づけられて展開した可能性が小笠原（1990）によって指摘されており、土井ヶ浜地区においては未だその傾向が強かったのではないかと考えられる。水稲農耕の定着度が低く地域であることや、イチイガシなどの出土から縄文時代的な採集活動も行っていた可能性が高いことからもこの可能性は支持されよう。すなわち、土井ヶ浜の女性の活動においては稲以外の採集活動も重要であり、水稲農耕への特化が相対的に低かったために、このような縄文時代的な加齢変化の様相を示した可能性が考えられる。

B) 三国丘陵域

遺物組成（図 4.1.5）をみると、土井ヶ浜地域と同様で、水稲農耕とともに伝来した収穫具及び木工用斧類が一定の割合を示している。さらに、これらの地域では紡績具と調理具が同程度の割合を占めている。しかし、三国丘陵域では狩猟具が組成の主体を占め、また狩猟具の中でも投弾が卓越するという点、伐採や木材加工作業に関連する道具の数が多いという点で土井ヶ浜・福岡平野と身体活動が異なるだろう（図 4.1.5、4.1.6、4.1.7)。一方女性は、男性ほどの地域差を示さないことが予想された。

男性の身体活動

カテゴリカル主成分分析の結果を見ると（図 4.3.5）、三国丘陵城の集団は土井ヶ浜と類似し、福岡平野の集団とは異なる傾向がある。

MSMs のパターンを検討した結果（図 4.3.3）、Kayaker's 鰭骨（Hawkey and Merbs 1995）と呼ばれる肋鎖靭帯圧痕の孔の形成を示すスコア 4 以上の個体の頻度は三国丘陵域ではやや少なく、スコア 3 の個体の頻度が最も多い。三国丘陵域は内陸に位置し（図 4.1.13）、漕艇を必要とするような漁撈活動に従事したとは考えにくい。この靭帯は鎖骨胸骨端の置換を防ぐ靭帯であり、弓を弾く、槍を投げるなどのような上腕を挙上するあるいは伸展する（後方に引く）活動によっても発達すると考えることができる。しかし、このような活動
第7章 考察

には、漕艇活動と違いい肩関節回旋運動を急速に反復する必要がない。この負荷のかり方の違いによって、三国丘陵域の集団では肋鎖靭帯のスコア3の個体が多いがスコア4を超える個体が少ないという傾向が生じたのではないかと考えることができる。それゆえに肋鎖靭帯の孔の形成、すなわち漁撈的なMSMsパターンの形成には肩関節の回旋運動を急速に反復するという動作がもっとも影響を与える可能性を考えられる。

三国丘陵域では回外筋、方円形外筋、円回内筋のスコアが高い個体の頻度が、土井ヶ浜や福岡平野よりも高い（図4.3.3）。このことから手首の動きにかかる負荷が高かった可能性が考えられる。さらに、大円と広背筋・上腕二頭筋及び三角筋の前部といった筋も三国丘陵域でスコアが高い個体の頻度がやや高いことも指摘できる。三国丘陵域では左右差が弥生時代の中でも大きく（図4.3.6）、特に肋鎖靭帯と腸腰筋、下腿の左右差が大きい（図4.3.7）。

このような肩関節の内旋筋群の発達・前腕の回内外筋は、三国丘陵域でその必要性が高かったといわれている（武末2001；森2011）木を切るような動作や弓矢や投弾を用いた狩猟活動、木材加工作業のために必要な動作によって発達しうる筋である。また、肋鎖靭帯の左右差や腸腰筋、下腿のMSMsの左右差が大きいことも、片側の肩を後方に引く動作や弓を射る際や伐採の際に重心を支える脚が片側に偏ることによって説明しうるものである。

加齢変化は、土井ヶ浜地域と同様の傾向を示し、成年段階のMSMsパターンは土井ヶ浜地域とやや類似する。成年段階のMSMsパターンでは成年段階では大胸筋よりも三角筋のほうがスコアが高い。しかし、肩関節の屈伸や手首の回内外では土井ヶ浜ほど他の年齢段階と異なるようなパターンを示さない。このような傾向から、三国丘陵域では狩猟や開墾や伐採などの活動に、土井ヶ浜などの年齢区分が存在していないかの可能性を考えられる。両者の差は、水田農耕の定着度が三国丘陵域では土井ヶ浜よりも高かった点、伐採や開墾、灌漑設備の維持のための木材加工作業の必要性が三国丘陵の方が高かった点、土井ヶ浜のような地域的な多様性が小さくなる傾向があり、この点からも女性の活動の地域性が減少したことは指摘することができる。

女性の身体活動

カテゴリカル主成分分析の結果を見ると（図4.3.14）、三国丘陵域は、福岡平野の集団と同じような位置にプロットされる。弥生時代の女性は左右差（図4.4.16、4.4.17）や加齢変化の仕方（図4.4.9、4.1.10）、男女別の差の変化（図4.4.11、4.4.12）において地域的な多様性が小さくなる傾向があり、この点からも女性の活動の地域性が減少したことは指摘することができよう。

MSMsのパターンを検討すると（図4.3.12）、土井ヶ浜と同様で他の集団とあまり大きな違いはないといえる。下肢のパターンは、腸腰筋における違いはあるが男性とも類似している（図4.1.3、4.1.12）。上肢のMSMsパターンとしては、肩関節の動きに作用する筋では大胸筋に、手首の回内外に作用する筋では方形回内筋にピークがくる（図4.3.12）。肘関
第7章 考察

節の屈伸に作用する筋はほぼ拮抗し、この点が土井ヶ浜との違いであるが、明確なピークを示さない。そのため、肘関節の屈曲と伸展のどちらともに同程度の負荷がかかっていたと考えられる。基本的には、稲を刈る動作や除草のための動作、枠を作ることを含む脱穀作業や織布の作成によって発達する筋と考えて大過ないだろう。

三国丘陵域の女性の加齢変化は、当該時期の男性と類似し、加齢とともに増加する傾向を示す（図4.3.14）。三国丘陵域では、水稲農耕以外の副次的な活動や、水田経営のための伐採活動の需要が高かった可能性が指摘されている（武末2001；森2011）が、これは基本的には男性が主体となって行われる活動である。また、土井ヶ浜地区のように水田経営を一度放棄し移動したような証拠はみられておらず、基本的に谷水田の経営は継続していたと考えられる。このような状況によって、Kramer and Boone（2002）の指摘と類似する加齢変化の様相が、男性だけでなく女性においても確認されたと考えることができるのではないか。

C）福岡平野

遺物組成（図4.1.5）をみると、土井ヶ浜地域・三国丘陵域と同様で、水稲農耕とともに伝来した収穫具及び木工用斧類が一定の割合を示している。さらに、この地域でも紡績具と調理具が同程度の割合を占めている。しかし、福岡平野では農耕関連遺物の中でも収穫具が他地域よりも多い（図4.1.7）。この地域では、伐採や木材加工なども灌溉に必要な水路の形成や木製品の製作のために行われていたが、三国丘陵域ほど伐採活動の必要性は高くなかったと考えられる。また福岡平野では内湾や川での民漁や小規模な網漁などの漁撈活動も行われていたと考えられる（図4.1.6）。このような活動は農閑期に行うことが可能な漁撈活動であり、福岡平野で最も水稲農耕の定着度が他の地域よりも高かったのだろう。そのため、福岡平野の男性の身体活動は弥生時代の土井ヶ浜・三国丘陵域の集団とはやや異なる可能性が考えられる。一方、女性の身体活動は、三国丘陵と同様で男性ほどの地域差を示さないと予想された。

男性と女性の身体活動

福岡平野の男性は、土井ヶ浜・三国丘陵の男性とMSMsがやや異なる（図4.3.5）。福岡平野でみられる肋鎖靭帯のスコア4以上の個体の頻度の高さ（図4.3.3）は、土井ヶ浜と同様で網漁によるものである可能性が考えられる。さらに、投弾を振り回して投擲するという行為も肩関節の後方への回旋運動を必要とするものであり、この動作も肋鎖靭帯のMSMsの発達を促したと考えられる。

しかし、土井ヶ浜や三国丘陵域の集団とは大きく異なる点がある。特に図4.3.1をみると明らかであるが、他の2集団よりも上肢のスコアが概して低い傾向があり、この地域の特徴として上肢の活動負荷の減少を指摘することができる。このMSMsスコアの全体的な低さは、加齢変化（図4.4.5）においても指摘することができる。この点から考えて、水稲農耕そのものだけでなく、網漁や投撈といった行為による負荷は三国丘陵や土井ヶ浜と比べ
第7章 考察

すると全体的に低かったと考えられる。

さらに、男女間のMSMsの差は他の弥生時代の集団と同程度である（図 4.4.11）が、発達する部位の男女差が小さいこと（図 4.4.12）を指摘することができる。また、上肢・下肢の左右差の性差も極端に小さい（図4.4.16、図4.4.17）。このことから、男女間の活動差が弥生時代の中で最も小さかったのではないかと考えられる。これは、男女のMSMsパターンを比較すると、男女間の差が男性の肋鎖靭帯の発達と腸腰筋の発達にしかみられないことからも示唆される（図 4.3.3、図 4.3.12）。

農耕の開始によって、MSMsの性差が減少する傾向は Eshed et al. (2004) でも指摘されており、これは女性の生業への参加度が増したためと考えられている。弥生時代においては灌溉設備の維持や開雑など、水稲農耕に関連する諸作業において男女間の差はあったと考えられるが、水稲農耕の定着度が高く、狩猟などの男性優位労働が農閑期の作業としての度合いを強めより副次的な活動になってくると、男女で協働して働くような場合が増え男女差が小さくなっていたという可能性が考えられる。すなわち、土井ヶ浜地域や三国丘陵のように網漁や狩猟、農地の開拓などを行う必要のある活動の減少が、男女間の活動の差異をわずかに減少させたのではないかと考えることもできる。このことから、最初に水稲農耕が定着し大規模な灌溉設備を持つ水田を作った福岡平野の集団が最も水稲農耕特有のMSMsパターンを示している可能性も示唆される。

D）広田

広田地区は遺物組成の検討は行えていないが、漁撈（釣り・サンゴ礁における採取）や畑作を中心としている点で北部九州の3集団とは根本的に活動が異なる。

男性と女性の身体活動

広田地域のMSMsパターンの特徴としては、全体的にスコアが低いことがまず指摘できる（図4.1.20）。このMSMsスコアの全体的な低さは、加齢変化（図4.1.34、4.1.38）においても指摘することができる。肋鎖靭帯のスコア4以上の個体の頻度が高く、大胸筋のMSMsスコア1を示す個体がいないため、明瞭な漁撈的なMSMsパターンは形成されていない（図4.1.23）。広田の集団に関しては、想定される漁撈活動が釣漈や潜りであり、網漈などは活動の仕方が異なることが、漁撈的なMSMsパターンが形成されない要因となった可能性が考えられる。また、下肢のMSMsパターンにおいても他の弥生時代の集団と同様の傾向を示さない。この点は考古学的な研究成果と一致する（甲元 2003）。

この地域の男女は全ての年齢段階においてMSMsが相対的に低いという傾向（図4.4.5、4.4.10）から、縄文時代の各集団や弥生時代の各集団のような負荷の強い労働を必要としていなかった可能性を指摘することができる。畑作や狩猟も行っていたが生業の中心は漁撈であり、その漁法としては釣漈・およびサンゴ礁での採取であると考えられ、外洋への進出はあまり一般的でなかったと考えられる。このサンゴ礁での採取などにおいて、負荷の強い労働が必要であったと考えることは難しく、この活動の結果がMSMsに表れているの
と考えられる。

MSMs の性差に関してみると、男女間の差は大きい（図 4.4.11）が、発達する部位の男女差は小さいという傾向（図 4.4.12）を指摘することができる。男女間で活動にかかる負荷の差は大きいが、活動の仕方に大きな違いはなかったと考えることができる。このことも、男性や女性の活動区分を必要とするような負荷の強い労働を必要としていなかったことを支持される。

E) 弥生時代各地域の身体活動の多様性のまとめ

考古学的な検討結果から、弥生時代の土井ヶ浜、三国丘陵域、福岡平野の 3 集団は水稲農耕の影響を強く受けていると考えられ、またその中にも地域的な違いが存在することを予想した。

MSMs パターンの結果から、この 3 集団では特に下肢の MSMs パターンにおいて水稲農耕の影響を強く受け、それが繋文時代や広田地域との差異となってあらわれていることを指摘することができた。一方、上肢の MSMs パターンには弥生時代の 3 集団間にも違いがみられ、これは、土井ヶ浜、三国丘陵域、福岡平野の 3 集団の水稲農耕以外の活動によって生じている可能性が高いと考えた。弥生時代の各集団は、水稲農耕を生業の基盤としつつも、それに特化するわけではない、周辺環境を最大限利用する複合的な生業を行っており、このような複数の活動の組み合わせ方の違いや類似は、上肢と下肢それぞれにみられる MSMs パターンから読み取ることが可能であるといえる。

遺物組成の多様性から縄文時代の方が活動の多様性が大きくなると予想されたが、縄文時代の男性の集団間の差のほうが弥生時代よりも小さくなるという、相反する結果が得られた。弥生時代の、水稲農耕を行っていた 3 集団の MSMs パターンは、下肢においては男女共に類似性が高いが、上肢の MSMs パターンの違いは縄文時代よりもわずかに明瞭になる。一方、女性の MSMs は縄文時代のほうが弥生時代よりも多様性が小さいという結果が得られた。この結果は、水稲農耕という中心となる生業が確立し、それへの依存度の差に基づく副次的な活動の多寡の差や、水稲農耕を行うにあたって必要な土地の開拓や開墾、灌漑設備の維持の必要性の多寡の差が生じ始めたことに起因する可能性がある。

男女差の傾向としては、男性の方が地域間のばらつきが大きいことが指摘される（図 4.4.12）。これは、生業の基盤である水稲農耕以外の諸活動は狩猟や漁撈など概ね男性によって行われる可能性が高い活動であった為ではないかと考える。中でも最も水稲農耕の定着度の高い福岡平野の男女の差は、三国丘陵域や土井ヶ浜地域よりも小さいことからも、これは支持することができる。このことからも、水稲農耕の定着以降、女性の活動の地域的な多様性が減少していったということが示唆される。これまでで、農耕の定着以降、女性の活動負荷が増し、男女差が減ることが指摘されてきた（Eshed et al. 2004）。この男女差が減るという傾向に関しては、縄文時代の地域性を考慮すると一概には支持できない。それよりもむしろ日本列島の諸集団においては、女性の活動は地域的な特徴をあまりもたなくなり、男性の活動が地域的な特徴を示すようになったことを指摘することができる。
第7章 考察

性の労働は、水稲農耕だけでなく狩猟や漁撈、さらには土地の開発や灌漑設備の維持や管理にかかわるものであり、これは各地域の環境の違いをよく反映するものである。これに対し、女性は採集対象が均質になり始めたため、稲作を行っていた地域では、地域的な多様性が減り、女性の活動の類似性が増し、その結果、男女間のMSMsの差の均一化へとつながったと考えることができる。加齢変化や左右差に関しても地域的な多様性は減少する傾向にあり、このような指摘は支持されるものである。

また、弥生時代の男性の加齢変化の様相は縄文時代のそれとは異なり、弥生時代の男性は基本的に加齢とともに増加していく（図4.4.5）。下肢のMSMsパターンが基本的にはどの年齢段階においても類似することから、どの年齢段階も水稲農耕は行っていたと考えられる。Kramer and Boone（2002）によると、農耕民の女性では15歳前後、男性では20歳前後で生産に携わる時間がピークに達し、その後は、65歳まで概してほぼ同じような生産活動を年間で推移を指摘している。渡辺（1990）でも農耕活動の年齢限界は狩猟生活の年齢段階よりもはるかに高いと指摘されており、男性の傾向は本稿での結果を支持するものである。

また、中でも特に福岡平野と三国丘陵域の各年齢段階の下肢のMSMsパターンの類似性が高い（図4.4.4）。さらに、各年齢段階のMSMsパターンを比較すると、成年段階のパターンの集団間差が大きいこともわかる（図7.1.7）。渡辺（1990）によると、農耕化の生態学的利点の1つは食糧採集社会の退役狩猟者が食糧生産者としての地位を与えられることであり、さらには穀物を保存・管理し余剰を蓄えることが可能となることであると述べられている。渡辺（1990）はさらに、農耕の管理・運営に必要な知識の豊富な男性の退役狩猟者が担うことで農耕への移行はなされたと考えている。渡辺（1990）は、近代アイヌ社会の農耕化から縄文時代の農耕の可能性を問題としたもので、日本列島弥生時代の場合大陸からの移住を伴って農耕化は確立するため、状況が異なる。そのため、弥生時代の農耕化が、渡辺（1990）による退役狩猟者の牵引によるものであるかどうかは定かではない。しかし、図7.1.7の年齢段階ごとのMSMsパターンの地域的な差異が成年段階でより大きいことから、漁撈活動や狩猟活動、あるいは伐採活動などの副次的な活動をより若い個体が率先して担っていた可能性は指摘できるかもしれない。

一方、女性の加齢変化は、土井ヶ浜は縄文時代の各集団と同様の傾向を示し、三国丘陵域の女性は加齢とともに増加する傾向を示す（図4.4.10）。福岡平野の年齢の様相を検討できていないため、今後さらなる資料の増加とその検討が必要であるが、水稲農耕の定着度がより低かった土井ヶ浜地域の女性の加齢変化の様相が、むしろ縄文時代のそれと類似するという傾向は現段階でも指摘することができる。弥生時代の女性の活動は縄文時代の採集活動の延長に位置づけられて展開した可能性が小笠原（1990）によって指摘されており、土井ヶ浜の女性の活動においては、稲以外の採集活動も重要であった可能性が考えられる。このことから、水稲農耕の定着度が女性のMSMsの加齢変化のあり方に極めて重要な影響を与える可能性が示唆される。
第7章 考察

