
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Multi-objective design based on symbolic
computation and its application to hard disk
slider design

Yanami, Hitoshi
FUJITSU Laboratories Ltd.

https://hdl.handle.net/2324/15589

出版情報：Journal of Math-for-Industry (JMI). 1 (B), pp.149-156, 2009-10-16. 九州大学大学院数
理学研究院
バージョン：
権利関係：



Journal of Math-for-industry, Vol.1(2009B-8), pp.149–156

A案 B案

D案 E案 F案

C案

Multi-objective design based on symbolic computation
and its application to hard disk slider design

Hitoshi Yanami

Received on September 16, 2009 / Revised on October 4, 2009

Abstract. We propose a new approach to tackling multi-objective optimization problems. Our
method uses symbolic computation called quantifier elimination. From experimental data we first
make an approximated polynomial model for each objective function and then solve a first-order
formula related to those functions to find the feasible region, which contains information on the
Pareto optimal front. Our approach has an advantage over classical numerical optimization methods
that return only one optimal point at a time. Furthermore, by introducing into a formula an
adjusting point and a new variable that restricts the parameter ranges we can visualize how the
objective functions locally behave. This idea leads us to a new criterion for measuring the robustness
against production tolerance. We also show how our methods are applied to the design problem of
a hard disk slider.

Keywords. symbolic computation, quantifier elimination, multi-objective optimization

1. Introduction

In modern manufacturing industry multi-objective opti-
mization is a common design method. Design problems
in the engineering field are often formulated into a multi-
objective optimization (MOO) problem. Although various
types of research for MOO have been carried out, the most
general case is still open.

One of the main difficulties in dealing with them arises
from the fact that the cost values are not totally ordered as
in single-objective optimization (SOO). Thus the optimal
solution for an MOO problem is not a single point but forms
a set of points called a Pareto optimal front. Approaches
to these problems are roughly categorized into two types;
one is to find an optimal point and obtain information on
the Pareto set by collecting such points, and the other to
try to find the Pareto front itself.

Classical attempts to MOO such as the weighted sum
strategy and the ϵ-constraint method have transformed it
into SOO [31, 18]. Other than those, various meta-heuristic
algorithms have been proposed to tackle MOO problems.
Some of them have been realizable only recently owing to
the improvements in CPU performance and memory ca-
pacity. Evolutionary algorithms, a typical class of such
approaches, have been attracting more attention as a prac-
tical method of tackling MOO problems and showing suc-
cessful results. Particle swarm optimization (PSO), a new
class of evolutionary algorithms, has been used to solve
problems in control theory [20, 23].

In this paper we propose an algorithm for obtaining a
Pareto optimal set using a symbolic algorithm called quan-

tifier elimination by using polynomial models for objective
functions. Symbolic algorithms can deal with constraints
expressed by polynomials and return an exact formula for
the feasible region, containing complete information on its
Pareto front. This is a great advantage over numerical
approaches that compute only an optimal point during an
optimization process and require many simulation trials for
obtaining Pareto data. We also propose a criterion for mea-
suring production tolerance, which can be used to order the
points that are not comparable with regard to their objec-
tive function values.

Our method has been applied to the design problem of a
hard disk slider, a thin, nearly squared flat part attached to
an actuator arm. On the top of a slider is a magnetic head
that writes on or reads from a disk binary information.
The surface of a slider, designed by nanometer-scale, is
shaped to stabilize the head. The design problem of a hard
disk slider is to determine the shape, or the pattern, of the
slider’s surface. A typical way of designing a slider is as
follows. A designer first draws a basic geometrical shape
of the surface and sets a set of parameters to be optimized
as well as their ranges. For a set of real values for the
parameters a simulator computes various physical values
as to the slider’s relative position to the disk. We treat the
simulator as a black box.

To obtain high performance as well as durability, it is
very important to control the relative position between the
slider head and the disk. For example the distance between
them, called the flying height, is one of the most important
indicators that affect the quality of a hard disk drive be-
cause a head-disk contact might cause a crash. Relative

149



150 Journal of Mathematics for Industry, Vol.1(2008B-8)

angles between the slider and the disk such as the pitch
and roll angles are also to be controlled. These perfor-
mance indicators form a set of objective functions, or cost
functions in the design problem of a hard disk slider.