第3項 日本列島狩猟採集・農耕移行に伴う身体活動の変化

従来、縄文時代人と弥生時代人の違いとして頭蓋骨を中心に様々な形態的差異が指摘されてきた。その中で、筋発達については、弥生時代人の下肢の筋付着部の発達の傾向をふまえたうえで、縄文時代人の方が粗線や脛骨の扁平性、上腕骨の三角筋粗面の明瞭さなどから、概してより強い印象をうける、という指摘がなされてきた（土肥 1996）。縄文時代
第7章 考察

と弥生時代の生業の違いは、いわゆる狩猟採集農耕移行の問題と対比可能であり、世界的に様々な関心が寄せられる分野である。しかし、これまで考古学的分析と人骨の形質的分析の両方を用いた体系的な研究は行われてこなかった。

縄文時代と弥生時代で用いられた道具の違いを列挙すると、狩猟活動では、投弾の有無から推測される投石器の使用の有無、漁撈活動の重要度、脱穀・製粉に用いられる道具、紡糸など多岐にわたる。最も大きな差としては、広田を除く弥生時代の対象地域では水稲農耕が生業の中心となっていたことである。一方、縄文時代の男性は弥生時代の男性と比べると漁撈活動の道具の比率や多様性が高いということも指摘することができる。

このような道具の差をふまえ、縄文時代全集団をまとめ、水稲農耕を行っていた弥生時代全集団とのMSMsの比較検討を行った。まず、男女共に縄文時代のMSMsパターンは弥生時代のMSMsパターンよりも概して大きい傾向を示す（図4.3.8、図4.3.17）。

狩猟採集農耕移行における身体活動の変化を検討したBridges（1989）はミシシッピ州の事例では、農耕民のほうが狩猟採集民よりも厚く頑丈な長骨骨幹を有するという結果を示し、特にその傾向は女性の特に前腕で顕著であるという見解を提示した。この傾向は乳鉢と乳棒を用いた穀物の脱穀という活動と関連する可能性が指摘された。MSMsを用いてレヴァントのNatifian（狩猟採集）集団と新石器（農耕）集団の比較を行ったEshed et al.（2004）は、上肢のMSMsに関しては農耕集団の方が増加傾向にあり、特に女性の増加率が高いため、農耕の確立によって生業活動全体における女性の役割が増していったと指摘している。また、Sackett（1966）は、様々な社会の身体活動レベルを算出し、採集民は男性1.72、農耕民男性1.87、農耕民女性2.28、女性2.31というデータを提示しており、この研究もBridges（1989）やEshed et al.（2004）の研究成果と整合するものであるといえる。

しかし、本稿での結果から、MSMsのスコアは縄文時代と弥生時代を比べた場合、減少傾向にあるといえる。この結果から身体活動の負荷が減少したとは考えることができない。また、この結果は、土肥（1996）の指摘と整合するものである。ジョージア州沿岸のネイティブアメリカンの四肢のサイズを研究したLarsen（1981,1995）は農耕の導入に伴い、長骨の周径サイズが全体的に減少することを指摘しており、この地域と傾向を同じくすると言える。

日本列島の場合、縄文時代人と弥生時代人、特に対象とした北部九州域の弥生時代人との遺伝的な差がMSMsに影響を与えている可能性は十分に考えられる。以前、縄文時代の頑丈さは縄文的な遺伝子によ るものであり活動などの後天的な要因でないことを示す例えとして「誰もが頑張れば野球選手になれるものではないように、縄文時代人の頑丈さは、現代日本人がどれだけ鍛えても得られないだろう」と指摘されたことがあるが、MSMs研究はそもそもそのような絶対的な指標ではない。生まれた筋付着部域の面積には個体差があり、もし面積を比較しようとした場合には上記の問題は生じるだろう。しかし、MSMsスコアの基準は表面形状の複雑性、稜線の有無とその本数である。個体の筋の付着部域は人によってそれぞれであり、筋繊維がつくことのできる絶対量には少なからず遺伝的な影
考察

影響があるだろう。さらに、稲作の形成にやすらぎにも遺伝的な差は存在する可能性もあるが、そこは形成される稲作の有無や量を評価することによって、その個体が生まれたキャンバスの中でどの程度MSMsのスコアを発達させたかを評価し比較していると考えている。さらに、遺伝的・系統的に差があれば、形質的にあらわれるありとあらゆる差がそれのみによって説明されるわけではない。岡崎（2007）、Takigawa（2014,2015）で指摘されているように生業活動もその一因となった可能性はあるだろう。そのため、地域別のMSMsの結果もふまえ、MSMsスコアの増減がどのような部位にみられたのかという具体的な傾向を以下にみていく。

縄文時代と弥生時代の男性間でのMann-WhitneyU検定では、22部位中11部位で有意な差がみられるが、うち2部位（腸腰筋とヒラメ筋）のみ弥生時代人骨の方が縄文時代人骨よりもスコアが高い傾向を示す。男性のMSMsパターンの差は、下肢よりも上肢に顕著にみられ（図4.3.8, 4.3.9）、大胸筋に特に明瞭にあらわれる。肋鎖靭帯、大胸筋や三角筋、手首の回内外に作用する筋、後脛骨筋と長趾屈筋は縄文時代の方が弥生時代よりも有意にMSMsスコアが高い（図4.3.9）。

一方、縄文時代と弥生時代の女性間でのMann-WhitneyU検定の結果は、22部位中14部位で有意な差がみられた（図4.3.17, 4.3.18）。うち5部位（ヒラメ筋、腸腰筋、大胸筋、三角筋、後脛骨筋、長趾屈筋）のMSMsスコアが高い傾向がみられる。特に、ヒラメ筋は縄文時代の方が弥生時代よりも高くなる傾向がある。ヒラメ筋のMSMsスコアの発達は、弥生時代の広田以外の全集団の全年齢階段で確認されている（図4.3.3, 4.3.4, 4.4.1・2）。

ヒラメ筋は、立脚期における推進期（蹴ったり時）、特に歩幅を広げるために足を垂直方向に挙げるようにしたり行う際に強く作用し、また静止状態において足を踏ん張るように動作の際に強く働く筋である（坂井・松村2011）。このことから、ヒラメ筋は、水田などのぬかるんだ環境下で、足を垂直方向に向けたるつづきの歩行によって発達しやすい筋であるといえる。

加えて、男性の場合は、腸腰筋も弥生時代の男性の方が縄文時代の男性よりも有意に高い。腸腰筋のMSMsスコアの高さも広田以外の全集団の全年齢階段で確認されている（図4.3.3, 4.4.1・2）。腸腰筋は遊脚期前半及び移行の段階で上体の保持に強く作用する姿勢筋である（坂井・松村2011）。さらに、大腰筋（大腰筋と腸骨筋をあわせて腸腰筋とよばれ、これらは停止部を共有する）は男女共に農業従事者では、座業的職業従事者に比べて70歳以上の老年個体でも筋横断面積が大きい筋であり、また、この筋の委縮を一因として
脚の引き上げ能力が低下すると考えられている筋である（久野 2000）。腸腰筋に関しては、男性では有意に弥生時代人の方が縄文時代人よりも発達するが、女性では縄文時代人と弥生時代人ではほぼ拮抗するがわずかに縄文時代の女性の方がMSMsスコアは高い。上体の保持に作用する腸腰筋のMSMsスコアの傾向が弥生時代の男女でやや異なり、弥生時代の男性の腸腰筋の発達がより強い傾向を示す可能性があると言える。

ではこの、男性の腸腰筋の発達はどのような活動によって形成されうるのか。

農作業に必要な工程は、耕転・整地・施肥・播種・間引き・中耕除草・灌漑・防除・収穫・運搬・乾燥・脱穀である（黒崎 1997）。このうち、耕転と整地、中耕除草に用いられた弥生時代の道具は木製の鍬と錐であると指摘されている（黒崎 1997）。Murdock（1937）の性別に基づく労働から考えると、農作業の一連の過程では、農地の開墾は男性が主体となる場合が多く、耕作や苗の植え付けは男女共に行っており、穀物の手入れと収穫は女性が主体となる場合が多い。

男性労働を主体としたと考えられるのは、開墾及び耕転と整地・代揃きであり、広鍬や一本錐を用いて行われた（図7.1.8）。水田や水をはった田での作業のために泥除けのついた広鍬も発見されている（森井 1995）。図7.1.8は大阪の遺跡であるが、同様の一本錐や広鍬が弥生早期に北部九州域でも出土している（佐藤 2008）ため、当該対象地域でも同様の活動が行われていたと考えられる。この作業は、図7.1.8にみられるように、柄の長い錐や鍬
の使用の際には上体を直立させる必要がある。

また田植え前に水田の土を平らにする作業である代掻き（図7.1.9）も、エブリ（横鍬）を用いて行われたと考えられている（黒崎 1985）。一方、水田の除草や収穫、弥生時代は穂首刈りであると考えられている（甲元 1997）が、除草や収穫時に耕起の際と同様の直立姿勢を維持できたとは考え難い。このような水稲農耕に関連する諸作業における男女の役割分担の差の結果として、弥生時代の男性の腸腰筋のMSMsスコアが縄文時代の男性よりも高いという傾向を示す可能性を指摘することができよう。

Murdock（1937）では耕作と植付けが同じ作業としてまとめられているが、弥生時代の場合、労働の区分の厳密性に疑問は残るが、鋤や鍬を用いた耕起や整理作業は男性によって主に行われたものと考えることができる。

さらに弥生時代の女性側にも腸腰筋が発達しない要因がある。東村（2011）によって明らかにされた弥生時代の紡績の仕方（図7.1.10）をみると、基本的に座位姿勢をとることがわかる。布送具を腰当てで固定し、経送具を足で突っ張って固定し、布送具と経送具の間に経を輪状にかけ、その張力を腰と足で調節しながら布を織りあげる方式である。

腸腰筋は、日常的に座位姿勢をとる時間が長い人では委縮しやすい筋（坂井・松村 2011）であり、骨盤の後傾姿勢の際に作用する筋は肢関節の伸展筋群や腰部筋であり（貞清など 2012），肢関節の屈曲に作用する腸腰筋への要求は少ない。この傾向は、広田以外の弥生時代全集団の女性で共通する特徴であり（図4.3.12）、年齢段階ごとにみると福岡平野・三国丘陵域・土井ヶ浜の熟年と老年でみられる（図4.4.9）。大陸からの影響をより強く受けた北部九州域で明確なパターンであるともいえ、これらの活動も、腸腰筋の男女差につながった可能性がある。
第7章 考察

縄文時代の各集団では、弥生時代の各集団よりも、上腕に付着する諸筋の発達が著しい（図 4.3.9, 4.3.17）。この結果は特に男性で顕著である。四肢の断面形状を検討した諸研究によると、船を使用している集団では、上腕・大腿骨の骨断面示数の割合が大きく、相対的に上腕が発達あるいは生体力学的な負荷が強い傾向を示すとされている（Stock 2006; Lieverse et al. 2011）。一方、内陸の農耕民では大腿骨の方がより頑丈な傾向がみられるという指摘がなされている（Stock 2006）。縄文時代は、漁撈活動のみを行っていたわけではないが、弥生時代との差を考えたときには関連遺物の種類の豊富さから考えて重要な差異となっている（表 3.2.1）。

しかし、上肢の諸筋のうち、弥生時代の男性のほうが、MSMs スコアが高い部位として円錐靭帯、鎖骨下筋、大円筋と広背筋、鳥口腕筋、上腕三頭筋外側頭が挙げられる。主に上腕の後方拳上（図 7.1.11）およびそれに伴う肩関節の後方への動きに作用する筋であり、この動作に作用する諸筋が弥生時代の男性で発達する要因が存在すると考えられる。この部位は、図 4.3.5 の縄文時代各集団と弥生時代各集団の MSMS22 部位の平均値を用いたカテゴリカル主成分分析の第 3 主成分と正の相関が高い部位に該当する。水稲農耕以外の活動が上肢に与えた影響が強いとした三国丘陵域・土井ヶ浜地域が正の値を示し、福岡平野域の男性もほぼ軸上に位置する（図 4.3.5）。弥生時代に初現した道具には、土製・石製の投弾が存在し（表 3.2.1）、この使用が弥生時代の上肢の MSMS スコアに影響をあたえた可能性がある。上腕の外転に作用する三角筋（図 7.1.12）は縄文時代の男性の方が、MSMs ス
第7章 考察

コアが高い傾向を示すことから、上腕の外転及び後方を組み合わせるような石槍や弓などと用い方とは異なる可能性が高い。ヨーロッパの投石器の使用方法（図 7.1.13）からの推測であるが、弥生時代の投石器も同様の用い方をした可能性がある。また、土井ヶ浜地域では投弾は報告されていないが、水稲農耕とセットで伝来した遺物であるのであれば、用いていた可能性は十分考えられるよう。

下肢では、粗線に付着する筋群は縄文時代の方が高い。男性は大殿筋の差も有意である。これらの筋は、股関節の伸展（図 7.1.14 左図）や内転筋群（図 7.1.14 右図）である。立位での体幹の前傾に、粗線に付着する筋群の中に含まれている大腿二頭筋や大内転筋は大きく寄与する筋であり（嶋田・平田監訳 Neumann 原著 2005）、階段を登るような大きな進展トルクを必要とする活動に大殿筋は寄与する。股関節の伸展筋群は、身体を上方と前方へ加速させるために大きな進展トルクを生ずる筋群であるため、山道を登るなどの際に強い負荷が課される（図 7.1.15）。津雲の集団において、大殿筋の発達が顕著であることからもこのパターンが上記の活動によるものであることが示唆される。

図 7.1.14 股関節の伸展（左側）と内転（右側）
（坂井・松村 2011 より引用）

図 7.1.15 負荷を負う登山時に比較的高い要求が股関節伸筋に課せられる（嶋田・平田監訳 Neumann 原著 2005）

図 7.1.16 手首の回内外（坂井・松村 2011 より引用）
一方、縄文時代と弥生時代の差として、男性よりも女性のほうが、差が大きい部位は手首の回内外に作用する筋、回外筋、円回内筋であり（図7.1.16）、縄文時代の女性の方がスコアは高い（図4.3.18）。方形回内筋の差はその中では小さい（図4.3.18）。縄文時代と弥生時代の女性の道具の差として最も大きいのが、稲刈り作業の開始と脱穀の際に杵臼を使用するようになった点、紡績が織布へと変化した点である（表4.3.1）。縄文時代では、磨石や石皿、敲石を用いた堅果類などの製粉作業が行われており、このような作業には上腕筋と上腕二頭筋が作用する肘関節の屈曲と、肘関節屈曲位での手首の回内外の動きが重要となる。この部位は図4.3.14の女性のカテゴリカル主成分分析の第2主成分と正の相関を示し、縄文時代の津雲以外の集団が正の値を示す。このことからも、磨石や石皿、敲石を用いた堅果類などの製粉作業の負荷が縄文時代と弥生時代の女性のMSMsの差となって表れたと考えることができる。しかし、水田の雑草を抜く作業や稲の穂首を刈る作業、杵を用いた脱穀作業、布を織るという作業においても手首の動きは重要であると考えられる。これらはすべて弥生時代に新たに導入された活動である。縄文時代と弥生時代の女性の手首の筋肉のうち、方形回内筋のMSMsスコアの差が小さい（図4.3.18）。円回内筋と方形回内筋の作用の差は、円回内筋の方が、野球の投球のような大きなパワーを要し肘関節をやや屈曲させる回内運動で最大の筋電図活動を示す一方で、方形回内筋は、要求されるパワーや肘関節の状態に関わらず、すべての回内運動に関わる（嶋田・有馬監訳Neumann原著2015）。図4.3.14をみると、水稲農耕の定着度が低かった土井ヶ浜地域の女性は、方形回内筋の発達が相対的に低いことを指摘することができる。このことも、弥生時代に新たに始まった諸活動、水田の雑草を抜く作業や稲の穂首を刈る作業、杵を用いた脱穀作業、布を織るという作業が、縄文時代と弥生時代の女性の方形回内筋のスコアの差を減少させた可能性を支持する結果である。また、土肥（1996）は、縄文時代と弥生時代の女性の骨の骨体部の断面示数の比較を行い、弥生時代の女性の骨間縁の発達を指摘し、その要因として脱穀・精米などの手作業をあげている。筋付着部の評価は行っていないが観察する限りでは、骨間縁の発達に作用するのは長母指外転筋・長母指伸筋や短母指伸筋などの指の動きに作用する筋であると考えている。第一中手骨や第一基節骨は布を織る際（図7.1.9）の縫打具で縫を打ち込む際に強い負荷がかかる可能性があり、これもまた弥生時代の女性に特徴的な活動の1つであったといえるだろう。さらに、狩猟採集から農耕への移行に伴い起きた変化としては性差や左右差の性差のあらわれ方の多様性が弥生時代で減少する（図4.4.11, 4.4.12, 4.4.14, 4.4.15, 4.4.16, 4.4.17）ことと、加齢変化の様相が縄文時代と弥生時代では異なるという点が挙げられる（図4.4.5, 4.4.10）。これは、生業の変化に伴い、各集団の生業活動への従事の仕方が変化したことを示唆するものである。このような生業諸活動を集団内のだれが担うか、という点は考古学分野においては文化人類学からの類比が行われてきたが日本列島の先史時代集団に対して直接的な検証は行いがたいものであり、また形質人類学的の分野ではほとんど未検討の部分であった。しかし、例えば弥生時代の男性労働の価値の上昇は父系への傾斜を生じさせる可能性を孕むものであった（田中2000）ことや、新たな生業活動の導入に対応しよう
ような分業体制をどのように確立するかは社会構造の基本的変化につながりうるもの（渡辺1990）であるという点で、極めて重要な観点である。またこのような観点で行われた分析結果を世界規模で比較することによって、身体活動は地域的に多様であるために一般化できない（Stock and Pinhashi 2011; Larsen 2011 等）という現在の形質人類学分野における共通見解を経て、狩猟採集農耕移行に伴い進行した階層化社会への移行プロセスの比較研究が可能となると考える。

第2節 中近世各集団の身体活動の多様性

第5章で中近世の各集団の生業活動・生活様式・生産体制を文献記録や民俗学的研究から推定し、MSMsの差異と類似を析出しすることでMSMsパターンの形成要因と考えられる身体活動を検討した。さらに、集団内のMSMsの差から活動の性差や年齢差に関する検討を行った。本節では、これらの分析結果および議論を整理し、中近世の各職業・階層集団のMSMsパターンの形成要因と集団内の身体活動の差異の要因を考察する。

第1項 中世

A) 主漁従農民（吉母浜）

吉母浜で行っていた活動は、艚を主体とし穂を併用する漕ぎ、網漁、ホコヅキ、釣りである。漁撈活動を主とし舟を使用している集団は、いわゆる漁撈的なMSMsパターンを示すと推測された。一方、女性は当該地域の近世漁村にみられる女性が舟に乗ることを禁忌とするという風習から漁撈的なMSMsパターンを示さないと予測された。

男性の身体活動

本研究では、主漁従農集団とされる吉母浜中世人骨のMSMsを観察し、先行研究との比較を行ったところ（図5.2.5）、肋鎖靱帯のスコアが最も高く、次いで大胸筋・三角筋のスコアが高いという、漁撈民に特徴的な傾向が認められた。しかし、それ以外の部位に関しては各地域で共通した傾向は得られていない。例えば、Lieverse et al（2009）では、肘関節の屈曲にかかわる上腕筋や腕橈骨筋はランクが高いが、上腕二頭筋のランクは低いことが指摘され、これは、回内位で捲り、肘関節を屈曲した状態で捲りをひく動きに関連していると指摘されている。しかし、主漁従農民（吉母浜）では上腕筋よりも上腕二頭筋のほうが、スコアが高い傾向にある。このような違いが生じる要因として漁撈活動で用いられた道具の影響が挙げられる。中世主漁従農民（吉母浜）では舟を漕ぐ際に主に用いられたと指摘されているのは艚や練り捲である（伊藤1985）。艚は、右手の肘関節をやや屈曲させ回外位で腕部を握り、前進する舟に対して横方向に往復運動して推進する道具であり（吉田1976）、練り捲も両腕を囲外させて握り、練るよ
うにしして操作する道具である。このような前腕を強く屈曲し回外する動作に主に働く筋は上腕二頭筋である。このことから、Lieverse et al (2009) と本研究での肘関節に作用する筋の発達の仕方の違いは、使用する道具の握り方の違いによって生じた可能性が考えられる。

このように、主漁従農民（吉母浜）では、地域独自に発展した道具が使用されていた。主漁従農民（吉母浜）男性の肋鎖靭帯、大胸筋、三角筋のスコアが高いという傾向は、中世主漁従農民（吉母浜）で使用されたと想定される道具から、「橋で漕ぐ」のではなく、主に艪を押し引き戻す行為によって形成されたことが示唆される。肋鎖靭帯のスコアの高さは、艪を推す際に上腕を前後方向に動かす動きや、水中から網を曳く際の、下方からやや上方へ腕を引き上げる動き、ホコをつく際の外転挙上からの急速な腕の振り下げる動きによるものである可能性があり、このような一連の活動には大胸筋や三角筋の働きも重要となると考えられる。

さらに、下肢を含めた分析の結果、主漁従農民（吉母浜）の男性では、上肢のほうが下肢よりもスコアの高い部位が多い傾向や、下肢の中では下腿より大腿骨に付着する筋のほうがMSMsのスコアが高いという傾向がうかがえた。腸腰筋や粗線、大腸筋は、上体や骨盤、股関節の安定に作用するため、船上でバランスをとる動作と強く関わり、その後果、下腿の筋よりも大腿の筋のほうがMSMsのスコアが高く、他方で艪や網などを扱う上肢と比較するとやや劣るものとなった可能性が考えられる。艪を使用する漁撈民の上肢の断面示数と大腿の断面示数を比較した研究では、上肢の方がよりも筋肉の働きが大きくなるという傾向が指摘されており（Stock 2006; Stock and Shaw 2007; Shaw and Stock 2009）、主漁従農民（吉母浜）の下肢よりも上肢の方がMSMsのランクが高い部位が多い（図5.2.6）という傾向も加齢変化の様相をみていく（図5.3.1-1、図5.3.3）と、中世の主漁従農民（吉母浜）の成長段階と成年段階の活動はやや異なるものであった。図5.3.1-1をみると、肋鎖靭帯のスコア4以上の個体の割合の高さは変化していないが、成長段階のMSMsパターンでは次いで三角筋のスコアが高い。その一方で、熟年段階では大胸筋のスコアが高い個体が多い傾向にある。多くの漁村では、男性は若者組と呼ばれる組織に十代半ば過ぎに入り、祭りの管理や船の引き上げ作業等に従事したことが知られ（今野 1949）、また、小漁船による漁では、漁場の選定と操船を年長者が、網や縄の上げ下ろしを年少者が行う場合が多いことが指摘されている（伊藤亜人 1993）。MSMsパターンをみると、菱形靭帯・三角筋の前部・三角筋・上腕筋・腸腰筋・側面広筋・下腿の筋のスコアの平均値は成年のほうが高く、成年より頭著である。この中でスコアの2以上の個体の頻度が成長段階の方が多いのは下腿の筋のみである。船上での網や縄の上げ下げには、不安定な船上で立って「踏ん張る」ような動作が必要であり、足関節の屈曲に作用する下腿の筋に、より大きな負荷がかかることが多いのではないかと推測される。かつ、成長段階では大胸筋ではなく三角筋にピークがあることから艪の操縦よりも斜め下方より網を引くような動きが成年の主な活動であるという活動の区分が、中世の主漁従農民である主漁従農民（吉母浜）にも存在した可能性を示唆する。
第7章 考察

このように漁村の男性は年齢によって従事する作業が異なっていたために、年齢によってMSMsパターンが大きく異なる傾向を示したのではないかと考えられる。しかし、基本的に漕艇や網を曳く、ホコ突きなどの、いわゆる漁撈的MSMsパターンを形成しうる活動は年齢に限らず行っていたために、肋鎖靭帯のスコアの高さという点では共通したMSMsパターンが得られたのではないかと考えられる。

さらに東・西の2集団で、MSMsにおいてその分散に偏りがみられる要因についての考察を行う（図5.3.11）。

まず、西側の墓域にはアワビやサザエ、二枚貝といった貝類が副葬された事例が偏ることが報告書から指摘できる（田中1985）。一方、東側ではLG127の地上標章として巻き貝がおかれるのみであった（田中1985）。貝の副葬は当時の漁民の習俗であることが知られており（伊藤1992）、西側の男性はその負荷が上肢に偏ることからも、主に舟を用いる漁撈に直接従事していた集団であった可能性が示唆される。主漁従農民の諸活動のうえ、漁撈・磯見・網漁の主体を成していたのは西側の男性であったことが推測される。このことから、西側の女性も漁撈従事者の家に属する可能性が示唆される。

中世吉母浜の層から、ウシやウマが出土しており（ややウマが多い）、これは吉母浜が農耕も行っていたであろうことを示唆するものであるという指摘がされている（船越1985）。さらに東側LG21号墓にはイヌが副葬されていた。この場合、岩礁などで設置し放置する延縄漁は農耕の傍ら行うに適した漁法であり、舟を使用せずに可能となる。漁村においてはこのような半農半漁型の生業も、生活の比重によっては漁民（浦組）として存在することが知られている（高桑1994）。吉母浜墓地にみられる東西の2支群は、考古学的に明確な差がみられず、また血縁的には相当な交流を行っていたとされている（田中・土肥1987）。現在の吉母浜において、在（農民）と浦（漁民）は物資の交換を行っているが、婚姻はほとんど行われないことが知られている（伊藤1985）。このため、東側も、少なくとも男性においては、生業の比重はやや漁撈によっていた可能性が考えられる。そして、MSMsの結果（図5.3.11）から、延縄のような設置型の漁法であったという可能性が指摘できるだろう。この漁法においては、反復的で負荷の強い回旋などの動きを行わなかったために肋鎖靭帯に対する負荷は低かったのではないかと推測される。

このような、東・西の2支群は、浦組としてそれぞれ独立した組を形成し、やや異なる生業を行っていたという可能性が指摘される。このような組の形成は、かわってより漁撈民の形成する漁村の特徴として指摘されている（桜田1980a；野地2008）。吉母浜において形成された東西の2群に、階層性はみられないことが指摘されており、また遺物も多くが土師器であり個人の優位性を示唆するような副葬品も含まれていない（田中1985）。このことから、浦刀禰・村君・網主のような所有者が存在した可能性は低い。田中・土肥（1987）をふまえ、吉母浜のMSMsの結果を考察すると、漁撈活動の季節性によって、魚群の到来が無い季節は別の労働を行う2つの組を形成したことが推測される。

女性の身体活動
第7章 考察

主漁従農民（吉母浜）の男性でみられたような、肋鎖靭帯のスコアの高さや、上腕と大腿のMSMsのランクの違いは女性にみられない。性差のMSMsパターン（図5.2.13）をみると、女性では前腕のスコアが高い傾向にあるといえる。性差のカテゴリカル主成分分析の結果（図5.3.9）をみると、女性がプロットされる位置は近世百姓（原田）に近い。これは女性が舟に乗るという行為を多くの漁撈民が禁忌とする（桜田1980a,b）ことに起因し、このような男女の分業が行われていた漁村では、女性の多くは耕作を務め、農村への農業期の手伝いを行ったとされている（桜田1980a）。また、海草を干し、網引きの手伝いを行っていたと推定されている（須藤1988）。さらに、男性が、男性が獲った魚を売る仕事に担当していた村落も、特に西日本には多くと指摘されている（宮本・河野1975）。

主漁従農民（吉母浜）は頭上運搬（カネリ）が慣行されていた地域であり（伊藤1992）、これもまた主漁従農民（吉母浜）の女性が行っていた労働の1つであったと考えられる。このように、主漁従農民（吉母浜）の女性は舟に乗ることはなかったとしても、男性の生涯を助けるような様々な方面に及ぶ可能性が高いと推測される。そのため、女性のカテゴリカル主成分分析では他の集団より負荷が高い傾向を示したと考えられ（図4.2.12）。しかし、MSMsパターンの男女差から考えて、MSMs発達の要因がやや異なるといえる。これは、先に指摘したように舟に乗るという行為が禁じられていていたことを要因とし、吉母浦という漁村で行われたと推定される分業のためであると推測される。

また、女性の加齢変化は男性ほど大きくはない。これはMSMsパターン（図4.3.5）やカテゴリカル主成分分析の結果（図5.3.6）にもあらわれている。性差は成年段階で最も大き（図5.3.10）。漁村における男女の分業によって、MSMsに与える加齢の影響の男女差を解釈することが可能である。主漁従農民（吉母浜）の女性では、生きている時間が長いため労働に従事した時間が長いと考えられる。熟年カテゴリの個体のほうが成年よりもスコアが高い、というMSMsの一般的な傾向を示し、かつ年齢でそこまで大きなパターンの違いはない。女性は、外洋にでる漁撈活動からは排除されており、女性が行っていたと考えられる活動は先述したように補佐的なものであり、男性のように習熟度によって担当する作業に大きな違いがあった可能性は低い。しかし、男性では、熟年よりも成年のほうが、平均値が高く出る部位が多い。多くの漁村の男性の若者と熟練者の活動の違いは共に漁に関わるものであるが、担当する作業が異なっていたために加齢によってMSMs値が単純に増加しなかったのではないか。このような男女の分業によって、加齢によるMSMsの変化のあらわれ方を思い起こさせることがある大きな矛盾はないだろう。

主漁従農民まとめ

「肋鎖靭帯が最もスコアが高く、大胸筋・三角筋のスコアも高くなる」というMSMsパターンは中世主漁従農民（吉母浜）の男性にも確認された。現段階では地域をこえて漁撈集団で共通してみられる傾向であると言えよう。特に弥生時代の3集団との比較から、ス
第7章 考察

コア 4以上の割合が多い場合に特に漁撈で行われる漕艇や網をひく活動と相関する場合が多いといえる。しかし、MSMsパターン形成要因となった活動はHawkey and Merbs（1995）とは全く異なる。また、網漁をはじめ様々な漁撈法を組み合わせて行っていたような集団では、Hawkey and Merbs（1995）の結果ほど、肋鎖靭帯と大胸筋のスコアの差は大きくないという傾向を示す。しかし、主漁従農民（吉母浜）の女性は男性とは異なるMSMsパターンを示し、このパターンの差は、女性が船に乗ることを禁じられていたことと関連する活動区分をあらわしていると考える。

加齢による変化は男性では大きく、女性では小さい。また、男性と女性の性差は大きく、MSMsパターンの違いは成年段階で最も大きい。漁撈活動のようにその習熟度に合わせた作業の分担や性別による活動区分が明瞭に行われるような生業活動を行っていた集団の場合は、MSMsの性差だけでなく、MSMsの加齢による変化の仕方にも男女で差が表われるといえる。

B) 揚浜式製塩民（沢田・村松白根）

揚浜式製塩民は、漁撈民とは活動が大きく異なるため、漁撈的MSMsパターンは形成されないと予想された。文献史学の研究から、基本的には家族単位で労働を行っていった可能性が高いと考えられるため、男女の活動差も漁撈民ほど明確ではないことも推定された。

男性と女性の身体活動

揚浜式製塩民（沢田・村松白根）のMSMsパターンの特徴は、主漁従農民（吉母浜）と比較した際に明確に認められ（図5.2.5, 5.2.6）、揚浜式製塩民（沢田・村松白根）は、MSMsパターンのピークが大胸筋にある。主漁従農民（吉母浜）と比較すると、どの年齢段階においても上肢・下肢共に発達する傾向を持つ部位は異なる（図5.3.1-1）。揚浜式製塩民の男性は、上肢では大胸筋や上腕筋、回外筋が、下肢では大腿の股関節に作用する筋よりも下腿に付着する筋の付着部のスコアが発達する傾向にある。また、揚浜式製塩（沢田・村松白根）の男性のMSMsの発達が上肢に偏るが、この傾向も主漁従農民（吉母浜）ほど極端ではない（図5.2.6）。

揚浜式製塩民（沢田・村松白根）が行っていた製塩過程における、担い棒に桶を2つ下げて浜辺に歩き、人力で海水をくみ上げ、砂浜の上を歩いて運ぶという作業においては、特に上肢と下肢に負荷があまり偏ることなくかかると推測することができる。かつ重たいものを持ち上げて肩にかけて運ぶような行為は、肩関節の急速な動きなどは必要としないため大胸筋や大円・広背筋に、肋鎖靭帯よりはるかに負荷がかかると考えられる。また、主漁従農民（吉母浜）の特徴の1つとした上腕二頭筋や方形回内筋のランクの高さも、揚浜式製塩民（沢田・村松白根）の男性では見られない（図5.2.6）。むしろ、肘関節の屈曲の主働筋である上腕筋やその補助的な役割をする円回内筋、手首の回外に作用する回外筋のほうが、スコアの高い個体の頻度が高い（図5.2.2-1）。引桶を担って運ぶ作業や海水を打桶にいれて塩田に撒く作業、塩田の塩砂を柄振で集める作業には、肘関節の屈曲の主働筋で
ある上腕筋に負荷がかかる。また引桶・打桶・柄振のような道具は、基本的に回外位から半回外位で持つ。このような揚浜式製塩に特有の活動と道具の使用のために、これらの筋付着部のMSMsスコアが高かった可能性が考えられる。

揚浜式製塩民（沢田・村松白根）の男性の年齢間（成年と熟年）のMSMsパターンの差は、カテゴリカル主成分分析をみると大きくはない（図5.3.3）。距離行列の結果を合わせると、武よりも年齢間の差がやや大きいということは言える（表5.3.1）。特に下肢のパターンは成年と熟年ではやや異なる（図5.3.2）。揚浜式製塩の作業は家族労働に依存するものであったという（平島 1973；高澤 1988）。また、揚浜式製塩のうち、例えば打桶で海水を塩田に撒く作業のうち、孤を描くように露状に撒けるようになるまで10年以上かかる技術であるといわれている（竜能登塩田村 http://enden.jp/）。製塩活動においては風を読む力も重要で、揚浜式製塩は雨天時には製塩できず、潮撤きの決行は七ツ島と水平線の見え方、雲の様子など“浜士の長年の勘”で天候を予測しながら製塩する（竜能登塩田村 http://enden.jp/）。このような長年の経験によって培われる技術が家族内で継続されていたのだろう。揚浜式製塩の作業は家族労働に依存するもので、揚浜式製塩民（吉母浜）よりも年齢によるMSMsパターンの差は小さく、しかし、技術の習得に一定の期間を必要とする重労働であるため、武ほどの類似は示さなかったのではないかと考えられる。