Here is the structure of the paper: In Section 2 we set a
formulation of MOO problems. We sketch several known
methods of tackling MOO in Section 3. In Section 4 we
overview quantifier elimination followed by our approach
based on QE in Section 5. In Section 6 our approach is
applied to the design problem of a hard disk slider. Section
7 concludes the paper.

2. Problem Formulation

Let us give a formal setting of a multi-objective optimiza-
tion problem. We follow the notations used in [24].

Let f = (f1, f2, . . . , fn)T, where vT means the trans-
pose of v, be a column vector of objective functions that
measure some performance. These functions are to be op-
timized in a multi-objective optimization problem. From
now on we assume that each function fi = fi(p), where
p = (p1, p2, . . . , pm)T is a list of parameters, takes nonneg-
ative real values and a lower value means higher perfor-
mance. The parameter vector p is supposed to run over a
prescribed subset P ⊂ Rm of the m-dimensional Euclidean
space, defined as P = {p ∈ Rm|c(p) ≥ 0} for some c. The
image F = {f(p) ∈ Rn|p ∈ P} is called the feasible region
of f with respect to P.

A multi-objective optimization problem can be repre-
sented by

minimize f(p) subject to p ∈ P.

It is exceptional that one can optimize all the objective
functions simultaneously. In almost all cases there is a
trade-off relation between the objective functions; improv-
ing one cost function should result in worsening another.

To state such a situation formally let us give one more
definition. Let n be a positive integer. We define a relation
≺ on Rn × Rn as

a ≺ b def⇐⇒ ∀i∈{1,2,...,n}ai ≤ bi ∧ a ̸= b

for a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn. Thus
Rn is a partially ordered set with respect to ≺. Note that
it is a total ordering only when n = 1. We say a dominates
b when a ≺ b.

We call the set of points in F that are not dominated
by any other points the Pareto optimal front. In an MOO
problem we are interested in the Pareto front as well as the
parameters corresponding to the front.

In the next section we sketch some of the well-known
methods of obtaining information on the Pareto optimal
front. Some algorithms can collect a useful data on a Pareto
set while others focus on a point or two on the Pareto
optimal front.

3. Multi-Objective Optimization

There have been various types of approaches to tackling
multi-objective optimization problems. We show a brief
sketch for some of these optimization methods. The nota-
tions in the preceding section are also used here.

3.1. Scalarization

A well-known method of dealing with multi-objective opti-
mization is to reduce the problem to single-objective opti-
mization with the so-called weighted sum strategy [31].

Let f = (f1, f2, . . . , fn)T be the objective functions of
a given multi-objective optimization problem and w =
(w1, w2, . . . , wn)T an n-dimensional vector with wi ≥ 0 for
i = 1, . . . , n. The vector w indicates the engineer’s prefer-
ence as to which functions they think of as more important.
By computing the inner product of w and f we obtain a
single objective function

f = fw = wT · f .

By optimizing the function f one expects to find a point
on the Pareto front of the original problem.

When the Pareto front is convex the optimal point is
the contact point of the feasible region F as a hyperplane
tangent to w approaches from the origin. Repeating this
process for various weight vectors may reveal a rough shape
of the Pareto optimal front.

This approach suffers from a few drawbacks. First, non-
convex Pareto sets are very difficult to treat. Second, for a
fixed vector w, optimizing fw usually gives only one point
on the Pareto front. And worse, it is difficult to predict
the behavior of the resulting optimal point as w varies. A
very slight change in w might cause a big move of the op-
timal point, which prevents us from figuring out the whole
Pareto information.

Despite these disadvantages, the weighted sum strategy
has long been used and is still a primary tool in the engi-
neering field because in practical problems it is often suffi-
cient to find only a set of parameter values that satisfies the
required conditions, and experienced engineers have devel-
oped a deep instinct for which weight vector will work.

3.2. ϵ-Constraint Method

Another classical way of tackling MOO is to focus on one
objective function. The ϵ-constraint method, introduced
by Haimes [18], selects a primary objective function fl(p),
the remaining objective functions being converted into con-
straints by setting an upper bound ϵi. The problem is
transformed into the form

minimize fl(p) subject to p ∈ P ∧
∧
i ̸=l

fi(p) ≤ ϵi .

This method can be combined with evolutionary algorithms
to be described in Section 3.4.