男女間のMSMsの差をみると、カテゴリカル主成分分析（図5.3.9）や距離行列の結果（図5.3.8）では、漁撈活動の禁忌のある主漁従農民（吉母浜）よりは、性差は小さいといえる。また、図5.3.9で男女共に同じ象限に位置することから、揚浜式製塩民の男女差はMSMsのスコアの大小によって説明することができる。すなわち、男女の間に大きな活動差はみられなかったが、負荷のかかり方が男性の方が極端に大きいといえる。また、女性のMSMsパターンにおいても、大胸筋や大円・広背筋のスコアが高い点、肘関節では屈曲筋である上腕筋にMSMsパターンのピークがあるという点、粗線に付着する筋群のスコアが下肢の他の筋よりもややスコアが高く、大腿骨に付着する肩群のスコアが下肢の他筋より高め、下肢のスコアがやや高い点で、男性のMSMsパターンと共通性がみられる。このような男女のMSMsパターンの類似から、漁撈民ほどの活動の性差が無かったことが支持される。揚浜式製塩の労働に関してまとめた廣山（1983）によると、「大日本塩業全書」には自然揚浜の労働は、「人夫ヲ雇入レズ、営業者ノ家族子弟ノミシテ経営シ、夫ハ撒砂ノ散布、妻ハ鹹水ノ運搬・塩砂ノ浸透、長男ハ潮水ノ運搬、次男は潮水ノ散布」というような家族労働を一般的としたとされている。もし分業の形をとるとしても、「男女三人ハ鰹水運搬、砂散布ヘハ均シ、塩砂ヲカキ集メル」、「女子ハ海水ヲ組ミアゲ、塩砂ヲ運搬シ又ハ鰹水ヲ濾過スル」という程度の分業であったとされている（廣山1983、pp.204-205）。このことから、極めて重労働の作業である醸水を運ぶ、塩田に撒くといった作業以外は、女性も同じような作業を行っていたと考えられる。また、石川県の能登揚浜式製塩の作業工程図（図5.1.3）をみると、製塩作業に男性とともにかかわる女性の姿が描かれており、廣山（1983）の指摘と整合するものである。
第7章 考察

男女で異なる部位としては、鎖骨下筋のMSMsスコアが女性では小さく、方形回内筋のMSMsスコアが高いという点である。このわずかな部位の違いが、揚浜式製塩を行っていた家族内で、わずかな分業が行われていたことを表している可能性はあるが、これのみでは断言することができない。しかし、男女のMSMsパターンが概ね類似するという結果は、廣山（1983）で指摘された揚浜式製塩の分業の在り方と矛盾しない結果である。

揚浜式製塩民の活動のまとめ

揚浜式製塩民（沢田・村松白根）に関しては、大胸筋にMSMsパターンのピークがあり、肘関節の屈曲の主働筋である上腕筋やその補助的な役割をする円回内筋、手首の回外に作用する回外筋のほうが、方形回内筋よりもスコアが高い個体の頻度が高い。MSMsパターンは漁撈民のそれとは大きく異なるといえる。また、上肢と下肢の偏りは主漁従農民（吉母浜）ほど、大きくはなく、下肢の中でもその発達が股関節に作用する筋に偏るという傾向もない。

年齢によるMSMsの差や性差に関しても主漁従農民（吉母浜）ほどの違いはみられず、これは揚浜式製塩が基本的に家族で行われる労働で、作業そのものにも年月による習熟度の差はあるが、一連の行程として行っていたためではないかと考えられる。揚浜式製塩活動のように、その習熟度に合わせた熟達の差はあるが、年齢や性別による活動区分が明瞭ではない場合には、各年齢段階・性別に基づくMSMsのパターンの差は小さくなり、加齢によるMSMsの変化の仕方やMSMsパターンの男女間の差も小さくなると考えることがで

第2項 近世

A) 江戸市中武士層

考古学的な研究から江戸市中に関しては、埋葬様式と身分・階層の対応関係が確認され、蓋をもつ常滑の甕棺や多重構造墓の被葬者は、概ね武家の人間であることが指摘されている。江戸時代の骨形態に関しては、これまでも鈴木（1985b）によって将軍や大名の貴族化が指摘され、さらに、平本（2001）によって、いわゆる武士層の大部分を占める人々の形質、庶民層とは異なっていた可能性が示唆されてきた。このような指摘は頭蓋形質に関するものであるが、武士階層の生活様式の規定は食生活に留まるものではなく、武術や馬術、弓術の義務や、歩行様式、立ち居振る舞いなどの所作にも及んでいたと考えられる（笹間 2004）。こうした生活様式における武士層の特異性が、四肢骨の筋・靭帯・腱付着部に反映されている可能性を想定することができる。

男性の身体活動

MSMsパターン（図5.2.2-2）を検討すると、その類似性は、特に下肢に認められる。具体的には、下肢の最大のピークが腸腰筋に見られる点、外側広筋のスコアが低い一方で内
考察

側広筋のスコアが著しく高い点、粗線のスコアも同時期の他集団と比較すると強く、後脛骨筋と長脛屈筋のスコアとヒラメ筋のスコアも特に上位武士層において高い。一方で大殿筋のスコアは中程度である点が挙げられる。下肢のスコアの頻度分布からは、腸腰筋、粗線、内側広筋において、武士層と上位武士層ではスコア 2 と 3 の占める割合が他の江戸市中庶民層や近世百姓（原田）より高いことが分かる。同様に Bonferroni 法を用いた多重比較および Mann-Whitney U 検定では、上位武士層と武士層の男性の間に下肢に有意な差はみられていない（図 5.2.3）。武士層と庶民層の検討を行った Mann-Whitney U 検定では、腸腰筋・粗線に付着する筋群・内側広筋に有意差がみられた（図 5.2.8）。さらに個人名が判明している久世一族や神代利経と埋葬様式から武士階層であると指摘されている武士層・上位武士層の下肢の MSms パターン（図 45.2.7）が類似することから、これが武士らしい生活様式の実践によるものであることを支持することができる。

例えば、武芸の 1 つである馬術において、最も発達する筋は馬上で体幹を支える腸腰筋であるということが指摘されている（Parelli et al. 2003）。さらに、大腿と膝を内側に回転させ、大腿の内側が鞍に接するようにして騎乗する必要があり（Bennett 2005），馬上でその状態を維持するためには、粗線としてまとめられている内転筋群や、膝蓋骨を内側にそせる内側広筋に負荷がかかる。馬上で弓を射る騎射は最も重要視された武芸の 1 つであり（篠間 2004）、両手を離した状態で、馬上で姿勢を保つといった動きが、腸腰筋・粗線・内側広筋のスコアの高さの一因となった可能性が考えられる。

他にも、殿中における歩行様式や所作についても、膝を軽く曲げて腰をやや落とし上体を垂直にする、上下動・左右動をなくす、背筋を伸ばすなどのしきたりが存在し、また武士のみが着ることを認められていた袴は、腰板がついているため「胴造り」という姿勢の維持を補助、強制していた（山根 2003, 2007）。対象とした筋付着部位の中でこれら一連の姿勢に主に働く筋は、腸腰筋や内側広筋、後脛骨筋と考えられる。スクラットにおける膝関節の屈曲初期（～30 度）では、大腿四頭筋の中でも外側広筋に比して内側広筋がより収縮するという研究もあり（森・立野 2007），膝を軽く曲げた状態では、特に内側広筋が緊張すると考えられる。また一連の活動によって、股関節の伸展や外旋筋である大殿筋も働くと考えられる。大殿筋は内側広筋や腸腰筋と比べるとスコアとしてはやや劣るが、江戸時代庶民層（円形・方形木棺）と比較すると、スコアは平均的かそれ以上であり、発達していないというわけではない。

このように、対象とした付着部位の中で馬術や歩行様式に主に作用する下肢の筋の MSms のスコアが高いという傾向が指摘された。このことから、武家に生まれた者が、武家であったがために行っていた、剣術や弓術、馬術などの武芸や歩行様式、拝礼の仕方といった立ち居振る舞いにおける一連の作業の必要性の結果、類似するパターンが形成されたと考えることは不自然ではないだろう。

カテゴリカル主成分分析の結果から（図 5.2.4）、上位武士層と武士層の被葬者は、他集団よりも第 2 主成分得点が高く、腸腰筋や内側広筋、後脛骨筋と長脛屈筋の MSms のスコアが他の階層の集団よりも高いという共通した傾向が見て取れた。この特徴は上位武士層によ
第7章 考察

り顕著にみられると言えよう。さらに、カテゴリカル主成分分析では、竹田武士層もまた、類似した位置にプロットされる。これら一連の武士層の第2主成分得点が他群よりも高いという傾向は、これらの部位にかかる負荷や筋発達が顕著に高く、骨が頑丈であるというところではなく、同一階層内のMSMsパターンの類似性が個体レベルで高かったためと考えられる。これは下肢の7部位を用いた個体のカテゴリカル主成分分析の結果からもみとることができる（図5.3.12）。つまり、武士層や上位武士層に関しては、この階層の成員である個体のMSMsパターンの類似の度合いが、他の集団よりも高いことを指摘することができる。平均値の比較を行う場合、集団内の個体のMSMsスコアのバラつきが小さく、収斂度が高いほど、平均値は概して高くなる傾向を示すといえる。

この結果から、武士の男性では加齢による影響が小さい（図5.3.3）理由も説明可能である。武士層・上位武士層の下肢のMSMsパターンは（図5.3.2）、加齢による影響をほとんど受けない。このように武士階層の男性には年齢問わず、MSMsパターンに共通性がみられ、この共通性は平均値化した場合のみならず個体のMSMsパターンでも形成されている。武芸の鍛錬、立ち居振る舞いなどの所作の稽古は、若年期より始められ（薬田2003a；箋間2004）、その身分の誇示のために所作に関しては生涯継続して行っていたと推測される。そのことを示しているのが特に加齢変化の諸相がみとめやすいことに起因する傾向を示す。武芸の鍛錬、立ち居振る舞いなどの所作の稽古が、若年期に開始されるこのような、階層特有の生活様式の開始年齢の早さを示していると考えられる。このような活動は起居進退の動作法であり、歩き方など意識もせずに行うことができるようないくつかの所作であって、揚浜式製塩のような習熟にトレーニングを要するような重労働ではないという点も指摘することができる。武士層と比べて江戸市中の庶民層（円形・方形木棺）が年齢段階ごとにプロット位置が大きく異なる（図5.3.3）ことは、含まれる職業・階層が雑多であり、年齢により行動が方向性や共通性をもたずに変化やすいことに起因する可能性が考えられる。

武士にとっての礼法・作法とは、日常の起居進退における動作法であり、Bourdieu（1973）によって指摘されているように、階層社会においては、自ら所属する階層に特有の習慣や行動様式を身体化させ、必要な場でふさわしい振る舞いを行うことができるということ、が極めて重要であった。そのようなハビトゥスの習得・共有の結果が武士階層のMSMsパターンとその形成年齢の早さに反映されていると考える。

女性の身体活動

女性に関しては、男性と異なり、上位武士層と武士層が類似する傾向は示さない（図5.2.12）。江戸市中の庶民層を含めて江戸市中の各階層の集団がまとまる傾向にある（図5.2.12）。これは近世の非都市部の女性たち（揚浜式製塩（沢田・村松白根）・竹田武士層（稲荷谷）・近世百姓（原田））との差があまりに大きくためと考えられる。

江戸市中の各階層集団の中でも上位武士層の女性はやや離れた位置にプロットされる（図5.2.12）。江戸市中の一群で最も上位武士層の女性に類似するのはやはり武士層の女性
第7章 考察

であるが、この傾向は男性ほど顕著ではない。上位武士層の女性に関しては、MSMs パターンをみると、大胸筋や大円筋と広背筋のような上腕の動きに関わる大きな筋のスコアの低い個体が多いという共通項も指摘することができる。また、腸腰筋以外の下肢の筋でスコア1を示す個体の頻度が高い(図5.10-2)。年齢構成の中で成年の割合が多いことが、このスコアの低さのバイアスとなっている可能性も考えられる。上腕の動きに関わる大きな筋や下肢のMSMs スコアが他群と比較して低いことが指摘され、これは駕籠にのる頻度の差など、他の階層の女性との生活様式の違いを反映しているかもしれない。また、上位武士層の女性は、旗本や藩士の中でも1000石を超えるような武家であり、このような家に生まれた女性は、中で雇うことができたため(篠間2004)、日常の家事を含め何らかの労働を自ら行っていたとは考えにくいこともその一因と考えられる。

一方、武士層の女性は、むしろ江戸市中庶民層(円形木棺)に類似する(図5.2.12)。この結果は、下級武士の女性が、経済的に女中雇うことができない場合、女自ら家事を行うことが多く、一般庶民の生活と変わりがなかったとされている(阿部1980;篠間2004)ことと、関連すると考えられる。このように女性の武士層は、男性ほどには明瞭な庶民層との区分ができておらず、上位武士層よりも階層の低い武士層の女性の中には、そのような庶民層に似た生活を送っていた武家の女性が多く含まれているために、他の江戸市中庶民層(円形・方形木棺)の女性と近似する位置にプロットされた可能性が考えられる。

全武士層としてまとめ、加齢変化を検討した場合(図5.3.3)、武士階層の女性は男性ほど類似は示さないが、第1象限には女性武士層のみがプロットされており、他の集団とは画される。女性も上位武士層として特有の若年期から共有された活動があったのであろうが、それは公的な場に出ることや、公的な職業に就くことが基本的にはできない女性の場合、男性ほど厳密に全ての構成員に徹底されていたものではないのではないかと考えられる。MSMs パターンのカテゴリカル主成分分析(図5.2.12)の結果から、その不徹底さは、武士の中でも階級が低い人々により強くあらわれたのではないかと考える。

また、男女間のMSMs スコアの差に関しては、上位武士層・武士層の男女間の差は江戸市中庶民層と比べると大きい(図5.3.7)。この傾向は、上位武士層でより顕著である。性差のカテゴリカル主成分分析(図5.3.9)をみると、女性は江戸市中庶民層とプロットされる位置に大きな差がないことがわかる。そのため、男女間のMSMsの差が大きいのは、武士層男性のMSMsパターンの特異性が顕著なためであるといえる。このことからも、武士層の女性では、男性ほど明確な階層ごとの活動区分が存在していなかったということを示唆する。

武士層のまとめ

男性では、上位武士層と武士層のMSMsパターンは類似し、低禄の武士や農民や町人、都市下层民など、武士階層以下の江戸市中庶民層(円形・方形木棺)とは異なる傾向にあることが指摘される。

男性の上位武士層および武士層のMSMsパターンは、武士階層特有の活動、すなわち剣
第 7 章　考察

術や弓術、馬術などの武芸や歩行様式、拝礼の仕方といった立ち居振る舞いにおける一連の所作によって形成されたと考えられる。加齢による変化や個体のばらつきも、武士層の男性に関しては小さく、この傾向は、幼少時より日常的な所作として活動を共有していた結果であると考えられる。

女性に関してはより身分の高い上位武士層の女性の特異性が目立ち、武士層の女性は江戸市中庶民層（円形・方形木棺）に近いという結果が示された。これは、下級武士の女性は家事などの労働を行う必要があったことを表していると考えられる。武士層の女性の MSms パターンの特徴としては、スコアの低い個体の頻度が高いうちことであり、上位武士層の女性は、家事などの労働を行う必要がなかったことや、籠にのる頻度の高さを示している可能性もある。

性差は上位武士層が最も大きく、これは中近世の集団の中で顕著な傾向である。しかし、男女間の MSms の差が大きいのは、武士層男性の MSms パターンの特異性が顕著なためであるといえる。このことからも、武士層の女性では、男性ほどに明確な階層ごとの活動区分が存在していなかった、あるいは武士特有の生活様式を徹底することができた階層が女性は男性よりも狭かった可能性を示唆する。

B) 江戸市中庶民層

男性と女性の身体活動

武士層の人間は、特にその下肢において、特有のパターンを形成することを指摘した。しかし、庶民層の人々の MSms パターンには共通性はなく（図 5.2.2-2、図 5.2.10-2）、また加齢による変化にも一定の傾向はみられない（図 5.3.1-1、5.3.1-2、5.3.4-1、5.3.4-2）。

江戸市中庶民層（円形・方形木棺）に含まれている被葬者の職種は江戸という都市に存在した多様な職業のすべてであり、そこから生活様式につながるような MSms のパターンを読み解くことは出来ない。しかし MSms パターンについて若干の考察を行う。

まず、図 5.2.2-2 をみると、江戸市中庶民層（円形・方形木棺）の MSms パターンには、極端なピークや発達の偏りがないことが指摘できる。これは、個体の下肢の分析（図 5.3.12）で江戸市中庶民層（円形木棺）の個体のばらつきに、まとまりがなかった点からも支持されるよう。労働に従事していた下層武士階級・町人層・下層民などには、極度に強いた力のかかる人々や下人を雇う商人などあまり負荷のかからない人などが存在し、それらを平均化した結果、極端なパターンや偏りが存在しない MSms パターンを形成した可能性が考えられる。

このことを検討するため、様々な職業の人を含む江戸市中庶民層（円形・方形木棺）を、季節的に様々なことを行っていたと考えられる縄文時代の各集団の MSms パターン（図 4.3.2）と比べると、縄文時代の各集団の MSms パターンではピークが明瞭に存在することがわかる。この違いは、縄文時代の各集団の方が圧倒的にスコアの高い個体の頻度が多く、スコア 3 以上の個体では約 90% をしめ、集団内部に身体的な負荷が大きく異なる個体が存
在しないためであると指摘することができる。しかし、江戸市中庶民層（円形・方形木棺）の MSMs パターン（図 5.2.2-2）を見ると、スコア 2 が多数を占めることができる。その一方で、スコア 3 以上の個体も少数ながら存在し、縄文時代の各集団では存在しないスコア 1 の個体もどの部位でも一定数みられる。このことから、江戸市中庶民層（円形・方形木棺）の集団の MSMs パターンは、重労働者もそうでない労働者も含め、様々な職業の人を含んでいた結果と考えることが妥当であるといえる。そのような人々を含む集団の MSMs をパターンとして平均値化すると MSMs パターンに明確なピークがなくなると考えられる。

では、江戸市中庶民層の埋葬様式である円形木棺と方形木棺の使い分けは何であったのだろうか。石槨石室墓の将軍家と石室墓の大名家の秩序が寛永年間（1624〜1643）に確立し、17 世紀後半に甕棺が旗本などの幕臣や藩士などに使用されるようになり、墓制の秩序として確立した（谷川 2004）。その後、18 世紀の中頃に新たに出現したのが方形木棺である。方形木棺の被葬者で身分や個人を特定することのできる個体は存在しないため具体的な階層や職業は不明であるが、甕棺が武士の身分を表徴する棺となったのと同様に、何かそれまでに表徴されていなかった身分や階層を新たに表徴するために確立したと考えることは妥当であろう。

男性のカテゴリカル主成分分析の結果を見ると（図 5.2.4）、江戸市中庶民層（円形・方形木棺）は武士層・上位武士層や中近世非都市部の集団とは大きく異なる傾向を示す。一方、女性の結果（図 5.2.12）は、江戸市中庶民層（円形木棺）の方が、江戸市中庶民層（方形木棺）よりも武士層に近い。江戸市中庶民層（方形木棺）は、軸上に位置し、あまり特徴
第7章 考察

男女のMSMsの差を検討したカテゴリー主成分分析の結果（図5.3.9）をみると、江戸市中庶民層（方形木棺）の男女のMSMsパターンの差のほうが江戸市中庶民層（円形木棺）の男女のパターンの差よりも小さいことがわかる。性差のMSMsパターン（図5.3.7）をみると、江戸市中庶民層（円形木棺）の男女のMSMsパターンは、男女間のスコアの差が明瞭で、ほとんど常に男性の方が女性よりもスコアが高い傾向にある。それに対し、江戸市中庶民層（方形木棺）は、男女間のスコアの差がほとんどない。このことから、男女間の活動負荷の差は、江戸市中庶民層（方形木棺）のほうが小さいことがわかる。加齢による影響（図5.3.3、5.3.6）には、江戸市中庶民層（円形木棺）と江戸市中庶民層（方形木棺）の間に大きな違いはない。

この2つの埋葬様式群の被葬者に関する考古学的な違いを、都市下層民の埋葬が指摘されている圓應寺遺跡において検討する（図7.2.1）。圓應寺B区（西木 1999, 2004）において、方形木棺は8％（4基）しかなく、また切り合い円形木棺と比較すると方形木棺は強くないこと（栩木 1993）から、円形木棺と方形木棺の埋葬様式を採用した被葬者には若干格差があったと考えることが可能。谷川（2004）では、寺院の寺格と墓域で発掘された埋葬施設の比率が概ね相関し、寺格の高い寺ほど多重構造墓や甕棺が多いことを指摘している（図7.2.2）。寬永寺護國院は、幕府の祈願寺である寛永寺の子院の1つであり、境内坪数1万3300坪と寺領20石、自証院は尾張徳川家のつながりが深く境内坪数1万600坪余、寺領200石を有する大寺院である。天徳寺は浄土宗江戸四ヵ寺の1つであり、寺格の高い寺ほど多重構造墓や甕棺が多いことを指摘している（図7.2.2）。寬永寺護国院は、幕府の祈願寺である寛永寺の子院の1つであり、寺院接続の比率を概ね相関し、寺格の高い寺ほど多重構造墓や甕棺が多いことを指摘している（図7.2.2）。

図7.2.2 遺跡ごとに見た埋葬様式の様相（谷川 2004を参考にして作成）
円形木棺ほど寺格に左右されない。
このような考古学的な証拠とあわせ、MSMs の結果をかんがみると、1 つの可能性として、武家奉公人や市中人別外といった、労働力販売層は、方形木棺の被葬者にはほとんどおらず、比較的労働負荷の高くなっ人達、例えば商人や江戸市中で生まれ育った町人のような、身分の人達が多かった可能性も考えられる。そのような人達であったならば、栄養状態や生活水準などは円形木棺の被葬者あるいは都市下層民とされる「墓を持たない人達」よりは良かったのではないかと考えられ、今後、栄養状態などの検討を行ったうえで判断していく。

江戸市中庶民層のまとめ

武士層のような同一階層に属する被葬者が主に埋葬される墓ではない、円形木棺や方形木棺に埋葬された江戸市中庶民層は、MSMs パターンにおいても、加齢変化の様相においても、ばらつきが大きく、男女間のMSMs の差は小さい。これは重労働者ともそうでない労働者も含め、様々な職業の人を含んでいる為であろうと考えられる。江戸市中庶民層のうち、円形木棺よりも方形木棺のほうが、庶民層のなかでも活動負荷の低い人々、例えば商人や町人、あるいは武士の一部により多く使用されていた可能性が考えられる。

C) 竹田武士層 (稲荷谷)

竹田武士層 (稲荷谷) の位置づけはやや特殊である。カテゴリー主成分分析 (図 5.2.4) による分析では、江戸市中の武士層と近い位置にプロットされる。これは武士層との類似を示さないと (図 5.2.12)。男性の下肢のMSMs パターンを見ると (図 5.2.2-1)、腸腰筋のスコアがやや低い傾向にあるが、それ以外の部位のパターンは類似している。

性差は、距離行列の結果 (図 5.3.8) をみると、やや大きく、カテゴリー主成分分析の結果をみると、横軸で女性の方が、わずかに値が高い (図 5.3.9)。MSMs パターンの性差を示した図 5.3.7 をみると、菱形靭帯や円錐靭帯・三角筋の前部・大円筋と広背筋・三角筋・上腕筋・上腕二頭筋・腸腰筋・上部広筋のスコアが男性の方が男性よりも高い。そのうち菱形靭帯は個体数が少なく、女性の標準偏差も 0 であり、サンプルのバイアスの可能性が考えられるが、それ以外でも 9 部位で女性の方が男性よりもスコアが高い部位がある。

このような男女のMSMs の差があまり見られない点や、男性は江戸市中の武士層とMSMs パターンがやや類似する傾向にあるが、女性はそのような傾向を示さないという点が、地方武士層の特徴であるか否かは、今後さらなる検討が必要である。しかし、将軍を頂点としつつも藩によって政治や統治がそれぞれ行われていた時代に、江戸という都市に埋葬された武士と、地方の城下町の墓地に埋葬された武士の活動や礼儀作法において、何かしらの差が生じていた可能性はある。

これは、稲荷谷近世墓地群の形成時期が、19 世紀以降から明治であるという時期的な違いや、岡藩藩士の武家であるという地域的な違いから指摘することが出来るだろう。岡藩
において稲荷谷近世墓を構成した 500〜100 石とりの藩士がどの程度の階層に位置づけられるか、であるが、これは入国当時の家臣団一覧によって推測される（佐藤 1983b）。岡藩の入国時期の家臣一覧をみると、稲荷谷近世墓を構成する各家は、中〜下流の武士階層であると推測される。しかし、どの家も、入国時に名を列せられていないことから、後の分家であるか、岡藩にとっての陪臣（家臣の家臣）であった武家が取り立てられて、後に岡藩の直参となったなどが考えられる。中〜上流であるとしても、100 石とりの藩士は、藩士の中では禄は決して低くない（八幡・臼井 2005）。これは、磯田（2003b）によって、1843 年当時、1 石は現代的感覚でいうところの 27 万程度であったと指摘されていることからも推測することが出来るだろう。しかし、岡藩は 1771 年岡城が全焼し、その再建費用を幕府から 7000 両借り入れて再建を行ったことで、藩そのものが多額の借金を抱えることとなっていた。それ以来その財政は悪化の一途を辿っていたとされている（佐藤 1983a）。財政の立て直しとして 18 世紀末に農民に圧政を強いる新法が設立したが、それに対して 1811 年文化の百姓一揆がおき、結果、農民の要望を藩は全て受け容れており（佐藤 1983a）、農民への圧政による財政の回復を図っている。その一方で、藩内の財政難を緩和するために、諸藩が行った政策は借上や半知といった武家の俸禄カットであった。また 18 世紀後半から、奉公人の給金が全国的に高騰し、それは幕末まで続く。このため、武士は奉公人の数を減らさざるをえなくなる（磯田 2003a）。このような社会状況によって武家は圧迫されていき、困窮の中で、武家の多くは様々な内職を行っていたと進士（1980）、磯田（2003a）によって述べられている。

稲荷谷近世墓の被葬者に、そのような内職の必要性があったかどうかは記録として残されていないので定かではないが、続く泰平の世と 18 世紀以降により顕著になる武家の世襲（磯田 2003a）は、武士の刀の非実用化などを招いたとされている（笠間 2004）。稲荷谷近世墓においても、137 号墓から飾り刀と思われる物が出土している（城戸 2004）。また、1786 年、藩主中川久貞によって藩校が設立されるなど、18 世紀末から 19 世紀にかけて全国的に文治教育が盛んとなるにつれ（鬼頭 2002）、ますます武士は武芸から離れていくことが推測される。

岡藩だけの問題ではなく、18 世紀後半以降、武士世帯における奉公人の極端な減少から、軍役義務を満たすことが出来なくなり、急速に武家身分の衰退がすみ、19 世紀中葉には西洋式兵制の採用によってその組織そのものが一転されることも指摘されている（磯田 2003a）。この中での岡藩の藩主中川久昭はほとんど積極的な行動を起こしておらず（後藤 1983）、軍備改正が行われ、徒士頭銃隊が編制されたのは慶応 4 年（1868）であったこと（北村 1976）から、岡藩の藩士達が幕末に積極的に関与したとは考えにくい。このような時勢において、武士の困窮、世襲による弱体化、などを要因として稲荷谷近世墓を構成する岡藩藩士であった竹田武士層の各家は、武士としての体面を保ちつつも、その生活様式は有名無実化していた可能性が考えられる。

竹田武士層の男性が未だ江戸市中の武士層とやや類似する傾向を保つのに対し、女性がそのような傾向を全く示さないことから、武士的な生活様式の崩れは、女性の方がはやか
考察

第7章

かったのではないかと考えられる。この、より階層の低い武家の女性のほうが顕著に、いわゆる武家的な生活様式を保てなくなるという傾向は、武士層の女性が、上位武士層の女性と異なり、江戸市中庶民層との違いをほとんど示さない（図5.2.12）という傾向と、合致するものである。

竹田武士層のまとめ

男性は江戸市中の武士層にやや類似するが、女性はそのような傾向を示さない。男性も、江戸市中の武士層と類似はあるが、下肢のMSMsパターンが全く同じではないという点から、生活様式に江戸市中の武士層とは違が生じているといえる。このような傾向は、岡藩の武士団であるという点と、墓地形成時期が19世紀以降から明治以降であるという時期的な違いが要因として存在すると考えられる。しかし、江戸市中武土層との差の表れ方として、男女間で傾向がやや異なるということも指摘することができる。江戸市中における武士層の女性と同様で、武士的な生活様式の崩れは、より階層の低い武家の女性により強く表れたのではないかと考えられる。

D) 近世百姓層（原田）

近世の百姓とされる原田の中世は、他の集団よりもやや熟年の割合が多いが、MSMsのスコアは低く、ほぼ女性と同程度の位置にプロットされる（図5.3.9）。また、第1主成分得点で男女のスコアが拮抗している点が特徴的である。近世百姓層の男女間で年齢構成に大きな差はないことから、男女間の拮抗は年齢の影響のみで生じたものとは考えがたく、このことから、近世百姓層の男性は全体的にスコアが低く、且つ男女でMSMsのスコアが拮抗するという傾向がうかがえる。さらに、男女のMSMsパターンの比較から（図5.2.7）、男性はMSMsのスコアが高い部位が上腕に付着する筋に、女性は前腕や手首に付着する筋に偏っている傾向がみられた。

男性においてMSMsスコアが全体的に低い傾向にあることは、近年の江戸時代の農民像について提出された見解によって裏付けることができるかもしれない（田中2002;渡辺2009）。これらは、少なくとも中~上層に属する農民の生活はあまり厳しいものではなかったのではないかという指摘である。例えば、渡辺（2009）は、信濃国諏訪郡瀬沢村の坂本家を例として挙げている。瀬沢村の石高は198石、坂本家は5～7石の農家であった。この家は、数年おきに村役人を務め、奉公人を雇い、また一部の農地は小作にだしていたことから、比較的裕福な家であったが地方主というほどではなかったと指摘されている（渡辺2009）。坂本家は農業を営み、年貢を納めるとともに、余剰を使って自ら米や大豆、大麦、木綿、干物、乾狩、薬など様々な物を販売し、紡績物を購入し、子女には教育を施していたことが記録より指摘されている（渡辺2009）。1827年の一時期の農作業の記録をみると、貨幣経済の中で自らの富を蓄積し、それを経営にいかす努力を行っていたことが指摘されている（渡辺2009）。他にも田中（2002）は、越後国の例を挙げ、小作ですら収益の半分を自ら取得できたことや、検地帳と実際の刈高帳に記載された実収とは異なっており、
第7章 考察

検地帳で実収のほうが多かったことを指摘している（田中 2002）。
このように、決して安穏と暮らしていたわけではないが、江戸時代、特に後期以降の農民の生活は困窮を極めるようなものではなく、農具を所有し、自立した生産者であり、また小作農を雇う経営者であったとも考えることが出来よう。原田近世墓の被葬者もそのような状況であったために、男性のMSMs スコアの発達は、やや低いものであったという可能性が推測される。そのために、MSMs パターンが、水稲農耕に従事していた弥生時代の諸集団のパターンとは異なり、江戸での「荒働」に従事していたような階層の人間を含む円形木棺の被葬者や、武術に従事する義務を有していた武士層よりも、スコアがさらに低いものとなったのではないかということを可能性として示すことが出来るだろう。

このように状況は、地域が全く異なり、小作地率は地域によって異なる（奈良本 1962）ことなどから、原田近世墓の被葬者の状況をそのまま示しているわけではないため、1つの可能の提示にすぎない。しかし、原田近世墓は宿場町付近という旅人の往来が激しい場所で、坂本家のように農業の傍ら、生活必需品などの商売を行い、少なからず余剰を蓄え、農業経営に投資していたのではないかという推定が可能であるだろう。今後、他の農民層や名主層の検討を行うことで、原田の位置付けはより明確になるのではないかと考える。

また、原田のもう一つの特徴としてはMSMs スコアで男女が拮抗している点にある（図 5.3.9）。さらに男性はMSMs の発達が上腕に、女性は前腕や手首に偏っていることも指摘されよう（図 5.3.7）。このような傾向は、農業における労働の負荷の男女の均質さと、中でも田植えや脱穀を担うのは主に女性であり、田おこしを主に行うのは男性であるといった性に基づく分業に拠って生じている可能性が考えられる。

所属階層は異なるが、地方の非都市部で生活していた竹田武士層（稲荷谷）と百姓層（原田）では、ともに男性と女性のMSMs の発達が拮抗する傾向を示すことは、江戸時代における女性の労働の関わり方が考えるうえで重要な結果の1つとなる可能性がある。近世の女性史研究の中で、菅野（1982）は、近世前期の小農家族内での女性労働は田植えと脱穀及び家事程度のものであり、19世紀以降に女性の農作業への多局面への関与が認められ、女性労働の社会的位置が上昇したと述べている。これに対し、長島（1993）は、近世の農書では女性労働に関する記述が除外されることを指摘した。そして近世には稲作だけであっても男性のほぼ三分の二の割合で女性も作業に従事するようになったようになり、その上で家事や畑作業などを行っていたことを指摘している（長島 1993）。また、『農業図絵』を検討し、近世の前期において、耕起作業や代掻き以外の仕事には女性も男性と同程度に関与し、さらに、家事の面では常に女性は男性をもてなす側であったため、田植え後の休日も給仕を行う女性の姿が描かれていることを指摘している。近世百姓層の男女のMSMs が近似するという結果は、長島（1993）の指摘する近世の性別役割分業に起因する可能性がある。しかし、これについても近世近代の人骨資料のさらなる検討をおこなう必要がある。

近世百姓層のまとめ
近世百姓（原田）の特異点として、男性のMSMsスコアが低い点と、男女のMSMsスコアが拮抗する点が挙げられる。しかし、MSMsパターンには男女で差がみられ、男性はMSMsのスコアが高い部位が上腕に付着する筋のに、女性は前腕や手首に付着する筋に偏っている傾向がみられた。この結果から、農業における労働の負荷の男女の均質さと、その中でも田植えや穂殺を担うのは主に女性であり、田おこしを主に行うのは男性であるといった性に基づく分業に拠って、MSMsパターンの差が生じている可能性が考えられる。