Hitoshi Yanami 151

Figure 1: Pareto optimal front for a two-objective problem

3.3. Normal-Boundary Intersection

The Normal-Boundary Intersection (NBI) method has been
proposed by Das and Dennis [11] for generating the Pareto
optimal front for nonlinear multi-objective optimization
problems. This method computes the Pareto front much
more efficiently than varying a weight vector to collect
Pareto points.

The NBI method first finds the so-called anchor points
F ∗

i , i = 1, . . . , n, obtained by optimizing only the ith ob-
jective function, and then tries to improve a point from
the convex hull of F ∗

i by searching for a better point along
a line perpendicular to the convex hull towards the ori-
gin. Figure 1 illustrates how NBI works. This approach
can efficiently find a suitable set of optimal points that are
roughly equally spaced on the Pareto front.

The NBI method supposes that the Pareto optimal front
lies outside the convex hull. When the Pareto front is non-
convex, some of the optimal points might not be obtained.

3.4. Evolutionary Algorithms

Evolutionary algorithms (EAs) are meta-heuristic search
methods that have been inspired by natural selection and
survival-of-the-fittest criteria in the biological field. When
used as an optimization algorithm it starts from a group of
individuals, called a population, placed in the parameter
space. After all the points are evaluated, a competitive se-
lection process is emulated in which better points survive
with a higher probability, followed by a reproduction pro-
cess to recover the population. Mutations are also taken
into consideration in this process, which helps prevent the
population falling into a local optimum. The population
gradually converges to an optimal point according to the
generation. Refer to [15] for a comprehensive guide to the
area.

This approach is considered flexible as to objective func-
tions and there have been many successful results in var-
ious areas of optimization problems. Recording the non-
dominated points throughout the generations gives infor-
mation on the Pareto optimal front.

Ideas behind EAs are natural and larger-scale experi-
ments are efficiently realizable as high-performance com-

puters have been ubiquitous.

3.4.1. Genetic Algorithms

Genetic Algorithms, first proposed by Holland in 1975, are
the most common type of EAs simulating genetic repro-
duction, crossover (recombination), or mutation [16]. A
problem is encoded in a series of bit strings that are ma-
nipulated by the algorithm; a binary string of data behaves
like a gene.

By exploiting the information throughout the genera-
tions they search the area with better performance within
the parameter space. Adopting a different way of encoding
can change the rules of evolution. But it is sometimes diffi-
cult to find out the actual, theoretical meaning of the oper-
ations on binary data such as reproduction and crossover.

3.4.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is another type of
EAs, first introduced by Eberhart and Kennedy [14]. PSO
is based on the observation of how a swarm of insects or a
flock of birds behaves. First a swarm is randomly placed in
the parameter space. An algorithm keeps the data of the
best position ever obtained by the swarm and the personal
best position for each individual.

Each individual simultaneously moves to the next posi-
tion that are the sum of relative vectors from itself to (1)
the group’s best position so far, (2) its best position, and
(3) a random vector, each multiplied by respective con-
stants. Random vectors help prevent a swarm from falling
into a local optimum. As time passes, they are likely to
gather at an optimal point. They are sometimes divided
into a smaller groups and each gathers different local op-
timal points. There are lots of variants for PSO; even in
the basic algorithm described above it is left to the user to
determine the constant values by which three vectors are
multiplied.

PSO has been attracting more and more attention these
days. There are a lot of empirical evidence to support this
approach in the engineering field considering it is easily im-
plemented. Kim, Maruta, and Sugie [20, 23] have applied
a variant of PSO to robust PID controller design and to
fixed-structure H∞ controller synthesis.

4. Quantifier Elimination

We change the subject in this section. It would be helpful
to overview quantifier elimination (QE) before presenting
our symbolic approach to MOO.

Let φ be a first-order formula over a real closed field of
the form

φ = Q1x1 · · ·Qnxn F (x1, . . . , xn, p1, . . . , pk) ,

where Qi is either the existential quantifier ∃ or the univer-
sal quantifier ∀ and F is composed of integral polynomial
equations, inequations, or inequalities that are appropri-
ately combined by boolean operators ∨, ∧, or ¬. Variables



152 Journal of Mathematics for Industry, Vol.1(2008B-8)

Figure 2: The feasible region of of φ0

xi in φ are called quantified variables and pi free variables.
Quantifier elimination is a procedure that takes φ as input
and returns an quantifier-free equivalent of φ.

We show an example problem here. Consider the follow-
ing first-order formula φ0 with quantified variables x and
y and free variables w and z:

φ0 = ∃x∃y (4x− w2 = 0 ∧ x− xy − z + 5 = 0
∧ 1 ≤ x ≤ 4 ∧ 1 ≤ y ≤ 2) .

A QE procedure solves φ0 to return a quantifier-free for-
mula with respect to w and z that is equivalent to φ0. A
possible output formula would be

(w − 2 ≥ 0 ∨ w + 2 ≤ 0) ∧ w + 4 ≥ 0 ∧ w − 4 ≤ 0
∧ z − 5 ≤ 0 ∧ 4z + w2 − 20 ≥ 0 .

We can visualize the feasible region in the w-z plane in
Figure 2. The red region in Figure 2 is a necessary and
sufficient condition for (w, z) to make φ0 true.

The history of QE dates back to 1930 when Tarski first
proved the existence of a decision procedure for sentences
in a real closed field. Tarski later published a QE procedure
[25], but that is not practical.

In 1975 Collins [8, 10] made a breakthrough in this field.
His method is based on cylindrical algebraic decomposition
(CAD), partitioning the variable space into invariant sub-
spaces for the polynomials involved in the input formula.
The formula is evaluated by the representative points from
those invariant subspaces. Hong [9] has implemented a
CAD-based QE algorithm on a computer. Several improve-
ments have been proposed mainly in the projection phase
of CAD-based QE [19, 22, 7].

But from the computational point of view QE is indeed
very hard. Davenport and Heinz [12] have proved that real
quantifier elimination is doubly exponential in the worse
case with respect to the number of quantified blocks.

Other approaches to tackling QE began to rise around
the middle of the 1980s. Weispfenning [26] has proposed
a QE algorithm by virtual term substitution, followed by
some improvements [21, 27, 28]. This method efficiently
works for the formulas with a low degree. González-Vega
[17] has focused on a univariate polynomial and examined

the condition for the polynomial to have a constant sign by
using the Sturm-Habicht sequence as well as combinatorial
arguments. These algorithms are efficiently applicable to
a restricted class of input formulas and are called special
QE. In contrast to special QE, a CAD-based QE algorithm
is called general QE because it accepts any first-order for-
mulas.

Improvements in algorithms coupled with enhanced hard-
ware performance enable engineers to apply QE approached
to their practical problems. Anai and Hara [2, 3, 4] have
investigated that constraints arising in robust control prob-
lems can be recast as a special type of formulas that they
call the sign definite condition (SDC) and succeeded in
solving their problems very efficiently by applying a spe-
cial QE algorithm for SDC. Dorato et al. [13, 1] have also
proposed a robust control design method by QE.

We have been developing on the Maple software a QE
toolbox named SyNRAC that solves first-order formulas
over the reals [5, 29, 30]. SyNRAC is an abbreviation for a
Symbolic-Numeric toolbox for Real Algebraic Constraints.
Using SyNRAC as a core engine we have developed a MAT-
LAB toolbox for fixed-structure robust control synthesis [6]
and a Maple package for MOO that makes a polynomial
model from the input-output data of a simulator, seeks a
model reduction, and computes a feasible region by QE.
Our MOO package has been applied to the design problem
of a hard disk slider.

5. Our Approach

Our approach to multi-objective optimization problems be-
gins with making a polynomial model for each of the objec-
tive functions. In most applications an optimization pro-
cess is realized via a simulator that takes a list of real values
for parameters as input and returns a collection of real val-
ues representing various physical properties of the product,
and the objective functions are defined from these output
values. The simulator is often treated as a black box.

We need not only to make a model that neatly fits input-
output data but to express it simply so as to make symbolic
computation work. A low-degree model would be desirable
for QE in a later phase.

5.1. Drawing Feasible Regions

Once the objective functions are expressed as approximated
polynomial models in parameters, we formulate a constraint
as a first-order formula and compute the feasible region by
QE.

To show how an MOO problem is interpreted as a first-
order formula, we recall that the parameter space P and the
feasible region F of a mult-objective optimization problem
can be expressed as

P = {p ∈ Rm|c(p) ≥ 0} ,
F = {f(p) ∈ Rn|p ∈ P} .