第3節 時間・地域・階層に基づく活動の多様性の変化

第1・2節では、考古學・文献史学など様々な分野で行われている生業動的研究の成果をふまえ、MSMsにあらわれる身体活動の復元を行った。この中で、MSMsの集団間の違いや性差の表れ方や年齢による変化の仕方が集団ごとに異なることが明らかになった。そして、MSMsにあらわれる集団間の差や性格別間の差、年齢間の差は、活動をある特定の集団に属する個体が行う際に、他の個体とどのような相互作用や連携をとりやすんだのか、という関係性を示すものであると考えられた。

本節では、集団間の身体活動の違いの程度を時代間で比較することで、地域的な自然環境に基づく集団間の身体活動の差の表れ方と、専業化や階層に基づく集団間の身体活動の差の表れ方が、どのように異なるのかを明らかにしていく。

第1項 活動の多様性の時代変化

MSMsパターンの集団間差の時代差を検討すると（図6.1.1）、縄文の諸集団が最も類似する傾向にあり、弥生時代の各集団の中では、広田がやや異なる傾向にある。カテゴリカル主成分分析の結果をみると（図6.1.2）、水稲農耕を導入していた3集団は、それぞれ類似する傾向にあり、縄文時代の各集団とは分布域がわずかに異なる。

男性に関しては、縄文時代の諸集団の方が弥生時代の3集団よりも、集団間のMSMsの差異が小さくなる。この要因として考えられるのは、縄文の狩猟採集という生業は水稲農耕のような通年で生業の核となるような活動がなく（稲作は畑作や漁撈など他生業を副業化する傾向をもつ：安室、1992）、環境にあわせて様々な活動を季節ごとに行っていたこと、基本的に平等な社会で、個人間に厳密な活動の区分が存在しなかったため構成員すべてが、多様な活動に従事したためと考えられる。

生業の核となる水稲農耕が確立した弥生時代北部九州・土井ヶ浜地域においては、水稲農耕への依存度や、水田に適した広い平野があるか否かなどの地域的な環境の違いによって、身体活動における集団間の差異が生じはじめたと考えられる。水稲農耕に適した土地が確保できていない広田地域との差が最も大きくなるという傾向は重要なものであり、北部九州以外の地域の身体活動はおそらく本稿対象地域とは異なる傾向を示すだろう。

これに対して、中近世、特に江戸中期の集団のMSMsパターンの違いは大きい（図6.1.1）。
カテゴリー主成分分析の結果を見ると（図 6.1.2）、対象とした全集団の中で、その差は最大となる。特に、江戸市中に埋葬された被葬者群である、江戸市中庶民層（円形・方形木棺）は、住んでいた場所が同じであったにもかかわらず、武士層や上位武士層とは大きく異なる傾向を示す。江戸時代においては、各個人は基本的に生まれたときから、士農工商という身分制に応じた様々な身分に属する。そのような社会区分が、特権階級である武士層の服装や食生活、埋葬のされ方をはじめ、起居進退の動作法を規定していた（笹間 2004 等）。身体活動を規定し、さらには頭蓋形質に影響（鈴木 1985a,b; Sakaue 2014）を与え、集団間の MSMs パターンの差が、全時期を通じて最大となったと考えられる。

一方、女性の場合は、弥生時代の各集団の方が縄文時代の各集団よりも MSMs の差異が小さい（図 6.1.3）。これは、水稻農耕の定着によって、狩猟や漁撈、土地の開発といった男性労働に差異がみられるようになる一方で、女性は農耕や調理、その合間の採集活動に従事していたため、活動の地域差が減少したのではないかと考えられる。田中（2000）によって、弥生時代の前 - 中期までに行われた地域開発によって、男性労働に高い価値を生んだ可能性が指摘されており、弥生時代の MSMs の地域差のあらわれ方は、この指摘を支持するものである。

縄文時代の場合は、採集活動を主に行っていたとしても、対象とした植物はその地域に特有のものである。このような差によって縄文時代の女性の地域差は生じたものと考えられる。この点では弥生時代の男性の差がやや大きい要因と同じである。

一方、佐竹氏の支配のもと揚浜式製塩に従事した沢田・村松や漁村である吉母浜のようなやや専業化の進んだ中世や、階層社会である近世では階層間で MSMs に違いがみられるようになる。しかし、女性の場合は、男性とやや異なり、上位武士層のみが特異な傾向を示し、特権階級である武士層はむしろ庶民層に近い。武士の中では相対的に階層の低い武士層の女性が、江戸市中の庶民層との類似性が高いことから、箱棺に埋葬された女性の中には、家事や内職などの労働を行う必要のあった人々を多く含んでいた可能性を指摘した。また、竹田武士層の男性は、比較的武士層や上位武士層に近い位置にプロットされるにもかかわらず（図 6.1.2）、女性ではそのような傾向を示さない（図 6.1.4）。これらのことから、身体活動に及ぼす規制は、武士の中でもより身分の低い女性にとっては、そこまで厳密なものではなかったといえる。しかし、上位武士層の女性は、どの時代の集団と比べても MSMs のあらわれ方が特異である（図 6.1.4）。この点では、男性の上位武士層と傾向が同じといえる。

このことから、集団間の活動の多様性は、男女共に、縄文時代や弥生時代と比べて江戸時代の階層に基づく集団間の活動の多様性のほうが大きいといえる。

第2項 年齢・性別に基づく活動差とその時代変化

加齢による MSMs の変化の通時的検討をおこなった結果（図 6.2.1, 6.2.2）、縄文時代の
各集団は、ほかの時代集団とは明確に加齢変化の様相が異なる。この結果は、狩猟などの主な活動に参加するピークの年齢が、ほかの時代集団とは異なることを示していると考えられる。オーストラリアのアボリジニ社会の観察から、小山（1996）は経験や知識の豊富な高齢者が実権を持つ、実際の食糧獲得に従事するのはより若い人々であることを指摘している。また、Kaplan et al.（2000）やKramer and Boone（2002）、口蔵（1977）などの研究でも、従事する活動によって、年齢ごとにその活動への関わり方が異なることが指摘されており、アチェの男性では動物の肉の獲得率のピークが35−40歳くらいであるというKaplan et al.（2000）や、身体能力のピークが20代にくるというWalker and Hill（2003）の指摘は、加齢変化の様相が縄文時代の各集団だけ異なる要因の1つとして考えることができよう。

性差も近世の武士階級が最も大きい傾向にある（図6.2.5）。縄文時代では集団ごとに男女の性差のあらわれ方は異なるが、男性と女性のばらつき方は類似し、図6.2.5をみると同じ集団の男女で結んだ線の方向は概ね同じである。一方、弥生では男性の活動の多様性のほうが女性の活動の多様性よりも大きく、男性のばらつきが大きいため、線の方向も一致しない（図6.2.5）。当該対象地域に関しては、水稲農耕の確立と農業技術の進歩によって、農耕そのものについても体力のある男性労働が主体となる傾向が指摘されている（菱田2000・田中2000）。さらに、男性主体で行っていた可能性の高い観察的な活動に関連する遺物の違いは集団間で明瞭にあらわれており、これらの要因によって男性の多様性のほうが女性の多様性よりもやや大きくなったのではないかと考えることができる。

また、中近世の非都市部の集団では、男女差が小さい（図6.2.5）。また近世においても、男女の差は武士階級を除くと、やはり小さい（図6.2.5）。近世においては、家庭と労働の場の分離に伴い、女性が生産労働から家事労働へと囲われる変化が開始したことが指摘されている（菱田2000）。女性が担ったとされる家事労働に関しては、小泉（1993）によって江戸時代の町家を中心とした中流階級の女性の日記の検討がなされている。基本的には衣（縫い物や洗濯など）食（日常の炊事など）住（屋根や壁の修理、掃除など）の全てを担っており、細かいく仕事が絶え間なく続いていたことが明らかにされている。18世紀以降には妻ないしは主婦である以外に女性の生存する場がないという封建的な家制度の中で、身分を問わず家事は全て女性に義務化されたとみなされている（小泉1993）。MSMsの結果（図6.2.5）をみると、江戸市中庶民層（円形・方形木棺）、武士層、上位武士層の順で男女差が大きくなる。庶民層のほうが武士層よりも家事労働の負荷が高く、また女性が生産労働に関わらなくなるという傾向は武士層のほうが庶民層よりもより顕著にあらわれた結果ではないかと考えられる。これは、女中などに雇う経済力がある家事労働すらも行う必要がなかったと考えられる上位武士層で男女の性差が特に大きいことからも示唆することができる。

一方で、非都市部の近世百姓の男女差は最も小さく、中世も含めて非都市部の性差のほうが都市部の性差よりも小さいことがわかる（図6.2.5）。近世的地方農村においては、家事労働に関わられるところや、耕起作業や代捜い以外の仕事には女性も男性と同程度に関わり、
その上で家事を常に女性が行っていたことが指摘されている（長島 1993）。非都市部の男女のMSMsの性差が都市部の性差よりも小さいことは、近世の地方農村で指摘されたような性格役割分業に起因する可能性が考えられる。このような示唆に関しては、今後、近世近代の人骨資料のさらなる検討をおこなう必要がある。

第3項 時間・地域・階層に基づく多様性の変化

集団間の身体活動の差異は、男女共に武士層、特に上位武士層が最も大きい。男女間の差は縄文と弥生では弥生のほうが、さらに近世の都市居住者、特に武士層・上位武士層で大きい。加齢変化のあらわれ方による差は、近世武士層では小さく、弥生3集団は加齢の仕方が類似する傾向にあるのに対し、縄文では年を重ねる方がほかの時代の集団とは異なる傾向にある。

このことから、男女共に階層に基づく身体活動の差が最も大きくMSMsにあらわれるといえる。武士層・上位武士層の身体活動の年齢に基づく変化が最も小さいことから、時代を問わず他の集団と大きな違いをみせることの武士特有の身体活動は、武士が生まれたときにから所属する階層に基づいて、若年期から形成されていたものであることがわかる。階層社会においては然るべき時にふさわしいように振る舞えることは極めて重要であり、これが武士階層のMSMsパターンとその形成年齢の早さに反映されていると考える。

同時代内の集団間のMSMsパターンの差は縄文時代では最も小さく、弥生で縄文よりは大きくなり、中近世において最も明確化することから、活動によって身分を表徴するようになった近世江戸時代、あるいは生存に必要な食料の一部を他者に依存することができるような専業化が進展した社会である中世室町時代のほうが身体活動の差は明確化するといえる。これは、基本的には平等で自給自足的な生活をしており、それゆえに様々な活動を組み合わせて行っていたような社会と、中近世の社会では生涯を行う活動の質が明確に異なることを示している。

Armelagos（2003）は、新石器革命、中世ヨーロッパにおける都市化とペストなどの大流行、産業化とそれに伴うスラムの形成における疫病の拡大、21世紀における長寿化に伴う習慣病の出現、グローバル経済の拡大と環境の悪化に伴う感染症の再流行を概観し、現代社会の特徴である資源へのアクセスの格差に反映される不均質性（inequality）は、進化の歴史の一側面であり、ジェンダーや階層、集団などに基づく社会間・社会内のギャップは歴史的に徐々に増加してきたことを推測した。本稿では、MSMsを用いて社会的不均質性（inequality）の確立と身体活動の多様性の変化を具体的に検討した。その結果、身体活動における集団の多様性は、専業化が進み、食糧生産に直接的に携わらずなくなる階層の人数があらわれ、社会内部の分化が進行するにつれて大きくなる傾向を示した。MSMsにあらわれる身体活動の多様性は、その最も顕著な傾向を江戸時代階層社会に示すことから、社会内部の不均質性の進展の影響を強く受け、身体活動にあらわれる社会間・社会内のギャップは歴史的に増加してきたことを明らかにした。
第 8 章 結論

本稿では、縄文時代・弥生時代・中世・近世の各集団の生業諸活動を復元し、MSMs の集団間・集団内の多様性の時代変化を検討した。これにより、自給自足的でいわゆる平等社会で、構成員全てがある程度協働していた社会の集団間・集団内（性差・年齢差）の身体活動の違いのあらわれ方と、単純化で階層化が進む際に、数値で生産に携わらない階級が成立した社会の集団間・集団内（性差・年齢差）の身体活動の違いのあらわれ方を比較することで、人間社会の内部にみられる非均質性（inequality）の変容を身体活動の観点から明らかにすることを目的として議論を行ってきた。以下、本稿で行ってきた検討結果及び議論の内容について要約する。

各時代の各集団の活動パターン

縄文時代

縄文時代のように多様な活動を組み合わせて行うような集団では、各集団の MSMs パターンは概ね類似する傾向を示す。しかし、そのわずかな違いから各集団で異なる活動を行っていた影響を読み取ることができる。

東北の縄文時代集団における三角筋の前部・三角筋・上腕三頭筋・上腕二頭筋の発達は、肩関節の拳上、肘関節の屈曲位での回外の動きが重要であった可能性を示し、この動作は、東北太平洋岸の縄文時代集団において漁撈の中でも刺突漁や釣り漁に比重が置かれていたことと整合する。

一方、房総湾岸の諸集団の傾向も上肢や下腿の MSMs に関して他とは異なる傾向を示す。これは漁具の中で顕著に土器片錘が多いこと、植物質の食物の利用が高いという食性分析の結果や土壌具・石鍬や植物質食糧加工具が多いことから考えると、漁撈活動の中でも網漁に対する比重が高いこと、さらに土壌具・石鍬を用いた根茎類の採取もその要因の 1 つと考えられる。これは東北太平洋岸地域以外の、土壌具・石鍬が出土し、ヤマノイモのような根茎類の採集・半栽培の可能性が示唆される地域が類似する点から指摘することができる。

根茎類の採集・半栽培の可能性が示唆される地域の中でも、三貫地と渥美・津雲の 3 集団の MSMs は類似性が相対的に強く、中でも渥美半島と津雲の MSMs は特に類似していた。三貫地も含め、渥美・津雲の 3 集団の生業諸活動の中に、打製石斧や打製横刃型石器を用いた焼畑や禾本科植物、アワやキビの収穫を含んでおり、この比重が房総湾岸よりもやや高かったために、これら 3 集団は類似性が強く、土器片錘を用いた網漁の重要度が相対的に最も高かった房総湾岸とはやや傾向が異なる結果となった可能性が考えられる。この 3 集団の中では三貫地やや類似性が低い要因としては、ヤス漁の比重が他の 2 地域よりも高かったことに起因する可能性が考えられる。西日本晩期農耕論の対象地域に含まれ、対象集
団の中では唯一アク抜きの不要な地域である津雲地域においては、女性もむしろ弥生時代の集団と類似しており、採集活動の仕方が他の縄文時代の集団とはやや異なっていたという可能性も考えられる。

MSMs のパターンは、活動を反映する細かい差を有しているが、本稿で対象とした諸集団においては、北海道域の海獣狩猟のような極端な活動の偏りがなかったため、弥生時代や近世と比べると、類似する傾向を示したと考えられる。縄文時代においては基本的に何か 1 つの軸となるような生業活動があるわけではない、特に本稿対象地域においては極端に何か 1 つの生業に偏るような傾向もない。同じように集団の構成員が多様な活動を行っていた人々の集まりであった江戸市中庶民層（円系木棺）を比べると、縄文時代の各集団は、スコア 1 の個体が極端に少なく、集団内部に身体的な負荷のかかりかたが大きく異なる個体が存在しないことが明らかとなった。このことから、縄文時代の各集団の MSMs パターンの強い類似性は、基本的には平等で集団内の個人間に厳格に規定された活動差や活動区分はなく、集団の構成員のほとんどの活動を組み合わせて行っていた結果なのであろうかと考えることができよう。

弥生時代

弥生時代の水稻農耕によって発達する部位の特徴としては、上肢と下肢のバランスが異なること、下肢のパターンが共通し、中でもヒラメ筋および腸腰筋が発達する傾向にあることを指摘した。これは水田などのぬかるんだ環境下での歩行によって発達しうる筋であり、水稻農耕によって生じた活動を反映する MSMs パターンである可能性が考えられた。また、弥生時代各集団の上肢にみられる MSMs パターンの差は農閑期に副次的に行っていた活動や農耕のための開墾や伐採の必要性の多寡の違いを表すものであると考えられるかもしれない。

男女の MSMs の差のあらわれ方、左右差の差のあらわれ方、縄文時代とは異なる。性差においては男性の方が地域間のばらつきが大きく、女性の身体活動の地域的多様性は減少傾向にあった。これは、生業の基盤である水稻農耕以外の諸活動は狩猟や漁撈など概ね男性によって行われる可能性が高い活動であった為ではないかと考えられる。また福岡平野と三国丘陵のように水稻農耕の定着度が比較的高い地域においてみられる男性の活動の差異化は、灌溉の維持や地域開発の多寡の差、副次的活動の違いをあらわすものと考えられる。一方で、日本列島においては、水稻農耕の確立に伴い採集対象が画一化されはじめ、それ以前と比べると、女性の身体活動の多様性は減少したのではないかと考え
第 8 章 結論