Hitoshi Yanami 153

From these notations we can naturally reform them into a
first-order formula

ψ = ∃p c(p) ≥ 0 ∧ y = f(p) ,

where y = (y1, . . . , yn) is introduced to represent a point
in the feasible region. By eliminating p from ψ we obtain
a quantifier-free formula with respect to y.

A quantifier elimination algorithm symbolically solves ψ
to return a quantifier-free equivalent of the input, i.e., a
formula only on y1, . . . , yn. This means that QE can com-
pute not only its Pareto optimal front but the exact feasible
region(s) of ψ, bringing an enormous advantage compared
to numerical optimization methods that usually find only
one optimal point—or at most a finite set of them—at a
time.

But computing feasible regions is one thing; visualizing
them is another. When the number of objective functions
exceeds three, it is difficult to show the feasible region on
screen and to make engineers understand what is going
on. Even in the three-objective case, supplementary figures
sometimes need to help the user’s understanding.

From the practical point of view there are two concerns
in our QE approach. One is, as is often the case with sym-
bolic computation, QE has a bad computational complex-
ity in nature. We will make our model as simple as possible
to avoid heavy computation. The other is how our result
reflects the reality; we cannot say how much difference is
caused by an approximated model. We discuss these in the
next section.

5.2. Robustness of Production tolerance

We propose another application of our symbolic method to
measure the robustness of production tolerance. In MOO
problems, two points on the Pareto front are not compara-
ble, i.e., neither is better with regard to the objective func-
tions. We introduce another criterion for judging which
point would be better.

Suppose there are two candidate parameter vectors p1

and p2 and that neither of their respective lists of objective
function values y1 = f(p1) and y2 = f(p2) dominates the
other. A simple way of selecting such a pair of vectors is
just choose two different points y1 and y2 on or near the
Pareto optimal front and let p1 and p2 be the respective
parameters for them.

Next we make first-order formulas

ψi = ∃pi pi ∈ Bϵ(pi) ∧ y = f(pi)

for i = 1, 2, similar to one in the previous section but pi

can move only in Bϵ(pi), the neighborhood of pi whose
boundary is a hypercube with its center being pi and its
side a length of 2ϵ.

By solving ψi with a QE command we obtain a quantifier-
free formula with respect to y and ϵ whose feasible region
of course contains yi. For a fixed ϵ draw the two feasible
regions to compare their shapes. We can estimate that the

Figure 3: A hard disk slider

parameter set with a smaller feasible region is more robust
because it means that manufacturing errors, arising when,
for example, cutting materials, less affect the characteris-
tics of the product. Similarly it is preferable for yi to be
positioned near the center of the possible region.

6. Application to ABS Design

We show an application of our method to the design prob-
lem of air bearing surface (ABS). ABS is part of a hard
disk slider. As was briefly explained in Section 1, binary
data is written on or read from a disk with an actuator
arm. At the end of the arm is attached ABS, on the tip of
which a magnetic head is fixed.

As the disk of a HDD rotates the header flies over its
surface. ABS is not perfectly flat but is shaped to stabilize
aerodynamically the relative position between the disk and
the read-write head, its distance being the order of ten
nanometers. Figure 3 shows an example of ABS. Notice
that it is attached upside-down to an actuator arm. A
connected component of the same height, or thickness is
sometimes called an island.

We explain a more concrete setting for a hard disk slider
design problem. First the designer draws a base shape
of ABS. Next the designer introduces a list of parame-
ters p = (p1, . . . , pm). Each pi corresponds to the x- or
y-coordinate of a vertex chosen from the boundary of an
island. According to these parameter values the related
islands change in shape.

Simply speaking one searches an optimal ABS shape by
iterating simulation for various combinations of parame-
ters and checking its performance. It is the number of
parameters that greatly influences the time needed for an
optimization. In most cases the designer sets several dozen
parameters. To cover a variety of shapes and to have op-
timization done in one attempt, they tend to set many
parameters. Sometimes they pick nearly 50 of them. It
is often the case that some of the parameters affect very
little the characteristics of the slider. That is why it is very
important to remove irrelevant parameters when we make
a polynomial model.

The ABS design problem we take here has 23 parameters
p = (p1, p2, . . . , p23). Each of them relates to a geometrical
shape of the surface though we do not explain their roles in
detail. It is possible that only several parameters dominate
the objective functions.



154 Journal of Mathematics for Industry, Vol.1(2008B-8)

Figure 4: A feasible region of ψ

As for the objective functions, the performance of a slider
is evaluated by nine functions f1, f2, . . . , f9 computed from
the output of an ABS simulator. They evaluate some per-
formance related to the flying height, the roll, or the pitch
of the slider. Note that each parameter is normalized, run-
ning between zero and one inclusive. From now on we focus
on a pair of functions f1 and f2, which measure the per-
formance of the flying height at a low and a high altitude,
respectively, and consider the Pareto front with respect to
these two objective functions.

From the samples collected we make an approximated
model for f1 and f2. We have shed the parameters down
to seven in the following manner. First we made a linear
regression using every five-parameter set to compute a de-
termination coefficient and found that the parameter set
P1 = {p2, p4, p13, p16, p17} had a highest determination co-
efficient of 0.549 for f1 and P2 = {p2, p14, p15, p16, p17} for
f2 with that of 0.859. And we made a linear regression
for f1 and f2 using P1∪P2 = {p2, p4, p13, p14, p15, p16, p17}.
The resulting approximated models were

f1 = −3.92343588542323074 + 5.63538665709504727p2

+2.43177957302682746p4 + 7.39011285328667266p13

−3.33577994026196478p14 + 0.440737805380383762p15

−7.01941019322546733p16 + 10.9647299755436568p17

and

f2 = 2.89852466590775526 − 2.16942175484827126p2

−0.0252395610401109291p4 + 0.159055858255768234p13

+1.73525308573789183p14 + 2.02926186610533454p15

−1.52264764786695528p16 − 1.69478663255212502p17 .

Note that coefficients in the above formulas are all inter-
preted as rational numbers when we construct a formula.

Next we make a first-order formula for QE. For economy
of space let I = {2, 4, 13, 14, 15, 16, 17} denote the set of
indices for the selected parameters. The formula we need
to solve can be expressed as

ψ(y1, y2) = ∃p p ∈ P ∧ y1 = f1(p) ∧ y2 = f2(p),

Figure 5: A feasible region of ψ′

Figure 6: A feasible region near p1

where p = (pi)i∈I , and P = {(pi)i∈I | 0 ≤ pi ≤ 1 for ∀i ∈
I}. By solving this formula we obtain the feasible region in
Figure 4, which shows there is a trade-off between the two
cost functions f1 and f2. But the feasible region runs over
the first quadrant, larger than expected. This is probably
due to a simplified model and a large parameter space.

Now we try to impose some restriction on parameters;
instead of letting each parameter pi run freely in [0, 1],
make pi move only around ai, where ai − 1/10 ≤ pi ≤
ai + 1/10 for some A = (ai)i∈I near the Pareto front, i.e.,
consider the following:

ψ′(y1, y2) = ∃p p ∈ B1/10(A) ∧ y1 = f1(p) ∧ y2 = f2(p) .

We call A an adjusting point. Figure 5 shows the resulting
possible region, which almost lies on the first quadrant.

Lastly, to use the criterion for comparing the robustness
of production tolerance take two points near the Pareto
front. We chose two sample points S1 and S2 shown in
Figures 6 and 7. Let Ai be the corresponding parameters
for Si and consider the following formulas

φ(y1, y2, ϵ) = ∃p p ∈ Bϵ(Ai) ∧ y1 = f1(p) ∧ y2 = f2(p).



Hitoshi Yanami 155

Figure 7: A feasible region near p2

After solving the formula we substitute 1/100 for ϵ to ob-
tain the respective shaped regions in Figures 6 and 7.

By comparing these two regions we can estimate that
the parameter set A2 corresponding to S2 would be more
robust because S2 is placed at the center of the region while
S1 is placed on the extreme left of the region.

Note that all the computations were done on a 3.80 GHz
Pentium 4 desktop with 2 GB of RAM. It takes a few sec-
onds to solve the QE problems in this section, partly due
to the model reduction. Roughly speaking, it takes a whole
night to find an optimal point by the weighted sum strat-
egy with a dozen CPUs or so. This means that trying a
few set of parameters would take a day. Compared to that
time, the solving time of our QE computation is negligible.
Our approach can reuse the data taken an optimization and
provide information on Pareto optimal front. This feedback
can also be used to decide a weight vector in the weighted
sum strategy.