弥生時代の男性の加齢変化の様相は縄文時代のそれとは異なり、弥生時代の男性は基本的、加齢とともに増加していく。一方、女性では加齢変化の様相に地域差が現れる。加齢とともに身体能力の年齢限界を迎えた後はリタイアする縄文時代の男性とは異なり、弥生時代の男性は狩猟や漁撈活動において体力的なピークを過ぎた後も、農耕作業に従事することができたために、農耕以前の時期と比べると高齢者の活動量が増加していた可能性が示される。一方で、基本的に女性が行う作業は活動の年齢限界が男性のように顕著に存在しないため、加齢変化は男性よりも緩やかなものとなる。この結果、縄文時代の各集団と相対的に農耕の定着度の低い土井ヶ浜では加齢変化に伴うスコアの増減は緩やかな傾向を示す。しかし、三国丘陵のように、水稲農耕の定着度があがるにつれて成年期の活動負荷が減り、老年期までスコアが続け増え続け、縄文時代の各地域集団の女性とも相対的にスコアが高くなるという傾向を示す。農耕の定着とともに女性の作業の仕方を変化した可能性がある。すなわち、農耕の確立とともに、女性の活動自体の多様性は減っていくが、まだこの時期の農耕の定着度には地域差が存在しており、農耕の定着度に応じて各地域の採集活動がやや異なっていたため、縄文時代的な活動区分の多様性が残っていたのではないかと考える。この点において、退役狩猟民による農耕の導入（渡辺1990）というモデルで説明できるのは弥生時代の北部九州域ということもあるかもしれない。

弥生時代と縄文時代の MSms の集団間・集団内の差のあらわれ方の違いは、水稲農耕の確立に伴い、生業活動への従事の仕方が徐々に変化していくことを示唆するものであるだろう。

中世の主漁従農民（吉母浜）

主漁従農集団とされる吉母浜中世人骨の MSms を観察し、先行研究との比較を行ったところ、肋鎖靱帯のスコアが最も高く、次いで大胸筋・三角筋のスコアが高いという、漁撈民に特徴的な傾向が認められた。しかし、それ以外の部位に関しては各地域で共通した傾向が得られていない。違いが生じる要因として、MSms パターンの形成要因となった漁撈活動に用いられた道具の影響を指摘した。主漁従農民（吉母浜）では、地域独自に発展した道具が使用されており、肋鎖靱帯のスコアの高さは、漁撈民が使った際に上腕を前後に動かす動きや、水中から網を曳く際の、下方から上方へ腕を引き上げる動き、ホコをつくる際の外転挙上からの急速な腕の振り下げる動きによるものである可能性が考えられる。さらに、下肢を含めた分析の結果、主漁従農民（吉母浜）の男性では、上肢に下肢よりもスコアの高い部位が多い傾向や、下肢の中では下腿よりも大腿骨に付着する筋のほうが MSms のスコアが高いという傾向がうかがえた。舟を使用する漁撈民の上腕の断面示数と大腿の断面示数を比較した研究では、上腕の方がより頑丈となるという傾向が指摘されており（Stock 2006; Stock and Shaw 2007; Shaw and Stock 2009）、主漁従農民（吉母浜）の下肢よりも上肢の方が MSms のランクが高い部位が多いという傾向もこれと整合する可
第8章 結論

一方、主漁従農民（吉母浜）の男性でみられたような、肋鎖靭帯のスコアの高さや、上腕と大腿のMSMsのランクの違いは女性にはみられない。女性のMSMsはむしろ近世百姓（原田）と類似し、これは女性が舟に乗るという行為を多くの漁漁民が禁忌とする（桜田1980b）ことに起因する可能性がある。加えて、加齢変化の様相にも男女差がみられた。漁漁活動のようにその習熟度に合わせた作業の分担や性別による活動区分が明瞭に行われるような生業活動を行っていた集団の場合は、MSMsの性差だけでなく、MSMsの加齢による変化の仕方にも男女で差があるといえる。

中世の揚浜式製塩民（沢田・村松白根）

揚浜式製塩民（沢田・村松白根）のMSMsパターンの特徴は、主漁従農民（吉母浜）と比較した際に明確に認められた。揚浜式製塩民の男性は、上肢では大胸筋や上腕筋、回外筋が、下肢では大腿の股関節に作用する筋よりも下腿に付着する筋の付着部のスコアが高まる傾向がみられた。

揚浜式製塩民（沢田・村松白根）が行っていた製塩過程における、担い棒に桶を2つ下げて浜辺に行き、人力で海水をくみ上げ、砂浜の上を歩いて運ぶという工程においては、肩関節の急速な動きなどは必要としないため大胸筋や大円・広背筋に、肋鎖靭帯よりもはるかに負荷がかからると考えられる。引桶を担いで運ぶ作業や海水を打桶にいれて塩田に撒く作業、塩田の鹹砂を柄振で集める作業には、肘関節の屈曲の主働筋である上腕筋に負荷がかかる。また引桶・打桶・柄振のような道具は、基本的に回外位から半回外位で持つ。このような揚浜式製塩に特有の活動と道具の使用のために、これらの筋付着部のMSMsスコアが高かった可能性が考えられる。

男女間のMSMsの差をみると、漁漁活動に関する禁忌がある主漁従農民（吉母浜）よりは、性差は小さく、また、その男女差はMSMsパターンの差ではなく、スコアの大小によって説明することが可能であった。すなわち、男女の間に大きな活動差はみられないが、負荷のかかり方が男性の方が極端に大きいといえる。このような男女のMSMsパターンの類似から、漁漁民他の活動の性差が無かったことが支持される。製塩作業は、基本家族協働で行われ、男性も女性も類似する活動に従事していたという指摘（廣山1993）を支持する結果である。

加齢によるMSMsの変化は、主漁従農民（吉母浜）よりも年齢によるMSMsパターンの差は小さく、武士ほどの類似は示さなかった。漁業活動とは異なり明確な年齢による区分などは存在しなかったが、技術の習得に一定の期間を必要とする重労働であるため、武士ほどの類似は示さなかったのではないかと考えられる。

揚浜式製塩活動のように、その習熟度に合わせた熟達の差はあるが、年齢や性別による活動区分が明瞭ではない場合には、各年齢段階・性別に基づくMSMsのパターンの差は小さくなり、加齢によるMSMsの変化の仕方やMSMsパターンの男女間の差も小さくなると考えることができる。
第8章 結論

近世の各階層集団

武士層

武士層とされる埋葬様式群は互いに類似する傾向を示し、また庶民層とは異なるMSMsパターンを形成することが確認された。特に、武士層のMSMsパターンの類似は下肢において顕著である。その類似点は、下肢の最大のピークが腸腰筋にみられる点、外側広筋のスコアがやや低いが内側広筋のスコアは高い点、粗線に付着する筋群のスコアも同時期の他集団と比較すると強く、一方で大腿筋や下腿三頭筋を構成する腓腹筋内側頭とヒラメ筋のスコアは中程度である点が挙げられる。このようなMSMsパターンは、武士層とされる各埋葬様式群や久世・神代家で概ね共通してみられ、武士特有の剣術・弓術・馬術などの武芸や立ち居振る舞いなどの所作に主に作用する筋である可能性が考えられる。

男性の上位武士層および武士層のMSMsパターンは、武士階層特有の活動、すなわち剣術や弓術、馬術などの武芸や歩行様式、拝礼の仕方といった立ち居振る舞いにおける一連の所作によって形成されたと考えられる。加齢による変化や個体のばらつきも、武士層の男性に関しては小さく、このこと結果は、年少時より日常的な所作として活動を共有していたためと考えられる。

武士層の女性に関しては、より身分の高い上位武士層の女性の特異性が目立ち、武士層の女性は江戸市中庶民層（円形・方形木棺）に近いという結果が示された。下級武士の女性は家事などのため家計を支えるために労働を行う必要があったことに起因する可能性が考えられる。上位武士層の女性のMSMsパターンの特徴としては、スコアの低い個体の頻度が高いということであり、これは、上位武士層の女性は、家事などの労働を行う必要がなかったことや、屋敷にある筋の高さを示している可能性も考えられる。

MSMsの性差は全時代を通して上位武士層が最も大きい。しかし、男女間のMSMsの差が大きいのは、武士層男性のMSMsパターンの特異性が顕著なためであり、このことからも、武士層の女性では、男性ほどに明確な階層ごとの活動区分が存在していなかったということが示唆された。

一方、江戸市中内の武士層である竹田武士層（稲荷谷）では、男性は江戸市中の武士層にやや類似するが、女性はそのような傾向を示さない。男性も、江戸市中の武士層と類似はするが、下肢のMSMsパターンが全く同じではないという点から、生活様式に江戸市中の武士層とは違いが生じていたと考えられる。このような傾向は、岡藩の武士団であるとされる点と、墓地形成時期が19世紀以降から明治以降であるという時期的な違いが要因として考えられる。また竹田武士層と江戸市中武士層との差のあらわれ方には男女間で違いがあり、男性の方が女性よりもより類似性が高い。女性の方が生活様式の共有度が低いという傾向は、江戸市中の武士層の女性と同様であり、武士的な生活様式の崩れは、より階層の低い武家の女性に強くあらわれのではないかと考えられる。
庶民層

武士層のような同一階層に属する被葬者が主に埋葬される墓ではない、円形木棺や方形木棺に埋葬された江戸市中庶民層は、MSMsパターンにおいても、加齢変化の様相においても、ばらつきが大きい。これは重労働者もそうでない労働者も含め、様々な職業の人を含んでいる為であると考えられる。また、江戸市中庶民層（円形・方形木棺）の被葬者の男女間のMSMsは小さい。この点も、男女共に様々な職業の人を含んでいる為であると考えられる。今後の検討を要すると、江戸市中庶民層のうち、円形木棺よりも方形木棺のような、庶民層のなかでも活動負荷の低い人々、例えば商人や町人、あるいは武士の一部により多く使用されていた可能性が考えられる。

近世百姓層

近世百姓（原田）の特異点として、男性のMSMsスコアが低いことと男女のMSMsスコアが拮抗する点が挙げられる。男女間のMSMsはパターンをみるとやや異なり、農業における労働の負荷の男女の均質さと、その中でも田植えや脱穀を担うのは主に女性であり、田おこしを主に行うのは男性であるといった性に基づく分業に偏って生じている可能性が考えられる。近世百姓層の男女のMSMsが近似するという結果は、長島（1993）の指摘する近世農村の性別役割分業を支持する結果である。

生業・生活様式の復元におけるMSMsの限界の克服

本研究では、遺物組成などの考古学的な研究結果をふまえ、MSMsパターンによる身体活動の復元を行った。しかし、弥生時代よりも、より漁撈活動への依存度の高い縄文時代では、いわゆる漁撈的なMSMsパターンを示さず、また三国丘陵域のような漁撈活動を行うに適さないような地域でも、漁撈的なMSMsパターンに類似するパターンが析出された。また、中世の主漁従農民ではいわゆる漁撈的なMSMsパターンは形成されず、その形成要因となった活動の組み合わせは、Hawkey and Merbs(1995)で対象とされた集団の活動とは大きく異なるといえる。このように、MSMsパターンのみを検討する限りにおいては、これらの身体活動を具体的に復元することは困難である。

身体活動は、道具や使い方、立地や環境によって、地域的に多様なものであり、これらを筋の発達を示すMSMsのみから検討することは、結果の過度の単純化との指摘を免れない。しかし、人々が生涯に行う活動は多くの文化人類学的研究が指摘するように、ただ無秩序に多様であるわけではない。生業活動の特性や適応した自然環境の特性、男女の役割に基づく活動区分、年齢や活動の習熟度に応じた個人の役割に基づく活動区分や所属する階層に基づく個々人の活動には一定のパターンが形成される（口蔵 1977）。このような見解をふまえ、本稿では、生業活動のみの復元を目指すのではなく、生存のための集団のあり方・活動・技術の総称としてあらわされる生業様式総体として復元を行った。生業様式
総体として復元するためには、本稿で示したように、考古学的研究の対象となる道具の分析から技術的な側面を、MSMsパターンの分析から活動そのものと生業活動に携わる集団の在り方の両方を明らかにし、その結果を統合することが必要不可欠であるといえる。

生業様式・生活様式総体として明らかにすることで、身体活動の復元だけでなく、どのように活動を行っていたのかという点にもアプローチすることが可能であった。このような生業諸活動を集団内のだれが担うか、という点は、社会構造の基本的変化につながるものであるが、行動を行っていた人を集団内に観察することのできない過去の集団を対象とした研究では検討が難しい部分であった。本稿で示したように、考古学や文献史学などの成果を詳細に検討を行った上で、MSMsパターンの地域集団間や男女間、年齢間の比較検証をおこなうことによって、道具の分析からでは明らかにすることのできない性分業や年齢による活動区分、階層による活動区分など、集団内の生業諸活動・労働がどのようになされたのか、といった活動を行う際の社会組織のあり方を検討することが可能となる。

この点において、MSMs研究は極めて有効なものであり、このような観点で行われた分析結果を世界規模で比較することで、身体活動は地域的に多様であるために一般化できない（Stock and Pinhashi 2011; Larsen 2011等）という現在の形質人類学分野における限界をこえて、社会がどのように「進化」（Armelagos 2003）してきたかという比較研究が可能となる。

時間・地域・階層に基づく身体活動の多様性の変遷とその要因

本稿では、身体活動に現れる地域差や階層差、さらに男女や年齢に基づく活動区分のあり方の違いから読み取ることができる社会内部の多様性の様相が集団によって大きく異なることを示した。すなわち活動によって身分を表徴するあるいは専業化が進展した社会と、基本的には平等で自給自足的な生活をしており、様々な活動を組み合わせて行っていたような社会の集団とは、MSMsの差異のあらわれ方は異なることが明らかになった。また、それは、江戸時代の上位階層において最も顕著であった。このことから、社会内部の非均質性の進展によって、人間集団の多様性は個人・集団間の格差となって進行し、身体活動にも顕著にその影響を及ぼすようになると考えることが可能である。

本研究を通じて、集団間・集団内の活動の多様性とその差のあらわれ方は、社会構造の変容による影響を強く受け、階層社会において最も顕著となることを明らかにした。

本稿のまとめと今後の展望

本稿では、MSMsを用いて縄文時代・弥生時代・中世・近世の諸集団の身体活動の多様性の変遷について検討を行ってきた。これまでのMSMs研究は、多くのストレスマーカー研究と同様に、身体活動の復元あるいはその変化をとらえることのみを主目的として研究を行ってきた。身体活動とは地域的に極めて特殊なものであり、また、その変化の仕方も
身体のどの部位に負荷がかかっていたかなどを焦点とした場合に極めて特殊なものであり、そのため、地域間で相互に参照することのできない個別事例研究として研究が蓄積されていた。また、人骨形質の分析に焦点をおくあまり、考古学など他分野で蓄積されていた生涯研究に対してあまり無頓着であった。そのような研究状況において、本稿では、身体活動のみを復元するのではなく、生存のための集団のあり方・活動・技術の総称としてあらわされる生涯様式・生活様式総体として復元することで、MSMs 研究を生涯様式・生活様式の研究における必要不可欠な検討項目の1つとして位置づけた。考古学・文化人類学・歴史学的分析と統合して評価することで、MSMs パターン形成要因となった身体活動をより詳細・具体的に明らかにすることが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことが可能となるだけでなく、生涯活動の集団差や男女差、年齢に基づく活動の区分や左右差、階層に基づく生活様式の差など、活動主体であったヒトの分析を行うことでしかわかりえない事象に踏み込むことができる。さらに、中世以降の社会活動は本稿で対象とした以上に数多く存在しているはずであり、人骨がどの程度出土しているかは不明であるが、随時検討を加えていく必要がある。さらに、近世農民層として原田近世墓地出土人骨を用いたが、本文中でも述べた通り、原田近世墓地の被葬者をもって近世の百姓を代表させることはできないだろう。中世や近世の都市内での生業活動の多様性に関する検討を進めていきたいと考えている。

さらに、本稿では、活動によって身分を表徴する階層化社会あるいは専業化が進展した社会と、基本的には平等で自給自足的な生活をしており、様々な活動を組み合わせて行っていたような社会の集団の MSMs を比較することで、両者の間に明確な差があり、社会内部の分化が進行するにつれて大きくなる傾向を示した。MSMs にあらわれる身体活動の多様性は、江戸時代階層社会で最大となることから、社会内部の不均質性の進展の影響を強く受け展開してきたことを明らかにした。

今後は、この両者の間にあり過ぎ渡的な様相を示す時期、すなわち階層化と社会的分業が進展したと考えられている游方時代の人骨の MSMs を検討し、身体活動の集団間・集団内多様性のあらわれ方を具体的に明らかにすることが重要課題となると考える。

今後は、この両者の間にあり過ぎ渡的な様相を示す時期、すなわち階層化と社会的分業が進展したと考えられている遊方時代の人骨の MSMs を検討し、身体活動の集団間・集団内多様性のあらわれ方を具体的に明らかにすることが重要課題となると考える。

以上のように論じ残した課題は多く、各時代それぞれで資料を増やしていき、各時代の位置づけを必要に応じて修正・更新する必要があると考えている。

上述した点を課題とし研究を進展させてゆくことで、日本列島における身体活動の多様性の通史的変遷過程を明らかにしていきたい。
謝辞

九州大学大学院比較社会文化研究院の瀬口典子准教授、溝口孝司教授、同大学の総合研究博物館の岩永省三教授、大阪大学文学研究科の佐藤廉也教授、九州大学中橋孝博名誉教授には、総合演習での発表や本論文の審査を通して多くの有益なご教示をいただきました。意図を明確に伝えることができず多くのご迷惑をおかけしましたが、懇切丁寧にご教示いただきました。記して謝意を表します。岩永省三教授には、研究に関する多くのご指導をいただいただけでなく、博物館業務が負担になり博士論文の作成に支障ないようにご配慮いただき、さらに、本研究に用いた貴重な標本の調査に際して多くの便宜をはかっていただきました。また、総合演習での発表やゼミを通じて九州大学人文科学研究院の宮本一夫教授、辻田淳一郎准教授、総合研究博物館の舟橋京子助教、比較社会文化研究院の菅浩伸教授、田尻義了准教授、足立達朗助教から多くのご指導とご教示をいただきました。同大学の学術研究員石川健氏にも本研究に関する多くのご指導とご教示をいただきました。記して心よりお礼を申し上げます。

本研究に用いた貴重な標本の使用をお許しいただき、調査に際して多くの便宜をはかっていただいた国立科学博物館人類研究部、篠田謙一郎部長・海部陽介グループ長、河野礼子研究主幹、坂上和弘研究主幹、溝口孝司名誉研究員、馬場悠美名誉研究員、桜井真里氏・中塚彰子氏、佐賀大学医学部の川久保善智助教、港区教育委員会の高山優氏、京都大学大学院理学研究科自然人類学教室の中務真人教授、東北大学大学院医学系研究科百々幸雄教授、大野憲五氏、新潟大学熊木克治名誉教授、筑紫野市教育委員会の草場啓一氏に深く感謝いたします。

鳥取大学医学部の岡崎健治助教、土井ヶ浜遺跡・人類学ミュージアムの高橋浩氏には日頃の議論を通じて多くの示唆をあたえていただきました。厚く御礼申し上げます。

九州大学中橋孝博名誉教授は、いきあたりばったりで戦略的に研究を行わない私に対し、辛抱強くご指導していただきました。研究の発見・発表を通じて多くの機会を与えて頂けたこと、またMSMs研究を行うことに対して宽容であり続けてくださったこと、改めて厚く御礼申し上げます。

2015年3月4日にご逝去されました九州大学田中良之教授に、研究の計画段階から多くのご支援とご指導を賜りました。なかなか気付けずにおりましたが、折にふれて研究の方向性を示唆してくださっていたこと、2014年12月に最後に研究指導をしていただいた際には、今後の研究の展望についてもご指導いただきましたこと、記して心よりお礼を申し上げます。

最後になりましたが、常日頃から共に研究を行い、様々な事柄に関する議論や雑談を通じて、多くのご助言とご指導を頂いている九州大学大学院比較社会文化学府基層構造講座、同大学院人文科学府考古学研究室の皆様に謹んで感謝申し上げます。
参考文献

網野義彦 2001 日本中世都市の世界. 筑摩書房. 東京.