7. Conclusions

We have proposed a new approach to tackling multi-objective
optimization problems with symbolic computation and ap-
plied the method to the design problem of a hard disk
slider. Starting from the input-output data of a simula-
tor, we have made approximated polynomial models and
constructed a first-order formula. By solving the formula
we have been able to visualize the possible region. Our QE
approach can compute the feasible region, which has an
advantage over classical numerical optimization methods
that return only one optimal point per optimization.

Experiments have indicated that our polynomial model
was not good enough to grab the global relation between
cost functions. But by introducing an adjusting point and
by restricting the parameter ranges it is possible to obtain
some information on the feasible region locally from which
we deduce some properties of the Pareto front. This ap-
proach can be used to compare the robustness against pro-
duction tolerance for two points that are not comparable

with regard to their objective function values.

Acknowledgments

This work has been partially supported by CREST, Japan
Science and Technology Agency.

References

[1] Abdallah, C., Dorato, P., Yang, W., Liska, R., and
Steinberg, S.: Application of quantifier elimination
theory to control system design, In: Proceedings of
4th IEEE Mediterranean Symposium on Control and
Automation. Maleme, Crete. (1996) 340–345.

[2] Anai, H. and Hara, S.: Fixed-structure robust con-
troller synthesis based on sign definite condition by
a special quantifier elimination, In: Proceedings of
American Control Conference 2000 (2000) 1312–1316.

[3] Anai, H. and Hara, S.: Linear programming approach
to robust controller design by a quantifier elimination,
In: Proceedings of SICE Annual Conference 2002 (Os-
aka, Japan) (2002) 863–869.

[4] Anai, H. and Hara, S.: A parameter space approach
for fixed-order robust controller synthesis by sym-
bolic computation, In: Proceedings of IFAC World
Congress on Automatic Control b’02 (2002).

[5] Anai, H. and Yanami, H.: SyNRAC: A maple-package
for solving real algebraic constraints, in: Proceed-
ings of International Workshop on Computer Algebra
Systems and their Applications (CASA) 2003 (Saint
Petersburg, Russian Federation), P.M.A. Sloot et al.
(Eds.): ICCS 2003, LNCS 2657, Springer (2003) 828–
837.

[6] Anai, H., Yanami, H., Sakabe, K., and Hara, S.:
Fixed-structure robust controller synthesis based on
symbolic-numeric computation: design algorithms
with a CACSD toolbox (invited paper), In: Pro-
ceedings of CCA/ISIC/CACSD 2004, Taipei, Taiwan
(2004) 1540–1545.

[7] Brown, C.W.: Improved projection for cylindrical al-
gebraic decomposition, Journal of Symbolic Compu-
tation 32 (2001) 447–465.

[8] Collins, G.E.: Quantifier elimination for the elemen-
tary theory of real closed fields by cylindrical alge-
braic decomposition, In Brakhage, H., ed.: Automata
Theory and Formal Languages. 2nd GI Conference,
Volume 33 of Lecture Notes in Computer Science.,
Gesellschaft für Informatik, Springer-Verlag, Berlin,
Heidelberg, New York (1975) 134–183.

[9] Collins, G.E. and Hong, H.: Partial cylindrical alge-
braic decomposition for quantifier elimination, Jour-
nal of Symbolic Computation 12 (1991) 299–328.



156 Journal of Mathematics for Industry, Vol.1(2008B-8)

[10] Collins, G.E.: Quantifier elimination for real closed
fields by cylindrical algebraic decomposition, In Cavi-
ness, B., Johnson, J., eds.: Quantifier Elimination
and Cylindrical Algebraic Decomposition. Texts and
Monographs in Symbolic Computation, Springer,
Wien, New York (1998) 85–121.

[11] Das, I. and Dennis, J. E.: Normal-boundary intersec-
tion: A new method for generating the Pareto sur-
face in nonlinear multicriteria optimization problems,
SIAM Journal of Optimization 8 (1998) 631–657.

[12] Davenport, J. H. and Heinz, J.: Real Quantifier Elim-
ination Is Doubly Exponential, J. Symbolic Computa-
tion 5 (1-2) (1988) 29–35.