チャイルド G. ねずまさし訳 1957 文明の起源（改訂版）上下. 岩波新書. 東京.

Djukic K, Milovanovic P, Hahn M, Busse B, Amling M, Djuric M. 2015 Bone Microarchitecture at Muscle Attachment sites: The relationship between macroscopic scores of entheses and their

土肥直美 1996 第 7 章 人間の骨格案内－骨が語る人間の履歴－. 片山一道編. 人間史を辿る. 朝倉書店, 東京, pp.191-207.

Engeles F. 戸原四郎訳 1965 家族・私有財産・国家の起源-ルイス・H・モーガンの研究に関連して-. 岩波書店, 東京.

古泉弘 1987 江戸の考古学(考古学ライブラリー48).ニューサイエンス社, 東京.

橋口尚武 1990 種子島の考古学的研究－その基礎資料(1)－. 乙益重隆先生古稀記念論文集刊行会編. 乙益重隆先生古稀記念 九州上代文化論集:139-168.
橋口達也 1985 日本における稲作の開始と発展. 岡崎敬先生退官記念事業会編. 石崎曲り田遺跡 III.今宿バイパス関係埋蔵文化財調査報告第11集.福岡市教育委員会, 福岡. 5-104.
橋口達也 1987 岡崎敬先生退官記念事業会編. 東アジアの考古と歴史 (中) 岡崎敬先生退官記念論集. 同朋舎出版. 京都. 704-754.
Henderson CY, Craps DD, Caffell AC, Millard AR and Gowland R. 2013b Occupational Mobility in

東村純子 2011 考古学から見た古代日本の紡績. 六一書房, 東京.
東中川志美 1987 肥前における近世の大変. 岡崎敬先生退任記念論文集, 東京, pp.73-80.
菱田（藤村）淳子 2000 男女の分業の起源. 古代史の論点, 岡崎敬先生退任記念論文集, 東京, pp.78-98.

平本嘉助 1972 縄文時代から現代に至る関東地方人骨の時代的変化. 人類誌, 80:221-236.

池口明子・佐藤廉也 2014 序章 人類の生存環境と文化生態. 池口明子・佐藤廉也編, ネケバーアンドサエティ研究 第3巻, 木青社, 大津市, pp.13-61.

今村啓爾 1989 群集貯蔵穴と打製石斧. 渡辺仁教授古稀記念論文集刊行委員会, 六興出版, 東京, pp.61-94.

井関弘太郎 1982 末戦の地形と地質. 唐津周辺遺跡調査委員会, 末戦, 六興出版, 東京, pp.7-8.

石丸恵利子 2008 附章1 彦崎貝塚出土の動物遺存体-水洗選別によって得られた資料について-、田嶋正憲・西田和浩・石丸恵利子・白石純編 彦崎貝塚3 範囲確認調査報告書、岡山市教育委員会文化財課、岡山市、pp.95-108。

礦田道史 2003a 近世大名家臣団の社会構造、東京大学出版、東京。

礦田道史 2003b 武士の家計簿「加賀藩御算用者」の幕末維新、新潮社、東京。

伊藤亜人 2009 漁民集団とその活動、大林太良編 日本民俗文化体系 〔普及版〕 第5巻 山民と海人＝非平地民の生活と伝承＝、小学館、東京、pp.319-362。

伊藤隆 1983 解剖学講義、南山堂、東京。

伊東照雄 1985 Ⅱ遺跡の環境と立地 1. 吉母浦の外観、下関市教育委員会編、吉母浜遺跡、下関市教育委員会、下関市、pp.4-11。

伊藤亜人 1992 漁村の分布、下関市教育委員会編、下関市史・民俗編、下関市教育委員会、pp.95-197。

伊藤亜人 1993 漁民集団とその活動、大林太良編 日本民俗文化体系 〔普及版〕 第5巻 山民と海人＝非平地民の生活と伝承＝、小学館、東京、pp.319-362。

岩松要輔 1974 近世、小城町史編集委員会、小城町史、小城町、pp.203-261。

賀川光夫 1966 縄文時代の農耕、考古学ジャーナル2:2-5

菅野則子 1982 農村女性の労働と生活、女性史総合研究会編、日本女性史第3巻、東京大学出版会、東京、pp.63-94。

金関丈夫 1966 弥生時代人、和崎誠一編、日本の考古学3。河出書房、東京、pp.460-471。

金関丈夫 1976 日本民族の起源。法政大学出版局、東京。
金関恕 1997 1. 総論. 金関恕・佐原真（編）, 弥生文化の研究 第2巻生業. 雄山閣, 東京, pp.5-8.
金子浩昌 1983 狩猟対象と技術. 加藤晋平・小林達雄・藤本強編, 弥生文化の研究 第2巻生業. 雄山閣, 東京, 78-99.
金子浩昌・忍沢成視 1986 骨角器の研究 縄文編Ⅰ 考古民俗叢書（22）慶友社, 東京.
金子浩昌・忍沢成視 1986 骨角器の研究 縄文編Ⅱ 考古民俗叢書（23）慶友社, 東京.
金子浩昌 1997 狩猟. 金関恕・佐原真編, 弥生文化の研究 第2巻生業. 雄山閣, 東京, 141-152.
片岡宏二 1996 第3章第1節 1. 弥生時代の自然環境と集落立地. 小郡市史編纂委員会, 小郡市史 第1巻 通史編 地理・原始・古代, pp.268-278.
片岡宏二 2003 水田稲作農耕の定着と展開－三国丘陵における弥生時代前期社会の諸問題－. 片岡宏二、杉本岳史、山崎頼人編, 三沢北中尾遺跡1地点環濠編 県種畜場区画整理事業関係埋蔵文化財調査報告書2, 小郡市文化財調査報告書第181集, 小郡市教育委員会, 小郡, 117-176.
柏原孝俊 2002 北部九州における弥生時代磨製石器の一種相－集落遺跡出土の「今山系石斧」とその供給形態－. 古代吉備研究会編, 環瀬戸内海の考古学－平井勝氏追悼論文集－上巻:521-537.
城戸誠 2004 国道502号改良工事に伴う埋蔵文化財発掘報告書. 竹田市教育委員会, 竹田市.
岸上伸啓 2008 文化人類学的生業論－極北地域の先住民による狩猟漁撈採集活動を中心－. 国立民族学博物館研究報告 32（4）:529－578.
清野謙次 1969 日本貝塚の研究. 岩波書店, 東京.
Klaus HD, Spencer Larsen C, and Tam ME. 2009 Economic intensification and degenerative joint disease: life and labor on the postcontact north coast of Peru. American journal of physical

町田章 1985 木器の生産. 金関恕・佐原真編, 弥生文化の研究 第5巻道具と技術. 雄山閣, 東京, pp.27-35.

前山精明 2007 石器材料と生業. 小林康・谷口康浩・西田泰民・水之江和・矢野健一編, 綱文時代の考古学5 なりわいー食糧生産の技術ー, pp.31-40.

前山精明 2014 石器の材料・製作・使用. 泉拓良・今村啓爾編, 講座日本の考古学 4 綱文時代（下）, 青木書店, 東京, pp.157-177.

松井章 1968 ヒョウタンからコマーヒョウタン栽培植物説をめぐってー. 考古学研究, 33-1: 70-80.

坂井建雄・松村譲兵監訳 2011 プロメテウス解剖学アトラス. 解剖学総論/運動器系. 第2版.医学書院.

酒沼伸男 1961 日本縄文石器時代食料総説. 土曜会.
佐原真 1985 総論. 金関恕・佐原真編. 弥生文化の研究 第5巻道具と技術. 雄山閣, 東京, pp.3-8.
佐々木高明 1971 稲作以前. 日本放送出版協会, 東京.
佐々木高明 1993 総論. 金関恕・佐原真編. 弥生文化の研究 第5巻道具と技術. 雄山閣, 東京, pp.3-8.
佐々木義則 1971 古代常陸国の塩づくりとその流通. 月刊考古学ジャーナル, 663, 13-17.
篠間良彦 2004 大江戸復元図鑑 武士編. 遊子館, 東京.
佐藤浩司 2008 西日本の農耕具 北部・東部九州. 宮島了誠・樋上昇編, 季刊考古学 104, 特集 弥生・古墳時代の木製農具. 雄山閣, 東京, pp.19-25.
佐藤満洋 1983a 岡藩 第3章.農村の変容と藩体制の解体 第1節.藩財政の窮乏と再建. 大分県総務部総務課編, 大分県史, 大分県, pp.534-554.
佐藤満洋 1983b 岡藩 第1章.岡藩の成立 第1節中川氏の入部と初期の諸相. 大分県総務部総務課編, 大分県史, 大分県, pp.433-455.
島田貞彦・清野謙次・梅原末治 1920 備中浅口郡大島村津雲貝塚発掘報告. 京都大学文学部考古学教室編, 備中津雲貝塚発掘報告 肥後轟貝塚発掘報告 京都帝國大學文學部考古學研究報告第5冊, 同朋舎, 京都, pp.29-63.
下條信行 1984 弥生・古墳時代の九州型石錘について-玄界灘海人の動向-. 九州文化史研究所紀要, 29:71-104.
下條信行 1986 日本稲作受容期の大陵系磨製石器の展開-宇木汲田貝塚 1984年度調査出土石器の報告を兼ねて-. 九州文化史研究所紀要 31:103-140.
下條信行 1993 我が国初期稲作期における土竪の伝来と東伝. 横見浩先生退官記念事業会編, 考古論集-横見浩先生退官記念論文集-1, 横見浩先生退官記念事業会, 広島, pp.319-338.
下條信行 2014 生産具（磨製石器）からみた初期稲作の担い手. 下條信行編, 列島初期稲作
の担い手は誰か。公益財団法人古代学協会，東京，175-228。
杉森玲子 2001 第 6 章 近世の町と商人. 佐藤信・吉田伸之編, 新 体系日本史 6 都市社会史, 山川出版社, pp. 291-316.
スプレイグ D 2004 サルの生涯、ヒトの生涯 一人生設計の生物学. 生態学ライブラリ, 京都大学学術出版会,京都.
スチュワード J.H. 1979 文化変化の理論－多系進化の方法論. 米山俊直・石田紝子訳, 東京, 弘文堂.
Swärdstedt T. 1966 Odontological Aspect of a Medieval Population from Jamtland/Mid-Sweden. Stockholm, Tiden Barnangen, AB.
鈴木公雄 1988 第 2 節 出土六道銭の分析. 第 3 章考案. 港区芝一丁目調査区調査報告書,芝公園一丁目増上寺子院群 光学院・貞松院跡・源興院跡－港区役所新庁舎建設に伴う発掘調査報告書－ 東京都港区教育委員会,東京, pp.518-529.
鈴木公雄 1994 六銅銭に見る江戸時代の銭貨流通. 大塚初重編,八百八町の考古学－シンポジウム江戸を掘る－,山川出版社,東京, pp.119-158.
鈴木尚 1999 出土銅貨の研究.東京大学出版,東京.
鈴木尚 1987 徳川将軍および家族の遺体. VI 頭骨. 鈴木尚・矢島孝介・山辺知行編, 増上寺徳川将軍墓とその遺品・遺体, 東京大学出版, 東京, pp.121-274.
鈴木尚 1985a 骨は語る 徳川将軍・大名家の人びと. 東京大学出版, 東京.
田嶋正憲 2006 彦崎貝塚 範囲確認調査報告書. 岡山市教育委員会文化財課編, 岡山市教
田中良之・小澤佳憲 2001 Ⅱ.渡来人をめぐる諸問題. 田中良之編, 弥生時代における九州・韓半島交流史の研究-平成12年度 韓国国際交流財団助成事業共同研究プロジェクト報告書. 九州大学大学院比較社会文化研究院基層構造講座, pp.3-27.

谷川章雄 1987 第5節 自證院遺跡における墓標と埋葬施設. 自證院遺跡調査団編, 自證院遺跡－新宿区立富久小学校改築に伴う緊急発掘調査報告書－, 東京都新宿区教育委員会, 東京, pp.188-194.

谷川章雄 1990 江戸の墓地と都市空間. 東京都教育委員会編, 文化財の保護, 東京都教育委員会, 東京, pp.140-152.

谷川章雄 1991 江戸の墓地の発掘. 東京都教育委員会編, 文化財の保護, 東京都教育委員会, 東京, pp.80-111.

谷川章雄 1993a 考古学から見た江戸の生活史. 新宿区立新宿歴史博物館編, 特別展「江戸のくらし」＜近世考古学の世界＞－記念講演・座談会報告書－, 新宿, pp.28-47.

谷川章雄 1994 江戸及び周辺村落における墓制の変遷. 綱野義彦・石井進・荻原三雄編, 中世から「近世」へ－考古学と中世史研究 5－, 名著出版, 東京, pp.135-158.

谷川章雄 2003 第9章 総括－八丁堀三丁目遺跡と初期江戸の葬墓制. 仲光克顕編, 八丁堀三丁目遺跡II－中央区八丁堀三丁目20番宿泊施設建設に伴う緊急発掘調査報告書－, 山万株式会社八丁堀三丁目遺跡(第2次)調査会, 東京, pp.245-247.

谷川章雄 2004 江戸の墓の埋葬施設と副葬品. 江戸遺跡研究会編, 墓と埋葬と江戸時代, 吉川弘文館, 東京, pp.224-250.

谷川章雄 2010 江戸時代の墓制・葬制の考古学的研究. 早稲田大学大学院人間科学研究科博士（人間科学）.

田崎博之 1989 水田の誕生. 下條信行編. 古代史復元 4 弥生農村の誕生. 講談社, 東京, pp.45-73.

樋泉岳二 2007 広田遺跡から採集された脊椎動物遺体. 廣田遺跡-平成16年度〜平成18年度 町内遺跡等発掘調査事業-. 鹿児島県南種子島町教育委員会, 鹿児島, pp.218-229.
戸沢克則 1983 縄文農耕. 加藤晋平・小林達雄・藤本強編, 縄文文化の研究 第2巻生業. 雄山閣, 東京, pp.254-266.
都出比呂志 1990 原始土器と女性-弥生時代の性別分業と婚姻居住規定. 女性史総合研究会, 日本女性史 第1巻原始・古代, 東京大学出版, 東京, pp.1-42.
辻康男 2013 Ⅰ.1.地理的環境. 土井ヶ浜遺跡・人類学ミュージアム編, 土井ヶ浜遺跡 第1次〜第12次発掘調査報告書, 土井ヶ浜遺跡・人類学ミュージアム, pp.1-10.
渡辺仁 1977 生態人類学序論. 渡辺仁編, 人類学講座 12 生態, 雄山閣, 東京, pp.3-29.
渡辺仁 1990 縄文式階層化社会. 人類学講座 11, 六興出版, 東京.
渡辺誠 1973 縄文時代の漁業. 雄山閣, 東京.
米田穣 2006 東道の上(3) 遺跡から出土したヒト遊離歯の同位体分析. 青森県教育委員会編, 青森県埋蔵文化財調査報告書第424集, 青森県教育委員会, pp.27-30.
米田穣 2010 同位体食性分析からみた縄文文化の適応戦略. 縄文時代の考古学4 人と動物の関わり合い-食糧資源と生業圏-, 同成社, 東京, pp.207-223
米田穣 2014 土井ヶ浜遺跡から出土した弥生時代人骨の炭素・窒素同位体分析. 土井ヶ浜遺跡・人類学ミュージアム編, 土井ヶ浜遺跡 第1次～第12次発掘調査報告書, 土井ヶ浜遺跡・人類学ミュージアム, pp.207-214.

278