[13] Dorato, P., Yang, W., and Abdallah, C.: Robust
multi-objective feedback design by quantifier elimina-
tion, J. Symb. Comp. 24 (1997) 153–159.

[14] Eberhart, R. C. and Kennedy, J.: A new optimizer
using particle swarm theory, in: Proc. 6th Int. Symp.
Micromachine Human Sci. 1 (1995) 39–43.

[15] Eiben, A. E. and Smith, J. E.: Introduction to Evolu-
tionary Computing, Springer, 2nd printing, 2008.

[16] Goldberg, D. E.: Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison-Wesley
Professional, 1989.

[17] González-Vega, L.: A combinatorial algorithm solving
some quantifier elimination problems, In Caviness, B.,
Johnson, J., eds.: Quantifier Elimination and Cylin-
drical Algebraic Decomposition. Texts and mono-
graphs in symbolic computation, Springer-Verlag
(1998) 365–375.

[18] Haimes, Y. Y.: Integrated System Identification and
Optimization, Control and Dynamic Systems: Ad-
vances in Theory and Applications, 10 (1973) 435–
518.

[19] Hong, H.: An improvement of the projection opera-
tor in cylindrical algebraic decomposition, In Cavi-
ness, B., Johnson, J., eds.: Quantifier Elimination
and Cylindrical Algebraic Decomposition. Texts and
Monographs in Symbolic Computation, Springer,
Wien, New York (1998) 166–173.

[20] Kim, T.-H., Maruta, I., and Sugie, T.: Robust PID
controller tuning based on the constrained particle
swarm optimization, Automatica 44 (2008) 1104–
1110.

[21] Loos, R. and Weispfenning, V.: Applying linear quan-
tifier elimination, The Computer Journal 36 (1993)
450–462, Special issue on computational quantifier
elimination.

[22] McCallum, S.: An improved projection operation for
cylindrical algebraic decomposition, In Caviness, B.,
Johnson, J., eds.: Quantifier Elimination and Cylin-
drical Algebraic Decomposition. Texts and Mono-
graphs in Symbolic Computation, Springer, Wien,
New York (1998) 242–268.

[23] Maruta, I., Kim, T.-H., and Sugie, T.: Fixed-structure
H∞ controller synthesis: A meta-heuristic approach
using simple constrained particle swarm optimization,
Automatica 45 (2009) 553–559.

[24] Stehr, G., Graeb, H., and Antreich, K. Perfor-
mance trade-off analysis of analog circuits by normal-
boundary intersection, in: DAC 2003, June 2-6, 2003,
Anaheim, California, USA, (2003) 958–963.

[25] Tarski, A.: A decision method for elementary algebra
and geometry, in Quantifier Elimination and Cylindri-
cal Algebraic Decomposition, In Caviness, B., John-
son, J., eds.: Quantifier Elimination and Cylindrical
Algebraic Decomposition. Texts and Monographs in
Symbolic Computation. Springer, Wien, New York
(1998) 24–84.

[26] Weispfenning, V.: The complexity of linear problems
in fields, Journal of Symbolic Computation 5 (1988)
3–27.

[27] Weispfenning, V.: Applying quantifier elimination to
problems in simulation and optimization, Technical
Report MIP-9607, FMI, Universität Passau, D-94030
Passau, Germany, 1996.

[28] Weispfenning, V.: Quantifier elimination for real
algebra—the quadratic case and beyond, Applicable
Algebra in Engineering Communication and Comput-
ing 8 (1997) 85–101.

[29] Yanami, H. and Anai, H.: Development of SyNRAC—
formula description and new functions, in: Proceed-
ings of International Workshop on Computer Algebra
Systems and their Applications (CASA) 2004 : ICCS
2004, LNCS 3039, Springer (2004) 286–294.

[30] Yanami, H. and Anai, H.: The Maple package SyN-
RAC and its application to robust control design, Fu-
ture Generation Computer Systems 23 (2007) 721–
726.

[31] Zadeh, L.: Optimality and non-scalar-valued perfor-
mance criteria, Automatic Control, IEEE Transac-
tions 8 (1963) 59–60.

Hitoshi Yanami
FUJITSU Laboratories Ltd., Kawasaki 211-8588, Japan
E-mail: yanami(at)labs.fujitsu.com


